JP6184503B2 - 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置 - Google Patents

油面検知装置及びこの油面検知装置を搭載した冷凍空調装置 Download PDF

Info

Publication number
JP6184503B2
JP6184503B2 JP2015539084A JP2015539084A JP6184503B2 JP 6184503 B2 JP6184503 B2 JP 6184503B2 JP 2015539084 A JP2015539084 A JP 2015539084A JP 2015539084 A JP2015539084 A JP 2015539084A JP 6184503 B2 JP6184503 B2 JP 6184503B2
Authority
JP
Japan
Prior art keywords
level detection
oil level
oil
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015539084A
Other languages
English (en)
Other versions
JPWO2015045854A1 (ja
Inventor
康敬 落合
康敬 落合
畝崎 史武
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015045854A1 publication Critical patent/JPWO2015045854A1/ja
Application granted granted Critical
Publication of JP6184503B2 publication Critical patent/JP6184503B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21155Temperatures of a compressor or the drive means therefor of the oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍空調装置の圧縮機の油面を検知する油面検知装置及びこの油面検知装置を搭載した冷凍空調装置に関するものである。
従来より、圧縮機の内部にサーミスタで構成された油面検知センサを設置し、油面検知センサを自己発熱させて、気中と液中での放熱特性の違いにより油面検知センサ設置位置での油の有無を検知する油面検知装置がある(例えば、特許文献1参照)。
特開平03−033994号公報(第8頁、第3図等)
しかしながら、油面検知センサの信頼性やメンテナンスを考えると、実際に圧縮機内部に油面検知センサを設置することは厳しい。なぜならば、圧縮機内部は温度や圧力が大きく変化し、油やガス冷媒が高速で循環することから、油面検知センサの設置環境としては過酷な条件である。また、油面検知センサが故障した場合は圧縮機ごと交換する必要があり、メンテナンスに費用と手間がかかってしまう。このため、圧縮機外部に油面検知センサを設置することが好ましい。しかし、圧縮機の外部に油面検知センサを設置した場合、以下の問題がある。
すなわち、圧縮機内部に油面検知センサを設置した場合には油中とガス冷媒中とで放熱特性の違いが数十℃以上の検知温度の差として表れるのに対し、圧縮機外部に設置した場合、圧縮機外表面に表れる油部とガス部との温度差は数℃程度しか表れない。そして、圧縮機の運転状態、圧縮機の環境状態(外気温度など)変化の影響を受けやすく、圧縮機内部の油とガス冷媒との温度条件によっては油が枯渇している状態でも、油が存在していると誤検知してしまう場合が発生する。
本発明は、このような点に鑑みなされたもので、油面検知センサを設置して油の枯渇を正確に検知できる油面検知装置及びこの油面検知装置を搭載した冷凍空調装置を提供することを目的としている。
本発明に係る油面検知装置は、冷凍空調装置に搭載され、冷凍空調装置を構成している圧縮機の内部に貯留される油の油面を検知する油面検知装置であって、圧縮機の外面の所定の高さ位置に設けられ、設置箇所の温度を検知する油面検知センサと、圧縮機に吸入される冷媒の圧縮機吸入温度を変化させる信号を冷凍空調装置に出力する出力部と、出力部から出力される信号の出力前後に油面検知センサで得られた計測値を比較し、圧縮機の内部に貯留される油の枯渇を判定する判定部と、を備えたものである。
本発明によれば、油面検知センサを設置して油の枯渇を正確に検知できる油面検知装置を得ることができる。
本発明の実施の形態1〜3に係る冷凍空調装置1の冷媒回路構成の一例を示す概略構成図である。 図1の圧縮機の構成を示す図である。 図1の冷凍空調装置1の電気的な構成を示す制御ブロック図である。 本発明の実施の形態1に係る油面検知装置の構成を示すブロック図である。 本発明の実施の形態1に係る冷凍空調装置の冷房運転時のp−h線図である。 本発明の実施の形態1に係る油面検知装置の油面検知の流れを示すフローチャートである。 本発明の実施の形態1に係る油面検知装置の油面検知の流れを示すフローチャートである。 図6と図7のそれぞれに示した方法を組み合わせた油面検知の流れを示すフローチャートである。 本発明の実施の形態2に係る冷凍空調装置の要素部品である圧縮機の2つの圧縮機状態を示した図である。 本発明の実施の形態2に係る冷凍空調装置の要素部品である圧縮機の2つの圧縮機状態を示した図である。 本発明の実施の形態2に係る油面検知装置の温度検知方式での油面検知の流れを示すフローチャートである。 本発明の実施の形態2に係る油面検知装置の外部加熱方式での油面検知の流れを示すフローチャートである。 本発明の実施の形態3に係る油面検知装置の温度検知方式の説明図で、油枯渇を見逃す可能性のある温度条件の説明図である。 本発明の実施の形態3に係る油面検知装置の外部加熱方式の説明図で、油が枯渇しているが、油枯渇を見逃す可能性のある温度条件の説明図である。 本発明の実施の形態3に係る冷凍空調装置の要素部品である圧縮機の3つの状態を示す概略図である。 本発明の実施の形態3に係る油面検知装置における油面検知の流れを示すフローチャートである。 本発明の実施の形態4に係る冷凍空調装置における油面検知装置の配置位置を示す図である。
実施の形態1.
図1は、本発明の実施の形態1〜3に係る冷凍空調装置1の冷媒回路構成の一例を示す概略構成図である。図1に基づいて、冷凍空調装置1の冷媒回路構成及び動作について説明する。この冷凍空調装置1は、例えばビルやマンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される空調対象域の冷房や暖房に使用されるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
(冷凍空調装置1の構成)
冷凍空調装置1は、主として、熱源機としての室外機2と、それに並列に接続された複数台(図1では2台を図示している)の利用ユニットとしての室内機4(室内機4A、室内機4B)とを備えている。また、冷凍空調装置1は、室外機2と室内機4とを接続する延長配管(液延長配管(第2延長配管)6、ガス延長配管(第1延長配管)7)を有している。すなわち、冷凍空調装置1は、室外機2と室内機4とが冷媒配管で接続されて冷媒が循環する冷媒回路10を有している。なお、液延長配管6は、主液延長配管6A、枝液延長配管6a、枝液延長配管6b、及び、分配器51aを備えている。また、ガス延長配管7は、主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b、及び、分配器52aを備えている。冷媒には、ここではR410Aが用いられる。
[室内機4]
室内機4A、室内機4Bは、室外機2からの冷熱又は温熱の供給を受けて空調対象域に冷房空気又は暖房空気を供給するものである。なお、以下の説明においては、室内機4の後の「A」、「B」を省略する場合があるが、その場合には室内機4A、室内機4Bの双方を示しているものとする。また、「室内機4A」系統の各機器(回路の一部も含む)の符号の後に「A(又はa)」を付加し、「室内機4B」系統の各機器(回路の一部も含む)の符号の後に「B(又はb)」を付加して図示している。これらの説明においても、符号の後の「A(又はa)」、「B(又はb)」を省略する場合があるが、双方の機器を示していることは言うまでもない。
