WO2014208232A1 - マルチレベル電力変換装置 - Google Patents

マルチレベル電力変換装置 Download PDF

Info

Publication number
WO2014208232A1
WO2014208232A1 PCT/JP2014/063717 JP2014063717W WO2014208232A1 WO 2014208232 A1 WO2014208232 A1 WO 2014208232A1 JP 2014063717 W JP2014063717 W JP 2014063717W WO 2014208232 A1 WO2014208232 A1 WO 2014208232A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor elements
voltage
phase
numbered
series
Prior art date
Application number
PCT/JP2014/063717
Other languages
English (en)
French (fr)
Inventor
長谷川 勇
貴志 小玉
猛 近藤
正太 漆畑
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to US14/900,950 priority Critical patent/US9923369B2/en
Priority to CA2916174A priority patent/CA2916174C/en
Priority to CN201480036659.0A priority patent/CN105359402B/zh
Priority to RU2015155320A priority patent/RU2614051C1/ru
Priority to BR112015032307-3A priority patent/BR112015032307B1/pt
Priority to EP14817321.4A priority patent/EP3016263A4/en
Priority to SG11201510428SA priority patent/SG11201510428SA/en
Publication of WO2014208232A1 publication Critical patent/WO2014208232A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the present invention relates to a multi-level power converter for high voltage and large capacity.
  • the power conversion device includes a main circuit switching element which is a semiconductor element (a module in which a diode is connected in antiparallel with a semiconductor switching element such as an IGBT: the same applies hereinafter).
  • a main circuit switching element which is a semiconductor element (a module in which a diode is connected in antiparallel with a semiconductor switching element such as an IGBT: the same applies hereinafter).
  • the circuit configuration shown in FIG. 27 has a problem in that there are combinations of output voltages that cannot be output because the capacitors and some of the semiconductor elements S1 to S4 are common to three phases. Specifically, if the phase voltages of 2E, 0, and -2E are output from the output terminals U, V, and W, respectively, the flying capacitor FC1 is short-circuited. Therefore, a combination of these phase voltages must be output. I could not.
  • FIG. 28 shows an example in which the U phase is 2E, the V phase is 0, and the W phase is ⁇ 2E. Further, in FIG. 28, a circle represents a semiconductor element that is conducting.
  • the circuit configuration shown in FIG. 27 cannot select the semiconductor element to be conducted as shown in FIG. 28, and cannot output 2E, 0, and ⁇ 2E voltages at the same time.
  • the voltages of 2E, 0, and ⁇ 2E cannot be simultaneously output from the output terminals U, V, and W, respectively, so that they are replaced by simulating with combinations of other output voltages.
  • the outputs 2U, E, -2E and 2E, -E, -2E are repeatedly output from the output terminals U, V, W, respectively, and the voltages 2E, 0, -2E are output on average. ing.
  • the present invention has been devised in view of the above-described conventional problems, and one aspect thereof is a multi-level power converter that generates an AC output converted from a voltage of a DC voltage source and a flying capacitor into a plurality of voltage levels.
  • N DC voltage sources connected in series (N ⁇ 2), first to fourth semiconductor elements sequentially connected in series between the positive and negative electrodes of the N DC voltage sources,
  • An M phase (M ⁇ ) having a fifth semiconductor element having one end connected to the common connection point of the second semiconductor element and a sixth semiconductor element having one end connected to the common connection point of the third and fourth semiconductor elements.
  • a basic circuit having connected M-phase second to fourth semiconductor elements and an M-phase sixth semiconductor element having one end connected to a common connection point of the odd-numbered third and fourth semiconductor elements;
  • the M-phase common even-numbered flying capacitor interposed between the common connection points of all the fifth semiconductor elements and the third and fourth semiconductor elements in the even-numbered stages, and the common of the first and second semiconductor elements in the odd-numbered stages
  • An odd-numbered flying capacitor common to the M phase inserted between the connection point and all the sixth semiconductor elements and a common connection point of the second and third semiconductor elements of each basic circuit are used as input terminals.
  • M-phase voltage selection circuit for outputting the potential of any one of the input terminals from the output terminal by selectively turning on and off the semiconductor element between the output terminal and the semiconductor element. And.
  • the second and third semiconductor elements sequentially connected in series to the positive terminals of the even-numbered DC voltage sources among the N DC voltage sources connected in series, and the N DC power sources connected in series
  • An M-phase (M ⁇ 3) basic circuit having third and second semiconductor elements sequentially connected in series to the negative ends of the odd-numbered DC voltage sources of the DC voltage sources;
  • An M-phase common flying capacitor connected in parallel to each of the second and third semiconductor elements; a common connection point of the second and third semiconductor elements of the basic circuit; Common to positive terminal of DC voltage source
  • the connection point is an input terminal, and a semiconductor element is provided between the input terminal and the output terminal.
  • a sixth semiconductor element having one end connected to the connection point; first to third semiconductor elements sequentially connected in series between the positive and negative electrodes of an odd-numbered DC voltage source among N DC voltage sources connected in series; A basic circuit of M phase (M ⁇ 3) having a fifth semiconductor element having one end connected to a common connection point of the odd-numbered first and second semiconductor elements, and all sixth circuits in the even-numbered stage.
  • An M-phase voltage selection circuit that has a semiconductor element between the output terminals and selectively controls ON / OFF of the semiconductor element to output the potential of any one of the input terminals from the output terminal; , Provided.
  • a fifth semiconductor element having one end connected to a common connection point of the second semiconductor elements, and a series connected in series between the positive and negative electrodes of an odd-numbered DC voltage source among N DC voltage sources connected in series.
  • An M-phase (M ⁇ 3) basic circuit having two to fourth semiconductor elements and a sixth semiconductor element having one end connected to a common connection point of the odd-numbered third and fourth semiconductor elements;
  • the odd-numbered flying capacitor common to the M phase interposed between the positive terminal of the DC voltage source of the odd-numbered stage and the common connection point of the second semiconductor element, and the common of the second and third semiconductor elements of the basic circuit
  • the connection point is an input terminal, each of which has a semiconductor element between the input terminal and the output terminal. By selectively ON / OFF controlling this semiconductor element, the potential of any one of the input terminals is output to the output terminal.
  • an M-phase voltage selection circuit that outputs the output of the M-phase.
  • some or all of the semiconductor elements of the basic circuit and the voltage selection circuit may have a series number of two or more.
  • some or all of the semiconductor elements of the basic circuit and the voltage selection circuit may have a parallel number of two or more.
  • a multi-phase multi-level power conversion device it is an object to simplify control for outputting an arbitrary voltage level from all phases while outputting an arbitrary voltage level from all phases.
  • FIG. 10 is a circuit configuration diagram showing a basic cell in a sixth embodiment. It is a circuit block diagram which shows the multilevel power converter device in Embodiment 6.
  • FIG. 10 is a diagram illustrating an operation example for each output voltage in the sixth embodiment. It is a figure which shows the operation example of the multilevel power converter device in Embodiment 6.
  • FIG. 10 is a circuit configuration diagram illustrating a multilevel power conversion device according to a seventh embodiment.
  • FIG. 10 is a diagram illustrating an operation example of a multilevel power conversion device according to a seventh embodiment.
  • FIG. 10 is a circuit configuration diagram illustrating a multilevel power conversion device according to an eighth embodiment.
  • FIG. 10 is a diagram illustrating an operation example of a multilevel power conversion device according to an eighth embodiment.
  • FIG. 10 is a circuit configuration diagram illustrating a multilevel power conversion device according to a ninth embodiment. It is a figure which shows the operation example of the multilevel power converter device in Embodiment 9.
  • FIG. 10 is a circuit configuration diagram illustrating a multilevel power conversion device according to a twelfth embodiment.
  • FIG. 22 is a diagram illustrating an operation example of the multilevel power conversion device according to the twelfth embodiment.
  • FIG. 1 is a circuit diagram showing a basic cell used in a multilevel power conversion device according to the present invention.
  • the basic cell includes six semiconductor elements SN. 1 to SN. 6 (for example, a module in which a diode is connected in antiparallel with a semiconductor switch element such as an IGBT: the same applies hereinafter).
  • the terminal 3 is connected to the positive side of a DC voltage source (DC capacitor or DC power source), and the terminal 1 is connected to the negative side of the DC voltage source.
  • the terminal 2 ' is connected to the positive side of the flying capacitor (or DC voltage source), and the terminal 2 "is connected to the negative side of the flying capacitor.
  • the semiconductor element SN. 1 to SN. 4 are sequentially connected in series. Further, the terminal 2 'and the semiconductor element SN. 1, SN. 2 between the two common connection points. 5 is inserted, and the semiconductor element SN.6 is inserted between the terminal 2 ′′ and the common connection point of the semiconductor elements SN.3 and SN.4.
  • the common connection point is terminal 2.
  • FIG. 2 shows a basic circuit in which N basic cells shown in FIG. 1 are connected in series. Here, N ⁇ 2.
  • the voltage selection circuit uses the terminals (2,..., 2N,) of the basic circuit as input terminals, and selects which potential of the input terminals is output from the output terminal.
  • the voltage selection circuit is configured by (a), (b), (c), (d) in FIG. 3 or a combination thereof.
  • Semiconductor elements S1 to S28 are provided between the input terminals and the output terminals. By selectively turning on the semiconductor elements S1 to S28, the input terminals (2N_3, 2 (N ⁇ 1 in (a)) are provided.
  • FIG. 4 is a schematic diagram illustrating a configuration of the multilevel power conversion device according to the first embodiment.
  • the multilevel power conversion device according to the first embodiment is an M-phase N-stage multilevel power conversion device configured using the basic circuit shown in FIG. 2 and the voltage selection circuit shown in FIG. is there. N ⁇ 2 and M ⁇ 3.
  • Each of the phase modules 11 to 1M includes a combination of a basic circuit and a voltage selection circuit.
  • the configurations of the basic circuit and the voltage selection circuit are the same as those shown in FIGS. 2 and 3, and a description thereof will be omitted here.
  • N DC voltage sources DCC1 to DCCN are connected in series between both end terminals 1 and 2N + 1 of the phase modules 11 to 1M, and terminals 3,..., 2N ⁇ 1 of the phase modules 11 to 1M (basic circuit) are respectively connected. Common connection points of the DC voltage sources DCC1 to DCCN are connected.
  • N flying capacitors FC1 to FCN are connected to the terminals 2 ′′, 2 ′,..., 2N ′′, 2N ′ of the phase modules 11 to 1M.
  • a voltage of 2pE can be output from 2p + 1.
  • the terminals 1, 2 ′′, 2 ′, 3,..., 2N ⁇ 1, 2N ′′, 2N ′, 2N + 1 are input to the phase modules 11 to 1M, respectively.
  • the semiconductor elements S1.1, S1.2, S1.3, S1.4 to SN. 1, SN. 2, SN. 3, SN. 4 is selectively turned ON to set the potential of any one of the terminals 1, 2 ′′, 2 ′, 3,..., 2N ⁇ 1, 2N ′′, 2N ′, 2N + 1 to the terminals 2,.
  • the multilevel power conversion device according to the second embodiment includes the first semiconductor elements S2.1 to SN.1 in the even-numbered basic cells of the basic circuit shown in FIG. 1 is common to the M phase, and the fifth semiconductor elements S2.5 to SN.
  • the fourth semiconductor elements S1.4 to SN-1.4 are shared by the M phase
  • the sixth semiconductor elements S1.6 to SN-1.6 are In this configuration, the omitted circuit is connected in N stages.
  • the multilevel power conversion device according to the second embodiment has M phases and N stages, where N is an even number of 2 or more and M ⁇ 3. Other configurations are the same as those of the first embodiment.
  • a voltage of (2N + 1) level can be output from the output terminals OUT1 to OUTM.
  • the multilevel power conversion device of the second embodiment it becomes possible to output an arbitrary phase voltage level and control for outputting an arbitrary phase voltage level as compared with the conventional circuit configuration shown in FIG. Becomes easy. Further, the number of semiconductor elements can be reduced as compared with the first embodiment.
