WO2015012301A1 - 強化ガラス及び強化用ガラス - Google Patents

強化ガラス及び強化用ガラス Download PDF

Info

Publication number
WO2015012301A1
WO2015012301A1 PCT/JP2014/069427 JP2014069427W WO2015012301A1 WO 2015012301 A1 WO2015012301 A1 WO 2015012301A1 JP 2014069427 W JP2014069427 W JP 2014069427W WO 2015012301 A1 WO2015012301 A1 WO 2015012301A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
tempered glass
compressive stress
glass
mpa
Prior art date
Application number
PCT/JP2014/069427
Other languages
English (en)
French (fr)
Inventor
浩佑 川本
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201480017415.8A priority Critical patent/CN105102388A/zh
Priority to KR1020157020184A priority patent/KR102309860B1/ko
Publication of WO2015012301A1 publication Critical patent/WO2015012301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to tempered glass and glass for tempering, and particularly tempered glass and glass for tempering suitable for glass substrates for mobile phones, digital cameras, PDAs (portable terminals), solar cells, etc. About.
  • Devices such as mobile phones, digital cameras, PDAs, touch panel displays, large televisions, and non-contact power supply are becoming increasingly popular.
  • tempered glass tempered by ion exchange treatment or the like is used (see Patent Document 1 and Non-Patent Document 1).
  • the main required properties of tempered glass include (1) high mechanical strength, (2) high scratch resistance, (3) light weight, and (4) low cost.
  • weight reduction that is, thickness reduction.
  • the conventional tempered glass is made thinner, the internal tensile stress becomes excessive, and there is a possibility that fragments will be scattered when the tempered glass is broken or that the tempered glass will self-destruct. Therefore, there is a limit to increase the mechanical strength of the tempered glass by increasing the compressive stress value and thickness of the compressive stress layer. Therefore, it is effective to suppress surface damage on the tempered glass as much as possible, and to suppress a decrease in mechanical strength.
  • B 2 O 3 high-containing glass Scratches attached hard reinforced glass, as that is the cracking incidence low reinforcing glass, B 2 O 3 high-containing glass has been proposed. However, it is difficult to obtain high tempering characteristics with B 2 O 3 high content glass.
  • the low strain point tempering glass has a problem that the tempering characteristics are easily changed by the temperature change of the KNO 3 molten salt.
  • the amount of warpage of the tempered glass increases due to slight variations in the tempering characteristics in the tempered glass surface.
  • the present invention has been made in view of the above circumstances, and its technical problem is that the crack generation rate is low even when B 2 O 3 is not excessively contained, and the strengthening characteristics and strain points are sufficiently high. It is to create a tempered glass and a tempered glass that are high and suitable for thinning.
  • the tempered glass of the present invention is a tempered glass having a compressive stress layer on the surface, and has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3. It contains 0 to 6%, Na 2 O 5 to 25%, MgO 0 to 10%, and is substantially free of As 2 O 3 , Sb 2 O 3 , PbO and F.
  • substantially does not contain As 2 O 3 means that the addition of an impurity level is allowed although As 2 O 3 is not actively added as a glass component.
  • the content of 2 O 3 is less than 0.1 mol%.
  • substantially free of Sb 2 O 3 but not added actively Sb 2 O 3 as a glass component, a purpose to allow addition of the impurity level, specifically, Sb 2 O 3
  • the content of is less than 0.1 mol%.
  • substantially no PbO means that although PbO is not actively added as a glass component, the addition of an impurity level is allowed. Specifically, the content of PbO is 0.1 mol%. Refers to the case of less than.
  • substantially no F means that F is not actively added as a glass component, but allows the addition of an impurity level. Specifically, the content of F is 0.1 mol%. Refers to the case of less than.
  • the tempered glass of the present invention has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 12-18%, B 2 O 3 0-3%, Na 2 O 12-18%, K 2. It contains 0 to 2% of O, 0.1 to 4% of MgO, and 0 to 2% of CaO, and has a molar ratio of Na 2 O / Al 2 O 3 of 0.6 to 1.6.
  • the tempered glass of the present invention preferably has a crack generation rate of 80% or less before the tempering treatment.
  • the “crack occurrence rate” indicates a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a load of 1000 gf is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting 50 times and calculating
  • the compressive stress value of the compressive stress layer is 900 MPa or more and 1500 MPa or less, and the thickness of the compressive stress layer is 10 ⁇ m or more and 60 ⁇ m or less.
  • the “compressive stress value of the compressive stress layer” and the “thickness of the compressive stress layer” are observed when the sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). A value calculated from the number of interference fringes and their intervals.
  • the tempered glass of the present invention preferably has a strain point of 590 ° C. or higher.
  • strain point refers to a value measured based on the method of ASTM C336.
  • the tempered glass of the present invention preferably has a liquidus temperature of 1250 ° C. or lower.
  • liquid phase temperature means that after passing through a standard sieve 30 mesh (500 ⁇ m), the glass powder remaining on 50 mesh (300 ⁇ m) is put in a platinum boat and kept in a temperature gradient furnace for 24 hours, The boat is taken out and set to the highest temperature at which devitrification (crystal foreign matter) is observed inside the glass by microscopic observation.
  • the tempered glass of the present invention preferably has a liquidus viscosity of 10 4.5 dPa ⁇ s or more.
  • liquid phase viscosity refers to a value obtained by measuring the viscosity at the liquid phase temperature by a platinum ball pulling method.
  • the tempered glass of the present invention preferably has a temperature at a viscosity of 10 4.0 dPa ⁇ s of 1400 ° C. or lower.
  • temperature at a viscosity of 10 4.0 dPa ⁇ s refers to a value measured by a platinum ball pulling method.
  • the devitrification crystal generated at the contact interface is 1 piece / mm 2 or less.
  • the tempered glass of the present invention preferably has a flat plate shape.
  • the tempered glass of the present invention preferably has a thickness of 0.3 to 2.0 mm.
  • the tempered glass of the present invention is preferably formed by an overflow down draw method.
  • the “overflow down draw method” is a method in which the molten glass overflows from both sides of the molded refractory, and the molten glass overflows and joins at the lower end of the molded refractory, and is stretched downward to form a glass plate. It is a manufacturing method.
  • the surface to be the surface of the glass plate is not in contact with the surface of the molded refractory, and is molded in a free surface state. For this reason, the glass plate which is unpolished and has a good surface quality can be manufactured at low cost.
  • the tempered glass of the present invention is preferably used for a touch panel display.
  • the tempered glass of the present invention is preferably used for a cover glass of a mobile phone.
  • the tempered glass of the present invention is preferably used for a cover glass of a solar cell.
  • the tempered glass of the present invention is preferably used as a protective member for a display.
  • the tempered glass of the present invention has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 12-18%, B 2 O 3 0-3%, Na 2 O 12-18%, K 2. O 2-2%, MgO 0.1-4%, CaO 0-2%, molar ratio Na 2 O / Al 2 O 3 is 0.6-1.6, substantially As 2 O 3 , Sb 2 O 3 , PbO and F are not contained, the compressive stress value of the compressive stress layer is 900 MPa or more and 1500 MPa or less, the thickness of the compressive stress layer is 10 ⁇ m or more and 60 ⁇ m or less, When the point is 590 ° C. or higher, the liquid phase temperature is 1250 ° C.
  • the liquid phase viscosity is 10 4.5 dPa ⁇ s or higher
  • the alumina refractory is contacted at a viscosity of 10 4.5 dPa ⁇ s for 48 hours.
  • the devitrification crystal generated at the contact interface is 1 piece / mm 2 or less, and the thickness is 0.3 to 2.0. It is mm and is flat plate shape.
  • the glass for strengthening of the present invention has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3 0-6%, Na 2 O 5-25%, MgO It is characterized by containing 0 to 10% and substantially not containing As 2 O 3 , Sb 2 O 3 , PbO and F.
  • the glass for strengthening of the present invention preferably has a crack generation rate of 80% or less.
  • the tempered glass of the present invention has a thickness of 0.3 to 2.0 mm, the compressive stress value of the compressive stress layer is 900 MPa or more and 1500 MPa or less, and the thickness of the compressive stress layer is 10 ⁇ m or more and 60 ⁇ m or less.
  • the strain point is 590 ° C. or more, and the crack generation rate is 80% or less.
  • the glass for strengthening of the present invention has a thickness of 0.7 to 2.0 mm, a compressive stress value of the compressive stress layer of 1000 MPa or more, a thickness of the compressive stress layer of 40 ⁇ m or more, and a strain point of 590 ° C. or more.
  • the crack occurrence rate is 80% or less.
  • the tempered glass of the present invention preferably has a ⁇ CS of 100 MPa or less.
  • ⁇ CS is a compressive stress value CS 400 when immersed in KNO 3 molten salt at 400 ° C. for 4 hours and a compressive stress value CS 430 when immersed in KNO 3 molten salt at 430 ° C. for 4 hours.
  • ⁇ CS CS 400 ⁇ CS 430 .
  • the tempered glass of the present invention has a compressive stress layer on its surface.
  • a method for forming a compressive stress layer on the surface there are a physical strengthening method and a chemical strengthening method.
  • the tempered glass of the present invention is preferably made by a chemical tempering method.
  • the chemical strengthening method is a method in which alkali ions having a large ion radius are introduced into the surface of glass by ion exchange treatment at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, even if the glass is thin, the compressive stress layer can be properly formed.
  • the tempered glass does not break easily like the physical tempering method.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 50 to 80%, 55 to 76%, 56 to 75%, 57 to 73%, 58 to 72% or 59 to 71%, particularly preferably 60 to 70%.
  • the content of SiO 2 is too small, vitrification becomes difficult, and the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to be lowered.
  • the content of SiO 2 is too large, the meltability and moldability tend to be lowered, and the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding materials.