室内機4は、ビル等の室内の天井に埋め込まれたり、吊り下げられたり、室内の壁面に壁掛けられたりする等により設置されている。室内機4Aは、主液延長配管6A、分配器51a、枝液延長配管6a、枝ガス延長配管7a、分配器52a、及び、主ガス延長配管7Aを用いて室外機2から延長して接続されており、冷媒回路10の一部を構成している。室内機4Bは、主液延長配管6A、分配器51a、枝液延長配管6b、枝ガス延長配管7b、分配器52a、及び、主ガス延長配管7Aを用いて室外機2から延長して接続されており、冷媒回路10の一部を構成している。
室内機4は、主として、冷媒回路10の一部を構成する室内側冷媒回路(室内側冷媒回路10a、室内側冷媒回路10b)を有している。この室内側冷媒回路は、主として、膨張機構としての膨張弁41と、利用側熱交換器としての室内熱交換器42と、が直列に延長されて構成されている。
室内熱交換器42は、熱媒体(例えば、空気や水等)と冷媒との間で熱交換を行ない、冷媒を凝縮液化又は蒸発ガス化するものである。具体的には、室内熱交換器42は、暖房運転時には冷媒の凝縮器(放熱器)として機能して室内空気を加熱し、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却する。室内熱交換器42は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型の熱交換器で構成するとよい。
膨張弁41は、室内側冷媒回路内を流れる冷媒の流量の調節等を行うために、室内熱交換器42の液側に設置され、冷媒を減圧して膨張させるものである。この膨張弁41は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
室内機4は、室内ファン43を有している。室内ファン43は、室内機4内に室内空気を吸入して室内熱交換器42にて冷媒と熱交換させた後に、供給空気として室内に供給するための送風機である。室内ファン43は、室内熱交換器42に供給する空気の風量を可変することが可能なものであり、例えばDCファンモーターによって駆動される遠心ファンや多翼ファン等で構成するとよい。但し、室内熱交換器42が、冷媒と空気とは異なる熱媒体(例えば、水やブライン等)とで熱交換を実行するものであってもよい。
また、室内機4には、各種センサーが設けられている。室内熱交換器42のガス側には、冷媒の温度(すなわち、暖房運転時における凝縮温度Tc又は冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサー(ガス側温度センサー33f(室内機4Aに搭載)、ガス側温度センサー33i(室内機4Bに搭載))が設けられている。室内熱交換器42の液側には、冷媒の温度Teoを検出する液側温度センサー(液側温度センサー33e(室内機4Aに搭載)、液側温度センサー33h(室内機4Bに搭載))が設けられている。
また、室内機4の室内空気の吸入口側には、ユニット内に流入する室内空気の温度(すなわち、室内温度Tr)を検出する室内温度センサー(室内温度センサー33g(室内機4Aに搭載)、室内温度センサー33j(室内機4Bに搭載))が設けられている。これらの各種センサーで検知された情報(温度情報)は、室内機4に搭載されている各機器の動作を制御する後述の制御部(室内側制御部32)に送られて、各機器の動作制御に利用される。なお、液側温度センサー33e、33h、ガス側温度センサー33f、33i、及び、室内温度センサー33g、33jの種類を特に限定するものではないが、例えばサーミスター等で構成するとよい。
また、室内機4は、室内機4を構成する各機器の動作を制御する室内側制御部32(32a、32b)を有している。そして、室内側制御部32は、室内機4の制御を行うために設けられたマイクロコンピューターやメモリー等を有している。室内側制御部32は、室内機4を個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりを行なったり、室外機2(詳しくは室外側制御部31)との間で伝送線(無線でもよい)を介して制御信号等のやりとりを行なったりすることができるようになっている。すなわち、室内側制御部32は、室外側制御部31と協働することによって冷凍空調装置1全体の運転制御を行う制御部3として機能するのである(図3参照)。
[室外機2]
室外機2は、室内機4に冷熱又は温熱を供給する機能を有している。室外機2は、例えばビル等の室外に設置されており、液延長配管6、ガス延長配管7で室内機4から延長して接続されており、冷媒回路10の一部を構成している。つまり、室外機2から流出して主液延長配管6Aを流れる冷媒は、分配器51aを介して枝液延長配管6aと枝液延長配管6bとに分流され、室内機4A、室内機4Bのそれぞれに流入するようになっている。同様に、室外機2から流出して主ガス延長配管7Aを流れる冷媒は、分配器52aを介して枝ガス延長配管7aと枝ガス延長配管7bとに分流され、室内機4A、室内機4Bのそれぞれに流入するようになっている。
室外機2は、主として、冷媒回路10の一部を構成する室外側冷媒回路10zを有している。この室外側冷媒回路10zは、主として、圧縮機21と、熱源側熱交換器としての室外熱交換器23と、液側閉鎖弁28と、ガス側閉鎖弁29と、が直列に延長された構成を有している。
圧縮機21は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。次の図2で圧縮機21について簡単に説明する。
図2は、図1の圧縮機の構成を示す図である。
圧縮機21は、外部より冷媒を吸入して圧縮する圧縮部21aと、固定子及び回転子を有する電動部21bと、この圧縮部21aと電動部21bとを連結し、電動部21bの発生する回転力を圧縮部21aに伝達する主軸21cとを有し、これらが密閉容器21A内に収容された構成を有している。主軸21cは密閉容器21A内において上下方向に延びるように配置されており、軸受け部21dによって軸支されている。また、主軸21cの下端にはオイルポンプ21eが設けられており、密閉容器21Aの下部に貯留された油を吸い上げて主軸21c及び圧縮部21aの各摺動部へ供給する。
また、密閉容器21Aの側面には冷媒を吸入するための吸入管21fが設けられ、密閉容器21Aの上面には圧縮した冷媒を吐出するための吐出管21gが設けられている。
この圧縮機21は、運転容量を可変することが可能なものであり、例えばインバーターにより周波数Fを制御する電動部21bを備えた容積式圧縮機等で構成するとよい。なお、図1では、圧縮機21が1台である場合を例に図示しているが、これに限定されず、室内機4の延長台数等に応じて、2台以上の圧縮機21を並列に延長して搭載してもよい。
このように構成された圧縮機21の外面には、圧縮機21内の油面を検知するための油面検知装置60が配置されている。油面検知装置60の詳細については、改めて詳述する。
ここで、図1の説明に戻る。室外熱交換器23は、冷媒の凝縮器(放熱器)として機能し、熱媒体(例えば、空気や水等)と冷媒との間で熱交換を行ない、その冷媒を凝縮液化するものである。室外熱交換器23は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。なお、室外熱交換器23は、そのガス側が圧縮機21に接続され、液側が主液延長配管6Aに接続されている。
室外機2は、室外ファン27を有している。室外ファン27は、室外機2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、室外に排出するための送風機である。この室外ファン27は、室外熱交換器23に供給する空気の風量を可変することが可能なものであり、例えばDCファンモーターからなるモーターによって駆動されるプロペラファン等で構成するとよい。但し、室外熱交換器23が、冷媒と空気とは異なる熱媒体(例えば、水やブライン等)とで熱交換を実行するものであってもよい。
また、室外機2には、複数の圧力センサーと温度センサーとが設けられている。圧力センサーとしては、圧縮機21の吸入圧力Psを検出する吸入圧力センサー34aと、圧縮機21の吐出圧力Pdを検出する吐出圧力センサー34bとが設置されている。
室外機2には、温度センサーとして、吸入温度センサー33aと、吐出温度センサー33bと、液管温度センサー33d、熱交温度センサー33kと、液側温度センサー33lと、室外温度センサー33cとが設置されている。吸入温度センサー33aは、アキュムレーター24と圧縮機21との間の位置に設けられ、圧縮機21の吸入温度Tsを検出する。吐出温度センサー33bは、圧縮機21の吐出温度Tdを検出する。熱交温度センサー33kは、室外熱交換器23内を流れる冷媒の温度を検出する。液側温度センサー33lは室外熱交換器23の液側に設置され、液側の冷媒温度を検出する。室外温度センサー33cは、室外機2の室外空気の吸入口側に設置され、室外機2内に流入する室外空気の温度を検出する。
