WO2015004747A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2015004747A1
WO2015004747A1 PCT/JP2013/068855 JP2013068855W WO2015004747A1 WO 2015004747 A1 WO2015004747 A1 WO 2015004747A1 JP 2013068855 W JP2013068855 W JP 2013068855W WO 2015004747 A1 WO2015004747 A1 WO 2015004747A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
extension pipe
liquid
condenser
pressure
Prior art date
Application number
PCT/JP2013/068855
Other languages
English (en)
French (fr)
Inventor
康敬 落合
畝崎 史武
齊藤 信
一宏 小松
淳二 堀
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/068855 priority Critical patent/WO2015004747A1/ja
Priority to JP2015526059A priority patent/JP6120966B2/ja
Priority to EP13889063.7A priority patent/EP3021059B1/en
Priority to US14/900,640 priority patent/US10113763B2/en
Priority to CN201420369231.5U priority patent/CN204063699U/zh
Publication of WO2015004747A1 publication Critical patent/WO2015004747A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/08Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a separate type refrigeration cycle apparatus for example, a refrigeration air conditioner
  • an indoor unit and an outdoor unit are connected by a liquid extension pipe and a gas extension pipe
  • a pressure sensor and a temperature sensor required for operating the refrigeration air conditioner.
  • estimate the proportion of refrigerant in the air-conditioning refrigeration system taking into account the length of the liquid extension pipe, and detect that the refrigerant has leaked from the estimated result.
  • Patent Document 1 describes that it is necessary to consider the length of the liquid extension pipe in detecting the refrigerant leak, there is no description about the calculation method of the liquid extension pipe refrigerant density. There was a question about leak detection accuracy.
  • This invention is made in view of such a point, and it aims at providing the refrigerating-cycle apparatus which can calculate the refrigerant
  • the refrigeration cycle apparatus is configured such that a refrigerant circulates through a compressor, a condenser, an expansion valve, and an evaporator, the compressor and the condenser are connected by a first extension pipe, and the expansion valve and the evaporator Calculates the refrigerant amount inside the refrigerant circuit based on the refrigerant circuit connected by the second extension pipe, the detection unit for detecting the operation state amount of the refrigerant circuit, and the operation state amount detected by the detection unit.
  • FIG. 2 is a ph diagram during cooling operation of the refrigeration air conditioning apparatus 1 according to Embodiment 1 of the present invention. It is a ph diagram at the time of heating operation of refrigeration air conditioner 1 concerning Embodiment 1 of the present invention. It is explanatory drawing of the refrigerant
  • FIG. 1 is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of a refrigerating and air-conditioning apparatus 1 according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit configuration and operation of the refrigeration air conditioner 1 will be described.
  • the refrigerating and air-conditioning apparatus 1 is installed in, for example, a building or a condominium, and is used for cooling or heating an air-conditioning target area by performing a vapor compression refrigeration cycle operation.
  • the relationship of the size of each component may be different from the actual one.
  • the refrigerating and air-conditioning apparatus 1 is mainly composed of an outdoor unit 2 as a heat source unit and an indoor unit 4 (indoor unit 4A, 2A) as a use unit of a plurality of units (two units are shown in FIG. 1) connected in parallel thereto. Indoor unit 4B).
  • the refrigerating and air-conditioning apparatus 1 has an extension pipe (a liquid extension pipe (second extension pipe) 6 and a gas extension pipe (first extension pipe) 7) that connects the outdoor unit 2 and the indoor unit 4. That is, the refrigerating and air-conditioning apparatus 1 has a refrigerant circuit 10 in which the outdoor unit 2 and the indoor unit 4 are connected by a refrigerant pipe and the refrigerant circulates.
  • the liquid extension pipe 6 includes a main liquid extension pipe 6A, a branch liquid extension pipe 6a, a branch liquid extension pipe 6b, and a distributor 51a.
  • the gas extension pipe 7 includes a main gas extension pipe 7A, a branch gas extension pipe 7a, a branch gas extension pipe 7b, and a distributor 52a.
  • R410A is used as the refrigerant.
  • the indoor unit 4A and the indoor unit 4B are supplied with cooling air or heating air from the outdoor unit 2 and supply cooling air or heating air to the air-conditioning target area.
  • “A” and “B” after the indoor unit 4 may be omitted. In this case, both the indoor unit 4A and the indoor unit 4B are shown.
  • “A (or a)” is added after the sign of each device (including part of the circuit) of the “indoor unit 4A” system, and each device (including part of the circuit is included) of the “indoor unit 4B” system. )
  • B (or b) followsed by “B (or b)”. In these descriptions, “A (or a)” and “B (or b)” after the reference may be omitted, but it goes without saying that both devices are shown.
  • the indoor unit 4 is installed by being embedded in a ceiling of a room such as a building, suspended, or hung on a wall surface of the room.
  • the indoor unit 4A is connected to the outdoor unit 2 using the main liquid extension pipe 6A, the distributor 51a, the branch liquid extension pipe 6a, the branch gas extension pipe 7a, the distributor 52a, and the main gas extension pipe 7A. And constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4B is extended and connected from the outdoor unit 2 using the main liquid extension pipe 6A, the distributor 51a, the branch liquid extension pipe 6b, the branch gas extension pipe 7b, the distributor 52a, and the main gas extension pipe 7A. And constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly has an indoor refrigerant circuit (indoor refrigerant circuit 10a, indoor refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10.
  • This indoor refrigerant circuit is mainly configured by an expansion valve 41 as an expansion mechanism and an indoor heat exchanger 42 as a use side heat exchanger extending in series.
  • the indoor heat exchanger 42 performs heat exchange between a heat medium (for example, air or water) and a refrigerant, and condensates or evaporates the refrigerant.
  • the indoor heat exchanger 42 functions as a refrigerant condenser (heat radiator) during heating operation to heat indoor air, and functions as a refrigerant evaporator during cooling operation to cool indoor air.
  • the type of the indoor heat exchanger 42 is not particularly limited, but may be a cross-fin fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, for example.
  • the expansion valve 41 is installed on the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit, and expands the refrigerant by decompressing it.
  • the expansion valve 41 may be constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the indoor unit 4 has an indoor fan 43.
  • the indoor fan 43 is a blower for supplying indoor air as supply air after sucking indoor air into the indoor unit 4 and exchanging heat with the refrigerant in the indoor heat exchanger 42.
  • the indoor fan 43 is capable of changing the air volume supplied to the indoor heat exchanger 42, and may be constituted by, for example, a centrifugal fan or a multiblade fan driven by a DC fan motor.
  • the indoor heat exchanger 42 may perform heat exchange with a heat medium (for example, water or brine) different from the refrigerant and air.
  • the indoor unit 4 is provided with various sensors.
  • a gas side temperature sensor gas side temperature sensor that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation).
  • 33f mounted on the indoor unit 4A
  • a gas side temperature sensor 33i mounted on the indoor unit 4B
  • a liquid side temperature sensor for detecting the temperature Teo of the refrigerant.
  • an indoor temperature sensor (indoor temperature sensor 33g (mounted on the indoor unit 4A)) that detects the temperature of indoor air flowing into the unit (that is, the indoor temperature Tr),
  • An indoor temperature sensor 33j (mounted on the indoor unit 4B) is provided.
  • Information (temperature information) detected by these various sensors is sent to a control unit (indoor side control unit 32), which will be described later, that controls the operation of each device mounted in the indoor unit 4, and the operation of each device. Used for control.
  • the types of the liquid side temperature sensors 33e and 33h, the gas side temperature sensors 33f and 33i, and the indoor temperature sensors 33g and 33j are not particularly limited.
  • the indoor unit 4 has an indoor side control unit 32 (32a, 32b) that controls the operation of each device constituting the indoor unit 4.
  • the indoor side control part 32 has a microcomputer, memory, etc. provided in order to control the indoor unit 4.
  • FIG. The indoor side control unit 32 exchanges control signals and the like with a remote controller (not shown) for individually operating the indoor unit 4, and communicates with the outdoor unit 2 (specifically, the outdoor side control unit 31). Control signals and the like can be exchanged via a transmission line (which may be wireless). That is, the indoor side control part 32 functions as the control part 3 which performs operation control of the whole refrigerating and air-conditioning apparatus 1 by cooperating with the outdoor side control part 31 (refer FIG. 2).
  • the outdoor unit 2 has a function of supplying cold or warm heat to the indoor unit 4.
  • the outdoor unit 2 is installed outside a building or the like, for example, and is extended from the indoor unit 4 through a liquid extension pipe 6 and a gas extension pipe 7 to form a part of the refrigerant circuit 10. That is, the refrigerant flowing out of the outdoor unit 2 and flowing through the main liquid extension pipe 6A is divided into the branch liquid extension pipe 6a and the branch liquid extension pipe 6b via the distributor 51a, and each of the indoor unit 4A and the indoor unit 4B. To flow into.
  • the refrigerant that flows out of the outdoor unit 2 and flows through the main gas extension pipe 7A is divided into the branch gas extension pipe 7a and the branch gas extension pipe 7b via the distributor 52a, and the indoor unit 4A and the indoor unit 4B. It comes to flow into each.
  • the outdoor unit 2 mainly has an outdoor refrigerant circuit 10z that constitutes a part of the refrigerant circuit 10.
  • This outdoor refrigerant circuit 10z mainly includes a compressor 21, a four-way valve 22 as a flow path switching means, an outdoor heat exchanger 23 as a heat source side heat exchanger, an accumulator 24 as a liquid reservoir, a liquid
  • the side closing valve 28 and the gas side closing valve 29 are configured to extend in series.
  • the compressor 21 sucks refrigerant and compresses the refrigerant to bring it into a high temperature / high pressure state.
  • the compressor 21 is capable of varying the operating capacity, and may be constituted by a positive displacement compressor driven by a motor whose frequency F is controlled by an inverter, for example.
  • FIG. 1 although the case where the number of the compressors 21 is one is illustrated as an example, the present invention is not limited to this, and two or more compressors 21 are arranged in parallel depending on the number of extended indoor units 4 or the like. It may be extended and mounted.
  • the four-way valve 22 switches the direction of the refrigerant flow during the heating operation and the direction of the heat source side refrigerant flow during the cooling operation.
  • the four-way valve 22 extends the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 as shown by a solid line, and connects the accumulator 24 and the main gas extension pipe 7A side. Can be switched to.
  • the outdoor heat exchanger 23 functions as a condenser of the refrigerant
  • the four-way valve 22 extends the discharge side of the compressor 21 and the main gas extension pipe 7A as indicated by the dotted line, and extends the accumulator 24 and the gas side of the outdoor heat exchanger 23. Can be switched.
  • the indoor heat exchanger 42 functions as a condenser of the refrigerant compressed by the compressor 21, and the outdoor heat exchanger 23 functions as an evaporator.
  • the outdoor heat exchanger 23 performs heat exchange between a heat medium (for example, air or water) and a refrigerant, and evaporates or condenses the refrigerant.
  • a heat medium for example, air or water
  • the outdoor heat exchanger 23 functions as a refrigerant evaporator during heating operation, and functions as a refrigerant condenser (heat radiator) during cooling operation.
  • the type of the outdoor heat exchanger 23 is not particularly limited.
  • the outdoor heat exchanger 23 may be configured by a cross fin type fin-and-tube heat exchanger including heat transfer tubes and a large number of fins.
  • the outdoor heat exchanger 23 has a gas side connected to the four-way valve 22 and a liquid side connected to the main liquid extension pipe 6A.
  • the outdoor unit 2 has an outdoor fan 27.
  • the outdoor fan 27 is a blower for sucking outdoor air into the outdoor unit 2, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air outside.
  • the outdoor fan 27 can change the air volume of air supplied to the outdoor heat exchanger 23, and may be a propeller fan driven by a motor including a DC fan motor, for example.
  • the outdoor heat exchanger 23 may perform heat exchange with a heat medium (for example, water or brine) different from the refrigerant and air.
  • the accumulator 24 is connected between the four-way valve 22 and the compressor 21, and is a container capable of accumulating surplus refrigerant generated in the refrigerant circuit 10 according to fluctuations in the operation load of the indoor unit 4. .
  • the liquid side shut-off valve 28 and the gas side shut-off valve 29 are provided at connection ports with external devices and pipes (specifically, the main liquid extension pipe 6A and the main gas extension pipe 7A) to conduct the refrigerant, It ’s something that you do n’t.
  • the outdoor unit 2 is provided with a plurality of pressure sensors and temperature sensors.
  • the pressure sensor a suction pressure sensor 34a for detecting an intake pressure P s of the compressor 21, a discharge pressure sensor 34b for detecting a delivery pressure P d of the compressor 21 is installed.
  • an intake temperature sensor 33a, a discharge temperature sensor 33b, a liquid pipe temperature sensor 33d, a heat exchange temperature sensor 33k, a liquid side temperature sensor 33l, and an outdoor temperature sensor 33c are installed as temperature sensors. ing.
  • the suction temperature sensor 33 a is provided at a position between the accumulator 24 and the compressor 21 and detects the suction temperature T s of the compressor 21.
  • the discharge temperature sensor 33b detects the discharge temperature Td of the compressor 21.
  • the heat exchanger temperature sensor 33k detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23.
  • the liquid side temperature sensor 33l is installed on the liquid side of the outdoor heat exchanger 23 and detects the refrigerant temperature on the liquid side.
  • the outdoor temperature sensor 33 c is installed on the outdoor air inlet side of the outdoor unit 2 and detects the temperature of the outdoor air flowing into the outdoor unit 2.
  • Information (temperature information) detected by these various sensors is sent to a control unit (outdoor control unit 31) that controls the operation of each device mounted on the indoor unit 4 to control the operation of each device.
  • a control unit outdoor control unit 31
  • the kind of each temperature sensor is not specifically limited, For example, it is good to comprise with a thermistor etc.
  • the outdoor unit 2 has an outdoor side control unit 31 that controls the operation of each element constituting the outdoor unit 2.
  • the outdoor control unit 31 includes a microcomputer, a memory, an inverter circuit that controls a motor, and the like that are provided to control the outdoor unit 2.
  • the outdoor control unit 31 can exchange control signals and the like with the indoor control unit 32 of the indoor unit 4 via a transmission line (may be wireless). That is, the outdoor side control part 31 functions as the control part 3 which performs operation control of the whole refrigerating and air-conditioning apparatus 1 by cooperating with the indoor side control part 32 (refer FIG. 2).
  • FIG. 2 is a control block diagram showing an electrical configuration of the refrigeration air conditioner 1 of FIG.
  • the control unit 3 includes a pressure sensor (suction pressure sensor 34a, discharge pressure sensor 34b), temperature sensor (gas side temperature sensors 33f, 33i, liquid side temperature sensors 33e, 33h, indoor temperature sensors 33g, 33j, suction temperature sensor 33a,
  • the discharge temperature sensor 33b, the outdoor temperature sensor 33c, the liquid pipe temperature sensor 33d, the heat exchange temperature sensor 33k, and the liquid side temperature sensor 33l) are connected to these sensors (detection units) so as to receive the detection signals.
  • the control unit 3 controls various devices (the compressor 21, the four-way valve 22, the outdoor fan 27, the indoor fan 43, and the expansion valve 41 functioning as a flow control valve) based on detection signals of these sensors. It is connected to various devices so that
  • the control unit 3 includes a measurement unit 3a, a calculation unit 3b, a storage unit 3c, a determination unit 3d, a drive unit 3e, a display unit 3f, an input unit 3g, and an output unit 3h.
  • the measurement unit 3a has a function of measuring the pressure and temperature of the refrigerant circulating through the refrigerant circuit 10 based on information sent from the pressure sensor and the temperature sensor (that is, the operating state quantity).
  • the calculation unit 3b has a function of calculating the refrigerant amount (that is, the operation state amount) based on the measurement value measured by the measurement unit 3a.
  • storage part 3c has a function which memorize
  • the determination unit 3d has a function of comparing the reference refrigerant amount stored in the storage unit 3c and the refrigerant amount calculated by calculation to determine the presence or absence of refrigerant leakage.
  • the drive unit 3e has a function of controlling the drive of each element (specifically, a compressor motor, a valve mechanism, a fan motor, etc.) that drives the refrigeration air conditioner 1.
  • the display unit 3f notifies the information to the outside by voice or display when the refrigerant charging is completed, or when refrigerant leakage is detected, or notifies the abnormality that occurs when the refrigeration air conditioner 1 is operated by voice or display. It has a function to do.
  • the input unit 3g has a function of inputting and changing set values for various controls and inputting external information such as the refrigerant charging amount.
  • the output unit 3h has a function of outputting the measurement value measured by the measurement unit 3a and the value calculated by the calculation unit 3b to the outside.
  • the extension pipes (liquid extension pipe 6 and gas extension pipe 7) connect the outdoor unit 2 and the indoor unit 4 and circulate the refrigerant in the refrigeration air conditioner 1. That is, the refrigerating and air-conditioning apparatus 1 forms a refrigerant circuit 10 by extending various devices constituting the refrigerating and air-conditioning apparatus 1 with extension pipes, and circulating the refrigerant through the refrigerant circuit 10 to perform cooling operation or Heating operation is feasible.
  • the extension pipe includes the liquid extension pipe 6 (main liquid extension pipe 6A, branch liquid extension pipe 6a, branch liquid extension pipe 6b, and distributor 51a) through which liquid refrigerant or two-phase refrigerant flows, and gas refrigerant.
  • the gas extension pipe 7 (the main gas extension pipe 7A, the branch gas extension pipe 7a, the branch gas extension pipe 7b, and the distributor 52a) flows.
  • the main liquid extension pipe 6A, branch liquid extension pipe 6a, branch liquid extension pipe 6b, main gas extension pipe 7A, branch gas extension pipe 7a, and branch gas extension pipe 7b are installed in the refrigeration air conditioner 1 in a building or the like.
  • Refrigerant pipes that are installed on site when installed in a place, and each of these pipes has a pipe diameter determined according to the combination of the outdoor unit 2 and the indoor unit 4 It is like that.
  • the amount of refrigerant flowing through the main extension pipe (main liquid extension pipe 6A, main gas extension pipe 7A) is determined as branch extension pipe (branch liquid extension pipe 6a, branch liquid extension pipe). 6b, branch gas extension pipe 7a and branch gas extension pipe 7b).
  • branch extension pipe branch liquid extension pipe 6a, branch liquid extension pipe. 6b, branch gas extension pipe 7a and branch gas extension pipe 7b.
  • the first embodiment is characterized by being able to accurately calculate the amount of refrigerant inside the liquid extension pipe through which the two-phase refrigerant flows, and to detect refrigerant leakage with high accuracy, even in such a background. This feature will be described in order below.
  • an extension pipe in which a distributor 51a and a distributor 52a are added to the connection between one outdoor unit 2 and two indoor units 4 is used.
  • the distributor 51a and the distributor 52a are used. Is not necessarily required.
  • the shape of the distributor 51a and the distributor 52a may be determined according to the number of indoor units 4 extended.
  • the distributor 51a and the distributor 52a may be configured with T-tubes, or may be configured with headers.
  • a plurality of (three or more) indoor units 4 are connected, a plurality of T-shaped tubes may be used to distribute the refrigerant, or a header may be used to distribute the refrigerant. .
  • the liquid level detection sensor 35 is installed inside or outside the accumulator 24.
  • the liquid level detection sensor 35 grasps the liquid level of the liquid refrigerant stored in the accumulator 24 and grasps the amount of refrigerant inside from the liquid level position.
  • Specific liquid level detection sensors include various types of liquid level detection, such as those that use ultrasonic waves or those that measure temperature, and those that use floats or internal insertion types such as capacitance types. There is a method.
  • the refrigerating and air-conditioning apparatus 1 is configured by connecting the indoor refrigerant circuit (the indoor refrigerant circuit 10a and the indoor refrigerant circuit 10b), the outdoor refrigerant circuit 10z, and the extension pipe.
  • the refrigerating and air-conditioning apparatus 1 is operated by switching the four-way valve 22 according to the cooling operation or the heating operation by the control unit 3 including the indoor side control unit 32 and the outdoor side control unit 31, and Depending on the operation load of the unit 4, the devices mounted on the outdoor unit 2 and the indoor unit 4 are controlled.
  • the four-way valve 22 is not necessarily an essential configuration and can be omitted.
  • the refrigerating and air-conditioning apparatus 1 controls each device constituting the refrigerating and air-conditioning apparatus 1 according to the operation load of each indoor unit 4 and executes the cooling and heating operation.
  • FIG. 3 is a ph diagram during cooling operation of the refrigeration air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • FIG. 4 is a ph diagram during heating operation of the refrigeration air conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • the refrigerant flow during the cooling operation is indicated by a solid line arrow, and the refrigerant flow during the heating operation is indicated by a broken line arrow.
  • refrigerant leakage detection is always performed, and remote monitoring can be performed at a management center or the like by using a communication line.
  • the cooling operation performed by the refrigerating and air-conditioning apparatus 1 will be described with reference to FIGS. 1 and 3.
  • the four-way valve 22 is controlled to the state shown by the solid line in FIG. 1, and the refrigerant circuit is in the following connection state. That is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. Further, the suction side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side shut-off valve 29 and the gas extension pipe 7 (main gas extension pipe 7A, branch gas extension pipe 7a, branch gas extension pipe 7b). Connected. In addition, the liquid side closing valve 28 and the gas side closing valve 29 are opened. Further, a case where the cooling operation is executed in all the indoor units 4 will be described as an example.
  • the low-temperature / low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature / high-pressure gas refrigerant (point a shown in FIG. 3).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way valve 22.
  • the refrigerant flowing into the outdoor heat exchanger 23 is condensed and liquefied while radiating heat to the outdoor air by the blowing action of the outdoor fan 27 (point b shown in FIG. 3).
  • the condensation temperature at this time is obtained by converting the pressure detected by the heat exchanger temperature sensor 33k or the discharge pressure sensor 34b to a saturation temperature.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 23 flows out of the outdoor unit 2 through the liquid-side closing valve 28.
  • the pressure of the high-pressure liquid refrigerant flowing out of the outdoor unit 2 drops due to tube wall friction in the main liquid extension pipe 6A, branch liquid extension pipe 6a, and branch liquid extension pipe 6b (point c shown in FIG. 3).
  • This refrigerant flows into the indoor unit 4 and is decompressed by the expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant (point d shown in FIG. 3).
  • This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 42 that functions as an evaporator of the refrigerant, and is evaporated and gasified by absorbing heat from the air by the blowing action of the indoor fan 43 (point e shown in FIG. 3). At this time, the air-conditioning target area is cooled.
