WO2015174454A1 - 5レベル電力変換器の制御方法 - Google Patents

5レベル電力変換器の制御方法 Download PDF

Info

Publication number
WO2015174454A1
WO2015174454A1 PCT/JP2015/063768 JP2015063768W WO2015174454A1 WO 2015174454 A1 WO2015174454 A1 WO 2015174454A1 JP 2015063768 W JP2015063768 W JP 2015063768W WO 2015174454 A1 WO2015174454 A1 WO 2015174454A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
semiconductor element
phase
common
mode1
Prior art date
Application number
PCT/JP2015/063768
Other languages
English (en)
French (fr)
Inventor
長谷川 勇
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2015174454A1 publication Critical patent/WO2015174454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck

Definitions

  • the present invention relates to a multi-phase power converter, and more particularly to a switching pattern of a multi-level power converter characterized by using a common capacitor divided into four by each phase power converter.
  • the power converter is composed of a main circuit switching element which is a semiconductor element.
  • a method of connecting a plurality of semiconductor elements in series can be mentioned.
  • Patent Document 1 As one of the five-level power converters, a circuit configuration shown in Patent Document 1 has been proposed.
  • the circuit of Patent Document 1 is obtained by reducing the number of flying capacitors to be used by reducing the number of flying capacitors to be used by making the flying capacitors to be used in common with an arbitrary number of phases.
  • FIG. 7 shows a typical circuit configuration of Patent Document 1.
  • FIG. 7 shows a circuit configuration proposed in Embodiment 2 of Patent Document 1.
  • (A) is the structure of a single phase inverter
  • (b) is the structure of a three-phase inverter. Phase U, Phase V, and Phase W in (a) and (b) have the same configuration.
  • FIG. 8 shows each switching pattern in a phase shown in FIGS. 7 (a) and 7 (b).
  • the voltage between the neutral point NP and the output terminal U is 2E in Mode1, E in Mode2 and Mode3, 0 in Mode4 and Mode5, -E in Mode6 and 7, -2E in Mode8, and can output a voltage of 5 levels. Is possible.
  • the first flying capacitor C 1 in Mode2 is charged, first flying capacitor C 1 in Mode3 is discharged.
  • the second flying capacitor C 2 in Mode6 is charged, the second flying capacitor C 2 in Mode7 is discharged. Therefore, the second flying capacitor C 1 , Mode 6, and Mode 7 are selected by selecting Mode 2 and Mode 3 by selecting Mode 2 and Mode 3 according to the polarity of the current I during the period of outputting the voltages E and ⁇ E. 2 charging and discharging can be selected.
  • the first and second flying capacitors C 1 and C 2 can be controlled to set voltage values.
  • the circuit of FIG. 7 can charge and discharge the first and second flying capacitors C 1 and C 2 without looking at the polarity of the current. Therefore, since control can be performed without using a current sensor, and control can be performed without using the polarity of current, control can be performed without being affected by carrier ripple or noise.
  • Non-Patent Document 1 As a paper examining the current flowing into the flying capacitor of the 5-level power converter.
  • the circuit studied in Non-Patent Document 1 is different from the configuration proposed in the present invention, but the concept can be applied.
  • Non-Patent Document 1 attention is paid to a phase module for one leg among the six phase modules, and the time average value of the current during the period E and ⁇ E is examined as the current flowing through the flying capacitor. This concept can also be applied to the circuit of FIG.
  • Non-Patent Document 1 attention is paid to the current flowing during the period of E and ⁇ E.
  • the output voltage of the five-level power converter is expressed by equation (1)
  • the current flowing during the period E, ⁇ E can be expressed by equation (2) when unitized.
  • M represents the modulation rate of the 5-level power converter.
  • the average current amount is as shown in FIG. At this time, the switching frequency of the switching element is sufficiently high.
  • the average value of the current flowing during the period E (Mode 2 and Mode 3 in FIG. 8) varies depending on the modulation rate, but the polarity of the current I is always the same. The same applies to the period ⁇ E (Modes 6 and 7 in FIG. 8).
  • the first flying capacitor C 1 can be charged if the period T 2 of Mode 2 is longer than the period T 3 of Mode 3, and the first flying capacitor C 1 can be discharged if the period T 3 of Mode 3 is longer than the period T 2 of Mode 2.
  • the period T6 for Mode 6 The longer than the period T7 of Mode7 charging a second flying capacitor C 2, can be discharged a second flying capacitor C 2 if the period T7 of Mode7 longer than the period T6 of the Mode 6.
  • the first can be selected charging and discharging of the second flying capacitors C 1, C 2, it is possible to control the voltage constant.
  • the voltages of the first and second flying capacitors C 1 and C 2 can be kept constant by satisfying the following expressions (3) and (4) during the output period of E or ⁇ E.
  • This control method has the advantage that no current detector is required in the voltage control of the flying capacitor.
  • the dead time is a time lag provided to prevent a short-circuit state of the semiconductor element that may be caused by a turn-off delay time of the semiconductor element when the semiconductor element changes state from off to on.
  • represents a conducting semiconductor element
  • a broken line ⁇ represents a conducting diode.
  • each of the two DC voltage sources connected in series has one end connected to the negative electrode end of the upper DC voltage source.
  • a first common switch common to each phase, a second common switch common to each phase, one end of which is connected to the positive terminal of the lower DC voltage source among the two DC voltage sources connected in series, and a first common switch A common first flying capacitor having one end connected to the other end, a second flying capacitor common to each phase having one end connected to the other end of the second common switch, and a positive terminal of the upper DC voltage source
  • the first semiconductor element, the third semiconductor element, and the fourth semiconductor element of each phase sequentially connected in series between the first common switch and the other end of the first common switch, and a common connection point of the first semiconductor element and the third semiconductor element Each inserted between the other end of the first flying capacitor A second semiconductor element, and a seventh semiconductor element, an eighth semiconductor element, and a tenth semiconductor element of each phase sequentially connected in series between the other end of the
  • a single-phase five-level power converter comprising a common connection point where the other end of the fifth semiconductor element and the other end of the sixth semiconductor element are connected as an output terminal and two each of the first to tenth semiconductor elements
  • the control method is shown in Table 3, Mode 1 ′, Mode 2, Mode 3 It has a switching pattern of Mode 4, Mode 5, Mode 6, Mode 7 and Mode 8 ′, and Mode 1 ′ to Mode 2 or Mode 3, Mode 2 to Mode 1 ′ or Mode 3 or Mode 4 or Mode 5, Mode 3 to Mode 1 ′ or Mode 2 or Mode 4, and Mode 4 to Mode 2 or Mode 3 or Mode 5 or Mode 6, Mode 5 to Mode 2 or Mode 4 or Mode 6 or Mode 7, Mode 6 to Mode 4 or Mode 5 or Mode 7 or Mode 8 ′, Mode 7 to Mode 5 or Mode 6 or Mode 8 ′, Mode 8 ′ to Mode 6 or Mode 7 And
  • the first common switch common to each phase whose one end is connected to the negative electrode end of the upper DC voltage source, and two connected in series