これらの各種センサーで検出された情報(温度情報)は、室内機4に搭載されている各機器の動作を制御する制御部(室外側制御部31)に送られて、各機器の動作制御に利用される。なお、各温度センサーの種類を特に限定するものではないが、例えばサーミスター等で構成するとよい。
また、室外機2は、室外機2を構成する各要素の動作を制御する室外側制御部31を有している。室外側制御部31は、室外機2の制御を行うために設けられたマイクロコンピューター、メモリー、モーターを制御するインバーター回路等を有している。そして、室外側制御部31は、室内機4の室内側制御部32との間で伝送線(無線でもよい)を介して制御信号等のやりとりを行うことができるようになっている。すなわち、室外側制御部31は、室内側制御部32と協働することによって冷凍空調装置1全体の運転制御を行う制御部3として機能するのである(図3参照)。
ここで、制御部3について詳細に説明する。図3は、図1の冷凍空調装置1の電気的な構成を示す制御ブロック図である。
制御部3は、圧力センサー(吸入圧力センサー34a、吐出圧力センサー34b)、温度センサー(ガス側温度センサー33f、33i、液側温度センサー33e、33h、室内温度センサー33g、33j、吸入温度センサー33a、吐出温度センサー33b、室外温度センサー33c、液管温度センサー33d、熱交温度センサー33k、液側温度センサー33l)の検出信号を受けることができるようにこれらのセンサー(検出部)と接続されている。また、制御部3は、これらのセンサーの検出信号等に基づいて各種機器(圧縮機21、室外ファン27、室内ファン43、流量制御弁として機能する膨張弁41)を制御することができるように各種機器に接続されている。
図3に示すように、制御部3は、測定部3a、演算部3b、記憶部3c、駆動部3d、表示部3e、入力部3f、出力部3gを備えている。測定部3aは、圧力センサー及び温度センサーから送られる情報を基に冷媒回路10を循環している冷媒の圧力や温度(つまり、運転状態量)を測定する機能を有している。演算部3bは、測定部3aで測定した測定値を基に冷媒量(つまり、運転状態量)を演算する機能を有している。記憶部3cは、測定部3aで測定した測定値、演算部3bで演算して算出した冷媒量を記憶したり、外部からの情報を記憶したりする機能を有している。
駆動部3dは、冷凍空調装置1を駆動する各要素(具体的には、圧縮機モーター、弁機構、ファンモーター等)の駆動を制御する機能を有している。表示部3eは、冷凍空調装置1を運転させる上で生じる異常を音声や表示で報知したり、油面検知装置60の油面検知結果(油枯渇か否かの判定結果)を音声や表示で報知する機能を有している。入力部3fは、各種制御用の設定値の入力や変更を行なったり、冷媒充填量等の外部情報の入力を行なったりする機能を有している。出力部3gは、測定部3aで測定した測定値や演算部3bで演算した値を外部に出力する機能を有している。
(延長配管)
延長配管(液延長配管6、ガス延長配管7)は、室外機2と室内機4とを接続し、冷凍空調装置1内の冷媒を循環させるものである。つまり、冷凍空調装置1は、冷凍空調装置1を構成している各種機器を延長配管で配管延長することで冷媒回路10を形成し、この冷媒回路10に冷媒を循環させることで、冷房運転や暖房運転が実行可能になっているのである。
上述したように、延長配管は、液冷媒又は二相冷媒が流れる液延長配管6(主液延長配管6A、枝液延長配管6a、枝液延長配管6b、及び、分配器51a)と、ガス冷媒が流れるガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b、及び、分配器52a)とで構成されている。そのうちの主液延長配管6A、枝液延長配管6a、枝液延長配管6b、主ガス延長配管7A、枝ガス延長配管7a、及び、枝ガス延長配管7bは、冷凍空調装置1をビル等の設置場所に設置する際に現地にて施工される冷媒配管であり、これらの各配管のそれぞれには、室外機2と室内機4との組み合わせに応じて決められた配管径のものが使用されるようになっている。
なお、実施の形態1では、1台の室外機2と2台の室内機4との接続に分配器51a、分配器52aを加えた延長配管を用いているが、分配器51a及び分配器52aは必ずしも必須のものではない。また、分配器51a及び分配器52aは、室内機4の延長台数に応じて形状を決定するとよい。例えば、図1に示すように、分配器51a及び分配器52aをT字管で構成してもよく、ヘッダーを用いて構成しても構わない。また、複数台(3台以上)の室内機4が接続される場合には、T字管を複数個使用して冷媒を分配させてもよいし、ヘッダーを用いて冷媒を分配させてもよい。
なお、実施の形態1では、1台の室外機2と2台の室内機4との接続に分配器51a、分配器52aを加えた延長配管を用いているが、分配器51a及び分配器52aは必ずしも必須のものではない。また、分配器51a及び分配器52aは、室内機4の延長台数に応じて形状を決定するとよい。例えば、図1に示すように、分配器51a及び分配器52aをT字管で構成してもよく、ヘッダーを用いて構成しても構わない。また、複数台(3台以上)の室内機4が接続される場合には、T字管を複数個使用して冷媒を分配させてもよいし、ヘッダーを用いて冷媒を分配させてもよい。
(油面検知装置)
図4は、本発明の実施の形態1に係る油面検知装置の構成を示すブロック図である。
油面検知装置60は、基準センサ36及び油面検知センサ37を有する油面検知部70と、基準センサ36及び油面検知センサ37のそれぞれへ供給する電力を制御し、各センサ36、37の計測値を計測するセンサ制御部35とを備えている。油面検知装置60は、図2に示したように圧縮機21の外面に設置され、圧縮機内部の油面(量)が適正量存在しているか(つまり油枯渇になっていないかどうか)を把握するものである。油の適正量は圧縮機により異なり、本実施の形態1では図2に示すように、軸受け部21dまで油が貯留する量を適正量とする。
基準センサ36は、常に油で満たされる高さの圧縮機外表面に設置され、設置箇所の温度を計測し、この計測値を後述のセンサ計測部に送信する。また、油面検知センサ37は、油面管理を必要とする高さ(油量を確保したい高さであって、例えば、軸受け部21dと対向する高さ)の圧縮機外表面に設置され、設置箇所の温度を計測し、この計測値を後述のセンサ計測部35aに送信する。この設置状態における判定結果は、油面検知センサ37が設置してある高さに油面があれば、適正量の油があることになり「油あり」、油面検知センサ37の高さ以下に油面があれば、適正量の油が無いことになり「油枯渇」といった判定となる。
基準センサ36及び油面検知センサ37には、温度により抵抗値が線形で変化するサーミスタを用いる。このようにサーミスタに加える電力を変化させることで、自己発熱させずに温度のみを計測する方式(後述の温度検知方式)と、自己発熱させて圧縮機外表面を外部加熱し、放熱特性を計測する方式(後述の外部加熱方式)との2方式を兼ねることができる。このサーミスタを用いることで、1つの部品で加熱と温度センシングとを行うことができる。なお、ここでは、基準センサ36及び油面検知センサ37のそれぞれを、一つの部品(サーミスタ)で加熱と温度センシングとをできるように構成したが、これに限られない。例えば、加熱体と温度計測素子とを別々に備えた構成としてもよい。この場合、加熱体には、例えばヒータを用いることができる。
センサ制御部35は、図4に示すように、センサ計測部35a、センサ判定部35b、センサ記憶部35c、電力調整部35d、センサ入力部35e、センサ出力部35fを備えている。
センサ計測部35aは、基準センサ36、油面検知センサ37から送られる計測値を基に温度を計測する機能を有している。センサ判定部35bは、電力調整部35d及びセンサ出力部35fを制御し、センサ計測部35aで得られたセンサ情報を基に油枯渇か否かを判定する部分である。センサ記憶部35cは、センサ計測部35a、センサ判定部35bで得られた情報を記憶する部分である。
電力調整部35dは、センサ判定部35bの情報を基に基準センサ36及び油面検知センサ37に供給する電力を調整する部分である。具体的には、電力調整部35dは、基準センサ36及び油面検知センサ37が自己発熱しない第1電力を基準センサ36及び油面検知センサ37に供給する第1電力調整と、基準センサ36及び油面検知センサ37が自己発熱する第2電力を基準センサ36及び油面検知センサ37に供給する第2電力調整とを行う。
センサ入力部35eは、油面検知開始の信号を得たり、センサ判定部35bの判定に必要な情報を入手する部分である。センサ出力部35fは、センサ判定部35bで判定された判定結果を外部発報のために出力したり、冷凍空調装置1の運転状態を変化させる信号を冷凍空調装置1へ出力したりする部分である。センサ出力部35fから出力されたデータは、冷凍空調装置1の制御部3へと入力され、冷凍空調装置1側で適宜処理される。なお、油面検知装置60に液晶パネルなどの表示部を設け、判定結果を油面検知装置60側で表示するようにしてもよい。