  • the expansion valves 41A and 41B have the superheat degree SH of the refrigerant at the outlet of the indoor heat exchangers 42A and 41B (that is, the gas side of the indoor heat exchanger 42A and the indoor heat exchanger 42B).
  • the opening degree is adjusted to be the value SHm.
  • the gas refrigerant that has passed through the indoor heat exchanger 42 passes through the branch gas extension pipe 7a, the branch gas extension pipe 7b, and the main gas extension pipe 7A, and flows into the outdoor unit 2 through the gas side shut-off valve 29.
  • the pressure of the gas refrigerant drops due to the tube wall friction when passing through the branch gas extension pipe 7a, the branch gas extension pipe 7b, and the main gas extension pipe 7A (point f shown in FIG. 3).
  • the refrigerant flowing into the outdoor unit 2 is again sucked into the compressor 21 through the four-way valve 22 and the accumulator 24.
  • the refrigeration air conditioner 1 performs the cooling operation.
  • Heating operation The heating operation performed by the refrigeration air conditioner 1 will be described with reference to FIGS. 1 and 4.
  • the four-way valve 22 is controlled to the state shown by the broken line in FIG. 1, and the refrigerant circuit is in the following connection state. That is, the discharge side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side shut-off valve 29 and the gas extension pipe 7 (main gas extension pipe 7A, branch gas extension pipe 7a, branch gas extension pipe 7b). Is done. Further, the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. Note that the liquid side closing valve 28 and the gas side closing valve 29 are opened. Moreover, the case where heating operation is performed by all the indoor units 4 is demonstrated to an example.
  • the low-temperature / low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature / high-pressure gas refrigerant (point a shown in FIG. 4).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows out of the outdoor unit 2 through the four-way valve 22 and the gas side closing valve 29.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 2 passes through the main gas extension pipe 7A, the branch gas extension pipe 7a, and the branch gas extension pipe 7b, and at this time, the pressure drops due to pipe wall friction (see FIG. 4).
  • Point g) This refrigerant flows into the indoor heat exchanger 42 of the indoor unit 4.
  • the refrigerant that has flowed into the indoor heat exchanger 42 is condensed and liquefied while radiating heat to the indoor air by the blowing action of the indoor fan 43 (point b shown in FIG. 4). At this time, heating of the air-conditioning target area is performed.
  • the refrigerant that has flowed out of the indoor heat exchanger 42 is decompressed by the expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant (point c shown in FIG. 4).
  • the opening degree of the expansion valves 41A and 41B is adjusted so that the supercooling degree SC of the refrigerant at the outlets of the indoor heat exchangers 42A and 41B becomes constant at the supercooling degree target value SCm.
  • the subcooling degree SC of the refrigerant at the outlets of the indoor heat exchangers 42A and 42B is obtained as follows. First, in terms of the discharge pressure P d of the compressor 21 detected by the discharge pressure sensor 34b to saturated temperature corresponding to the condensation temperature Tc. And it calculates
  • a temperature sensor for detecting the temperature of the refrigerant flowing in each indoor heat exchanger 42 is separately provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by the temperature sensor is set as the liquid side temperature sensor 33e, the liquid side.
  • the degree of supercooling SC may be obtained by subtracting from the refrigerant temperature value detected by the temperature sensor 33h.
  • the low-pressure gas-liquid two-phase refrigerant passes through the branch liquid extension pipe 6a, the branch liquid extension pipe 6b, and the main liquid extension pipe 6A, and passes through the branch liquid extension pipe 6a, the branch liquid extension pipe 6b, and the main liquid extension pipe 6A.
  • the pressure drops due to the friction of the pipe wall surface (point d shown in FIG. 4)
  • it flows into the outdoor unit 2 through the liquid side closing valve 28.
  • the refrigerant that has flowed into the outdoor unit 2 flows into the outdoor heat exchanger 23 and is evaporated and gasified by absorbing heat from the outdoor air by the blowing action of the outdoor fan 27 (point e shown in FIG. 4).
  • the refrigerant is sucked again into the compressor 21 through the four-way valve 22 and the accumulator 24.
  • the refrigeration air conditioner 1 performs the heating operation.
  • the amount of refrigerant required for each operation is different from each other, and in the first embodiment, a larger amount of refrigerant is required during the cooling operation than during the heating operation.
  • the expansion valve 41 is connected to the indoor unit 4 side, during the cooling operation, the refrigerant in the liquid extension pipe 6 is in the liquid phase and the refrigerant in the gas extension pipe 7 is in the gas phase.
  • the refrigerant in the liquid extension pipe 6 is in two phases and the refrigerant in the gas extension pipe 7 is in a gas phase. That is, since the gas extension pipe 7 side is in the gas phase in both the cooling operation and the heating operation, there is no difference between the heating operation and the cooling operation.
  • the liquid phase is in the cooling operation, the two phases are in the heating operation, and the liquid phase is more refrigerant. As a result, more refrigerant is required during the cooling operation.
  • the evaporator average refrigerant density is smaller than the condenser average refrigerant density, and the internal volumes of the outdoor heat exchanger 23 and the indoor heat exchanger 42 are different from each other.
  • the internal volume of the indoor heat exchanger 42 is smaller than the outdoor heat exchanger 23 from the relationship of installation space or a design.
  • the outdoor heat exchanger 23 having a large internal volume becomes a condenser having a large average refrigerant density, and thus a large amount of refrigerant is required.
  • the indoor heat exchanger 42 having a small internal volume becomes a condenser having a large average refrigerant density, so that a large amount of refrigerant is not required.
  • the calculated refrigerant amount M r [kg] is obtained as the sum of the refrigerant amounts of the respective components constituting the refrigerant circuit, as determined by the following equation, from the operating state of each component.
  • Refrigerant is mostly present in elements having a high internal volume V [m 3 ] or average refrigerant density ⁇ [kg / m 3 ] (described later) and refrigerating machine oil (refrigerant is dissolved in refrigerating machine oil). The amount of refrigerant is calculated.
  • the element having a high average refrigerant density ⁇ is an element having a high pressure or through which a two-phase or liquid-phase refrigerant passes.
  • Embodiment 1 the outdoor heat exchanger 23, the liquid extension pipe 6, the indoor heat exchanger 42, the gas extension pipe 7, the accumulator 24, and the refrigeration oil present in the refrigerant circuit are taken into consideration.
  • Calculated refrigerant quantity M r [kg] is obtained.
  • the calculated refrigerant amount Mr is represented by the sum of products of the internal volume V of each element and the average refrigerant density ⁇ , as shown in Equation (1).
  • M rc Condenser refrigerant quantity
  • M rPL Liquid extension pipe refrigerant quantity
  • M rPG Gas extension pipe refrigerant quantity
  • M re Evaporator refrigerant quantity
  • M rACC Accumulator refrigerant quantity
  • M rOIL Oil dissolved refrigerant quantity
  • M rADD Additional refrigerant quantity
  • FIG. 5 is explanatory drawing of the refrigerant
  • the saturated steam is further cooled by room air having a temperature T cai and condensed by a latent heat change in a two-phase state to become a saturated liquid having a temperature T csl .
  • the saturated liquid is further cooled to a liquid phase state at a temperature T sco .
  • the condenser refrigerant amount M rc [kg] is expressed by the following equation.
  • V c condenser internal volume [m 3 ]
  • ⁇ c Condenser average refrigerant density [kg / m 3 ]
  • V c is known because it is a device specification.
  • ⁇ c [kg / m 3 ] is expressed by the following equation.
  • R cg volume ratio of gas phase region [ ⁇ ]
  • R cs volume ratio of two-phase region [ ⁇ ]
  • R cl Volume ratio of liquid phase region [-]
  • ⁇ cg Average refrigerant density in the gas phase [kg / m 3 ]
  • ⁇ cs average refrigerant density in two-phase region [kg / m 3 ]
  • ⁇ cl Average refrigerant density [kg / m 3 ] in the liquid phase region
  • the condenser inlet density ⁇ d can be calculated from the condenser inlet temperature (corresponding to the discharge temperature T d ) and the pressure (corresponding to the discharge pressure P d ).
  • the saturated vapor density ⁇ csg in the condenser can be calculated from the condensation pressure (corresponding to the discharge pressure P d ).
  • the outlet density ⁇ sco of the condenser can be calculated from the condenser outlet temperature T sco and the pressure (corresponding to the discharge pressure P d ).
  • the saturated liquid density ⁇ csl in the condenser can be calculated from the condensation pressure (discharge pressure P d ).
  • the void ratio fcg is expressed by the following equation.
  • s [ ⁇ ] is a slip ratio (gas-liquid speed ratio).
  • Many empirical formulas have been proposed so far for calculating the slip ratio s.
  • the mass flux G mr [kg / (m 2 s)], the condensation pressure (corresponding to the discharge pressure P d ), and the dryness x Expressed as a function.
  • the mass flux G mr can be obtained from the refrigerant flow rate in the condenser.
  • the average refrigerant densities ⁇ cg , ⁇ cs , ⁇ cl [kg / (m 3 )] of the gas phase region, the two-phase region, and the liquid phase region, which are necessary for calculating the average refrigerant density of the condenser. was calculated.
  • the refrigerating and air-conditioning apparatus 1 of the first embodiment includes an outdoor heat exchanger (heat source side heat exchanger) 23, an indoor heat exchanger (use side heat exchanger) 42, and a refrigerant flow rate calculation unit that calculates the refrigerant flow rate. Yes. Refrigerant flow rate calculation unit, using the slip ratio s, it is possible to detect the change in the calculated refrigerant quantity M r for the refrigerant flow rate.
  • a cg [m 2 ] Gas phase heat transfer area in the condenser
  • a cs [m 2 ] Two phase heat transfer area in the condenser
  • a cl [m 2 ] Heat transfer area in the liquid phase area in the condenser
  • a c [m 2 ] Heat transfer area of the entire condenser
  • the specific enthalpy difference between the inlet refrigerant and the outlet refrigerant in each of the gas phase region, the two-phase region, and the liquid phase region in the condenser is ⁇ H [kJ / kg], and the average of the medium that exchanges heat with the refrigerant When the temperature difference is ⁇ T m [° C.], the following equation is established in each phase region from the balance of heat balance.
  • G r [kg / h]: Mass flow rate of refrigerant A [m 2 ]: Heat transfer area K [kW / (m 2 ° C)]: Heat passage rate
  • the volume ratio is proportional to the value obtained by dividing the specific enthalpy difference ⁇ H [kJ / kg] by the temperature difference ⁇ T [° C.] between the refrigerant and the room air.
  • the amount of the liquid phase region differs between the place where the wind does not hit and the place where the wind hits for each path of the heat exchanger constituting the condenser. That is, it is considered that the liquid phase area decreases in a place where the wind does not hit and the liquid phase area increases because heat transfer is promoted in a place where the wind easily hits.
  • the refrigerant is unevenly distributed due to variations in distribution of the refrigerant with respect to each path. Therefore, when calculating the volume ratio of each phase region, the liquid phase region is multiplied by the condenser liquid phase region ratio correction coefficient ⁇ [ ⁇ ] to correct the above phenomenon. From the above, the following equation is derived.
  • ⁇ H cg Specific enthalpy difference of refrigerant in gas phase [kJ / kg]
  • H cs Specific enthalpy difference of refrigerant in two-phase region [kJ / kg]
  • H cl Specific enthalpy difference of refrigerant in liquid phase region [kJ / kg]
  • T cg Average temperature difference between the refrigerant in the gas phase region and the room air [° C.]
  • ⁇ T cs Average temperature difference [° C.] between refrigerant and room air in the two-phase region
  • T cl Mean temperature difference [° C.] between refrigerant and room air in the liquid phase region
  • the condenser liquid phase region ratio correction coefficient ⁇ is a value obtained from the measurement data, and is a value that varies depending on the equipment specifications, particularly the condenser specifications.
  • the ratio of the refrigerant in the liquid phase area existing in the condenser can be corrected from the operating state quantity of the condenser by the condenser liquid phase area ratio correction coefficient ⁇ .
  • ⁇ H cg is obtained by subtracting the specific enthalpy of saturated steam from the specific enthalpy at the condenser inlet (corresponding to the discharge specific enthalpy of the compressor 21).
  • the discharge specific enthalpy is obtained by calculating the discharge pressure P d and the discharge temperature T d, and the specific enthalpy of saturated steam in the condenser can be calculated from the condensation pressure (corresponding to the discharge pressure P d ).
  • ⁇ H cs is obtained by subtracting the specific enthalpy of the saturated liquid in the condenser from the specific enthalpy of the saturated vapor in the condenser.
  • Specific enthalpy of saturated liquid in the condenser can be calculated from the condensing pressure (corresponding to the discharge pressure P d).
  • ⁇ H cl is obtained by subtracting the specific enthalpy of the condenser outlet from the specific enthalpy of the saturated liquid in the condenser.
  • Specific enthalpy of the condenser outlet is obtained by calculating the condensing pressure (corresponding to the discharge pressure P d) and the condenser outlet temperature T sco.
  • the temperature difference ⁇ T cg [° C.] between the refrigerant in the gas phase region and the outdoor air in the condenser is the condenser inlet temperature (corresponding to the discharge temperature T d ), the saturated vapor temperature T csg [° C.] in the condenser, and the room air Using the inlet temperature T cai [° C.], the logarithm average temperature difference can be expressed by the following equation.
  • Saturated steam temperature T csg in the condenser can be calculated from the condensing pressure (corresponding to the discharge pressure P d).
  • the average temperature difference ⁇ T cs between the refrigerant in the two-phase region and the room air is expressed by the following equation using the saturated vapor temperature T csg and the saturated liquid temperature T csl in the condenser.
  • the saturated liquid temperature T csl in the condenser can be calculated from the condensation pressure (corresponding to the discharge pressure P d ).
  • the average temperature difference ⁇ T cl between the refrigerant in the liquid phase region and the room air is expressed as a logarithmic average temperature difference using the condenser outlet temperature T sco , the saturated liquid temperature T csl in the condenser, and the indoor air inlet temperature T cai. It can be expressed by the following formula.
  • the condenser refrigerant amount M rc [kg] can be calculated from the above equation (2).
  • ⁇ PL [kg / m 3 ] Liquid extension pipe average refrigerant density
  • ⁇ PG [kg / m 3 ] Gas extension pipe average refrigerant density
  • V PL [m 3 ] Liquid extension pipe internal volume
  • V PG [m 3 ] Gas Extension pipe internal volume
  • the average refrigerant density ⁇ PL [kg / m 3 ] of the liquid extension pipe is determined using the dryness x ei [ ⁇ ] of the evaporator inlet. It is expressed by the following formula.
  • ⁇ esg and ⁇ esl can be calculated from the evaporation pressure (corresponding to the suction pressure P s ), respectively.
  • H esg and H esl are respectively obtained by calculating the evaporation pressure (corresponding to the suction pressure P s ).
  • H ei can be calculated from the condenser outlet temperature T sco .
  • the gas extension pipe average refrigerant density ⁇ PG is obtained, for example, by calculating the gas extension pipe outlet temperature (corresponding to the suction temperature T s ) and the gas extension pipe outlet pressure (corresponding to the suction pressure P s ).
  • M r1 [kg] Appropriate refrigerant amount
  • M r2 [kg] Refrigerant amount excluding liquid extension pipe 6 and gas extension pipe 7
  • Mr1 is calculated from the length of the pipe, the capacity of the constituent devices, and the like after the refrigeration cycle apparatus is installed on site, and is stored in the storage unit 3c in advance.
  • Mr2 is obtained on the basis of the operating state quantity of the refrigerant circuit by performing a trial operation after the installation of the apparatus. For this reason, the pipe length L can be calculated from the above equation. Then, the liquid extension pipe internal volume V PL and the gas extension pipe internal volume V PG can be calculated from the pipe length L, the cross sectional area A PL of the liquid extension pipe 6 and the cross sectional area A PG of the gas extension pipe 7. .
  • the average refrigerant density ⁇ PL of the liquid extension pipe 6 is calculated by using the low-pressure pressure and the condenser outlet enthalpy as the liquid extension pipe outlet density. If the exact internal volume of the main extension pipe (main liquid extension pipe 6A, main gas extension pipe 7A), branch extension pipe (branch liquid extension pipes 6a, 6b, branch gas extension pipes 7a, 7b) is not known, The amount of refrigerant in the element cannot be calculated accurately. As a result, an error occurs when calculating the total refrigerant amount.
  • the refrigerant density change due to the pressure change is large, so that the refrigerant amount calculation error due to the pressure loss at the inlet and outlet of the liquid extension pipe becomes large.
  • FIG. 6 is an explanatory diagram of the refrigerant state in the evaporator.
  • the refrigerant has two phases.
  • the degree of superheat on the suction side of the compressor 21 is greater than 0 degrees, so the refrigerant is in the gas phase.
  • the refrigerant in a two-phase state at the temperature T ei [° C.] is heated by the indoor intake air at the temperature T ea [° C.] and becomes saturated steam at the temperature T esg [° C.].
  • This saturated vapor is further heated to become a gas phase having a temperature T s [° C.].
  • the evaporator refrigerant amount M re [kg] is expressed by the following equation.
  • ⁇ e evaporator average refrigerant density [kg / m 3 ]
  • the evaporator internal volume V e is known because it is an equipment specification.
  • ⁇ e is expressed by the following equation.
  • R es [ ⁇ ] Volume ratio in the two-phase region
  • R eg [ ⁇ ] Volume ratio in the gas phase region
  • ⁇ es [kg / m 3 ] Average refrigerant density in the two-phase region
  • ⁇ eg [kg / m 3 ] Gas Average refrigerant density in phase
  • s [ ⁇ ] is the slip ratio (gas-liquid speed ratio) as described above.
  • Many empirical formulas have been proposed so far for calculating the slip ratio s.
  • the mass flux G mr [kg / (m 2 s)], the condensation pressure (corresponding to the discharge pressure P d ), and the dryness x Expressed as a function.
  • the mass flux G mr can be obtained from the refrigerant flow rate in the evaporator.
  • the vapor-phase area average refrigerant density ⁇ eg in the evaporator is obtained by the average value of the saturated vapor density ⁇ esg and the evaporator outlet density ⁇ s [kg / m 3 ] in the evaporator, for example, as in the following equation.
  • the saturated vapor density ⁇ esg in the evaporator can be calculated from the evaporation pressure (corresponding to the suction pressure P s ).
  • the evaporator outlet density (corresponding to the suction density ⁇ s ) can be calculated from the evaporator outlet temperature (corresponding to the suction temperature T s ) and the pressure (corresponding to the suction pressure P s ).
  • G r [kg / h]: Mass flow rate of refrigerant A [m 2 ]: Heat transfer area K [kW / (m 2 ° C)]: Heat passage rate
  • the volume ratio is proportional to the specific enthalpy difference ⁇ H [kJ / kg] and the value divided by the temperature difference ⁇ T [° C.] between the refrigerant and the outdoor air. Holds.
  • ⁇ H es is determined by subtracting the evaporator inlet specific enthalpy from the specific enthalpy of saturated steam in the evaporator.
  • the specific enthalpy of saturated vapor in the evaporator is obtained by calculating the evaporation pressure (corresponding to the suction pressure P s ), and the evaporator inlet specific enthalpy can be calculated from the condenser outlet temperature T sco .
  • ⁇ Heg is obtained by subtracting the specific enthalpy of saturated vapor in the evaporator from the specific enthalpy at the outlet of the evaporator (corresponding to the suction specific enthalpy).
  • the specific enthalpy at the evaporator outlet is obtained by calculating the outlet temperature (corresponding to the suction temperature T s ) and the pressure (corresponding to the suction pressure P s ).
  • the average temperature difference ⁇ T es between the two-phase region and the outdoor air in the evaporator is expressed by the following equation.
  • the saturated vapor temperature T esg in the evaporator is obtained by calculating the evaporation pressure (corresponding to the suction pressure P s ).
  • the evaporator inlet temperature T ei can be calculated from the evaporation pressure (corresponding to the suction pressure P s ) and the inlet dryness x ei in the evaporator.
  • the average temperature difference [Delta] T eg between the refrigerant and outdoor air in the gas phase region is represented by the following formula as a logarithmic mean temperature difference.
  • Evaporator outlet temperature T eg is obtained as the suction temperature T s.
  • the average refrigerant density ⁇ cs in the two-phase region, the average refrigerant density ⁇ cg in the gas phase region, and the volume ratio (R cg : R cs ) can be calculated, and the evaporator average refrigerant density ⁇ e is calculated. be able to. Therefore, the evaporator refrigerant amount M re [kg] can be calculated from the above equation (20).
  • V ACC [m 3 ] Accumulator internal volume
  • ⁇ ACC [kg / m 3 ] Accumulator average refrigerant density
  • the accumulator internal volume V ACC is a known value.
  • the accumulator average refrigerant density ⁇ ACC is obtained by calculating the accumulator inlet temperature (corresponding to the suction temperature T s ) and the inlet pressure (corresponding to the suction pressure P s ).
  • liquid refrigerant is present inside the accumulator 24.
  • the accumulator refrigerant amount M rACC [kg] is expressed by the following equation.
  • V ACC_L [m 3 ] Volume of liquid refrigerant stored inside accumulator ⁇ ACC_L [kg / m 3 ]: Liquid refrigerant density inside accumulator ⁇ ACC_G [kg / m 3 ]: Gas refrigerant inside accumulator density
  • the volume V ACC_L of the liquid refrigerant stored in the accumulator 24 is calculated using the liquid level detection sensor 35. Further, ⁇ ACC — L [kg / m 3 ] can be calculated as the density of the saturated liquid refrigerant at the inlet pressure (corresponding to the suction pressure P s ). The gas refrigerant density ⁇ ACC_G inside the accumulator 24 can be calculated as the density of the saturated gas refrigerant at the inlet pressure (corresponding to the suction pressure P s ).
  • V OIL [m 3 ] Volume of refrigerating machine oil existing in refrigerant circuit
  • ⁇ OIL [kg / m 3 ] Density of refrigerating machine oil
  • ⁇ OIL [ ⁇ ] Solubility of refrigerant in oil
  • the volume V OIL of the refrigerating machine oil existing in the refrigerant circuit is known because it is an equipment specification. Assuming that most of the refrigerating machine oil is present in the compressor 21 and the accumulator 24, the refrigerating machine oil density ⁇ OIL can be handled at a constant value. Further, the solubility ⁇ [ ⁇ ] of the refrigerant in the refrigerating machine oil is obtained by calculating the suction temperature T s and the suction pressure P s as shown in the following equation.