  • a second common switch common to each phase with one end connected to the positive terminal of the lower DC voltage source among the DC voltage sources, and a first flying capacitor common to each phase with one end connected to the other end of the first common switch
  • a second flying capacitor common to each phase, one end of which is connected to the other end of the second common switch, and a positive terminal of the upper DC voltage source and the other end of the first common switch.
  • a sixth semiconductor element of each phase having one end connected to a common connection point of the seventh semiconductor element and the eighth semiconductor element, and the other end of the fifth semiconductor element of each phase and the sixth semiconductor element
  • the voltage of the first and second flying capacitors is controlled based on the time of the switching pattern without detecting the current polarities of the first and second flying capacitors.
  • the control method of the five-level power converter it is possible to prevent the two-level skip from occurring even at the dead time while controlling the voltage of the flying capacitor to a desired value.
  • FIG. 3 is an explanatory diagram showing state transition of a switching pattern in the first embodiment. Schematic which shows a simultaneous selection prohibition pattern. Explanatory drawing which shows the state transition of the switching pattern in Embodiment 2.
  • FIG. Explanatory drawing which shows the state transition of the switching pattern in consideration of dead time.
  • Explanatory drawing which shows the state transition of the switching pattern in consideration of dead time.
  • Explanatory drawing which shows the state transition of the switching pattern in consideration of dead time.
  • the time chart which shows the phase voltage waveform at the time of application / non-application of the state transition of the switching pattern in Embodiment 2.
  • the graph which shows the relationship between the average electric current which flows during output voltage E and -E period, and a modulation factor.
  • the circuit diagram which shows the example which 2 level skip generate
  • An object of the present invention first, while the second flying capacitor C 1, the voltage of C 2 controlled to a desired value, that it does not generate a two-level skipping even during the dead time period.
  • Embodiments 1 and 2 in the control method of the five-level power converter according to the present invention will be described in detail with reference to FIGS.
  • a second common switch S C2 common to two phases, one end of which is connected to the positive terminal of the lower DC voltage source C DC2 among the two DC voltage sources C DC1 and C DC2 connected in series, and a second common switch
  • the second flying capacitor C 2 having one end connected to the other end of the switch S C2 and the other end of the second common switch S C2 and the negative end of the lower DC voltage source C DC2 are sequentially connected in series 2 Phase seventh semiconductor elements S 7U , S 7V , eighth semiconductor elements S 8U , S 8V , tenth semiconductor elements S 10U , S 10V , eighth semiconductor elements S 8U , S 8V , and tenth semiconductor element S 10U , S 10V and ninth semiconductor elements S 9U , S 9V interposed between the common connection point of S 10V and the other end of the second flying capacitor C 2 .
  • one end of the fifth semiconductor elements S 5U and S 5V is connected to a common connection point of the third semiconductor elements S 3U and S 3V and the fourth semiconductor elements S 4U and S 4V .
  • One ends of the sixth semiconductor elements S 6U and S 6V are connected to a common connection point of the seventh semiconductor elements S 7U and S 7V and the eighth semiconductor elements S 8U and S 8V .
  • the other ends of the fifth semiconductor elements S 5U and S 5V are connected to the other ends of the sixth semiconductor elements S 6U and S 6V , and the connection points become the output terminals U and V.
  • the first to tenth semiconductor elements S 1U to S 10U are U-phase modules
  • the first to tenth semiconductor elements S 1V to S 10V are V-phase modules
  • the first to tenth semiconductor elements S 1W A phase module of W phase is configured with ⁇ 10 W.
  • FIG. 1 shows a specific example when Mode 1 ′ is applied.
  • the antiparallel diode in one common switch S c1 is not conducting. Therefore, a current in a dotted line path flows. Therefore, switching can be performed without skipping two levels from 2E to 0 as shown in FIG. Even when the MODE8 transition Mode 6, a state to turn on the ninth semiconductor device S 9 similarly defined as MODE8 '.
  • FIG. 2 shows the detailed state transition diagram of the switching pattern based on the commutation phenomenon as shown in Fig. 1.
  • FIG. 2A shows a conventional state transition pattern
  • FIG. 2B shows a state transition pattern according to the first embodiment.
  • the arrow in FIG. 2 represents the direction of transition, indicating that the state of either of the two-way arrows can be transitioned.
  • transitions are performed one level at a time, such as 2E to E and E to 0, and basically any state can be transitioned to.
  • patterns from Mode 3 to Mode 5 and Mode 4 to Mode 7 are prohibited because level skip occurs due to commutation during the dead time period.
  • the level skip can be suppressed even during the dead time period in the control method of the five-level power converter having two or more phases. Thereby, the dielectric breakdown of a load can be reduced.
  • the current detector is not required by controlling the voltage of the flying capacitor based on the time of the switching pattern.
  • Mode 1 ′ cannot be selected simultaneously with Mode 4 (Mode 8 ′ is Mode 5).
  • Mode2 cannot be selected simultaneously with Mode4, and Mode6 cannot be selected simultaneously with Mode5.
  • Mode 4 or Mode 5 the phase voltage level of 0 cannot be output, so that the output voltage distortion is greatly increased.
  • Mode 4 is selected in a certain phase
  • Mode 1 is selected instead of Mode 1 'in the other phase.
  • Mode 5 is selected in a certain phase
  • Mode 8 is selected instead of Mode 8 'in the other phase. If these combinations are used, the above short-circuit state can be avoided.
  • Table 1 shows selectable switching pattern combinations (O) and switching pattern combinations (x) that cannot be selected because the above-described short circuit occurs in the three-phase five-level power converter of FIG.
  • FIG. 4B shows a transition pattern that satisfies the switching pattern combinations shown in Table 1 and that does not cause a level skip in the state transition of the switching pattern.
  • the arrow in FIG. 4 represents the direction of transition, and indicates that the state of either of the bidirectional arrows can be transitioned.
  • transitions are performed one level at a time, such as 2E to E and E to 0.
  • patterns from Mode 1 to Mode 2, Mode 3 to Mode 5, Mode 4 to Mode 7, and Mode 6 to Mode 8 are prohibited because level skip occurs due to commutation during the dead time period.
  • FIGS. 5A to 5C show all switching patterns.
  • the fourth to seventh semiconductor elements S4 to S7 are configured by connecting two semiconductor elements in series. Table 2 summarizes all switching patterns.
  • FIG. 6 shows simulation results when the switching pattern of the second embodiment is applied and when it is not applied.
  • FIG. 6A shows a case where the switching pattern of the second embodiment is applied
  • FIG. 6B shows a case where the switching pattern of the second embodiment is not applied.
  • FIG. 6C is an enlarged view of FIG.
  • the invention of the second embodiment can be applied not only to a three-phase five-level power converter but also to a five-level power converter having four or more phases.
  • level skip can be prevented even during a dead time period without increasing output voltage distortion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