  • the multilevel power conversion device according to the third embodiment includes fourth semiconductor elements S2.4 to SN.4 in the even-numbered basic cells of the basic circuit shown in FIG. 4 is common to the M phase, and the sixth semiconductor elements S2.6 to SN. And a circuit in which the first semiconductor elements S1.1 to SN-1.1 are common to the M phase and the fifth semiconductor elements S1.5 to SN-1.5 are omitted in the basic cells in the odd stages. Are connected in N stages. Note that the multilevel power conversion device according to the third embodiment has M phases and N stages, where N is an even number of 2 or more and M ⁇ 3. Other configurations are the same as those of the first embodiment.
  • a voltage of (2N + 1) level can be output to the output terminals OUT1 to OUTM.
  • the fourth embodiment is different from the first embodiment in the multilevel power conversion device of the second embodiment in that the first semiconductor elements S2.1 to SN. 1 and the odd-numbered fourth semiconductor elements S1.4 to SN-1.4 that are common to the M phase are omitted. That is, in FIG. 7, the semiconductor elements connected to the terminals 1, 5, 2N-3, 2N + 1 are omitted. Other configurations are the same as those of the second embodiment. N is an even number of 2 or more, and M ⁇ 3.
  • a voltage of (2N + 1) level can be output to the output terminals OUT1 to OUTM.
  • the multilevel power conversion device of the fourth embodiment it is possible to output an arbitrary phase voltage level and control for outputting an arbitrary phase level as compared with the conventional circuit configuration shown in FIG. It becomes easy.
  • the number of semiconductor elements can be reduced as compared with the second embodiment.
  • the fifth embodiment includes fourth semiconductor elements S2.4 to SN.4 of even-numbered basic cells common to M phases. 4 and the first semiconductor elements S1.1 to SN-1.1 of the odd-numbered basic cells are omitted. That is, in FIG. 8, the semiconductor element connected to the terminals 3 and 2N-1 is omitted.
  • N is an even number of 2 or more, and M ⁇ 3.
  • a voltage of (2N + 1) level can be output from the output terminals OUT1 to OUTM.
  • the multilevel power conversion device of the fifth embodiment it is possible to output an arbitrary phase voltage level and control for outputting an arbitrary phase level as compared with the conventional circuit configuration shown in FIG. It becomes easy.
  • the number of semiconductor elements can be reduced as compared with the third embodiment.
  • DC voltage source DCC1 flying capacitor FC1
  • U-phase semiconductor element SUN. 1 to SUN. 6 V-phase semiconductor element SVN. 1 to SVN. 6
  • W-phase semiconductor element SWN. 1 to SWN. 6 is composed.
  • the U-phase basic circuit includes first to fourth semiconductor elements SU1.1 to SU1.4 and SU2.1 to SU2 that are sequentially connected in series between the positive and negative electrodes of two DC voltage sources DCC1 and DCC2. .4, fifth semiconductor elements SU1.5, SU2.5 having one end connected to a common connection point of the first and second semiconductor elements SU1.1, SU1.2, SU2.1, SU2.2, 3 and 4th semiconductor element SU1.3, SU1.4, SU2.3, SU2, and 6th semiconductor element SU1.6, SU2.6 by which one end was connected to the common connection point.
  • the flying capacitors FC1 and FC2 include the other ends of the fifth semiconductor elements SU1.5, SV1.5, SW1.5, SU2.5, SV2.5, SW2.5 and the sixth semiconductor elements SU1.6, SV1.6, It is inserted between the other ends of SW 1.6, SU 2.6, SV 2.6, and SW 2.6.
  • the U-phase voltage selection circuit is composed of SU1 to SU4. The same applies to the V phase and the W phase.
  • U, V and W represent output terminals.
  • a circuit in which each semiconductor element is configured in two or more series for resistance to high voltage is included, and a circuit in which each semiconductor element is configured in two or more in parallel for resistance to large current is also included.
  • the two series semiconductor elements of the semiconductor elements SU1 and SU2 in FIG. 10 may be replaced with one semiconductor element.
  • This circuit shares the flying capacitors FC1 and FC2 in three phases and can output a five-level phase voltage.
  • Table 1 shows typical switching patterns for the U phase. By switching the semiconductor elements in the pattern shown in Table 1, it is possible to output five levels of voltages 2E, E, 0, -E, and -2E through the path shown in FIG. Table 1 and FIG. 11 are examples, and other patterns may be used.
  • a circle in FIG. 12 represents a semiconductor element in conduction.
  • the semiconductor elements SU1.5, SV1.5, SW1.5, SU1.6, SV1.6, SW1.6 are connected to both ends of the flying capacitor FC1, and the semiconductor elements are connected to both ends of the flying capacitor FC2.
  • the flying capacitors FC1 and FC2 can be operated without being short-circuited.
  • phase voltages 2E, 0, and -2E that cannot be output with the conventional circuit configuration shown in FIG. 27 can be output, and the control for outputting 2E, 0, and -2E can be simplified.
  • the semiconductor elements SW2.1, SW2.2, SW1 Since the potential of the collector terminal of the semiconductor element SW2.1 is 2E and the potential of the output terminal W (that is, the potential of the emitter terminal of the semiconductor element SW2) is ⁇ 2E, the semiconductor elements SW2.1, SW2.2, SW1, The potential at the common connection point between the semiconductor elements SW2.2 and SW1 becomes 0 by the voltage division due to the impedance of SW2. Therefore, the applied voltage of the series connection circuit of the semiconductor elements SW1 and SW2 is 2E. The reference point for each potential is the 0 terminal in FIG. This condition is a condition that the applied voltage between the series circuits of the semiconductor elements SW2.1, SW2.2, SW1, and SW2 is maximized (4E).
  • the maximum value of the applied voltage of the series connection circuit of the semiconductor elements SW1 and SW2 in the steady state is 2E.
  • the conventional circuit of FIG. 29A has a mode in which the voltage at the terminal W0 is E and the voltage at the output terminal OUT_W is ⁇ 2E depending on the ON / OFF state of the switching element. At this time, an applied voltage of 3E is applied to the switching element SW5.
  • 29B has a mode in which the voltage at the terminal W0 is E and the voltage at the output terminal OUT_W is ⁇ 2E depending on the ON / OFF state of the switching element. At this time, an applied voltage of 3E is applied to the switching element SW5.
  • the sixth embodiment has an advantage that the withstand voltage of the semiconductor element directly connected to the output terminal may be lower than that of the conventional circuit of FIGS. 29 (a) and 29 (b).
  • the three-phase output circuit has been described.
  • the phase voltage of each phase can be independently set without short-circuiting the flying capacitors FC1 and FC2. Output is possible. The same is true for the superiority of the withstand voltage of the semiconductor element and the superiority of the absence of the semiconductor element through which current for three phases flows, as compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b).
  • the basic circuit includes, among the two DC voltage sources DCC1 and DCC2 connected in series, a fourth semiconductor element S2.4 common to three phases, one end of which is connected to the negative electrode end of the DC voltage source DCC2 of the even number stage.
  • Three-phase first to third semiconductor elements SU2.1 to SU2.3 sequentially connected in series between the positive end of the even-numbered DC voltage source DCC2 and the other end of the even-numbered fourth semiconductor element S2.4.
  • SV2.1 to SV2.3, SW2.1 to SW2.3 and even-numbered first and second semiconductor elements SU2.1, SU2.2, SV2.1, SV2.2, SW2.1, SW2.
  • First common terminal having one end connected to the positive terminal of the fifth-stage semiconductor element SU2.5, SV2.5, SW2.5 having one end connected to the two common connection points and the DC voltage source DCC1 of the odd-numbered stage.
  • a sixth semiconductor having one end connected to a common connection point of the third and fourth semiconductor elements SU1.3, SU1.4, SV1.3, SV1.4, SW1.3, SW1.4 in odd stages
  • Elements SU1.6, SV1.6, and SW1.6 are included.
  • the flying capacitor FC2 is common to all the fifth semiconductor elements SU2.5, SV2.5, and SW2.5 and the third and fourth semiconductor elements SU2.3, SV2.3, SW2.3, and SU2.4 in even stages.
  • the flying capacitor FC1 is interposed between the connection points, and the flying capacitor FC1 is connected to the common connection point of the first and second semiconductor elements S1.1, SU1.2, SV1.2, SW1.2 and all the sixth semiconductor elements SU1 in odd stages. .6, SV1.6, and SW1.6.
  • the voltage selection circuit is composed of SU1 to SU4, SV1 to SV4, SW1 to SW4.
  • each semiconductor element includes a circuit in which each semiconductor element is configured in two or more series in order to withstand a high voltage. Also included is a circuit in which each semiconductor element is configured in parallel with two or more in order to withstand a large current.
  • the two semiconductor elements SU1 and SU2 connected in series shown in FIG. 13 may be replaced with one semiconductor element.
  • phase voltages 2E, 0, and -2E that could not be output by the conventional circuit shown in FIG. 27 can be output. This is shown in FIG. In FIG. 14, a circle represents a semiconductor element that is conducting.
  • the semiconductor elements SU2.5, SV2.5, and SW2.5 are connected to the flying capacitor FC2
  • the semiconductor elements SU1.6, SV1.6, and SW1.6 are connected to the flying capacitor FC1
  • the flying capacitor 2E, 0, -2E can be output without short-circuiting FC1 and FC2, and the control for outputting 2E, 0, -2E can be simplified.
  • the series connection circuit of the semiconductor elements SW1 and SW2 in the steady state as in the sixth embodiment.
  • the maximum value of the applied voltage is 2E. The same applies to the semiconductor elements SU1, SU2, SV1, SV2, SW1, SW2, SU3, SU4, SV3, SV4, SW3, and SW4.
  • the three-phase output circuit has been described.
  • the phase voltage of each phase can be independently set without short-circuiting the flying capacitors FC1 and FC2. Output is possible. The same applies to the superiority of the withstand voltage of the semiconductor element compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b).
  • FIG. 15 is a circuit configuration diagram showing the multilevel power conversion device according to the eighth embodiment.
  • U, V, and W represent output terminals.
  • the basic circuit includes a three-phase common first semiconductor element S2.1 having one end connected to the positive terminal of an even-stage DC voltage source DCC2 out of two DC voltage sources DCC1 and DCC2 connected in series, Three-phase second to fourth semiconductor elements SU2.2a to SU2... Are sequentially connected in series between the other end of the even-numbered first semiconductor element S2.1 and the negative electrode end of the even-numbered DC voltage source DCC2.
  • the flying capacitor FC2 includes common connection points of the first and second semiconductor elements S2.1, SU2.2a, SV2.2a, and SW2.2a in the even stages and the sixth semiconductor elements SU2.6 in all phases in the even stages.
  • the flying capacitor FC1 is interposed between the other ends of SV2.6 and SW2.6, and the flying capacitor FC1 is connected to the other ends of the fifth semiconductor elements SU1.5, SV1.5, and SW1.5 of all phases in the odd-numbered stages. It is inserted between the third and fourth semiconductor elements SU1.3b, SV1.3b, SW1.3b, S1.4 in the stage.
  • the voltage selection circuit includes semiconductor elements SU1 to SU4, SV1 to SV4, SW1 to SW4.
  • the fifth semiconductor elements SU1.5, SV1.5, and SW1.5 are connected to the flying capacitor FC1
  • the sixth semiconductor elements SU2.6, SV2.6, and SW2.6 are connected to the flying capacitor FC2. Therefore, 2E, 0, -2E can be output from the output terminals U, V, W without short-circuiting the flying capacitors FC1, FC2, and the control for outputting 2E, 0, -2E can be simplified. it can.
  • each semiconductor element is configured in two or more series for resistance to high voltage is also included. Also included is a circuit in which each semiconductor element is configured in parallel with two or more in order to withstand a large current. Further, if the withstand voltage of the semiconductor element is suitable, the two series semiconductor elements SU1.3a and SU1.3b in FIG. 15 may be replaced with one semiconductor element.
  • the semiconductor elements SV1.3a and SV1.3b, SW1.3a and SW1.3b, SU2.2a and SU2.2b, SV2.2a and SV2.2b, SW2.2a and SW2.2b, SU1 and SU2, and SV1 The same applies to SV2, SW1 and SW2, SU3 and SU4, SV3 and SV4, SW3 and SW4.
  • the series connection circuit of the semiconductor elements SW1 and SW2 at the time of steady state as in the sixth embodiment is 2E.
  • the three-phase output circuit has been described.
  • the phase voltage of each phase is independent without short-circuiting the flying capacitors FC1 and FC2. Can be output.
  • the superiority of the withstand voltage of the semiconductor element as compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b).
  • the basic circuit includes second to fourth semiconductor elements SU2.2 to SU2.4, which are sequentially connected in series to the positive ends of even-numbered DC voltage sources DCC2 out of two DC voltage sources DCC1 and DCC2 connected in series. SV2.2 to SV2.4, SW2.2 to SW2.4, and a third connected in series to the negative end of the odd-numbered DC voltage source DCC1 among the two DC voltage sources DCC1 and DCC2 connected in series. First semiconductor elements SU1.3 to SU1.1, SV1.3 to SV1.1, SW1.3 to SW1.1.
  • the flying capacitor FC1 is connected in parallel to the odd-numbered second and third semiconductor elements SU1.3, SU1.2, SV1.3, SV1.2, SW1.3, SW1.2, and the flying capacitor FC2 is an even-numbered stage.