(冷凍空調装置1の動作)
冷凍空調装置1の各要素の動作について説明する。冷凍空調装置1は、各室内機4の運転負荷に応じて冷凍空調装置1を構成している各機器の制御を行ない、冷房運転を実行する。
図5は、本発明の実施の形態1に係る冷凍空調装置の冷房運転時のp−h線図である。なお、図1では、冷房運転時の冷媒の流れを実線矢印で表している。また、冷凍空調装置1では、冷媒漏洩検知を常時実施し、通信線を用いることにより管理センター等で遠隔監視を行なうことができるようになっている。
冷凍空調装置1が実行する冷房運転について、図1及び図5を用いて説明する。
冷房運転時は、圧縮機21の吐出側が、室外熱交換器23のガス側に接続される。また、圧縮機21の吸入側が、ガス側閉鎖弁29及びガス延長配管7(主ガス延長配管7A、枝ガス延長配管7a、枝ガス延長配管7b)を介して室内熱交換器42のガス側に接続される。なお、液側閉鎖弁28及びガス側閉鎖弁29は、開状態にされている。また、全部の室内機4で冷房運転が実行される場合を例に説明する。
低温・低圧の冷媒が圧縮機21によって圧縮され、高温・高圧のガス冷媒となって吐出される(図5に示す点a)。圧縮機21から吐出された高温・高圧のガス冷媒は、室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の送風作用により室外空気に放熱しながら凝縮・液化する(図5に示す点b)。このときの凝縮温度は、熱交温度センサー33kもしくは吐出圧力センサー34bで検出される圧力を飽和温度換算することにより求められる。
その後、室外熱交換器23から流出した高圧液冷媒は、液側閉鎖弁28を介して室外機2から流出する。室外機2から流出した高圧液冷媒は、主液延長配管6A、枝液延長配管6a、枝液延長配管6bにおいて管壁面摩擦によって圧力が降下する(図5に示す点c)。この冷媒は、室内機4に流入し、膨張弁41により減圧されて低圧の気液二相冷媒となる(図5に示す点d)。この気液二相冷媒は、冷媒の蒸発器として機能する室内熱交換器42に流入し、室内ファン43の送風作用により空気から吸熱することで蒸発ガス化する(図5に示す点e)。このとき、空調対象域の冷房が実行されることになる。
このときの蒸発温度は、液側温度センサー33e、液側温度センサー33hにて計測される。そして、室内熱交換器42A、室内熱交換器42Bの出口における冷媒の過熱度SHは、ガス側温度センサー33f、ガス側温度センサー33iにより検出される冷媒温度値から液側温度センサー33e、液側温度センサー33hにより検出される冷媒温度を差し引くことによって求められる。つまり、冷媒の温度は、運転状態に応じてそれぞれの温度センサーで必要に応じて計測できるようになっている。
また、冷房運転中、膨張弁41A、41Bは、室内熱交換器42A、41Bの出口(すなわち、室内熱交換器42A、室内熱交換器42Bのガス側)における冷媒の過熱度SHが過熱度目標値SHmとなるように開度調節されている。
室内熱交換器42を通過したガス冷媒は、枝ガス延長配管7a、枝ガス延長配管7b、主ガス延長配管7Aを通り、ガス側閉鎖弁29を介して室外機2に流入する。なお、ガス冷媒は、枝ガス延長配管7a、枝ガス延長配管7b、主ガス延長配管7Aを通過するときの管壁面摩擦によって圧力が降下する(図5に示す点f)。そして、室外機2に流入した冷媒は、アキュムレーター24を経て、圧縮機21に再度吸入される。以上の流れで、冷凍空調装置1は冷房運転を実行する。
圧縮機内部の流体は、油と冷媒とで構成される。ガス冷媒は吸入された量がほぼそのまま吐出されることから、圧縮機内部に滞留しない。これに対し、油は吐出量が限られており、冷媒回路内を循環するよりも圧縮機内部に留まる量が多い。圧縮機内部に溜まっている油は、オイルポンプ21eによりくみ上げられ、圧縮機内部の圧縮部21a及び電動部21bなどに供給されてここで加熱される。そして、長時間運転すると、圧縮機内部の油の温度が上昇する。
(油面検知原理)
実施の形態1の油面検知では油面検知センサ37のみを用いる。実施の形態1の油面検知では、計測開始時に冷凍空調装置1の運転状態をある状態Aにして油面検知センサ37で温度計測を行い、その後、冷凍空調装置1の運転状態を別の状態Bに変化させる。冷凍空調装置1の運転状態を別の状態Bに変化させるのは、圧縮機21に流入するガス冷媒の温度(以下、圧縮機吸入温度という)を変化させる意図である。このように、圧縮機吸入温度を変化させると圧縮機21内のガス冷媒の温度が大きく変化するので、油面検知センサ37の計測値が変化した場合、油面検知センサ37の高さ位置にはガス冷媒があることになる。実施の形態1の油面検知ではこの原理を用いて油枯渇か否かを判定する。
図6は、本発明の実施の形態1に係る油面検知装置の油面検知の流れを示すフローチャート(自己発熱なし)である。以下、具体的な油面検知の流れについて図6を参照して説明する。
まず、油面検知の判定がスタートすると、センサ判定部35bは電力調整部35dに第1電力調整を行わせ、油面検知センサ37の計測値T1を取得する(S101)。次に、センサ判定部35bは、圧縮機吸入温度を変化させる信号をセンサ出力部35fから冷凍空調装置1に出力させ、冷媒空調装置の運転状態を変化させる(S102)。そして、センサ判定部35bは、冷凍空調装置1の冷凍サイクルが安定しているか否かを判別する(S103)。センサ判定部35bは、冷凍サイクルが安定しているのが確認できたら、油面検知センサ37の計測値T2を取得する(S104)。その後、センサ判定部35bは、S101で取得したT1とS104で取得したT2とを比較し(S105)、T1=T2であれば「油あり(異常なし)」と判定し(S106)、T1≠T2であれば「油枯渇」と判定し、発報する(S107)。
以上では、油面検知センサ37を自己発熱させずに用いる場合の液面検知の流れを説明したが、油面検知センサ37を自己発熱させて用いる方法の場合には、以下のようにして油面検知を行う。
図7は、本発明の実施の形態1に係る油面検知装置の油面検知の流れを示すフローチャート(自己発熱あり)である。以下、具体的な油面検知の流れについて図7を参照して説明する。
まず、油面検知の判定がスタートすると、センサ判定部35bは電力調整部35dに第2電力調整を行わせ、油面検知センサ37を自己発熱させる(S201)。そして、任意時間が経過すると(S202)、センサ判定部35bは油面検知センサ37の計測値T3を取得する(S203)。次に、センサ判定部35bは、圧縮機吸入温度を変化させる信号をセンサ出力部35fから冷凍空調装置1に出力させ、冷媒空調装置の運転状態を変化させる(S204)。そして、センサ判定部35bは、冷凍空調装置1の冷凍サイクルが安定しているか否かを判別する(S205)。センサ判定部35bは、冷凍サイクルが安定しているのが確認できたら、油面検知センサ37の計測値T4を取得する(S206)。その後、センサ判定部35bは、S203で取得した計測値T3とS206で取得した計測値T4とを比較し(S207)、T3=T4であれば「油あり(異常なし)」と判定し(S208)、T3≠T4であれば「油枯渇」と判定し、発報する(S209)。
以上では、油面検知センサ37を自己発熱させずに用いる場合と、自己発熱させて用いる場合のそれぞれで判定を下していたが、両方を組み合わせて判定するようにしてもよい。以下、両方を組み合わせる場合の油面検知の流れについて説明する。
図8は、図6と図7のそれぞれに示した方法を組み合わせた油面検知の流れを示すフローチャートである。ステップS301〜S305は図6のステップS101〜S105と同じである。また、ステップS306〜S314は、図7のステップS201〜S209と同じである。
まず、油面検知の判定がスタートすると、センサ判定部35bは、油面検知センサ37を自己発熱させずに用いて油面検知を行う(S301〜S305)。そして、センサ判定部35bは、S305の判断でT1=T2であると、油面検知センサ37を自己発熱させて用いて油面検知を行う(S306〜S314)。
このように図6と図7のそれぞれに示した方法を組み合わせることで、より誤判定を抑制することが可能となる。
以上説明したように、本実施の形態1によれば、冷凍空調装置1を制御し、圧縮機吸入温度を変化させ、圧縮機21に流入するガス冷媒温度のみを変化するようにしたので、温度が異なれば油枯渇であるという簡易的な方法で油枯渇を判定することができ、誤判定を抑制できる。
なお、図4には実施の形態1〜3の全ての油面検知に対応できる構成を図示したため、基準センサ36が設けられているが、実施の形態1の油面検知では基準センサ36は必要ないため削除してもよい。
実施の形態2.
