WO2014162591A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014162591A1
WO2014162591A1 PCT/JP2013/060468 JP2013060468W WO2014162591A1 WO 2014162591 A1 WO2014162591 A1 WO 2014162591A1 JP 2013060468 W JP2013060468 W JP 2013060468W WO 2014162591 A1 WO2014162591 A1 WO 2014162591A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
level
series
switch element
power conversion
Prior art date
Application number
PCT/JP2013/060468
Other languages
English (en)
French (fr)
Inventor
伸三 玉井
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US14/782,170 priority Critical patent/US20160049884A1/en
Priority to CN201380075295.2A priority patent/CN105103428A/zh
Priority to CA2908679A priority patent/CA2908679A1/en
Priority to MX2015013984A priority patent/MX2015013984A/es
Priority to KR1020157031192A priority patent/KR20150136532A/ko
Priority to PCT/JP2013/060468 priority patent/WO2014162591A1/ja
Publication of WO2014162591A1 publication Critical patent/WO2014162591A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck

Definitions

  • the present invention relates to a power converter, and more particularly, to a power converter capable of outputting a plurality of different voltage levels.
  • a power conversion device has been proposed in which the stack of DC voltages from a plurality of DC power sources is changed during one cycle to convert DC power into AC power.
  • This power conversion device does not generate a constant pulse voltage like an inverter having one DC power supply, but stacks a plurality of DC voltages having different potentials to convert DC power into AC power. For this reason, this power conversion device converts DC power into AC power with less harmonics than a power conversion device having one DC power supply by finely stacking a plurality of DC voltages with different potentials without waste. Can do.
  • Patent Document 1 discloses a multi-level inverter that is the above-described power converter.
  • the multilevel inverter disclosed in Patent Document 1 is a redox flow type secondary battery that is connected in series and forms a multilevel terminal voltage, and an inverter unit that forms AC power by controlling the stacking of the potentials of the multilevel terminals. And.
  • the inverter unit includes a total of eight switching elements and six diodes, and controls opening and closing of the switching elements according to instructions from the control unit.
  • FIG. 5 is a circuit diagram showing a circuit configuration of a conventional power conversion device disclosed in Patent Document 1.
  • the power conversion device 100 shown in FIG. 5 is a 5-level inverter that can output five different voltage levels.
  • the power conversion apparatus 100 includes four DC power supplies V, eight switch elements S101 to S108, and six diodes D101 to D106.
  • the power converter 100 sets the middle point of the four DC power sources V as the middle point V0, and sets the voltage level at the middle point V0 to “0V”. Therefore, in the power conversion apparatus 100, the voltage level of the positive potential is “+ 1V” for one DC power source V from the middle point V0, and the voltage level of the positive potential is “+ 1V” for two DC power sources V from the middle point V0. + 2V ". On the contrary, in the power conversion apparatus 100, the voltage level of the minus potential for one DC power source V from the middle point V0 becomes “ ⁇ 1V”, and the voltage level of the minus potential for two DC power sources V from the middle point V0. Becomes “ ⁇ 2V”.
  • the power conversion device 100 outputs the potential of the voltage level of “+ 2V” to the output terminal by turning on the switch elements S101, S102, S103, and S104, and turns on the switch elements S102, S103, S104, and S105. As a result, a potential of a voltage level of “+1 V” can be output to the output terminal. Further, the power conversion device 100 can output a potential of a voltage level of “0 V” to the output terminal by turning on the switch elements S103, S104, S105, and S106.
  • the power conversion device 100 outputs the potential of the voltage level of “ ⁇ 1V” to the output terminal by turning on the switch elements S104, S105, S106, and S107, and switches the switch elements S105, S106, S107, and S108. By turning it on, a potential of “ ⁇ 2 V” voltage level can be output to the output terminal. Therefore, the power conversion apparatus 100 can output five different voltage levels (“ ⁇ 2V”, “ ⁇ 1V”, “0V”, “+ 1V”, “+ 2V”) from the output terminal.
  • the switch elements S105, S106, S107, and S108 are turned on in order to output the potential of the voltage level of “ ⁇ 2V” from the output terminal, the anode terminals of the diodes D102, D104, and D106
  • the voltage level of the diode D102 is “ ⁇ 2V”
  • the cathode terminal of the diode D102 is connected to the voltage level of “+ 1V”, so that a voltage corresponding to three DC power sources V is applied.
  • the voltage for two DC power sources V is applied to the diode D104
  • the voltage for one DC power source V is applied to the diode D106.