  • Al 2 O 3 is a component that increases ion exchange performance, strain point, and Young's modulus, and is a component that decreases the crack generation rate.
  • the content of Al 2 O 3 is 10 to 30%. When the content of Al 2 O 3 is too small, resulting is a possibility which can not be sufficiently exhibited ion exchange performance. If the content of Al 2 O 3 is too small, there is a fear that the crack occurrence rate becomes higher.
  • the preferred lower limit range of Al 2 O 3 is 10% or more, 10.5% or more, 11% or more, 11.5% or more, 12% or more, 12.5% or more, 13% or more, 14% or more, It is 14.5% or more, 15% or more, 15.5% or more, 16.0% or more, or 16.1% or more, particularly 16.3% or more.
  • the content of Al 2 O 3 is too large, devitrified crystals are likely to precipitate on the glass, making it difficult to form a glass plate by the overflow downdraw method or the like.
  • spinel devitrification crystals are likely to precipitate at the interface with the alumina refractory.
  • the preferable upper limit range of Al 2 O 3 is 25% or less, 20% or less, 19% or less, 18.5% or less, 18% or less, or 17.5% or less, particularly 17% or less.
  • B 2 O 3 is a component that lowers the high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature.
  • B 2 O 3 is a component that lowers the crack generation rate and improves scratch resistance.
  • the preferred range of B 2 O 3 is 0-6%, 0-5%, 0-4%, 0-3.5%, 0-3%, 0-2.5%, 0-2%, 0 to 1.5% or 0 to 1%, especially 0 to less than 1%.
  • Na 2 O is an ion exchange component, and is a component that lowers the high temperature viscosity and improves the meltability and moldability.
  • Na 2 O is also a component for improving devitrification resistance and reaction devitrification with a molded body refractory, particularly alumina refractory.
  • a preferable lower limit range of Na 2 O is 5% or more, 7% or more, more than 7%, 8% or more, 9% or more, 10% or more, or 11% or more, particularly 12% or more.
  • the preferable upper limit range of Na 2 O is 25% or less, 23% or less, 21% or less, 20% or less, 19.5% or less, 19% or less, 18.5% or less, 18.2% or less, 18 % Or less or 17.5% or less, particularly 17% or less.
  • the preferable lower limit range of the molar ratio Na 2 O / Al 2 O 3 is 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 0.95 or more, or 0. 98 or more, especially 1.00 or more.
  • the preferable upper limit range of the molar ratio Na 2 O / Al 2 O 3 is 2.0 or less, 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1. 4 or less, 1.3 or less, 1.2 or less, 1.18 or less, 1.15 or less or 1.13 or less, particularly 1.1 or less.
  • a suitable content of B 2 O 3 + Na 2 O—Al 2 O 3 is ⁇ 1.7 to 2.7%, 0 to 2.55% or 0.5 to 2.4%, in particular 0.8 to 2.2%. In this way, it becomes easy to optimize the meltability, strain point, ion exchange performance and crack generation rate.
  • “B 2 O 3 + Na 2 O—Al 2 O 3 ” is obtained by subtracting the content of Al 2 O 3 from the total amount of B 2 O 3 and Na 2 O.
  • K 2 O is a component that promotes ion exchange, and is a component that tends to increase the thickness of the compressive stress layer among alkali metal oxides.
  • K 2 O is a component that lowers the high-temperature viscosity to improve the meltability and moldability, and further improves the devitrification resistance.
  • the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials. If the content of K 2 O is too large, or the strain point excessively lowers, lacking component balance of the glass composition, rather devitrification resistance tends to decrease.
  • the preferable upper limit range of K 2 O is 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, particularly 2% or less. Is less than.
  • the preferred amount is 0.1% or more, 0.5% or more, more than 1% or 1.5% or more, particularly 2% or more.
  • the preferred content of K 2 O is 0 to 1% or 0 to less than 1%, particularly 0 to 0.05%.
  • MgO is a component that lowers the viscosity at high temperature, increases meltability and moldability, and increases the strain point and Young's modulus.
  • MgO is a component that has a large effect of improving ion exchange performance. is there. Therefore, the preferable lower limit range of MgO is 0% or more, 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% or more, 3% or more, or 3 .5% or more, particularly 3.7% or more.
  • the content of MgO is too large, the density and thermal expansion coefficient tend to be high, and the glass tends to be devitrified.
  • a preferable upper limit range of MgO is 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, or 5% or less, particularly 4% or less.
  • Li 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and also increases the Young's modulus. Furthermore, Li 2 O generally has a large effect of increasing the compressive stress value among alkali metal oxides, but in a glass system containing 7% or more of Na 2 O, the content of Li 2 O is extremely large. If it becomes, there exists a tendency for a compressive stress value to fall rather. In addition, when the content of Li 2 O is too large, in addition to the liquid phase viscosity being reduced and the glass being easily devitrified, the thermal expansion coefficient is too high, and the thermal shock resistance is reduced, It becomes difficult to match the thermal expansion coefficient of the surrounding material.
  • Li 2 O-rich glass has been proposed.
  • KNO 3 molten salt the ion exchange treatment the Li 2 O-rich glass, Li ions are easily mixed in KNO 3 molten salt.
  • KNO 3 molten salt mixed with Li ions there arises a problem that the strengthening characteristics of the strengthening glass become insufficient. Therefore, the preferred content of Li 2 O is 0-2%, 0-1.7%, 0-1.5%, 0-1%, 0-1%, 0-0.5%, 0- 0.3% or 0 to 0.1%, in particular 0 to 0.05%.
  • CaO is a component that has a large effect of reducing melt viscosity and moldability, and increasing the strain point and Young's modulus by reducing high temperature viscosity without lowering devitrification resistance compared to other components. is there.
  • the content of CaO is too large, the density and thermal expansion coefficient become high, the balance of the components of the glass composition is lacking, and the devitrification resistance tends to be lowered, the ion exchange performance is lowered, There is a tendency to easily deteriorate the exchange solution. Therefore, the preferred content of CaO is 0-6%, 0-5%, 0-4%, 0-3.5%, 0-3%, 0-2% or 0-1%, especially 0-0. .5%.
  • SrO is a component that lowers the viscosity at high temperature to increase meltability and moldability, and increases the strain point and Young's modulus. However, if its content is too large, the ion exchange reaction tends to be inhibited. As a result, the density and the coefficient of thermal expansion increase, and the glass tends to devitrify. Therefore, the preferred content of SrO is 0-2%, 0-1.5%, 0-1%, 0-0.5% or 0-0.1%, especially 0-0.1%. .
  • BaO is a component that lowers the high-temperature viscosity to increase meltability and moldability, and increases the strain point and Young's modulus.
  • the preferred content of BaO is 0-6%, 0-3%, 0-1.5%, 0-1%, 0-0.5% or 0-0.1%, especially 0-0. Less than 1%.
  • ZnO is a component that enhances ion exchange performance, and is a component that is particularly effective in increasing the compressive stress value.
  • ZnO is a component that lowers the high temperature viscosity without lowering the low temperature viscosity.
  • the preferred content of ZnO is 0-6%, 0-5% or 0-3%, especially 0-1%.
  • B 2 O 3 + MgO + ZnO is 0.03 to 3.94%, 0.1 to 3.8%, 0.5 to 3.7% or 1 to 3.5%, in particular 2 to 3. 4%. In this way, it becomes easy to optimize the meltability, devitrification resistance and the thickness of the compressive stress layer.
  • “B 2 O 3 + MgO + ZnO” is the total amount of B 2 O 3 , MgO and ZnO.
  • TiO 2 is a component that enhances ion exchange performance and a component that lowers the high-temperature viscosity. However, if its content is too large, the glass tends to be colored or devitrified. Therefore, the content of TiO 2 is preferably 0 to 4.5%, 0 to less than 1% or 0 to 0.5%, particularly preferably 0 to 0.3%.
  • ZrO 2 is a component that remarkably improves the ion exchange performance and a component that increases the viscosity and strain point in the vicinity of the liquid phase viscosity. However, if its content is too large, the devitrification resistance may be significantly reduced. There is also a possibility that the density becomes too high. Therefore, the preferred content of ZrO 2 is 0 to 5%, 0 to 4% or 0 to 3%, particularly 0.001 to 2%.
  • SnO 2 is a component that enhances the ion exchange performance, but if its content is too large, devitrification resistance tends to decrease. Therefore, the preferred content of SnO 2 is 0-3%, 0.01-3%, 0.05-3% or 0.1-3%, especially 0.2-3%.
  • P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the thickness of the compressive stress layer.
  • the preferable content of P 2 O 5 is 0 to 10%, 0 to 3% or 0 to 1%, particularly 0 to 0.5%.
  • one or two or more selected from the group of Cl, SO 3 and CeO 2 may be added in an amount of 0 to 3%.
  • the preferred content of SnO 2 + SO 3 + Cl is 0.01 to 3%, 0.05 to 3% or 0.1 to 3%, particularly 0 .2 to 3%.
  • “SnO 2 + SO 3 + Cl” is the total amount of SnO 2 , Cl and SO 3 .
  • a suitable content of Fe 2 O 3 is less than 1000 ppm (less than 0.1%), less than 800 ppm, less than 600 ppm or less than 400 ppm, in particular less than 300 ppm. Further, the Fe 2 O 3 content is regulated within the above range, and the molar ratio Fe 2 O 3 / (Fe 2 O 3 + SnO 2 ) is set to 0.8 or more or 0.9 or more, particularly 0.95 or more. It is preferable to regulate. In this way, the transmittance (400 to 770 nm) at a plate thickness of 1 mm is easily improved (for example, 90% or more).
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus.
  • the cost of the raw material itself is high, and when it is added in a large amount, the devitrification resistance tends to be lowered. Therefore, the preferred content of the rare earth oxide is 3% or less, 2% or less, 1% or less, or 0.5% or less, particularly 0.1% or less.
  • the tempered glass of the present invention preferably contains substantially no As 2 O 3 , Sb 2 O 3 , PbO, and F as a glass composition from the environmental consideration. Moreover, environmental considerations, it is also preferable to contain substantially no Bi 2 O 3. “Substantially no Bi 2 O 3 ” means that the addition of an impurity level is allowed, although Bi 2 O 3 is not actively added as a glass component. Specifically, Bi 2 O 3 When the content of is less than 0.05%.
  • a suitable content range of each component it is possible to appropriately select a suitable content range of each component to obtain a suitable glass composition range.