実施の形態1は、油面検知センサ37のみを用いて油面検知を行っていたが、実施の形態2は、油面検知センサ37と基準センサ36の両方を用いて油面検知を行うものである。
(油面検知原理)
油面検知装置60において油面を検知する方法は従来2つの方式((A)温度検知方式、(B)外部加熱方式)がある。本実施の形態2は、従来の温度検知方式と外部加熱方式のそれぞれに対し、判定精度を高めるための冷凍空調装置1の制御(以下、判定精度向上運転という)を組み合わせることに特徴がある。以下、まずは2つの方式のそれぞれについて説明する。
(A)温度検知方式
温度検知方式は、密閉容器21Aの内部に油が位置する部分の圧縮機表面温度とガス冷媒が位置する部分の圧縮機表面温度とに違いが生じる現象に基づいて油面を検知する方法である。この現象は、油とガス冷媒とで熱伝達率が違うことが影響しており、ここではまず、油とガス冷媒の熱伝達率の違いについて説明する。
油とガス冷媒との圧縮機内壁での熱伝達率を比較すると、油部がガス部よりも熱伝達率が大きい。つまり、油は、ガス冷媒に比べて圧縮機内壁での熱抵抗が小さく、熱が伝わりやすいということになる。よって、油部の圧縮機表面では、その圧縮機表面温度が内部温度(つまり油の温度)に接近するのに対し、ガス部の圧縮機表面では、その圧縮機表面温度は外部温度に接近する。このため、圧縮機内部の油とガス冷媒の温度が同じで、且つ、圧縮機内部と外部とに温度差がある場合、油部の圧縮機表面とガス部の圧縮機表面とで温度差が発生することになる。温度検知方式では、この温度差に基づいて油面位置を特定する。
図9は、本発明の実施の形態2に係る冷凍空調装置の要素部品である圧縮機の2つの圧縮機状態を示した図である。外気温度は25℃で、(a)は圧縮機内外温度差があり、圧縮機内部に適量以上の油が存在し、油とガス冷媒の温度が等しい場合、(b)は圧縮機内外温度差があり、油枯渇状態であり、油の温度がガス部温度よりも高い状態の場合を示している。
これらの場合に、温度検知方式で油面検知を行うと、判定結果はそれぞれ以下のようになる。以下においてT1は基準センサ36の計測値、T2は油面検知センサの計測値である。
(a)T1=T2となり、「油あり」の判定となる。
(b)T1≠T2となり、「油枯渇」の判定となる。
ここでは、圧縮機内部の油とガス冷媒の温度とが同じで、且つ、圧縮機内部と外部とで温度差がある場合について説明したが、次に、圧縮機内部の油がガス冷媒よりも温度が高い場合について考える。「圧縮機内外温度差があって、且つ油の温度がガス冷媒に比べて高い」場合、「圧縮機内外温度差があって、且つ油とガス冷媒の温度が等しい」場合に比べて更に圧縮機表面温度差が大きくなる。これは、圧縮機内部の油部とガス部の熱伝達率の違いに加えて、油部がガス冷媒より温度が高く、その差分だけ圧縮機表面温度差が大きくなるためである。よって、「圧縮機内外温度差があって、且つ油の温度がガス冷媒に比べて高い」場合も、温度検知方式により誤検知なく油の有無を判別することが可能である。
(B)外部加熱方式
上記の温度検知方式は、密閉容器21Aの内部の油とガス冷媒との熱伝達率の違いによって圧縮機表面に表れる温度の違いに基づき油面を検知するものであった。外部加熱方式も、密閉容器21Aの内部の油とガス冷媒の熱伝達率の違いを利用する点は同じであるが、外部加熱方式は、容器表面に対して強制的に熱を加え、熱を加えた分、圧縮機表面の温度が内部の温度よりも高くなる温度状況を作る。そして、熱伝達率の違いによる油部とガス部の放熱特性の違いにより、基準センサ36の計測値と油面検知センサ37の計測値とを比較することで油枯渇か否かを判定する、というものである。
すなわち、前記したように油とガス冷媒の圧縮機内壁での熱伝達率を比較すると、油部がガス部よりも熱伝達率が大きい。つまり、油はガス冷媒に比べて圧縮機内壁部での熱抵抗が小さく、圧縮機表面に加えられた熱が圧縮機内部の油へと放熱しやすいということになる。このことから、外部加熱した際、ガス部の圧縮機表面温度よりも油部の圧縮機表面温度の方が低くなる。圧縮機21の運転状態や周囲環境は変化することから、油枯渇か否かを判定する際には、常に油部となる位置に設置した基準センサ36の計測値と油量を確保したい高さに設置した油面検知センサ37の計測値とを比較する。そして、基準センサ36の計測値と油面検知センサ37の計測値とが等しければ、油面検知センサ37の高さ位置まで油があることになり、「油あり」と判定し、基準センサ36の計測値と油面検知センサ37の計測値とが異なれば、「油枯渇」と判定する。
図10は、本発明の実施の形態2に係る冷凍空調装置の要素部品である圧縮機の2つの圧縮機状態を示した図である。(a)は圧縮機内部に適量以上の油が存在し、油とガス冷媒の温度が等しい場合、(b)は油枯渇状態であり、油とガス冷媒の温度が等しい場合を示している。
これらの場合に、外部検知方式で油面検知を行うと、判定結果はそれぞれ以下のようになる。
(a)T1=T2となり、「油あり」の判定となる。
(b)T1≠T2となり、「油枯渇」の判定となる。
(判定精度向上運転)
前記記載のように、圧縮機21の外面に基準センサ36及び油面検知センサ37を設置した場合は、油部とガス部の圧縮機表面温度差が小さい。よって判定精度を向上するため、運転条件を変化させ、圧縮機吸入温度を変化させる。具体的な方法を下記に示す。
(A)温度検知方式
温度検知方式では、圧縮機周囲温度(外気温度)と油温(≒基準センサ温度)との関係に基づいて圧縮機吸入温度を変えることにより、油部とガス部の圧縮機表面温度の差異を大きくする。
油温(基準センサ温度)が圧縮機周囲温度(外気温度)よりも低い場合は、その差を更に大きくすべく圧縮機吸入温度を上昇させる。このように圧縮機吸入温度が上昇するように冷凍空調装置1を制御することで、ガス部の圧縮機表面温度は上昇し、油部の圧縮機表面温度との温度差が大きくなる。
逆に、油温(基準センサ温度)が圧縮機周囲温度(外気温度)よりも高い場合は、その差を更に大きくすべく、圧縮機吸入温度を下降させる。このように圧縮機吸入温度が下降するように冷凍空調装置1を制御することで、ガス部の圧縮機表面温度は下降し、油部の圧縮機表面温度との温度差が大きくなる。
(B)外部加熱方式
外部加熱方式では、油部とガス部の放熱特性の差異を大きくするため、圧縮機21に流入する冷媒はできる限り高温であることが望ましい。これは、圧縮機21に流入するガス冷媒温度が高ければ、ガス部で更に放熱しにくくなり、放熱し易い油部との放熱特性の差異が大きくなるためである。
以上のように、判定精度を高めるためには、圧縮機吸入温度を上昇又は下降させる運転を行うことになる。以下、圧縮機吸入温度を変化させるための運転について説明する。
(圧縮機吸入温度を変化させるための運転)
圧縮機吸入温度を上昇させるには、圧縮機21の上流にある蒸発器の、空気側熱交換量よりも冷媒側熱交換量を小さくする。このようにすることで、蒸発温度を上昇させ、圧縮機吸入温度を上昇させることができる。このように圧縮機吸入温度を上昇させるための運転には下記3つの方法がある。
(1)蒸発器ファン制御
圧縮機吸入温度を変化させる手段としては、蒸発器に設置されているファンの風量を制御することである。ファンの風量を増加させると、冷媒側比べて空気側の熱交換量が増加することから、冷媒は蒸発器出口で過熱状態となり、飽和温度よりも過熱度分、冷媒の温度を上昇することができる。また、蒸発器のファン風量を増加すると高い蒸発温度でも熱交換できることから、蒸発温度が上昇し、圧縮機吸入温度を高くすることができる。逆に、蒸発器のファン風量を小さくした場合には、蒸発器出口の過熱度が小さくなり、蒸発温度が下がり、圧縮機吸入温度を低下させることができる。
(2)膨張弁開度制御
圧縮機吸入温度を変化させるための2つ目の手段としては、膨張弁の開度を制御することがあげられる。膨張弁の開度を絞ることで蒸発器を流れる冷媒が少なくなる。よって、蒸発器での冷媒側の熱交換量は空気側の熱交換量に比べて少なくなり、蒸発器入口で二相状態であった冷媒は蒸発器出口では過熱ガス状態となる。逆に膨張弁の開度を開けることにより、蒸発器を流れる冷媒量が多くなる。よって、蒸発器での冷媒側熱交換量は空気側熱交換量に比べて多くなり、蒸発器出口の過熱度が小さくなる。そして更に冷媒側の熱交換量が多くなった場合は、蒸発器出口の冷媒は飽和状態となる。
(3)圧縮機周波数制御
圧縮機吸入温度を変化させる3つ目の手段としては、圧縮機21の周波数を調整することである。圧縮機周波数を低下させると、蒸発器を流れる冷媒量が減り、蒸発器での空気側の熱交換量よりも冷媒側の熱交換量が小さくなる。よって、蒸発温度が上昇し、圧縮機吸入温度を上昇させることができる。逆に、圧縮機周波数を増加させた場合には、熱交換量がバランスするために蒸発温度が低下し、圧縮機吸入温度を低下させることができる。
図11は、本発明の実施の形態2に係る油面検知装置の温度検知方式での油面検知の流れを示すフローチャートである。以下、温度検知方式での具体的な油面検知の流れについて図11を参照して説明する。