  • ⁇ [m 3 ] Liquid phase region volume / initially charged refrigerant amount correction coefficient ⁇ l [kg / m 3 ]: Liquid phase region refrigerant density
  • is obtained from actual machine measurement data.
  • ⁇ l is the condenser outlet density ⁇ sco .
  • the condenser outlet density ⁇ sco is obtained by calculating the condenser outlet pressure (corresponding to the discharge pressure P d ) and the temperature T sco .
  • the liquid phase area volume / initially charged refrigerant amount correction coefficient ⁇ varies depending on the device specifications, but it also needs to be determined each time the device is filled with the refrigerant in order to correct the difference between the initial charged refrigerant amount and the appropriate refrigerant amount.
  • the liquid phase region volume / initially charged refrigerant amount correction coefficient may be ⁇ 1 obtained as follows.
  • the phase area volume / initially charged refrigerant amount correction coefficient ⁇ 1 is as follows according to the extension pipe specifications (the specifications of the liquid extension pipe 6 or the gas extension pipe 7). It is expressed by a formula.
  • V PL [m 3 ] Liquid extension pipe internal volume
  • V PG [m 3 ] Gas extension pipe internal volume
  • M r1 [kg] Initially charged refrigerant amount
  • ⁇ PL1 [kg / m 3 ] Appropriate refrigerant amount in the liquid extension pipe
  • V PL and V PG are obtained from the pipe length L as described above. If VPL and VPG are known, the values may be used. ⁇ PL1 and ⁇ PG1 are obtained from the measurement data.
  • liquid phase region volume / initially enclosed refrigerant amount correction When ⁇ 1 is used as the liquid phase region volume / initially enclosed refrigerant amount correction coefficient, the liquid phase region volume / initially enclosed refrigerant amount correction is as follows.
  • the condenser refrigerant amount M rc (2) the liquid extension pipe refrigerant quantity M rPL and the gas extension pipe refrigerant quantity M rPG , (3) the evaporator refrigerant quantity M re , and (4) the accumulator.
  • the refrigerant quantity M rACC (5) the oil-dissolved refrigerant quantity M rOIL , and (6) the additional refrigerant quantity M rADD can be calculated.
  • the calculated refrigerant quantity Mr can be obtained by adding all these refrigerant quantities.
  • the refrigerant leakage rate r can be obtained by the following equation.
  • FIG. 7 is a conceptual diagram of the influence of the correction of the first embodiment of the present invention on the calculation of the refrigerant amount.
  • the degree of supercooling at the outlet of the condenser increases and the amount of liquid refrigerant in the condenser increases. It can be understood that the change of the liquid refrigerant amount of the condenser with respect to the refrigerant amount is increased by performing the condenser liquid phase region ratio correction. Further, it can be understood that liquid phase refrigerant that was not taken into consideration before the correction is added by performing the liquid phase region volume / initially charged refrigerant amount correction.
  • the refrigerant quantity calculation accuracy deteriorates because the actual refrigerant state does not match the refrigerant quantity calculation model described above (that is, the refrigerant quantity calculation model that does not consider the influence of the path balance). To do. Therefore, in order to improve the accuracy of calculating the refrigerant amount of the condenser, it is necessary to make the compressor frequency as high as possible. By increasing the compressor frequency, a pressure loss greater than the heat exchanger head difference occurs, it is difficult to be affected by the head difference, and it becomes possible to uniformly distribute, the path balance is improved, and the refrigerant amount calculation accuracy is improved.
  • the refrigerant amount calculation accuracy is improved as compared with the case where the number of sensors is reduced as described above.
  • the exact density of the main liquid extension pipe 6A and the branch liquid extension pipe 6a is not known, and the exact internal volume of the main liquid extension pipe 6A and the branch liquid extension pipe 6a is not known, the actual liquid extension An error occurs between the piping refrigerant amount and the estimated value.
  • Embodiment 1 (Method to reduce the calculation error of the liquid extension pipe refrigerant amount) If there is no density difference at the entrance and exit of the liquid extension pipe 6, or if the density difference can be reduced as much as possible, there will be no problem regarding the unknown internal volumes of the main liquid extension pipe 6A and the branch liquid extension pipe 6a.
  • the refrigerant amount calculation error can be reduced without installing an additional sensor.
  • the refrigerant density in the liquid extension pipe 6 is suppressed to be small and the refrigerant amount in the liquid extension pipe 6 is originally reduced, the ratio of the refrigerant quantity in the liquid extension pipe 6 to the total refrigerant quantity becomes small. Therefore, the influence of the refrigerant amount calculation error generated in the liquid extension pipe 6 on the calculation of the total calculated refrigerant amount Mr can be reduced, and as a result, the calculation accuracy of the calculated refrigerant amount Mr can be improved. .
  • FIG. 8 is a diagram showing the relationship between the dryness and the refrigerant density when the refrigerant is R410A and the piping pressure is 0.933 [Mpa].
  • the refrigerant density has a large tendency when the dryness is around 0.1, and the density change with respect to the dryness is large at 0.1 or more, whereas the refrigerant density with respect to the dryness is less than 0.1. It can be seen that the change in density is small. For this reason, the liquid extension pipe refrigerant density can be reduced by controlling the dryness of the outlet of the liquid extension pipe 6 to 0.1 or more.
  • the pipe pressure is 0.933 here, this is only an example, and it is effective to set the dryness of the liquid extension pipe outlet to 0.1 or more regardless of whether the pipe pressure is different or changed.
  • FIG. 9 is a Ph diagram for the refrigerant R410A.
  • the dotted lines indicate isodensity lines.
  • FIG. 9 also shows the dryness x.
  • the interval between the equal density lines is small, and the interval between the equal density lines is increased as the dryness x is increased. From this, it can be seen that when the interval between isodensity lines is 0.1 or less, the amount of change in refrigerant density due to enthalpy change at the same pressure increases. The same tendency is observed for other refrigerants. Therefore, not only the piping pressure to 0.933 [Mpa], a be 0.1 or more liquid extension pipe outlet dryness degree in other pipe pressure and other refrigerants, the calculation accuracy of the calculated refrigerant quantity M r It is effective in improving.
  • FIG. 10 is a diagram showing the relationship between the degree of dryness of the liquid extension pipe outlet and the refrigerant extension pipe inlet / outlet refrigerant density difference ⁇ [kg / m 3 ] in the refrigerant R410A.
  • the refrigerant extension pipe inlet / outlet refrigerant density difference ⁇ has a large tendency when the dryness is around 0.1, and the change in density difference with respect to the dryness is large at 0.1 or more, whereas the refrigerant with respect to the dryness is less than 0.1. It can be seen that the change in density difference is small. From this, the liquid extension pipe inlet / outlet refrigerant density difference ⁇ can be reduced by controlling the degree of dryness of the liquid extension pipe to 0.1 or more.
  • the dryness of the outlet of the liquid extension pipe (two-phase pipe) 6 it is preferable to set the dryness of the outlet of the liquid extension pipe (two-phase pipe) 6 to 0.1 or more. I understand. And the upper limit of the dryness of the exit of liquid extension piping (two phase piping) 6 shall be 0.7 or less. The basis for this will be described below.
  • the condenser outlet In order to calculate the amount of refrigerant in the condenser, the condenser outlet needs to be in a saturated liquid or supercooled liquid state. This is because the condenser refrigerant amount cannot be accurately calculated when the condenser outlet is in a two-phase state.
  • the condition where the enthalpy is highest when the condenser outlet is in the saturated liquid or supercooled liquid state is the saturated liquid state.
  • FIG. 11 is a diagram illustrating a relationship between the condensation pressure and the enthalpy in the saturated liquid state in the refrigerant R410A.
  • the higher the pressure the higher the enthalpy.
  • the design pressure is set to 4.15 [Mpa] or less. For this reason, the condition with the highest enthalpy when the condenser outlet is in the saturated liquid state is the condition of 4.15 [Mpa] with the highest high pressure (condensation pressure).
  • FIG. 12 is a diagram showing the relationship between the low pressure (evaporation pressure) and the degree of dryness of the liquid extension pipe when the amount of pressure reduction at the expansion valve is changed while the condenser outlet at the refrigerant R410A is the same.
  • the lower the low pressure the greater the dryness of the liquid extension pipe outlet. For this reason, the degree of dryness of the liquid extension pipe outlet is the largest under the condition of the lowest low pressure.
  • the minimum operating pressure in the refrigerating and air-conditioning apparatus using the R410A refrigerant is 0.14 [Mpa] ( ⁇ 45 ° C.), and the maximum dryness of the two-phase piping outlet is 0.7 from the above.
  • FIG. 13 is a diagram showing the relationship between the low pressure at enthalpies 250 [kg / kJ] and 260 [kg / kJ] and the liquid extension pipe refrigerant density ⁇ in the refrigerant R410A.
  • the tendency is greatly different around the low pressure 1.0 [Mpa], and the density change with respect to the low pressure is large when the low pressure exceeds 1.0 [Mpa], whereas the density with respect to the low pressure is below 1.0 [Mpa]. It can be seen that the change is small. For this reason, the liquid extension pipe refrigerant density can be reduced by controlling the low pressure to 1.0 [Mpa] or less.
  • FIG. 15 is a diagram showing changes in the refrigerant extension pipe refrigerant density when the high pressure is changed in the refrigerant R410A.
  • the liquid extension pipe refrigerant density calculation conditions are such that the low pressure is 0.933 [Mpa], the enthalpy is a saturated liquid state at a high pressure, and the influence of the change in the liquid extension pipe refrigerant density on the change in the high pressure is calculated.
  • FIG. 15 shows that the liquid extension pipe refrigerant density decreases as the high pressure increases. From this, the liquid extension pipe refrigerant density can be reduced by increasing the high pressure as much as possible.
  • Method to reduce the pressure loss of the liquid extension pipe inlet / outlet In order to reduce the pressure loss of the liquid extension pipe inlet / outlet, it is necessary to reduce the refrigerant circulation rate. There are the following methods (a) or (b) as a method for reducing the refrigerant circulation amount, and methods (b-1), (b-2), and (b-3) as methods for realizing (b) There is.
  • the expansion valve 41 is controlled so that the degree of supercooling at the condenser outlet becomes as small as possible.
  • the reason that the condenser outlet supercooling degree is made as small as possible is that the detection accuracy deteriorates when the supercooling degree is lost. In other words, if the degree of supercooling cannot be achieved at the outlet of the condenser and the condenser outlet is in a two-phase state, the condenser outlet state will not be known and the liquid extension pipe outlet state will not be known, so the refrigerant amount estimation accuracy will deteriorate. It is.
  • Control of condenser fan (outdoor fan 27) (c-1) Decrease the rotational speed of the condenser fan.
  • Increasing the condenser outlet enthalpy is effective for setting the dryness to 0.1 or more. Therefore, it is also effective to increase the high-pressure pressure in order to increase the condenser outlet enthalpy, that is, to reduce the rotational speed of the condenser fan compared to that during normal operation.
  • Control of the evaporator fan (a-1) Normal operation of the rotation speed of the evaporator fan so that the heat exchange amount of the evaporator is lowered so that the low pressure is lowered, that is, the air volume of the evaporator is reduced. Make it smaller than time.
  • the determination of the refrigerant leakage is based on the refrigerant amount charged when the refrigeration air conditioner 1 is installed, or the refrigerant amount (initial refrigerant amount) when the refrigerant amount is calculated immediately after installation. conducted by comparing the calculated refrigerant quantity M r calculated in the manner described above each time of performing the refrigerant leak detection operation. That is, when the calculated refrigerant amount Mr is smaller than the reference refrigerant amount, it is determined that the refrigerant is leaking.
  • FIG. 16 is a flowchart showing the flow of the refrigerant leakage detection operation in the refrigeration air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • the flow of the refrigerant leakage detection operation will be described with reference to FIG.
  • the control unit 3 determines whether the refrigerant leak detection operation is possible.
  • the refrigerant leak detection operation is a special operation aimed at improving the refrigerant amount calculation accuracy (improving the refrigerant leak detection accuracy). That is, it is an operation that gives priority to the degree of dryness of the outlet of the liquid extension pipe 6 being 0.1 or more and 0.7 or less than the comfort in the room. Therefore, the refrigerant leakage detection operation is not performed when the influence on the indoor side is large, for example, when the load is large and comfort is significantly impaired. That is, the refrigerant leak detection operation is performed in a time zone that does not affect the indoor side.
  • the control unit 3 performs low-speed operation with the compressor frequency set to a half of the rated compressor frequency. This is due to the following reason.
  • In order to improve the refrigerant amount calculation accuracy of the condenser it is necessary to increase the refrigerant circulation amount to some extent. This is to reduce the influence of the pressure head as described above so as not to deteriorate the path balance in the condenser.
  • the appropriate amount of refrigerant circulation is the heat exchanger height, pressure loss in the heat exchanger, pressure loss (pipe diameter, length) in the capillary tube for distributing the refrigerant to each path of the heat exchanger, etc. Varies depending on heat exchanger specifications. However, for example, based on the rated circulation rate (refrigerant circulation rate when rated capacity is reached), if there is a circulation rate that is more than half of the rated circulation rate, it will not be affected by the pressure head, and the effect of deterioration of the path balance. Can be reduced. Therefore, in S3, in order to increase the refrigerant amount calculation accuracy, the compressor frequency is lowered to half the compressor frequency with respect to the rated compressor frequency so that the refrigerant circulation amount becomes half of the rated circulation amount.
  • the control unit 3 determines whether the low pressure is 1 [Mpa] or less. If it is not 1 [Mpa] or less, the control unit 3 returns to S2 to continue the element device control and controls the low pressure to be 1 [Mpa] or less. Here, the low pressure (evaporation pressure) is controlled to be 0.933 [Mpa].
  • control unit 3 determines whether the liquid extension pipe outlet dryness is 0.1 or more and 0.7 or less. When the controller 3 determines that the liquid extension pipe outlet dryness is not 0.1 or more and 0.7 or less, the control unit 3 returns to S2 to continue the element device control, and the liquid extension pipe dryness is 0.1 or more, 0. Control to be 7 or less.
  • the control unit 3 determines whether the refrigerant circuit state is stable. When it is determined that the refrigerant circuit state is not stable, the control unit 3 waits for the refrigerant circuit state to stabilize because the refrigerant amount calculation error increases when the refrigerant amount is calculated in this state.
  • control part 3 judges that the refrigerant circuit state was stabilized, it will acquire the driving
  • control unit 3 makes a comparison between the calculated refrigerant quantity M r calculated by the reference refrigerant quantity and S10.
  • Control unit 3 equal reference refrigerant quantity and the calculated refrigerant quantity, M r is determined to be normal.
  • the control unit 3 determines that the refrigerant is leaking and issues a report.
  • a range may be provided above and below the reference refrigerant amount, and if the calculated refrigerant amount Mr is within the range, it is determined to be normal, and if it is less than the range, it may be determined that refrigerant leaks.
  • the dryness of the outlet of the liquid extension pipe 6 is set to 0.1 or more and 0.7 or less, and the low pressure is set to 1.0.
  • the control was performed below. As a result, the density difference between the liquid extension pipe inlet and outlet can be made as small as possible. As a result, the refrigerant amount calculation error can be reduced, and the liquid extension pipe refrigerant quantity MrPL can be calculated with high accuracy. In addition, the refrigerant density in the liquid extension pipe 6 is kept small, and the amount of refrigerant in the liquid extension pipe 6 is reduced in the first place.
  • the ratio of the refrigerant amount of the liquid extension pipe 6 to the total refrigerant quantity is reduced, so that the influence of the refrigerant quantity calculation error generated in the liquid extension pipe 6 on the calculation of the total calculated refrigerant quantity Mr is reduced. can do. Therefore, consequently possible to calculate the refrigerant quantity M r of the entire refrigerant circuit with high accuracy, it is possible to increase the refrigerant leak detection accuracy.
  • the dryness of the outlet of the liquid extension pipe 6 is set to 0.1 or more and 0.7 or less, and the low pressure is controlled to 1.0 [Mpa] or less. If at least the dryness of the outlet of the liquid extension pipe 6 is 0.1 or more and 0.7 or less, the refrigerant density in the liquid extension pipe 6 can be accurately calculated, and the liquid extension pipe refrigerant amount MrPL is calculated with high accuracy. it can. Therefore, the liquid extension pipe refrigerant amount MrPL can be calculated with high accuracy by performing at least one control of S3 to S6 shown in the figure. And this effect can be heightened further by making low pressure pressure into 1.0 [Mpa] or less.
  • FIG. FIG. 17 is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 1A according to Embodiment 2 of the present invention.
  • FIG. 18 is a diagram showing the relationship of the ph diagram during the cooling operation of the refrigeration air conditioner 1A according to Embodiment 2 of the present invention.
  • FIG. 19 is a diagram showing a relationship of a ph diagram during heating operation of the refrigeration air conditioner 1A according to Embodiment 2 of the present invention.
  • the refrigerant circuit configuration and operation of the refrigeration air conditioner 1A will be described with reference to FIGS.
  • the refrigeration air conditioner 1A is installed in, for example, a building or a condominium, and is used for cooling or heating an air conditioning target area by performing a vapor compression refrigeration cycle operation.
  • the refrigerating and air-conditioning apparatus 1A has a configuration in which the expansion valves 41A and 41B are deleted from the indoor units 4A and 4B of the refrigerating and air-conditioning apparatus 1 of Embodiment 1, and the expansion valve 41 is newly added to the outdoor unit 2.
  • Other configurations are the same as those described in the first embodiment.
  • the four-way valve 22 is controlled to the state shown by the solid line in FIG. 1, and the refrigerant circuit is in the following connection state. That is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. Further, the suction side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side shut-off valve 29 and the gas extension pipe 7 (main gas extension pipe 7A, branch gas extension pipe 7a, branch gas extension pipe 7b). Is done. In addition, the liquid side closing valve 28 and the gas side closing valve 29 are opened.
  • the low-temperature / low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature / high-pressure gas refrigerant (point a shown in FIG. 18).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way valve 22.
  • the refrigerant that has flowed into the outdoor heat exchanger 23 is condensed and liquefied while radiating heat to the outdoor air by the blowing action of the outdoor fan 27 (point b shown in FIG. 18).
  • the condensation temperature at this time is obtained by converting the pressure detected by the heat exchanger temperature sensor 33k or the discharge pressure sensor 34b to a saturation temperature.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 23 is decompressed by the expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant (point c shown in FIG. 18). Then, it flows out of the outdoor unit 2 through the liquid side closing valve 28.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor unit 2 drops in pressure due to tube wall friction in the main liquid extension pipe 6A, branch liquid extension pipe 6a, and branch liquid extension pipe 6b (point d shown in FIG. 18).
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 42 functioning as an evaporator, and is evaporated and gasified by absorbing heat from the air by the blowing action of the indoor fan 43 (point e shown in FIG. 3). At this time, the air-conditioning target area is cooled.
  • the evaporation temperature at this time is measured by the liquid side temperature sensor 33e and the liquid side temperature sensor 33h.
  • the superheat degree SH of the refrigerant at the outlets of the indoor heat exchangers 42A and 42B is determined by the liquid side temperature sensor 33e and the liquid side temperature sensor 33h from the refrigerant temperature values detected by the gas side temperature sensor 33f and the gas side temperature sensor 33i. It is obtained by subtracting the detected refrigerant temperature.
  • the expansion valve 41 has an opening degree so that the superheat degree SH of the refrigerant at the outlet of the indoor heat exchanger 42 (that is, the gas side of the indoor heat exchanger 42A and the indoor heat exchanger 42B) becomes the superheat degree target value SHm. It has been adjusted.
  • the gas refrigerant that has passed through the indoor heat exchanger 42 passes through the main gas extension pipe 7A, the branch gas extension pipe 7a, and the branch gas extension pipe 7b, and passes through the main gas extension pipe 7A, the branch gas extension pipe 7a, and the branch gas extension pipe 7b.
  • the pressure drops due to tube wall friction when passing (point f shown in FIG. 3).
  • This refrigerant flows into the outdoor unit 2 through the gas side closing valve 29.
  • the refrigerant flowing into the outdoor unit 2 is again sucked into the compressor 21 through the four-way valve 22 and the accumulator 24. With the above flow, the refrigeration air conditioner 1 performs the cooling operation.
  • Heating operation The heating operation performed by the refrigeration air conditioner 1 will be described with reference to FIGS. 17 and 19.
  • the four-way valve 22 is controlled to the state shown by the broken line in FIG. 1, and the refrigerant circuit is in the following connection state. That is, the discharge side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side shut-off valve 29 and the gas extension pipe 7 (main gas extension pipe 7A, branch gas extension pipe 7a, branch gas extension pipe 7b). The Further, the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. Note that the liquid side closing valve 28 and the gas side closing valve 29 are opened.
  • the low-temperature / low-pressure refrigerant is compressed by the compressor 21 and discharged as a high-temperature / high-pressure gas refrigerant (point a shown in FIG. 19).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 flows out of the outdoor unit 2 through the four-way valve 22 and the gas side closing valve 29.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 2 passes through the main gas extension pipe 7A, the branch gas extension pipe 7a, and the branch gas extension pipe 7b, and at this time, the pressure drops due to pipe wall friction (see FIG. 19).
  • Point g) This refrigerant flows into the indoor heat exchanger 42 of the indoor unit 4.
  • the refrigerant that has flowed into the indoor heat exchanger 42 is condensed and liquefied while dissipating heat to the indoor air by the blowing action of the indoor fan 43 (point b shown in FIG. 19). At this time, heating of the air-conditioning target area is performed.
  • the refrigerant flowing out of the indoor heat exchanger 42 passes through the main liquid extension pipe 6A, the branch liquid extension pipe 6a, and the branch liquid extension pipe 6b, and passes through the main liquid extension pipe 6A, the branch liquid extension pipe 6a, and the branch liquid extension pipe 6b. After the pressure drops due to the friction of the pipe wall surface (point c shown in FIG. 19), it flows into the outdoor unit 2 through the liquid side closing valve 28.
  • the refrigerant flowing into the outdoor unit 2 is decompressed by the expansion valve 41 and becomes a low-pressure gas-liquid two-phase refrigerant (point d shown in FIG. 4).
  • the opening degree of the expansion valve 41 is adjusted so that the supercooling degree SC of the refrigerant at the outlet of the indoor heat exchanger 42 becomes constant at the supercooling degree target value SCm.