  • the switch elements S101, S102, S103, and S104 are turned on in order to output the potential of the voltage level of “+ 2V” from the output terminal, the anode terminals of the diodes D101, D103, and D105 are turned on. Since the voltage level is “+2 V” and the cathode terminal of the diode D105 is connected to the voltage level of “ ⁇ 1 V”, a voltage corresponding to three DC power sources V is applied. Similarly, a voltage for two DC power sources V is applied to the diode D103, and a voltage for one DC power source V is applied to the diode D101.
  • the multilevel inverter disclosed in Patent Document 1 has a withstand voltage that is three times higher than that of the diodes D101 and D106 in the diodes D102 and D105 that connect the DC power supply and the switching element, and the diodes D103 and D104.
  • a double withstand voltage is required for each of the diodes D101 and D106. Therefore, in the multilevel inverter disclosed in Patent Document 1, it is necessary to use diodes with different withstand voltages, or to connect two or three diodes in series to increase the withstand voltage, and the device becomes complicated, which is manufactured. It was difficult.
  • the multilevel inverter disclosed in Patent Document 1 requires a higher withstand voltage to the diode as the number of output voltage levels increases, and the configuration of the diode connected between the DC power supply and the switch element is increased. Complicated and difficult to manufacture.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a power converter having a configuration that can be easily manufactured.
  • the present invention provides first to fourth switch elements connected in series, a first connection point between the first switch element and the second switch element, and a third switch element. And a second connection point between the first switch element and the fourth switch element, two diodes connected in series, a third connection point connecting the diodes, and a first switch element connected between the first switch element and the second switch point.
  • a configuration is provided that includes a series three-level inverter group in which a plurality of three-level inverters are connected in series, and at least one switch circuit that selects the outputs of the plurality of three-level inverters.
  • FIG. 1 It is a circuit diagram which shows the circuit structure of the power converter device which concerns on Embodiment 1 of this invention. It is a wave form diagram which shows the waveform of the voltage level which the power converter device shown in FIG. 1 outputs. It is a circuit diagram which shows another circuit structure of the power converter device which concerns on Embodiment 1 of this invention. It is a wave form diagram which shows the waveform of the voltage level which the power converter device shown in FIG. 3 outputs. It is a circuit diagram which shows the circuit structure of the conventional power converter device currently disclosed by patent document 1.
  • FIG. 1 It is a circuit diagram which shows the circuit structure of the power converter device which concerns on Embodiment 1 of this invention. It is a wave form diagram which shows the waveform of the voltage level which the power converter device shown in FIG. 1 outputs. It is a circuit diagram which shows the circuit structure of the conventional power converter device currently disclosed by patent document 1.
  • FIG. 1 It is a circuit diagram which shows the circuit structure of the power converter device which concerns on Embodiment 1
  • FIG. 1 is a circuit diagram showing a circuit configuration of a power conversion device according to Embodiment 1 of the present invention.
  • the power conversion device 10 shown in FIG. 1 is a 5-level inverter that can output five different voltage levels.
  • the power conversion device 10 includes four DC power supplies V, ten switch elements S1 to S10, four diodes D1 to D4, and an output terminal.
  • the power conversion apparatus 10 includes two three-level inverters 10a and 10b that can output three different voltage levels, and one switch circuit 11 that selects the outputs of the two three-level inverters 10a and 10b.
  • the three-level inverter 10a includes four switch elements S1 to S4 connected in series, diodes D1 and D2 connected in series, and capacitors C1 and C2 that are DC power supplies V connected in series.
  • the three-level inverter 10a connects diodes D1 and D2 in series between a connection point P1 between the switch elements S1 and S2 and a connection point P2 between the switch elements S3 and S4.
  • the three-level inverter 10a connects the capacitor C1 between the connection point P3 connecting the diodes D1 and D2 and the switch element S1, and connects the capacitor C2 between the connection point P3 and the switch element S4. Since 3-level inverter 10b has the same circuit configuration as 3-level inverter 10a, detailed description will not be repeated.
  • the switch circuit 11 includes a switch element S9 and a switch element S10, and selects the output of the three-level inverter 10a or the three-level inverter 10b when the switch element S9 or the switch element S10 is turned on.