第1,第3,第5半導体素子S1,S3,S5をONとするMode1の代わりに、第1,第2,第3,第5半導体素子S1,S2,S3,S5をONとするMode1'を適用する。同様に、第6,第8,第10半導体素子S6,S8,S10をONとするMode8の代わりに、第6,第8,第9,第10半導体素子S6,S8,S9,S10をONとするMode8'を適用する。これにより、5レベル電力変換器の制御方法において、フライングキャパシタの電圧を所望の値に制御しつつ、デッドタイム時においても2レベルスキップを防止する。

Description

5レベル電力変換器の制御方法
 本発明は、多相電力変換器に係り、特に、各相の電力変換器が4分割した共通のコンデンサを用いることを特徴としたマルチレベル電力変換器のスイッチングパターンに関する。
 電力変換器は、半導体素子である主回路スイッチング素子により構成される。この電力変換器の高圧化手段として、複数の半導体素子を直列に接続する方法が挙げられる。このように直列接続した回路構成の中に5レベルの電圧を出力する電力変換器が提案されている。
 この5レベル電力変換器の一つとして、特許文献1に示す回路構成が提案されている。特許文献1の回路は使用するフライングキャパシタを任意の相数で共通にすることで使用するフライングキャパシタの数を削減し、装置を小型化したものである。
 特許文献1の代表回路構成を、図7に示す。図7は、特許文献1の実施形態2にて提案している回路構成である。(a)は単相インバータ、(b)は三相インバータの構成である。(a)と(b)のPhaseU,PhaseVおよびPhaseWは同一構成である。
 図8に図7(a)および図7(b)のあるPhaseにおける各スイッチングパターンを示す。中性点NPと出力端子U間の電圧は、Mode1では2E,Mode2,Mode3ではE,Mode4,Mode5では0,Mode6,7では-E,Mode8では-2Eとなり5レベルの電圧を出力することが可能である。
 ここで、図8に示すように、I>0の場合には、Mode2では第1フライングキャパシタC1が充電され、Mode3では第1フライングキャパシタC1が放電される。また、I>0の場合には、Mode6では第2フライングキャパシタC2が充電され、Mode7では第2フライングキャパシタC2が放電される。したがって、E,-Eの電圧を出力している期間に電流Iの極性に応じてMode2,Mode3を選択することにより第1フライングキャパシタC1,Mode6,Mode7を選択することにより第2フライングキャパシタC2の充電と放電を選択できる。その結果、第1,第2フライングキャパシタC1,C2を設定した電圧値に制御することが可能となる。
 図7の回路は電流の極性を見ずに第1,第2フライングキャパシタC1,C2の充放電を行うことができる。したがって、電流センサを使わずに制御でき、さらに電流の極性を用いずに制御できることから、キャリアリプルやノイズ等の影響を受けることなく制御することが可能となる。
 5レベル電力変換器のフライングキャパシタに流入する電流に関して検討している論文として非特許文献1がある。非特許文献1で検討されている回路は、本発明で提案する構成とは異なるが考え方を応用することができる。
 非特許文献1では、6つの相モジュールのうち一脚分の相モジュールに着目し、E,-Eの期間中の電流の時間平均値を、フライングキャパシタに流れる電流として検討している。この考え方は図7の回路にも応用できる。
 図7の回路において、非特許文献1と同様にE,-Eの期間中に流れる電流に着目する。5レベル電力変換器の出力電圧が(1)式で表されるとき、E,-Eの期間中に流れる電流は、単位化すると(2)式で表すことができる。Mは5レベル電力変換器の変調率を表す。(2)式を用い、横軸を変調率としてグラフに表わすと平均電流量は図9のようになる。この時、スイッチング素子のスイッチング周波数は十分に高いものとしている。
Figure JPOXMLDOC01-appb-M000003
 図9からわかるようにEの期間(図8のMode2,Mode3)中に流れる電流の平均値は、変調率により大きさが異なるが、電流Iの極性は常に同じである。-Eの期間(図8のMode6,7)も同様である。
 このためMode2の期間T2を、Mode3の期間T3より長くすれば第1フライングキャパシタC1を充電、Mode3の期間T3をMode2の期間T2より長くすれば、第1フライングキャパシタC1を放電できる。また、同様に、Mode6の期間T6をMode7の期間T7より長くすれば第2フライングキャパシタC2を充電、Mode7の期間T7をMode6の期間T6より長くすれば第2フライングキャパシタC2を放電できる。
 したがって、瞬時的な電流極性を検出しなくとも、第1,第2フライングキャパシタC1,C2の充電・放電を選択できるため、電圧を一定に制御することができる。特にEもしくは-Eの出力期間中に下記の式(3),(4)を満たすことで第1,第2フライングキャパシタC1,C2の電圧を一定値に保つことができる。
Figure JPOXMLDOC01-appb-M000004
 この制御方法は、フライングキャパシタの電圧制御において、電流検出器が不要であるという利点をもっている。
特願2013-132261号
"A Sinusoidal PWM Method With Voltage Balancing Capability for Diode-Clamped Five-Level Converters" IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.45,NO.3,MAY/JUNE 2009