  • the subcooling degree SC of the refrigerant at the outlets of the indoor heat exchangers 42A and 42B is obtained as follows. First, in terms of the discharge pressure P d of the compressor 21 detected by the discharge pressure sensor 34b to saturated temperature corresponding to the condensation temperature Tc. And it calculates
  • a temperature sensor for detecting the temperature of the refrigerant flowing in each indoor heat exchanger 42 is separately provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by the temperature sensor is set as the liquid side temperature sensor 33e, the liquid side.
  • the degree of supercooling SC may be obtained by subtracting from the refrigerant temperature value detected by the temperature sensor 33h.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 23 and evaporates into gas by absorbing heat from the outdoor air by the blowing action of the outdoor fan 27 (point e shown in FIG. 4). Then, the refrigerant is sucked again into the compressor 21 through the four-way valve 22 and the accumulator 24. With the above flow, the refrigeration air conditioner 1 performs the heating operation.
  • the refrigerant density varies depending on the pressure loss of the liquid extension pipe inlet / outlet, as in the heating operation of the first embodiment. Therefore, the liquid extension pipe refrigerant amount calculation error can be reduced by reducing the liquid extension pipe inlet / outlet density difference by the same method as that described in the first embodiment. That is, in the refrigerant leakage detection operation of the second embodiment, all the indoor units 4 are operated in the cooling operation, and the low-speed operation is performed in which the compressor frequency is half that of the rated compressor frequency. Then, at least one control of S4 to S6 in FIG. 16 may be performed. Further, by reducing the liquid extension pipe refrigerant density to reduce the ratio of the liquid extension pipe refrigerant density to the total refrigerant quantity, the refrigerant quantity calculation accuracy can be improved, and the refrigerant leakage detection accuracy can be improved.
  • the transient characteristics of the data can be reduced, and determination of whether the refrigerant amount is excessive or insufficient. High accuracy can be realized.
  • a local controller as a management device that manages each component device is connected to the refrigeration air conditioners 1 and 1A according to the first and second embodiments so as to be communicable by telephone line, LAN line, radio, etc. You may make it transmit the driving
  • this local controller may be connected to the remote server of the information management center installed in the remote place via a network, and a refrigerant
  • the operation data acquired by the local controller is transmitted to the remote server, and the operation state quantity is stored and stored in a storage device such as a disk device connected to the remote server, or the refrigerant leakage determination is performed at the remote server. You may do it.
  • the following configuration is conceivable as a configuration for performing refrigerant leakage determination at a remote server. That is, the local controller is provided with the functions of the measurement unit 3a that acquires the operating state quantity of the refrigeration air conditioners 1 and 1A according to the first and second embodiments and the arithmetic unit 3b that calculates the operating state quantity, and the storage unit.
  • the local controller is provided with the functions of the measurement unit 3a that acquires the operating state quantity of the refrigeration air conditioners 1 and 1A according to the first and second embodiments and the arithmetic unit 3b that calculates the operating state quantity, and the storage unit.
  • a configuration in which 3c is provided in the storage device and the function of the determination unit 3d is provided in the remote server is conceivable.
  • the refrigerating and air-conditioning apparatuses 1 and 1A have a function of calculating and comparing the calculated refrigerant quantity Mr and the refrigerant leakage rate r from the current operation state quantity. There is no need to keep it.
  • the system capable of remote monitoring in this way, it is not necessary for the operator to visit the site to check whether the refrigerant amount is excessive or insufficient during regular maintenance. Therefore, the reliability and operability of the device are further improved.
  • the present invention has been described separately in the embodiments, the specific configuration is not limited to these embodiments, and can be changed without departing from the gist of the invention.
  • the present invention is not limited to this, and the present invention may be applied to a refrigeration air conditioner dedicated to cooling or heating. Good.
  • the refrigeration air conditioner including one outdoor unit 2 is shown as an example.
  • the present invention is not limited to this, and the present invention is applied to a refrigeration air conditioner including a plurality of outdoor units 2. May be.
  • the features of each embodiment may be combined as appropriate according to the application and purpose.
  • the refrigerant used in the refrigerating and air conditioning apparatus according to Embodiment 2 of Embodiment 1 and Embodiment is not particularly limited in its kind, for example natural refrigerant (carbon dioxide (CO 2), and hydrocarbons, helium), Either an alternative refrigerant that does not contain chlorine (such as HFC410A, HFC407C, and HFC404A) or a fluorocarbon refrigerant (such as R22 and R134a) that is used in existing products may be used.
  • a refrigeration air conditioner has been described as an example.
  • the present invention is also applied to other systems that constitute a refrigerant circuit using a refrigeration cycle including a refrigeration system. be able to.
  • Refrigeration air conditioner 1A refrigeration air conditioner, 2 outdoor unit, 3 control unit, 3a measurement unit, 3b calculation unit, 3c storage unit, 3d determination unit, 3e drive unit, 3f display unit, 3g input unit, 3h output unit, 4 (4A, 4B) indoor unit, 6 liquid extension pipe (second extension pipe), 6A main liquid extension pipe, 6a branch liquid extension pipe, 6b branch liquid extension pipe, 7 gas extension pipe (first extension pipe), 7A Main gas extension pipe, 7a branch gas extension pipe, 7b branch gas extension pipe, 10 refrigerant circuit, 10a indoor refrigerant circuit, 10b indoor refrigerant circuit, 10z outdoor refrigerant circuit, 21 compressor, 22 four-way valve, 23 outdoor heat Exchanger, 24 accumulator, 27 outdoor fan, 28 liquid side closing valve, 29 gas side closing valve, 31 outdoor side control unit, 32 indoor side control unit, 33a suction temperature Sensor, 33b discharge temperature sensor, 33c outdoor temperature sensor, 33d liquid pipe temperature sensor, 33e liquid side temperature sensor, 33f gas side temperature sensor, 33g

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機21、室内熱交換器42、膨張弁41及び室外熱交換器23に冷媒が循環するように構成され、圧縮機21と室内熱交換器42とがガス延長配管6で接続され、膨張弁41と室外熱交換機23とが液延長配管7で接続された冷媒回路10と、冷媒回路10の運転状態量を検出する圧力センサー34a、34b及び温度センサー33a~33lと、圧力センサー34a、34b及び温度センサー33a~33lで検出された運転状態量に基づいて冷媒回路10内部の冷媒量を算出し、算出冷媒量と基準冷媒量とを比較することにより冷媒漏洩検知を行う冷媒漏洩検知運転を行う制御部3とを備え、制御部3は、冷媒漏洩検知運転時に、液延長配管6の出口の冷媒の乾き度を0.1以上、0.7以下に制御する。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関するものである。
 従来より、室内機と室外機とが液延長配管及びガス延長配管で接続されたセパレート型の冷凍サイクル装置(例えば、冷凍空調装置)には、冷凍空調装置の運転に必要な圧力センサー、温度の各センサーや液面検知センサーなどの情報を用いて、空調冷凍装置内の冷媒量存在割合を液延長配管の長さを考慮して推測し、その推測結果から冷媒が漏洩したことを検知するようにした技術がある(例えば、特許文献1参照)。
特許第4412385号公報(第11頁、第1図等)
 ところで、二相冷媒が流れる液延長配管は、通常、圧力損失を小さくするためにガス延長配管の配管径に比べて太い配管径で構成される。また、大型のビルなどでは室外機と室内機が遠く離れて設置されており、液延長配管の長さが100m以上のものも多数存在している。このように液延長配管の長さが長くなると、液延長配管の内容積も大きくなるため、全冷媒量に占める液延長配管内の冷媒量の割合は大きくなる。
 液延長配管内の冷媒量を算出するにあたっては、まず液延長配管の冷媒密度を算出する必要があり、その算出結果に誤差があると、液延長配管冷媒密度と液延長配管の内容積との積で求められる液延長配管内の冷媒量の算出結果の誤差も大きなものとなる。この場合、全冷媒量の算出結果に大きく影響することになり、冷媒漏洩検知精度が低下する。よって、液延長配管内の冷媒量の算出精度を上げることが、冷媒漏洩検知精度を上げることに繋がる。
 しかしながら、特許文献1では、冷媒漏れの検知にあたり液延長配管の長さを考慮する必要があることは記載されているものの、液延長配管冷媒密度の算出方法については何ら記載されておらず、冷媒漏洩検知精度に疑問があった。
 本発明は、このような点に鑑みなされたもので、液延長配管内の冷媒量を正確に算出でき、冷媒漏洩を高精度に検知できる冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張弁及び蒸発器に冷媒が循環するように構成され、圧縮機と凝縮器とが第1延長配管で接続され、膨張弁と蒸発器とが第2延長配管で接続された冷媒回路と、冷媒回路の運転状態量を検出する検出部と、検出部で検出された運転状態量に基づいて冷媒回路内部の冷媒量を算出し、算出冷媒量と基準冷媒量とを比較することにより冷媒漏洩検知を行う冷媒漏洩検知運転を行う制御部とを備え、制御部は、冷媒漏洩検知運転時に、第2延長配管の出口の冷媒の乾き度を0.1以上、0.7以下に制御する。
 本発明によれば、二相冷媒が流れる第2延長配管内部の冷媒量を正確に算出でき、冷媒漏洩を高精度に検知できる冷凍サイクル装置を得ることができる。
本発明の実施の形態1に係る冷凍空調装置1の冷媒回路構成の一例を示す概略構成図である。 図1の冷凍空調装置1の電気的な構成を示す制御ブロック図である。 本発明の実施の形態1に係る冷凍空調装置1の冷房運転時のp-h線図である。 本発明の実施の形態1に係る冷凍空調装置1の暖房運転時のp-h線図である。 凝縮器内での冷媒状態の説明図である。 蒸発器内での冷媒状態の説明図である。 本発明の実施の形態1の補正が冷媒量の演算に及ぼす影響の概念図である。 冷媒をR410Aとし、配管圧力を0.933[Mpa]とした時の乾き度と冷媒密度との関係を示す図である。 冷媒R410AでのP-h線図である。 冷媒R410Aでの液延長配管出口の乾き度と液延長配管出入口冷媒密度差Δρ[kg/m]との関係を示した図である。 冷媒R410Aでの飽和液状態における凝縮圧力とエンタルピーとの関係を示す図である。 冷媒R410Aでの凝縮器出口が同一状態で膨張弁での減圧量を変化させた場合の低圧圧力(蒸発圧力)と液延長配管出口乾き度との関係を示す図である。 冷媒R410Aにおける、エンタルピー250[kg/kJ]、260[kg/kJ]での低圧圧力と液延長配管冷媒密度ρとの関係を示した図である。 冷媒R410Aでの低圧圧力と液延長配管出入口冷媒密度差Δρ[kg/m]との関係を示す図である。 冷媒R410Aにおいて、高圧圧力を変化させた場合の液延長配管冷媒密度の変化を示した図である。 本発明の実施の形態1に係る冷凍空調装置1における冷媒漏洩検知運転の流れを示すフローチャートである。 本発明の実施の形態2に係る冷凍空調装置1Aの冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態2に係る冷凍空調装置1Aの冷房運転時のp-h線図の関係を示す図である。 本発明の実施の形態2に係る冷凍空調装置1Aの暖房運転時のp-h線図の関係を示す図である。
 以下、本発明の実施の形態を図を参照しながら説明する。以下では、冷凍サイクル装置の一例として冷凍空調装置の実施の形態を説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍空調装置1の冷媒回路構成の一例を示す概略構成図である。図1に基づいて、冷凍空調装置1の冷媒回路構成及び動作について説明する。この冷凍空調装置1は、例えばビルやマンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される空調対象域の冷房や暖房に使用されるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
<冷凍空調装置1の構成>
 冷凍空調装置1は、主として、熱源機としての室外機2と、それに並列に接続された複数台(図1では2台を図示している)の利用ユニットとしての室内機4(室内機4A、室内機4B)とを備えている。また、冷凍空調装置1は、室外機2と室内機4とを接続する延長配管(液延長配管(第2延長配管)6、ガス延長配管(第1延長配管)7)を有している。すなわち、冷凍空調装置1は、室外機2と室内機4とが冷媒配管で接続されて冷媒が循環する冷媒回路10を有している。なお、液延長配管6は、主液延長配管6A、枝液延長配管6a、枝液延長配管6b、及び、分配器51aを備えている。また、ガス延長配管7は、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b、及び、分配器52aを備えている。冷媒には、ここではR410Aが用いられる。
[室内機4]
 室内機4A、室内機4Bは、室外機2からの冷熱又は温熱の供給を受けて空調対象域に冷房空気又は暖房空気を供給するものである。なお、以下の説明においては、室内機4の後の「A」、「B」を省略する場合があるが、その場合には室内機4A、室内機4Bの双方を示しているものとする。また、「室内機4A」系統の各機器(回路の一部も含む)の符号の後に「A(又はa)」を付加し、「室内機4B」系統の各機器(回路の一部も含む)の符号の後に「B(又はb)」を付加して図示している。これらの説明においても、符号の後の「A(又はa)」、「B(又はb)」を省略する場合があるが、双方の機器を示していることは言うまでもない。