  • the three-level inverter 10a can output the positive potential “+ 2V” of the capacitor C1 in the capacitors C1 and C2 connected in series by turning on the switch elements S1 and S2, and the switch elements S2 and S3 By turning it on, the potential “+1 V” at the connection point P4 between the capacitors C1 and C2 connected in series can be output. Further, the three-level inverter 10a can output the negative potential “0V” of the capacitor C2 in the capacitors C1 and C2 connected in series by turning on the switch elements S3 and S4. Therefore, the three-level inverter 10a can output three voltage levels of “0V”, “+ 1V”, and “+ 2V”.
  • the 3-level inverter 10b can perform the same operation as the 3-level inverter 10a, it can output three voltage levels of “0V”, “ ⁇ 1V”, and “ ⁇ 2V”.
  • the power conversion device 10 selects one output of the three-level inverters 10a and 10b connected in series by switching the ON state of the switch element S9 and the switch element S10 of the switch circuit 11. Five different voltage levels (“-2V”, “-1V”, “0V”, “+ 1V”, “+ 2V”) can be output from the output terminal.
  • the negative potential of the capacitor C2 and the positive potential of the capacitor C3 are the same potential “0V”.
  • FIG. 2 is a waveform diagram showing a waveform of a voltage level output from the power conversion device 10 shown in FIG.
  • the power converter 10 turns on the switch elements S3 and S4, turns on the switch element S9 of the switch circuit 11 (the switch element S10 is turned off), and outputs the voltage level “0 V” from the output terminal. Thereafter, at time t1, the power converter 10 turns on the switch elements S2 and S3 and turns on the switch element S9 of the switch circuit 11, and outputs a voltage level “+1 V” from the output terminal.
  • the power conversion device 10 turns on the switch elements S1 and S2 and turns on the switch element S9 of the switch circuit 11, and outputs the voltage level “+2 V” from the output terminal. Thereafter, the power conversion device 10 decreases the voltage level from the output terminal in order of “+1” and “0”.
  • the power conversion device 10 may output the voltage level “0 V” from the output terminal by turning on the switch elements S5 and S6 and turning on the switch element S10 of the switch circuit 11.
  • the power converter 10 turns on the switch elements S6 and S7 and turns on the switch element S10 of the switch circuit 11 at time t3, and outputs the voltage level “ ⁇ 1V” from the output terminal.
  • the power converter 10 turns on the switch elements S7 and S8 and turns on the switch element S10 of the switch circuit 11, and outputs the voltage level “ ⁇ 2V” from the output terminal. Thereafter, the power conversion device 10 increases the voltage level from the output terminal in the order of “ ⁇ 1” and “0”.
  • the power conversion apparatus 10 performs an operation of switching and outputting five different voltage levels (“ ⁇ 2V”, “ ⁇ 1V”, “0V”, “+ 1V”, “+ 2V”). 2 can be output, and direct current power can be converted into alternating current power.
  • the switch elements S1 to S8 and the diodes D1 to D4 that constitute the three-level inverters 10a and 10b only one capacitor voltage is applied to both ends of each element when the switch elements are off. .
  • the switch elements S9 and S10 that constitute the switch circuit 11 when “+2 V” is output from the output terminal, the switch element S9 is turned on and the switch element S10 is turned off. Minute capacitor voltage is applied. Further, when “ ⁇ 2V” is output from the output terminal in the switch elements S9 and S10 that constitute the switch circuit 11, the switch element S10 is turned on and the switch element S9 is turned off. Two capacitor voltages are applied to the capacitor.
  • the power conversion device 10 includes a series of three level inverters in which two high level inverters 10a and 10b are connected in series and an element with a particularly high withstand voltage is unnecessary.
  • an element to which a high voltage is applied can be limited to an element configuring the switch circuit 11. That is, the power conversion device 10 can be manufactured simply by connecting two three-level inverters using existing withstand voltage elements in series and providing a switch circuit for selecting the output of the three-level inverter. It can be.
  • the power conversion device according to Embodiment 1 of the present invention is not limited to a power conversion device that can output five different voltage levels, but a three-level inverter and a switch connected in series. By increasing the number of circuits, the number of output voltage levels can be easily increased.
  • FIG. 3 is a circuit diagram showing another circuit configuration of the power conversion device according to Embodiment 1 of the present invention.
  • the power conversion device 20 shown in FIG. 3 is a 9-level inverter that can output nine different voltage levels.
  • the power conversion apparatus 20 includes eight DC power supplies V, 22 switch elements S1 to S22, and 8 diodes D1 to D8. A free wheel diode is connected to each of the switch elements S1 to S22.
  • the power conversion device 20 includes a series three-level inverter group in which four three-level inverters 20a, 20b, 20c, and 20d are connected in series, and one switch circuit that selects the outputs of the two three-level inverters 20a and 20b. 21, one switch circuit 22 for selecting the outputs of the two three-level inverters 20 c and 20 d, and the output of the two switch circuits 21 and 22 connected in the previous stage