 しかしながら、特許文献1のスイッチングパターンのみの場合、デッドタイムの影響により2レベルスキップが起きる問題が生じる。ここで、デッドタイムとは半導体素子がオフからオンに状態変化する際に、半導体素子のターンオフ遅れ時間によって生じる恐れのある半導体素子の短絡状態を防ぐために設けるタイムラグのことである。図10にその様子を示す。図10中の○は導通中の半導体素子を表し、破線の○は導通中のダイオードを表す。
 図10では電流Iが矢印の向きに流れているとき、2EからEのモードに遷移する際に、デッドタイム期間中に出力電圧0に変化するため2Eから0への2レベルスキップが発生している。これは第3半導体素子S3をオフするために発生する。負荷のリアクトルの影響により半導体素子に並列に接続されているダイオードを導通させる向きに電圧がかかるため、図10に示すような現象が起きる。この時、図10(b)のように、点線経路の電流が流れて0の電圧が出力される。すなわち、(a)→(b)の移行時に、2E→0の2レベルスキップが生じる。2レベルスキップが生じると、負荷の絶縁破壊の要因となるため、これを抑制する必要がある。
 以上示したようなことから、5レベル電力変換器の制御方法において、フライングキャパシタの電圧を所望の値に制御しつつ、デッドタイム時においても2レベルスキップを発生させないことが課題となる。
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直列接続された2個の直流電圧源のうち上段の直流電圧源の負極端に一端が接続された各相共通の第1共通スイッチと、直列接続された2個の直流電圧源のうち下段の直流電圧源の正極端に一端が接続された各相共通の第2共通スイッチと、第1共通スイッチの他端に一端が接続された各相共通の第1フライングキャパシタと、第2共通スイッチの他端に一端が接続された各相共通の第2フライングキャパシタと、前記上段の直流電圧源の正極端と第1共通スイッチの他端との間に順次直列接続された各相の第1半導体素子,第3半導体素子,第4半導体素子と、第1半導体素子,第3半導体素子の共通接続点と第1フライングキャパシタの他端との間に介挿された各相の第2半導体素子と、第2共通スイッチの他端と下段の直流電圧源の負極端との間に順次直列接続された各相の第7半導体素子,第8半導体素子,第10半導体素子と、第8半導体素子と第10半導体素子の共通接続点と第2フライングキャパシタの他端との間に介挿された各相の第9半導体素子と、第3半導体素子と第4半導体素子の共通接続点に一端が接続された各相の第5半導体素子と、第7半導体素子と第8半導体素子の共通接続点に一端が接続された各相の第6半導体素子と、を備え、各相の第5半導体素子の他端と第6半導体素子の他端が接続された共通接続点を出力端子とし、前記第1~第10半導体素子を2つずつ備えた単相の5レベル電力変換器の制御方法であって、表3に示すMode1’,Mode2,Mode3,Mode4,Mode5,Mode6,Mode7,Mode8’のスイッチングパターンを有し、Mode1’からMode2またはMode3、Mode2からMode1’またはMode3またはMode4またはMode5、Mode3からMode1’またはMode2またはMode4、Mode4からMode2またはMode3またはMode5またはMode6、Mode5からMode2またはMode4またはMode6またはMode7、Mode6からMode4またはMode5またはMode7またはMode8’、Mode7からMode5またはMode6またはMode8’、Mode8’からMode6またはMode7にスイッチングパターンを状態遷移させることを特徴とする。
Figure JPOXMLDOC01-appb-T000005
 また、他の態様として、直列接続された2個の直流電圧源のうち上段の直流電圧源の負極端に一端が接続された各相共通の第1共通スイッチと、直列接続された2個の直流電圧源のうち下段の直流電圧源の正極端に一端が接続された各相共通の第2共通スイッチと、第1共通スイッチの他端に一端が接続された各相共通の第1フライングキャパシタと、第2共通スイッチの他端に一端が接続された各相共通の第2フライングキャパシタと、前記上段の直流電圧源の正極端と第1共通スイッチの他端との間に順次直列接続された各相の第1半導体素子,第3半導体素子,第4半導体素子と、第1半導体素子,第3半導体素子の共通接続点と第1フライングキャパシタの他端との間に介挿された各相の第2半導体素子と、第2共通スイッチの他端と下段の直流電圧源の負極端との間に順次直列接続された各相の第7半導体素子,第8半導体素子,第10半導体素子と、第8半導体素子と第10半導体素子の共通接続点と第2フライングキャパシタの他端との間に介挿された各相の第9半導体素子と、第3半導体素子と第4半導体素子の共通接続点に一端が接続された各相の第5半導体素子と、第7半導体素子と第8半導体素子の共通接続点に一端が接続された各相の第6半導体素子と、を備え、各相の第5半導体素子の他端と第6半導体素子の他端が接続された共通接続点を出力端子とし、前記第1~第10半導体素子を3つずつ以上備えた3相以上の5レベル電力変換器の制御方法であって、表3に示すMode1,Mode1’,Mode2,Mode3,Mode4,Mode5,Mode6,Mode7,Mode8,Mode8’のスイッチングパターンを有し、Mode1からMode1’またはMode3、Mode1’からMode1またはMode2またはMode3、Mode2からMode1’またはMode3またはMode4またはMode5、Mode3からMode1またはMode1’またはMode2またはMode4、Mode4からMode2またはMode3またはMode5またはMode6、Mode5からMode2またはMode4またはMode6またはMode7、Mode6からMode4またはMode5またはMode7またはMode8’、Mode7からMode5またはMode6またはMode8またはMode8’Mode8からMode7またはMode8’、Mode8’からMode6またはMode7またがMode8にスイッチングパターンを状態遷移させることを特徴とする。