 室内機4は、ビル等の室内の天井に埋め込まれたり、吊り下げられたり、室内の壁面に壁掛けられたりする等により設置されている。室内機4Aは、主液延長配管6A、分配器51a、枝液延長配管6a、枝ガス延長配管7a、分配器52a、及び、主ガス延長配管7Aを用いて室外機2から延長して接続されており、冷媒回路10の一部を構成している。室内機4Bは、主液延長配管6A、分配器51a、枝液延長配管6b、枝ガス延長配管7b、分配器52a、及び、主ガス延長配管7Aを用いて室外機2から延長して接続されており、冷媒回路10の一部を構成している。
 室内機4は、主として、冷媒回路10の一部を構成する室内側冷媒回路(室内側冷媒回路10a、室内側冷媒回路10b)を有している。この室内側冷媒回路は、主として、膨張機構としての膨張弁41と、利用側熱交換器としての室内熱交換器42と、が直列に延長されて構成されている。
 室内熱交換器42は、熱媒体(例えば、空気や水等)と冷媒との間で熱交換を行ない、冷媒を凝縮液化又は蒸発ガス化するものである。具体的には、室内熱交換器42は、暖房運転時には冷媒の凝縮器(放熱器)として機能して室内空気を加熱し、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却する。室内熱交換器42は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型の熱交換器で構成するとよい。
 膨張弁41は、室内側冷媒回路内を流れる冷媒の流量の調節等を行うために、室内熱交換器42の液側に設置され、冷媒を減圧して膨張させるものである。この膨張弁41は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
 室内機4は、室内ファン43を有している。室内ファン43は、室内機4内に室内空気を吸入して室内熱交換器42にて冷媒と熱交換させた後に、供給空気として室内に供給するための送風機である。室内ファン43は、室内熱交換器42に供給する空気の風量を可変することが可能なものであり、例えばDCファンモーターによって駆動される遠心ファンや多翼ファン等で構成するとよい。但し、室内熱交換器42が、冷媒と空気とは異なる熱媒体(例えば、水やブライン等)とで熱交換を実行するものであってもよい。
 また、室内機4には、各種センサーが設けられている。室内熱交換器42のガス側には、冷媒の温度(すなわち、暖房運転時における凝縮温度Tc又は冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサー(ガス側温度センサー33f(室内機4Aに搭載)、ガス側温度センサー33i(室内機4Bに搭載))が設けられている。室内熱交換器42の液側には、冷媒の温度Teoを検出する液側温度センサー(液側温度センサー33e(室内機4Aに搭載)、液側温度センサー33h(室内機4Bに搭載))が設けられている。
 また、室内機4の室内空気の吸入口側には、ユニット内に流入する室内空気の温度(すなわち、室内温度Tr)を検出する室内温度センサー(室内温度センサー33g(室内機4Aに搭載)、室内温度センサー33j(室内機4Bに搭載))が設けられている。これらの各種センサーで検知された情報(温度情報)は、室内機4に搭載されている各機器の動作を制御する後述の制御部(室内側制御部32)に送られて、各機器の動作制御に利用される。なお、液側温度センサー33e、33h、ガス側温度センサー33f、33i、及び、室内温度センサー33g、33jの種類を特に限定するものではないが、例えばサーミスター等で構成するとよい。
 また、室内機4は、室内機4を構成する各機器の動作を制御する室内側制御部32(32a、32b)を有している。そして、室内側制御部32は、室内機4の制御を行うために設けられたマイクロコンピューターやメモリー等を有している。室内側制御部32は、室内機4を個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりを行なったり、室外機2(詳しくは室外側制御部31)との間で伝送線(無線でもよい)を介して制御信号等のやりとりを行なったりすることができるようになっている。すなわち、室内側制御部32は、室外側制御部31と協働することによって冷凍空調装置1全体の運転制御を行う制御部3として機能するのである(図2参照)。
[室外機2]
 室外機2は、室内機4に冷熱又は温熱を供給する機能を有している。室外機2は、例えばビル等の室外に設置されており、液延長配管6、ガス延長配管7で室内機4から延長して接続されており、冷媒回路10の一部を構成している。つまり、室外機2から流出して主液延長配管6Aを流れる冷媒は、分配器51aを介して枝液延長配管6aと枝液延長配管6bとに分流され、室内機4A、室内機4Bのそれぞれに流入するようになっている。同様に、室外機2から流出して主ガス延長配管7Aを流れる冷媒は、分配器52aを介して枝ガス延長配管7aと枝ガス延長配管7bとに分流され、室内機4A、室内機4Bのそれぞれに流入するようになっている。
 室外機2は、主として、冷媒回路10の一部を構成する室外側冷媒回路10zを有している。この室外側冷媒回路10zは、主として、圧縮機21と、流路切換手段である四方弁22と、熱源側熱交換器としての室外熱交換器23と、液溜めとしてのアキュムレーター24と、液側閉鎖弁28と、ガス側閉鎖弁29と、が直列に延長された構成を有している。
 圧縮機21は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。この圧縮機21は、運転容量を可変することが可能なものであり、例えばインバーターにより周波数Fが制御されるモーターによって駆動される容積式圧縮機等で構成するとよい。なお、図1では、圧縮機21が1台である場合を例に図示しているが、これに限定されず、室内機4の延長台数等に応じて、2台以上の圧縮機21を並列に延長して搭載してもよい。
 四方弁22は、暖房運転時における冷媒の流れの方向と冷房運転時における熱源側冷媒の流れの方向とを切り換えるものである。冷房運転時には、四方弁22は、実線で示されるように圧縮機21の吐出側と室外熱交換器23のガス側とを延長すると共にアキュムレーター24と主ガス延長配管7A側とを接続するように切り換えられる。これにより、室外熱交換器23が圧縮機21によって圧縮される冷媒の凝縮器として機能し、且つ、室内熱交換器42が蒸発器として機能する。暖房運転時には、四方弁22は、点線で示されるように圧縮機21の吐出側と主ガス延長配管7Aとを延長すると共にアキュムレーター24と室外熱交換器23のガス側とを延長するように切り換えられる。これにより、室内熱交換器42が圧縮機21によって圧縮される冷媒の凝縮器として機能し、且つ、室外熱交換器23が蒸発器として機能する。
 室外熱交換器23は、熱媒体(例えば、空気や水等)と冷媒との間で熱交換を行い、その冷媒を蒸発ガス化又は凝縮液化するものである。具体的には、室外熱交換器23は、暖房運転時には冷媒の蒸発器として機能し、冷房運転時には冷媒の凝縮器(放熱器)として機能する。室外熱交換器23は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。なお、室外熱交換器23は、そのガス側が四方弁22に接続され、液側が主液延長配管6Aに接続されている。
 室外機2は、室外ファン27を有している。室外ファン27は、室外機2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、室外に排出するための送風機である。この室外ファン27は、室外熱交換器23に供給する空気の風量を可変することが可能なものであり、例えばDCファンモーターからなるモーターによって駆動されるプロペラファン等で構成するとよい。但し、室外熱交換器23が、冷媒と空気とは異なる熱媒体(例えば、水やブライン等)とで熱交換を実行するものであってもよい。
 アキュムレーター24は、四方弁22と圧縮機21との間に接続されており、室内機4運転負荷の変動等に応じて冷媒回路10内に発生する余剰冷媒を溜めることが可能な容器である。液側閉鎖弁28及びガス側閉鎖弁29は、外部の機器・配管(具体的には、主液延長配管6A及び主ガス延長配管7A)との接続口に設けられ、冷媒を導通したり、しなかったりするものである。
 また、室外機2には、複数の圧力センサーと温度センサーとが設けられている。圧力センサーとしては、圧縮機21の吸入圧力Ps を検出する吸入圧力センサー34aと、圧縮機21の吐出圧力Pd を検出する吐出圧力センサー34bとが設置されている。
 室外機2には、温度センサーとして、吸入温度センサー33aと、吐出温度センサー33bと、液管温度センサー33d、熱交温度センサー33kと、液側温度センサー33lと、室外温度センサー33cとが設置されている。吸入温度センサー33aは、アキュムレーター24と圧縮機21との間の位置に設けられ、圧縮機21の吸入温度Ts を検出する。吐出温度センサー33bは、圧縮機21の吐出温度Td を検出する。熱交温度センサー33kは、室外熱交換器23内を流れる冷媒の温度を検出する。液側温度センサー33lは室外熱交換器23の液側に設置され、液側の冷媒温度を検出する。室外温度センサー33cは、室外機2の室外空気の吸入口側に設置され、室外機2内に流入する室外空気の温度を検出する。
 これらの各種センサーで検出された情報(温度情報)は、室内機4に搭載されている各機器の動作を制御する制御部(室外側制御部31)に送られて、各機器の動作制御に利用される。なお、各温度センサーの種類を特に限定するものではないが、例えばサーミスター等で構成するとよい。
 また、室外機2は、室外機2を構成する各要素の動作を制御する室外側制御部31を有している。室外側制御部31は、室外機2の制御を行うために設けられたマイクロコンピューター、メモリー、モーターを制御するインバーター回路等を有している。そして、室外側制御部31は、室内機4の室内側制御部32との間で伝送線(無線でもよい)を介して制御信号等のやりとりを行うことができるようになっている。すなわち、室外側制御部31は、室内側制御部32と協働することによって冷凍空調装置1全体の運転制御を行う制御部3として機能するのである(図2参照)。
 ここで、制御部3について詳細に説明する。図2は、図1の冷凍空調装置1の電気的な構成を示す制御ブロック図である。
 制御部3は、圧力センサー(吸入圧力センサー34a、吐出圧力センサー34b)、温度センサー(ガス側温度センサー33f、33i、液側温度センサー33e、33h、室内温度センサー33g、33j、吸入温度センサー33a、吐出温度センサー33b、室外温度センサー33c、液管温度センサー33d、熱交温度センサー33k、液側温度センサー33l)の検出信号を受けることができるようにこれらのセンサー(検出部)と接続されている。また、制御部3は、これらのセンサーの検出信号等に基づいて各種機器(圧縮機21、四方弁22、室外ファン27、室内ファン43、流量制御弁として機能する膨張弁41)を制御することができるように各種機器に接続されている。
 図2に示すように、制御部3は、測定部3a、演算部3b、記憶部3c、判定部3d、駆動部3e、表示部3f、入力部3g、出力部3hを備えている。測定部3aは、圧力センサー及び温度センサーから送られる情報を基に冷媒回路10を循環している冷媒の圧力や温度(つまり、運転状態量)を測定する機能を有している。演算部3bは、測定部3aで測定した測定値を基に冷媒量(つまり、運転状態量)を演算する機能を有している。記憶部3cは、測定部3aで測定した測定値、演算部3bで演算して算出した冷媒量を記憶したり、外部からの情報を記憶したりする機能を有している。判定部3dは、記憶部3cに記憶されている基準冷媒量と演算により算出された冷媒量とを比較して冷媒漏洩の有無を判定する機能を有している。
 駆動部3eは、冷凍空調装置1を駆動する各要素(具体的には、圧縮機モーター、弁機構、ファンモーター等)の駆動を制御する機能を有している。表示部3fは、冷媒充填が完了した場合、冷媒漏洩を検知した場合等にその情報を音声や表示で外部へ報知したり、冷凍空調装置1を運転させる上で生じる異常を音声や表示で報知したりする機能を有している。入力部3gは、各種制御用の設定値の入力や変更を行なったり、冷媒充填量等の外部情報の入力を行なったりする機能を有している。出力部3hは、測定部3aで測定した測定値や演算部3bで演算した値を外部に出力する機能を有している。
(延長配管)
 延長配管(液延長配管6、ガス延長配管7)は、室外機2と室内機4とを接続し、冷凍空調装置1内の冷媒を循環させるものである。つまり、冷凍空調装置1は、冷凍空調装置1を構成している各種機器を延長配管で配管延長することで冷媒回路10を形成し、この冷媒回路10に冷媒を循環させることで、冷房運転や暖房運転が実行可能になっているのである。
 上述したように、延長配管は、液冷媒又は二相冷媒が流れる液延長配管6(主液延長配管6A、枝液延長配管6a、枝液延長配管6b、及び、分配器51a)と、ガス冷媒が流れるガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b、及び、分配器52a)とで構成されている。そのうちの主液延長配管6A、枝液延長配管6a、枝液延長配管6b、主ガス延長配管7A、枝ガス延長配管7a、及び、枝ガス延長配管7bは、冷凍空調装置1をビル等の設置場所に設置する際に現地にて施工される冷媒配管であり、これらの各配管のそれぞれには、室外機2と室内機4との組み合わせに応じて決められた配管径のものが使用されるようになっている。
 具体的には、液側及びガス側のそれぞれにおいて、主延長配管(主液延長配管6A、主ガス延長配管7A)に流れる冷媒量は、枝延長配管(枝液延長配管6a、枝液延長配管6b、枝ガス延長配管7a、枝ガス延長配管7b)に比べて多い。また、ガス冷媒と液冷媒とでは圧力損失が異なることから、各延長配管で発生する圧力損失は異なり、圧力損失とコストとのバランスに応じて各延長配管のそれぞれの配管径が選択される。このように各延長配管のそれぞれの配管径が異なることから、各延長配管の内容積を正確に算出することは負荷が大きく、大変困難となる。
 また、大型のビルなどでは、室外機2と室内機4の距離が離れている場合が多く、延長配管の長さが100m以上の長いものも多数存在し、各延長配管の内容積が大きいものが多い。よって、上述したように、全冷媒量に占める延長配管内の冷媒量の割合は大きく、延長配管冷媒密度の算出誤差が、全冷媒量に与える影響が大きい。本実施の形態1では、このような背景があるなかでも、二相冷媒が流れる液延長配管内部の冷媒量を正確に算出でき、冷媒漏洩を高精度に検知できることを特徴とする。この特徴については、以下、順に説明していく。
 なお、実施の形態1では、1台の室外機2と2台の室内機4との接続に分配器51a、分配器52aを加えた延長配管を用いているが、分配器51a及び分配器52aは必ずしも必須のものではない。また、分配器51a及び分配器52aは、室内機4の延長台数に応じて形状を決定するとよい。例えば、図1に示すように、分配器51a及び分配器52aをT字管で構成してもよく、ヘッダーを用いて構成しても構わない。また、複数台(3台以上)の室内機4が接続される場合には、T字管を複数個使用して冷媒を分配させてもよいし、ヘッダーを用いて冷媒を分配させてもよい。
(液面検知センサー)
 液面検知センサー35は、アキュムレーター24の内部、もしくは外部に設置される。液面検知センサー35は、アキュムレーター24内部に貯留する液冷媒の液面を把握し、液面位置から内部の冷媒量を把握するものである。具体的な液面検知センサーとしては、超音波を用いたものや温度を計測するものなどの外部設置型、フロートを用いたものや静電容量式などの内部挿入型など、様々な液面検知方式が存在する。
 以上のように、室内側冷媒回路(室内側冷媒回路10a、室内側冷媒回路10b)と、室外側冷媒回路10zと、延長配管と、が接続されて冷凍空調装置1は構成されている。そして、冷凍空調装置1は、室内側制御部32と室外側制御部31とから構成される制御部3によって、冷房運転又は暖房運転に応じて四方弁22を切り換えて運転を行うと共に、各室内機4の運転負荷に応じて、室外機2及び室内機4に搭載されている各機器の制御を行なっている。なお、四方弁22は必ずしも必須の構成ではなく、省略可能である。
<冷凍空調装置1の動作>
 冷凍空調装置1の各要素の動作と冷媒漏洩検知について説明する。冷凍空調装置1は、各室内機4の運転負荷に応じて冷凍空調装置1を構成している各機器の制御を行い、冷暖房運転を実行する。
 図3は、本発明の実施の形態1に係る冷凍空調装置1の冷房運転時のp-h線図である。図4は、本発明の実施の形態1に係る冷凍空調装置1の暖房運転時のp-h線図である。なお、図1では、冷房運転時の冷媒の流れを実線矢印で、暖房運転時の冷媒の流れを破線矢印で、それぞれ表している。また、冷凍空調装置1では、冷媒漏洩検知を常時実施し、通信線を用いることにより管理センター等で遠隔監視を行うことができるようになっている。
(冷房運転)
 冷凍空調装置1が実行する冷房運転について、図1及び図3を用いて説明する。
 冷房運転時は、四方弁22が図1の実線で示される状態に制御され、冷媒回路は以下のような接続状態となる。すなわち圧縮機21の吐出側が、室外熱交換器23のガス側に接続される。また、圧縮機21の吸入側が、ガス側閉鎖弁29及びガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b)を介して室内熱交換器42のガス側に接続される。なお、液側閉鎖弁28及びガス側閉鎖弁29は、開状態にされている。また、全部の室内機4で冷房運転が実行される場合を例に説明する。
 低温・低圧の冷媒が圧縮機21によって圧縮され、高温・高圧のガス冷媒となって吐出される(図3に示す点a)。圧縮機21から吐出された高温・高圧のガス冷媒は、四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の送風作用により室外空気に放熱しながら凝縮・液化する(図3に示す点b)。このときの凝縮温度は、熱交温度センサー33kもしくは吐出圧力センサー34bで検出される圧力を飽和温度換算することにより求められる。
 その後、室外熱交換器23から流出した高圧液冷媒は、液側閉鎖弁28を介して室外機2から流出する。室外機2から流出した高圧液冷媒は、主液延長配管6A、枝液延長配管6a、枝液延長配管6bにおいて管壁面摩擦によって圧力が降下する(図3に示す点c)。この冷媒は、室内機4に流入し、膨張弁41により減圧されて低圧の気液二相冷媒となる(図3に示す点d)。この気液二相冷媒は、冷媒の蒸発器として機能する室内熱交換器42に流入し、室内ファン43の送風作用により空気から吸熱することで蒸発ガス化する(図3に示す点e)。このとき、空調対象域の冷房が実行されることになる。
 このときの蒸発温度は、液側温度センサー33e、液側温度センサー33hにて計測される。そして、室内熱交換器42A、室内熱交換器42Bの出口における冷媒の過熱度SHは、ガス側温度センサー33f、ガス側温度センサー33iにより検出される冷媒温度値から液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度を差し引くことによって求められる。
 また、冷房運転中、膨張弁41A、41Bは、室内熱交換器42A、41Bの出口(すなわち、室内熱交換器42A、室内熱交換器42Bのガス側)における冷媒の過熱度SHが過熱度目標値SHmとなるように開度調節されている。
 室内熱交換器42を通過したガス冷媒は、枝ガス延長配管7a、枝ガス延長配管7b、主ガス延長配管7Aを通り、ガス側閉鎖弁29を介して室外機2に流入する。なお、ガス冷媒は、枝ガス延長配管7a、枝ガス延長配管7b、主ガス延長配管7Aを通過するときの管壁面摩擦によって圧力が降下する(図3に示す点f)。そして、室外機2に流入した冷媒は、四方弁22及びアキュムレーター24を経て、圧縮機21に再度吸入される。以上の流れで、冷凍空調装置1は冷房運転を実行する。
(暖房運転)
 冷凍空調装置1が実行する暖房運転について、図1及び図4を用いて説明する。
 暖房運転時は、四方弁22が図1の破線で示される状態に制御され、冷媒回路は以下のような接続状態となる。すなわち圧縮機21の吐出側が、ガス側閉鎖弁29及びガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b)を介して室内熱交換器42のガス側に接続される。また、圧縮機21の吸入側が、室外熱交換器23のガス側に接続される。なお、液側閉鎖弁28及びガス側閉鎖弁29は開状態にされている。また、全部の室内機4で暖房運転が実行される場合を例に説明する。
 低温・低圧の冷媒が圧縮機21によって圧縮され、高温・高圧のガス冷媒となって吐出される(図4に示す点a)。圧縮機21から吐出された高温・高圧のガス冷媒は、四方弁22及びガス側閉鎖弁29を介して室外機2から流出する。室外機2から流出した高温・高圧のガス冷媒は、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7bを通過し、このとき管壁面摩擦により圧力が降下する(図4に示す点g)。この冷媒は、室内機4の室内熱交換器42に流入する。室内熱交換器42に流入した冷媒は、室内ファン43の送風作用により室内空気に放熱しながら凝縮・液化する(図4に示す点b)。このとき、空調対象域の暖房が実行されることになる。
 室内熱交換器42から流出した冷媒は、膨張弁41により減圧されて低圧の気液二相冷媒となる(図4に示す点c)。このとき膨張弁41A、41Bは、室内熱交換器42A、41Bの出口における冷媒の過冷却度SCが過冷却度目標値SCmで一定になるように開度調節されている。
 室内熱交換器42A、42Bの出口における冷媒の過冷却度SCは、以下のようにして求められる。まず、吐出圧力センサー34bにより検出される圧縮機21の吐出圧力Pd を凝縮温度Tcに対応する飽和温度値に換算する。そして、この飽和温度値から液側温度センサー33e、33hにより検出される冷媒温度値をそれぞれ差し引くことによって求められる。なお、各室内熱交換器42内を流れる冷媒の温度を検出する温度センサーを別途設けて、この温度センサーにより検出される凝縮温度Tcに対応する冷媒温度値を、液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度値から差し引くことによって過冷却度SCを求めるようにしてもよい。
 その後、低圧の気液二相冷媒は、枝液延長配管6a、枝液延長配管6b、主液延長配管6Aを通り、枝液延長配管6a、枝液延長配管6b、主液延長配管6Aを通過するときの管壁面摩擦によって圧力が降下した後(図4に示す点d)、液側閉鎖弁28を介して室外機2に流入する。室外機2に流入した冷媒は、室外熱交換器23に流入し、室外ファン27の送風作用により室外空気から吸熱することで蒸発ガス化する(図4に示す点e)。それから、この冷媒は、四方弁22及びアキュムレーター24を経て、圧縮機21に再度吸入される。以上の流れで、冷凍空調装置1は暖房運転を実行する。