  • particularly preferable glass composition ranges are as follows. (1) As a glass composition, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3 0-6%, Na 2 O 5-25%, MgO 0-10% in mol%. Contains substantially no As 2 O 3 , Sb 2 O 3 , PbO and F. (2) As a glass composition, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3 0-6%, Na 2 O 5-25%, MgO 0-10% in mol%.
  • the tempered glass of the present invention preferably has the following characteristics.
  • the tempered glass of the present invention has a compressive stress layer on the surface.
  • the compressive stress value of the compressive stress layer is preferably 300 MPa or more, 400 MPa or more, 500 MPa or more, 600 MPa or more, 700 MPa or more, 800 MPa or more, 900 MPa or more, 950 MPa or more, 1000 MPa or more, 1100 MPa or more, 1150 MPa or more, 1200 MPa or more, 1250 MPa or more or 1300 MPa or more, particularly preferably 1350 MPa or more.
  • the greater the compressive stress value the higher the mechanical strength of the tempered glass.
  • the compressive stress value of the compressive stress layer is preferably 1500 MPa or less or 1450 MPa or less, and particularly preferably 1400 MPa or less. If the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO in the glass composition is increased or the content of SrO, BaO is decreased, the compressive stress value tends to increase. Further, if the ion exchange time is shortened or the temperature of the ion exchange solution is lowered, the compressive stress value tends to increase.
  • the thickness of the compressive stress layer is preferably 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, or 40 ⁇ m or more, and particularly preferably 45 ⁇ m or more.
  • the tempered glass is less likely to break even if the tempered glass is deeply damaged, and the variation in mechanical strength is reduced.
  • the larger the compressive stress layer is the more difficult it is to cut the tempered glass. Further, the tensile stress inherent in the tempered glass becomes extremely high, and there is a possibility that the dimensional change becomes large before and after the tempering treatment.
  • the thickness of the compressive stress layer is preferably 80 ⁇ m or less or 70 ⁇ m or less, particularly preferably 60 ⁇ m or less. Note that if the content of K 2 O or P 2 O 5 in the glass composition is increased or the content of SrO or BaO is decreased, the thickness of the compressive stress layer tends to increase. Moreover, if the ion exchange time is lengthened or the temperature of the ion exchange solution is increased, the thickness of the compressive stress layer tends to increase.
  • the internal tensile stress value is preferably 150 MPa or less, 140 MPa or less, 130 MPa or less, 120 MPa or less, 110 MPa or less, 100 MPa or less, 90 MPa or less or 80 MPa or less, particularly preferably 70 MPa or less. If the internal tensile stress value is too high, the tempered glass tends to self-break due to physical collision or the like. On the other hand, if the internal tensile stress value is too low, it is difficult to ensure the mechanical strength of the tempered glass.
  • the internal tensile stress value is preferably 1 MPa or more, 5 MPa or more, or 7 MPa or more, and particularly preferably 10 MPa or more.
  • the internal tensile stress can be calculated by the following formula 1.
  • CT (CS ⁇ DOL) / [t ⁇ 2 ⁇ DOL] [CT: Internal tensile stress (MPa)] [CS: Compressive stress value of compressive stress layer (MPa)] [DOL: thickness of compressive stress layer ( ⁇ m)] [T: Thickness ( ⁇ m)]
  • Density is preferably 2.6 g / cm 3 or less, 2.55 g / cm 3 or less, 2.50 g / cm 3 or less, 2.48 g / cm 3 or less, or 2.46 g / cm 3 or less, particularly preferably 2. 45 g / cm 3 or less.
  • the smaller the density the lighter the tempered glass.
  • the content of SiO 2 , B 2 O 3 , P 2 O 5 in the glass composition is increased, or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is decreased. As a result, the density tends to decrease.
  • the strain point is preferably 550 ° C or higher, 580 ° C or higher, 590 ° C or higher, 600 ° C or higher, 610 ° C or higher, 615 ° C or higher, 620 ° C or higher, 625 ° C or higher, 630 ° C or higher, 640 ° C or higher, or 650 ° C or higher. Especially preferably, it is 660 degreeC or more.
  • the higher the strain point the harder the change in strengthening characteristics due to the temperature change of the KNO 3 molten salt. In particular, even if the thickness is reduced, it is easy to strictly control the in-plane reinforcing characteristics.
  • the temperature at a viscosity of 10 4.0 dPa ⁇ s is preferably 1400 ° C. or lower.
  • the temperature at a viscosity of 10 2.5 dPa ⁇ s is preferably 1700 ° C. or lower, 1680 ° C. or lower or 1650 ° C. or lower, particularly preferably 1600 ° C. or lower.
  • the lower the temperature at a viscosity of 10 2.5 dPa ⁇ s the lower the temperature melting becomes possible, and the burden on glass manufacturing equipment such as a melting kiln is reduced and the bubble quality is easily improved. That is, the lower the temperature at a viscosity of 10 2.5 dPa ⁇ s, the easier it is to reduce the manufacturing cost of tempered glass.
  • the “temperature at a viscosity of 10 2.5 dPa ⁇ s” can be measured by, for example, a platinum ball pulling method.
  • the temperature at a viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature. Further, if the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 in the glass composition is increased or the content of SiO 2 , Al 2 O 3 is decreased, The temperature at a viscosity of 10 2.5 dPa ⁇ s tends to decrease.
  • the thermal expansion coefficient is preferably 50 to 100 ⁇ 10 ⁇ 7 / ° C., 70 to 100 ⁇ 10 ⁇ 7 / ° C. or 75 to 95 ⁇ 10 ⁇ 7 / ° C., particularly preferably 80 to 90 ⁇ 10 ⁇ 7 / ° C. is there. If the thermal expansion coefficient is regulated within the above range, the glass is less likely to be damaged by thermal shock, so that the time required for preheating before the tempering treatment and cooling after the tempering treatment can be shortened. As a result, the manufacturing cost of tempered glass can be reduced.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 25 to 380 ° C. using a dilatometer.
  • the liquidus temperature is preferably 1300 ° C. or lower, 1280 ° C. or lower, 1250 ° C. or lower, or 1230 ° C. or lower, particularly preferably 1200 ° C. or lower.
  • devitrification resistance and a moldability improve, so that liquidus temperature is low.
  • increase the content of Na 2 O, K 2 O, B 2 O 3 in the glass composition or decrease the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2. In this case, the liquidus temperature tends to decrease.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, 10 4.4 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.3 dPa ⁇ s or more, 10 5.5 dPa ⁇ s or more, 10 It is 5.7 dPa ⁇ s or more or 10 5.8 dPa ⁇ s or more, particularly preferably 10 6.0 dPa ⁇ s or more.
  • devitrification resistance and a moldability improve, so that liquid phase viscosity is high.
  • liquidus viscosity Tends if the content of Na 2 O, K 2 O in the glass composition is increased or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is decreased, the liquidus viscosity Tends to be high.
  • the Young's modulus is preferably 65 GPa or more, 69 GPa or more, 71 GPa or more, or 75 GPa or more, and particularly preferably 77 GPa or more.
  • the higher the Young's modulus the harder the tempered glass bends.
  • the deformation amount of the tempered glass becomes smaller. As a result, it becomes easy to prevent the tempered glass from coming into contact with the liquid crystal element located on the back surface and causing a display defect.
  • the higher the Young's modulus the smaller the amount of deformation with respect to the stress generated during the strengthening process, so that the dimensional change before and after the strengthening process can be reduced.
  • the crack occurrence rate before the tempering treatment that is, the crack occurrence rate of the reinforcing glass is preferably 99% or less, 98% or less, 95% or less, 90% or less, 85% or less, 80% or less, 70% or less, 60%. Hereinafter, it is 50% or less or 40% or less, particularly preferably 30% or less.
  • the lower the crack occurrence rate the harder the surface of the tempered glass is, so that the mechanical strength of the tempered glass is less likely to decrease and the mechanical strength is less likely to vary.
  • the devitrification crystal generated at the contact interface when contacted with an alumina refractory with a viscosity of 10 4.5 dPa ⁇ s for 48 hours is preferably 1 piece / mm 2 or less, 0.1 piece / mm 2 or less, 0.01 piece / Mm 2 or less or 0.001 piece / mm 2 or less, particularly preferably 0.0001 piece / mm 2 or less.
  • an alumina refractory is used as the molded refractory and a glass plate is formed by the overflow downdraw method, the glass is less likely to devitrify at the refractory interface, and mass production becomes possible.
  • the tempered glass of the present invention preferably has a flat plate shape. If it does in this way, it becomes easy to apply to the glass substrate of a mobile phone, a digital camera, PDA (portable terminal), a solar cell cover glass, or a display, especially a touch panel display.
  • the shape which has a bending part and / or a curved part may be sufficient as the tempered glass of this invention.
  • Such a shape can be formed by applying heat to the glass and deforming it, and can also be formed by pouring molten glass into a mold and pressing it as necessary.
  • the thickness in the case of a flat plate shape, is preferably 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, or 0.8 mm or less. Especially preferably, it is 0.7 mm or less.
  • the thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, or 0.4 mm or more, and particularly preferably 0.5 mm or more.
  • a functional film for example, a transparent conductive film for imparting conductivity, an antireflection film for reducing reflectance, and an antiglare function are imparted to enhance visibility or improve writing quality with a touch pen or the like.
  • An anti-glare film for preventing adhesion of fingerprints and an antifouling film for imparting water repellency and oil repellency are preferred.
  • the transparent conductive film functions as an electrode for a touch sensor, and is preferably formed on the surface to be the display device side, for example.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • ITO is preferable because of its low electric resistance.
  • ITO can be formed by, for example, a sputtering method.
  • FTO and ATO can be formed by a CVD (Chemical Vapor Deposition) method.
  • the antireflection film is formed on the surface to be the viewer side.
  • the antireflection film is preferably, for example, a dielectric multilayer film in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated.
  • the antireflection film can be formed by, for example, a sputtering method, a CVD method, or the like.
  • the antiglare film is formed on the surface to be the observer side when using tempered glass as a cover glass.