Figure JPOXMLDOC01-appb-T000006
 また、その一態様として、第1,第2フライングキャパシタの電流極性を検出せずにスイッチングパターンの時間に基づいて第1,第2フライングキャパシタの電圧を制御することを特徴とする。
 本発明によれば、5レベル電力変換器の制御方法において、フライングキャパシタの電圧を所望の値に制御しつつ、デッドタイム時においても2レベルスキップを発生させないことが可能となる。
Mode1’適用時のデッドタイムの影響を示す概略図。 実施形態1におけるスイッチングパターンの状態遷移を示す説明図。 同時選択禁止パターンを示す概略図。 実施形態2におけるスイッチングパターンの状態遷移を示す説明図。 デッドタイムを考慮したスイッチングパターンの状態遷移を示す説明図。 デッドタイムを考慮したスイッチングパターンの状態遷移を示す説明図。 デッドタイムを考慮したスイッチングパターンの状態遷移を示す説明図。 実施形態2におけるスイッチングパターンの状態遷移適用時/非適用時の相電圧波形を示すタイムチャート。 従来の5レベル電力変換器を示す回路図。 各スイッチングパターンを示す回路図。 出力電圧E,-E期間中に流れる平均電流と変調率の関係を示すグラフ。 デッドタイム中に2レベルスキップが発生する例を示す回路図。
 本発明の目的は、第1,第2フライングキャパシタC1,C2の電圧を所望の値に制御しつつ、デッドタイム期間中においても2レベルスキップを発生させないことである。
 以下、本発明に係る5レベル電力変換器の制御方法における実施形態1,2を図1~図6に基づいて詳述する。
 [実施形態1]
 本実施形態1では、図7(a)構成の単相の5レベル電力変換器において、デッドタイム期間中においても2レベルスキップを発生させないスイッチングパターンについて述べる。
 ここで、図7(a)に示す単相の5レベル電力変換器の構成について説明する。
 直列接続された2個の直流電圧源CDC1,CDC2のうち上段の直流電圧源CDC1の負極端に一端が接続された2相共通の第1共通スイッチSC1と、第1共通スイッチSC1の他端に一端が接続された第1フライングキャパシタC1と、前記上段の直流電圧源CDC1の正極端と第1共通スイッチSC1の他端との間に順次直列接続された2相の第1半導体素子S1U,S1V,第3半導体素子S3U,S3V,第4半導体素子S4U,S4Vと、第1半導体素子S1U,S1V,第3半導体素子S3U,S3Vの共通接続点と第1フライングキャパシタC1の他端との間に介挿された第2半導体素子S2U,S2Vと、を備える。
 また、直列接続された2個の直流電圧源CDC1,CDC2のうち下段の直流電圧源CDC2の正極端に一端が接続された2相共通の第2共通スイッチSC2と、第2共通スイッチSC2の他端に一端が接続された第2フライングキャパシタC2と、第2共通スイッチSC2の他端と下段の直流電圧源CDC2の負極端との間に順次直列接続された2相の第7半導体素子S7U,S7V,第8半導体素子S8U,S8V,第10半導体素子S10U,S10Vと、第8半導体素子S8U,S8V,と第10半導体素子S10U,S10Vの共通接続点と第2フライングキャパシタC2の他端との間に介挿された第9半導体素子S9U,S9Vと、を有する。
 また、第3半導体素子S3U,S3Vと第4半導体素子S4U,S4Vの共通接続点に第5半導体素子S5U,S5Vの一端が接続される。第7半導体素子S7U,S7Vと第8半導体素子S8U,S8Vの共通接続点に第6半導体素子S6U,S6Vの一端が接続される。そして、第5半導体素子S5U,S5Vの他端と第6半導体素子S6U,S6Vの他端が接続され、この接続点が出力端子U,Vとなる。
 ここで、第1~第10半導体素子S1U~S10UでU相の相モジュール、第1~第10半導体素子S1V~S10VでV相の相モジュール、第1~第10半導体素子S1W~S10WでW相の相モジュールを構成する。
 図10のスイッチングパターンの場合、Mode1選択時に第2半導体素子S2をオンしておけば、Mode1からMode2に遷移する場合においてもデッドタイム中にEの相電圧を出力することが可能となる。そのため、2レベルスキップは起こらない。したがって、Mode1からMode2に遷移する際にはこの第2半導体素子S2を選択する新たなパターンを使用する必要がある。本実施形態1ではこの新しいModeをMode1’と定義する。また、同様にMode8の場合もMode8からMode6に遷移する際に第9半導体素子S9をオンする必要がある。
 図1にMode1’を適用した場合の具体例を示す。図1に示すように予め第2半導体素子S2をオンしておくと、図1(b)期間で第1共通スイッチSc1のコレクタ-エミッタ間の印加電圧は2E-E=Eとなり、第1共通スイッチSc1内の逆並列ダイオードは導通しない。したがって、点線経路の電流が流れる。よって、図10のように出力電圧が2Eから0に2レベルスキップすることなくスイッチングできる。Mode8からMode6の遷移の際にも、同様に第9半導体素子S9をオンにする状態をMode8’と定義する。