 以上、冷房運転、暖房運転について説明したが、各運転のそれぞれで必要な冷媒量は互いに異なり、実施の形態1においては冷房運転時に暖房運転時に比べて冷媒量を多く必要とする。これは、膨張弁41が室内機4側に接続されているため、冷房運転時には液延長配管6内の冷媒が液相、ガス延長配管7内の冷媒がガス相となるのに対し、暖房運転時には液延長配管6内の冷媒が二相、ガス延長配管7内の冷媒がガス相となるからである。つまり、ガス延長配管7側については、冷房運転と暖房運転で共にガス相となるため暖房運転と冷房運転とで差は生じない。しかし、液延長配管6側で、冷房運転時に液相、暖房運転時に二相となり、液相状態の方が冷媒が多いため、結局のところ冷房運転時に冷媒が多く必要となるのである。
 また、凝縮器平均冷媒密度に対して蒸発器平均冷媒密度が小さいこと、そして室外熱交換器23と室内熱交換器42の内容積が互いに異なることも、運転状態で必要な冷媒量が異なることに関係する。詳細に説明すると、設置スペースや意匠の関係から、室内熱交換器42の内容積は室外熱交換器23よりも小さくなっている。これにより、冷房運転時には内容積の大きな室外熱交換器23が平均冷媒密度の大きな凝縮器となるため冷媒量を多く必要とする。一方、暖房運転時には内容積の小さな室内熱交換器42が平均冷媒密度の大きな凝縮器となるため冷媒量を多くは必要としない。
 したがって、冷凍空調装置1では、四方弁22を切り換えて冷房運転、暖房運転を行う場合において、冷房運転と暖房運転とで必要な冷媒量が異なる。このような場合には、冷媒量を多く必要とする冷房運転の運転状態に合わせて冷媒を充填し、冷媒を多く必要としない暖房運転のときには、余剰液冷媒をアキュムレーター24等に貯留することとなる。
<冷媒量の演算方法>
 次に、冷凍空調装置1に充填されている冷媒量の算出方法を、暖房運転を例に説明する。算出冷媒量M[kg]は次式に示すように、冷媒回路を構成する各構成要素の冷媒量を各要素の運転状態から求め、その総和として得る。
Figure JPOXMLDOC01-appb-M000001
 冷媒は、内容積V[m3 ]もしくは平均冷媒密度ρ[kg/m3 ]の高い要素(後述する)と、冷凍機油(冷凍機油内に冷媒が溶け込んでいる)とに大部分存在していると考えて冷媒量計算を行う。ここでいう平均冷媒密度ρの高い要素とは、圧力が高い、もしくは、二相又は液相の冷媒が通過する要素のことである。
 本実施の形態1では室外熱交換器23と、液延長配管6と、室内熱交換器42と、ガス延長配管7と、アキュムレーター24と、冷媒回路内に存在する冷凍機油とを考慮して算出冷媒量M[kg]を求める。算出冷媒量Mr は数式(1)で示されるように各要素の内容積Vと平均冷媒密度ρとの積の総和で表される。
 なお、数式(1)における各要素それぞれの冷媒量Mを、数式(1)の下に記載している。
 ここで、
 Mrc  :凝縮器冷媒量
 MrPL  :液延長配管冷媒量
 MrPG  :ガス延長配管冷媒量
 Mre  :蒸発器冷媒量
 MrACC  :アキュムレーター冷媒量
 MrOIL :油溶解冷媒量
 MrADD :追加冷媒量
 以下、各要素それぞれの冷媒量の算出方法について順次説明する。
(1)室内熱交換器(凝縮器)42の冷媒量Mrcの算出
 図5は、凝縮器内での冷媒状態の説明図である。凝縮器入口では圧縮機21の吐出側の過熱度が0度より大きくなるため、冷媒は気相となっている。また、凝縮器出口では過冷却度が0度より大きくなるため、冷媒は液相となっている。凝縮器では、温度Td の気相状態である冷媒が、温度Tcaiの室内空気によって冷却され、温度Tcsg の飽和蒸気となる。そして、この飽和蒸気は、温度Tcaiの室内空気によって更に冷却され、二相状態で潜熱変化により凝縮して温度Tcslの飽和液となる。そして、この飽和液は更に冷却されて温度Tsco の液相状態となる。
 凝縮器冷媒量Mrc[kg]は次式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、
 V:凝縮器内容積[m
 ρ:凝縮器の平均冷媒密度[kg/m
 Vは、装置仕様であるため既知である。ρ[kg/m]は次式で示される。
Figure JPOXMLDOC01-appb-M000003
 ここで、
 Rcg:気相域の容積割合[―]
 Rcs:二相域の容積割合[―]
 Rcl:液相域の容積割合[―]
 ρcg:気相域の平均冷媒密度[kg/m
 ρcs:二相域の平均冷媒密度[kg/m
 ρcl:液相域の平均冷媒密度[kg/m
 上式から明らかなように、凝縮器の平均冷媒密度ρを算出するためには、各相域の容積割合及び平均冷媒密度を算出する必要がある。
 まず、各相域における平均冷媒密度の計算方法について説明する。
(1.1)凝縮器の気相域、二相域、液相域のそれぞれの平均冷媒密度の算出
(a)気相域の平均冷媒密度ρclの算出
 凝縮器における気相域平均冷媒密度ρcgは、例えば、次式に示すように凝縮器入口密度ρd[kg/m]と凝縮器における飽和蒸気密度ρcsg[kg/m]との平均値によって求める。
Figure JPOXMLDOC01-appb-M000004
 凝縮器入口密度ρは、凝縮器入口温度(吐出温度Tに相当)と圧力(吐出圧力Pに相当)とより演算することができる。また、凝縮器における飽和蒸気密度ρcsgは凝縮圧力(吐出圧力Pに相当)より演算することができる。
(b)液相域の平均冷媒密度ρcsの算出
 液相域平均冷媒密度ρclは、次式のように、例えば凝縮器の出口密度ρsco[kg/m]と凝縮器における飽和液密度ρcsl[kg/m]との平均値によって求める。
Figure JPOXMLDOC01-appb-M000005
 凝縮器の出口密度ρscoは、凝縮器出口温度Tscoと圧力(吐出圧力Pに相当)とより演算することができる。また、凝縮器における飽和液密度ρcslは、凝縮圧力(吐出圧力P)より演算することができる。
(b)二相域の平均冷媒密度ρcsの算出
 凝縮器における二相域平均冷媒密度ρcsは二相域にて熱流束一定と仮定すると次式のように表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、
 x[-]:冷媒の乾き度
 fcg[-]:凝縮器におけるボイド率
ボイド率fcgは、次式で表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、s[-]は、スリップ比(気液の速度比)である。スリップ比sの演算式はこれまでに多くの実験式が提案されており、質量流束Gmr[kg/(ms)]、凝縮圧力(吐出圧力Pに相当)、乾き度xの関数として表される。
Figure JPOXMLDOC01-appb-M000008
 質量流束Gmrは圧縮機21の運転周波数によって変化するため、本手法でスリップ比sを計算することによって、圧縮機21の運転周波数に対する算出冷媒量Mの変化を検出することが可能となる。
 質量流束Gmrは、凝縮器での冷媒流量から求めることができる。
 以上により、凝縮器の平均冷媒密度を算出するために必要な、気相域、二相域、液相域のそれぞれの平均冷媒密度ρcg、ρcs、ρcl[kg/(m)]が算出された。
 本実施の形態1の冷凍空調装置1は、室外熱交換器(熱源側熱交換器)23及び室内熱交換器(利用側熱交換器)42、冷媒流量を演算する冷媒流量演算部を備えている。冷媒流量演算部は、スリップ比sを用いて、冷媒流量に対する算出冷媒量Mの変化を検出することが可能となる。
(1.2)凝縮器の気相、二相、液相それぞれの容積割合の算出
 次に、各相域における容積割合の計算方法について説明する。容積割合は伝熱面積の比によって表されるため、次式が成り立つ。
Figure JPOXMLDOC01-appb-M000009
 ここで、
 Acg[m]:凝縮器における気相域伝熱面積
 Acs[m]:凝縮器における二相域伝熱面積
 Acl[m]:凝縮器における液相域の伝熱面積
 A[m]:凝縮器全体の伝熱面積
 また、凝縮器における気相域、二相域、液相域のそれぞれの領域における、入口冷媒と出口冷媒との比エンタルピー差をΔH[kJ/kg]とし、冷媒と熱交換する媒体との平均温度差をΔT[℃]とすると、熱収支バランスより、各相域において次式が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 ここで、
 G[kg/h]:冷媒の質量流量
 A[m2 ]   :伝熱面積
 K[kW/(m2 ℃)]:熱通過率
 各相域の熱通過率Kを一定と仮定すると、容積割合は比エンタルピー差ΔH[kJ/kg]を、冷媒と室内空気との温度差ΔT[℃]で割った値に比例する。
 しかしながら、風速分布により、凝縮器を構成する熱交換器のパスごとに、風が当たらない場所と風が当たる場所とで液相域の量が異なったものとなる。すなわち、風が当たらない場所では液相域が少なくなり、風が当たりやすい場所では伝熱が促進されるために液相域が多くなると考えられる。また、各パスに対する冷媒の分配のばらつきにより、冷媒が偏在化すると考えられる。そこで、各相域の容積割合を算出する際に、液相域部に対して凝縮器液相域割合補正係数α[-]を乗じて前記の現象に対する補正を行う。以上から、次式が導出される。
Figure JPOXMLDOC01-appb-M000011
ここで、
 ΔHcg:気相域での冷媒の比エンタルピー差[kJ/kg]
 ΔHcs:二相域での冷媒の比エンタルピー差[kJ/kg]
 ΔHcl:液相域での冷媒の比エンタルピー差[kJ/kg]
 ΔTcg:気相域での冷媒と室内空気との平均温度差[℃]
 ΔTcs:二相域での冷媒と室内空気との平均温度差[℃]
 ΔTcl:液相域での冷媒と室内空気との平均温度差[℃]
 また、凝縮器液相域割合補正係数αは測定データにより求められる値であり、機器仕様、特に凝縮器仕様によって異なる値である。
 凝縮器液相域割合補正係数αにより、凝縮器の運転状態量から、凝縮器に存在する液相域の冷媒の割合を補正することができる。
 ΔHcgは、凝縮器入口の比エンタルピー(圧縮機21の吐出比エンタルピーに相当)から飽和蒸気の比エンタルピーを差し引くことによって求める。吐出比エンタルピーは、吐出圧力P及び吐出温度Tを演算することによって得られ、凝縮器における飽和蒸気の比エンタルピーは、凝縮圧力(吐出圧力Pに相当)より演算することができる。
 また、ΔHcsは、凝縮器における飽和蒸気の比エンタルピーから凝縮器における飽和液の比エンタルピーを差し引くことによって求める。凝縮器における飽和液の比エンタルピーは、凝縮圧力(吐出圧力Pに相当)より演算することができる。
 また、ΔHclは、凝縮器における飽和液の比エンタルピーから凝縮器出口の比エンタルピーを差し引くことによって得られる。凝縮器出口の比エンタルピーは、凝縮圧力(吐出圧力Pに相当)及び凝縮器出口温度Tscoを演算することによって得られる。
 凝縮器における気相域の冷媒と室外空気との温度差ΔTcg[℃]は、凝縮器入口温度(吐出温度Tに相当)と凝縮器における飽和蒸気温度Tcsg[℃]と室内空気の入口温度Tcai[℃]とを用いて、対数平均温度差として次式で表せる。
Figure JPOXMLDOC01-appb-M000012
 凝縮器における飽和蒸気温度Tcsgは、凝縮圧力(吐出圧力Pに相当)より演算することができる。二相域の冷媒と室内空気との平均温度差ΔTcsは、凝縮器における飽和蒸気温度Tcsg及び飽和液温度Tcslを用いて次式で表される。
Figure JPOXMLDOC01-appb-M000013
 凝縮器における飽和液温度Tcslは、凝縮圧力(吐出圧力Pに相当)より演算することができる。液相域の冷媒と室内空気との平均温度差ΔTclは、凝縮器出口温度Tscoと凝縮器における飽和液温度Tcslと室内空気の入口温度Tcaiとを用いて、対数平均温度差として次式で表せる。
Figure JPOXMLDOC01-appb-M000014
 以上により、各相域における平均冷媒密度ρcg、ρcs、ρclと、容積割合(Rcg:Rcs:Rcl)とを算出することが可能となり、凝縮器の平均冷媒密度ρを算出することができる。よって、上記(2)式より凝縮器冷媒量Mrc[kg]を算出できる。
(2)延長配管の冷媒量MrPL、MrPGの算出
 液延長配管冷媒量MrPL[kg]及びガス延長配管冷媒量MrPG[kg]はそれぞれ次式で表される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、
 ρPL[kg/m]:液延長配管平均冷媒密度
 ρPG[kg/m]:ガス延長配管平均冷媒密度
 VPL[m]   :液延長配管内容積
 VPG[m]   :ガス延長配管内容積
 暖房運転の場合、液延長配管6での冷媒は気液二相状態となるため液延長配管平均冷媒密度ρPL[kg/m]は蒸発器入口の乾き度xei[-]を用いて次式にて表される。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、
 ρesg[kg/m]:蒸発器における飽和蒸気密度
 ρesl[kg/m]:蒸発器における飽和液密度
 Hesg[kJ/kg]:蒸発器における飽和蒸気比エンタルピー
 Hesl[kJ/kg]:蒸発器における飽和液比エンタルピー
 Hei [kJ/kg]:蒸発器入口比エンタルピー
 ρesg及びρeslは、蒸発圧力(吸入圧力Pに相当)よりそれぞれ演算することができる。Hesg及びHeslは、蒸発圧力(吸入圧力Pに相当)を演算してそれぞれ得られる。また、Heiは、凝縮器出口温度Tscoより演算することができる。
 ガス延長配管平均冷媒密度ρPGは、例えば、ガス延長配管出口温度(吸入温度Tに相当)とガス延長配管出口圧力(吸入圧力Pに相当)を演算して求められる。
 ガス延長配管内容積VPG及び液延長配管内容積VPLは、新規設置の場合は取得できる。また、ガス延長配管内容積VPG及び液延長配管内容積VPLは、過去の設置情報が保持されている場合も、取得できる。しかし、過去の設置情報が破棄されている場合は、ガス延長配管内容積VPG及び液延長配管内容積VPLを取得できない。つまり、ガス延長配管内容積VPG及び液延長配管内容積VPLは、既知の場合と、未知の場合とがある。
 また、液延長配管6及びガス延長配管7のそれぞれの配管長についても、新規設置の場合は取得できる。また、液延長配管6及びガス延長配管7のそれぞれの配管長は、過去の設置情報が保持されている場合も、取得できる。しかし、過去の設置情報が破棄されている場合は、配管長の情報は取得できない。つまり、液延長配管6及びガス延長配管7のそれぞれの配管長についても、既知の場合と、未知の場合とがある。
 配管長の情報を取得できない場合は、以下のようにして配管長を算出する。
 ここで、液延長配管6及びガス延長配管7の配管長L[m]は等しいとすると、配管長L[m]は次式により算出することが可能となる。
Figure JPOXMLDOC01-appb-M000019
 ここで、
 Mr1[kg]:適正冷媒量
 Mr2[kg]:液延長配管6及びガス延長配管7を除く冷媒量
 APL[m]:液延長配管6の断面積
 APG[m]:ガス延長配管7の断面積
 Mr1、APL及びAPGは既知である。Mr1は、現地にて冷凍サイクル装置の設置後に、配管長長さや構成機器の容量等から算出されるものであって、予め記憶部3cに記憶されている。Mr2は、装置設置後に試運転を実施し、冷媒回路の運転状態量に基づいて求められる。このため、上式より配管長Lの算出が可能である。そして、配管長Lと、液延長配管6の断面積APL及びガス延長配管7の断面積APGとから、液延長配管内容積VPL及びガス延長配管内容積VPGを算出することができる。
また、液延長配管6の平均冷媒密度ρPLは、液延長配管出口密度を低圧圧力と凝縮器出口エンタルピを用いて算出する。
 主延長配管(主液延長配管6A、主ガス延長配管7A)、枝延長配管(枝液延長配管6a、6b、枝ガス延長配管7a、7b)の正確な内容積が分からない場合には、各要素での冷媒量を正確に算出することができない。よって、結果的に全冷媒量を算出する際に誤差が発生してしまう。
 特に暖房運転時に冷媒状態が二相状態となる液延長配管6では、圧力変化に対する冷媒密度の変化が大きいことから、液延長配管出入口圧力損失による冷媒量算出誤差が大きくなる。
(本実施の形態1の特徴の概要)
 よって、本実施の形態1では、液延長配管冷媒量MrPLの算出誤差を小さくするため、冷媒量算出時には液延長配管出入口密度差が小さくなるように運転する。また、液延長配管6における冷媒密度ρPL自体がそもそも小さくなるように運転することで、液延長配管6の冷媒密度算出誤差が全冷媒量の算出結果に与える影響を小さくする。これらの運転により、圧力センサーや温度センサーなどの追加センサーを設置しなくても、また、主延長配管及び枝延長配管の各内容積の比率が分からなくても、液延長配管冷媒量MrPL を高精度に算出することができる。これらの運転の詳細については改めて説明する。
(3)室外熱交換器(蒸発器)23の冷媒量Mreの算出
 図6は、蒸発器内での冷媒状態の説明図である。蒸発器入口では、冷媒は二相となっている。蒸発器出口では、圧縮機21の吸入側の過熱度が0度より大きくなっているため、冷媒は気相となっている。蒸発器入口において、温度Tei[℃]の二相状態である冷媒は、温度Tea[℃]の室内吸込空気によって加熱され、温度Tesg[℃]の飽和蒸気となる。この飽和蒸気は更に加熱されて温度T[℃]の気相となる。蒸発器冷媒量Mre[kg]は次式で表される。
Figure JPOXMLDOC01-appb-M000020
 ここで、
 V[m]:蒸発器内容積
 ρ:蒸発器平均冷媒密度[kg/m
 蒸発器内容積Vは機器仕様であるため、既知である。ρは、次式で表される。
Figure JPOXMLDOC01-appb-M000021
 ここで、
 Res[-]:二相域の容積割合
 Reg[-]:気相域の容積割合
 ρes[kg/m]:二相域の平均冷媒密度
 ρeg[kg/m]:気相域の平均冷媒密度
 上式から明らかなように、蒸発器の平均冷媒密度ρを算出するためには、各相域の容積割合及び平均冷媒密度を算出する必要がある。
 まず、平均冷媒密度の計算方法について説明する。蒸発器における二相域平均冷媒密度ρesは二相域にて熱流束一定と仮定すると次式のように表される。
Figure JPOXMLDOC01-appb-M000022
 ここで、
 x[-] :冷媒の乾き度
 feg[-]:蒸発器におけるボイド率
 ボイド率fegは、次式で表される。
Figure JPOXMLDOC01-appb-M000023
 ここで、s[-]は上述したようにスリップ比(気液の速度比)である。スリップ比sの演算式はこれまでに多くの実験式が提案されており、質量流束Gmr[kg/(ms)]、凝縮圧力(吐出圧力Pに相当)、乾き度xの関数として表される。
Figure JPOXMLDOC01-appb-M000024
 質量流束Gmrは圧縮機21の運転周波数によって変化するため、本手法でスリップ比sを計算することによって、圧縮機21の運転周波数に対する算出冷媒量Mの変化を検出することが可能となる。
 質量流束Gmrは、蒸発器での冷媒流量から求めることができる。
 蒸発器における気相域平均冷媒密度ρegは、次式のように、例えば蒸発器における飽和蒸気密度ρesgと蒸発器出口密度ρ[kg/m]との平均値によって求める。
Figure JPOXMLDOC01-appb-M000025
 蒸発器における飽和蒸気密度ρesgは、蒸発圧力(吸入圧力Pに相当)より演算することができる。蒸発器出口密度(吸入密度ρに相当)は、蒸発器出口温度(吸入温度Tに相当)と圧力(吸入圧力Pに相当)より演算することができる。
 次に、各相域における容積割合の計算方法について説明する。容積割合は伝熱面積の比によって表されるため、次式が成り立つ。
Figure JPOXMLDOC01-appb-M000026
 ここで、
 Aes[m]:蒸発器における二相域の伝熱面積
 Aeg[m]:蒸発器における気相域の伝熱面積
 A[m] :蒸発器全体の伝熱面積
 また、二相域、気相域のそれぞれの領域における、入口冷媒と出口冷媒との比エンタルピー差をΔHとし、冷媒と熱交換する媒体との平均温度差をΔTとすると、熱収支バランスより、各相域において以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000027
 ここで、
 G[kg/h]:冷媒の質量流量
 A[m]   :伝熱面積
 K[kW/(m℃)]:熱通過率
 各相域の熱通過率Kを一定と仮定すると、容積割合は比エンタルピー差ΔH[kJ/kg]、冷媒と室外空気の温度差ΔT[℃]で割った値に比例し、次の比例式が成り立つ。
Figure JPOXMLDOC01-appb-M000028
 ここで、
 ΔHes[kJ/kg]:二相域での冷媒の比エンタルピー差
 ΔHeg[kJ/kg]:気相域での冷媒の比エンタルピー差
 ΔTes[℃]    :二相域での冷媒と室外空気との平均温度差
 ΔTeg[℃]    :気相域での冷媒と室外空気との平均温度差
 ΔHesは蒸発器における飽和蒸気の比エンタルピーから、蒸発器入口比エンタルピーを差し引くことによって求められる。蒸発器における飽和蒸気の比エンタルピーは、蒸発圧力(吸入圧力Pに相当)を演算して得られ、蒸発器入口比エンタルピーは、凝縮器出口温度Tscoより演算することができる。
 また、ΔHegは、蒸発器出口の比エンタルピー(吸入比エンタルピーに相当)から蒸発器における飽和蒸気の比エンタルピーを差し引くことによって求める。蒸発器出口の比エンタルピーは、出口温度(吸入温度Tに相当)及び圧力(吸入圧力Pに相当)を演算することによって得られる。
 蒸発器における二相域と室外空気との平均温度差ΔTesは次式で表される。
Figure JPOXMLDOC01-appb-M000029
 蒸発器における飽和蒸気温度Tesgは、蒸発圧力(吸入圧力Pに相当)を演算して得られる。蒸発器入口温度Teiは蒸発圧力(吸入圧力Pに相当)と蒸発器における入口乾き度xeiより演算することができる。気相域の冷媒と室外空気との平均温度差ΔTegは対数平均温度差として次式で表される。
Figure JPOXMLDOC01-appb-M000030
 蒸発器出口温度Tegは吸入温度Tとして得られる。
 以上により、二相域の平均冷媒密度ρcs、気相域の平均冷媒密度ρcg及び容積割合(Rcg:Rcs)を算出することが可能となり、蒸発器平均冷媒密度ρを算出することができる。よって、上記(20)式より蒸発器冷媒量Mre[kg]を算出できる。
(4)アキュムレーター冷媒量MrACCの算出
 アキュムレーター24入口及び出口において過熱度が0度より大きくなっている場合には、アキュムレーター24内部はガス冷媒となっている。このようにアキュムレーター24内部がガス冷媒である場合、アキュムレーター冷媒量MrACC[kg]は次式で表される。
Figure JPOXMLDOC01-appb-M000031
 ここで、
 VACC[m]   :アキュムレーター内容積
 ρACC[kg/m]:アキュムレーター平均冷媒密度
 アキュムレーター内容積VACCは、既知の値である。アキュムレーター平均冷媒密度ρACCは、アキュムレーター入口温度(吸入温度Tに相当)と入口圧力(吸入圧力Pに相当)とを演算して求められる。
 本実施の形態1における暖房運転など、アキュムレーター24出入口において過熱度がついていない場合には、アキュムレーター24内部には液冷媒が存在している。このようにアキュムレーター24内部に液冷媒が存在している場合、アキュムレーター冷媒量MrACC[kg]は次式で表される。
Figure JPOXMLDOC01-appb-M000032
 ここで、
 VACC_L[m]   :アキュムレーター内部に貯留している液冷媒の体積
 ρACC_L[kg/m]:アキュムレーター内部の液冷媒密度
 ρACC_G[kg/m]:アキュムレーター内部のガス冷媒密度