  • the second and third semiconductor elements SU2.2, SU2.3, SV2.2, SV2.3, SW2.2, and SW2.3 are connected in parallel.
  • the fifth semiconductor elements SU1.5, SV1.5, and SW1.5 are interposed between the flying capacitor FC1 and the second semiconductor elements SU1.2, SV1.2, and SW1.2 in the odd-numbered stages, so that the flying Sixth semiconductor elements SU2.6, SV2.6, and SW2.6 are interposed between capacitor FC2 and third semiconductor elements SU2.3, SV2.3, and SW2.3 at even stages.
  • first semiconductor elements SU1.1, SV1.1, SW1.1 are inserted between the second semiconductor elements SU1.2, SV1.2, SW1.2 and the 0 terminal in the odd-numbered stages, and the even number
  • fourth semiconductor elements SU2.4, SV2.4, and SW2.4 are interposed between the third semiconductor elements SU2.3, SV2.3, SW2.3 and the 0 terminal in the stage.
  • the voltage selection circuit is composed of SU1, SU3, SV1, SV3, SW1, and SW3.
  • each semiconductor element is configured in two or more series in order to withstand a high voltage. Also included is a circuit in which each semiconductor element is configured in parallel with two or more in order to withstand a large current.
  • a circle in FIG. 18 represents a semiconductor element that is conducting.
  • the semiconductor elements SU1.5, SV1.5, and SW1.5 are connected to the flying capacitor FC1
  • the semiconductor elements SU2.6, SV2.6, and SW2.6 are connected to the flying capacitor FC2
  • the flying capacitor Without short-circuiting FC1 and FC2 the voltages of 2E, 0, and -2E can be output from the output terminals U, V, and W, respectively, and the control for outputting 2E, 0, and -2E is simplified. be able to.
  • the maximum value of the applied voltage of the semiconductor element SW1 at the time of steady state is 2E as in the sixth embodiment.
  • the phase voltage of each phase is independent of the circuit in which the number of output phases is increased to four or more without short-circuiting the flying capacitors FC1 and FC2. Can be output.
  • the superiority of the withstand voltage of the semiconductor element as compared with the conventional circuit shown in FIGS. 29A and 29B, and the superiority of the absence of the semiconductor element through which current for three phases flows.
  • U, V, and W represent output terminals.
  • FIG. 3B is used as the voltage selection circuit.
  • the basic circuit includes second and third semiconductor elements SU2.2, SU2.3, which are sequentially connected in series to the positive ends of even-numbered DC voltage sources DCC2 out of two DC voltage sources DCC1, DCC2 connected in series. SV2.2, SV2.3, SW2.2, SW2.3 and a third connected in series to the negative terminal of the odd-numbered DC voltage source DCC1 among the two DC voltage sources DCC1, DCC2 connected in series. , Second semiconductor elements SU1.3, SU1.2, SV1.3, SV1.2, SW1.3, SW1.2.
  • the flying capacitor FC1 is connected in parallel to the odd-numbered second and third semiconductor elements SU1.2, SU1.3, SV1.2, SV1.3, SW1.2, and SW1.3.
  • the flying capacitor FC2 is connected in parallel to the even-numbered second and third semiconductor elements SU2.2, SU2.3, SV2.2, SV2.3, SW2.2, and SW2.3.
  • the voltage selection circuit includes SU7, SU8, SU11, SU12, SV7, SV8, SV11, SV12, SW7, SW8, SW11, SW12.
  • each semiconductor element is configured in two or more series in order to withstand a high voltage. Also included is a circuit in which each semiconductor element is configured in two or more in order to withstand a large current.
  • a circle in FIG. 20 represents a semiconductor element in conduction.
  • the voltages of 2E, 0, and -2E can be output from the output terminals U, V, and W, and the control for outputting 2E, 0, and -2E can be simplified.
  • the tenth embodiment differs from the conventional circuit shown in FIGS. 29A and 29B in that there is no semiconductor element through which currents for three phases of the U phase, the V phase, and the W phase flow. Therefore, a cooling fin having a high cooling effect is not necessary.
  • the phase voltage of each phase can be made independent of the circuit in which the number of output phases is increased to four or more without short-circuiting the flying capacitors FC1 and FC2. Can be output. Compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b), the same is true for the advantage that there is no semiconductor element through which current for three phases flows.
  • FIG. 3C is used as the voltage selection circuit.
  • the basic circuit includes second and third semiconductor elements SU2.2, SU2.3, which are sequentially connected in series to the positive ends of even-numbered DC voltage sources DCC2 out of two DC voltage sources DCC1, DCC2 connected in series. SV2.2, SV2.3, SW2.2, SW2.3 and a third connected in series to the negative terminal of the odd-numbered DC voltage source DCC1 among the two DC voltage sources DCC1, DCC2 connected in series. , Second semiconductor elements SU1.3, SU1.2, SV1.3, SV1.2, SW1.3, SW1.2.
  • the flying capacitor FC1 is connected in parallel to the odd-numbered second and third semiconductor elements SU1.2, SU1.3, SV1.2, SV1.3, SW1.2, and SW1.3.
  • the flying capacitor FC2 is connected in parallel to the even-numbered second and third semiconductor elements SU2.2, SU2.3, SV2.2, SV2.3, SW2.2, and SW2.3.
  • the voltage selection circuit includes diodes DU1, DU2, DV1, DV2, DW1, DW2, SU12 to SU15, SV12 to SV15, and SW12 to SW15.
  • the output terminals U, V, and W can be changed to 5E voltages of 2E, E, 0, -E, and -2E. Can output.
  • each semiconductor element includes a circuit in which each semiconductor element is configured in two or more series in order to withstand a high voltage. Also included is a circuit in which each semiconductor element is configured in two or more in order to withstand a large current.
  • a circle represents a semiconductor element that is conducting.
  • the flying capacitors FC1 and FC2 are connected. Without short-circuiting, the voltages of 2E, 0, and -2E can be output from the output terminals U, V, and W, respectively, and the control for outputting 2E, 0, and -2E can be simplified.
  • the eleventh embodiment is different from the conventional circuit shown in FIGS. 29A and 29B in that there is no semiconductor element through which currents for three phases of the U phase, the V phase, and the W phase flow. Therefore, a cooling fin having a high cooling effect is not necessary.
  • the three-phase output circuit has been described.
  • the phase voltage of each phase can be independently set without short-circuiting the flying capacitors FC1 and FC2. Output is possible.
  • the same is true for the advantage that there is no semiconductor element through which current for three phases flows.
  • the voltage selection circuit uses FIG.
  • the fifth semiconductor element SU2.5, SV2.5, SW2.5 having one end connected to the connection point, and the positive and negative electrodes of the odd-numbered DC voltage source DCC1 among the two DC voltage sources DCC1, DCC2 connected in series Second to fourth semiconductor elements SU1.2 to SU1.4, SV1.2 to SV1.4, SW1.2 to SW1.4, which are sequentially connected in series, and the odd-numbered third and fourth semiconductor elements SU1.3, SU1.4, SV1.3, SV .4, SW1.3, sixth semiconductor device SU1.6 having one end connected to the common connection point of the SW1.4, SV1.6, having a SW1.6,.
  • the flying capacitor FC2 includes the other ends of all the fifth semiconductor elements SU2.5, SV2.5, and SW2.5 in the even stages, the negative terminal of the DC voltage source DCC2 in the even stages, and the third semiconductor elements SU2.3 and SV2. .3, SW2.3, and the flying capacitor FC1 is connected to the other end of the sixth semiconductor elements SU1.6, SV1.6, SW1.6 in the odd-numbered stages and the DC voltage in the odd-numbered stages. It is inserted between the positive terminal of the source DCC1 and the common connection point of the second semiconductor elements SU1.2, SV1.2, and SW1.2.
  • the voltage selection circuit is composed of SU14, SU15, SV14, SV15, SW14, and SW15.
  • the output terminals U, V, and W can be changed to 5E voltages of 2E, E, 0, -E, and -2E. Can output.
  • each semiconductor element includes a circuit in which each semiconductor element is configured in two or more series in order to withstand a high voltage. Also included is a circuit in which each semiconductor element is configured in two or more in order to withstand a large current.
  • represents a semiconductor element that is conducting.
  • the sixth semiconductor elements SU1.6, SV1.6, and SW1.6 are connected to the flying capacitor FC1
  • the fifth semiconductor elements SU2.5, SV2.5, and SW2.5 are connected to the flying capacitor FC2.
  • the voltages of 2E, 0, and -2E can be output from the output terminals U, V, and W without short-circuiting the flying capacitors FC1 and FC2, respectively, and the control for outputting 2E, 0, and -2E is simplified. be able to.
  • the twelfth embodiment has no semiconductor element through which current for three phases of the U phase, the V phase, and the W phase flows. It is possible to reduce the size of the cooling fin.
  • the three-phase output circuit has been described.
  • the phase voltage of each phase is independent without short-circuiting the flying capacitors FC1 and FC2.
  • Can be output Compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b), the same is true for the advantage that there is no semiconductor element through which current for three phases flows.
  • the voltage selection circuit uses FIG. 3 (a) and FIG. 3 (d).
  • the basic circuit includes second and third semiconductor elements SU2.2, SU2,... That are sequentially connected in series to the positive terminals of even-numbered DC voltage sources DCC2 and DCC4 among four DC voltage sources DCC1 to DCC4 connected in series. 3, SV2.2, SV2.3, SW2.2, SW2.3, SU4.2, SU4.3, SV4.2, SV4.3, SW4.2, SW4.3, and four connected in series Third and second semiconductor elements SU1.3, SU1.2, SV1.3, SV1.2, SW1 sequentially connected in series to the negative ends of the odd-numbered DC voltage sources DCC1, DCC3 among the DC voltage sources DCC1 to DCC4. .3, SW1.2, SU3.3, SU3.2, SV3.3, SV3.2, SW3.3, and SW3.2.
  • the flying capacitors FC1 to FC4 include odd-numbered and even-numbered second and third semiconductor elements SU2.2, SU2.3, SV2.2, SV2.3, SW2.2, SW2.3, SU4.2, SU4. 3, SV4.2, SV4.3, SW4.2, SW4.3, SU1.3, SU1.2, SV1.3, SV1.2, SW1.3, SW1.2, SU3.3, SU3.2, It is connected in parallel to SV3.3, SV3.2, SW3.3, SW3.2.
  • the voltage selection circuit includes SU19 to SU28, SV19 to SV28, and SW19 to SW28.
  • Table 2 shows the voltage between the U terminal and the 0 terminal when each semiconductor element in the U phase is in the ON / OFF state.
  • any voltage (4E, 3E, 2E, E, 0, ⁇ E, ⁇ 2E, ⁇ 3E, ⁇ 4E) can be output from the output terminals U, V, W, respectively, and the control for outputting 4E, 3E, 2E, E, 0, -E, -2E, -3E, -4E is simplified. be able to.
  • the thirteenth embodiment has no semiconductor element in which currents for three phases of the U phase, the V phase, and the W phase flow as compared with the conventional circuit shown in FIGS. 29A and 29B. It becomes possible to reduce the size of the cooling fin for cooling.
  • the three-phase output circuit has been described. However, even in a circuit in which the number of output phases is increased to four or more, the phase voltage of each phase is independent without short-circuiting the flying capacitors FC1 to FC4. Can be output. Compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b), the same is true for the advantage that there is no semiconductor element through which current for three phases flows.
  • the voltage selection circuit uses FIG.
  • fourth semiconductor elements SU2.4 and SU4.4 that are common to three phases and that have one end connected to the negative electrode ends of the DC voltage sources DCC2 and DCC4 in even stages.
  • the three-phase first to third semiconductors sequentially connected in series between the positive ends of the even-numbered DC voltage sources DCC2 and DCC4 and the other ends of the even-numbered fourth semiconductor elements SU2.4 and SU4.4.
  • the flying capacitors FC2 and FC4 include all the fifth semiconductor elements SU2.5, SV2.5, SW2.5, SU4.5, SV4.5, SW4.5 and the third and fourth semiconductor elements SU2.3 in the even stages. , SV2.3, SW2.3, SU2.4, SU4.3, SV4.3, SW4.3, SU4.4, and the flying capacitors FC1, FC3 are connected in the odd stages. 1 and 2 semiconductor elements SU1.1, SU1.2, SV1.2, SW1.2, SU3.1, SU3.2, SV3.2, and SW3.2 and all sixth semiconductor elements SU1.6. , SV1.6, SW1.6, SU3.6, SV3.6, and SW3.6.
  • the voltage selection circuit includes SU1 to SU12, SV1 to SV12, and SW1 to SW12.
  • an arbitrary voltage (4E, 3E, 2E, E, 0, ⁇ E, ⁇ 2E, ⁇ 3E, ⁇ 4E) is obtained without short-circuiting the flying capacitors FC1 to FC4.
  • the circuit of FIG. 26 has a configuration in which the circuit of FIG.
  • SU1 and SU2, SU3 and SU4, SU5 and SU6, SU7 and SU8, SV1 and SV2, SV3 and SV4, SV5 and SV6, SV7 and SV8, SW1 and SW2, SW3 and SW4, SW5 and SW6, SW7 and SW8 Are equivalent to SU1 and SU2, SU3 and SU4, SV1 and SV2, SV3 and SV4, SW1 and SW2, and SW3 and SW4 in FIG.
  • the maximum value of the applied voltage in the steady state of the series connection circuit of the semiconductor elements such as the semiconductor elements SU1 and SU2 is 2E.
  • phase voltage of each phase can be independently set for a circuit in which the number of output phases is increased to four or more without short-circuiting the flying capacitors FC1 to FC4. Output is possible. The same is true for the superiority of the withstand voltage of the semiconductor element as compared with the conventional circuit shown in FIGS. 29 (a) and 29 (b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