 図1のような転流現象を踏まえた上での詳細なスイッチングパターンの状態遷移図を図2に示す。図2(a)が従来の状態遷移パターン、図2(b)が本実施形態1の状態遷移パターンである。
 図2中の矢印は遷移する方向を表しており、双方向の矢印どちらの状態も遷移可能であることを示す。2EからE,Eから0というように1レベルずつの遷移を原則とし、基本的にはどの状態にも遷移できる。しかし、Mode3からMode5,Mode4からMode7のパターンはデッドタイム期間中の転流によりレベルスキップが生じるため禁止している。
 以上示したように、本実施形態1によれば、2相以上の5レベル電力変換器の制御方法において、デッドタイム期間中においてもレベルスキップを抑制することが可能となる。これにより、負荷の絶縁破壊を低減させることができる。
 なお、本実施形態1においても前述したようにスイッチングパターンの時間に基づいてフライングキャパシタの電圧を制御することにより、電流検出器が不要となる。
 [実施形態2]
 本実施形態2では、図7(b)構成の3相の5レベル電力変換器におけるスイッチングパターンの状態遷移について記述する。図7(b)の回路構成は、図7(a)を三相の変更したのみであり、その他は同様である。
 相の数が3以上の場合、第1共通スイッチSC1,第2共通スイッチSC2が存在するため、第1,第2フライングキャパシタC1,C2の充電・放電制御に制約が生じる。その例を図3に示す。
 図3(a),(b)に示すように、2相がMode1’とMode8’を選択しているとき、残りの1相が0の相電圧レベルを出力しようとすると、その残りの1相は、Mode4もしくはMode5を選択する必要がある。Mode4,Mode5では第1共通スイッチSC1もしくは第2共通スイッチSC2をオンにする必要があるため、上段の直流電圧源CDC1(または、下段の直流電圧源CDC2)と第1フライングキャパシタC1(または、第2フライングキャパシタC2)が、この第1共通スイッチSC1もしくは第2共通スイッチSC2により短絡されてしまう。この短絡状態を避けるために、Mode1’はMode4(Mode8’はMode5)と同時に選択できない。同様に、図3(c),(d)に示すように、Mode2はMode4と同時に選択できず、Mode6はMode5と同時に選択できない。一方、Mode4もしくはMode5が選択できない場合、0の相電圧レベルが出力できないため、出力電圧歪を大きく増大させてしまう。
 そこで、ある相でMode4を選択する場合は、他の相ではMode1’の代わりにMode1を選択する。同様に、ある相でMode5を選択する場合は、他の相ではMode8’の代わりにMode8を選択する。これらの組み合わせにすると、上記の短絡状態は回避できる。
 図7(b)の3相5レベル電力変換器において、選択可能なスイッチングパターン組み合わせ(○)と上記の短絡状態が発生するため選択できないスイッチングパターンの組み合わせ(×)を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1のスイッチングパターンの組み合わせを満足し、かつ、スイッチングパターンの状態遷移にレベルスキップを発生させない遷移パターンを図4(b)に示す。
 図4(b)の遷移パターンでは、3相すべてのスイッチングパターンがグループAより選択されるか、もしくは、3相すべてのスイッチングパターンがグループBより選択される。したがって、表1のパターン組み合わせを満足する。
 また、図4中の矢印は遷移する方向を表しており、双方向の矢印どちらの状態も遷移可能であることを示す。2EからE,Eから0というように1レベルずつの遷移を原則とし、基本的にはどの状態にも遷移できる。しかし、Mode1からMode2,Mode3からMode5,Mode4からMode7,Mode6からMode8のパターンはデッドタイム期間中の転流によりレベルスキップが生じるため、禁止している。
 図5(a)~(c)と表2に全スイッチングパターンを示す。なお、図5(a)~(c)では、第4~第7半導体素子S4~S7を2つの半導体素子を直列接続した構成としている。また、表2に全スイッチングパターンをまとめる。また、本実施形態2のスイッチングパターンを適用した場合と適用していない場合のシミュレーション結果を図6に示す。図6(a)は本実施形態2のスイッチングパターンを適用した場合、図6(b)は本実施形態2のスイッチングパターンを適用しない場合を示している。図6(c)は図6(b)の拡大図である。
Figure JPOXMLDOC01-appb-T000008
 図6を見ると分かるように、本実施形態2のスイッチングパターンの状態遷移を適用していない場合(図6(b),(c))、0から2Eへの2レベルスキップが発生しているが、本実施形態2のスイッチングパターンの状態遷移を適用した場合(図6(a))においては2レベルスキップを回避できていることがわかる。
 なお、この実施形態2の発明は、3相の5レベル電力変換器に限らず相数が4相以上の5レベル電力変換器においても適用可能である。
 以上示したように、本実施形態2によれば、実施形態1と同様の作用効果を奏する。また、3相以上の5レベル電力変換器において、出力電圧歪を増大させることなく、デッドタイム期間中においてもレベルスキップを防ぐことができる。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。