 アキュムレーター24内部に貯留している液冷媒の体積VACC_Lは、液面検知センサー35を用いて算出される。また、ρACC_L[kg/m3 ]は、入口圧力(吸入圧力Pに相当)の飽和液冷媒の密度として算出することができる。アキュムレーター24内部のガス冷媒密度ρACC_Gは、入口圧力(吸入圧力Pに相当)の飽和ガス冷媒の密度として算出することができる。
(5)冷凍機油に溶解している油溶解冷媒量MrOILの算出
 冷凍機油に溶解している油溶解冷媒量MrOIL[kg]は、次式で表される。
Figure JPOXMLDOC01-appb-M000033
 ここで、
 VOIL[m]   :冷媒回路内に存在する冷凍機油の体積
 ρOIL[kg/m]:冷凍機油の密度
 φOIL[-]    :油に対する冷媒の溶解度
 冷媒回路内に存在する冷凍機油の体積VOILは、機器仕様であるため既知である。大部分の冷凍機油が圧縮機21及びアキュムレーター24に存在しているとすると、冷凍機油密度ρOILは一定値で扱える。また、冷凍機油に対する冷媒の溶解度φ[-]は次式にて示すように、吸入温度Tと吸入圧力Pとを演算して求められる。
Figure JPOXMLDOC01-appb-M000034
(6)液相域容積・初期封入冷媒量補正量(以下、追加冷媒量という)MrADDの算出
 ところで、構成要素の間を接続する配管等、考慮されていない要素において液冷媒が存在していると、算出冷媒量Mの精度に影響を及ぼす。また、冷媒回路に冷媒を充填する際、適正冷媒量の算出の際の計算ミスや充填作業ミスがあると、現地において実際に充填された冷媒量である初期封入冷媒量と適正冷媒量との間に差異が生じる。そこで、次式に示される、追加冷媒量MrADD[kg]を数式(1)での算出冷媒量Mの算出時に付加し、液相域容積・初期封入冷媒量補正を行う。
Figure JPOXMLDOC01-appb-M000035
 ここで、
 β[m]    :液相域容積・初期封入冷媒量補正係数
 ρ[kg/m] :液相域冷媒密度
 βは、実機測定データにより求める。ρは、本実施の形態1では凝縮器出口密度ρscoとする。凝縮器出口密度ρscoは、凝縮器出口圧力(吐出圧力Pに相当)と温度Tscoを演算して求められる。
 液相域容積・初期封入冷媒量補正係数βは機器仕様によって変化するが、初期封入冷媒量の適正冷媒量に対する差異も補正するため、機器へ冷媒を充填する毎に決定する必要がある。
 また、液相域容積・初期封入冷媒量補正係数を、以下のようにして求めたβ1としてもよい。例えば、液延長配管6又はガス延長配管7の内容積が大きい場合、相域容積・初期封入冷媒量補正係数β1は、延長配管仕様(液延長配管6又はガス延長配管7の仕様)により、次式にて表される。
Figure JPOXMLDOC01-appb-M000036
 ここで、
 VPL[m]:液延長配管内容積
 VPG[m]:ガス延長配管内容積
 Mr1[kg]:初期封入冷媒量
 ρPL1[kg/m]:液延長配管における適正冷媒量時の平均冷媒密度
 ρPG1[kg/m]:ガス延長配管における適正冷媒量時の平均冷媒密度
 VPL及びVPGは上述したように配管長Lから求められる。なお、VPL及びVPGが既知の場合にはその値を用いても良い。ρPL1及びρPG1は測定データにより求める。
 液相域容積・初期封入冷媒量補正係数にβ1を用いた場合における液相域容積・初期封入冷媒量補正は次式のようになる。
Figure JPOXMLDOC01-appb-M000037
 数式(35)又は数式(37)にて算出したMrADDを数式(1)に付加することによって液相域容積・初期封入冷媒量補正を行うことができる。
 以上により、(1)凝縮器冷媒量Mrcと、(2)液延長配管冷媒量MrPL及びガス延長配管冷媒量MrPGと、(3)蒸発器冷媒量Mreと、(4)アキュムレーター冷媒量MrACCと、(5)油溶解冷媒量MrOILと、(6)追加冷媒量MrADDとを、計算することが可能となる。これら各冷媒量を全て加算することにより算出冷媒量Mを求めることができる。
 また、冷媒漏洩率rを次式により求めることができる。
Figure JPOXMLDOC01-appb-M000038
<算出冷媒量への液冷媒量の補正の影響>
 算出冷媒量Mを求めるにあたり、本実施の形態1では凝縮器液相域割合補正及び液相域容積・初期封入冷媒量補正の2つの補正を実施した。ここで、補正が算出冷媒量に及ぼす影響の概念図を次の図7に示す。
 図7は、本発明の実施の形態1の補正が冷媒量の演算に及ぼす影響の概念図である。
 冷媒量が多いほど凝縮器出口の過冷却度が大きくなり、凝縮器における液冷媒量が多くなる。凝縮器液相域割合補正を行うことによって冷媒量に対する凝縮器の液冷媒量の変化を大きくしていると理解できる。また、液相域容積・初期封入冷媒量補正を実施することによって補正前では考慮していなかった液相の冷媒を付加していると理解できる。
<圧縮機周波数の冷媒量算出精度への影響>
 ここで、圧縮機周波数が低くなった場合の熱交換器における冷媒分布について説明する。圧縮機周波数が低くなると、熱交換器内部に貯留する冷媒量の算出精度が悪化する。これは、冷媒が熱交換器上下の圧力ヘッドの影響を受け、液冷媒が熱交換器の下部に溜まり、熱交換器上下のパスバランスが悪くなるためである。
 パスバランスが悪いと、前記説明した冷媒量算出モデル(つまり、パスバランスの影響を考慮していない冷媒量算出モデル)に対して実際の冷媒状態が一致しなくなることから、冷媒量算出精度が悪化する。このことから、凝縮器の冷媒量算出の精度を向上させるためには、圧縮機周波数をできるだけ高くする必要がある。圧縮機周波数を高くすることで熱交換器ヘッド差以上の圧力損失が発生し、ヘッド差の影響を受け難く、均一分配できるようになり、パスバランスが改善され、冷媒量算出精度が向上する。
(液延長配管冷媒量算出誤差について)
 ユニット(冷凍空調装置)を構成するにあたり、低コスト化のために圧力センサー、温度センサーの数を減らす場合には、液延長配管出口密度を、低圧圧力Pと凝縮器出口エンタルピーとを用いて推算し、液延長配管密度として代表させることが多い。しかし、液延長配管6では圧力損失が発生することから出入口での密度が異なるため、これにより、液延長配管密度算出に実際との誤差が発生してしまう。
 また、仮にセンサーを追加し、液延長配管出入口状態が分かった場合の冷媒量算出精度は、前記のようにセンサーの数を減らす場合よりも向上する。しかし、主液延長配管6Aと枝液延長配管6aの正確な密度が分からないこと、主液延長配管6Aと枝液延長配管6aの正確な内容積が分からないこと、などから、実際の液延長配管冷媒量と推算値との間には誤差が発生する。
<本実施の形態1の特徴>
(液延長配管冷媒量算出誤差を小さくする方法)
 液延長配管6の出入口で密度差が無い状態、もしくは極力密度差を小さくすることができれば、前記の主液延長配管6Aと枝液延長配管6aの内容積が不明であることに関する問題は無くなり、追加のセンサーを設置しなくても、冷媒量算出誤差を小さくできる。
 また、液延長配管6の冷媒密度を小さく抑え、液延長配管6内の冷媒量をそもそも少なくすれば、全冷媒量に対する液延長配管6の冷媒量の割合が小さくなる。よって、液延長配管6で発生する冷媒量算出誤差が全体の算出冷媒量Mの算出に与える影響を小さくすることができ、結果的に算出冷媒量Mの算出精度を向上することができる。
 次に、液延長配管出入口密度差を小さく、また、液延長配管冷媒密度を小さくするための具体的な方法について、図8~図12を参照しながら説明する。
 図8は、冷媒をR410Aとし、配管圧力を0.933[Mpa]とした時の乾き度と冷媒密度との関係を示す図である。
 図8に示すように冷媒密度は、乾き度0.1前後で大きく傾向が異なっており、0.1以上では乾き度に対する密度変化が大きいのに対し、0.1未満では、乾き度に対する冷媒密度の変化が小さいことがわかる。このことから、液延長配管6の出口の乾き度を0.1以上に制御することで、液延長配管冷媒密度を小さくすることができる。ここでは、配管圧力0.933としたが、これは一例であって、配管圧力が違っても、変わっても液延長配管出口乾き度を0.1以上とすることは有効である。
 図9は、冷媒R410AでのP-h線図である。図9において点線は等密度線を示している。また、図9には、乾き度xについても示している。
 図9に示すように、乾き度が低い場合(0.1以下)には、等密度線の間隔が小さく、乾き度xが高くなるに従い、等密度線の間隔が広くなる。このことから、等密度線の間隔が小さい0.1以下では、同一圧力でのエンタルピー変化による冷媒密度の変化量が大きくなることが分かる。他の冷媒においても、同様の傾向となる。よって、配管圧力が0.933[Mpa]に限らず、他の配管圧力及び他の冷媒においても液延長配管出口乾き度を0.1以上とすることは、算出冷媒量Mの算出精度を向上する上で有効である。
 図10は、冷媒R410Aでの液延長配管出口の乾き度と液延長配管出入口冷媒密度差Δρ[kg/m]との関係を示した図である。なお、図10は、液延長配管入口圧力0.933[Mpa]、液延長配管出口圧力0.833[Mpa]、液延長配管圧力損失ΔP=0.1[Mpa]とした時の図である。
 液延長配管出入口冷媒密度差Δρは乾き度0.1前後で大きく傾向が異なっており、0.1以上では乾き度に対する密度差変化が大きいのに対し、0.1未満では、乾き度に対する冷媒密度差の変化が小さいことがわかる。このことから、液延長配管乾き度を0.1以上に制御することで、液延長配管出入口冷媒密度差Δρを小さくすることができる。
 以上より、液延長配管出入口密度差を小さく、また、液延長配管冷媒密度を小さくするには、液延長配管(二相配管)6の出口の乾き度を0.1以上とすることが好ましいことが分かる。そして、液延長配管(二相配管)6の出口の乾き度の上限値は0.7以下とする。その根拠について以下に説明する。
 凝縮器内の冷媒量を算出するためには凝縮器出口が飽和液、もしくは過冷却液状態である必要がある。これは凝縮器出口が二相状態の場合には凝縮器冷媒量を正確に算出できないためである。凝縮器出口が飽和液、もしくは過冷却液状態で最もエンタルピーが高くなる条件は飽和液状態となる。
 次に、飽和液状態で最もエンタルピーが高くなる条件を算出する。
 図11は、冷媒R410Aでの飽和液状態における凝縮圧力とエンタルピーとの関係を示す図である。
 このグラフから分かるように、圧力が高ければ高いほどエンタルピーが高くなる。R410A冷媒を用いた冷凍空調装置では設計圧力を4.15[Mpa]以下としている。このため、凝縮器出口が飽和液状態で最もエンタルピーが高い条件は、高圧圧力(凝縮圧力)が最も高い4.15[Mpa]の条件となる。
 次に、凝縮器出口エンタルピーが最も高い状態で、二相配管出口乾き度が最も高い条件を算出する。
 図12は、冷媒R410Aでの凝縮器出口が同一状態で膨張弁での減圧量を変化させた場合の低圧圧力(蒸発圧力)と液延長配管出口乾き度との関係を示す図である。
 低圧圧力が低いほど液延長配管出口乾き度が大きくなる。このことから、最も液延長配管出口乾き度が大きくなるのは低圧が最も低い条件となる。R410A冷媒を用いた冷凍空調装置での使用最低圧力は0.14[Mpa](-45℃)であり、以上から最大となる二相配管出口乾き度は、0.7となる。
 図13は、冷媒R410Aにおける、エンタルピー250[kg/kJ]、260[kg/kJ]での低圧圧力と液延長配管冷媒密度ρとの関係を示した図である。
 低圧圧力1.0[Mpa]前後で大きく傾向が異なり、低圧圧力1.0[Mpa]超では低圧圧力に対する密度変化が大きいのに対し、低圧圧力1.0[Mpa]以下では低圧圧力に対する密度変化が小さいことがわかる。このことから、低圧圧力を1.0[Mpa]以下と制御することで、液延長配管冷媒密度を小さくすることができる。
 図14は、冷媒R410Aでの低圧圧力と液延長配管出入口冷媒密度差Δρ[kg/m]との関係を示す図である。なお、図14は、エンタルピー250[kg/kJ]、260[kg/kJ]での、液延長配管入口圧力0.933[Mpa]、出口圧力0.833[Mpa]、液延長配管圧力損失0.1[Mpa]とした時の図である。
 低圧圧力1.0[Mpa]前後で大きく傾向が異なり、低圧圧力1.0[Mpa]超では低圧圧力に対する密度差変化が大きいのに対し、圧力1.0[Mpa]以下では低圧圧力に対する密度差変化が小さいことがわかる。このことから、低圧圧力を1.0[Mpa]以下に制御することにより、液延長配管出入口冷媒密度差Δρを小さくすることができる。
 図15は、冷媒R410Aにおいて、高圧圧力を変化させた場合の液延長配管冷媒密度の変化を示した図である。
 液延長配管冷媒密度算出条件は、低圧圧力を0.933[Mpa]とし、エンタルピーは高圧圧力の飽和液状態としており、高圧圧力の変化に対する液延長配管冷媒密度変化の影響を算出している。図15から高圧圧力が上昇するに従い、液延長配管冷媒密度は低下することが分かる。このことから、高圧圧力をできる限り上昇させることで、液延長配管冷媒密度を小さくすることができる。
 また、液延長配管出入口冷媒密度差Δρを小さくする別の方法として、以下のように液延長配管出入口圧力損失を小さくする方法がある。
(液延長配管出入口圧力損失を小さくする方法)
 液延長配管出入口圧力損失を小さくするためには、冷媒循環量を低下させる必要がある。冷媒循環量を低下させる方法として、以下の(a)又は(b)の方法があり、(b)を実現する方法として(b-1)、(b-2)、(b-3)の方法がある。
(a)圧縮機周波数を低下させる。
(b)低圧圧力を下げて圧縮機21の吸引密度を低下させる。
(b-1)圧縮機21の吸引過熱度を大きくする。
(b-2)低圧圧力(圧縮機吸引圧力)を低くする(アキュムレーター24に余剰液冷媒が存在する場合)
 本実施の形態1では暖房運転時にアキュムレーター24に余剰液冷媒が存在することから圧縮機21の吸引過熱度を大きくすることができない。よって、本実施の形態1のようにアキュムレーター24に余剰液冷媒が存在する場合には、低圧圧力を低くすることで、圧縮機吸引密度を低下させ、冷媒循環量を少なくすることができる。低圧圧力を低くするには、例えば、蒸発器の熱交換効率を低下させることが有効であり、蒸発器ファン風量を低下させることにより実現できる。
(b-3)圧縮機21の吸引過熱度を大きくする(アキュムレーター24に余剰液冷媒がない場合)
 また、アキュムレーター24に余剰液冷媒がない場合には、圧縮機21の吸引過熱度を大きくする方法が圧縮機21の吸引密度を低下させるのに有効である。圧縮機21の吸引過熱度を大きくするには、例えば、蒸発器の熱交換効率を向上させることが有効であり、蒸発器ファン風量を通常運転(室内温度を設定温度にするための運転)時よりも大きくする、蒸発器を通る冷媒量を少なくする、などの方法がある。
<冷媒漏洩検知方法>
 以上の冷媒の特性を踏まえて、冷媒量算出精度が向上する運転方法について説明する。
(乾き度を0.1以上、0.7以下とする制御)
 上述したように、液延長配管出口の乾き度を0.1以上、0.7以下に制御することで、液延長配管出入口密度差を小さくし、液延長配管冷媒密度を小さくすることができる。乾き度を0.1以上、0.7以下とするには、例えば以下の(a-1)、(a-2)、(b-1)、(c-1)の4通りの方法がある。なお、ここでは暖房運転での冷媒漏洩検知について説明しているため、以下における凝縮器は室内熱交換器42、蒸発器は室外熱交換器23である。
(a)膨張弁の制御
 (a-1)凝縮器出口が飽和液状態となるように膨張弁41を制御する。
 (a-2)凝縮器出口の過冷却度ができるだけ小さくなるように膨張弁41を制御する。
 ここで、凝縮器出口過冷却度をできるだけ小さくする、と記載したのは、過冷却度がつかなくなると検知精度が悪化するためである。つまり、凝縮器出口で過冷却度がつかず、凝縮器出口が二相状態となると、凝縮器出口状態が分からなくなり、液延長配管出口状態が分からなくなることから、冷媒量推算精度が悪化するためである。
(b)蒸発器ファン(室内ファン43)の制御
 (b-1)低圧圧力が低くなるように蒸発器の熱交換量を低下させる、つまり蒸発器の風量が少なくなるように、蒸発器ファンの回転数を通常運転時よりも小さくする。
(c)凝縮器ファン(室外ファン27)の制御
 (c-1)凝縮器ファンの回転数を小さくする。
 乾き度を0.1以上とするには、凝縮器出口エンタルピーを大きくすることが有効である。よって、凝縮器出口エンタルピーを大きくするために高圧圧力を高くする、つまり凝縮器ファンの回転数を通常運転時よりも小さくすることも有効である。
(低圧圧力を1.0[Mpa]以下とする制御)
 上述したように、低圧圧力を1.0[Mpa]以下となるように制御することで、液延長配管出入口密度差を小さくし、液延長配管冷媒密度を小さくすることができる。低圧圧力を1.0[Mpa]以下とするためには、例えば、以下の(a-1)の方法がある。
(a)蒸発器ファンの制御
 (a-1)低圧圧力が低くなるように蒸発器の熱交換量を低下させる、つまり蒸発器の風量が少なくなるように、蒸発器ファンの回転数を通常運転時よりも小さくする。
<冷媒漏洩の判断>
 冷媒漏洩の判断は、冷凍空調装置1を設置した際に充填した冷媒量、もしくは設置した直後に冷媒量算出を行なった際の冷媒量(初期冷媒量)を基準とし、この基準冷媒量と、冷媒漏洩検知運転を行う度に上述の方法で算出した算出冷媒量Mとを比較して行う。すなわち、算出冷媒量Mが基準冷媒量より少なくなった場合に、冷媒漏洩という判断を行う。
 図16は、本発明の実施の形態1に係る冷凍空調装置1における冷媒漏洩検知運転の流れを示すフローチャートである。以下、図16を参照して冷媒漏洩検知運転の流れを説明する。
(S1)
 まず、制御部3は、冷媒漏洩検知運転が可能か否かを判断する。冷媒漏洩検知運転は通常運転と異なり、冷媒量演算精度向上(冷媒漏洩検知精度向上)を目的とした特殊な運転である。つまり、室内の快適性よりも液延長配管6の出口乾き度が0.1以上、0.7以下となるようにすることを優先した運転である。よって、例えば負荷が大きくて快適性が著しく損なわれる場合など、室内側に対する影響が大きい場合には、冷媒漏洩検知運転は行わない。つまり、冷媒漏洩検知運転は室内側に影響を与えない時間帯に運転を行う。例えば、スケジュール運転を行う場合の予暖時や、冷凍空調装置が停止した後などに行う。また、暖房運転時には、気温が上がってくる日中の負荷が低くなることから、室内温度が設定温度に接近するような負荷の小さな時間帯に冷媒漏洩検知運転を行う。よって、S1では、このように今現在が冷媒漏洩検知運転を許可されたタイミングであるかを判断することになる。
(S2)
 冷媒漏洩検知を行う場合には、接続されている室内機4の全てを運転する全数運転させる必要がある。これは、室内機4を停止させると膨張弁41を全閉とすることから、停止している室内機4に冷媒が寝込む恐れがあるためである。つまり、冷媒が寝込むことにより、冷媒量を正確に算出できなくなるためである。よって、S2では、制御部3は、室内機4の全数運転を行う。
(S3)
 制御部3は、圧縮機周波数を定格圧縮機周波数に対して半分の圧縮機周波数とする低速運転を行う。これは以下の理由による。液延長配管冷媒量算出精度を向上するには、上述したように液延長配管出入口での圧力損失を小さくする必要があり、このためには冷媒循環量をできる限り少なくする必要がある。一方、凝縮器の冷媒量算出精度を向上させるには、冷媒循環量をある程度大きくする必要がある。これは、前述のように圧力ヘッドの影響を小さくして、凝縮器内のパスバランスを悪化させないようにするためである。
 適正な冷媒循環量は、熱交換器高さ、熱交換器での圧力損失、熱交換器の各パスへ冷媒を分配するためのキャピラリーチューブなどでの圧力損失(配管径、長さ)などの熱交換器の仕様によって異なる。しかし、例えば、定格循環量(定格能力となる場合の冷媒循環量)を基準とすれば、定格循環量の半分以上の循環量があれば、圧力ヘッドの影響を受けず、パスバランス悪化の影響を少なくすることができると考えられる。よって、S3では冷媒量算出精度を上げるため、冷媒循環量が定格循環量の半分となるように圧縮機周波数を定格圧縮機周波数に対して半分の圧縮機周波数まで下げる。
(S4~S6)
 そして、制御部3は、液延長配管(二相配管)出入口の乾き度を0.1以上、0.7以下とし、且つ、低圧圧力を1.0[Mpa]以下とするためのS3~S6の制御を行う。すなわち、制御部3は、膨張弁開度飽和液制御(S4)、室内ファン低速運転(S5)及び室外ファン低速運転(S6)を行う。
(S7)
 続いて制御部3は、低圧圧力が1[Mpa]以下であるかを判断する。制御部3は、1[Mpa]以下でなければ、S2に戻って要素機器制御を引き続き行い、低圧圧力が1[Mpa]以下となるように制御する。ここでは、低圧圧力(蒸発圧力)が0.933[Mpa]となるように制御する。
(S8)
 制御部3は、低圧圧力が1[Mpa]以下であると判断した場合、液延長配管出口乾き度が0.1以上、0.7以下であるかを判断する。制御部3は、液延長配管出口乾き度が0.1以上、0.7以下でないと判断した場合はS2に戻って要素機器制御を引き続き行い、液延長配管乾き度が0.1以上、0.7以下となるよう制御する。
(S9)
 制御部3は、液延長配管出口乾き度が0.1以上、0.7以下であると判断した場合、冷媒回路状態が安定しているかの判断を行う。制御部3は、冷媒回路状態が安定していないと判断した場合、この状態で冷媒量算出を行うと、冷媒量算出誤差が大きくなるため、冷媒回路状態が安定するのを待つ。
(S10)
 そして、制御部3は、冷媒回路状態が安定したと判断すると、各種センサーにより運転状態量を取得し、上述のようにして冷媒量算出を行う。
(S11)
 次に制御部3は、基準冷媒量とS10で算出した算出冷媒量Mとの比較を行う。
(S12~S14)
 制御部3は、基準冷媒量と算出冷媒量Mとが等しければ、正常と判定する。一方、制御部3は、算出冷媒量Mが初期冷媒量より少ない場合には、冷媒漏洩と判定して、発報する。なお、基準冷媒量に対して上下に範囲を持たせ、算出冷媒量Mがその範囲内にあれば正常と判定し、その範囲より少ないと冷媒漏洩と判定するようにしてももちろんよい。
(S15)
 以上のS1~S14までの流れで冷媒漏洩の有無を判定できたことから、制御部3は、漏洩検知運転を終了し、通常運転に切り換えるようにする。
 上述したように、本実施の形態1によれば、冷媒漏洩検知を行うにあたり、液延長配管6の出口の乾き度を0.1以上、0.7以下とすると共に、低圧圧力を1.0[Mpa]以下に制御するようにした。これにより、液延長配管出入口の密度差を極力小さくでき、その結果、冷媒量算出誤差を小さくでき、液延長配管冷媒量MrPLを高精度に算出できる。また、液延長配管6の冷媒密度を小さく抑え、液延長配管6内の冷媒量をそもそも少なくする。これにより、全冷媒量に対する液延長配管6の冷媒量の割合が小さくなるようにしたので、液延長配管6で発生する冷媒量算出誤差が全体の算出冷媒量Mの算出に与える影響を小さくすることができる。よって、結果的に冷媒回路全体の冷媒量Mを高精度に算出でき、冷媒漏洩検知精度を高めることができる。
 なお、本実施の形態1では、液延長配管6の出口の乾き度を0.1以上、0.7以下とすると共に、低圧圧力を1.0[Mpa]以下に制御するとして説明したが、少なくとも液延長配管6の出口の乾き度を0.1以上、0.7以下とすれば、液延長配管6での冷媒密度を正確に算出でき、液延長配管冷媒量MrPLを高精度に算出できる。よって、図に示したS3~S6のうち、少なくとも何れか一つの制御を行うことで、液延長配管冷媒量MrPLを高精度に算出できる。そして、低圧圧力を1.0[Mpa]以下とすることで、更にこの効果を高めることができる。
実施の形態2.