  • the switch circuit 23 of the next stage is provided.
  • the midpoint of the eight DC power supplies V is the midpoint V0, and the voltage level of the midpoint V0 is “0V”. Therefore, the voltage levels at the connection points of the four DC power supplies V above the midpoint V0 are “+ 1V”, “+ 2V”, “+ 3V” in order from the midpoint V0 side, and 4 below the midpoint V0.
  • the voltage level at the connection point of each DC power supply V is “ ⁇ 1V”, “ ⁇ 2V”, and “ ⁇ 3V” in order from the middle point V0 side.
  • the voltage level at the connection point between the DC power supply V and the switch element S1 is “+4 V”, and the voltage level at the connection point between the DC power supply V and the switch element S18 is “ ⁇ 4 V”.
  • FIG. 4 is a waveform diagram showing a waveform of a voltage level output from the power conversion device 20 shown in FIG.
  • the power converter 20 turns on the switch elements S7 and S8, turns on the switch element S10 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level “0V” from the output terminal. Output. Thereafter, at time t1, the power conversion device 20 turns on the switch elements S6 and S7, turns on the switch element S10 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level from the output terminal. “+ 1V” is output.
  • the power converter 20 turns on the switch elements S5 and S6, turns on the switch element S10 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level from the output terminal. Outputs “+ 2V”.
  • the power converter 20 turns on the switch elements S3 and S4, turns on the switch element S9 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level “+2 V” from the output terminal. It may be output.
  • the power conversion device 20 turns on the switch elements S2 and S3, turns on the switch element S9 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level from the output terminal. Outputs “+ 3V”.
  • the power conversion device 20 turns on the switch elements S1 and S2, turns on the switch element S9 of the switch circuit 21, turns on the switch element S21 of the switch circuit 23, and sets the voltage level from the output terminal. Outputs “+ 4V”. Thereafter, the power conversion device 20 decreases the voltage level from the output terminal in the order of “+3 V”, “+2 V”, “+1 V”, and “0 V”.
  • the power converter 20 turns on the switch elements S11 and S12, turns on the switch element S19 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level “0V” from the output terminal. It may be output.
  • the power conversion device 20 turns on the switch elements S12 and S13, turns on the switch element S19 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level “ ⁇ ” from the output terminal. 1V "is output.
  • the power conversion device 20 turns on the switch elements S13 and S14, turns on the switch element S19 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level from the output terminal. Outputs "-2V".
  • the power converter 20 turns on the switch elements S15 and S16, turns on the switch element S20 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level “ ⁇ 2V” from the output terminal. May be output.
  • the power conversion device 20 turns on the switch elements S16 and S17, turns on the switch element S20 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level from the output terminal. "-3V" is output.
  • the power conversion device 20 turns on the switch elements S17 and S18, turns on the switch element S20 of the switch circuit 22, turns on the switch element S22 of the switch circuit 23, and sets the voltage level from the output terminal. Outputs "-4V”. Thereafter, the power conversion device 20 increases the voltage level from the output terminal in order of “ ⁇ 3V”, “ ⁇ 2V”, “ ⁇ 1V”, and “0V”.
  • the power converter 20 has nine different voltage levels (“ ⁇ 4 V”, “ ⁇ 3 V”, “ ⁇ 2 V”, “ ⁇ 1 V”, “0 V”, “+1 V”, “+2 V”, “ By performing the operation of switching and outputting (+ 3V ",” + 4V "), it is possible to output an alternating voltage as shown by a broken line in FIG. 4, and to convert direct current power into alternating current power.
  • the power conversion device As described above, the power conversion device according to Embodiment 1 of the present invention generally increases the number of output voltage levels by increasing the number of level inverters and switch circuits connected in series as follows. Can be expressed.
  • the power conversion device selects the outputs of 2 n series 3-level inverters connected in series, and two 3-level inverters out of the series 3 level inverters. At least one switch circuit. Then, 2 n-1 switch circuits are connected so that either one of the outputs of two adjacent three level inverters of the series three level inverter group can be selected, and two switch circuits are provided. In the above case, the switch circuit in the next stage is connected in order so that either one of the outputs of the two switch circuits connected in the previous stage can be selected, and the power conversion device outputs one output. obtain.