  • the antiglare film preferably has an uneven structure.
  • the uneven structure may be an island structure that partially covers the surface of the tempered glass.
  • the concavo-convex structure does not have regularity. Thereby, an anti-glare function can be enhanced.
  • the antiglare film can be formed, for example, by applying a light-transmitting material such as SiO 2 by a spray method and drying it.
  • the antifouling film is formed on the surface to be the observer side.
  • the antifouling film preferably contains a fluoropolymer containing silicon in the main chain.
  • the fluorine-containing polymer a polymer having a —O—Si—O— unit in the main chain and a water-repellent functional group containing fluorine in the side chain is preferable.
  • the fluorine-containing polymer can be synthesized, for example, by dehydrating condensation of silanol.
  • an antireflection film and an antifouling film it is preferable to form an antifouling film on the antireflection film.
  • tempered glass of the present invention it is possible to obtain a suitable tempered glass by appropriately selecting a suitable content range and suitable characteristics of each component.
  • particularly preferable tempered glass is as follows. (1) As a glass composition, mol%, SiO 2 50 to 80%, Al 2 O 3 12 to 19%, B 2 O 3 0 to 3%, Na 2 O 12 to 19%, K 2 O 0 to 8 %, MgO 0.1 to 3%, CaO 0 to 2%, the molar ratio Na 2 O / Al 2 O 3 is 0.6 to 1.6, substantially As 2 O 3 , Sb 2 O 3 , PbO and F are not contained, the compressive stress value of the compressive stress layer is 900 MPa or more and 1500 MPa or less, the thickness of the compressive stress layer is 10 ⁇ m or more and 60 ⁇ m or less, and the strain point is 620 ° C.
  • the liquid phase viscosity is 10 4.5 dPa ⁇ s or higher, and the alumina refractory is contacted at a viscosity of 10 4.5 dPa ⁇ s for 48 hours, it is generated at the contact interface.
  • Devitrified crystal is 1 piece / mm 2 or less, thickness is 0.3 to 2.0 mm, flat plate Shape.
  • the glass for strengthening of the present invention has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3 0-6%, Na 2 O 5-25%, MgO It contains 0 to 10% and substantially does not contain As 2 O 3 , Sb 2 O 3 , PbO and F. Therefore, the technical characteristics (preferable characteristics, preferable component ranges, etc.) of the tempered glass of the present invention overlap with the technical characteristics of the tempered glass of the present invention. It is described in the column. Therefore, detailed description of the overlapping portion is omitted.
  • ⁇ CS is preferably 100 MPa or less, 80 MPa or less or 60 MPa or less, particularly preferably 40 MPa or less. In this way, the variation in the strengthening characteristics due to the variation in the strengthening temperature is reduced, and the warpage during the strengthening process can be suppressed to a small level.
  • the compressive stress value of the compressive stress layer on the surface is 300 MPa or more, 400 MPa or more, 500 MPa or more, 600 MPa or more, 700 MPa or more, 800 MPa or more.
  • the thickness of the compressive stress layer is 10 ⁇ m or more, 15 ⁇ m or more 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, or 40 ⁇ m or more, preferably 45 ⁇ m or more.
  • a suitable tempered glass by appropriately selecting a suitable content range and suitable characteristics of each component.
  • particularly preferred tempering glasses are as follows. (1) As a glass composition, SiO 2 50-80%, Al 2 O 3 10-30%, B 2 O 3 0-6%, Na 2 O 5-25%, MgO 0-10% in mol%. Contains, substantially no As 2 O 3 , Sb 2 O 3 , PbO and F, and the crack generation rate is 80% or less.
  • the thickness is 0.3 to 2.0 mm, the compressive stress value of the compressive stress layer is 900 MPa or more and 1500 MPa or less, the thickness of the compressive stress layer is 10 ⁇ m or more and 60 ⁇ m or less, and the strain A point is 620 degreeC or more, and a crack generation rate is 80% or less.
  • the thickness is 0.7 to 2.0 mm, the compressive stress value of the compressive stress layer is 1000 MPa or more, the thickness of the compressive stress layer is 40 ⁇ m or more, the strain point is 620 ° C. or more, and cracks are generated. The rate is 80% or less, and ⁇ CS is 100 MPa or less.
  • the temperature of the KNO 3 molten salt is preferably 390 to 550 ° C.
  • the ion exchange time is preferably 0.5 to 10 hours, and particularly preferably 1 to 8 hours. If it does in this way, it will become easy to form a compressive stress layer appropriately.
  • the reinforcing glass of the present invention has a glass composition described above, without using a mixture of KNO 3 molten salt and NaNO 3 molten salt, increasing the compressive stress value and thickness of the compression stress layer Can do.
  • the tempered glass (tempering glass) of the present invention can be produced as follows.
  • a glass raw material prepared so as to have the above glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified, fed into a molding apparatus, shaped into a flat plate shape, etc.
  • strengthening can be produced by cooling.
  • the overflow downdraw method is a method capable of producing a large number of high-quality glass plates and easily producing a large glass plate. Furthermore, in the overflow downdraw method, alumina or zirconia is used as the molded body refractory.
  • the tempered glass of the present invention has good compatibility with alumina and zirconia, particularly alumina (it is difficult to react with the molded body to generate bubbles and blisters).
  • a forming method such as a float method, a downdraw method (slot down method, redraw method, etc.), a rollout method, a press method, or the like can be employed.
  • tempered glass can be produced by tempering the obtained tempered glass.
  • the time for cutting the tempered glass into a predetermined dimension may be before the tempering treatment or after the tempering treatment.
  • an ion exchange treatment is preferable.
  • the conditions for the ion exchange treatment are not particularly limited, and an optimum condition may be selected in consideration of the viscosity characteristics, application, thickness, internal tensile stress, dimensional change, and the like of the glass.
  • the ion exchange treatment can be performed by immersing in KNO 3 molten salt at 390 to 550 ° C. for 1 to 8 hours.
  • K ions in the KNO 3 molten salt are ion exchanged with Na components in the glass, a compressive stress layer can be efficiently formed on the surface of the glass.
  • Tables 1 to 12 show examples of the present invention (sample Nos. 1 to 68).
  • Each sample in the table was prepared as follows. First, glass raw materials were prepared so as to have the glass composition in the table, and were melted at 1600 ° C. for 21 hours using a platinum pot. Thereafter, the obtained molten glass was poured onto a carbon plate and formed into a flat plate shape. Various characteristics were evaluated about the obtained glass plate.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • strain point Ps and the annealing point Ta are values measured based on the method of ASTM C336.
  • the softening point Ts is a value measured based on the method of ASTM C338.
  • the temperature at a high temperature viscosity of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s is a value measured by a platinum ball pulling method.
  • the thermal expansion coefficient ⁇ is a value obtained by measuring an average thermal expansion coefficient in a temperature range of 25 to 380 ° C. using a dilatometer.
  • the Young's modulus E is a value measured by a well-known resonance method.
  • the liquid phase temperature TL is passed through a standard sieve 30 mesh (500 ⁇ m), the glass powder remaining on 50 mesh (300 ⁇ m) is put in a platinum boat and kept in a temperature gradient furnace for 24 hours, and then the platinum boat is taken out. By observation, the highest temperature at which devitrification (crystal foreign matter) was observed inside the glass was set.
  • the liquid phase viscosity log ⁇ TL is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method.
  • the compatibility with alumina refractories was evaluated as follows. Each sample was kept in contact with the alumina refractory at a viscosity of 10 4.5 dPa ⁇ s for 48 hours, and then the contact interface between each sample and the alumina refractory was observed to determine the number density of devitrified beads (pieces / mm 2 ) Was measured.
  • sample no. Nos. 1 to 68 had a density of 2.46 g / cm 3 or less, a strain point of 601 ° C. or more, and a crack generation rate of 68% or less, and were suitable as a tempered glass material, that is, a tempered glass.
  • the liquid phase viscosity is 10 5.2 dPa ⁇ s or more and the compatibility with the alumina refractory is good, it can be formed into a flat plate shape by the overflow down draw method, and the temperature at a viscosity of 10 2.5 dPa ⁇ s is 1702. Since it is below °C, it is considered that a large amount of glass plates can be produced at low cost.
  • the glass composition in the surface layer of glass is microscopically different before and after the tempering treatment, the glass composition is not substantially different when viewed as the whole glass.
  • ion exchange treatment was performed by immersing in KNO 3 molten salt at 400 ° C. for 4 hours.
  • the surface of each sample was washed after the ion exchange treatment.
  • the compressive stress value (CS 400 ) and thickness (DOL 400 ) of the surface compressive stress layer are calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the distance between the interference fringes. did.
  • the refractive index of each sample was set to 1.50 and the optical elastic constant was set to 30 [(nm / cm) / MPa].
  • ion exchange treatment was performed by immersing in KNO 3 molten salt at 430 ° C. for 4 hours. The surface of each sample was washed after the ion exchange treatment. Subsequently, the compressive stress value (CS 430 ) and thickness (DOL 430 ) of the surface compressive stress layer are calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the distance between the interference fringes. did. In the calculation, the refractive index of each sample was set to 1.50 and the optical elastic constant was set to 30 [(nm / cm) / MPa].
  • ⁇ CS CS 400 ⁇ CS 430 .
  • the tempered glass and the tempered glass of the present invention are suitable as a glass substrate for a mobile phone, a digital camera, a PDA or other cover glass, or a touch panel display.
  • the tempered glass and the tempered glass of the present invention are used for applications requiring high mechanical strength in addition to these applications, such as window glass, magnetic disk substrates, flat panel display substrates, and solar cell cover glasses.
  • Application to cover glass for solid-state imaging devices and tableware can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 表面に圧縮応力層を有する強化ガラスであって、ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しないことを特徴とする。