Claims (3)

  1.  直列接続された2個の直流電圧源のうち上段の直流電圧源の負極端に一端が接続された各相共通の第1共通スイッチと、
     直列接続された2個の直流電圧源のうち下段の直流電圧源の正極端に一端が接続された各相共通の第2共通スイッチと、
     第1共通スイッチの他端に一端が接続された各相共通の第1フライングキャパシタと、
     第2共通スイッチの他端に一端が接続された各相共通の第2フライングキャパシタと、
     前記上段の直流電圧源の正極端と第1共通スイッチの他端との間に順次直列接続された各相の第1半導体素子,第3半導体素子,第4半導体素子と、
     第1半導体素子,第3半導体素子の共通接続点と第1フライングキャパシタの他端との間に介挿された各相の第2半導体素子と、
     第2共通スイッチの他端と下段の直流電圧源の負極端との間に順次直列接続された各相の第7半導体素子,第8半導体素子,第10半導体素子と、
     第8半導体素子と第10半導体素子の共通接続点と第2フライングキャパシタの他端との間に介挿された各相の第9半導体素子と、
     第3半導体素子と第4半導体素子の共通接続点に一端が接続された各相の第5半導体素子と、
     第7半導体素子と第8半導体素子の共通接続点に一端が接続された各相の第6半導体素子と、を備え、
     各相の第5半導体素子の他端と第6半導体素子の他端が接続された共通接続点を出力端子とし、前記第1~第10半導体素子を2つずつ備えた単相の5レベル電力変換器の制御方法であって、
     表3に示すMode1’,Mode2,Mode3,Mode4,Mode5,Mode6,Mode7,Mode8’のスイッチングパターンを有し、
     Mode1’からMode2またはMode3、Mode2からMode1’またはMode3またはMode4またはMode5、Mode3からMode1’またはMode2またはMode4、Mode4からMode2またはMode3またはMode5またはMode6、Mode5からMode2またはMode4またはMode6またはMode7、Mode6からMode4またはMode5またはMode7またはMode8’、Mode7からMode5またはMode6またはMode8’、Mode8’からMode6またはMode7にスイッチングパターンを状態遷移させる5レベル電力変換器の制御方法。
    Figure JPOXMLDOC01-appb-T000001
  2.  直列接続された2個の直流電圧源のうち上段の直流電圧源の負極端に一端が接続された各相共通の第1共通スイッチと、
     直列接続された2個の直流電圧源のうち下段の直流電圧源の正極端に一端が接続された各相共通の第2共通スイッチと、
     第1共通スイッチの他端に一端が接続された各相共通の第1フライングキャパシタと、
     第2共通スイッチの他端に一端が接続された各相共通の第2フライングキャパシタと、
     前記上段の直流電圧源の正極端と第1共通スイッチの他端との間に順次直列接続された各相の第1半導体素子,第3半導体素子,第4半導体素子と、
     第1半導体素子,第3半導体素子の共通接続点と第1フライングキャパシタの他端との間に介挿された各相の第2半導体素子と、
     第2共通スイッチの他端と下段の直流電圧源の負極端との間に順次直列接続された各相の第7半導体素子,第8半導体素子,第10半導体素子と、
     第8半導体素子と第10半導体素子の共通接続点と第2フライングキャパシタの他端との間に介挿された各相の第9半導体素子と、
     第3半導体素子と第4半導体素子の共通接続点に一端が接続された各相の第5半導体素子と、
     第7半導体素子と第8半導体素子の共通接続点に一端が接続された各相の第6半導体素子と、を備え、
     各相の第5半導体素子の他端と第6半導体素子の他端が接続された共通接続点を出力端子とし、前記第1~第10半導体素子を3つずつ以上備えた3相以上の5レベル電力変換器の制御方法であって、
     表3に示すMode1,Mode1’,Mode2,Mode3,Mode4,Mode5,Mode6,Mode7,Mode8,Mode8’のスイッチングパターンを有し、
     Mode1からMode1’またはMode3、Mode1’からMode1またはMode2またはMode3、Mode2からMode1’またはMode3またはMode4またはMode5、Mode3からMode1またはMode1’またはMode2またはMode4、Mode4からMode2またはMode3またはMode5またはMode6、Mode5からMode2またはMode4またはMode6またはMode7、Mode6からMode4またはMode5またはMode7またはMode8’、Mode7からMode5またはMode6またはMode8またはMode8’Mode8からMode7またはMode8’、Mode8’からMode6またはMode7またがMode8にスイッチングパターンを状態遷移させる5レベル電力変換器の制御方法。
    Figure JPOXMLDOC01-appb-T000002
  3.  第1,第2フライングキャパシタの電流極性を検出せずにスイッチングパターンの時間に基づいて第1,第2フライングキャパシタの電圧を制御する請求項1または2記載の5レベル電力変換器の制御方法。
PCT/JP2015/063768 2014-05-14 2015-05-13 5レベル電力変換器の制御方法 WO2015174454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-100054 2014-05-14
JP2014100054A JP2015220765A (ja) 2014-05-14 2014-05-14 5レベル電力変換器の制御方法