まず、油面検知の判定がスタートすると、センサ判定部35bは上記の判定精度向上運転を行う。すなわち、上述したように基準センサ36の計測値に基づいて圧縮機吸入温度を変化させる信号をセンサ出力部35fから冷凍空調装置1に出力させる(S401)。そして、センサ判定部35bは、電力調整部35dに第1電力調整を行わせ、基準センサ36の計測値T1と油面検知センサ37の計測値T2とを取得する(S402)。そして、センサ判定部35bは、T1とT2とを比較し(S403)、T1=T2であれば「油あり(異常なし)」と判定し(S404)、T1≠T2であれば「油枯渇」と判定してこれを発報する(S405)。
図12は、以下、外部加熱方式での具体的な油面検知の流れについて図12を参照して説明する。
センサ判定部35bは、まず、上記の判定精度向上運転を行う。すなわち、基準センサ36の計測値に基づいて圧縮機吸入温度を変化させる信号をセンサ出力部35fから冷凍空調装置1に出力させる(S501)。そして、センサ判定部35bは、電力調整部35dに第2電力調整を行わせて基準センサ36と油面検知センサ37を自己発熱させる(S502)。そして、センサ判定部35bは、計測値が安定するための任意時間が経過したかを判断し(S503)、任意時間が経過して計測値が安定したことを確認すると、基準センサ36の計測値T1と油面検知センサ37の計測値とを取得する(S504)。そして、センサ判定部35bは、T1とT2とを比較し(S505)、T1=T2であれば「油あり(異常なし)」と判定し(S506)、T1≠T2であれば「油枯渇」と判定してこれを発報する(S507)。
以上説明したように本実施の形態2によれば、判定精度向上運転を行った上で温度検知方式又は外部加熱方式を用いて油面検知を行うようにしたので、誤判定を抑制することが可能である。
実施の形態3.
上記実施の形態2では基準センサ36及び油面検知センサ37の両方を用いて温度検知方式又は外部加熱方式で油面検知を行う方法について説明した。上記実施の形態2では、実際には油があるにもかかわらず、「油枯渇」と判定してしまうという誤判定は無いが、「油あり(異常なし)」と判定された場合に、実際は油が枯渇しているという場合がある。つまり、油枯渇を見逃してしまう可能性がある。そこで、実施の形態3では、温度検知方式と外部加熱方式を組み合わせて用いて油面検知を行うことで、油枯渇を見逃すことを排除すると共に、上述の判定精度向上運転を行うことで、判定精度の向上を図るものである。
ここで、温度検知方式において油枯渇を見逃す場合及び外部加熱方式で油枯渇を見過ごす場合とはどういう温度条件なのかについて整理する。
まず、温度検知方式において油枯渇を見逃す可能性のある温度条件は、圧縮機21の内部と外部の温度差が小さい(例えば±0.5〜1℃)場合、油の温度がガス冷媒に比べて低い場合などである。
このような条件で温度検知すると、油部とガス部のそれぞれの圧縮機表面温度差が小さくなる。よって油面検知センサ設置部がガス状態でも、油面検知センサ37の計測値は基準センサ36の計測値と接近し、油が枯渇しているのに油ありと判定してしまう。
図13は、本発明の実施の形態3に係る油面検知装置の温度検知方式の説明図で、油枯渇を見逃す可能性のある温度条件の説明図である。図13(a)は圧縮機内外温度差が小さく、油とガス冷媒の温度が共に20℃で等しい場合、(b)は油の温度がガス冷媒の温度より低い場合を示している。
これらの場合に、温度検知方式で油面検知を行うと、どちらの場合も以下の判定結果となる。
T1=T2となり、「油枯渇」であるにもかかわらず「油あり」の判定となる。
つまりここで言いたいのは、温度検知方式では、圧縮機内部の油とガスの温度が同じで圧縮機内外温度差が小さい(無い場合も含む)と、油の温度がガス冷媒に比べて低い場合とのそれぞれにおいて、T1=T2の結果が得られることで、油枯渇を見逃す可能性がある、ということである。言い換えれば、温度検知方式でT1=T2の結果が得られたとしても、油枯渇である状態を含んでいる可能性があることになる。
次に、外部加熱方式において油枯渇を見逃す可能性のある温度条件について説明する。外部加熱方式において油枯渇を見逃す可能性のある温度条件は、油の温度がガス冷媒温度に比べて高い場合である。
この条件で外部加熱方式で油面判定すると、油部とガス部の圧縮機表面温度差が小さくなる。よって油面検知センサ設置部がガス状態でも、油部の圧縮機表面温度が基準センサ36と温度が接近し、油が枯渇しているのに油ありと判定してしまう。
図14は、本発明の実施の形態3に係る油面検知装置の外部加熱方式の説明図で、油が枯渇しているが、油枯渇を見逃す可能性のある温度条件の説明図である。
油の温度がガス冷媒温度に比べて高い場合を示している。この場合、以下の判定結果となる。
T1=T2となり、「油枯渇」であるにもかかわらず「油あり」の判定となる。
これは、油温度が高いために基準センサ36の計測値が、外部加熱されたガス部の圧縮機表面温度と等しくなったことが原因である。つまりここで言いたいのは、油の温度がガス冷媒に比べて高い場合、外部加熱方式では油枯渇を見過ごす可能性がある、ということである。
以上を整理すると、温度検知方式では、上述したように、T1=T2の結果が得られたときに、油枯渇を見逃している可能性を含んでいる。このため、温度検知方式においてT1=T2の結果が得られたときは、温度検知方式のみで判定を下すのではなく、外部加熱方式に移行する。
ここで、外部加熱方式に移行する際の圧縮機21の温度状態が、外部加熱方式で油枯渇を見逃す可能性がある温度条件に合致していると、外部加熱方式に移行しても同じく油枯渇を見逃してしまう可能性がある。しかし、外部加熱方式において油枯渇を見逃す可能性がある温度条件は、上述したように油の温度がガス冷媒の温度よりも高い場合であり、この温度条件は、温度検知方式で油枯渇を見逃す可能性がある温度条件に含まれない。つまり、温度検知方式で判定した後に外部加熱方式に移行する際には、外部加熱方式において油枯渇を見逃す可能性がある温度条件が排除された状態であるので、温度検知方式に続いて外部加熱方式を用いることで、油枯渇を見逃がすのを防止することができる。一例を次の図15の3つの圧縮機状態を用いて説明する。
図15は、本発明の実施の形態3に係る冷凍空調装置の要素部品である圧縮機の3つの状態を示す概略図である。(a)は圧縮機内外温度差があって、圧縮機内部に適量以上の油が存在し、油とガス冷媒の温度が等しい場合、(b)は圧縮機内外温度差が小さく、油枯渇状態であり、油とガス冷媒の温度が等しい場合、(c)は油枯渇状態であり、油の温度がガス部温度よりも高い状態の場合を示している。
これらの場合に、温度検知方式で油面検知を行うと、判定結果はそれぞれ以下のようになる。
(a)T1=T2となり、「油あり」の判定となる。
(b)T1=T2となり、「油枯渇」であるにもかかわらず「油あり」の判定となる。
(c)T1≠T2となり、「油枯渇」の判定となる。
(c)の場合、温度検知方式において判定が下り、「油枯渇」と判定される。一方、T1=T2となった(a)、(b)のそれぞれについては、続いて外部加熱方式で判定を行う。この場合、判定結果はそれぞれ以下のようになる。なお、参考のため、図15には(c)の場合の判定結果も示している。
(a)T1=T2となり、「油あり」の判定となる。
(b)T1T2となり、「油枯渇」の判定となる。
以上のように、温度検知方式と外部加熱方式とを組み合わせることで、簡易的な方法で油枯渇を見逃すことなく正確な判定を行える。
図16は、本発明の実施の形態3に係る油面検知装置における油面検知の流れを示すフローチャートである。以下、実施の形態3の油面検知の流れについて図16を参照して説明する。
まず、油面検知の判定がスタートすると、センサ判定部35bは、電力調整部35dに第1電力調整を行わせ、基準センサ36の計測値T1と油面検知センサ37の計測値T2とを取得する(S601)。センサ判定部35bは、T1とT2とを比較し(S602)、T1≠T2であれば、「油枯渇」と判定してこれを発報し(S608)、T1=T2であれば、電力調整部35dに第2電力調整を行わせ、基準センサ36と油面検知センサ37とを自己発熱させる(S603)。
そして、センサ判定部35bは計測値が安定するための任意時間が経過したかを判断し(S604)、任意時間が経過して計測値が安定したことを確認すると、基準センサ36の計測値T3と油面検知センサ37の計測値T4とを取得する(S605)。そして、センサ判定部35bは、T3とT4とを比較し(S606)、T3=T4であれば「油あり(異常なし)」と判定し(S607)、T3≠T4であれば「油枯渇」と判定してこれを発報する(S608)。
なお、図16のフローチャートには、圧縮機吸入温度を変化させる制御について記載していないが、温度検知方式と外部加熱方式のそれぞれにおいて判定精度を向上するため、基準センサ36の計測値に応じて上述の判定精度向上運転を行っている。