基本回路は、U相において、直流電圧源(DCC1)の正負極間に接続された第1~第4半導体素子(SU1.1~SU1.4)と、第1,第2半導体素子(SU1.1,SU1.2)の共通接続点に接続された第5半導体素子(SU1.5)と、第3,第4半導体素子(SU1.3,SU1.4)の共通接続点に接続された第6半導体素子(SU1.6)と、を有する。フライングキャパシタ(FC1)は、第5半導体素子(SU1.5)と第6半導体素子(SU1.6)との間に介挿される。電圧選択回路は、各基本回路の第2,第3半導体素子(SU1.2,SU1.3)の共通接続点を入力端子とし、入力端子と出力端子(U,V,W)間にそれぞれ半導体素子(SU1~SU4)を有する。これにより、マルチレベル電力変換装置において、全ての相から任意の電圧を出力すると共に、全ての相から任意の電圧レベルを出力するための制御を簡略化する。

Description

マルチレベル電力変換装置
 本発明は、高圧大容量向けのマルチレベル電力変換装置に関する。
 電力変換装置は、半導体素子(IGBT等の半導体スイッチ素子と逆並列にダイオードを接続したモジュール:以下同様)である主回路スイッチング素子により構成される。この電力変換装置の高圧化手段として、複数の半導体素子を直列に接続した回路構成がある。
 このように、半導体素子を直列接続した回路構成の中に5レベルの電圧を出力するマルチレベル電力変換装置が提案されている。また、このマルチレベル電力変換装置の一つとして、特許文献1のような回路構成が提案されている。特許文献1では、図27に示すように、使用する直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2を3相共通にすることにより、使用するキャパシタの数を削減し、装置の小型化を図っている。
特願2012-209368号公報
 しかしながら、図27に示す回路構成ではキャパシタおよび一部の半導体素子S1~S4を3相共通としているために、出力できない出力電圧の組み合わせが存在するという課題がある。具体的には、出力端子U,V,Wから、2E,0,-2Eの相電圧をそれぞれ出力しようとすると、フライングキャパシタFC1を短絡してしまうため、これらの相電圧の組み合わせを出力することができなかった。
 具体例を図28に基づいて説明する。ここで、図28は、U相が2E,V相が0,W相が-2Eの電圧を出力した例を示している。また、図28において、○印は導通している半導体素子を表す。
 図28に示すように、出力端子U,V,Wから2E,0,-2Eの電圧をそれぞれ同時に出力しようとすると、フライングキャパシタFC1の両端の半導体素子S1,S2が同時に導通し、フライングキャパシタFC1を短絡してしまう。その結果、DCC1→S1→FC1→S2→DCC1の短絡ループに過電流が生じる。
 この問題点があるため、図27に示す回路構成では、図28に示すような導通させる半導体素子の選択ができず、2E,0,-2Eの電圧を同時に出力できない。
 図27に示す回路構成では、出力端子U,V,Wからそれぞれ2E,0,-2Eの電圧を同時に出力できないため、他の出力電圧の組み合わせで模擬することより代替している。例えば、出力端子U,V,Wからそれぞれ2E,E,-2Eと2E,-E,-2Eの電圧を繰り返し出力し、平均的に2E,0,-2Eの電圧を出力することによって代替している。
 しかし、出力端子U,V,Wからそれぞれ2E,E,-2Eと2E,-E,-2Eを出力している時間を常に等しくすると共に、常に時間管理する必要がある。その結果、制御が複雑化するという問題が生じる。この問題点は図27を応用して出力相数を4相以上に増やした回路構成についても同様である。
 一方、図29(a)に示す特許文献1の[実施形態5],図29(b)に示す[実施形態6]では、直流電圧源DCC1,DCC2の印加電圧:2E,フライングキャパシタCFC1,CFC2の印加電圧:Eの場合、出力端子OUT_U,OUT_V,OUT_Wから2E,0,-2Eの電圧を同時に出力可能である。しかし、図29(a)(b)に示す回路構成では、以下(1)(2)の問題点が生じる。
 (1)図29(a),(b)の回路構成では、出力端子OUT_U,OUT_V,OUT_Wに接続する半導体素子SU5,SU6,SV5,SV6,SW5,SW6に印加される定常電圧最大値は3Eとなる。その結果、高耐圧の半導体素子が必要であり、装置の小型化とコスト面において不利となる問題があった。
 (2)図29(a),(b)において○で囲った半導体素子S2.1~S2.3,S1.1~S1.3にはU相,V相,W相の3相分の電流が流れるため、これらの半導体素子S1.1~S1.3,S2.1~S2.3の冷却用に冷却効果が高い大型の冷却フィンが必要となる。
 以上の問題点(1),(2)は、図29(a),(b)を応用して出力相数を4相以上に増やした回路構成についても同様である。
 以上示したようなことから、多相のマルチレベル電力変換装置において、全ての相から任意の電圧を出力すると共に、全ての相から任意の電圧レベルを出力するための制御を簡略化することが課題となる。
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N≧2)の直流電圧源と、N個の直流電圧源のそれぞれの正負極間に順次直列接続された第1~第4半導体素子と、第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、を有するM相(M≧3)の基本回路と、全ての相の第5半導体素子の他端と全ての相の第6半導体素子の他端との間に介挿されたM相共通のフライングキャパシタと、各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 また、その他の態様として、直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N=2以上の偶数)の直流電圧源と、直列接続されたN個の直流電圧源のうち、偶数段の直流電圧源の正極端に一端が接続されたM相(M≧3)共通の第1半導体素子と、前記偶数段の第1半導体素子の他端と前記偶数段の直流電圧源の負極端との間に順次直列接続されたM相の第2~第4半導体素子と、偶数段の第3,第4半導体素子の共通接続点に一端が接続されたM相の第6半導体素子と、奇数段の直流電圧源の負極端に一端が接続されたM相共通の第4半導体素子と、前記奇数段の直流電圧源の正極端と奇数段の第4半導体素子の他端との間に順次直列接続されたM相の第1~第3半導体素子と、奇数段の第1,第2半導体素子の共通接続点に一端が接続されたM相の第5半導体素子と、を有する基本回路と、偶数段における第1,第2半導体素子の共通接続点と偶数段における全ての相の第6半導体素子の他端との間に介挿されたM相共通の偶数段のフライングキャパシタと、奇数段における全ての相の第5半導体素子の他端と奇数段における第3,第4半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 また、その他の態様として、直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N=2以上の偶数)の直流電圧源と、直列接続されたN個の直流電圧源のうち、偶数段の直流電圧源の負極端に一端が接続されたM相(M≧3)共通の第4半導体素子と、前記偶数段の直流電圧源の正極端と偶数段の第4半導体素子の他端との間に順次直列接続されたM相の第1~第3半導体素子と、偶数段の第1,第2半導体素子の共通接続点に一端が接続されたM相の第5半導体素子と、奇数段の直流電圧源の正極端に一端が接続されたM相共通の第1半導体素子と、奇数段の第1半導体素子の他端と奇数段の直流電圧源の負極端との間に順次直列接続されたM相の第2~第4半導体素子と、奇数段の第3,第4半導体素子の共通接続点に一端が接続されたM相の第6半導体素子と、を有する基本回路と、偶数段における全ての第5半導体素子と第3,第4半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、奇数段における第1,2半導体素子の共通接続点と全ての第6半導体素子との間に介挿されたM相共通の奇数段のフライングキャパシタと、各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 また、その他の態様として、直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N=2以上の偶数)の直流電圧源と、直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正極端に順次直列接続された第2,第3半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の負極端に順次直列接続された第3,第2半導体素子と、を有するM相(M≧3)の基本回路と、前記奇数段および偶数段の第2,第3半導体素子のそれぞれに並列接続されたM相共通のフライングキャパシタと、基本回路の第2,第3半導体素子の共通接続点および偶数段の直流電圧源の負極端と奇数段の直流電圧源の正極端の共通接続点を入力端子とし、入力端子と出力端子間に半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N=2以上の偶数)の直流電圧源と、直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正負極間に順次直列接続された第2~第4半導体素子と、前記偶数段の第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の正負極間に順次直列接続された第1~第3半導体素子と、前記奇数段の第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、を有するM相(M≧3)の基本回路と、前記偶数段における全ての第6半導体素子の他端と、偶数段の直流電圧源の正極端と第2半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、前記奇数段における全ての第5半導体素子の他端と、奇数段の直流電圧源の負極端と第3半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 また、その他の態様として、直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、直列接続されたN個(N=2以上の偶数)の直流電圧源と、直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正負極間に順次直列接続された第1~第3半導体素子と、前記偶数段の第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の正負極間に順次直列接続された第2~第4半導体素子と、前記奇数段の第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、を有するM相(M≧3)の基本回路と、前記偶数段における全ての第5半導体素子の他端と、偶数段の直流電圧源の負極端と第3半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、前記奇数段における全ての第6半導体素子の他端と、奇数段の直流電圧源の正極端と第2半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、を備えたことを特徴とする。
 また、前記基本回路および電圧選択回路の半導体素子の一部または全てを、直列数を2以上としてもよい。
 さらに、前記基本回路および電圧選択回路の半導体素子の一部または全てを、並列数を2以上としてもよい。
 本発明によれば、多相のマルチレベル電力変換装置において、全ての相から任意の電圧を出力すると共に、全ての相から任意の電圧レベルを出力するための制御を簡略化することが課題となる。
基本セルを示す図である。 基本セルをN個直列接続した基本回路を示す図である。 電圧選択回路を示す回路構成図である。 実施形態1におけるマルチレベル電力変換装置を示す図である。 実施形態2におけるマルチレベル電力変換装置を示す図である。 実施形態3におけるマルチレベル電力変換装置を示す図である。 実施形態4におけるマルチレベル電力変換装置を示す図である。 実施形態5におけるマルチレベル電力変換装置を示す図である。 実施形態6における基本セルを示す回路構成図である。 実施形態6におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態6における出力電圧別の動作例を示す図である。 実施形態6におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態7におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態7におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態8におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態8におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態9におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態9におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態10におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態10におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態11におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態11におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態12におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態12におけるマルチレベル電力変換装置の動作例を示す図である。 実施形態13におけるマルチレベル電力変換装置を示す回路構成図である。 実施形態14におけるマルチレベル電力変換装置を示す回路構成図である。 従来のマルチレベル電力変換装置の一例を示す回路構成図である。 従来のマルチレベル電力変換装置の出力不可能な出力電圧を示す説明図である。 従来のマルチレベル電力変換装置の他例を示す回路構成図である。