Description

強化ガラス及び強化用ガラス
 本発明は、強化ガラス及び強化用ガラスに関し、特に携帯電話、デジタルカメラ、PDA(携帯端末)、太陽電池等のカバーガラス、或いはディスプレイ、特にタッチパネルディスプレイのガラス基板に好適な強化ガラス及び強化用ガラスに関する。
 携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイ、大型テレビ、非接触給電等のデバイスは、益々普及する傾向にある。
 これらの用途には、イオン交換処理等で強化処理した強化ガラスが用いられている(特許文献1、非特許文献1参照)。
 また、近年では、強化ガラスをデジタルサイネージ、マウス、スマートフォン等の外装部品に使用することが増えてきた。
 強化ガラスの主な要求特性として、(1)高い機械的強度、(2)高い耐傷性、(3)軽量、(4)低コスト等が挙げられる。特に、スマートフォンの用途では、軽量化、すなわち薄型化の要求が高まっている。
特開2006-83045号公報
泉谷徹郎等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451-498
 しかし、従来の強化ガラスを薄型化すると、内部の引っ張り応力が過大になり、強化ガラスの破損時に破片が飛散したり、強化ガラスが自己破壊する虞がある。よって、圧縮応力層の圧縮応力値や厚みを増加させて、強化ガラスの機械的強度を高めることには自ずと限界がある。そこで、強化ガラスに表面傷が付くことを可及的に抑制して、機械的強度の低下を抑制することが有効となる。
 傷が付き難い強化用ガラス、つまりクラック発生率が低い強化用ガラスとして、B23高含有ガラスが提案されている。しかし、B23高含有ガラスは、高い強化特性を得ることは難しい。
 更に、B23含有量が多い程、強化用ガラスの歪点が低下し易くなる。低歪点の強化用ガラスは、KNO3溶融塩の温度変化によって強化特性が変化し易いという問題がある。特に、薄型化を推進すると、強化用ガラス面内の強化特性の僅かなバラツキに起因して、強化ガラスの反り量が大きくなるという問題が生じる。この問題を解決するためには、強化用ガラス面内の強化特性を厳密にコントロールする必要があり、その点でも強化用ガラスの高歪点化は有効である。
 そこで、本発明は、上記事情に鑑み成されたものであり、その技術的課題は、B23を過剰に含有しなくてもクラック発生率が低いと共に、強化特性や歪点が十分に高く、しかも薄型化に好適な強化ガラス及び強化用ガラスを創案することである。
 本発明者等は、種々の検討を行った結果、ガラス組成を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の強化ガラスは、表面に圧縮応力層を有する強化ガラスであって、ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しないことを特徴とする。ここで、「実質的にAs23を含有しない」とは、ガラス成分として積極的にAs23を添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、As23の含有量が0.1モル%未満の場合を指す。「実質的にSb23を含有しない」とは、ガラス成分として積極的にSb23を添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、Sb23の含有量が0.1モル%未満の場合を指す。「実質的にPbOを含有しない」とは、ガラス成分として積極的にPbOを添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、PbOの含有量が0.1モル%未満の場合を指す。「実質的にFを含有しない」とは、ガラス成分として積極的にFを添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、Fの含有量が0.1モル%未満の場合を指す。
 本発明の強化ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~2%、MgO 0.1~4%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であることを特徴とする。
 本発明の強化ガラスは、強化処理前のクラック発生率が80%以下であることが好ましい。ここで、「クラック発生率」は、次のようにして測定した値を指す。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重1000gfに設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。このようにして圧子を50回打ち込み、総クラック発生数を求めた後、(総クラック発生数/200)×100の式により求める。
 本発明の強化ガラスは、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、且つ圧縮応力層の厚みが10μm以上であって60μm以下であることが好ましい。ここで、「圧縮応力層の圧縮応力値」および「圧縮応力層の厚み」は、表面応力計(例えば、株式会社東芝製FSM-6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。
 本発明の強化ガラスは、歪点が590℃以上であることが好ましい。ここで、「歪点」とはASTM C336の方法に基づいて測定した値を指す。
 本発明の強化ガラスは、液相温度が1250℃以下であることが好ましい。ここで、「液相温度」とは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(結晶異物)が認められた最も高い温度とする。
 本発明の強化ガラスは、液相粘度が104.5dPa・s以上であることが好ましい。ここで、「液相粘度」とは、液相温度における粘度を白金球引き上げ法で測定した値を指す。
 本発明の強化ガラスは、104.0dPa・sの粘度における温度が1400℃以下であることが好ましい。ここで、「104.0dPa・sの粘度における温度」は、白金球引き上げ法で測定した値を指す。
 本発明の強化ガラスは、104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶が1個/mm2以下であることが好ましい。
 本発明の強化ガラスは、平板形状であることが好ましい。
 本発明の強化ガラスは、厚みが0.3~2.0mmであることが好ましい。
 本発明の強化ガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、成形体耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを成形体耐火物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は成形体耐火物の表面に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。
 本発明の強化ガラスは、タッチパネルディスプレイに用いることが好ましい。
 本発明の強化ガラスは、携帯電話のカバーガラスに用いることが好ましい。
 本発明の強化ガラスは、太陽電池のカバーガラスに用いることが好ましい。
 本発明の強化ガラスは、ディスプレイの保護部材に用いることが好ましい。
 本発明の強化ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~2%、MgO 0.1~4%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であり、実質的にAs23、Sb23、PbO及びFを含有せず、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が590℃以上であり、液相温度が1250℃以下であり、液相粘度が104.5dPa・s以上であり、104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶が1個/mm2以下であり、厚みが0.3~2.0mmであり、平板形状であることを特徴とする。
 本発明の強化用ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しないことを特徴とする。
 本発明の強化用ガラスは、クラック発生率が80%以下であることが好ましい。
 本発明の強化用ガラスは、厚みが0.3~2.0mm、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が590℃以上であり、クラック発生率が80%以下であることを特徴とする。
 本発明の強化用ガラスは、厚みが0.7~2.0mmであり、圧縮応力層の圧縮応力値が1000MPa以上であり、圧縮応力層の厚みが40μm以上であり、歪点が590℃以上であり、クラック発生率が80%以下であることを特徴とする。
 本発明の強化用ガラスは、ΔCSが100MPa以下であることが好ましい。ここで、「ΔCS」は、400℃のKNO3溶融塩中に4時間浸漬したときの圧縮応力値CS400と、430℃のKNO3溶融塩中に4時間浸漬したときの圧縮応力値CS430とを測定した上で、ΔCS=CS400-CS430の式により計算される値を指す。
 本発明の強化ガラスは、その表面に圧縮応力層を有する。表面に圧縮応力層を形成する方法として、物理強化法と化学強化法がある。本発明の強化ガラスは、化学強化法で作製されてなることが好ましい。化学強化法は、ガラスの歪点以下の温度でイオン交換処理によりガラスの表面にイオン半径が大きいアルカリイオンを導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラスの厚みが薄い場合でも、圧縮応力層を適正に形成し得ると共に、圧縮応力層を形成した後に、強化ガラスを切断しても、風冷強化法等の物理強化法のように、強化ガラスが容易に破壊しない。
 本発明の強化ガラスにおいて、各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は、特に断りがない限り、モル%を指す。
 SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量は、好ましくは50~80%、55~76%、56~75%、57~73%、58~72%または59~71%、特に好ましくは60~70%である。SiO2の含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。一方、SiO2の含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。
 Al23は、イオン交換性能、歪点、ヤング率を高める成分であり、またクラック発生率を低下させる成分である。Al23の含有量は10~30%である。Al23の含有量が少な過ぎると、イオン交換性能を十分に発揮できない虞が生じる。また、Al23の含有量が少な過ぎると、クラック発生率が高くなる虞がある。よって、Al23の好適な下限範囲は10%以上、10.5%以上、11%以上、11.5%以上、12%以上、12.5%以上、13%以上、14%以上、14.5%以上、15%以上、15.5%以上、16.0%以上または16.1%以上、特に16.3%以上である。一方、Al23の含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなり、特に、成形体耐火物としてアルミナ耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ耐火物との界面にスピネルの失透結晶が析出し易くなる。また、Al23の含有量が多過ぎると、熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなると共に、耐酸性も低下して、酸処理工程に適用し難くなり、更には高温粘性が高くなり、溶融性が低下し易くなる。よって、Al23の好適な上限範囲は25%以下、20%以下、19%以下、18.5%以下、18%以下または17.5%以下、特に17%以下である。
 B23は、高温粘度や密度を低下させると共に、ガラスを安定化させて、結晶を析出させ難くし、液相温度を低下させる成分である。また、B23は、クラック発生率を低くして、耐傷性を高める成分である。しかし、B23の含有量が多過ぎると、高い強化特性を得ることが困難になったり、特に圧縮応力層の厚みが小さくなったり、イオン交換によって、ヤケと呼ばれるガラス表面の着色が発生したり、耐水性が低下し易くなる。よって、B23の好適な範囲は0~6%、0~5%、0~4%、0~3.5%、0~3%、0~2.5%、0~2%、0~1.5%または0~1%、特に0~1%未満である。
 Na2Oは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、Na2Oは、耐失透性、成形体耐火物、特にアルミナ耐火物との反応失透性を改善する成分でもある。Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。よって、Na2Oの好適な下限範囲は5%以上、7%以上、7%超、8%以上、9%以上、10%以上または11%以上、特に12%以上である。一方、Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また、Na2Oの含有量が多過ぎると、歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。よって、Na2Oの好適な上限範囲は25%以下、23%以下、21%以下、20%以下、19.5%以下、19%以下、18.5%以下、18.2%以下、18%以下または17.5%以下、特に17%以下である。
 モル比Na2O/Al23が小さ過ぎると、溶融性が低下したり、耐失透性が低下したり、成形体耐火物、特にアルミナ耐火物との反応失透性が低下したり、ガラス組成の成分バランスを欠き、イオン交換性能が低下し易くなる。よって、モル比Na2O/Al23の好適な下限範囲は0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、0.95以上または0.98以上、特に1.00以上である。一方、モル比Na2O/Al23が大き過ぎると、イオン交換性能が低下したり、クラック発生率が高くなる虞がある。よって、モル比Na2O/Al23の好適な上限範囲は2.0以下、1.9以下、1.8以下、1.7以下、1.6以下、1.5以下、1.4以下、1.3以下、1.2以下、1.18以下、1.15以下または1.13以下、特に1.1以下である。
 B23+Na2O-Al23の好適な含有量は、-1.7~2.7%、0~2.55%または0.5~2.4%、特に0.8~2.2%である。このようにすれば、溶融性、歪点、イオン交換性能及びクラック発生率を最適化し易くなる。なお、「B23+Na2O-Al23」は、B23とNa2Oの合量からAl23の含有量を減じたものである。