 図17は、本発明の実施の形態2に係る冷凍空調装置1Aの冷媒回路構成の一例を示す概略構成図である。図18は、本発明の実施の形態2に係る冷凍空調装置1Aの冷房運転時のp-h線図の関係を示す図である。図19は、本発明の実施の形態2に係る冷凍空調装置1Aの暖房運転時のp-h線図の関係を示す図である。図17~図19に基づいて、冷凍空調装置1Aの冷媒回路構成及び動作について説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。
 この冷凍空調装置1Aは、冷凍空調装置1と同様に、例えばビルやマンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される空調対象域の冷房や暖房に使用されるものである。冷凍空調装置1Aでは、実施の形態1の冷凍空調装置1の各室内機4A、4Bから膨張弁41A、41Bが削除され、室外機2に新たに膨張弁41が追加された構成を有する。その他の構成は、実施の形態1で説明した構成と同様である。
 冷凍空調装置1Aにおける冷房運転、暖房運転での冷媒状態を図17、図18を参照しながら説明する。
(冷房運転)
 冷凍空調装置1が実行する冷房運転について、図17及び図18を用いて説明する。
 冷房運転時は、四方弁22が図1の実線で示される状態に制御され、冷媒回路は以下のような接続状態となる。すなわち圧縮機21の吐出側が室外熱交換器23のガス側に接続される。また、圧縮機21の吸入側がガス側閉鎖弁29及びガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b)を介して室内熱交換器42のガス側に接続される。なお、液側閉鎖弁28及びガス側閉鎖弁29は、開状態にされている。
 低温・低圧の冷媒が圧縮機21によって圧縮され、高温・高圧のガス冷媒となって吐出される(図18に示す点a)。圧縮機21から吐出された高温・高圧のガス冷媒は、四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の送風作用により室外空気に放熱しながら凝縮・液化する(図18に示す点b)。このときの凝縮温度は、熱交温度センサー33kもしくは吐出圧力センサー34bで検出される圧力を飽和温度換算することにより求められる。
 その後、室外熱交換器23から流出した高圧液冷媒は、膨張弁41により減圧されて低圧の気液二相冷媒となる(図18に示す点c)。その後、液側閉鎖弁28を介して室外機2から流出する。室外機2から流出した高圧液冷媒は、主液延長配管6A、枝液延長配管6a、枝液延長配管6bにおいて管壁面摩擦によって圧力が降下する(図18に示す点d)。その後、この気液二相冷媒は、蒸発器として機能する室内熱交換器42に流入し、室内ファン43の送風作用により空気から吸熱することで蒸発ガス化する(図3に示す点e)。このとき、空調対象域の冷房が実行されることになる。
 このときの蒸発温度は、液側温度センサー33e、液側温度センサー33hにて計測される。そして、室内熱交換器42A、42Bの出口における冷媒の過熱度SHは、ガス側温度センサー33f、ガス側温度センサー33iにより検出される冷媒温度値から液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度を差し引くことによって求められる。
 また、膨張弁41は、室内熱交換器42の出口(すなわち、室内熱交換器42A、室内熱交換器42Bのガス側)における冷媒の過熱度SHが過熱度目標値SHmとなるように開度調節されている。
 室内熱交換器42を通過したガス冷媒は、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7bを通り、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7bを通過するときの管壁面摩擦によって圧力が降下する(図3に示す点f)。この冷媒は、ガス側閉鎖弁29を介して室外機2に流入する。室外機2に流入した冷媒は、四方弁22及びアキュムレーター24を経て、圧縮機21に再度吸入される。以上の流れで、冷凍空調装置1は冷房運転を実行する。
(暖房運転)
 冷凍空調装置1が実行する暖房運転について、図17及び図19を用いて説明する。
 暖房運転時は、四方弁22が図1の破線で示される状態に制御され、冷媒回路は以下のような接続状態となる。すなわち圧縮機21の吐出側がガス側閉鎖弁29及びガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b)を介して室内熱交換器42のガス側に接続される。また、圧縮機21の吸入側が室外熱交換器23のガス側に接続される。なお、液側閉鎖弁28及びガス側閉鎖弁29は開状態にされている。
 低温・低圧の冷媒が圧縮機21によって圧縮され、高温・高圧のガス冷媒となって吐出される(図19に示す点a)。圧縮機21から吐出された高温・高圧のガス冷媒は、四方弁22及びガス側閉鎖弁29を介して室外機2から流出する。室外機2から流出した高温・高圧のガス冷媒は、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7bを通過し、このとき管壁面摩擦により圧力が降下する(図19に示す点g)。この冷媒は、室内機4の室内熱交換器42に流入する。室内熱交換器42に流入した冷媒は、室内ファン43の送風作用により室内空気に放熱しながら凝縮・液化する(図19に示す点b)。このとき、空調対象域の暖房が実行されることになる。
 室内熱交換器42から流出した冷媒は、主液延長配管6A、枝液延長配管6a、枝液延長配管6bを通り、主液延長配管6A、枝液延長配管6a、枝液延長配管6bを通過するときの管壁面摩擦によって圧力が降下した後(図19に示す点c)、液側閉鎖弁28を介して室外機2に流入する。
 室外機2に流入した冷媒は、膨張弁41により減圧されて低圧の気液二相冷媒となる(図4に示す点d)。このとき膨張弁41は、室内熱交換器42の出口における冷媒の過冷却度SCが過冷却度目標値SCmで一定になるように開度調節されている。
 室内熱交換器42A、42Bの出口における冷媒の過冷却度SCは、以下のように求められる。まず、吐出圧力センサー34bにより検出される圧縮機21の吐出圧力Pを凝縮温度Tcに対応する飽和温度値に換算する。そして、この飽和温度値から液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度値をそれぞれ差し引くことによって求められる。なお、各室内熱交換器42内を流れる冷媒の温度を検出する温度センサーを別途設けて、この温度センサーにより検出される凝縮温度Tcに対応する冷媒温度値を、液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度値からそれぞれ差し引くことによって過冷却度SCを求めるようにしてもよい。
 その後、低圧の気液二相冷媒は、室外熱交換器23に流入し、室外ファン27の送風作用により室外空気から吸熱することで蒸発ガス化する(図4に示す点e)。それから、この冷媒は、四方弁22及びアキュムレーター24を経て、圧縮機21に再度吸入される。以上の流れで、冷凍空調装置1は暖房運転を実行する。
 実施の形態2の冷房運転でも、実施の形態1の暖房運転と同様に、液延長配管出入口圧力損失により冷媒密度が異なる。よって、実施の形態1で記載した方法と同様の方法で液延長配管出入口密度差を小さくすることにより液延長配管冷媒量算出誤差を小さくできる。つまり、実施の形態2の冷媒漏洩検知運転では、室内機4を冷房運転で全数運転させると共に、圧縮機周波数を定格圧縮機周波数に対して半分の圧縮機周波数とする低速運転を行う。そして、図16のS4~S6の少なくとも何れか一つの制御を行えばよい。また、液延長配管冷媒密度を小さくして全冷媒量に対する液延長配管冷媒密度の割合を小さくすることにより、冷媒量算出精度を向上でき、冷媒漏洩検知精度を向上することができる。
 また、実施の形態1及び実施の形態2に係る冷凍空調装置1、1Aでは、例えば移動平均データを用いることで、データの過渡的な特性を減少させることができ、冷媒量の過不足の判定の高精度化を実現することができる。
 また、実施の形態1及び実施の形態2に係る冷凍空調装置1、1Aに、各構成機器を管理する管理装置としてのローカルコントローラを電話回線、LAN回線、無線等により通信可能に接続し、冷凍空調装置1、1Aで得た運転状態量をローカルコントローラに送信するようにしてもよい。そして、このローカルコントローラを、遠隔地に設置された情報管理センターの遠隔サーバーにネットワークを介して接続して冷媒量判定システムを構成してもよい。この場合、ローカルコントローラが取得した運転データを遠隔サーバーに送信し、運転状態量を遠隔サーバーに接続されたディスク装置等の記憶装置に記憶保存させたり、遠隔サーバーにて冷媒漏洩判定を行ったりするようにしてもよい。
 遠隔サーバーにて冷媒漏洩判定を行う構成としては、例えば、以下のような構成が考えられる。すなわち、実施の形態1及び実施の形態2に係る冷凍空調装置1、1Aの運転状態量を取得する測定部3a及び運転状態量を演算する演算部3bの機能をローカルコントローラに設けると共に、記憶部3cを記憶装置に設け、また、判定部3dの機能を遠隔サーバーに設ける等の構成が考えられる。
 この場合には、実施の形態1及び実施の形態2に係る冷凍空調装置1、1Aには、現在の運転状態量から算出冷媒量M及び冷媒漏洩率rを演算比較する機能を有しておく必要がなくなる。また、このように遠隔監視できるシステムを構成することによって、定期メンテナンス時に、作業者が現地に赴いて冷媒量の過不足を確認する作業の必要が無くなる。そのため、機器の信頼性及び操作性が更に向上することになる。
 以上、本発明の特徴を実施の形態に分けて説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。例えば、実施の形態では、冷暖切り換え可能な冷凍空調装置に本発明を適用した場合を例に説明したが、これに限定されず、冷房もしくは暖房専用の冷凍空調装置に本発明を適用してもよい。また、実施の形態では、1台の室外機2を備えた冷凍空調装置を例に示したが、これに限定されず、複数台の室外機2を備えた冷凍空調装置に本発明を適用してもよい。更に、各実施の形態の特徴事項を用途や目的に応じて適宜組み合わせるようにしてもよい。
 なお、実施の形態1及び実施の形態2に係る冷凍空調装置に使用する冷媒は、その種類を特に限定するものではなく、例えば自然冷媒(二酸化炭素(CO2 )、炭化水素、ヘリウムなど)、塩素を含まない代替冷媒(HFC410A、HFC407C、HFC404Aなど)、もしくは既存の製品に使用されているフロン系冷媒(R22、R134aなど)の何れを使用してもよい。また、実施の形態では、本発明を冷凍空調装置に適用した場合を例に説明したが、冷凍システムをはじめとする冷凍サイクルを用いて冷媒回路を構成する他のシステムにも本発明を適用することができる。
 1 冷凍空調装置、1A 冷凍空調装置、2 室外機、3 制御部、3a 測定部、3b 演算部、3c 記憶部、3d 判定部、3e 駆動部、3f 表示部、3g 入力部、3h 出力部、4(4A、4B) 室内機、6 液延長配管(第2延長配管)、6A 主液延長配管、6a 枝液延長配管、6b 枝液延長配管、7 ガス延長配管(第1延長配管)、7A 主ガス延長配管、7a 枝ガス延長配管、7b 枝ガス延長配管、10 冷媒回路、10a 室内側冷媒回路、10b 室内側冷媒回路、10z 室外側冷媒回路、21 圧縮機、22 四方弁、23 室外熱交換器、24 アキュムレーター、27 室外ファン、28 液側閉鎖弁、29 ガス側閉鎖弁、31 室外側制御部、32 室内側制御部、33a 吸入温度センサー、33b 吐出温度センサー、33c 室外温度センサー、33d 液管温度センサー、33e 液側温度センサー、33f ガス側温度センサー、33g 室内温度センサー、33h 液側温度センサー、33i ガス側温度センサー、33j 室内温度センサー、33k 熱交温度センサー、33l 液側温度センサー、34a 吸入圧力センサー、34b 吐出圧力センサー、35 液面検知センサー、41(41A、41B) 膨張弁、42(42A、42B) 室内熱交換器、43(43A、43B) 室内ファン、51a 分配器、52a 分配器。

Claims (8)

  1.  圧縮機、凝縮器、膨張弁及び蒸発器に冷媒が循環するように構成され、前記圧縮機と前記凝縮器とが第1延長配管で接続され、前記膨張弁と前記蒸発器とが第2延長配管で接続された冷媒回路と、
     前記冷媒回路の運転状態量を検出する検出部と、
     前記検出部で検出された運転状態量に基づいて前記冷媒回路内部の冷媒量を算出し、算出冷媒量と基準冷媒量とを比較することにより冷媒漏洩検知を行う冷媒漏洩検知運転を行う制御部とを備え、
     前記制御部は、前記冷媒漏洩検知運転時に、前記第2延長配管の出口の冷媒の乾き度を0.1以上、0.7以下に制御する
    ことを特徴とする冷凍サイクル装置。
  2.  前記制御部は、前記冷媒漏洩検知運転時に、前記凝縮器の出口の冷媒状態が飽和液状態となるように前記膨張弁を制御する
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  3.  前記蒸発器に送風する蒸発器ファンを備え、
     前記制御部は、空調対象空間の温度が設定温度となるように前記冷媒回路を制御する通常運転と前記冷媒漏洩検知運転とを切り換えて行っており、前記冷媒漏洩検知運転では、前記通常運転時よりも前記蒸発器ファンの回転数を下げる
    ことを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。
  4.  前記凝縮器に送風する凝縮器ファンを備え、
     前記制御部は、空調対象空間の温度が設定温度となるように前記冷媒回路を制御する通常運転と前記冷媒漏洩検知運転とを切り換えて行っており、前記冷媒漏洩検知運転では、前記通常運転時よりも前記凝縮器ファンの回転数を下げる
    ことを特徴とする請求項1~請求項3の何れか一項に記載の冷凍サイクル装置。
  5.  前記圧縮機と、冷媒の流れ方向を切り換えて暖房運転及び冷房運転を可能とする四方弁と、前記凝縮器又は前記蒸発器として機能する室外熱交換器とを備えた室外機と、前記膨張弁と、前記蒸発器又は前記凝縮器として機能する室内熱交換器とを備えた複数の室内機とを備え、前記室外機と前記複数の室内機とが前記第1延長配管及び前記第2延長配管で接続されており、
     前記制御部は、前記冷媒漏洩検知運転時に前記複数の室内機の全てを暖房運転で全数運転させると共に、前記圧縮機の周波数を定格圧縮機周波数の半分の圧縮機周波数に制御する
    ことを特徴とする請求項1~請求項4の何れか一項に記載の冷凍サイクル装置。
  6.  前記圧縮機と、冷媒の流れ方向を切り換えて暖房運転及び冷房運転を可能とする四方弁と、前記膨張弁と、前記凝縮器又は前記蒸発器として機能する室外熱交換器とを備えた室外機と、前記蒸発器又は前記凝縮器として機能する室内熱交換器を備えた複数の室内機とを備え、前記室外機と前記複数の室内機とが前記第1延長配管及び前記第2延長配管で接続されており、
     前記制御部は、前記冷媒漏洩検知運転時に前記複数の室内機の全てを冷房運転で全数運転させると共に、前記圧縮機の周波数を定格圧縮機周波数の半分の圧縮機周波数に制御する
    ことを特徴とする請求項1~請求項4の何れか一項に記載の冷凍サイクル装置。
  7.  前記冷媒はR410Aであることを特徴とする請求項1~請求項6の何れか一項に記載の冷凍サイクル装置。
  8.  前記冷媒回路の蒸発圧力を0.933MPaとした
    ことを特徴とする請求項1~請求項7の何れか一項に記載の冷凍サイクル装置。
PCT/JP2013/068855 2013-07-10 2013-07-10 冷凍サイクル装置 WO2015004747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/068855 WO2015004747A1 (ja) 2013-07-10 2013-07-10 冷凍サイクル装置
JP2015526059A JP6120966B2 (ja) 2013-07-10 2013-07-10 冷凍サイクル装置
EP13889063.7A EP3021059B1 (en) 2013-07-10 2013-07-10 Refrigeration cycle apparatus
US14/900,640 US10113763B2 (en) 2013-07-10 2013-07-10 Refrigeration cycle apparatus
CN201420369231.5U CN204063699U (zh) 2013-07-10 2014-07-04 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068855 WO2015004747A1 (ja) 2013-07-10 2013-07-10 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2015004747A1 true WO2015004747A1 (ja) 2015-01-15

Family

ID=52205191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068855 WO2015004747A1 (ja) 2013-07-10 2013-07-10 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10113763B2 (ja)
EP (1) EP3021059B1 (ja)
JP (1) JP6120966B2 (ja)
CN (1) CN204063699U (ja)
WO (1) WO2015004747A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158847A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 空気調和装置
FR3038055A1 (fr) * 2015-06-29 2016-12-30 Valeo Systemes Thermiques Procede de determination d'une fuite de fluide frigorigene dans un circuit de fluide frigorigene
WO2017094059A1 (ja) * 2015-11-30 2017-06-08 三菱電機株式会社 冷媒量管理装置及び冷媒量管理システム
US20170234582A1 (en) * 2014-12-05 2017-08-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2018179335A (ja) * 2017-04-05 2018-11-15 株式会社デンソー 冷媒漏れ検知装置、冷凍サイクル装置
WO2019065635A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷媒量推定方法及び空気調和装置
WO2019171840A1 (ja) * 2018-03-05 2019-09-12 株式会社デンソー 冷媒量推定装置、冷凍サイクル装置
JP2019207105A (ja) * 2019-09-13 2019-12-05 三菱重工冷熱株式会社 冷媒漏洩検知方法及び冷媒漏洩検知手段

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848446B (zh) * 2015-01-11 2018-12-21 镇江香江云动力科技有限公司 一种智能化水冷控制系统
CN105987548B (zh) * 2015-02-03 2019-06-07 Tcl空调器(中山)有限公司 制冷系统运行状态检测方法及装置
JP6135705B2 (ja) * 2015-04-06 2017-05-31 ダイキン工業株式会社 利用側空調装置
CN107709901B (zh) * 2015-06-24 2019-11-26 株式会社电装 制冷循环装置
WO2017006462A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和機
JP6613734B2 (ja) * 2015-09-04 2019-12-04 ダイキン工業株式会社 空調システム
DE102016110585A1 (de) * 2016-06-08 2017-12-14 Truma Gerätetechnik GmbH & Co. KG Klimasystem und Verfahren zur Leckageerkennung in einem Klimasystem
CN106126810B (zh) * 2016-06-20 2020-02-11 珠海格力电器股份有限公司 空调器连接管的建模方法和装置
JP6798322B2 (ja) * 2017-01-16 2020-12-09 ダイキン工業株式会社 遮断弁を有する冷凍装置
JP6875423B2 (ja) * 2017-01-19 2021-05-26 三菱電機株式会社 冷凍サイクル装置
US11067304B2 (en) * 2017-01-20 2021-07-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6871881B2 (ja) * 2018-03-23 2021-05-19 住友重機械工業株式会社 極低温冷凍機システムおよび起振機ユニット
CN111902681B (zh) * 2018-04-09 2022-02-18 三菱电机株式会社 空调机
CN110375466B (zh) 2018-04-13 2022-10-28 开利公司 用于空气源热泵系统的制冷剂泄露的检测装置和方法
CN110375468B (zh) 2018-04-13 2022-10-11 开利公司 风冷热泵系统、用于其的制冷剂泄漏检测方法及检测系统
CN110375467B (zh) * 2018-04-13 2022-07-05 开利公司 用于空气源单制冷系统的制冷剂泄露的检测装置和方法
CN110376005B (zh) 2018-04-13 2023-08-22 开利公司 数据处理方法、制冷剂泄漏检测方法、系统故障检测方法以及系统性能检测方法
CN110454904B (zh) * 2018-05-07 2020-12-11 珠海格力电器股份有限公司 除湿机中冷媒含量的处理方法和装置
US20220333808A1 (en) * 2018-08-14 2022-10-20 Institute of Healing and Air Conditioning Industries Inc. Systems and methods for analyzing heating, ventilation, and air conditioning systems including remote monitoring of technicians
JP2020051736A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 熱負荷処理システム
US10767882B2 (en) * 2018-10-17 2020-09-08 Lennox Industries Inc. Refrigerant pump down for an HVAC system
JP7012867B2 (ja) * 2018-10-17 2022-02-14 三菱電機株式会社 室外機及びそれを備える冷凍サイクル装置
US11391501B2 (en) * 2019-07-17 2022-07-19 Haier Us Appliance Solutions, Inc. Modulator for an ice maker
US11435101B2 (en) * 2019-09-26 2022-09-06 Rheem Manufacturing Company Air mover refrigerant leak detection and risk mitigation
CN111023435B (zh) * 2019-12-30 2021-09-28 Tcl空调器(中山)有限公司 一种空调器的膨胀阀的控制方法及其系统、空调器
DE112021001162T5 (de) * 2020-02-20 2022-12-01 Denso Corporation Kältekreisvorrichtung
KR20210108241A (ko) * 2020-02-25 2021-09-02 엘지전자 주식회사 히트펌프 및 그 동작방법
EP4143489A1 (en) * 2020-04-28 2023-03-08 Danfoss A/S A method for monitoring a refrigerant charge in a vapour compression system
US11131471B1 (en) 2020-06-08 2021-09-28 Emerson Climate Technologies, Inc. Refrigeration leak detection
JP7044986B2 (ja) * 2020-06-17 2022-03-31 ダイキン工業株式会社 空気調和システム
CN112177883B (zh) * 2020-09-02 2022-06-07 四川虹美智能科技有限公司 制冷系统检测方法、装置和可读介质
US11754324B2 (en) 2020-09-14 2023-09-12 Copeland Lp Refrigerant isolation using a reversing valve
CN112946033B (zh) * 2021-02-05 2024-02-13 湖南汽车工程职业学院 一种基于静电容量测定二氧化碳制冷剂的方法及装置
US11940188B2 (en) 2021-03-23 2024-03-26 Copeland Lp Hybrid heat-pump system
JP7112008B1 (ja) * 2021-05-21 2022-08-03 ダイキン工業株式会社 冷凍サイクル装置
CN113465131A (zh) * 2021-06-11 2021-10-01 青岛海信日立空调系统有限公司 一种空调器及冷媒量的确定方法
CN113669839B (zh) * 2021-08-30 2022-11-25 海信(广东)空调有限公司 检测冷媒泄漏的方法和计算机可读存储介质以及空调器
CN113720047A (zh) * 2021-09-26 2021-11-30 青岛海信日立空调系统有限公司 一种空调系统
CN114216202B (zh) * 2021-12-13 2022-11-25 珠海格力电器股份有限公司 一种检测空调冷媒含量的方法及控制装置、空调
CN114963299B (zh) * 2022-06-30 2023-11-03 海信空调有限公司 空调
ES2946857B2 (es) * 2023-01-30 2023-10-25 Univ Valencia Politecnica Método y sensor de detección de fugas de refrigerante

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2010007996A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の試運転方法および空気調和装置
JP4412385B2 (ja) 2007-10-22 2010-02-10 三菱電機株式会社 冷凍サイクル装置の冷媒漏れ検知方法
JP2011064357A (ja) * 2009-09-15 2011-03-31 Daikin Industries Ltd 漏洩診断方法、及び漏洩診断装置
JP2011106688A (ja) * 2009-11-12 2011-06-02 Mitsubishi Electric Corp 凝縮圧力検知システム及び冷凍サイクルシステム
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286663A (ja) 1987-05-18 1988-11-24 三菱重工業株式会社 冷媒流量制御装置
US5947373A (en) * 1996-02-09 1999-09-07 Sanyo Electric Co., Ltd. Refrigerant circuit with fluid heated refrigerant
JP3159200B2 (ja) * 1999-03-02 2001-04-23 ダイキン工業株式会社 空気調和装置
JP3464949B2 (ja) * 1999-09-21 2003-11-10 株式会社東芝 冷蔵庫
US8109104B2 (en) * 2004-08-25 2012-02-07 York International Corporation System and method for detecting decreased performance in a refrigeration system
US7987679B2 (en) * 2005-02-24 2011-08-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
WO2007049372A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation 空気調和装置、空気調和装置の冷媒充填方法、空気調和装置の冷媒充填状態判定方法、並びに空気調和装置の冷媒充填・配管洗浄方法
JP2009079842A (ja) 2007-09-26 2009-04-16 Mitsubishi Electric Corp 冷凍サイクル装置およびその制御方法
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
JP4975052B2 (ja) * 2009-03-30 2012-07-11 三菱電機株式会社 冷凍サイクル装置
WO2010119560A1 (ja) * 2009-04-17 2010-10-21 三菱電機株式会社 弁ブロック及び弁ブロックユニット並びに弁ブロックユニットの検査方法
JP5183609B2 (ja) * 2009-10-23 2013-04-17 三菱電機株式会社 冷凍空調装置
JP5627606B2 (ja) * 2009-12-28 2014-11-19 ダイキン工業株式会社 ヒートポンプシステム
US9222711B2 (en) * 2010-03-12 2015-12-29 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
EP2596304A2 (en) * 2010-07-23 2013-05-29 Carrier Corporation Ejector cycle refrigerant separator
EP2661591B1 (en) * 2011-01-04 2018-10-24 Carrier Corporation Ejector cycle
CN103380334B (zh) 2011-02-22 2016-03-16 日立空调·家用电器株式会社 冷冻循环装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412385B2 (ja) 2007-10-22 2010-02-10 三菱電機株式会社 冷凍サイクル装置の冷媒漏れ検知方法
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2010007996A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の試運転方法および空気調和装置
JP2011064357A (ja) * 2009-09-15 2011-03-31 Daikin Industries Ltd 漏洩診断方法、及び漏洩診断装置
JP2011106688A (ja) * 2009-11-12 2011-06-02 Mitsubishi Electric Corp 凝縮圧力検知システム及び冷凍サイクルシステム
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3021059A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473354B2 (en) * 2014-12-05 2019-11-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US20170234582A1 (en) * 2014-12-05 2017-08-17 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016158847A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 空気調和装置
JPWO2016158847A1 (ja) * 2015-03-31 2018-01-11 ダイキン工業株式会社 空気調和装置
US10408484B2 (en) 2015-03-31 2019-09-10 Daikin Industries, Ltd. Air-conditioning apparatus with a refrigerant leak sensor in an indoor unit
FR3038055A1 (fr) * 2015-06-29 2016-12-30 Valeo Systemes Thermiques Procede de determination d'une fuite de fluide frigorigene dans un circuit de fluide frigorigene
GB2557837A (en) * 2015-11-30 2018-06-27 Mitsubishi Electric Corp Refrigerant quantity management device and refrigerant quantity management system
JPWO2017094059A1 (ja) * 2015-11-30 2018-06-21 三菱電機株式会社 冷媒量管理装置及び冷媒量管理システム
WO2017094059A1 (ja) * 2015-11-30 2017-06-08 三菱電機株式会社 冷媒量管理装置及び冷媒量管理システム
GB2557837B (en) * 2015-11-30 2020-09-23 Mitsubishi Electric Corp Refrigerant amount management device and refrigerant amount management system
JP2018179335A (ja) * 2017-04-05 2018-11-15 株式会社デンソー 冷媒漏れ検知装置、冷凍サイクル装置
WO2019065635A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷媒量推定方法及び空気調和装置
JP2019066164A (ja) * 2017-09-29 2019-04-25 ダイキン工業株式会社 冷媒量推定方法及び空気調和装置
WO2019171840A1 (ja) * 2018-03-05 2019-09-12 株式会社デンソー 冷媒量推定装置、冷凍サイクル装置
JP2019207105A (ja) * 2019-09-13 2019-12-05 三菱重工冷熱株式会社 冷媒漏洩検知方法及び冷媒漏洩検知手段

Also Published As

Publication number Publication date
EP3021059A1 (en) 2016-05-18
US20160146488A1 (en) 2016-05-26
JPWO2015004747A1 (ja) 2017-02-23
JP6120966B2 (ja) 2017-04-26
US10113763B2 (en) 2018-10-30
EP3021059A4 (en) 2017-03-08
CN204063699U (zh) 2014-12-31
EP3021059B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6120966B2 (ja) 冷凍サイクル装置
JP4975052B2 (ja) 冷凍サイクル装置
JP5558555B2 (ja) 冷凍空調装置
JP6366742B2 (ja) 空気調和装置
JP4864110B2 (ja) 冷凍空調装置
JP4968373B2 (ja) 空気調和装置
JP6184503B2 (ja) 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
WO2011161720A1 (ja) 空気調和装置
US10598417B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detecting system
WO2011048721A1 (ja) 冷凍空調装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
AU2007208694A1 (en) Air conditioner
JP2011012958A (ja) 冷凍サイクル装置の制御方法
JP6479181B2 (ja) 空気調和装置
JP2009139012A (ja) 冷凍空調装置
JP6537629B2 (ja) 空気調和装置
JP2015087020A (ja) 冷凍サイクル装置
JPWO2016207992A1 (ja) 空気調和機
EP2416096B1 (en) Refrigeration cycle device
JP2011064410A (ja) 冷凍空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14900640

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015526059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889063

Country of ref document: EP