Publications (1)

Publication Number Publication Date
WO2015174454A1 true WO2015174454A1 (ja) 2015-11-19

Family

ID=54479991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063768 WO2015174454A1 (ja) 2014-05-14 2015-05-13 5レベル電力変換器の制御方法

Country Status (2)

Country Link
JP (1) JP2015220765A (ja)
WO (1) WO2015174454A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078201A (ja) * 2018-11-08 2020-05-21 パナソニックIpマネジメント株式会社 電力変換装置
CN114026777A (zh) * 2019-06-18 2022-02-08 株式会社明电舍 逆变器系统和逆变器系统控制方法
RU2772317C1 (ru) * 2019-06-18 2022-05-18 Мейденша Корпорейшн Инверторная система и способ управления инверторной системой

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547524B2 (ja) * 2015-09-04 2019-07-24 株式会社明電舎 多相電力変換器の制御方法及び多相電力変換器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182974A (ja) * 2011-02-08 2012-09-20 Fuji Electric Co Ltd 5レベル電力変換装置
JP2014064431A (ja) * 2012-09-24 2014-04-10 Meidensha Corp マルチレベル電力変換装置
WO2014208232A1 (ja) * 2013-06-25 2014-12-31 株式会社明電舎 マルチレベル電力変換装置
WO2015015885A1 (ja) * 2013-08-02 2015-02-05 株式会社明電舎 マルチレベル電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182974A (ja) * 2011-02-08 2012-09-20 Fuji Electric Co Ltd 5レベル電力変換装置
JP2014064431A (ja) * 2012-09-24 2014-04-10 Meidensha Corp マルチレベル電力変換装置
WO2014208232A1 (ja) * 2013-06-25 2014-12-31 株式会社明電舎 マルチレベル電力変換装置
WO2015015885A1 (ja) * 2013-08-02 2015-02-05 株式会社明電舎 マルチレベル電力変換装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078201A (ja) * 2018-11-08 2020-05-21 パナソニックIpマネジメント株式会社 電力変換装置
JP7026310B2 (ja) 2018-11-08 2022-02-28 パナソニックIpマネジメント株式会社 電力変換装置
CN114026777A (zh) * 2019-06-18 2022-02-08 株式会社明电舍 逆变器系统和逆变器系统控制方法
RU2772317C1 (ru) * 2019-06-18 2022-05-18 Мейденша Корпорейшн Инверторная система и способ управления инверторной системой
CN114026777B (zh) * 2019-06-18 2022-08-12 株式会社明电舍 逆变器系统和逆变器系统控制方法

Also Published As

Publication number Publication date
JP2015220765A (ja) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6232944B2 (ja) マルチレベル電力変換装置
JP6123219B2 (ja) マルチレベル電力変換器
JP5745051B2 (ja) マルチレベル電圧コンバータ
JP5417641B2 (ja) 電力変換装置
US20090244936A1 (en) Three-phase inverter
JP5624577B2 (ja) 車両用電力変換装置
JP4759673B2 (ja) マルチレベルコンバータ及びその制御方法
KR101980691B1 (ko) 초고압직류송전의 밸브 성능 시험을 위한 합성시험 회로
US20140307489A1 (en) Control method for inverter device, and inverter device
WO2015174454A1 (ja) 5レベル電力変換器の制御方法
JP5362657B2 (ja) 電力変換装置
JP6140007B2 (ja) 電力変換装置
US20140292089A1 (en) Power converter capable of outputting a plurality of different levels of voltages
JP2013055753A (ja) マルチレベル電力変換器
JP2012191761A (ja) 交流−直流変換回路
JP5910333B2 (ja) 5レベル電力変換器
JP2013172530A (ja) 電力変換装置
JP2016226223A (ja) 7レベル電力変換器
JP6337659B2 (ja) 5レベル電力変換装置
US11038436B2 (en) Inverter system
US9843272B2 (en) Power converter capable of outputting a plurality of different levels of voltages
JP2016208744A (ja) マルチレベル電力変換器
JP5328313B2 (ja) 電力変換装置
JP5811806B2 (ja) マルチレベル電力変換器
JP2013158077A (ja) マルチレベル電力変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792503

Country of ref document: EP

Kind code of ref document: A1