 K2Oは、イオン交換を促進する成分であり、アルカリ金属酸化物の中では圧縮応力層の厚みを大きくし易い成分である。また、K2Oは、高温粘度を低下させて、溶融性や成形性を高める成分であり、更には、耐失透性を改善する成分でもある。しかし、K2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また、K2Oの含有量が多過ぎると、歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下または2%以下、特に2%未満である。なお、K2Oを添加する場合、好適な添加量は0.1%以上、0.5%以上、1%以上または1.5%以上、特に2%以上である。また、K2Oの添加をできるだけ回避する場合は、K2Oの好適な含有量は0~1%または0~1%未満、特に0~0.05%である。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。よって、MgOの好適な下限範囲は0%以上、0.1%以上、0.5%以上、1%以上、1.5%以上、2%以上、2.5%以上、3%以上または3.5%以上、特に3.7%以上である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり易く、またガラスが失透し易くなる傾向があり、特に、成形体耐火物としてアルミナ耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ耐火物との界面にスピネルの失透結晶が析出し易くなる。よって、MgOの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、6%以下または5%以下、特に4%以下である。
 上記成分以外にも、例えば以下の成分を添加してもよい。
 Li2Oは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分であると共に、ヤング率を高める成分である。更にLi2Oは、一般的には、アルカリ金属酸化物の中で圧縮応力値を高める効果が大きいが、Na2Oを7%以上含むガラス系において、Li2Oの含有量が極端に多くなると、かえって圧縮応力値が低下する傾向がある。また、Li2Oの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。更に、Li2Oの含有量が多過ぎると、低温粘性が低下し過ぎて、応力緩和が起こり易くなり、かえって圧縮応力値が低下する場合がある。ところで、傷が付き難い強化用ガラス、すなわちクラック発生率が低い強化用ガラスとして、Li2O高含有ガラスが提案されている。しかし、KNO3溶融塩を用いて、Li2O高含有ガラスをイオン交換処理すると、KNO3溶融塩中にLiイオンが混入し易くなる。Liイオンが混入したKNO3溶融塩を用いると、強化用ガラスの強化特性が不十分になるという問題が生じる。よって、Li2Oの好適な含有量は0~2%、0~1.7%、0~1.5%、0~1%、0~1%未満、0~0.5%、0~0.3%または0~0.1%、特に0~0.05%である。
 CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める効果が大きい成分である。しかし、CaOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラス組成の成分バランスを欠き、かえって耐失透性が低下し易くなったり、イオン交換性能が低下したり、イオン交換溶液を劣化させ易くなる傾向がある。よって、CaOの好適な含有量は0~6%、0~5%、0~4%、0~3.5%、0~3%、0~2%または0~1%、特に0~0.5%である。
 SrOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であるが、その含有量が多過ぎると、イオン交換反応が阻害され易くなることに加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、SrOの好適な含有量は0~2%、0~1.5%、0~1%、0~0.5%または0~0.1%、特に0~0.1%未満である。
 BaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、BaOの含有量が多過ぎると、イオン交換反応が阻害され易くなること加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、BaOの好適な含有量は0~6%、0~3%、0~1.5%、0~1%、0~0.5%または0~0.1%、特に0~0.1%未満である。
 ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を高める効果が大きい成分である。また、ZnOは、低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の厚みが小さくなる傾向がある。よって、ZnOの好適な含有量は0~6%、0~5%または0~3%、特に0~1%である。
 B23+MgO+ZnOの好適な含有量は0.03~3.94%、0.1~3.8%、0.5~3.7%または1~3.5%、特に2~3.4%である。このようにすれば、溶融性、耐失透性及び圧縮応力層の厚みを最適化し易くなる。なお、「B23+MgO+ZnO」は、B23、MgO及びZnOの合量である。
 TiO2は、イオン交換性能を高める成分であり、また高温粘度を低下させる成分であるが、その含有量が多過ぎると、ガラスが着色したり、失透し易くなる。よって、TiO2の含有量は0~4.5%、0~1%未満または0~0.5%が好ましく、特に0~0.3%が好ましい。
 ZrO2は、イオン交換性能を顕著に高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞もある。よって、ZrO2の好適な含有量は0~5%、0~4%または0~3%、特に0.001~2%である。
 SnO2は、イオン交換性能を高める成分であるが、その含有量が多過ぎると、耐失透性が低下し易くなる。よって、SnO2の好適な含有量は0~3%、0.01~3%、0.05~3%または0.1~3%、特に0.2~3%である。
 P25は、イオン交換性能を高める成分であり、特に圧縮応力層の厚みを大きくする成分である。しかし、P25の含有量が多過ぎると、ガラスが分相したり、耐水性が低下し易くなる。よって、P25の好適な含有量は0~10%、0~3%または0~1%、特に0~0.5%である。
 清澄剤として、Cl、SO3、CeO2の群(好ましくはCl、SO3の群)から選択された一種又は二種以上を0~3%添加してもよい。
 清澄効果とイオン交換性能を高める効果を同時に享受する観点から、SnO2+SO3+Clの好適な含有量は0.01~3%、0.05~3%または0.1~3%、特に0.2~3%である。なお、「SnO2+SO3+Cl」は、SnO2、Cl及びSO3の合量である。
 Fe23の好適な含有量は1000ppm未満(0.1%未満)、800ppm未満、600ppm未満または400ppm未満、特に300ppm未満である。更に、Fe23の含有量を上記範囲に規制した上で、モル比Fe23/(Fe23+SnO2)を0.8以上または0.9以上、特に0.95以上に規制することが好ましい。このようにすれば、板厚1mmにおける透過率(400~770nm)が向上し易くなる(例えば90%以上)。
 Nd23、La23等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に添加すると、耐失透性が低下し易くなる。よって、希土類酸化物の好適な含有量は3%以下、2%以下、1%以下または0.5%以下、特に0.1%以下である。
 本発明の強化ガラスは、環境的配慮から、ガラス組成として、実質的にAs23、Sb23、PbO、及びFを含有しないことが好ましい。また、環境的配慮から、実質的にBi23を含有しないことも好ましい。「実質的にBi23を含有しない」とは、ガラス成分として積極的にBi23を添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、Bi23の含有量が0.05%未満の場合を指す。
 本発明の強化ガラスにおいて、各成分の好適な含有範囲を適宜取捨選択し、好適なガラス組成範囲とすることが可能である。その中でも、特に好適なガラス組成範囲は以下の通りである。
(1)ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しない。
(2)ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%、CaO 0~5%を含有し、実質的にAs23、Sb23、PbO及びFを含有しない。
(3)ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、K2O 0~10%、MgO 0~10%、CaO 0~5%を含有し、実質的にAs23、Sb23、PbO及びFを含有しない。
(4)ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~2%、MgO 0.1~4%、CaO 0~2%を含有し、実質的にAs23、Sb23、PbO及びFを含有しない。
(5)ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~8%、MgO 0.1~4%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であり、実質的にAs23、Sb23、PbO及びFを含有しない。
 本発明の強化ガラスは、例えば、下記の特性を有することが好ましい。
 本発明の強化ガラスは、表面に圧縮応力層を有している。圧縮応力層の圧縮応力値は、好ましくは300MPa以上、400MPa以上、500MPa以上、600MPa以上、700MPa以上、800MPa以上、900MPa以上、950MPa以上、1000MPa以上、1100MPa以上、1150MPa以上、1200MPa以上、1250MPa以上または1300MPa以上、特に好ましくは1350MPa以上である。圧縮応力値が大きい程、強化ガラスの機械的強度が高くなる。一方、表面に極端に大きな圧縮応力が形成されると、強化ガラスに内在する引っ張り応力が極端に高くなり、強化処理前後の寸法変化が大きくなる虞がある。このため、圧縮応力層の圧縮応力値は1500MPa以下または1450MPa以下が好ましく、特に1400MPa以下が好ましい。なお、ガラス組成中のAl23、TiO2、ZrO2、MgO、ZnOの含有量を増量したり、SrO、BaOの含有量を減量すれば、圧縮応力値が大きくなる傾向がある。また、イオン交換時間を短くしたり、イオン交換溶液の温度を下げれば、圧縮応力値が大きくなる傾向がある。
 圧縮応力層の厚みは、好ましくは10μm以上、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上または40μm以上、特に好ましくは45μm以上である。圧縮応力層の厚みが大きい程、強化ガラスに深い傷が付いても、強化ガラスが割れ難くなると共に、機械的強度のバラツキが小さくなる。一方、圧縮応力層の厚みが大きい程、強化ガラスを切断し難くなる。また、強化ガラスに内在する引っ張り応力が極端に高くなり、強化処理前後で寸法変化が大きくなる虞がある。このため、圧縮応力層の厚みは、好ましくは80μm以下または70μm以下、特に好ましくは60μm以下である。なお、ガラス組成中のK2O、P25の含有量を増量したり、SrO、BaOの含有量を減量すれば、圧縮応力層の厚みが大きくなる傾向がある。また、イオン交換時間を長くしたり、イオン交換溶液の温度を上げれば、圧縮応力層の厚みが大きくなる傾向がある。
 内部の引っ張り応力値は、好ましくは150MPa以下、140MPa以下、130MPa以下、120PMa以下、110MPa以下、100MPa以下、90MPa以下または80MPa以下、特に好ましくは70MPa以下である。内部の引っ張り応力値が高過ぎると、物理的衝突等により、強化ガラスが自己破壊し易くなる。一方、内部の引っ張り応力値が低過ぎると、強化ガラスの機械的強度を確保し難くなる。内部の引っ張り応力値は、好ましくは1MPa以上、5MPa以上または7MPa以上、特に好ましくは10MPa以上である。なお、内部の引っ張り応力は下記の数式1で計算可能である。
[数式1]
 CT=(CS×DOL)/[t-2×DOL]
  [CT:内部の引っ張り応力(MPa)]
  [CS:圧縮応力層の圧縮応力値(MPa)]
  [DOL:圧縮応力層の厚み(μm)]
  [t:厚み(μm)]
 密度は、好ましくは2.6g/cm3以下、2.55g/cm3以下、2.50g/cm3以下、2.48g/cm3以下または2.46g/cm3以下、特に好ましくは2.45g/cm3以下である。密度が小さい程、強化ガラスを軽量化することができる。なお、ガラス組成中のSiO2、B23、P25の含有量を増量したり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO2、TiO2の含有量を減量すれば、密度が低下し易くなる。
 歪点は、好ましくは550℃以上、580℃以上、590℃以上、600℃以上、610℃以上、615℃以上、620℃以上、625℃以上、630℃以上、640℃以上または650℃以上、特に好ましくは660℃以上である。歪点が高い程、KNO3溶融塩の温度変化によって強化特性が変化し難くなる。特に、薄型化しても、面内の強化特性を厳密にコントロールし易くなる。なお、ガラス組成中のB23、アルカリ金属酸化物の含有量を増量すれば、歪点が低くなり易く、逆にSiO2、Al23の含有量を増量すれば、歪点が上昇し易くなる。
 104.0dPa・sの粘度における温度は1400℃以下が好ましい。104.0dPa・sの粘度における温度が低い程、成形設備への負担が軽減されて、成形設備が長寿命化し、結果として、強化ガラスの製造コストを低廉化し易くなる。アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増量したり、SiO2、Al23の含有量を減量すれば、104.0dPa・sの粘度における温度が低下し易くなる。
 102.5dPa・sの粘度における温度は、好ましくは1700℃以下、1680℃以下または1650℃以下、特に好ましくは1600℃以下である。102.5dPa・sの粘度における温度が低い程、低温溶融が可能になり、溶融窯等のガラス製造設備への負担が軽減されると共に、泡品位を高め易くなる。すなわち、102.5dPa・sの粘度における温度が低い程、強化ガラスの製造コストを低廉化し易くなる。ここで、「102.5dPa・sの粘度における温度」は、例えば、白金球引き上げ法で測定可能である。なお、102.5dPa・sの粘度における温度は、溶融温度に相当する。また、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増量したり、SiO2、Al23の含有量を減量すれば、102.5dPa・sの粘度における温度が低下し易くなる。
 熱膨張係数は、好ましくは50~100×10-7/℃、70~100×10-7/℃または75~95×10-7/℃、特に好ましくは80~90×10-7/℃である。熱膨張係数を上記範囲に規制すれば、ガラスが熱衝撃によって破損し難くなるため、強化処理前の予熱や強化処理後の除冷に要する時間を短縮することができる。結果として、強化ガラスの製造コストを低廉化することができる。また、熱膨張係数を上記範囲に規制すれば、金属、有機系接着剤等の周辺部材の熱膨張係数に整合させ易くなり、周辺部材の剥離を防止することができる。なお、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増量すれば、熱膨張係数が高くなり、逆にアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すれば、熱膨張係数が低くなる。ここで、「熱膨張係数」は、ディラトメーターを用いて、25~380℃の温度範囲における平均熱膨張係数を測定した値を指す。
 液相温度は、好ましくは1300℃以下、1280℃以下、1250℃以下または1230℃以下、特に好ましくは1200℃以下である。なお、液相温度が低い程、耐失透性や成形性が向上する。また、ガラス組成中のNa2O、K2O、B23の含有量を増量したり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を減量すれば、液相温度が低下し易くなる。