  • the number of times of selecting the voltage level in one cycle of AC is limited. However, switching is performed a plurality of times in one cycle of AC. Then, by selecting the voltage level a plurality of times, a finer alternating voltage can be output, and a power conversion device with fewer high frequencies can be obtained.
  • the capacitor is used as the charge storage element.
  • the present invention is not limited to this, and for example, a DC power supply may be connected.
  • the charge storage element and the switch element or the diode are directly connected.
  • the present invention is not limited to this.
  • the switch element is turned on and off.
  • a configuration in which a snubber circuit or the like that suppresses a sudden change in current in a transient state may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 本発明は、3レベルインバータ(10a,10b)を、2個直列に接続してある直列3レベルインバータ群と、直列3レベルインバータ群のうちの2個の前記3レベルインバータの出力を選択する少なくとも1個のスイッチ回路(11)とを備える電力変換装置(10)である。スイッチ回路(11)は、前記直列3レベルインバータ群の隣合う2個の3レベルインバータ(10a,10b)の出力のうち、いずれか一方を選択することが可能なように2n-1個接続し、スイッチ回路が2個以上の場合、前段に接続された2個のスイッチ回路の出力のうち、いずれか一方を選択することが可能なように次段のスイッチ回路を順に接続して1つの出力を得る。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に、異なる複数の電圧レベルを出力することが可能な電力変換装置に関する。
 複数の直流電源から直流電圧の積重ねを1周期の間で変化させ、直流電力を交流電力に変換する電力変換装置が提案されている。この電力変換装置は、1つの直流電源を持つインバータのように一定のパルス状の電圧を生成するのではなく、電位の異なる複数の直流電圧を積重ねて、直流電力を交流電力に変換する。そのため、この電力変換装置は、電位の異なる複数の直流電圧をきめ細かく無駄なく積重ねることで、1つの直流電源を持つ電力変換装置に比べて、直流電力を高調波の少ない交流電力に変換することができる。
 具体的に、特開2000-341964号公報(特許文献1)に、前述の電力変換装置であるマルチレベルインバータが開示してある。
 特許文献1に開示してあるマルチレベルインバータは、直列に接続されマルチレベル端子電圧を構成するレドックスフロー型2次電池と、マルチレベル端子の電位の積重ねを制御して交流電力を構成するインバータ部とを備えている。インバータ部は、合計8個のスィッチング素子と、6個のダイオードとを備え、制御部の指示によってスィッチング素子の開閉を制御している。
特開2000-341964号公報
 図5は、特許文献1に開示してある従来の電力変換装置の回路構成を示す回路図である。図5に示す電力変換装置100は、異なる5個の電圧レベルを出力することが可能な5レベルインバータである。電力変換装置100は、4個の直流電源V、8個のスイッチ素子S101~S108、6個のダイオードD101~D106を備えている。
 電力変換装置100は、4個の直流電源Vの中間点を中点V0とし、中点V0の電圧レベルを“0V”とする。そのため、電力変換装置100は、中点V0より1個の直流電源V分だけプラス電位の電圧レベルが“+1V”となり、中点V0より2個の直流電源V分だけプラス電位の電圧レベルが“+2V”となる。逆に、電力変換装置100は、中点V0より1個の直流電源V分だけマイナス電位の電圧レベルが“-1V”となり、中点V0より2個の直流電源V分だけマイナス電位の電圧レベルが“-2V”となる。
 電力変換装置100は、スイッチ素子S101,S102,S103,S104をオン状態にすることで出力端子に“+2V”の電圧レベルの電位を出力し、スイッチ素子S102,S103,S104,S105をオン状態にすることで出力端子に“+1V”の電圧レベルの電位を出力することができる。また、電力変換装置100は、スイッチ素子S103,S104,S105,S106をオン状態にすることで出力端子に“0V”の電圧レベルの電位を出力することができる。さらに、電力変換装置100は、スイッチ素子S104,S105,S106,S107をオン状態にすることで出力端子に“-1V”の電圧レベルの電位を出力し、スイッチ素子S105,S106,S107,S108をオン状態にすることで出力端子に“-2V”の電圧レベルの電位を出力することができる。したがって、電力変換装置100は、出力端子から異なる5個の電圧レベル(“-2V”,“-1V”,“0V”,“+1V”,“+2V”)を出力することができる。
 しかし、電力変換装置100では、出力端子から“-2V”の電圧レベルの電位を出力するために、スイッチ素子S105,S106,S107,S108をオン状態にすると、ダイオードD102,D104,D106のアノード端子の電圧レベルが“-2V”となり、ダイオードD102は、カソード端子が“+1V”の電圧レベルに接続されているので、3個の直流電源V分の電圧が印加されることになる。同様に、ダイオードD104には、2個の直流電源V分の電圧が印加され、ダイオードD106には、1個の直流電源V分の電圧が印加されることになる。
 また、電力変換装置100では、出力端子から“+2V”の電圧レベルの電位を出力するために、スイッチ素子S101,S102,S103,S104をオン状態にすると、ダイオードD101,D103,D105のアノード端子の電圧レベルが“+2V”となり、ダイオードD105は、カソード端子が“-1V”の電圧レベルに接続されているので、3個の直流電源V分の電圧が印加されることになる。同様に、ダイオードD103には、2個の直流電源V分の電圧が印加され、ダイオードD101には、1個の直流電源V分の電圧が印加されることになる。
 このように、特許文献1に開示してあるマルチレベルインバータは、直流電源とスイッチ素子との間を接続するダイオードD102,D105にダイオードD101,D106に比べて3倍の耐圧、ダイオードD103,D104にダイオードD101,D106に比べて2倍の耐圧がそれぞれ必要である。そのため、特許文献1に開示してあるマルチレベルインバータでは、耐圧の異なるダイオードを使用するか、ダイオードを2個または3個直列に接続して耐圧を高める必要があり、装置が複雑になるので製造が困難であった。
 また、特許文献1に開示してあるマルチレベルインバータは、出力する電圧レベルの数がより多くなると、ダイオードにさらに高い耐圧が必要となり、直流電源とスイッチ素子との間に接続するダイオードの構成が複雑となり、さらに製造が困難になる。
 それゆえに、本発明は、上記問題点を解決するためになされたものであり、製造が容易な構成の電力変換装置を提供することを目的とする。
 上記課題を解決するために、本発明は、直列に接続した第1から第4のスイッチ素子と、第1のスイッチ素子と第2のスイッチ素子との第1接続点と、第3のスイッチ素子と第4のスイッチ素子との第2接続点との間に、直列に接続した2個のダイオードと、ダイオード同士を接続する第3接続点と、第1のスイッチ素子との間に接続した第1電荷蓄積要素と、第3接続点と、第4のスイッチ素子との間に接続した第2電荷蓄積要素とを備え、第1から第4のスイッチ素子のオン状態とオフ状態とを組合わせ、3個の電圧レベルを出力することが可能な3レベルインバータを、nを1以上の整数とした場合に、2個直列に接続してある直列3レベルインバータ群と、直列3レベルインバータ群のうちの2個の3レベルインバータの出力を選択する少なくとも1個のスイッチ回路とを備える電力変換装置であって、直列3レベルインバータ群は、隣合う一方の3レベルインバータの第4のスイッチ素子と第2電荷蓄積要素との第4接続点と、隣合う他方の3レベルインバータの第1のスイッチ素子と第1電荷蓄積要素との第5接続点との接続を繰返して2個の3レベルインバータを直列に接続し、スイッチ回路は、直列3レベルインバータ群の隣合う2個の3レベルインバータの出力のうち、いずれか一方を選択することが可能なように2n-1個接続し、スイッチ回路が2個以上の場合、前段に接続された2個のスイッチ回路の出力のうち、いずれか一方を選択することが可能なように次段のスイッチ回路を順に接続して1つの出力を得る。
 本発明に係る電力変換装置によれば、複数の3レベルインバータを直列に接続した直列3レベルインバータ群と、複数の3レベルインバータの出力を選択する少なくとも1個のスイッチ回路とを備える構成にすることで、出力する電圧レベルの数によらず、耐圧の必要な素子をスイッチ回路に集中させることができるため、製造が容易な構成とすることができる。
本発明の実施の形態1に係る電力変換装置の回路構成を示す回路図である。 図1に示す電力変換装置が出力する電圧レベルの波形を示す波形図である。 本発明の実施の形態1に係る電力変換装置の別の回路構成を示す回路図である。 図3に示す電力変換装置が出力する電圧レベルの波形を示す波形図である。 特許文献1に開示してある従来の電力変換装置の回路構成を示す回路図である。
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る電力変換装置の回路構成を示す回路図である。図1に示す電力変換装置10は、異なる5個の電圧レベルを出力することが可能な5レベルインバータである。電力変換装置10は、4個の直流電源V、10個のスイッチ素子S1~S10、4個のダイオードD1~D4、出力端子を備えている。
 電力変換装置10は、異なる3個の電圧レベルを出力することが可能な2個の3レベルインバータ10a,10bと、2個の3レベルインバータ10a,10bの出力を選択する1個のスイッチ回路11とを備える。3レベルインバータ10aは、直列接続された4個のスイッチ素子S1~S4、直列接続されたダイオードD1,D2、直列接続された直流電源VであるコンデンサC1,C2を含んでいる。3レベルインバータ10aは、スイッチ素子S1とスイッチ素子S2との接続点P1と、スイッチ素子S3とスイッチ素子S4との接続点P2との間にダイオードD1,D2を直列に接続する。さらに、3レベルインバータ10aは、ダイオードD1,D2同士を接続する接続点P3とスイッチ素子S1との間にコンデンサC1を接続し、接続点P3とスイッチ素子S4との間にコンデンサC2を接続する。なお、3レベルインバータ10bも、3レベルインバータ10aと同じ回路構成であるため、詳細な説明を繰返さない。
 スイッチ回路11は、スイッチ素子S9およびスイッチ素子S10で構成され、スイッチ素子S9またはスイッチ素子S10がオン状態となることで、3レベルインバータ10aまたは3レベルインバータ10bの出力を選択する。