 [基本セル]
 図1は、本発明におけるマルチレベル電力変換装置に用いる基本セルを示す回路図である。基本セルは、6個の半導体素子SN.1~SN.6(例えば、IGBT等の半導体スイッチ素子と逆並列にダイオードを接続したモジュール:以下同様)で構成される。
 具体的には、図1に示すように、端子3は直流電圧源(直流キャパシタまたは直流電源)の正極側と接続され、端子1は直流電圧源の負極側と接続される。また、端子2’にはフライングキャパシタ(または、直流電圧源)の正極側と接続され、端子2”はフライングキャパシタの負極側と接続される。
 前記端子3と端子1との間には、半導体素子SN.1~SN.4が順次直列接続される。また、端子2’と半導体素子SN.1,SN.2の共通接続点との間には半導体素子SN.5が介挿され、端子2”と半導体素子SN.3,SN.4の共通接続点との間には半導体素子SN.6が介挿される。なお、半導体素子SN.2,SN.3の共通接続点は端子2とする。
 [基本回路]
 図2に、図1に示す基本セルをN個直列に接続した基本回路を示す。ここで、N≧2とする。
 端子番号2N+1,2N-1間には直流電圧源を接続する。端子番号2N’,2N”間にはフライングキャパシタを接続する。ここで、直流電圧源の電圧を2E,各フライングキャパシタの電圧をEとすると、基本セルをN段直列に接続した構成において、「端子2nでは、2En,2En-Eまたは2En-2E」(n=1、…,N)の電圧を出力できる。
 端子2N,端子2(N-1),…,端子2にそれぞれ、電圧を選択するための電圧選択回路を接続することで、2N+1レベルの電力変換装置を実現できる。
 [電圧選択回路]
 次に、電圧選択回路を図3に基づいて説明する。電圧選択回路は、基本回路の端子(2,…,2N,)を入力端子とし、この入力端子のうちどの電位を出力端子から出力するかを選択するものである。電圧選択回路は、図3の(a),(b),(c),(d)またはこれらの組み合わせなどによって構成される。各入力端子と出力端子との間には、半導体素子S1~S28が設けられ、この半導体素子S1~S28を選択的にONすることにより、入力端子((a)では2N_3、2(N-1)_3,4_3,2_3、(b)では2N_3,2(N-1)_3,3_3,2_3、(c)では4_3,3_3,2_3、(d)では4N+1_3,4N-1_3,4N-3_3,5_3,3_3,2_3)のうち何れかの端子の電位を出力することができる。
 [実施形態1]
 図4は、本実施形態1におけるマルチレベル電力変換装置の構成を示す概略図である。図4に示すように、本実施形態1におけるマルチレベル電力変換装置は、図2に示す基本回路,および図3に示す電圧選択回路を用いて構成したM相N段のマルチレベル電力変換装置である。なお、N≧2,M≧3である。
 相モジュール11~1Mはそれぞれ基本回路と電圧選択回路の組み合わせで構成される。基本回路および電圧選択回路の構成は、図2,図3と同様であるため、ここでの説明は省略する。相モジュール11~1Mの両端端子1,2N+1間にはN個の直流電圧源DCC1~DCCNが直列に接続され、相モジュール11~1M(基本回路)の端子3,…,2N-1にはそれぞれ各直流電圧源DCC1~DCCNの共通接続点が接続される。また、相モジュール11~1Mの端子2”,2’,…,2N”,2N’には、N個のフライングキャパシタFC1~FCNを接続する。
 ここで、直流電圧源DCC1~DCCNの電圧を2Eとし、フライングキャパシタFC1~FCNの電圧をEに制御すると、端子2p”(p=1,2,…,N)から(2p-2)Eと(2p-1)Eの電圧を出力できる。また、端子2p’からは(2p-1)Eと2pEの電圧を出力できる。また、端子2p-1からは、(2p-2)E、端子2p+1からは2pEの電圧を出力できる。
 次に、端子1,2”,2’,3,…,2N-1,2N”,2N’,2N+1をそれぞれ、相モジュール11~1Mに入力する。そして、基本回路において、段ごとに半導体素子S1.1,S1.2,S1.3,S1.4~SN.1,SN.2,SN.3,SN.4を選択的にONすることにより、端子1,2”,2’,3,…,2N-1,2N”,2N’,2N+1の中から何れかの端子の電位を端子2,…,2Nから出力する。そして、電圧選択回路により、各段の基本回路の半導体素子を選択的にONすることにより、端子2,…,2Nの中から何れかの端子の電位を出力端子OUT1~OUTMから出力する。その結果、出力端子OUT1~OUTMには(2N+1)レベルの電圧を出力できる。
 以上示したように、本実施形態1によれば、以下(1),(2)の作用効果を奏する。
 (1)図27に示す従来の回路構成と比べて、任意の相電圧レベルを出力できるようになると共に、任意の相電圧レベルを出力するための制御が容易となる。
 (2)図29(a),(b)に示す従来の回路構成のように、U相,V相,W相の3相出力電流が流れる電力損失の高い半導体素子がないため、半導体素子冷却用の冷却フィンを小型化することが可能となる。
 [実施形態2]
 次に、本実施形態2におけるマルチレベル電力変換装置を図5に基づいて説明する。本実施形態2におけるマルチレベル電力変換装置は、図2に示す基本回路の偶数段の基本セルにおいて、第1半導体素子S2.1~SN.1をM相共通にし、第5半導体素子S2.5~SN.5を省略した回路と、基本回路の奇数段の基本セルにおいて、第4半導体素子S1.4~SN-1.4をM相共通にし、第6半導体素子S1.6~SN-1.6を省略した回路と、をN段接続した構成である。なお、本実施形態2におけるマルチレベル電力変換装置は、M相N段であり、Nは2以上の偶数,M≧3である。その他の構成は実施形態1と同様である。
 実施形態2の構成では、出力端子OUT1~OUTMから(2N+1)レベルの電圧を出力できる。本実施形態2におけるマルチレベル電力変換装置によれば、図27に示す従来の回路構成と比べて、任意の相電圧レベルを出力できるようになると共に、任意の相電圧レベルを出力するための制御が容易となる。また、実施形態1と比較して半導体素子の数を減少させることができる。
 [実施形態3]
 次に、本実施形態3におけるマルチレベル電力変換装置を図6に基づいて説明する。本実施形態3におけるマルチレベル電力変換装置は、図2に示す基本回路の偶数段の基本セルにおいて、第4半導体素子S2.4~SN.4をM相共通にし、第6半導体素子S2.6~SN.6を省略した回路と、奇数段における基本セルにおいて第1半導体素子S1.1~SN-1.1をM相共通にし、第5半導体素子S1.5~SN-1.5を省略した回路と、をN段接続した構成である。なお、本実施形態3におけるマルチレベル電力変換装置は、M相N段であり、Nは2以上の偶数,M≧3である。その他の構成は実施形態1と同様である。
 本実施形態3の構成では、出力端子OUT1~OUTMに、(2N+1)レベルの電圧を出力できる。
 本実施形態3におけるマルチレベル電力変換装置によれば、実施形態2と同様の作用効果を奏する。
 [実施形態4]
 次に、本実施形態4におけるマルチレベル電力変換装置を図7に基づいて説明する。本実施形態4は、実施形態2のマルチレベル電力変換装置において、M相共通にした偶数段の基本セルの第1半導体素子S2.1~SN.1と、M相共通にした奇数段の第4半導体素子S1.4~SN-1.4を省略したものである。すなわち、図7において、端子1,5,2N-3,2N+1と接続している半導体素子を省略している。その他の構成は実施形態2と同様である。なお、Nは2以上の偶数,M≧3である。
 本実施形態4の構成では、出力端子OUT1~OUTMに、(2N+1)レベルの電圧を出力できる。
 本実施形態4におけるマルチレベル電力変換装置によれば、図27に示す従来の回路構成と比べて、任意の相電圧レベルを出力できるようになると共に、任意の相レベルを出力するための制御が容易となる。
 図29(a),(b)に示す従来の回路構成のように、U相,V相,W相の3相出力電流が流れる電力損失の高い半導体素子がないため、半導体素子冷却用の冷却フィンを小型化することが可能となる。
 さらに、実施形態2よりも半導体素子の数を減少させることができる。
 [実施形態5]
 次に、本実施形態5におけるマルチレベル電力変換装置を図8に基づいて説明する。本実施形態5は、実施形態3のマルチレベル電力変換装置において、M相共通にした偶数段の基本セルの第4半導体素子S2.4~SN.4と、奇数段の基本セルの第1半導体素子S1.1~SN-1.1を省略したものである。すなわち、図8において、端子3,2N-1と接続されている半導体素子を省略している。その他の構成は実施形態3と同様である。なお、Nは2以上の偶数、M≧3である。
 本実施形態5では、出力端子OUT1~OUTMから(2N+1)レベルの電圧を出力できる。
 本実施形態5におけるマルチレベル電力変換装置によれば、図27に示す従来の回路構成と比べて、任意の相電圧レベルを出力できるようになると共に、任意の相レベルを出力するための制御が容易となる。
 また、図29(a),(b)に示す従来の回路構成のように、U相,V相,W相の3相出力電流が流れる電力損失の高い半導体素子がないため、半導体素子冷却用の冷却フィンを小型化することが可能となる。
 さらに、実施形態3よりも半導体素子の数を減少させることができる。
 [実施形態6]
 図9は実施形態1においてN=1,M=3の場合の基本セルである。直流電圧源DCC1,フライングキャパシタFC1,U相の半導体素子SUN.1~SUN.6,V相の半導体素子SVN.1~SVN.6,W相の半導体素子SWN.1~SWN.6から構成される。
 この基本セルを直列に2段接続することで(実施形態1においてN=2,M=3)図10に示す5レベル電力変換装置を構成できる。なお、図3(a)の電圧選択回路を使用している。
 この時、直流電圧源DCC1,DCC2の電圧は2E、フライングキャパシタFC1,FC2の電圧はEである。また、U相の基本回路は、2個の直流電圧源DCC1,DCC2のそれぞれの正負極間に順次直列接続された第1~第4半導体素子SU1.1~SU1.4,SU2.1~SU2.4と、第1,第2半導体素子SU1.1,SU1.2,SU2.1,SU2.2の共通接続点に一端が接続された第5半導体素子SU1.5,SU2.5と、第3,第4半導体素子SU1.3,SU1.4,SU2.3,SU2,4の共通接続点に一端が接続された第6半導体素子SU1.6,SU2.6と、を有する。V相,W相についても同様である。
 フライングキャパシタFC1,FC2は、第5半導体素子SU1.5,SV1.5,SW1.5,SU2.5,SV2.5,SW2.5の他端と第6半導体素子SU1.6,SV1.6,SW1.6,SU2.6,SV2.6,SW2.6の他端との間に介挿される。
 U相の電圧選択回路は、SU1~SU4から構成される。V相,W相についても同様である。
 なお、U,V,Wは出力端子を表す。また、図10の変形として、高電圧に対する耐性のため、各半導体素子を2直列以上で構成する回路も含むものとし、大電流に対する耐性のため各半導体素子を2並列以上に構成する回路も含むものとする。
 また、半導体素子の耐電圧が適合していれば、図10の半導体素子SU1とSU2の2直列の半導体素子を1つの半導体素子に置き換えてもよい。なお、半導体素子SV1とSV2、SW1とSW2、SU3とSU4、SV3とSV4、SW3とSW4についても同様である。
 この回路は、フライングキャパシタFC1とFC2を三相で共通化しており、5レベル相電圧を出力することができる。
            U相の代表的なスイッチングパターン例を表1に示す。表1のパターンで半導体素子をスイッチングすることにより、図11に示した経路で2E,E,0,-E,-2Eの5段階の電圧を出力することが可能である。なお、表1および図11は一例であり、他のパターンでも良い。
Figure JPOXMLDOC01-appb-T000001
 図12では、出力端子U=2E、出力端子V=0、出力端子W=-2Eの電圧を出力する場合の各半導体素子の動作を示す。図12中の○は導通中の半導体素子を表す。
 上記のスイッチング状態で動作した場合においてもフライングキャパシタFC1の両端に半導体素子SU1.5,SV1.5,SW1.5,SU1.6,SV1.6,SW1.6,フライングキャパシタFC2の両端に半導体素子SU2.5,SV2.5,SW2.5,SU2.6,SV2.6,SW2.6を接続することで、フライングキャパシタFC1,FC2を短絡することなく動作させることができる。
 このため、図27に示す従来の回路構成では出力できない相電圧の組み合わせ2E,0,-2Eを出力できると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 次に、図12に示す回路における動作時の半導体素子の耐電圧について説明する。
 例として、U相が2E、V相が0、W相が-2Eの電圧を出力している場合について説明する。また、この時、半導体素子SW2.1,SW2.2,SW1,SW2のオフ時のインピーダンスが全て等しい条件とする。
 この場合、半導体素子SW2.1のコレクタ端子の電位が2E、出力端子Wの電位(すなわち、半導体素子SW2のエミッタ端子の電位)が-2Eなので、半導体素子SW2.1,SW2.2,SW1,SW2のインピーダンスによる分圧により、半導体素子SW2.2とSW1との共通接続点の電位は0となる。よって、半導体素子SW1とSW2の直列接続回路の印加電圧は2Eとなる。なお、各電位の基準点は図10の0端子とする。この条件が、半導体素子SW2.1,SW2.2,SW1,SW2の直列回路間の印加電圧が最大(4E)となる条件である。
 したがって、図10に示す回路では、定常時の半導体素子SW1とSW2の直列接続回路の印加電圧最大値は2Eとなる。これは、半導体素子SU1とSU2,SV1とSV2,SU3とSU4,SV3とSV4,SW3とSW4についても、同様である。
 一方、図29(a)の従来回路では、スイッチング素子のON/OFF状態によって、端子W0の電圧がE、出力端子OUT_Wの電圧が-2Eとなるモードがある。このとき、スイッチング素子SW5には、3Eの印加電圧がかかる。