 液相粘度は、好ましくは104.0dPa・s以上、104.4dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、105.3dPa・s以上、105.5dPa・s以上、105.7dPa・s以上または105.8dPa・s以上、特に好ましくは106.0dPa・s以上である。なお、液相粘度が高い程、耐失透性や成形性が向上する。また、ガラス組成中のNa2O、K2Oの含有量を増量したり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を減量すれば、液相粘度が高くなり易い。
 ヤング率は、好ましくは65GPa以上、69GPa以上、71GPa以上または75GPa以上、特に好ましくは77GPa以上である。ヤング率が高い程、強化ガラスが撓み難くなり、タッチパネルディスプレイ等に用いる際、ペン等で強化ガラスの表面を強く押しても、強化ガラスの変形量が小さくなる。結果として、強化ガラスが、背面に位置する液晶素子に接触して、表示不良になる事態を防止し易くなる。また、ヤング率が高い程、強化処理時に発生する応力に対する変形量が小さくなるため、強化処理前後の寸法変化を低減することができる。
 強化処理前のクラック発生率、つまり強化用ガラスのクラック発生率は、好ましくは99%以下、98%以下、95%以下、90%以下、85%以下、80%以下、70%以下、60%以下、50%以下または40%以下、特に好ましくは30%以下である。クラック発生率が低い程、強化ガラスに表面傷が付き難くなるため、強化ガラスの機械的強度が低下し難くなり、また機械的強度がばらつき難くなる。
 104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶は、好ましくは1個/mm2以下、0.1個/mm2以下、0.01個/mm2以下または0.001個/mm2以下、特に好ましくは0.0001個/mm2以下である。このようにすれば、成形体耐火物としてアルミナ耐火物を用いて、オーバーフローダウンドロー法によりガラス板を成形する場合に、ガラスが耐火物界面で失透し難くなり、大量生産が可能となる。
 本発明の強化ガラスは、平板形状であることが好ましい。このようにすれば、携帯電話、デジタルカメラ、PDA(携帯端末)、太陽電池のカバーガラス、或いはディスプレイ、特にタッチパネルディスプレイのガラス基板に適用し易くなる。なお、本発明の強化ガラスは、意匠性を高めるために、屈曲部及び/又は湾曲部を有する形状であってもよい。このような形状は、ガラスに熱を加えて変形させることにより形成可能であり、また溶融ガラスを成形型に流し込み、必要に応じてプレスすることでも形成可能である。
 本発明の強化ガラスにおいて、厚み(平板形状の場合、板厚)は、好ましくは2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、1.0mm以下または0.8mm以下、特に好ましくは0.7mm以下である。一方、厚みが薄過ぎると、所望の機械的強度を得難くなる。よって、厚みは、好ましくは0.1mm以上、0.2mm以上、0.3mm以上または0.4mm以上、特に好ましくは0.5mm以上である。
 本発明の強化ガラスは、強化特性の面内バラツキが小さいため、表面に各種機能膜を好適に形成することができる。機能膜として、例えば、導電性を付与するための透明導電膜、反射率を低下させるための反射防止膜、防眩機能を付与して、視認性を高めたり、タッチペン等での書き味を高めるためのアンチグレア膜、指紋の付着を防止して、撥水性、撥油性を付与するための防汚膜等が好ましい。透明導電膜は、タッチセンサー用の電極として機能し、例えば、ディスプレイデバイス側になるべき表面に形成されることが好ましい。透明導電膜として、例えば、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)等が用いられる。特に、ITOは、電気抵抗が低いため好ましい。ITOは、例えば、スパッタリング法により形成することができる。また、FTO、ATOは、CVD(Chemical Vapor Deposition)法により形成することができる。反射防止膜は、観察者側になるべき表面に形成される。また、タッチパネルと強化ガラス(カバーガラス)との間に空隙がある場合、強化ガラスの裏面側(ディスプレイデバイス側とは反対側)になるべき表面にも反射防止膜を形成することが好ましい。反射防止膜は、例えば、相対的に屈折率が低い低屈折率層と相対的に屈折率が高い高屈折率層とが交互に積層された誘電体多層膜であることが好ましい。反射防止膜は、例えば、スパッタリング法、CVD法等により形成することができる。アンチグレア膜は、強化ガラスをカバーガラスとして使用する場合、観察者側になるべき表面に形成される。アンチグレア膜は、凹凸構造を有することが好ましい。凹凸構造は、強化ガラスの表面を部分的に覆う島状の構造であってもよい。また、凹凸構造は、規則性を有していないことが好ましい。これにより、アンチグレア機能を高めることができる。アンチグレア膜は、例えば、スプレー法によりSiO2等の透光性材料を塗布し、乾燥させることにより形成することができる。防汚膜は、強化ガラスをカバーガラスとして使用する場合、観察者側になるべき表面に形成される。防汚膜は、主鎖中にケイ素を含む含フッ素重合体を含むことが好ましい。含フッ素重合体として、主鎖中に、-O-Si-O-ユニットを有し、且つフッ素を含む撥水性の官能基を側鎖に有する重合体が好ましい。含フッ素重合体は、例えば、シラノールを脱水縮合することにより合成することができる。反射防止膜と防汚膜を形成する場合、反射防止膜の上に防汚膜を形成することが好ましい。更にアンチグレア膜を形成する場合、まずアンチグレア膜を形成し、その上に、反射防止膜及び/又は防汚膜が形成することが好ましい。
 本発明の強化ガラスにおいて、各成分の好適な含有範囲、好適な特性を適宜取捨選択し、好適な強化ガラスとすることが可能である。その中でも、特に好適な強化ガラスは以下の通りである。
(1)ガラス組成として、モル%で、SiO2 50~80%、Al23 12~19%、B23 0~3%、Na2O 12~19%、K2O 0~8%、MgO 0.1~3%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であり、実質的にAs23、Sb23、PbO及びFを含有せず、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が620℃以上であり、液相温度が1250℃以下であり、液相粘度が104.5dPa・s以上であり、104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶が1個/mm2以下であり、厚みが0.3~2.0mmであり、平板形状である。
 本発明の強化用ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しない。よって、本発明の強化用ガラスの技術的特徴(好適な特性、好適な成分範囲等)は、本発明の強化ガラスの技術的特徴と重複し、その重複部分は、本発明の強化ガラスの説明欄に記載済みである。よって、その重複部分について、詳細な説明を省略する。
 本発明の強化用ガラスにおいて、ΔCSは、好ましくは100MPa以下、80MPa以下または60MPa以下、特に好ましくは40MPa以下である。このようにすれば、強化温度のバラツキに起因する強化特性のバラツキが低減されて、強化処理時の反りを小さく抑えることができる。
 本発明の強化用ガラスは、430℃のKNO3溶融塩中に4時間浸漬した場合、表面の圧縮応力層の圧縮応力値が300MPa以上、400MPa以上、500MPa以上、600MPa以上、700MPa以上、800MPa以上、900MPa以上、950MPa以上、1000MPa以上、1100MPa以上、1150MPa以上、1200MPa以上、1250MPa以上または1300MPa以上になることが好ましく、特に1350MPa以上になることが好ましく、圧縮応力層の厚みが10μm以上、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上または40μm以上になることが好ましく、特に45μm以上になることが好ましい。
 本発明の強化用ガラスにおいて、各成分の好適な含有範囲、好適な特性を適宜取捨選択し、好適な強化用ガラスとすることが可能である。その中でも、特に好適な強化用ガラスは以下の通りである。
(1)ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有せず、クラック発生率が80%以下である。
(2)厚みが0.3~2.0mmであり、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が620℃以上であり、クラック発生率が80%以下である。
(3)厚みが0.7~2.0mmであり、圧縮応力層の圧縮応力値が1000MPa以上であり、圧縮応力層の厚みが40μm以上であり、歪点が620℃以上であり、クラック発生率が80%以下であり、ΔCSが100MPa以下である。
 イオン交換処理の際、KNO3溶融塩の温度は390~550℃が好ましく、イオン交換時間は0.5~10時間が好ましく、特に1~8時間が好ましい。このようにすれば、圧縮応力層を適正に形成し易くなる。なお、本発明の強化用ガラスは、上記のガラス組成を有するため、KNO3溶融塩とNaNO3溶融塩の混合物等を使用しなくても、圧縮応力層の圧縮応力値や厚みを大きくすることができる。
 以下のようにして、本発明の強化ガラス(強化用ガラス)を作製することができる。
 まず上記のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500~1700℃で加熱溶融し、清澄した後、成形装置に供給した上で平板形状等に成形し、徐冷することにより、強化用ガラスを作製することができる。
 平板形状に成形する方法として、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法は、高品位なガラス板を大量に作製し得ると共に、大型のガラス板も容易に作製し得る方法である。更に、オーバーフローダウンドロー法では、成形体耐火物として、アルミナやジルコニアが使用される。本発明の強化用ガラスは、アルミナやジルコニア、特にアルミナとの適合性が良好である(成形体と反応して泡やブツ等を発生させ難い)。
 オーバーフローダウンドロー法以外にも、種々の成形方法を採用することができる。例えば、フロート法、ダウンドロー法(スロットダウン法、リドロー法等)、ロールアウト法、プレス法等の成形方法を採用することができる。
 次に、得られた強化用ガラスを強化処理することにより、強化ガラスを作製することができる。強化ガラスを所定寸法に切断する時期は、強化処理の前でもよいが、強化処理の後でもよい。
 強化処理として、イオン交換処理が好ましい。イオン交換処理の条件は、特に限定されず、ガラスの粘度特性、用途、厚み、内部の引っ張り応力、寸法変化等を考慮して最適な条件を選択すればよい。例えば、イオン交換処理は、390~550℃のKNO3溶融塩中に1~8時間浸漬することで行うことができる。特に、KNO3溶融塩中のKイオンをガラス中のNa成分とイオン交換すると、ガラスの表面に圧縮応力層を効率良く形成することができる。
 以下、実施例に基づいて、本発明を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1~12は、本発明の実施例(試料No.1~68)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 次のようにして表中の各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合し、白金ポットを用いて1600℃で21時間溶融した。その後、得られた溶融ガラスをカーボン板の上に流し出して、平板形状に成形した。得られたガラス板について、種々の特性を評価した。
 密度ρは、周知のアルキメデス法によって測定した値である。
 歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した値である。
 軟化点Tsは、ASTM C338の方法に基づいて測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 熱膨張係数αは、ディラトメーターを用いて、25~380℃の温度範囲における平均熱膨張係数を測定した値である。
 ヤング率Eは、周知の共振法で測定した値である。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(結晶異物)が認められた最も高い温度とした。
 液相粘度logηTLは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。
 クラック発生率は、まず湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重1000gfに設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)し、この操作を合計50回繰り返して、総クラック発生数を求めた後、(総クラック発生数/200)×100の式で算出した値である。
 次のようにしてアルミナ耐火物との適合性を評価した。104.5dPa・sの粘度で各試料をアルミナ耐火物に接触させた状態で48時間保持した後、各試料とアルミナ耐火物の接触界面を観察し、失透ブツの数密度(個/mm2)を測定した。
 表1~12から明らかなように、試料No.1~68は、密度が2.46g/cm3以下、歪点が601℃以上、クラック発生率が68%以下であり、強化ガラスの素材、つまり強化用ガラスとして好適であった。また液相粘度が105.2dPa・s以上、アルミナ耐火物との適合性が良好であるため、オーバーフローダウンドロー法で平板形状に成形可能であり、しかも102.5dPa・sの粘度における温度が1702℃以下であるため、大量のガラス板を安価に作製し得るものと考えられる。なお、強化処理前後で、ガラスの表層におけるガラス組成が微視的に異なるものの、ガラス全体として見た場合は、ガラス組成が実質的に相違しない。
 次に、各試料の両表面に光学研磨を施した後、400℃のKNO3溶融塩中に4時間浸漬することにより、イオン交換処理を行った。イオン交換処理後に各試料の表面を洗浄した。続いて、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値(CS400)と厚み(DOL400)を算出した。算出に当たり、各試料の屈折率を1.50、光学弾性定数を30[(nm/cm)/MPa]とした。
 更に、各試料の両表面に光学研磨を施した後、430℃のKNO3溶融塩中に4時間浸漬することにより、イオン交換処理を行った。イオン交換処理後に各試料の表面を洗浄した。続いて、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値(CS430)と厚み(DOL430)を算出した。算出に当たり、各試料の屈折率を1.50、光学弾性定数を30[(nm/cm)/MPa]とした。
 各試料につき、ΔCS=CS400-CS430の式からΔCSを算出した。
 表1~12から明らかなように、試料No.1~68は、CS430が1114MPa以上であり、DOL430が38μm以上であり、ΔCSが小さかった。
 本発明の強化ガラス及び強化用ガラスは、携帯電話、デジタルカメラ、PDA等のカバーガラス、或いはタッチパネルディスプレイ等のガラス基板として好適である。また、本発明の強化ガラス及び強化用ガラスは、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラス、食器への応用が期待できる。