以上説明したように、本実施の形態3によれば、温度検知方式と外部加熱方式とを組み合わせて油面検知を行うと共に、判定精度向上運転を行うので、油枯渇を見過ごすことがなく、誤判定を抑制できる。
実施の形態4.
上記実施の形態1〜3では、圧縮機21の外面に油面検知装置60を設けていたが、実施の形態4では、油面検知装置60を圧縮機21の内部に設けたものである。
図17は、本発明の実施の形態4に係る冷凍空調装置における油面検知装置の配置位置を示す図である。
図17に示すように、油面検知装置60の基準センサ36及び油面検知センサ37が、圧縮機21の内部に設けられている。その他の冷凍空調装置の構成及び制御は実施の形態1〜3と同様である。
以上説明したように、本実施の形態4によれば、油面検知装置60を圧縮機21の内部に設けてもよく、この場合も実施の形態1〜3と同様の効果を得ることができる。
なお、実施の形態1〜4に係る油面検知装置60及び冷凍空調装置1に、各構成機器を管理して計測値や運転データを電話回線、LAN回線、無線等の外部との通信を行ない取得する管理装置としてのローカルコントローラを延長してもよい。そして、このローカルコントローラを実施の形態1〜3に係る油面検知装置60、冷凍空調装置1の計測値や運転データを受信する情報管理センターの遠隔サーバーにネットワークを介して延長し、遠隔サーバーに運転状態量を記憶するディスク装置等の記憶装置を延長することによって、油枯渇判定システムを構成してもよい。
例えば、ローカルコントローラを実施の形態1〜4に係る冷凍空調装置1の運転状態量を取得する計測部(センサ計測部35a、測定部3a)とし、記憶装置を記憶部(センサ記憶部35c、記憶部3c)とし、遠隔サーバを判定部(センサ判定部35b)として機能させる等の構成が考えられる。
このように遠隔監視できるシステムを構成することによって、定期メンテナンス時に、作業者が現地に赴いて冷媒量の過不足を確認する作業の必要が無くなる。そのため、機器の信頼性及び操作性が更に向上することになる。
以上、本発明の特徴を実施の形態に分けて説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。例えば、実施の形態では、冷房専用の冷凍空調装置1に適用した場合を例に説明したが、これに限定されず、冷暖切り換え可能な冷凍空調装置や、暖房専用の冷凍空調装置に本発明を適用してもよい。また、実施の形態では、それぞれ1台の室外機2を備えた冷凍空調装置を例に示したが、これに限定されず、複数台の室外機2を備えた冷凍空調装置に本発明を適用してもよい。更に、各実施の形態の特徴事項を用途や目的に応じて適宜組み合わせるようにしてもよい。
1 冷凍空調装置、2 室外機、3 制御部、3a 測定部、3b 演算部、3c 記憶部、3d 駆動部、3e 表示部、3f 入力部、3g 出力部、4(4A、4B) 室内機、6 液延長配管、6A 主液延長配管、6a 枝液延長配管、6b 枝液延長配管、7 ガス延長配管、7A 主ガス延長配管、7a 枝ガス延長配管、7b 枝ガス延長配管、10 冷媒回路、10a 室内側冷媒回路、10b 室内側冷媒回路、10z 室外側冷媒回路、21 圧縮機、21A 密閉容器、21a 圧縮部、21b 電動部、21c 主軸、21d 軸受け部、21e オイルポンプ、21f 吸入管、21g 吐出管、23 室外熱交換器、24 アキュムレーター、27 室外ファン、28 液側閉鎖弁、29 ガス側閉鎖弁、31 室外側制御部、32 室内側制御部、33a 吸入温度センサー、33b 吐出温度センサー、33c 室外温度センサー、33d 液管温度センサー、33e 液側温度センサー、33f ガス側温度センサー、33g 室内温度センサー、33h 液側温度センサー、33i ガス側温度センサー、33j 室内温度センサー、33k 熱交温度センサー、33l 液側温度センサー、34a 吸入圧力センサー、34b 吐出圧力センサー、35 センサ制御部、35a センサ計測部、35b センサ判定部、35c センサ記憶部、35d 電力調整部、35e センサ入力部、35f センサ出力部、36 基準センサ、37 油面検知センサ、41(41A、41B) 膨張弁、42(42A、42B) 室内熱交換器、43 室内ファン、51a 分配器、52a 分配器、60 油面検知装置、70 油面検知部。

Claims (15)

  1. 冷凍空調装置に搭載され、前記冷凍空調装置を構成している圧縮機の内部に貯留される油の油面を検知する油面検知装置であって、
    前記圧縮機の外面の所定の高さ位置に設けられ、設置箇所の温度を検知する油面検知センサと、
    前記圧縮機に吸入される冷媒の圧縮機吸入温度を変化させる信号を前記冷凍空調装置に出力する出力部と、
    前記出力部から出力される前記信号の出力前後に前記油面検知センサで得られた計測値を比較し、前記圧縮機の内部に貯留される油の枯渇を判定する判定部と、
    を備えた油面検知装置。
  2. 前記油面検知センサが自己発熱しない第1電力を前記油面検知センサに供給する第1電力調整と、前記油面検知センサが自己発熱する第2電力を前記油面検知センサに供給する第2電力調整とを行う電力調整部を更に備え、
    前記判定部は、
    前記電力調整部に前記第1電力調整を行わせると共に、前記出力部に前記信号を出力させて圧縮機吸入温度を変化させ、前記信号の出力前後の前記油面検知センサで得られた計測値を比較し、2つの前記計測値が異なる場合、油枯渇と判定し、
    2つの前記計測値が同じ場合、前記電力調整部に前記第2電力調整を行わせると共に、前記出力部に前記信号を出力させて圧縮機吸入温度を変化させ、前記信号の出力前後の前記油面検知センサで得られた計測値を比較し、2つの前記計測値が異なる場合、油枯渇と判定するものである請求項1記載の油面検知装置。
  3. 冷凍空調装置に搭載され、前記冷凍空調装置を構成している圧縮機の内部に貯留される油の油面を検知する油面検知装置であって、
    前記圧縮機が油で満たされる高さ位置に設けられ、設置箇所の温度を検知する基準センサと、
    前記圧縮機の外面の所定の高さ位置に設けられ、設置箇所の温度を検知する油面検知センサと、
    前記圧縮機に吸入される冷媒の圧縮機吸入温度を変化させる信号を前記冷凍空調装置に出力する出力部と、
    前記出力部から出力される前記信号の出力後の前記油面検知センサの計測値と前記基準センサの計測値とを比較し、前記圧縮機の内部に貯留される油の枯渇を判定する判定部と、
    を備えた油面検知装置。
  4. 前記判定部は、2つの前記計測値が異なる場合に、前記圧縮機の内部に貯留される油が枯渇していると判定するものである請求項3記載の油面検知装置。
  5. 前記基準センサ及び前記油面検知センサが自己発熱しない第1電力を前記基準センサ及び前記油面検知センサに供給する第1電力調整を行う電力調整部を更に備え、
    前記判定部は、油枯渇の判定を行うにあたり、前記電力調整部に前記第1電力調整を行わせて得た、2つの前記計測値を用いる請求項3又は請求項4記載の油面検知装置。
  6. 前記出力部は、前記基準センサの計測値が圧縮機周囲温度よりも低い場合、圧縮機吸入温度を上昇させる信号を前記冷凍空調装置に出力する請求項5記載の油面検知装置。
  7. 前記出力部は、前記基準センサの計測値が圧縮機周囲温度よりも高い場合、圧縮機吸入温度を下降させる信号を前記冷凍空調装置に出力する請求項5記載の油面検知装置。
  8. 前記電力調整部は更に、前記基準センサ及び前記油面検知センサが自己発熱する第2電力を前記基準センサ及び前記油面検知センサに供給する第2電力調整を行うように構成され、
    前記判定部は、2つの前記計測値が同じ場合、前記電力調整部に前記第2電力調整を行わせて得た、前記基準センサの計測値と前記油面検知センサの計測値とを比較し、油枯渇を判定する請求項5〜請求項7の何れか一項に記載の油面検知装置。
  9. 前記判定部は、油枯渇の判定を行うにあたり、前記電力調整部に前記第2電力調整を行わせて得た、2つの前記計測値を用いており、
    前記出力部は、前記第2電力調整時には、前記圧縮機吸入温度を上昇させる信号を前記冷凍空調装置に出力する請求項2又は請求項8記載の油面検知装置。
  10. 前記油面検知センサは、前記圧縮機内において油量を確保する必要がある高さ位置に設けられている請求項1〜請求項9の何れか一項に記載の油面検知装置。
  11. 前記出力部は、前記冷凍空調装置が有する蒸発器のファン風量を変化させることで前記圧縮機吸入温度を変化させる請求項1〜請求項10の何れか一項に記載の油面検知装置。
  12. 前記出力部は、前記冷凍空調装置が有する膨張弁の開度を変化させることで前記圧縮機吸入温度を変化させる請求項1〜請求項11の何れか一項に記載の油面検知装置。
  13. 前記出力部は、前記圧縮機の周波数を変化させることで前記圧縮機吸入温度を変化させる請求項1〜請求項12の何れか一項に記載の油面検知装置。
  14. 前記出力部は、前記判定部の判定結果を報知する請求項1〜請求項13の何れか一項に記載の油面検知装置。