 3レベルインバータ10aは、スイッチ素子S1,S2をオン状態にすることで、直列接続されたコンデンサC1,C2におけるコンデンサC1のプラス側電位“+2V”を出力することができ、スイッチ素子S2,S3をオン状態にすることで、直列接続されたコンデンサC1,C2同士の接続点P4の電位“+1V”を出力することができる。さらに、3レベルインバータ10aは、スイッチ素子S3,S4をオン状態にすることで、直列接続されたコンデンサC1,C2におけるコンデンサC2のマイナス側電位“0V”を出力することができる。したがって、3レベルインバータ10aは、“0V”,“+1V”,“+2V”の3つの電圧レベルを出力することができる。
 3レベルインバータ10bは、3レベルインバータ10aと同じ動作が可能であるため、“0V”,“-1V”,“-2V”の3つの電圧レベルを出力することができる。
 よって、電力変換装置10は、スイッチ回路11のスイッチ素子S9とスイッチ素子S10とのオン状態を切替えることで、直列接続された3レベルインバータ10a,10bのいずれか一方の出力を選択することで、出力端子から異なる5個の電圧レベル(“-2V”,“-1V”,“0V”,“+1V”,“+2V”)を出力することができる。なお、コンデンサC2のマイナス側電位と、コンデンサC3のプラス側電位とは、同電位“0V”である。
 次に、電力変換装置10の動作について説明する。図2は、図1に示す電力変換装置10が出力する電圧レベルの波形を示す波形図である。
 まず、電力変換装置10は、スイッチ素子S3,S4をオン状態、スイッチ回路11のスイッチ素子S9をオン状態(スイッチ素子S10はオフ状態)にして、出力端子から電圧レベル“0V”を出力する。その後、電力変換装置10は、時間t1に、スイッチ素子S2,S3をオン状態、スイッチ回路11のスイッチ素子S9をオン状態にして、出力端子から電圧レベル“+1V”を出力する。
 そして、電力変換装置10は、時間t2に、スイッチ素子S1,S2をオン状態、スイッチ回路11のスイッチ素子S9をオン状態にして、出力端子から電圧レベル“+2V”を出力する。その後、電力変換装置10は、出力端子から電圧レベルを“+1”、“0”と順に下げる。
 なお、電力変換装置10は、スイッチ素子S5,S6をオン状態、スイッチ回路11のスイッチ素子S10をオン状態にして、出力端子から電圧レベル“0V”を出力してもよい。
 電力変換装置10は、時間t3に、スイッチ素子S6,S7をオン状態、スイッチ回路11のスイッチ素子S10をオン状態にして、出力端子から電圧レベル“-1V”を出力する。
 そして、電力変換装置10は、時間t4に、スイッチ素子S7,S8をオン状態、スイッチ回路11のスイッチ素子S10をオン状態にして、出力端子から電圧レベル“-2V”を出力する。その後、電力変換装置10は、出力端子から電圧レベルを“-1”、“0”と順に上げる。
 電力変換装置10は、前述のように異なる5個の電圧レベル(“-2V”,“-1V”,“0V”,“+1V”,“+2V”)を切替え出力する動作を行なうことで、図2に示す破線のような交流電圧を出力することができ、直流電力を交流電力に変換することができる。
 3レベルインバータ10a,10bは、構成するスイッチ素子S1~S8、ダイオードD1~D4において、スイッチ素子がオフ状態のときにそれぞれの素子の両端に1個分のコンデンサの電圧が印加されるのみである。スイッチ回路11は、構成するスイッチ素子S9,S10において、出力端子から“+2V”を出力する場合、スイッチ素子S9をオン状態、スイッチ素子S10をオフ状態となるので、スイッチ素子S10の両端に2個分のコンデンサの電圧が印加される。また、スイッチ回路11は、構成するスイッチ素子S9,S10において、出力端子から“-2V”を出力する場合、スイッチ素子S10をオン状態、スイッチ素子S9をオフ状態となるので、スイッチ素子S9の両端に2個分のコンデンサの電圧が印加される。
 以上のように、本発明の実施の形態1に係る電力変換装置10は、3レベルインバータ10a,10bが2つ直列に接続された特別に耐圧の大きな素子が不要な直列3レベルインバータ群と、スイッチ回路11とを備える構成とすることで、高い電圧が印加される素子をスイッチ回路11を構成する素子に限定することができる。すなわち、電力変換装置10は、既存の耐圧の素子を用いた3レベルインバータを2個直列に接続し、3レベルインバータの出力を選択するスイッチ回路を設けるだけで製造できるため、製造が容易な構成とすることができる。
 なお、本発明の実施の形態1に係る電力変換装置は、異なる5個の電圧レベルを出力することが可能な電力変換装置に限定されるものではなく、直列に接続された3レベルインバータおよびスイッチ回路を増やすことで、出力する電圧レベルの数を容易に増やすことができる。
 具体的に、図3は、本発明の実施の形態1に係る電力変換装置の別の回路構成を示す回路図である。図3に示す電力変換装置20は、異なる9個の電圧レベルを出力することが可能な9レベルインバータである。電力変換装置20は、8個の直流電源V、22個のスイッチ素子S1~S22、8個のダイオードD1~D8を備えている。なお、スイッチ素子S1~S22には、フリーホイールダイオードをそれぞれ接続してある。
 電力変換装置20は、4個の3レベルインバータ20a,20b,20c,20dが直列接続された直列3レベルインバータ群と、2個の3レベルインバータ20a,20bの出力を選択する1個のスイッチ回路21と、2個の3レベルインバータ20c,20dの出力を選択する1個のスイッチ回路22と、前段に接続された2個のスイッチ回路21,22の出力のうち、いずれか一方を選択することが可能なように次段のスイッチ回路23とを備える。
 8個の直流電源Vの中間点を中点V0とし、中点V0の電圧レベルを“0V”とする。そのため、中点V0より上側の4個の直流電源Vの接続点の電圧レベルは、中点V0の側から順に“+1V”,“+2V”,“+3V”となり、中点V0より下側の4個の直流電源Vの接続点の電圧レベルは、中点V0の側から順に“-1V”,“-2V”,“-3V”となる。また、直流電源Vとスイッチ素子S1との接続点の電圧レベルは“+4V”となり、直流電源Vとスイッチ素子S18との接続点の電圧レベルは“-4V”となる。
 次に、電力変換装置20の動作について説明する。図4は、図3に示す電力変換装置20が出力する電圧レベルの波形を示す波形図である。
 まず、電力変換装置20は、スイッチ素子S7,S8をオン状態、スイッチ回路21のスイッチ素子S10をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“0V”を出力する。その後、電力変換装置20は、時間t1に、スイッチ素子S6,S7をオン状態、スイッチ回路21のスイッチ素子S10をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“+1V”を出力する。
 そして、電力変換装置20は、時間t2に、スイッチ素子S5,S6をオン状態、スイッチ回路21のスイッチ素子S10をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“+2V”を出力する。
 なお、電力変換装置20は、スイッチ素子S3,S4をオン状態、スイッチ回路21のスイッチ素子S9をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“+2V”を出力してもよい。
 その後、電力変換装置20は、時間t3に、スイッチ素子S2,S3をオン状態、スイッチ回路21のスイッチ素子S9をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“+3V”を出力する。
 そして、電力変換装置20は、時間t4に、スイッチ素子S1,S2をオン状態、スイッチ回路21のスイッチ素子S9をオン状態、スイッチ回路23のスイッチ素子S21をオン状態にして、出力端子から電圧レベル“+4V”を出力する。その後、電力変換装置20は、出力端子から電圧レベルを“+3V”、“+2V”、“+1V”、“0V”と順に下げる。
 なお、電力変換装置20は、スイッチ素子S11,S12をオン状態、スイッチ回路22のスイッチ素子S19をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“0V”を出力してもよい。
 電力変換装置20は、時間t5に、スイッチ素子S12,S13をオン状態、スイッチ回路22のスイッチ素子S19をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“-1V”を出力する。
 そして、電力変換装置20は、時間t6に、スイッチ素子S13,S14をオン状態、スイッチ回路22のスイッチ素子S19をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“-2V”を出力する。
 なお、電力変換装置20は、スイッチ素子S15,S16をオン状態、スイッチ回路22のスイッチ素子S20をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“-2V”を出力してもよい。
 その後、電力変換装置20は、時間t7に、スイッチ素子S16,S17をオン状態、スイッチ回路22のスイッチ素子S20をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“-3V”を出力する。
 そして、電力変換装置20は、時間t8に、スイッチ素子S17,S18をオン状態、スイッチ回路22のスイッチ素子S20をオン状態、スイッチ回路23のスイッチ素子S22をオン状態にして、出力端子から電圧レベル“-4V”を出力する。その後、電力変換装置20は、出力端子から電圧レベルを“-3V”、“-2V”、“-1V”、“0V”と順に上げる。
 電力変換装置20は、前述のように異なる9個の電圧レベル(“-4V”,“-3V”,“-2V”,“-1V”,“0V”,“+1V”,“+2V”,“+3V”,“+4V”)を切替え出力する動作を行なうことで、図4に示す破線のような交流電圧を出力することができ、直流電力を交流電力に変換することができる。
 前述したように、本発明の実施の形態1に係る電力変換装置は、直列に接続されるレベルインバータおよびスイッチ回路を増やすことで、出力する電圧レベルの数を増やすことについて、以下のように一般化して表わすことができる。
 つまり、本発明の実施の形態1に係る電力変換装置は、2個直列に接続してある直列3レベルインバータ群と、直列3レベルインバータ群のうちの2個の3レベルインバータの出力を選択する少なくとも1個のスイッチ回路とを備える。そして、スイッチ回路は、直列3レベルインバータ群の隣合う2個の3レベルインバータの出力のうち、いずれか一方を選択することが可能なように2n-1個接続し、スイッチ回路が2個以上の場合、前段に接続された2個のスイッチ回路の出力のうち、いずれか一方を選択することが可能なように次段のスイッチ回路を順に接続して、電力変換装置が1つの出力を得る。
 なお、本発明の実施の形態に係る電力変換装置では、スイッチ動作の説明を簡単にするため、交流1周期に電圧レベルを選択する回数を限定して説明したが、交流1周期に複数回スイッチングして電圧レベルを複数回選択することで、よりきめ細かい交流電圧を出力することができ、高周波のより少ない電力変換装置とすることができる。
 また、本発明の実施の形態に係る電力変換装置では、電荷蓄積要素としてコンデンサを用いたが、これに限定されるものではなく、たとえば直流電源を接続してもよい。
 さらに、本発明の実施の形態に係る電力変換装置では、電荷蓄積要素とスイッチ素子またはダイオードとの間を直結しているが、これに限定されるものではなく、たとえばスイッチ素子がオン-オフの過渡状態の電流の急変を抑制するスナバ回路などを設ける構成であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,20 電力変換装置、10a,10b,20a~20d レベルインバータ、11,21~23 スイッチ回路、C1,C2,C3,C4 コンデンサ、D1~D8 ダイオード。