Claims (22)

  1.  表面に圧縮応力層を有する強化ガラスであって、ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しないことを特徴とする強化ガラス。
  2.  ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~2%、MgO 0.1~4%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であることを特徴とする強化ガラス。
  3.  強化処理前のクラック発生率が80%以下であることを特徴とする請求項1又は2に記載の強化ガラス。
  4.  圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、且つ圧縮応力層の厚みが10μm以上であって60μm以下であることを特徴とする請求項1~3の何れか一項に記載の強化ガラス。
  5.  歪点が590℃以上であることを特徴とする請求項1~4の何れか一項に記載の強化ガラス。
  6.  液相温度が1250℃以下であることを特徴とする請求項1~5の何れか一項に記載の強化ガラス。
  7.  液相粘度が104.5dPa・s以上であることを特徴とする請求項1~6の何れか一項に記載の強化ガラス。
  8.  104.0dPa・sの粘度における温度が1400℃以下であることを特徴とする請求項1~7の何れか一項に記載の強化ガラス。
  9.  104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶が1個/mm2以下であることを特徴とする請求項1~8の何れか一項に記載の強化ガラス。
  10.  平板形状であることを特徴とする請求項1~9の何れか一項に記載の強化ガラス。
  11.  厚みが0.3~2.0mmであることを特徴とする請求項1~10の何れか一項に記載の強化ガラス。
  12.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~11の何れか一項に記載の強化ガラス。
  13.  タッチパネルディスプレイに用いることを特徴とする請求項1~12の何れか一項に記載の強化ガラス。
  14.  携帯電話のカバーガラスに用いることを特徴とする請求項1~12の何れか一項に記載の強化ガラス。
  15.  太陽電池のカバーガラスに用いることを特徴とする請求項1~12の何れか一項に記載の強化ガラス。
  16.  ディスプレイの保護部材に用いることを特徴とする請求項1~12の何れか一項に記載の強化ガラス。
  17.  ガラス組成として、モル%で、SiO2 50~80%、Al23 12~18%、B23 0~3%、Na2O 12~18%、K2O 0~2%、MgO 0.1~4%、CaO 0~2%を含有し、モル比Na2O/Al23が0.6~1.6であり、実質的にAs23、Sb23、PbO及びFを含有せず、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が590℃以上であり、液相温度が1250℃以下であり、液相粘度が104.5dPa・s以上であり、強化処理前のクラック発生率が80%以下であり、104.5dPa・sの粘度でアルミナ耐火物に48時間接触させたとき、接触界面に生じる失透結晶が1個/mm2以下であり、厚みが0.3~2.0mmであり、平板形状であることを特徴とする強化ガラス。
  18.  ガラス組成として、モル%で、SiO2 50~80%、Al23 10~30%、B23 0~6%、Na2O 5~25%、MgO 0~10%を含有し、実質的にAs23、Sb23、PbO及びFを含有しないことを特徴とする強化用ガラス。
  19.  クラック発生率が80%以下であることを特徴とする請求項18に記載の強化用ガラス。
  20.  厚みが0.3~2.0mmであり、圧縮応力層の圧縮応力値が900MPa以上であって1500MPa以下であり、圧縮応力層の厚みが10μm以上であって60μm以下であり、歪点が590℃以上であり、クラック発生率が80%以下であることを特徴とする強化用ガラス。
  21.  厚みが0.7~2.0mmであり、圧縮応力層の圧縮応力値が1000MPa以上であり、圧縮応力層の厚みが40μm以上であり、歪点が620℃以上であり、クラック発生率が80%以下であることを特徴とする強化用ガラス。
  22.  ΔCSが100MPa以下であることを特徴とする請求項18~21の何れか一項に記載の強化用ガラス。
PCT/JP2014/069427 2013-07-24 2014-07-23 強化ガラス及び強化用ガラス WO2015012301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480017415.8A CN105102388A (zh) 2013-07-24 2014-07-23 强化玻璃和强化用玻璃
KR1020157020184A KR102309860B1 (ko) 2013-07-24 2014-07-23 강화 유리 및 강화용 유리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-153184 2013-07-24
JP2013153184 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012301A1 true WO2015012301A1 (ja) 2015-01-29

Family

ID=52393334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069427 WO2015012301A1 (ja) 2013-07-24 2014-07-23 強化ガラス及び強化用ガラス

Country Status (5)

Country Link
JP (1) JP6597950B2 (ja)
KR (1) KR102309860B1 (ja)
CN (2) CN105102388A (ja)
TW (1) TWI618683B (ja)
WO (1) WO2015012301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618088B2 (en) 2014-12-24 2020-04-14 Takahashi Seisakusho Inc. Pyrolytic furnace, water gas generation system, and combustion gas supply method for water gas generation system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965881B2 (ja) * 2016-06-30 2021-11-10 Agc株式会社 化学強化ガラス板
CN108726875B (zh) * 2017-04-21 2021-10-01 中国南玻集团股份有限公司 铝硅酸盐玻璃及强化玻璃
JP7365004B2 (ja) * 2017-08-08 2023-10-19 日本電気硝子株式会社 強化ガラス板及び強化用ガラス板
JP7280546B2 (ja) * 2017-11-09 2023-05-24 日本電気硝子株式会社 ガラス板及びこれを用いた波長変換パッケージ
KR20210040965A (ko) * 2018-08-09 2021-04-14 가부시키가이샤 오하라 결정화 유리 기판
JP7003980B2 (ja) * 2019-09-26 2022-01-21 Agc株式会社 印刷層付き板およびこれを用いた表示装置
US20230083077A1 (en) * 2020-02-25 2023-03-16 Nippon Electric Glass Co., Ltd. Strengthened glass plate and glass plate for strengthening
CN112479587B (zh) * 2020-12-08 2023-02-28 河南旭阳光电科技有限公司 一种碱铝硅酸盐玻璃组合物、强化玻璃及制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230536A (ja) * 1987-03-18 1988-09-27 Nippon Sheet Glass Co Ltd タリウム含有光学ガラス
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法
WO2013073685A1 (ja) * 2011-11-18 2013-05-23 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726981A (en) * 1985-06-10 1988-02-23 Corning Glass Works Strengthened glass articles and method for making
US5674790A (en) * 1995-12-15 1997-10-07 Corning Incorporated Strengthening glass by ion exchange
JP2006083045A (ja) 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
CN102898023B (zh) * 2006-05-25 2016-11-23 日本电气硝子株式会社 强化玻璃及其制造方法
JP5589252B2 (ja) * 2006-10-10 2014-09-17 日本電気硝子株式会社 強化ガラス基板
JP5743125B2 (ja) * 2007-09-27 2015-07-01 日本電気硝子株式会社 強化ガラス及び強化ガラス基板
US8341976B2 (en) * 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
JP5645099B2 (ja) * 2009-09-09 2014-12-24 日本電気硝子株式会社 強化ガラス
JP5483262B2 (ja) * 2009-12-04 2014-05-07 日本電気硝子株式会社 合わせガラス
JP5683971B2 (ja) * 2010-03-19 2015-03-11 石塚硝子株式会社 化学強化用ガラス組成物及び化学強化ガラス材
WO2011145661A1 (ja) * 2010-05-19 2011-11-24 旭硝子株式会社 化学強化用ガラスおよびディスプレイ装置用ガラス板
JP2012036074A (ja) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd ガラス板
US9346703B2 (en) * 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
US8883663B2 (en) * 2010-11-30 2014-11-11 Corning Incorporated Fusion formed and ion exchanged glass-ceramics
JP2012214356A (ja) * 2010-12-29 2012-11-08 Avanstrate Inc カバーガラス及びその製造方法
JP2012148909A (ja) * 2011-01-18 2012-08-09 Nippon Electric Glass Co Ltd 強化ガラス及び強化ガラス板
JP5896338B2 (ja) * 2011-01-18 2016-03-30 日本電気硝子株式会社 強化用ガラスの製造方法及び強化ガラス板の製造方法
TWI591039B (zh) * 2011-07-01 2017-07-11 康寧公司 具高壓縮應力的離子可交換玻璃
JP5737043B2 (ja) * 2011-07-29 2015-06-17 旭硝子株式会社 基板用ガラスおよびガラス基板
JP2013043795A (ja) * 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd 強化ガラス及びその製造方法
KR102306087B1 (ko) * 2011-11-16 2021-09-29 코닝 인코포레이티드 높은 균열 개시 임계값을 갖는 이온 교환가능한 유리
US9701580B2 (en) * 2012-02-29 2017-07-11 Corning Incorporated Aluminosilicate glasses for ion exchange
JP5376032B1 (ja) * 2012-05-25 2013-12-25 旭硝子株式会社 化学強化ガラス板、カバーガラスおよびディスプレイ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230536A (ja) * 1987-03-18 1988-09-27 Nippon Sheet Glass Co Ltd タリウム含有光学ガラス
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法
WO2013073685A1 (ja) * 2011-11-18 2013-05-23 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618088B2 (en) 2014-12-24 2020-04-14 Takahashi Seisakusho Inc. Pyrolytic furnace, water gas generation system, and combustion gas supply method for water gas generation system

Also Published As

Publication number Publication date
KR102309860B1 (ko) 2021-10-07
JP6597950B2 (ja) 2019-10-30
JP2015042607A (ja) 2015-03-05
CN105102388A (zh) 2015-11-25
CN112979159A (zh) 2021-06-18
KR20160034241A (ko) 2016-03-29
TWI618683B (zh) 2018-03-21
TW201509853A (zh) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6136008B2 (ja) 強化ガラス及び強化ガラス板
JP6597950B2 (ja) 強化ガラス及び強化用ガラス
JP5920554B1 (ja) 強化ガラス基板の製造方法
TWI613171B (zh) 強化玻璃、強化玻璃板及強化用玻璃
TWI542559B (zh) 強化玻璃基板及其製造方法與強化用玻璃基板
JP6136599B2 (ja) 強化ガラス及び強化ガラス板並びに強化用ガラス
TWI400207B (zh) 強化玻璃、強化玻璃基板以及其製造方法
JP5924489B2 (ja) 強化ガラスの製造方法
JP6300177B2 (ja) 強化ガラスの製造方法
WO2014010544A1 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
TWI752252B (zh) 化學強化玻璃及化學強化玻璃的製造方法
WO2018124084A1 (ja) 化学強化用ガラス板及び化学強化ガラス板の製造方法
JP2016028000A (ja) 強化ガラス及びその製造方法
JP2016028010A (ja) 強化ガラス基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017415.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157020184

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829508

Country of ref document: EP

Kind code of ref document: A1