 図29(b)の従来回路では、スイッチング素子のON/OFF状態によって、端子W0の電圧がE、出力端子OUT_Wの電圧が-2Eとなるモードがある。このとき、スイッチング素子SW5には、3Eの印加電圧がかかる。
 以上により、本実施形態6は、図29(a),(b)の従来回路と比べて、出力端子に直接接続する半導体素子の耐電圧が低くてよいという、有利点を持っている。
 また、本実施形態6は、図29(a),(b)のように、U相,V相,W相の3相分の電流が流れる半導体素子がない。そのため、冷却効果の高い冷却フィンは不要となる。
 これらのことは、装置のコスト面や小型化においても有利となる。
 なお、本実施形態6では3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、半導体素子の耐電圧の優位点および3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態7]
 次に、本実施形態7におけるマルチレベル電力変換装置を図13に基づいて説明する。本実施形態7におけるマルチレベル電力変換装置では、実施形態3において、N=2,M=3,図3(a)の電圧選択回路を使用した構成である。なお、U,V,Wは出力端子を表す。
 基本回路は、直列接続された2個の直流電圧源DCC1,DCC2のうち、偶数段の直流電圧源DCC2の負極端に一端が接続された3相共通の第4半導体素子S2.4と、前記偶数段の直流電圧源DCC2の正極端と偶数段の第4半導体素子S2.4の他端との間に順次直列接続された3相の第1~第3半導体素子SU2.1~SU2.3,SV2.1~SV2.3,SW2.1~SW2.3と、偶数段の第1,第2半導体素子SU2.1,SU2.2,SV2.1,SV2.2,SW2.1,SW2.2の共通接続点に一端が接続された第5半導体素子SU2.5,SV2.5,SW2.5と、奇数段の直流電圧源DCC1の正極端に一端が接続された3相共通の第1半導体素子S1.1と、奇数段の第1半導体素子S1.1の他端と奇数段の直流電圧源DCC1の負極端との間に順次直列接続された3相の第2~第4半導体素子SU1.2~SU1.4,SV1.2~SV1.4,SW1.2~SW1.4と、奇数段の第3,第4半導体素子SU1.3,SU1.4,SV1.3,SV1.4,SW1.3,SW1.4の共通接続点に一端が接続された第6半導体素子SU1.6,SV1.6,SW1.6と、を有する。
 フライングキャパシタFC2は、偶数段における全ての第5半導体素子SU2.5,SV2.5,SW2.5と第3,第4半導体素子SU2.3,SV2.3,SW2.3,SU2.4の共通接続点の間に介挿され、フライングキャパシタFC1は、奇数段における第1,2半導体素子S1.1,SU1.2,SV1.2,SW1.2の共通接続点と全ての第6半導体素子SU1.6,SV1.6,SW1.6との間に介挿される。
 電圧選択回路は、SU1~SU4,SV1~SV4,SW1~SW4から構成される。
 図13の変形として、高電圧に対する耐性のために各半導体素子を2直列以上に構成する回路も含む。また大電流に対する耐性のために、各半導体素子を2並列以上に構成する回路も含む。
 また、半導体素子の耐電圧が適合していれば、図13に示す直列接続した2つの半導体素子SU1とSU2を1つの半導体素子に置き換えてもよい。また、半導体素子SV1とSV2,SW1とSW2,SU3とSU4,SV3とSV4,SW3とSW4についても同様である。
 本実施形態7においても、図27に示す従来の回路で出力できなかった相電圧の組み合わせ2E,0,-2Eを出力できる。図14にその様子を示す。図14中の○は導通している半導体素子を表す。
 図14では、出力端子U=2E,出力端子V=0,出力端子W=-2Eを出力する場合の各半導体素子の動作を示す。この時、フライングキャパシタFC2に半導体素子SU2.5,SV2.5,SW2.5が接続され、フライングキャパシタFC1に半導体素子SU1.6,SV1.6,SW1.6が接続されているため、フライングキャパシタFC1,FC2を短絡せずに、2E,0,-2Eを出力できると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 本実施形態7においても、半導体素子SW2.1,SW2.2,SW1,SW2のオフ時のインピーダンスが全て等しい条件では、実施形態6と同様に、定常時の半導体素子SW1とSW2の直列接続回路の印加電圧最大値は2Eとなる。これは、半導体素子SU1とSU2,SV1とSV2,SW1とSW2,SU3とSU4,SV3とSV4,SW3とSW4についても、同様である。
 なお、本実施形態7では3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比較した半導体素子の耐電圧の優位点についても、同様である。
 [実施形態8]
 図15は、本実施形態8におけるマルチレベル電力変換装置を示す回路構成図である。本実施形態8は、実施形態2において、N=2,M=3,図3(a)の電圧選択回路を使用した構成である。U,V,Wは出力端子を表す。
 基本回路は、直列接続された2個の直流電圧源DCC1,DCC2のうち、偶数段の直流電圧源DCC2の正極端に一端が接続された3相共通の第1半導体素子S2.1と、前記偶数段の第1半導体素子S2.1の他端と前記偶数段の直流電圧源DCC2の負極端との間に順次直列接続された3相の第2~第4半導体素子SU2.2a~SU2.4,SV2.2a~SV2.4,SW2.2a~SW2.4と、偶数段の第3,第4半導体素子SU2.3,SU2.4,SV2.3,SV2.4,SW2.3,SW2.4の共通接続点に一端が接続された3相の第6半導体素子SU2.6,SV2.6,SW2.6と、奇数段の直流電圧源DCC1の負極端に一端が接続された3相共通の第4半導体素子S1.4と、前記奇数段の直流電圧源DCC1の正極端と奇数段の第4半導体素子S1.4の他端との間に順次直列接続された3相の第1~第3半導体素子SU1.1~SU1.3b,SV1.1~SV1.3b,SW1.1~SW1.3bと、奇数段の第1,第2半導体素子SU1.1,SU1.2,SV1.1,SV1.2,SW1.1,SW1.2の共通接続点に一端が接続された3相の第5半導体素子SU1.5,SV1.5,SW1.5と、を有する。
 フライングキャパシタFC2は、偶数段における第1,第2半導体素子S2.1,SU2.2a,SV2.2a,SW2.2aの共通接続点と偶数段における全ての相の第6半導体素子SU2.6,SV2.6,SW2.6の他端との間に介挿され、フライングキャパシタFC1は、奇数段における全ての相の第5半導体素子SU1.5,SV1.5,SW1.5の他端と奇数段における第3,第4半導体素子SU1.3b,SV1.3b,SW1.3b,S1.4の共通接続点との間に介挿されている。
 電圧選択回路は、半導体素子SU1~SU4,SV1~SV4,SW1~SW4から構成される。
 本実施形態8においても、図27に示す従来の回路で出力できなかった相電圧の組み合わせ2E,0,-2Eを出力可能である。
 図16に基づいてその様子を説明する。なお、図16中の○は導通している半導体素子を指す。図16では出力端子U=2E、出力端子V=0、出力端子W=-2Eの電圧を出力する場合の各半導体素子の動作を示す。この時、フライングキャパシタFC1に第5半導体素子SU1.5,SV1.5,SW1.5が接続され、フライングキャパシタFC2に第6半導体素子SU2.6,SV2.6,SW2.6が接続されているため、フライングキャパシタFC1,FC2を短絡せずに、出力端子U,V,Wから2E,0,-2Eを出力できと共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 本実施形態8の変形として、高電圧に対する耐性のために各半導体素子を2直列以上に構成する回路も含む。また、大電流に対する耐性のために、各半導体素子を2並列以上に構成する回路も含む。さらに、半導体素子の耐電圧が適合していれば、図15の半導体素子SU1.3aとSU1.3bの2直列の半導体素子を1つの半導体素子に置き換えてもよい。
 なお、半導体素子SV1.3aとSV1.3b,SW1.3aとSW1.3b,SU2.2aとSU2.2b,SV2.2aとSV2.2b,SW2.2aとSW2.2b,SU1とSU2,SV1とSV2,SW1とSW2,SU3とSU4,SV3とSV4,SW3とSW4,についても、同様である。
 本実施形態8においても、半導体素子SW2.2a,SW2.2b,SW1,SW2のオフ時のインピーダンスが全て等しい条件では、実施形態6と同様に、定常時の半導体素子SW1とSW2の直列接続回路における印加電圧の最大値は2Eとなる。これは、半導体素子SU1とSU2,SV1とSV2,SU3とSU4,SV3とSV4,SW3とSW4についても、同様である。
 なお、本実施形態8では、3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、半導体素子の耐電圧の優位点についても、同様である。
 [実施形態9]
 次に、本実施形態9におけるマルチレベル電力変換装置を図17に基づいて説明する。本実施形態9におけるマルチレベル電力変換装置は、実施形態4において、N=2,M=3,図3(a)の電圧選択回路を使用した構成である。U,V,Wは出力端子を表す。
 基本回路は、直列接続された2個の直流電圧源DCC1,DCC2のうち偶数段の直流電圧源DCC2の正極端に順次直列接続された第2~第4半導体素子SU2.2~SU2.4,SV2.2~SV2.4,SW2.2~SW2.4と、直列接続された2個の直流電圧源DCC1,DCC2のうち奇数段の直流電圧源DCC1の負極端に順次直列接続された第3~第1半導体素子SU1.3~SU1.1,SV1.3~SV1.1,SW1.3~SW1.1と、を有する。
 フライングキャパシタFC1は奇数段の第2,第3半導体素子SU1.3,SU1.2,SV1.3,SV1.2,SW1.3,SW1.2と並列に接続され、フライングキャパシタFC2は偶数段の第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3に並列に接続される。
 なお、フライングキャパシタFC1と奇数段における第2半導体素子SU1.2,SV1.2,SW1.2との間には第5半導体素子SU1.5,SV1.5,SW1.5が介挿され、フライングキャパシタFC2と偶数段における第3半導体素子SU2.3,SV2.3,SW2.3との間には第6半導体素子SU2.6,SV2.6,SW2.6が介挿される。
 また、奇数段における第2半導体素子SU1.2,SV1.2,SW1.2と0端子との間には、第1半導体素子SU1.1,SV1.1,SW1.1が介挿され、偶数段における第3半導体素子SU2.3,SV2.3,SW2.3と0端子との間には第4半導体素子SU2.4,SV2.4,SW2.4が介挿される。
 電圧選択回路は、SU1,SU3,SV1,SV3,SW1,SW3から構成される。
 直流電圧源DCC1,DCC2の電圧を2E,フライングキャパシタFC1,FC2の電圧をEに制御することで、2E,E,0,-E,-2Eの5レベルの電圧を出力できる。
 図17の変形例として、高電圧に対する耐性のために、各半導体素子を2直列以上に構成する回路も含まれる。また、大電流に対する耐性のために、各半導体素子を2並列以上に構成する回路も含む。
 図18では、出力端子U=2E,出力端子V=0,出力端子W=-2Eを出力する場合の各半導体素子の動作を示す。図18中の○は導通中の半導体素子を表す。この時、フライングキャパシタFC1に半導体素子SU1.5,SV1.5,SW1.5が接続され、フライングキャパシタFC2に半導体素子SU2.6,SV2.6,SW2.6が接続されているため、フライングキャパシタFC1,FC2を短絡せずに、出力端子U,V,Wから2E,0,-2Eの電圧をそれぞれ出力することができると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 本実施形態9においても、半導体素子SW2.2とSW1のオフ時のインピーダンスが等しい条件では、実施形態6と同様に、定常時の半導体素子SW1の印加電圧最大値は2Eとなる。これは、半導体素子SU1,SV1,SU3,SV3,SW3についても、同様である。
 また、実施形態6では、図27(a),(b)の回路と比較してU相,V相,W相の3相分の電流が流れる半導体素子がない。そのため、冷却効果の高い冷却フィンは不要となる。
 なお、本実施形態9では、3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて半導体素子の耐電圧の優位点、および、3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態10]
 次に、本実施形態10におけるマルチレベル電力変換装置について、図19に基づいて説明する。本実施形態10におけるマルチレベル電力変換装置は、実施形態4において、N=2,M=3とした構成である。U,V,Wは出力端子を表す。電圧選択回路として図3(b)を使用している。
 基本回路は、直列接続された2個の直流電圧源DCC1,DCC2のうち偶数段の直流電圧源DCC2の正極端に順次直列接続された第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3と、直列接続された2個の直流電圧源DCC1,DCC2のうち奇数段の直流電圧源DCC1の負極端に順次直列接続された第3,第2半導体素子SU1.3,SU1.2,SV1.3,SV1.2,SW1.3,SW1.2と、を有する。
 フライングキャパシタFC1は、奇数段の第2,第3半導体素子SU1.2,SU1.3,SV1.2,SV1.3,SW1.2,SW1.3に並列に接続される。フライングキャパシタFC2は、偶数段の第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3に並列に接続される。
 電圧選択回路は、SU7,SU8,SU11,SU12,SV7,SV8,SV11,SV12,SW7,SW8,SW11,SW12から構成される。
 直流電圧源DCC1,DCC2の電圧を2E、フライングキャパシタFC1,FC2の電圧をEに制御することで2E,E,0,-E,-2Eの5レベルの電圧を出力できる。
 図19の変形例として、高電圧に対する耐性のために各半導体素子を2直列以上に構成する回路も含む。また、大電流に対する耐性のため、各半導体素子を2並列以上に構成する回路も含む。
 図20では、出力端子U=2E,出力端子V=0,出力端子W=-2Eの電圧を出力する場合の各半導体素子の動作を示す。図20中の○は導通中の半導体素子を表す。この時、フライングキャパシタFC2の負極側と直流電圧源DCC2の負極側との接続はなく、フライングキャパシタFC1の正極側と直流電圧源DCC1との接続はないため、フライングキャパシタFC1,FC2を短絡せずに、出力端子U,V,Wから2E,0,-2Eの電圧を出力できると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 また、本実施形態10は、図29(a),(b)に示す従来の回路と異なり、U相,V相,W相の3相分の電流が流れる半導体素子がない。そのため、冷却効果の高い冷却フィンは不要となる。
 なお、本実施形態10では、3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態11]
 次に、本実施形態11におけるマルチレベル電力変換装置について、図21に基づいて説明する。本実施形態11におけるマルチレベル電力変換装置は、実施形態4において、N=2,M=3とした構成である。電圧選択回路として図3(c)を使用している。
 基本回路は、直列接続された2個の直流電圧源DCC1,DCC2のうち偶数段の直流電圧源DCC2の正極端に順次直列接続された第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3と、直列接続された2個の直流電圧源DCC1,DCC2のうち奇数段の直流電圧源DCC1の負極端に順次直列接続された第3,第2半導体素子SU1.3,SU1.2,SV1.3,SV1.2,SW1.3,SW1.2と、を有する。
 フライングキャパシタFC1は、奇数段の第2,第3半導体素子SU1.2,SU1.3,SV1.2,SV1.3,SW1.2,SW1.3に並列に接続される。フライングキャパシタFC2は、偶数段の第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3に並列に接続される。
 電圧選択回路は、ダイオードDU1,DU2,DV1,DV2,DW1,DW2,SU12~SU15,SV12~SV15,SW12~SW15から構成される。
 直流電圧源DCC1,DCC2の電圧を2E、フライングキャパシタFC1,FC2の電圧をEに制御することで出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの電圧を出力できる。
 図21の変形として、高電圧に対する耐性のために各半導体素子を2直列以上に構成する回路も含む。また、大電流に対する耐性のため、各半導体素子を2並列以上に構成する回路も含む。
 図22では、出力端子U=2E、出力端子V=0、出力端子W=-2Eの電圧を出力する場合の各半導体素子の動作を示す。図22中の○は導通中の半導体素子を表す。この時、フライングキャパシタFC2の負極側と直流電圧源DCC2の負極側との接続はなく、フライングキャパシタFC1の正極側と直流電圧源DCC1の正極側との接続はないため、フライングキャパシタFC1,FC2を短絡せずに、出力端子U,V,Wから2E,0,-2Eの電圧をそれぞれ出力できると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 また、本実施形態11は、図29(a),(b)に示す従来の回路と異なり、U相,V相,W相の3相分の電流が流れる半導体素子がない。そのため、冷却効果の高い冷却フィンは不要となる。
 なお、本実施形態11では3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態12]
 次に、本実施形態12におけるマルチレベル電力変換装置について、図23に基づいて説明する。本実施形態12におけるマルチレベル電力変換装置は、実施形態5において、N=2,M=3とした構成である。電圧選択回路は、図3(c)を使用している。
 直列接続された2個の直流電圧源DCC1,DCC2のうち偶数段の直流電圧源DCC2の正負極間に順次直列接続された第1~第3半導体素子SU2.1~SU2.3,SV2.1~SV2.3,SW2.1~SW2.3と、前記偶数段の第1,第2半導体素子SU2.1,SU2.2,SV2.1,SV2.2,SW2.1,SW2.2の共通接続点に一端が接続された第5半導体素子SU2.5,SV2.5,SW2.5と、直列接続された2個の直流電圧源DCC1,DCC2のうち奇数段の直流電圧源DCC1の正負極間に順次直列接続された第2~第4半導体素子SU1.2~SU1.4,SV1.2~SV1.4,SW1.2~SW1.4と、前記奇数段の第3,第4半導体素子SU1.3,SU1.4,SV1.3,SV1.4,SW1.3,SW1.4の共通接続点に一端が接続された第6半導体素子SU1.6,SV1.6,SW1.6と、を有する。
 フライングキャパシタFC2は、偶数段における全ての第5半導体素子SU2.5,SV2.5,SW2.5の他端と、偶数段の直流電圧源DCC2の負極端と第3半導体素子SU2.3,SV2.3,SW2.3の共通接続点の間に介挿され、フライングキャパシタFC1は、奇数段における第6半導体素子SU1.6,SV1.6,SW1.6の他端と、奇数段の直流電圧源DCC1の正極端と第2半導体素子SU1.2,SV1.2,SW1.2の共通接続点との間に介挿される。
 電圧選択回路は、SU14,SU15,SV14,SV15,SW14,SW15から構成される。
 直流電圧源DCC1,DCC2の電圧を2E、フライングキャパシタFC1,FC2の電圧をEに制御することで出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの電圧を出力できる。
 図23の変形例として、高電圧に対する耐性のために各半導体素子を2直列以上に構成する回路も含む。また、大電流に対する耐性のため、各半導体素子を2並列以上に構成する回路も含む。
 図24では、出力端子U=2E、出力端子V=0、出力端子W=-2Eを出力する場合の各半導体素子の動作を示す。図24中の○は導通中の半導体素子を表す。
 この時、フライングキャパシタFC1に第6半導体素子SU1.6,SV1.6,SW1.6が接続され、フライングキャパシタFC2に第5半導体素子SU2.5,SV2.5,SW2.5が接続されるため、フライングキャパシタFC1,FC2を短絡せずに、出力端子U,V,Wから2E,0,-2Eの電圧をそれぞれ出力できると共に、2E,0,-2Eを出力するための制御を簡略化することができる。
 また、本実施形態12は、図29(a),(b)に示す従来の回路と比べて、U相V相W相の3相分の電流が流れる半導体素子がないため、半導体素子冷却用の冷却フィンを小型化することが可能となる。
 なお、本実施形態12では、3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1,FC2を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態13]
 次に、本実施形態13におけるマルチレベル電力変換装置について、図25に基づいて説明する。本実施形態13におけるマルチレベル電力変換装置は、実施形態4において、N=4,M=3とした構成である。電圧選択回路は、図3(a)と図3(d)を使用している。
 基本回路は、直列接続された4個の直流電圧源DCC1~DCC4のうち偶数段の直流電圧源DCC2,DCC4の正極端に順次直列接続された第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3,SU4.2,SU4.3,SV4.2,SV4.3,SW4.2,SW4.3と、直列接続された4個の直流電圧源DCC1~DCC4のうち奇数段の直流電圧源DCC1,DCC3の負極端に順次直列接続された第3,第2半導体素子SU1.3,SU1.2,SV1.3,SV1.2,SW1.3,SW1.2,SU3.3,SU3.2,SV3.3,SV3.2,SW3.3,SW3.2と、を有する。
 フライングキャパシタFC1~FC4は、奇数段,偶数段の第2,第3半導体素子SU2.2,SU2.3,SV2.2,SV2.3,SW2.2,SW2.3,SU4.2,SU4.3,SV4.2,SV4.3,SW4.2,SW4.3,SU1.3,SU1.2,SV1.3,SV1.2,SW1.3,SW1.2,SU3.3,SU3.2,SV3.3,SV3.2,SW3.3,SW3.2に並列に接続される。
 電圧選択回路は、SU19~SU28,SV19~SV28,SW19~SW28から構成される。
 直流電圧源DCC1,DCC2,DCC3,DCC4の電圧を2E、フライングキャパシタFC1,FC2,FC3,FC4の電圧をEに制御することにより、4E,3E,2E,E,0,-E,-2E,-3E,-4Eの9レベルの電圧を出力できる。
 下記表2に、U相における各半導体素子のON/OFF状態時の、U端子~0端子間の電圧を示す
Figure JPOXMLDOC01-appb-T000002
 本実施形態13では、実施形態6~12と同様に、フライングキャパシタFC1~FC4を短絡せずに、任意の電圧(4E,3E,2E,E,0,-E,-2E,-3E,-4E)を出力端子U,V,Wからそれぞれ出力することができると共に、4E,3E,2E,E,0,-E,-2E,-3E,-4Eを出力するための制御を簡略化することができる。
 また、本実施形態13は、図29(a),(b)に示す従来の回路と比べて、U相,V相,W相の3相分の電流が流れる半導体素子がないため、半導体素子冷却用の冷却フィンを小型化することが可能となる。
 なお、本実施形態13では、3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1~FC4を短絡させることなく、各相の相電圧を独立して出力することができる。図29(a),(b)に示す従来の回路と比べて、3相分の電流が流れる半導体素子がない優位点についても、同様である。
 [実施形態14]
 次に、本実施形態14におけるマルチレベル電力変換装置について、図26に基づいて説明する。本実施形態14におけるマルチレベル電力変換装置は、実施形態3において、N=4,M=3とした構成である。電圧選択回路は、図3(a)を使用している。
 直列接続された4個の直流電圧源DCC1~DCC4のうち、偶数段の直流電圧源DCC2,DCC4の負極端に一端が接続された3相共通の第4半導体素子SU2.4,SU4.4と、前記偶数段の直流電圧源DCC2,DCC4の正極端と偶数段の第4半導体素子SU2.4,SU4.4の他端との間に順次直列接続された3相の第1~第3半導体素子SU2.1~SU2.3,SV2.1~SV2.3,SW2.1~SW2.3,SU4.1~SU4.3,SV4.1~SV4.3,SW4.1~SW4.3と、偶数段の第1,第2半導体素子SU2.1,SU2.2,SV2.1,SV2.2,SW2.1,SW2.2,SU4.1,SU4.2,SV4.1,SV4.2,SW4.1,SW4.2の共通接続点に一端が接続された第5半導体素子SU2.5,SV2.5,SW2.5,SU4.5,SV4.5,SW4.5と、奇数段の直流電圧源DCC1,DCC3の正極端に一端が接続された3相共通の第1半導体素子SU1.1,SU3.1と、奇数段の第1半導体素子SU1.1,SU3.1の他端と奇数段の直流電圧源DCC1,DCC3の負極端との間に順次直列接続された3相の第2~第4半導体素子SU1.2~SU1.4,SV1.2~SV1.4,SW1.2~SW1.4,SU3.2~SU3.4,SV3.2~SV3.4,SW3.2~SW3.4と、奇数段の第3,第4半導体素子SU1.3,SU1.4,SV1.3,SV1.4,SW1.3,SU3.3,SU3.4,SV3.3,SV3.4,SW3.3,SW3.4の共通接続点に一端が接続された3相の第6半導体素子SU1.6,SV1.6,SW1.6,SU3.6,SV3.6,SW3.6と、を有する。
 フライングキャパシタFC2,FC4は、偶数段における全ての第5半導体素子SU2.5,SV2.5,SW2.5,SU4.5,SV4.5,SW4.5と第3,第4半導体素子SU2.3,SV2.3,SW2.3,SU2.4,SU4.3,SV4.3,SW4.3,SU4.4の共通接続点の間に介挿され、フライングキャパシタFC1,FC3は、奇数段における第1,2半導体素子SU1.1,SU1.2,SV1.2,SW1.2,SU3.1,SU3.2,SV3.2,SW3.2の共通接続点と全ての第6半導体素子SU1.6,SV1.6,SW1.6,SU3.6,SV3.6,SW3.6との間に介挿される。
 電圧選択回路は、SU1~SU12,SV1~SV12,SW1~SW12から構成される。
 直流電圧源DCC1,DCC2,DCC3,DCC4の電圧を2E、フライングキャパシタFC1~FC4の電圧をEに制御することで、4E,3E,2E,E,0,-E,-2E,-3E,-4Eの9レベルの電圧を出力できる。
 本実施形態14では、実施形態13と同様に、フライングキャパシタFC1~FC4を短絡せずに、任意の電圧(4E,3E,2E,E,0,-E,-2E,-3E,-4E)を出力端子U,V,Wから出力できると共に、4E,3E,2E,E,0,-E,-2E,-3E,-4Eを出力するための制御を簡略化することができる。
 図26の回路は、実施形態7の図13の回路を2段重ねた構成である。
 図26のSU1とSU2、SU3とSU4、SU5とSU6、SU7とSU8、SV1とSV2、SV3とSV4、SV5とSV6、SV7とSV8、SW1とSW2、SW3とSW4、SW5とSW6、SW7とSW8が、図13のSU1とSU2、SU3とSU4、SV1とSV2、SV3とSV4、SW1とSW2、SW3とSW4、に相当する。
 したがって実施形態7と同様に、半導体素子SU1とSU2などの前述の各半導体素子の直列接続回路の定常時の印加電圧最大値は、それぞれ2Eとなる。
 なお、本実施形態14では3相出力回路について説明したが、出力相数を4相以上に増やした回路についても、フライングキャパシタFC1~FC4を短絡させることなく、各相の相電圧を独立して出力ができる。図29(a),(b)に示す従来の回路と比べて、半導体素子の耐電圧の優位点についても、同様である。