Claims (2)

  1.  直列に接続した第1から第4のスイッチ素子と、
     第1の前記スイッチ素子と第2の前記スイッチ素子との第1接続点と、第3の前記スイッチ素子と第4の前記スイッチ素子との第2接続点との間に、直列に接続した2個のダイオードと、
     前記ダイオード同士を接続する第3接続点と、第1の前記スイッチ素子との間に接続した第1電荷蓄積要素と、
     前記第3接続点と、第4の前記スイッチ素子との間に接続した第2電荷蓄積要素とを備え、第1から第4の前記スイッチ素子のオン状態とオフ状態とを組合わせ、3個の電圧レベルを出力することが可能な3レベルインバータを、nを1以上の整数とした場合に、2個直列に接続してある直列3レベルインバータ群と、
     前記直列3レベルインバータ群のうちの2個の前記3レベルインバータの出力を選択する少なくとも1個のスイッチ回路と
     を備える電力変換装置であって、
     前記直列3レベルインバータ群は、隣合う一方の前記3レベルインバータの第4の前記スイッチ素子と前記第2電荷蓄積要素との第4接続点と、隣合う他方の前記3レベルインバータの第1の前記スイッチ素子と前記第1電荷蓄積要素との第5接続点との接続を繰返して2個の前記3レベルインバータを直列に接続し、
     前記スイッチ回路は、前記直列3レベルインバータ群の隣合う2個の前記3レベルインバータの出力のうち、いずれか一方を選択することが可能なように2n-1個接続し、
     前記スイッチ回路が2個以上の場合、前段に接続された2個の前記スイッチ回路の出力のうち、いずれか一方を選択することが可能なように次段の前記スイッチ回路を順に接続して1つの出力を得る、電力変換装置。
  2.  前記スイッチ素子と前記第1電荷蓄積要素または第2電荷蓄積要素との間、前記ダイオードと前記第1電荷蓄積要素または第2電荷蓄積要素との間に、電流の急変を抑制するスナバ回路をさらに備える、請求項1に記載の電力変換装置。
PCT/JP2013/060468 2013-04-05 2013-04-05 電力変換装置 WO2014162591A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/782,170 US20160049884A1 (en) 2013-04-05 2013-04-05 Power conversion device
CN201380075295.2A CN105103428A (zh) 2013-04-05 2013-04-05 功率转换装置
CA2908679A CA2908679A1 (en) 2013-04-05 2013-04-05 Power conversion device
MX2015013984A MX2015013984A (es) 2013-04-05 2013-04-05 Dispositivo de conversion de energia.
KR1020157031192A KR20150136532A (ko) 2013-04-05 2013-04-05 전력 변환 장치
PCT/JP2013/060468 WO2014162591A1 (ja) 2013-04-05 2013-04-05 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060468 WO2014162591A1 (ja) 2013-04-05 2013-04-05 電力変換装置