  15. 請求項1〜請求項14の何れか一項に記載の油面検知装置を搭載した冷凍空調装置。
JP2015539084A 2013-09-27 2014-09-09 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置 Active JP6184503B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/076405 WO2015045129A1 (ja) 2013-09-27 2013-09-27 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JPPCT/JP2013/076405 2013-09-27
PCT/JP2014/073830 WO2015045854A1 (ja) 2013-09-27 2014-09-09 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置

Publications (2)

Publication Number Publication Date
JPWO2015045854A1 JPWO2015045854A1 (ja) 2017-03-09
JP6184503B2 true JP6184503B2 (ja) 2017-08-23

Family

ID=52742329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539084A Active JP6184503B2 (ja) 2013-09-27 2014-09-09 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置

Country Status (5)

Country Link
US (1) US9920969B2 (ja)
EP (1) EP3051235B1 (ja)
JP (1) JP6184503B2 (ja)
CN (1) CN105579795B (ja)
WO (2) WO2015045129A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198326B1 (ko) * 2013-12-26 2021-01-05 엘지전자 주식회사 공기 조화기
CN104949414B (zh) * 2015-07-10 2017-12-19 珠海格力电器股份有限公司 空调器及其压缩机油位的检测方法和装置
WO2017175014A1 (en) * 2016-04-07 2017-10-12 ELIE KFOURY ASWAD, Emilie Refrigeration system control and protection device
CN106014927B (zh) * 2016-07-21 2018-12-04 珠海格力电器股份有限公司 压缩机缺油保护控制方法及装置、压缩机和空调器
US11168927B2 (en) * 2016-11-25 2021-11-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6932773B2 (ja) * 2017-05-10 2021-09-08 三菱電機株式会社 油分離装置および冷凍サイクル装置
WO2018229890A1 (ja) * 2017-06-14 2018-12-20 三菱電機株式会社 冷凍サイクル装置
CN107218711B (zh) * 2017-07-31 2019-11-08 青岛海信日立空调系统有限公司 一种空调器及其控制方法
JP7275754B2 (ja) * 2019-03-28 2023-05-18 株式会社富士通ゼネラル 空気調和装置
DE102020115276A1 (de) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Regeln einer Kompressionskälteanlage und Kompressionskälteanlage
DE102020115267A1 (de) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Regeln einer Kompressionskälteanlage und Kompressionskälteanlage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221351A (ja) * 1982-06-17 1983-12-23 三菱電機株式会社 冷凍装置の油検出装置
JP2001012351A (ja) * 1999-06-24 2001-01-16 Daikin Ind Ltd 密閉型圧縮機及びこれを備える冷凍装置
JP2001032772A (ja) * 1999-07-19 2001-02-06 Daikin Ind Ltd 圧縮機及び冷凍装置
JP2002242833A (ja) * 2001-02-15 2002-08-28 Toshiba Kyaria Kk 冷凍サイクル装置
JP2006029160A (ja) * 2004-07-14 2006-02-02 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP2006105061A (ja) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd 密閉型圧縮機の油面検知方法および密閉型圧縮機
JP2006112236A (ja) 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd オイルセンサ及び密閉型電動圧縮機
JP4715615B2 (ja) * 2006-04-20 2011-07-06 ダイキン工業株式会社 冷凍装置
JP5169295B2 (ja) * 2007-03-27 2013-03-27 ダイキン工業株式会社 冷凍装置
JP5674490B2 (ja) * 2011-01-24 2015-02-25 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
EP3051235A4 (en) 2017-05-17
EP3051235B1 (en) 2020-02-26
US9920969B2 (en) 2018-03-20
EP3051235A1 (en) 2016-08-03
CN105579795A (zh) 2016-05-11
US20160201964A1 (en) 2016-07-14
JPWO2015045854A1 (ja) 2017-03-09
WO2015045129A1 (ja) 2015-04-02
WO2015045854A1 (ja) 2015-04-02
CN105579795B (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6184503B2 (ja) 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JP6120966B2 (ja) 冷凍サイクル装置
JP6091506B2 (ja) 冷凍空調装置、冷媒漏洩検知装置及び冷媒漏洩検知方法
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
WO2011161720A1 (ja) 空気調和装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
JP4839861B2 (ja) 空気調和装置
JP5213990B2 (ja) 冷凍空調装置
JP6901041B2 (ja) 冷却装置、制御方法および記憶媒体
JP5078817B2 (ja) 冷凍サイクル装置
US11333388B2 (en) Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
JP2011099591A (ja) 冷凍装置
JP6297151B2 (ja) 冷凍サイクル装置、冷媒漏洩検知装置及び冷媒漏洩検知方法
JP6007965B2 (ja) 空気調和装置
JP6479181B2 (ja) 空気調和装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
CN104583684A (zh) 空调机
JP5615257B2 (ja) 流量監視装置及び流量監視システム
KR101610843B1 (ko) 냉난방 시스템 및 그 제어방법

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6184503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250