Claims (8)

  1.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N≧2)の直流電圧源と、
     N個の直流電圧源のそれぞれの正負極間に順次直列接続された第1~第4半導体素子と、第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、を有するM相(M≧3)の基本回路と、
     全ての相の第5半導体素子の他端と全ての相の第6半導体素子の他端との間に介挿されたM相共通のフライングキャパシタと、
     各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  2.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N=2以上の偶数)の直流電圧源と、
     直列接続されたN個の直流電圧源のうち、偶数段の直流電圧源の正極端に一端が接続されたM相(M≧3)共通の第1半導体素子と、前記偶数段の第1半導体素子の他端と前記偶数段の直流電圧源の負極端との間に順次直列接続されたM相の第2~第4半導体素子と、偶数段の第3,第4半導体素子の共通接続点に一端が接続されたM相の第6半導体素子と、奇数段の直流電圧源の負極端に一端が接続されたM相共通の第4半導体素子と、前記奇数段の直流電圧源の正極端と奇数段の第4半導体素子の他端との間に順次直列接続されたM相の第1~第3半導体素子と、奇数段の第1,第2半導体素子の共通接続点に一端が接続されたM相の第5半導体素子と、を有する基本回路と、
     偶数段における第1,第2半導体素子の共通接続点と偶数段における全ての相の第6半導体素子の他端との間に介挿されたM相共通の偶数段のフライングキャパシタと、奇数段における全ての相の第5半導体素子の他端と奇数段における第3,第4半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、
     各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  3.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N=2以上の偶数)の直流電圧源と、
     直列接続されたN個の直流電圧源のうち、偶数段の直流電圧源の負極端に一端が接続されたM相(M≧3)共通の第4半導体素子と、前記偶数段の直流電圧源の正極端と偶数段の第4半導体素子の他端との間に順次直列接続されたM相の第1~第3半導体素子と、偶数段の第1,第2半導体素子の共通接続点に一端が接続されたM相の第5半導体素子と、奇数段の直流電圧源の正極端に一端が接続されたM相共通の第1半導体素子と、奇数段の第1半導体素子の他端と奇数段の直流電圧源の負極端との間に順次直列接続されたM相の第2~第4半導体素子と、奇数段の第3,第4半導体素子の共通接続点に一端が接続されたM相の第6半導体素子と、を有する基本回路と、
     偶数段における全ての第5半導体素子と第3,第4半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、奇数段における第1,2半導体素子の共通接続点と全ての第6半導体素子との間に介挿されたM相共通の奇数段のフライングキャパシタと、
     各基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  4.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N=2以上の偶数)の直流電圧源と、
     直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正極端に順次直列接続された第2,第3半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の負極端に順次直列接続された第3,第2半導体素子と、を有するM相(M≧3)の基本回路と、
     前記奇数段および偶数段の第2,第3半導体素子のそれぞれに並列接続されたM相共通のフライングキャパシタと、
     基本回路の第2,第3半導体素子の共通接続点および偶数段の直流電圧源の負極端と奇数段の直流電圧源の正極端の共通接続点を入力端子とし、入力端子と出力端子間に半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  5.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N=2以上の偶数)の直流電圧源と、
     直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正負極間に順次直列接続された第2~第4半導体素子と、前記偶数段の第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の正負極間に順次直列接続された第1~第3半導体素子と、前記奇数段の第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、を有するM相(M≧3)の基本回路と、
     前記偶数段における全ての第6半導体素子の他端と、偶数段の直流電圧源の正極端と第2半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、前記奇数段における全ての第5半導体素子の他端と、奇数段の直流電圧源の負極端と第3半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、
     基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  6.  直流電圧源およびフライングキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     直列接続されたN個(N=2以上の偶数)の直流電圧源と、
     直列接続されたN個の直流電圧源のうち偶数段の直流電圧源の正負極間に順次直列接続された第1~第3半導体素子と、前記偶数段の第1,第2半導体素子の共通接続点に一端が接続された第5半導体素子と、直列接続されたN個の直流電圧源のうち奇数段の直流電圧源の正負極間に順次直列接続された第2~第4半導体素子と、前記奇数段の第3,第4半導体素子の共通接続点に一端が接続された第6半導体素子と、を有するM相(M≧3)の基本回路と、
     前記偶数段における全ての第5半導体素子の他端と、偶数段の直流電圧源の負極端と第3半導体素子の共通接続点の間に介挿されたM相共通の偶数段のフライングキャパシタと、前記奇数段における全ての第6半導体素子の他端と、奇数段の直流電圧源の正極端と第2半導体素子の共通接続点との間に介挿されたM相共通の奇数段のフライングキャパシタと、
     基本回路の第2,第3半導体素子の共通接続点を入力端子とし、入力端子と出力端子間にそれぞれ半導体素子を有し、この半導体素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力するM相の電圧選択回路と、
    を備えたマルチレベル電力変換装置。
  7.  前記基本回路および電圧選択回路の半導体素子の一部または全てを、直列数を2以上とした請求項1~6のうち何れかに記載のマルチレベル電力変換装置。
  8.  前記基本回路および電圧選択回路の半導体素子の一部または全てを、並列数を2以上とした請求項1~7のうち何れかに記載のマルチレベル電力変換装置。
PCT/JP2014/063717 2013-06-25 2014-05-23 マルチレベル電力変換装置 WO2014208232A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/900,950 US9923369B2 (en) 2013-06-25 2014-05-23 Multilevel power convertor
CA2916174A CA2916174C (en) 2013-06-25 2014-05-23 Multilevel power convertor
CN201480036659.0A CN105359402B (zh) 2013-06-25 2014-05-23 多电平电力变换装置
RU2015155320A RU2614051C1 (ru) 2013-06-25 2014-05-23 Многоуровневый силовой преобразователь
BR112015032307-3A BR112015032307B1 (pt) 2013-06-25 2014-05-23 Conversor de potência multinível
EP14817321.4A EP3016263A4 (en) 2013-06-25 2014-05-23 Multilevel power convertor
SG11201510428SA SG11201510428SA (en) 2013-06-25 2014-05-23 Multilevel power convertor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013132261A JP6075224B2 (ja) 2013-06-25 2013-06-25 マルチレベル電力変換装置
JP2013-132261 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014208232A1 true WO2014208232A1 (ja) 2014-12-31

Family

ID=52141584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063717 WO2014208232A1 (ja) 2013-06-25 2014-05-23 マルチレベル電力変換装置

Country Status (9)

Country Link
US (1) US9923369B2 (ja)
EP (1) EP3016263A4 (ja)
JP (1) JP6075224B2 (ja)
CN (1) CN105359402B (ja)
BR (1) BR112015032307B1 (ja)
CA (1) CA2916174C (ja)
RU (1) RU2614051C1 (ja)
SG (1) SG11201510428SA (ja)
WO (1) WO2014208232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174454A1 (ja) * 2014-05-14 2015-11-19 株式会社明電舎 5レベル電力変換器の制御方法
JP6428859B1 (ja) * 2017-06-16 2018-11-28 株式会社明電舎 マルチレベル電力変換装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206118B2 (ja) 2013-08-02 2017-10-04 株式会社明電舎 マルチレベル電力変換装置
JP6547524B2 (ja) * 2015-09-04 2019-07-24 株式会社明電舎 多相電力変換器の制御方法及び多相電力変換器
JP6439835B1 (ja) * 2017-08-24 2018-12-19 株式会社明電舎 マルチレベル電力変換装置およびその制御方法
EP3573227A1 (en) * 2018-05-23 2019-11-27 Nidec ASI S.A. Electric power converter
JP6973298B2 (ja) * 2018-05-31 2021-11-24 トヨタ自動車株式会社 物体監視装置
GB201815301D0 (en) * 2018-09-20 2018-11-07 Rolls Royce Converter
JP7054791B2 (ja) * 2018-09-25 2022-04-15 パナソニックIpマネジメント株式会社 半導体装置及びデバイス
JP7126133B2 (ja) * 2018-11-29 2022-08-26 パナソニックIpマネジメント株式会社 電力変換装置
JP7065434B2 (ja) * 2019-02-12 2022-05-12 パナソニックIpマネジメント株式会社 電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251940A (ja) * 1995-03-08 1996-09-27 Hitachi Ltd 直列多重電力変換装置
JP2012209368A (ja) 2011-03-29 2012-10-25 Kawamura Electric Inc キャビネット列連結構造
JP2013102674A (ja) * 2011-10-14 2013-05-23 Meidensha Corp マルチレベル電力変換器
JP2014064431A (ja) * 2012-09-24 2014-04-10 Meidensha Corp マルチレベル電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2269196C1 (ru) * 2004-07-20 2006-01-27 Государственное унитарное предприятие "Всероссийский электротехнический институт им. В.И. Ленина" Преобразователь напряжения, выполненный по комбинированной схеме
RU2382480C2 (ru) * 2008-04-04 2010-02-20 Закрытое акционерное общество "ИРИС" Высоковольтный регулируемый электропривод переменного тока
US8471584B2 (en) * 2010-05-28 2013-06-25 General Electric Company Switching device failure detection system and method for multilevel converters
CN102097967B (zh) * 2010-12-10 2013-01-16 清华大学 一种级联式多电平变流器
US20120218795A1 (en) * 2011-02-28 2012-08-30 Siemens Corporation Pulse width modulated control for hybrid inverters
EP2568591A1 (en) * 2011-09-12 2013-03-13 Green Power Technologies, S.L. Multilevel-clamped multilevel converters (MLC2)
CN102594181A (zh) * 2012-02-20 2012-07-18 阳光电源股份有限公司 多电平逆变拓扑单元及多电平逆变器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251940A (ja) * 1995-03-08 1996-09-27 Hitachi Ltd 直列多重電力変換装置
JP2012209368A (ja) 2011-03-29 2012-10-25 Kawamura Electric Inc キャビネット列連結構造
JP2013102674A (ja) * 2011-10-14 2013-05-23 Meidensha Corp マルチレベル電力変換器
JP2014064431A (ja) * 2012-09-24 2014-04-10 Meidensha Corp マルチレベル電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3016263A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174454A1 (ja) * 2014-05-14 2015-11-19 株式会社明電舎 5レベル電力変換器の制御方法
JP6428859B1 (ja) * 2017-06-16 2018-11-28 株式会社明電舎 マルチレベル電力変換装置
WO2018230107A1 (ja) * 2017-06-16 2018-12-20 株式会社明電舎 マルチレベル電力変換装置
JP2019004626A (ja) * 2017-06-16 2019-01-10 株式会社明電舎 マルチレベル電力変換装置

Also Published As

Publication number Publication date
JP2015008566A (ja) 2015-01-15
CN105359402A (zh) 2016-02-24
BR112015032307A2 (pt) 2017-07-25
CA2916174C (en) 2017-11-28
BR112015032307B1 (pt) 2021-11-30
CN105359402B (zh) 2018-02-02
US9923369B2 (en) 2018-03-20
SG11201510428SA (en) 2016-01-28
EP3016263A1 (en) 2016-05-04
EP3016263A4 (en) 2017-02-22
RU2614051C1 (ru) 2017-03-22
CA2916174A1 (en) 2014-12-31
US20160141870A1 (en) 2016-05-19
JP6075224B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075224B2 (ja) マルチレベル電力変換装置
JP6206118B2 (ja) マルチレベル電力変換装置
JP6011197B2 (ja) マルチレベル電力変換装置
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
US7705490B2 (en) Integral stack columns
JP6123219B2 (ja) マルチレベル電力変換器
JP6232944B2 (ja) マルチレベル電力変換装置
JP5803683B2 (ja) マルチレベル電力変換回路
JP5745051B2 (ja) マルチレベル電圧コンバータ
JP4540714B2 (ja) 複数のスイッチング電圧レベルのスイッチングのためのコンバータ回路
US20150049530A1 (en) Power electronic converter
JP2014023420A (ja) マルチレベル電圧変換器
JP2007312451A (ja) マルチレベルコンバータ及びその制御方法
JP2016226223A (ja) 7レベル電力変換器
US20150214830A1 (en) System and method of power conversion
JP2018182841A (ja) マルチレベル電力変換回路
JP2013172627A (ja) マルチレベル電力変換回路
JP6428859B1 (ja) マルチレベル電力変換装置
JP5714705B2 (ja) 電力変換装置とその制御装置
JP2011024391A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036659.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2916174

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14900950

Country of ref document: US

Ref document number: IDP00201508703

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014817321

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032307

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015155320

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015032307

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151222