Publications (1)

Publication Number Publication Date
WO2014162591A1 true WO2014162591A1 (ja) 2014-10-09

Family

ID=51657917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060468 WO2014162591A1 (ja) 2013-04-05 2013-04-05 電力変換装置

Country Status (6)

Country Link
US (1) US20160049884A1 (ja)
KR (1) KR20150136532A (ja)
CN (1) CN105103428A (ja)
CA (1) CA2908679A1 (ja)
MX (1) MX2015013984A (ja)
WO (1) WO2014162591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047686A (ja) * 2017-09-06 2019-03-22 株式会社明電舎 マルチレベル電力変換装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206118B2 (ja) * 2013-08-02 2017-10-04 株式会社明電舎 マルチレベル電力変換装置
JP6454936B2 (ja) * 2014-05-12 2019-01-23 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
JP6191965B2 (ja) * 2014-05-12 2017-09-06 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
CN109639144B (zh) * 2018-12-10 2020-02-14 广州金升阳科技有限公司 一种五电平变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341961A (ja) * 1999-05-25 2000-12-08 Toshiba Corp 3レベルインバータ装置
JP2001169563A (ja) * 1999-12-06 2001-06-22 Toshiba Corp 3レベルインバータ
JP2003511005A (ja) * 1999-09-28 2003-03-18 エムティエス・システムズ・コーポレーション 第2のブリッジ回路内のパルス幅変調されたブリッジ回路
JP2009131107A (ja) * 2007-11-27 2009-06-11 Tokyo Electric Power Co Inc:The 交直変換器
JP2012253927A (ja) * 2011-06-03 2012-12-20 Toshiba Corp 電力変換装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246267A (ja) * 2009-04-06 2010-10-28 Fuji Electric Systems Co Ltd 5レベルインバータ
EP2372893B1 (en) * 2010-03-31 2012-06-27 Ce+T Multilevel inverter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341961A (ja) * 1999-05-25 2000-12-08 Toshiba Corp 3レベルインバータ装置
JP2003511005A (ja) * 1999-09-28 2003-03-18 エムティエス・システムズ・コーポレーション 第2のブリッジ回路内のパルス幅変調されたブリッジ回路
JP2001169563A (ja) * 1999-12-06 2001-06-22 Toshiba Corp 3レベルインバータ
JP2009131107A (ja) * 2007-11-27 2009-06-11 Tokyo Electric Power Co Inc:The 交直変換器
JP2012253927A (ja) * 2011-06-03 2012-12-20 Toshiba Corp 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047686A (ja) * 2017-09-06 2019-03-22 株式会社明電舎 マルチレベル電力変換装置

Also Published As

Publication number Publication date
US20160049884A1 (en) 2016-02-18
KR20150136532A (ko) 2015-12-07
CN105103428A (zh) 2015-11-25
MX2015013984A (es) 2016-02-05
CA2908679A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP2014135799A (ja) 電力変換装置
JP6085415B2 (ja) Dc/dc変換器セル装置、それから形成されるフィードバック能力を備えたdc/dc変換器回路、およびその操作方法
US8923027B2 (en) Five-level DC-AC converter
WO2014162591A1 (ja) 電力変換装置
US9979318B2 (en) Hybrid multilevel inverter
US9825547B2 (en) Unidirectional isolated multi-level DC-DC converter and method thereof
EP3633843B1 (en) Current converter and driving method therefor
JP2014204457A (ja) 電力変換装置
EP2582031A1 (en) Even-level inverter
JP5855891B2 (ja) 電力変換装置
JP6009985B2 (ja) 電力変換装置
Panda et al. Single-source switched-capacitor boost nine-level inverter with reduced components
US20150214830A1 (en) System and method of power conversion
Niu et al. A novel switched-capacitor five-level T-type inverter
Banaei et al. Reduction of components in cascaded transformer multilevel inverter using two DC sources
KR101484105B1 (ko) 단일 입력 전압원을 갖는 멀티레벨 인버터
Salodkar et al. Study of single phase multilevel inverter topologies suitable for photovoltaic applications
KR101230862B1 (ko) 단일 전원으로 구동되는 멀티레벨 인버터 장치
KR101942381B1 (ko) 인버터의 효율 향상 회로
Sathik et al. A New Design of Active NPC Converter Topology with Higher Voltage Gain for AC Microgrid Applications
KR20120079754A (ko) 멀티레벨 인버터
JP2018061374A (ja) 電力変換装置
CN217427743U (zh) 一种多相环形电池储能系统
JP7127223B2 (ja) マルチレベル電力変換回路
WO2024028982A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075295.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2908679

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14782170

Country of ref document: US

Ref document number: MX/A/2015/013984

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031192

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13881295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP