WO2015001631A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法 Download PDF

Info

Publication number
WO2015001631A1
WO2015001631A1 PCT/JP2013/068268 JP2013068268W WO2015001631A1 WO 2015001631 A1 WO2015001631 A1 WO 2015001631A1 JP 2013068268 W JP2013068268 W JP 2013068268W WO 2015001631 A1 WO2015001631 A1 WO 2015001631A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2013/068268
Other languages
English (en)
French (fr)
Inventor
翔 古月
章 軍司
小西 宏明
孝亮 馮
所 久人
秀一 高野
崇 中林
寛 北川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/068268 priority Critical patent/WO2015001631A1/ja
Priority to PCT/JP2014/066090 priority patent/WO2015001957A1/ja
Publication of WO2015001631A1 publication Critical patent/WO2015001631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a production method thereof.
  • a Li 2 M1O 3 —LiM2O 2 solid solution positive electrode active material is known as one of positive electrode active materials for lithium ion secondary batteries that are expected to have a higher capacity.
  • the Li 2 M1O 3 —LiM2O 2 solid solution positive electrode active material has a high theoretical electric capacity but is electrochemically inactive Li 2 M1O 3 and electrochemically active LiM2O 2 as a positive electrode active material.
  • M1 is at least one element selected from the group consisting of Mn, Ti, and Zr
  • M2 is Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr
  • at least one element selected from the group consisting of V and V is at least one element selected from the group consisting of V and V).
  • Patent Document 1 discloses sodium-containing lithium having an ⁇ -NaFeO 2 type crystal structure as a technique for providing an active material for a lithium ion battery having high initial efficiency, large discharge capacity, and particularly high discharge capacity at low temperatures.
  • the half-value width of the (003) plane diffraction peak at the Miller index hkl is 0.30 ° or less, and the half-width of the (114) plane diffraction peak is 0.
  • Active material for lithium secondary batteries is disclosed, wherein.
  • the specific surface area is in the range of 1.7 to 6.1 m 2 / g
  • the half width of the diffraction peak of the (003) plane at the Miller index hkl is 0.17 to 0.30 °
  • the (114) plane is disclosed.
  • Patent Document 2 discloses a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure as a technique for providing an active material for a lithium ion secondary battery having a large discharge capacity and excellent high rate discharge characteristics.
  • an active material for a lithium secondary battery characterized by It is disclosed.
  • the half value width of the (003) plane diffraction peak at the Miller index hkl is 0.14 to 0.15 °
  • the half width of the (114) plane diffraction peak is 0.23 to 0.25 °.
  • An active material for a lithium secondary battery is disclosed.
  • a lithium ion secondary battery including a solid solution positive electrode active material represented by Li 2 M1O 3 -LiM2O 2 has a relatively high discharge capacity, but has a property that a direct current internal resistance increases and a decrease in output occurs during discharge. ing.
  • the specific surface area of the positive electrode active material is related to the contact interface resistance with the electrolyte, and the crystallite size is considered to be related to the ion diffusion resistance, etc., so that the DC internal resistance of the lithium ion secondary battery is reduced. It is necessary to use a positive electrode active material that satisfies the two conditions of a large specific surface area and a large crystallite size.
  • the specific surface area of the active material for a lithium secondary battery disclosed in Patent Document 1 is approximately 2.0 m 2 / g or more, it is half the diffraction peak of the (003) plane at the Miller index hkl. Since the value width is around 0.20 ° and the half-value width of the diffraction peak of the (114) plane is relatively large at around 0.40 °, the crystallite size is considered to be small. Further, the specific surface area of the active material for a lithium secondary battery disclosed in Patent Document 2 is not clear.
  • the half value width of the diffraction peak on the (003) plane at the Miller index hkl is 0.14 to 0.15 °
  • the half value width of the diffraction peak on the (114) plane is 0.23 to 0.
  • the crystallite size is considered to be large because it is relatively small at .25 °, but there is a possibility that the particle size of the active material particle itself is large and the specific surface area is small. Therefore, there is a demand for a solid solution positive electrode active material that satisfies the two conditions of a large specific surface area and a large crystallite size and a low direct current internal resistance. Therefore, the subject of this invention is providing the positive electrode active material for lithium ion secondary batteries of a solid solution type
  • a positive electrode active material for a lithium ion secondary battery of a solid solution system having a low direct current internal resistance and a high discharge capacity.
  • Positive electrode active material according to the present embodiment is represented by the general formula Li 1 + x Ni y Mn z M w O 2, a Li excess positive electrode active material containing at least Mn and Ni as transition metal elements, Li 2 MnO A solid solution positive electrode active material rewritten as 3- LiNiO 2 —LiMO 2 or a solid solution positive electrode active material rewritten as Li 2 MnO 3 —LiNiO 2 .
  • the composition ratio 1 + x of Li is 1.1 or more and 1.25 or less.
  • the discharge capacity of the manufactured battery can be increased.
  • the Li composition ratio to 1.25 or less, a decrease in electrochemical activity can be suppressed, and a normally required discharge capacity can be ensured.
  • the composition ratio y of Ni is 0.25 or more and 0.5 or less.
  • the discharge capacity of the manufactured battery can be increased.
  • the composition ratio of Ni is 0.5 or less, the thermal stability during charging of the manufactured battery is hardly impaired, and ignition or the like can be avoided.
  • the composition ratio z of Mn is 0.3 or more and 0.55 or less.
  • M is at least one selected from the group consisting of Co, V, Mo, Ti, Al, Mg, and Fe, and is a transition metal that can be substituted for the transition metal site in the crystal structure of the positive electrode active material according to the present embodiment. Or a dopant doped into the transition metal site.
  • the composition ratio w of M is 0.1 or less, but it is also possible to use a positive electrode active material in which w is 0 and no M element is contained. Inclusion of M in a composition ratio of 0.1 or less can improve electrochemical characteristics and stabilize the crystal structure.
  • the positive electrode active material according to the present embodiment is not limited to a composition that strictly satisfies the relationship between these values. As long as the crystal structure analyzed by the X-ray diffraction method described later is substantially formed, the composition may be non-stoichiometric, and some elements may be irregularly coordinated.
  • the positive electrode active material according to this embodiment has an ⁇ -NaFeO 2 type crystal structure, and the diffraction peak measured by the X-ray diffraction method is a diffraction pattern that can be assigned to the space group R3-m of the rhombohedral crystal system.
  • the diffraction peak measured by the X-ray diffraction method is a diffraction pattern that can be assigned to the space group R3-m of the rhombohedral crystal system.
  • “-” in the notation “R3-m” means a bar attached on top of 3.
  • the half width of the particular X-ray diffraction peaks measured by powder X-ray diffraction by Cu K alpha is in a predetermined numerical range.
  • Cu K alpha which characterize the half width, the X-rays generated by irradiating the accelerated electrons to Cu ray source characteristics of the wavelength 1.54 ⁇ 10 -10 m obtained by passing a Ni filter X Is a line.
  • the full width at half maximum of an X-ray diffraction peak represents the size of crystallites and the size of lattice distortion in a crystal to be measured. Therefore, when the lattice distortion is small enough to be ignored, it can be considered that only the size of the crystallite is reflected when elements of the measurement system such as a diffraction device are excluded.
  • the lattice strain is reduced by reducing the composition ratio of Ni and M, and further by using a method for manufacturing the positive electrode active material described later as a predetermined condition, and thus the measurement is performed. It is considered that the half width of the X-ray diffraction peak appropriately reflects the size of the crystallite.
  • the half width of the X-ray diffraction peak means that the smaller the value, the larger the crystallite size. Therefore, when comparing positive electrode active materials having the same primary particle size, it can be said that the larger the crystallite size, the better the crystallinity of the positive electrode active material, which reduces the DC internal resistance. The contribution is considered large.
  • the crystallinity of the positive electrode active material is not excessively high. Insertion and detachment are performed smoothly, and a reduction in the discharge capacity of the manufactured battery can be avoided.
  • the crystallinity of the positive electrode active material is not excessively high. Insertion and detachment are performed smoothly, and a reduction in the discharge capacity of the manufactured battery can be avoided.
  • the BET specific surface area of the positive electrode active material according to this embodiment is 2.0 m 2 / g or more, preferably 2.5 m 2 / g or more and 30.0 m 2 / g or less, more preferably 2.7 m 2 / g or more and 20 or more. 0.0 m 2 / g or less.
  • the BET specific surface area indicates the particle surface area per unit weight derived from the BET theory. For example, by using nitrogen as the adsorption gas, the BET specific surface area can be calculated from the adsorption amount at the measured equilibrium pressure and the adsorption isotherm at 77K. it can.
  • the positive electrode active material according to the present embodiment can be prepared according to a general method for producing a positive electrode active material for a lithium ion secondary battery, such as a coprecipitation method or a solid phase method.
  • the solid solution positive electrode active material is often prepared by a coprecipitation method in which a uniform mixed state is obtained.
  • the coprecipitation method is a method in which a plurality of types of compounds including transition metals are dissolved in a liquid phase, and these transition metals are precipitated as coprecipitation compounds and then fired.
  • the insoluble transition metal compound when the insoluble transition metal compound is coprecipitated, the particles may coprecipitate in an aggregated state, and the particles are baked in an aggregated state. There is a disadvantage that particles are formed.
  • the firing temperature it is possible to reduce the firing temperature to suppress the formation of coarse particles, in this case, the crystallinity of the fired positive electrode active material is impaired, and both good crystallinity and high specific surface area are achieved. It becomes difficult to manufacture the positive electrode active material according to the present embodiment. Therefore, it is preferable to use a solid phase method as a method for producing the positive electrode active material according to the present embodiment.
  • the solid phase method is a method in which a plurality of kinds of compounds including a transition metal are weighed and mixed so as to have an elemental composition ratio of a positive electrode active material to be manufactured, and then fired to obtain a positive electrode active material.
  • the solid phase method is a method in which the raw materials are mixed in the solid phase, so that it is not easy to achieve a uniform mixed state, and a method suitable for manufacturing a positive electrode active material having a desired elemental composition ratio is not possible. It is generally recognized that there is not. In particular, it is considered difficult to improve the crystallinity of a solid solution containing Mn or the like that is difficult to be solidified.
  • the solid phase method is also a method having a difficulty that impurities are easily mixed during mixing of raw materials.
  • the method for producing a positive electrode active material according to the present embodiment by appropriately setting the firing temperature, further, by selecting an appropriate raw material and sufficiently mixing the raw materials, it is possible to obtain good crystallinity.
  • the positive electrode active material according to the present embodiment having both a high specific surface area can be produced.
  • a solid lithium-containing compound, a nickel-containing compound, a manganese-containing compound, and a solid compound containing an optionally added M element are used. Are used in proportions to achieve
  • lithium-containing compound examples include lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium sulfate (Li 2 SO 4 ), lithium nitrate (LiNO 3 ), lithium acetate (CH 3 CO 2 Li), water Lithium oxide (LiOH) or the like can be used, and among these, lithium carbonate is preferable. Since lithium may volatilize during firing, the composition ratio of lithium after firing tends to be lower than the composition ratio of preparation. Therefore, the amount of the lithium-containing compound is preferably about 1.01% by mass or more and 1.05% by mass or less of the amount corresponding to the desired composition.
  • nickel-containing compound examples include nickel carbonate (NiCO 3 ), nickel sulfate (NiSO 4 ), nickel nitrate (Ni (NO 3 ) 2 ), nickel acetate (Ni (CH 3 COO) 2 ), and nickel oxide (NiO).
  • Nickel hydroxide (Ni (OH) 2 ) or the like can be used, and among these, nickel carbonate is preferable.
  • manganese-containing compound examples include manganese carbonate (MnCO 3 ), manganese sulfate (MnSO 4 ), manganese nitrate (Mn (NO 3 ) 2 ), manganese acetate (Mn (CH 3 COO) 2 ), and manganese oxide (MnO).
  • Manganese hydroxide (Mn (OH) 2 ) or the like can be used, and among these, manganese carbonate is preferable.
  • the compound containing the element M for example, oxides, carbonates, sulfates, acetates, oxalates and the like can be used.
  • such raw material compounds are pulverized and mixed by a pulverizer to prepare a powdery solid mixture.
  • the positive electrode active material is made by baking the prepared solid mixture.
  • a pulverizer for pulverizing the raw material compound a general precision pulverizer such as a ball mill, a jet mill or a sand mill can be used.
  • the firing atmosphere may be either an inert gas atmosphere such as nitrogen or Ar, or an oxidizing gas atmosphere such as air.
  • the firing temperature is 950 ° C. or higher and 1050 ° C. or lower, preferably 980 ° C. or higher and 1050 ° C. or lower, more preferably 980 ° C. or higher and 1020 ° C. or lower. If the firing temperature is 950 ° C. or higher, most of the lattice distortion is eliminated and a relatively large crystallite is grown, so that the crystallinity of the positive electrode active material can be improved. Further, if the firing temperature is 1050 ° C. or lower, there is little possibility that oxygen will be desorbed from the crystal, and a decrease in battery performance due to phase separation occurring in the layered solid solution structure can be suppressed. Moreover, there is little possibility that the positive electrode active material particles are excessively sintered. Therefore, by performing firing in this temperature range, it is possible to produce a positive electrode active material according to the present embodiment that has both good crystallinity and a high specific surface area.
  • the positive electrode active material according to the present embodiment has a surface coated with a metal oxide or phosphate of at least one metal selected from the group consisting of Al, Mg, Zn, Mo, V, Ti, and Zr. It is preferable.
  • the metal oxide include Al 2 O 3 , MgO, ZnO, MoO 2 , V 2 O 5 , TiO 2 , and ZrO 2 .
  • a sol-gel method, mechanical compounding, or the like can be used depending on the type.
  • the coating may be a xerogel obtained by drying the polymerized gel.
  • the phosphate examples include trilithium phosphate (Li 3 PO 4 ), lithium monofluorophosphate (Li 2 PO 3 F), lithium difluorophosphate (LiPO 2 F 2 ), lithium phosphate glass, aluminum-substituted phosphorus Examples thereof include lithium titanium oxide (LATP) and aluminum-substituted lithium lithium germanium phosphate (LAGP).
  • a method of coating these phosphates on the positive electrode active material a method of reacting in a non-aqueous solvent, mechanical complexation, or the like can be used depending on the type.
  • the positive electrode active material according to the present embodiment has a relatively high BET specific surface area, the contact interface with the electrolyte injected into the battery is large, and under a high voltage exceeding about 4.2V. There is a possibility that the decomposition reaction of the electrolytic solution is promoted during charging and discharging. However, by forming a coating on the surface of the positive electrode active material, the contact between the positive electrode active material and the electrolytic solution is reduced, and decomposition of the electrolytic solution can be avoided, so that the manufactured battery is stabilized and cycle characteristics are improved. Effect
  • the positive electrode active material it is preferable that primary particles of a plurality of positive electrode active materials are aggregated to form secondary particles.
  • the particle diameter of the secondary particles is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • Examples of the method for granulating secondary particles include spray granulation using a spray dryer or the like, and a method of sintering between particles by adjusting the firing temperature.
  • the positive electrode active material according to the present embodiment has a relatively high BET specific surface area, the particle size of the primary particles is reduced compared to general positive electrode active material particles.
  • the particle size is small, a large amount of binder for binding the positive electrode active material is required, and it becomes difficult for the positive electrode active material to scatter and be mixed uniformly with the binder, conductive agent, and the like.
  • the tap density of the positive electrode active material particles decreases, the density of the positive electrode active material per unit volume of the positive electrode decreases, and the volume energy density of the manufactured battery may decrease.
  • the positive electrode active material is less likely to be scattered, so that it can be uniformly mixed with a binder, a conductive agent, and the like. Further, since the tap density of the positive electrode active material particles is increased, the density of the positive electrode active material per unit volume of the positive electrode is increased, and the effect of improving the volume energy density of the manufactured battery is obtained.
  • the positive electrode for a lithium ion secondary battery according to the present embodiment includes a step of preparing a positive electrode mixture slurry using the positive electrode active material, the conductive agent, and the binder described above as main raw materials, and the positive electrode mixture slurry as a positive electrode current collector. And a positive electrode active material, a conductive agent and a binder according to the present embodiment.
  • a conductive agent used for a general positive electrode for a lithium ion secondary battery can be used.
  • the conductive agent include natural graphite powder, carbon fiber, carbon black, metal powder, and conductive polymer.
  • examples of the carbon black include acetylene black, furnace black, thermal black, and channel black.
  • examples of the metal powder include aluminum, nickel, copper, and silver.
  • Examples of the conductive polymer include polyphenylene. It is preferable that content of the electrically conductive agent in the positive mix layer which concerns on this embodiment is 0.1 to 10 mass% with respect to the mass of the whole positive mix layer.
  • the binder used for the positive electrode for common lithium ion secondary batteries can be used.
  • fluorine resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, styrene resins such as styrene-butadiene rubber, and olefin resins such as polyethylene and polypropylene.
  • PVDF polyvinylidene fluoride
  • styrene resins such as styrene-butadiene rubber
  • olefin resins such as polyethylene and polypropylene.
  • acrylic resins such as polyacrylic acid, polymethacrylic acid, and polyacrylonitrile
  • cellulose resins such as carboxymethyl cellulose and hydroxyethyl cellulose.
  • the positive electrode active material, the binder, and the conductive agent are mixed to prepare the positive electrode mixture slurry.
  • the mixing means it is preferable to use a high-viscosity stirrer having a relatively strong shearing force.
  • a high-viscosity stirrer having a relatively strong shearing force.
  • Specific examples include a planetary mixer, a disper mixer, and a rotation / revolution mixer.
  • solvent used for mixing examples include amides such as N-methylpyrrolidone (NMP), N, N-dimethylformamide, and N, N-dimethylacetamide, alcohols such as methanol, ethanol, propanol, and isopropanol, ethylene glycol, Examples include polyhydric alcohols such as diethylene glycol and glycerol, ethers, dimethyl sulfoxide, tetrahydrofuran, and water.
  • NMP N-methylpyrrolidone
  • N N-dimethylformamide
  • N N-dimethylacetamide
  • alcohols such as methanol, ethanol, propanol, and isopropanol
  • ethylene glycol examples include polyhydric alcohols such as diethylene glycol and glycerol, ethers, dimethyl sulfoxide, tetrahydrofuran, and water.
  • the prepared positive electrode mixture slurry is applied to the positive electrode current collector and dried to form a positive electrode mixture layer.
  • general coating means such as a die coater, a gravure coater, and a doctor blade can be used.
  • the positive electrode current collector an aluminum foil having a thickness of about 10 ⁇ m or more and 30 ⁇ m or less is usually used, but it may be in the form of expanded metal, punching metal, or the like.
  • the positive electrode current collector on which the positive electrode mixture layer is formed is compression-molded by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a positive electrode for a lithium ion secondary battery.
  • the thickness of the positive electrode mixture layer formed by compression is, for example, about 50 ⁇ m to 300 ⁇ m.
  • the positive electrode for a lithium ion secondary battery produced through the above steps is applied to a lithium ion secondary battery including a negative electrode for a lithium ion secondary battery, a separator, and an electrolytic solution. According to such a method for manufacturing a positive electrode for a lithium ion secondary battery according to this embodiment, a positive electrode that realizes a lithium ion secondary battery having a low DC internal resistance and a high discharge capacity can be preferably manufactured. .
  • a negative electrode mixture containing a negative electrode active material and a binder is coated on a negative electrode current collector, similarly to the negative electrode used in a general lithium ion secondary battery. And a negative electrode mixture layer formed by, for example, and a negative electrode current collector.
  • the negative electrode active material is not particularly limited as long as it is a negative electrode active material used for a general negative electrode for lithium ion secondary batteries.
  • a binder in a negative electrode the thing similar to the binder used in the above-mentioned positive electrode can be used.
  • the electrically conductive agent used in an above described positive electrode can also be used.
  • the negative electrode for a lithium ion secondary battery is a step of preparing a negative electrode mixture slurry using a negative electrode active material, a conductive agent and a binder as main raw materials, and applying the negative electrode mixture slurry to the negative electrode current collector. It is manufactured by going through the process.
  • the negative electrode active material and the binder solution are mixed in a solvent such as N-methylpyrrolidone or water to prepare a negative electrode mixture slurry.
  • a solvent such as N-methylpyrrolidone or water
  • the prepared negative electrode mixture slurry is applied to the negative electrode current collector and dried to form a negative electrode mixture layer.
  • a copper foil having a thickness of about 5 ⁇ m or more and 20 ⁇ m or less is usually used, but it may be in the form of expanded metal, punching metal, or the like. Further, nickel or the like can be used instead of copper.
  • the negative electrode current collector on which the negative electrode mixture layer is formed is subjected to compression molding by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a negative electrode for a lithium ion secondary battery.
  • the thickness of the negative electrode mixture layer formed by compression is, for example, about 20 ⁇ m or more and 70 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to the present embodiment.
  • the lithium ion secondary battery 1 has a cylindrical shape.
  • the positive electrode 2 and the negative electrode 3 are laminated and wound so as to sandwich the separator 4, and are accommodated in a metal battery can 5 made of stainless steel (SUS) or aluminum.
  • SUS stainless steel
  • separator 4 a microporous thin film made of polyolefin such as polyethylene or polypropylene, resin such as polyamide or aramid, or fibrous glass can be used.
  • the separator 4 may be coated with an insulating inorganic compound layer such as alumina or glass in order to improve heat resistance or flame retardancy.
  • the positive electrode 2 is electrically connected to the sealing lid 8 via the positive electrode lead 6, and the negative electrode 3 is electrically connected to the battery can 5 via the negative electrode lead 7, and the positive electrode lead 6, the negative electrode 3, and the negative electrode
  • An insulating plate 10 is disposed between the lead 7 and the positive electrode 2 to prevent a short circuit.
  • the battery can 5 containing the electrodes in this way is sealed with a gasket 9 and sealed with a sealing lid 8 after an electrolyte is injected in dry air or under an inert gas atmosphere.
  • the exterior of the battery is not limited to the form shown in FIG. 1, and may be a square shape, a button shape, or the like. Further, it may be a bag-like aluminum laminate sheet lined with an insulating sheet such as polyethylene or polypropylene.
  • a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent is used.
  • lithium salts include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and the like. Or it can use combining multiple types.
  • a chain or cyclic carbonate solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate, or a fluorine solvent such as perfluoroalkyl ether
  • carbonates may be derivatives substituted with fluorine.
  • vinylene carbonate, phenylcyclohexane, 1,3-propane sultone, diphenyl disulfide, etc. may be added to the electrolyte to improve battery life, or phosphoric acid esters, etc. may be used to improve flame retardancy. May be added.
  • the ratio R 2 / R 1 with respect to the DC internal resistance R 2 when reaching% is 1.0 or more and 1.5 or less, and in particular, the DC internal resistance during discharge is reduced.
  • the discharge capacity at a charging rate of 100% is a charge at a charge end potential of 4.4 V (vs. Li + / Li) or higher at 25 ° C. and a discharge end potential of 3.6 V (vs.
  • the discharge capacity measured in an arbitrary voltage range can be used as a value as long as the charging / discharging process including the discharge below is included. Then, the ratio R 2 / R 1 is calculated by measuring the direct-current internal resistance at the time of the amount of electricity corresponding to the charge rate of 50% with the state of complete discharge being 0%.
  • the lithium ion secondary battery according to this embodiment has an initial discharge capacity of 190 mAh / g or more achieved in the first cycle of a charge / discharge test with a charge end voltage of 4.6 V, and the composition ratio of the positive electrode active material is changed. To reach 250 mAh / g.
  • the use of the lithium ion secondary battery according to the present embodiment is not particularly limited.
  • a power source for power such as an electric vehicle or a hybrid electric vehicle, an elevator that recovers a part of kinetic energy, or the like. It can be used as a large-scale power source exemplified by a power source for industrial equipment, a power source for various business or household power storage systems, a power source for a natural energy power generation system such as sunlight or wind power. Further, it can be used as a small power source exemplified in various portable devices, information devices, household electric devices, electric tools and the like.
  • the positive electrode active material according to the present embodiment and a lithium ion secondary battery using the positive electrode active material were manufactured, and the battery performance was evaluated.
  • Example 1 The positive electrode active material according to Example 1 uses lithium carbonate, manganese carbonate, and nickel carbonate as raw materials, the composition ratio of Li, Ni, and Mn is 1.2: 0.25: 0.55, and the main firing temperature is 1000 ° C. It was prepared by the following procedure. First, raw materials were weighed and put into a zirconia pot, added with acetone, ground and mixed with a planetary ball mill, and dried to obtain raw material powder. The obtained raw material powder was calcined at 500 ° C. for 12 hours in the air.
  • the powder obtained by calcination was put into a zirconia pot, added with acetone, ground and mixed in a planetary ball mill, and then dried to obtain a calcination powder.
  • the obtained calcined powder was calcined at 1000 ° C. for 12 hours in the air to obtain a positive electrode active material.
  • Example 2 The positive electrode active material according to Example 2 was manufactured using the same raw materials and procedures as in Example 1 except that the main firing temperature was changed to 950 ° C.
  • Example 3 The positive electrode active material according to Example 3 was prepared in the same procedure as in Example 1 except that nickel acetate was used as a raw material containing Ni.
  • Example 4 The positive electrode active material according to Example 4 was produced in the same procedure as in Example 1 except that the composition ratio of Li, Ni, and Mn was 1.2: 0.40: 0.40.
  • Example 5 The positive electrode active material according to Example 5 was prepared in the same procedure as in Example 1 except that the composition ratio of Li, Ni, and Mn was 1.1: 0.40: 0.40.
  • Comparative Example 1 The positive electrode active material according to Comparative Example 1 was produced using the same raw materials and procedure as in Example 3 except that the temperature of the main firing was changed to 950 ° C.
  • the positive electrode active material according to Comparative Example 2 is composed of lithium acetate tetrahydrate, cobalt acetate tetrahydrate, nickel acetate tetrahydrate, manganese acetate tetrahydrate, and the composition of Li, Co, Ni, and Mn.
  • the ratio was set to 1.2: 0.13: 0.13: 0.53
  • the main baking temperature was set to 850 ° C., and the following procedure was used. First, the raw materials were weighed and dissolved in distilled water, and the resulting aqueous solution was spray-dried using a spray dryer to obtain a raw material mixed powder. Subsequently, the obtained raw material mixed powder was fired at 850 ° C. to obtain a positive electrode active material.
  • the positive electrode active material according to Comparative Example 3 uses lithium acetate tetrahydrate, nickel acetate tetrahydrate, and manganese acetate tetrahydrate as raw materials, and the composition ratio of Li, Ni, and Mn is 1.2: 0.25. : 0.55, and the main firing temperature was 1000 ° C.
  • the raw materials were weighed and dissolved in distilled water, and the resulting aqueous solution was spray-dried using a spray dryer to obtain a raw material mixed powder. Subsequently, the obtained raw material mixed powder was fired at 1000 ° C. to obtain a positive electrode active material.
  • FIG. 2 is a diagram illustrating an example of an X-ray diffraction pattern of the positive electrode active material for a lithium ion secondary battery according to the present embodiment.
  • positive electrode active material according to Example 1 was prepared, was subjected to analysis by powder X-ray diffraction by Cu K alpha, X-ray diffraction pattern shown in Figure 2 was obtained.
  • This diffraction peak is a diffraction pattern characteristic of the space group R3-m.
  • An X-ray diffraction peak on the surface having a Miller index (104) was observed at 1 °.
  • the specific surface area determined according to the BET method was 3.1 m 2 / g.
  • the specific surface area determined according to the BET method was 3.7 m 2 / g.
  • the specific surface area determined according to the BET method was 2.7 m 2 / g.
  • lithium ion secondary batteries were produced in the following procedure. First, a positive electrode active material, a binder, and a conductive agent were mixed to prepare a positive electrode mixture slurry. Then, the prepared positive electrode mixture slurry was applied to a 20 ⁇ m-thick aluminum foil of the positive electrode current collector, dried at 120 ° C., and then pressed with a press so that the electrode density was 2.0 g / cm 3. This was punched into a disk shape having a diameter of 15 mm to obtain a positive electrode. Then, the lithium ion secondary battery was produced using the obtained positive electrode, the negative electrode created using metallic lithium, and a non-aqueous electrolyte.
  • non-aqueous electrolyte a solution in which LiPF 6 is dissolved in a solvent in which ethylene carbonate and dimethyl carbonate are mixed so that the volume ratio is 1: 2 so that the final concentration is 1.0 mol / L. was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 直流内部抵抗が小さく、高い放電容量を有するリチウムイオン二次電池を実現する、固溶体系のリチウムイオン二次電池用正極活物質を提供する。リチウムイオン二次電池用正極活物質は、一般式Li1+xNiMn(式中、Mは、Co、V、Mo、Ti、Al、Mg及びFeからなる群より選択される少なくとも1種の元素であり、0.1≦x≦0.25、0.25≦y≦0.5、0.3≦z≦0.55、0≦w≦0.1、x+y+z+w=1.0である。)で表わされ、CuKαによる粉末X線回折によって測定される2θ=18.6±1゜におけるX線回折ピークの半値幅が0.12゜以上0.17゜以下であり、2θ=44.4±1゜におけるX線回折ピークの半値幅が0.18゜以上0.22゜以下であり、且つ、BET比表面積が2.0m/g以上である。

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法
 本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法に関する。
 現在、環境負荷が低減された技術として普及が進められている電気自動車や自然エネルギ発電等では二次電池が利用されている。
 二次電池を駆動用電源として搭載する電気自動車においては、一回の充電による航続距離をより長くすること、発電した電気の蓄電システムとして二次電池を利用する自然エネルギ発電においては、発電量の変動に対応できるだけの大容量の蓄電を低コストで実現することが求められている。
 そこで、このような要求に応える二次電池として、Liが電気伝導を担うリチウムイオン二次電池の開発が進められている。リチウムイオン二次電池は、ニッケル水素電池や鉛蓄電池と比較してエネルギ密度に優れた特性を有しているが、さらなる高容量化を実現するために、リチウムイオン二次電池用正極を構成する新たな正極活物質の開発が行われている。
 高容量化が見込まれるリチウムイオン二次電池用正極活物質の一つとして、LiM1O-LiM2O固溶体正極活物質が知られている。
 LiM1O-LiM2O固溶体正極活物質は、理論電気容量は高いものの電気化学的には不活性であるLiM1Oと、電気化学的に活性なLiM2Oとを固溶体化させた正極活物質である(なお、式中、M1は、Mn、Ti及びZrからなる群より選ばれる少なくとも1種以上の元素、M2は、Ni、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr及びVからなる群より選ばれる少なくとも1種以上の元素を表している。)。
 この中には、正極電位が4.4V(vs.Li/Li)以上に達する電圧で初回充電を行うことによって、200mAh/gを超える放電容量を示すものも見出されており、LiM1O-LiM2O固溶体正極活物質は、高容量化を実現するための有力な候補物質となっている。
 例えば、特許文献1には、初期効率が高く、放電容量が大きい、なかでも低温における放電容量が大きいリチウムイオン電池用活物質を提供する技術として、α-NaFeO型結晶構造を有するナトリウム含有リチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体の化学組成式が、Li1+x-yNaCoNiMn2+d(0<y≦0.1、0.4≦c≦0.7、x+a+b+c=1、0.1≦x≦0.25、-0.2≦d≦0.2)を満たし、かつ、六方晶(空間群P312)に帰属可能なX線回折パターンを有し、ミラー指数hklにおける(003)面の回折ピークの半値幅が0.30°以下であり、かつ、(114)面の回折ピークの半値幅が0.50°以下であることを特徴とするリチウム二次電池用活物質が開示されている。
 そして、実施例として、比表面積が1.7~6.1m/gの範囲、ミラー指数hklにおける(003)面の回折ピークの半値幅が0.17~0.30°、(114)面の回折ピークの半値幅が0.35~0.50°であるリチウム二次電池用活物質が開示されている。
 また、特許文献2には、放電容量が大きく、かつ、高率放電特性が優れたリチウムイオン二次電池用活物質を提供する技術として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含有するリチウム二次電池用活物質であって、前記固溶体が含有する金属元素の組成比率が、Li1+(x/3)Co1-x-y-zNiy/2Mgz/2Mn(2x/3)+(y/2)+(z/2)(x>0、y>0、z>0、x+y+z<1)を満たし、空間群P312に帰属可能なエックス線回折パターンを有し、エックス線回折測定による(003)面の回折ピークの半値幅が0.15°以下であり、かつ、(114)面の回折ピークの半値幅が0.25°以下であることを特徴とするリチウム二次電池用活物質が開示されている。
 そして、実施例として、ミラー指数hklにおける(003)面の回折ピークの半値幅が0.14~0.15°、(114)面の回折ピークの半値幅が0.23~0.25°であるリチウム二次電池用活物質が開示されている。
国際公開第2012/039413号 国際公開第2011/021686号
 LiM1O-LiM2Oで表わされる固溶体正極活物質を備えるリチウムイオン二次電池は、比較的高い放電容量を示すものの、放電時に直流内部抵抗が増大し出力の低下をきたすという性質を有している。
 正極活物質の比表面積は、電解液との接触界面抵抗等に関わり、結晶子サイズは、イオン拡散抵抗等に関わっていると考えられるため、リチウムイオン二次電池の直流内部抵抗を低減させるためには、比表面積が大きく、且つ結晶子サイズが大きいという二つの条件を満足する正極活物質を用いることが必要である。
 しかしながら、特許文献1に開示されるリチウム二次電池用活物質では、比表面積は、概ね2.0m/g以上を達成しているものの、ミラー指数hklにおける(003)面の回折ピークの半値幅は0.20°前後、(114)面の回折ピークの半値幅は0.40°前後と比較的大きいことから、結晶子のサイズが小さいと考えられる。
 また、特許文献2に開示されるリチウム二次電池用活物質は、比表面積の大きさが明らかではない。このリチウム二次電池用活物質では、ミラー指数hklにおける(003)面の回折ピークの半値幅は0.14~0.15°、(114)面の回折ピークの半値幅は0.23~0.25°と比較的小さいことから結晶子のサイズは大きいものと考えられるが、活物質粒子自体の粒子径も大きく比表面積が小さい粒子である可能性がある。
 そのため、比表面積が大きく、且つ結晶子サイズが大きいという二つの条件を満たし、直流内部抵抗がより小さい固溶体正極活物質が求められている。
 したがって、本発明の課題は、直流内部抵抗が小さく、高い放電容量を有するリチウムイオン二次電池を実現する、固溶体系のリチウムイオン二次電池用正極活物質を提供することにある。
 前記課題を解決するために本発明に係るリチウムイオン二次電池用正極活物質は、一般式Li1+xNiMn(式中、Mは、Co、V、Mo、Ti、Al、Mg及びFeからなる群より選択される少なくとも1種の元素であり、0.1≦x≦0.25、0.25≦y≦0.5、0.3≦z≦0.55、0≦w≦0.1、x+y+z+w=1.0である。)で表わされ、CuKαによる粉末X線回折によって測定される2θ=18.6±1゜におけるX線回折ピークの半値幅が0.12゜以上0.17゜以下であり、2θ=44.4±1゜におけるX線回折ピークの半値幅が0.18゜以上0.22゜以下であり、且つ、BET比表面積が2.0m/g以上であることを特徴とする。
 本発明によれば、直流内部抵抗が小さく、高い放電容量を有する固溶体系のリチウムイオン二次電池用正極活物質を提供することができる。
本実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。 本実施形態に係るリチウムイオン二次電池用正極活物質のX線回折パターンの一例を示す図である。
 以下に本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法について詳細に説明する。
 本実施形態に係る正極活物質は、一般式Li1+xNiMnで表わされ、遷移金属元素として少なくともMn及びNiを含有するLi過剰の正極活物質であり、LiMnO-LiNiO-LiMOと書き換えられる固溶体正極活物質又はLiMnO-LiNiOと書き換えられる固溶体正極活物質である。
 前記の一般式において、Liの組成比1+xは、1.1以上1.25以下である。
 Liの組成比を1.1以上とすることにより、作製される電池の放電容量を高くすることができる。
 また、Liの組成比を1.25以下とすることにより、電気化学的活性の低下が抑えられ、且つ通常要求される放電容量を確保することができる。
 前記の一般式において、Niの組成比yは、0.25以上0.5以下である。
 Niの組成比を0.25以上とすることにより、作製される電池の放電容量を高くすることができる。
 また、Niの組成比を0.5以下とすることにより、作製される電池の充電時における熱安定性が損なわれ難くなり、発火等を避けることができる。
 前記の一般式において、Mnの組成比zは、0.3以上0.55以下である。
 Mnの組成比を0.3以上とすることにより、作製される電池の放電電圧を高くすることができる。
 また、Mnの組成比を0.55以下とすることにより、作製される電池のサイクル特性の低下を軽減することができる。
 Mは、Co、V、Mo、Ti、Al、Mg、Feからなる群より選択される少なくとも1種であり、本実施形態に係る正極活物質の結晶構造における遷移金属サイトに置換可能な遷移金属又は遷移金属サイトにドープされるドーパントである。
 前記の一般式において、Mの組成比wは、0.1以下であるが、wを0とし、Mの元素を含有しない正極活物質とすることも可能である。
 Mを組成比が0.1以下の範囲で含有させることにより、電気化学的特性の向上、結晶構造の安定化等を図ることができる。
 Liの組成比1+x、Niの組成比y、Mnの組成比z及びMの組成比wは、x+y+z+w=1.0の関係を満たす値である。
 但し、本実施形態に係る正極活物質は、これらの値の関係を厳密に満足する組成のものに限られない。後記するX線回折法により解析される結晶構造が、実質的に形成されている限り、組成が不定比であってもよく、一部の元素が不規則配位していてもよい。
 本実施形態に係る正極活物質は、α-NaFeO型の結晶構造を有し、X線回折法により測定される回折ピークは、菱面体結晶系の空間群R3-mに帰属可能な回折パターンを示す。
 すなわち、前記した一般式で表わされる元素組成比を実質的に有し、層状岩塩型の結晶構造を基本とするマンガン酸リチウム、ニッケル酸リチウム、リチウム遷移金属酸化物のそれぞれが固溶化して形成されるリチウムイオンの吸蔵及び脱離を可能とした層状構造を有している。
 なお、本明細書において、「R3-m」の表記における「-」は、3の上に付されるバーを意味する。
 本実施形態に係る正極活物質は、CuKαによる粉末X線回折によって測定される特定のX線回折ピークの半値幅が所定の数値範囲にある。
 この半値幅を特徴付けているCuKαは、Cu線源に加速電子を照射して発生させたX線を、Niフィルタを通過させることによって得られる波長1.54×10-10mの特性X線である。
 一般には、X線回折ピークの半値幅は、測定される結晶における結晶子の大きさと格子歪みの大きさを表している。
 したがって、格子歪みが無視できる程度に小さい場合には、回折装置等の測定系の要素を除外すると、結晶子の大きさのみを反映していると見做すことが可能である。
 本実施形態に係る正極活物質においては、Ni及びMの組成比率を小さくし、さらに後記する正極活物質の製造方法を所定条件とすることによって、格子歪みが低減されているため、測定されるX線回折ピークの半値幅は、結晶子の大きさを適切に反映していると考えられる。
 なお、X線回折ピークの半値幅は、その値が小さいほど、結晶子の大きさが大きいことを意味している。
 したがって、同じ一次粒子径の正極活物質同士を比較した場合には、結晶子の大きさが大きいほど、その正極活物質の結晶性が良好であるということができ、直流内部抵抗の低減への寄与が大きいと考えられる。
 本実施形態に係る正極活物質は、CuKαによる粉末X線回折によって得られるX線回折パターンにおいて、2θ=18.6±1゜に現れるX線回折ピークの半値幅は0.12゜以上0.17゜以下であり、好ましくは0.12゜以上0.15゜以下である。
 なお、この2θ=18.6±1゜に現れるX線回折ピークは、回折パターンを空間群R3-mに帰属させた場合、ミラー指数(003)の面における回折を表している。
 2θ=18.6±1゜に現れるX線回折ピークの半値幅が0.12゜以上であれば、正極活物質の結晶性が過度に高くないため、正極活物質の結晶へのリチウムイオンの挿入及び脱離が円滑に行われ、作製される電池の放電容量の低下を避けることができる。
 また、2θ=18.6±1゜に現れるX線回折ピークの半値幅が0.17゜以下であれば、正極活物質は一定程度良好な結晶性を有しているため、作製される電池の内部抵抗を低減することができる。
 半値幅が、0.12゜以上0.17゜以下の範囲では、特に、電池の充電率増加時における内部抵抗と充電率減少時における内部抵抗との差を小さくすることができる。
 本実施形態に係る正極活物質は、CuKαによる粉末X線回折によって得られるX線回折パターンにおいて、2θ=44.4±1゜に現れるX線回折ピークの半値幅は0.18゜以上0.22゜以下であり、好ましくは0.19゜以上0.21゜以下である。
 なお、この2θ=44.4±1゜に現れるX線回折ピークは、回折パターンを空間群R3-mに帰属させた場合、ミラー指数(104)の面における回折を表している。
 2θ=44.4±1゜に現れるX線回折ピークの半値幅が0.18゜以上であれば、正極活物質の結晶性が過度に高くないため、正極活物質の結晶へのリチウムイオンの挿入及び脱離が円滑に行われ、作製される電池の放電容量の低下を避けることができる。
 また、2θ=44.4±1゜に現れるX線回折ピークの半値幅が0.22゜以下であれば、正極活物質は一定程度良好な結晶性を有しているため、作製される電池の内部抵抗を低減することができる。
 半値幅が、0.18゜以上0.22゜以下の範囲では、特に、電池の充電率増加時における内部抵抗と充電率減少時における内部抵抗との差を小さくすることができる。
 本実施形態に係る正極活物質のBET比表面積は、2.0m/g以上、好ましくは2.5m/g以上30.0m/g以下、さらに好ましくは2.7m/g以上20.0m/g以下である。
 BET比表面積が2.0m/g以上であると、作製される電池の内部抵抗を低減することができる。
 また、BET比表面積が30.0m/g以下であると、タップ密度の低下が抑えられるため、作製される電池の体積エネルギ密度を維持することができる。
 BET比表面積は、BET理論によって導かれる単位重量あたりの粒子表面積を示しており、例えば、吸着ガスとして窒素を用いることよって、測定した平衡圧における吸着量と77Kにおける吸着等温線から算出することができる。
 本実施形態に係る正極活物質は、共沈法、固相法等の一般的なリチウムイオン二次電池用正極活物質の製法に従い調製することができる。
 一般には、固溶体正極活物質は、均一な混合状態が得られる共沈法によって調製されることが多い。共沈法は、遷移金属を含む複数種の化合物を液相に溶解し、これら遷移金属を共沈化合物として析出させた後に焼成する方法である。
 しかしながら、この方法では、不溶性の遷移金属化合物を共沈させる際に、粒子が凝集した状態で共沈することがあり、粒子が凝集した状態で焼成されることによって、粒子径が不均一な粗大粒子が形成されてしまうという欠点がある。
 粗大粒子の形成を抑制するために焼成温度を低下させるという対応も可能ではあるが、この場合には、焼成される正極活物質の結晶性が損なわれ、良好な結晶性と高い比表面積を両立した本実施形態に係る正極活物質を製造することが困難となる。
 そのため、本実施形態に係る正極活物質の製造方法としては、固相法を用いることが好ましい。
 固相法は、製造しようとする正極活物質の元素組成比になるように、遷移金属を含む複数種の化合物を称量し、混合した後に焼成して正極活物質とする方法である。
 固相法は、原料の混合を固相で行う方法であるため、均一な混合状態を達成することが容易でなく、所望の元素組成比を有する正極活物質を製造するのに適した方法ではないと一般に認識されている。特に、固溶化が困難なMn等を含む固溶体については、結晶性を良好にすることが難しいと考えられる。また、固相法は、原料の混合の際に不純物が混入し易いという難点を抱えている方法でもある。
 そこで、本実施形態に係る正極活物質の製造方法では、焼成温度を適切に設定することによって、さらには、適切な原料を選定し、原料の混合を十分に行うことによって、良好な結晶性と高い比表面積を両立した本実施形態に係る正極活物質の製造を可能とした。
 本実施形態に係る正極活物質の原料としては、固体の含リチウム化合物、含ニッケル化合物、含マンガン化合物及び任意に添加されるMの元素を含む固体の化合物を所望の正極活物質の元素組成比を達成するような比率でそれぞれ用いる。
 含リチウム化合物としては、例えば、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、硫酸リチウム(LiSO)、硝酸リチウム(LiNO)、酢酸リチウム(CHCOLi)、水酸化リチウム(LiOH)等を用いることができるが、これらの中でも、炭酸リチウムが好ましい。
 リチウムは、焼成中に揮発することがあるため、焼成後のリチウムの組成比は、仕込みの組成比を下回る傾向がある。そのため、含リチウム化合物の量は、所望の組成に相当する量の1.01質量%以上1.05質量%以下程度の量を原料として用いることが好ましい。
 含ニッケル化合物としては、例えば、炭酸ニッケル(NiCO)、硫酸ニッケル(NiSO)、硝酸ニッケル(Ni(NO)、酢酸ニッケル(Ni(CHCOO))、酸化ニッケル(NiO)、水酸化ニッケル(Ni(OH))等を用いることができるが、これらの中でも、炭酸ニッケルが好ましい。
 含マンガン化合物としては、例えば、炭酸マンガン(MnCO)、硫酸マンガン(MnSO)、硝酸マンガン(Mn(NO)、酢酸マンガン(Mn(CHCOO))、酸化マンガン(MnO)、水酸化マンガン(Mn(OH))等を用いることができるが、これらの中でも、炭酸マンガンが好ましい。
 また、Mの元素を含む化合物としては、例えば、酸化物、炭酸塩、硫酸塩、酢酸塩、蓚酸塩等を用いることができる。
 本実施形態に係る正極活物質の製造方法では、このような原料の化合物を、粉砕機によって粉砕及び混合して、粉末状の固体混合物を調製する。そして、調製された固体混合物を焼成することによって正極活物質とする。
 原料の化合物を粉砕する粉砕機としては、ボールミル、ジェットミル、サンドミル等の一般的な精密粉砕機を用いることができる。
 焼成の雰囲気としては、窒素やAr等の不活性ガス雰囲気及び空気中等の酸化ガス雰囲気のいずれでもよい。
 焼成温度は、950℃以上1050℃以下、好ましくは980℃以上1050℃以下、さらに好ましくは980℃以上1020℃以下とする。
 焼成温度が950℃以上であれば、格子歪みの多くが解消され比較的大きな結晶子に成長するため正極活物質の結晶性を向上させることができる。
 また、焼成温度が1050℃以下であれば、結晶から酸素が脱離する虞が少なく、層状固溶体構造に分相が生じることによる電池性能の低下を抑えることができる。また、正極活物質粒子が過度に焼結する虞が少ない。
 したがって、この温度範囲で焼成を行うことによって、良好な結晶性と高い比表面積を両立した本実施形態に係る正極活物質を製造することができる。
 本実施形態に係る正極活物質は、表面に、Al、Mg、Zn、Mo、V、Ti及びZrからなる群より選択される少なくとも一種の金属の金属酸化物又はリン酸塩を被覆されていることが好ましい。
 金属酸化物としては、例えば、Al、MgO、ZnO、MoO、V、TiO、ZrO等が挙げられる。
 これら金属酸化物を正極活物質に被覆する方法としては、その種に応じて、ゾルゲル法、機械的複合化等を用いることができる。被膜は、重合したゲルを乾燥して得られるキセロゲルとしてもよい。
 リン酸塩としては、リン酸三リチウム(LiPO)、モノフルオロリン酸リチウム(LiPOF)、ジフルオロリン酸リチウム(LiPO)、リン酸リチウム系ガラス、アルミニウム置換リン酸チタンリチウム(LATP)、アルミニウム置換リン酸ゲルマニウムリチウム(LAGP)等が挙げられる。
 これらリン酸塩を正極活物質に被覆する方法としては、その種に応じて、非水溶媒中で反応させる方法、機械的複合化等を用いることができる。
 本実施形態に係る正極活物質は、比較的高いBET比表面積を有しているため、電池に注入される電解液との接触界面が大きくなっており、4.2V程度を超える高電圧下における充放電において電解液の分解反応が促進される虞がある。
 しかしながら、正極活物質の表面に被覆を形成することにより、正極活物質と電解液の接触が減少し、電解液の分解を避けることができるため、作製される電池が安定化し、サイクル特性が向上する効果が得られる
 本実施形態に係る正極活物質は、複数の正極活物質の一次粒子が集合して二次粒子を形成していることが好ましい。
 二次粒子の粒子径は、1μm以上40μm以下であることが好ましい。
 二次粒子の造粒方法としては、スプレードライヤ等を用いた噴霧造粒や、焼成温度を調節することによって粒子間焼結させる方法が挙げられる。
 本実施形態に係る正極活物質は、比較的高いBET比表面積を有しているため、一般的な正極活物質粒子と比較して、一次粒子の粒子径が微小化することになる。粒子径が小さい場合は、正極活物質を結着させるバインダが多量に必要となる他、正極活物質が飛散してバインダや導電剤等と共に均一に混合することが困難となる。また、正極活物質粒子のタップ密度が低下するため、正極の単位体積あたりの正極活物質の密度が低下し、作製される電池の体積エネルギ密度が低下する可能性がある。
 しかしながら、正極活物質の一次粒子を集合させて二次粒子とすることにより、正極活物質が飛散し難くなるため、バインダや導電剤等と共に均一に混合することが可能となる。また、正極活物質粒子のタップ密度が増すため、正極の単位体積あたりの正極活物質の密度が増大し、作製される電池の体積エネルギ密度が向上する効果が得られる。
 本実施形態に係るリチウムイオン二次電池用正極は、以上説明した正極活物質、導電剤及びバインダを主な原料として、正極合剤スラリーを調製する工程と、正極合剤スラリーを正極集電体に塗工する工程と、正極を成形する工程とを経ることによって製造されるものであり、本実施形態に係る正極活物質、導電剤及びバインダを含んでなる。
 本実施形態に係る導電剤としては、一般的なリチウムイオン二次電池用正極に用いられる導電剤を用いることができる。
 導電剤としては、天然黒鉛粉末、炭素繊維、カーボンブラック、金属粉末、導電性ポリマー等が挙げられる。具体的には、カーボンブラックとしては、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等、金属粉末としては、アルミニウム、ニッケル、銅、銀等、導電性ポリマーとしては、ポリフェニレン等が挙げられる。
 本実施形態に係る正極合剤層における導電剤の含有量は、正極合剤層全体の質量に対して0.1質量%以上10質量%以下であることが好ましい。
 本実施形態に係るバインダとしては、一般的なリチウムイオン二次電池用正極に用いられるバインダを用いることができる。
 具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン、ポリ六フッ化プロピレン等のフッ素系樹脂や、スチレン-ブタジエンゴム等のスチレン系樹脂や、ポリエチレン、ポリプロピレン等のオレフィン系樹脂や、ポリアクリル酸、ポリメタクリル酸、ポリアクリロニトリル等のアクリル系樹脂や、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース系樹脂等が挙げられる。
 正極合剤スラリーを調製する工程では、正極活物質と、バインダと、導電剤と、を混合して正極合剤スラリーを調製する。
 混合手段としては、せん断力が比較的強い高粘度用撹拌機を用いることが好ましく、具体的には、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等が挙げられる。
 混合に用いる溶媒としては、例えば、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミドや、メタノール、エタノール、プロパノール、イソプロパノール等のアルコールや、エチレングリコール、ジエチレングリコール、グリセリン等の多価アルコールや、エーテル類や、ジメチルスルホキシド、テトラヒドロフラン、水等が挙げられる。
 正極合剤スラリーを正極集電体に塗工する工程では、調製された正極合剤スラリーを正極集電体に塗工し、乾燥させて正極合剤層を形成する。
 正極合剤スラリーの塗工には、ダイコーター、グラビアコーター、ドクターブレード等の一般的な塗工手段を用いることができる。
 正極集電体としては、10μm以上30μm以下程度の厚さのアルミニウム箔等が通常用いられるが、エキスパンドメタル、パンチングメタル等の形態であってもよい。
 正極合剤層が形成された正極集電体は、ロールプレス等により所定の圧力を負荷して圧縮成形した後、所望の形状に裁断又は打ち抜くことでリチウムイオン二次電池用正極とする。なお、圧縮されて形成される正極合剤層の厚さは、例えば、50μm以上300μm以下程度とする。
 以上の工程を経て作製されるリチウムイオン二次電池用正極は、リチウムイオン二次電池用負極と、セパレータと、電解液と、を含んでなるリチウムイオン二次電池に適用される。
 このような本実施形態に係るリチウムイオン二次電池用正極の製造方法によれば、直流内部抵抗が小さく、高い放電容量を有するリチウムイオン二次電池を実現する正極を好適に製造することができる。
 本実施形態に係るリチウムイオン二次電池用負極は、一般的なリチウムイオン二次電池に用いられる負極と同様に、負極活物質及びバインダを含む負極合剤が、負極集電体上に塗工される等して形成された負極合剤層と、負極集電体とを備えている。
 負極活物質としては、一般的なリチウムイオン二次電池用負極に用いられる負極活物質であれば特に制限されるものではなく、例えば、グラファイト、コークス、熱分解炭素、炭素繊維、ハードカーボン、アモルファスカーボン等の炭素材料や、チタン酸リチウムに代表されるSi、Ti、Sn等とのリチウム金属酸化物や、Si、Al、Sn、Sb、In、Ga、アルカリ土類金属等の元素とリチウムとの合金や、金属リチウムや、これらを複合化した材料を用いることができる。
 なお、負極におけるバインダとしては、前記した正極において用いられるバインダと同様のものを用いることができる。また、前記した正極において用いられる導電剤を用いることもできる。
 本実施形態に係るリチウムイオン二次電池用負極は、負極活物質、導電剤及びバインダを主な原料として、負極合剤スラリーを調製する工程、負極合剤スラリーを負極集電体に塗工する工程を経ることによって製造される。
 負極合剤スラリーを調製する工程では、負極活物質と、バインダ溶液とをN-メチルピロリドンや水等の溶媒中において混合して負極合剤スラリーを調製する。
 なお、負極に導電剤を含有させる場合には、所望の量を秤量して、負極活物質及びバインダと共に混合すればよい。
 負極合剤スラリーを負極集電体に塗工する工程では、調製された負極合剤スラリーを負極集電体に塗工し、乾燥させて負極合剤層を形成する。
 負極集電体としては、5μm以上20μm以下程度の厚さの銅箔等が通常用いられるが、エキスパンドメタル、パンチングメタル等の形態であってもよい。また、銅に替えてニッケル等を用いることができる。
 負極合剤層が形成された負極集電体は、ロールプレス等により所定の圧力を負荷して圧縮成形した後、所望の形状に裁断又は打ち抜くことでリチウムイオン二次電池用負極とする。なお、圧縮されて形成される負極合剤層の厚さは、例えば、20μm以上70μm以下程度とする。
 図1は、本実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。
 このリチウムイオン二次電池1は、円筒型の形状を有するものである。
 正極2及び負極3は、セパレータ4を挟むように積層配置されて捲回され、ステンレス鋼(Stainless steel;SUS)やアルミニウムを材質とする金属製電池缶5内に収容されている。
 セパレータ4としては、ポリエチレン、ポリプロピレン等のポリオレフィンや、ポリアミド、アラミド等の樹脂製、繊維状ガラス製等の微多孔質薄膜を用いることができる。なお、セパレータ4には、耐熱性又は難燃性を向上させるためにアルミナ、ガラス等の絶縁性無機化合物層を被覆してもよい。
 正極2は、正極リード6を介して密閉蓋8と電気的に接続され、負極3は、負極リード7を介して電池缶5と電気的に接続されており、正極リード6と負極3、負極リード7と正極2の間には、それぞれ絶縁板10が配設されて短絡が防止されている。
 このように電極を収容した電池缶5は、乾燥空気中又は不活性ガス雰囲気の下で電解液が注入された後、ガスケット9で密封され、密閉蓋8で封止される。
 なお、電池の外装は、図1に示す形態に限られず、角型、ボタン型等であってもよい。また、ポリエチレンやポリプロピレン等の絶縁性シートで内張りされた袋状のアルミラミネートシート等であってもよい。
 電解液としては、リチウム塩を非水溶媒に溶解させた非水電解液が用いられる。
 リチウム塩としては、過塩素酸リチウム(LiClO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等を一種又は複数種組み合わせて用いることができる。
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状又は環状のカーボネート系溶媒やパーフルオロアルキルエーテル等のフッ素系溶媒を用いることができる。なお、これらカーボネートは、フッ素置換する等した誘導体であってもよい。
 また、電解液には、電池寿命を向上させるために、ビニレンカーボネート、フェニルシクロヘキサン、1,3-プロパンサルトン、ジフェニルジスルフィド等を添加したり、難燃性を向上させるために、リン酸エステル等を添加してもよい。
 本実施形態に係るリチウムイオン二次電池の直流内部抵抗は、充電時において充電率(State Of Charge;SOC)が50%に達したときの直流内部抵抗Rと、放電時において充電率が50%に達したときの直流内部抵抗Rとの比R/Rが1.0以上1.5以下であり、特に、放電時における直流内部抵抗が低減されている。
 なお、充電率100%における放電容量としては、25℃において、充電終止電位を4.4V(vs.Li/Li)以上とした充電、及び放電終止電位を3.6V(vs.Li/Li)以下とした放電を含む充放電過程を含む限り、任意の電圧範囲で計測された放電容量を値として用いることができる。そして、完全放電の状態を充電率0%とし、充電率50%に相当する電気量の時点での直流内部抵抗を計測することによって、比R/Rが算出される。
 本実施形態に係るリチウムイオン二次電池は、充電終止電圧4.6Vとした充放電試験の1サイクル目に達成される初期放電容量が190mAh/g以上であり、正極活物質の組成比を変更することにより、250mAh/gに達する。
 本実施形態に係るリチウムイオン二次電池の用途は、特に制限されるものではなく、例えば、電気自動車やハイブリッド型電気自動車等の動力用電源、運動エネルギの一部を回収する形式のエレベータ等の産業用機器の電源、各種業務用又は家庭用の蓄電システム用の電源、太陽光や風力等の自然エネルギ発電システム用の電源等に例示される大型電源として用いることができる。
 また、各種携帯型機器、情報機器、家庭用電気機器、電動工具等に例示される小型電源として用いることができる。
 次に、本発明の実施例を示して具体的に説明するが、本発明の技術的範囲はこれらに限定されるものではない。
 本実施形態に係る正極活物質及びこれを用いたリチウムイオン二次電池を製造し、その電池性能を評価した。
[実施例1]
 実施例1に係る正極活物質は、炭酸リチウム、炭酸マンガン及び炭酸ニッケルを原料とし、Li、Ni及びMnの組成比を1.2:0.25:0.55、本焼成温度を1000℃として、以下の手順で作製した。
 はじめに、原料をそれぞれ称量してジルコニア製ポットに投入し、アセトンを加えて、遊星型ボールミルで粉砕及び混合した後、乾燥させて原料粉末を得た。
 そして、得られた原料粉末を、大気中において500℃で12時間に亘って仮焼成した。
 続いて、仮焼成して得られた粉末を、ジルコニア製ポットに投入し、アセトンを加えて、遊星型ボールミルで粉砕及び混合した後、乾燥させて仮焼成粉末を得た。
 得られた仮焼成粉末を、大気中において1000℃で12時間に亘って本焼成することによって正極活物質とした。
[実施例2]
 実施例2に係る正極活物質は、本焼成温度を950℃に変えた以外は、実施例1と同様の原料及び手順で作製した。
[実施例3]
 実施例3に係る正極活物質は、Niを含む原料として酢酸ニッケルを用いた以外は、実施例1と同様の手順で作製した。
[実施例4]
 実施例4に係る正極活物質は、Li、Ni及びMnの組成比を1.2:0.40:0.40とした以外は、実施例1と同様の手順で作製した。
[実施例5]
 実施例5に係る正極活物質は、Li、Ni及びMnの組成比を1.1:0.40:0.40とした以外は、実施例1と同様の手順で作製した。
[比較例1]
 比較例1に係る正極活物質は、本焼成の温度を950℃に変えた以外は、実施例3と同様の原料及び手順で作製した。
[比較例2]
 比較例2に係る正極活物質は、酢酸リチウム四水和物、酢酸コバルト四水和物、酢酸ニッケル四水和物、酢酸マンガン四水和物を原料とし、Li、Co、Ni及びMnの組成比を1.2:0.13:0.13:0.53、本焼成温度を850℃として、以下の手順で作製した。
 はじめに、原料をそれぞれ称量して蒸留水に溶解し、得られた水溶液をスプレードライヤを用いて噴霧乾燥させることによって、原料混合粉末を得た。
 続いて、得られた原料混合粉末を、850℃で焼成することによって正極活物質とした。
[比較例3]
 比較例3に係る正極活物質は、酢酸リチウム四水和物、酢酸ニッケル四水和物、酢酸マンガン四水和物を原料とし、Li、Ni及びMnの組成比を1.2:0.25:0.55、本焼成温度を1000℃として、以下の手順で作製した。
 はじめに、原料をそれぞれ称量して蒸留水に溶解し、得られた水溶液をスプレードライヤを用いて噴霧乾燥させることによって、原料混合粉末を得た。
 続いて、得られた原料混合粉末を、1000℃で焼成することによって正極活物質とした。
 作製した実施例及び比較例に係る正極活物質のそれぞれについて、CuKαによる粉末X線回折による解析を行った。また、各正極活物質のそれぞれについて、BET比表面積を測定した。
 図2は、本実施形態に係るリチウムイオン二次電池用正極活物質のX線回折パターンの一例を示す図である。
 作製した実施例1に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンが得られた。この回折ピークは、空間群R3-mに特徴的な回折パターンであり、2θ=18.6±1゜においてミラー指数(003)の面のX線回折ピークが認められ、2θ=44.4±1゜においてミラー指数(104)の面のX線回折ピークが認められた。これら2θ=18.6±1゜における半値幅は0.13゜であり、2θ=44.4±1゜における半値幅は0.20゜であった。
 また、BET法にしたがって求めた比表面積は、3.1m/gであった。
 作製した実施例2に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.16゜であり、2θ=44.4±1゜における半値幅は0.22゜であった。
 また、BET法にしたがって求めた比表面積は、3.7m/gであった。
 作製した実施例3に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.16゜であり、2θ=44.4±1゜における半値幅は0.22゜であった。
 また、BET法にしたがって求めた比表面積は、2.7m/gであった。
 作製した実施例4に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.15゜であり、2θ=44.4±1゜における半値幅は0.20゜であった。
 また、BET法にしたがって求めた比表面積は、2.9m/gであった。
 作製した実施例5に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.15゜であり、2θ=44.4±1゜における半値幅は0.20゜であった。
 また、BET法にしたがって求めた比表面積は、2.7m/gであった。
 作製した比較例1に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.21゜であり、2θ=44.4±1゜における半値幅は0.32゜であった。
 また、BET法にしたがって求めた比表面積は、3.1m/gであった。
 作製した比較例2に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.22゜であり、2θ=44.4±1゜における半値幅は0.28゜であった。
 また、BET法にしたがって求めた比表面積は、3.8m/gであった。
 作製した比較例3に係る正極活物質について、CuKαによる粉末X線回折による解析を行ったところ、図2に示すX線回折パターンと同様のパターンが得られ、2θ=18.6±1゜及び44.4±1゜においてそれぞれX線回折ピークが認められ、2θ=18.6±1゜における半値幅は0.13゜であり、2θ=44.4±1゜における半値幅は0.22゜であった。
 また、BET法にしたがって求めた比表面積は、0.9m/gであった。
 作製した実施例及び比較例に係る正極活物質のそれぞれを用いて、以下の手順でリチウムイオン二次電池を作製した。
 はじめに、正極活物質と、バインダと、導電剤とを混合し、正極合剤スラリーを作製した。
 そして、作製した正極合剤スラリーを正極集電体の厚さ20μmのアルミ箔に塗布し、120℃で乾燥させた後、電極密度が2.0g/cmとなるようにプレスで圧縮成形し、これを直径15mmの円盤状に打ち抜いて正極とした。
 続いて、得られた正極と、金属リチウムを用いて作成した負極と、非水電解液とを用いてリチウムイオン二次電池を作製した。なお、非水電解液としては、体積比が1:2となるようにエチレンカーボネートとジメチルカーボネートとを混合した溶媒に、終濃度が1.0mol/LとなるようにLiPFを溶解させた溶液を用いた。
 次に、作製したリチウムイオン二次電池のそれぞれについて、充放電試験を行い、放電容量と直流内部抵抗を測定した。
 充電は、充電電流を0.05CAとして、充電終止電圧4.6Vまで定電流、定電圧で行い、放電は、放電電流を0.05CAとして、放電終止電圧2.0Vまで定電流で行って、これら充放電を計2サイクル繰り返した。
 このとき、2サイクル目に計測される放電容量を、充電率100%における放電容量と定義した。また、放電終止電圧が2.0Vに達した完全放電した状態を充電率0%とし、充電終止電圧が4.6Vに達した満充電の状態を充電率100%と定義した。
 そして、充電率が50%となるまで充電し、開回路電圧を測定して、充電時の直流内部抵抗(R)を測定した。
 その後、充電率が90%となるまで再度充電してから充電率が50%となるまで放電し、開回路電圧を測定して、放電時の直流内部抵抗(R)を測定した。
 以上の測定で得られた、X線回折ピークの半値幅(°)、BET比表面積(m/g)、初期放電容量(mAh/g)及び算出された直流内部抵抗比R/Rのそれぞれを組成と共に表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、実施例1~5及び比較例1~3に係るいずれの正極活物質についても、初期放電容量が190mAh/g以上であり、高容量を達成していることが確認された。
 また、2θ=18.6±1゜における半値幅が0.12゜以上0.17゜以下であり、2θ=44.4±1゜における半値幅が0.18゜以上0.22゜以下であり、且つ、BET比表面積が2.0m/g以上である実施例1~5に係る正極活物質においては、R/Rが1.5以下を示しており、放電時における直流内部抵抗が低減されていることが認められた。
 これに対し、半値幅が大きい比較例1及び比較例2に係る正極活物質においては、R/Rが過大であり、放電時における直流内部抵抗は有意に低減されていなかった。また、2θ=18.6±1゜における半値幅が0.12゜以上0.17゜以下であり、2θ=44.4±1゜における半値幅が0.18゜以上0.22゜以下であるものの、BET比表面積が小さい比較例3に係る正極活物質においても、放電時における直流内部抵抗は有意に低減されていなかった。
 以上の結果から、直流内部抵抗が小さく、高い放電容量を有するリチウムイオン二次電池を実現するためには、比表面積が大きく、且つ結晶子サイズが大きいという二つの条件を同時に満足する正極活物質を用いることが必要であるということが分かった。
1 リチウムイオン二次電池
2 リチウムイオン二次電池用正極
3 リチウムイオン二次電池用負極
4 セパレータ
5 電池缶
6 正極リード
7 負極リード
8 密閉蓋
9 ガスケット
10 絶縁板

Claims (9)

  1.  一般式Li1+xNiMn
    (式中、Mは、Co、V、Mo、Ti、Al、Mg及びFeからなる群より選択される少なくとも1種の元素であり、0.1≦x≦0.25、0.25≦y≦0.5、0.3≦z≦0.55、0≦w≦0.1、x+y+z+w=1.0である。)
    で表わされ、
     CuKαによる粉末X線回折によって測定される2θ=18.6±1゜におけるX線回折ピークの半値幅が0.12゜以上0.17゜以下であり、2θ=44.4±1゜におけるX線回折ピークの半値幅が0.18゜以上0.22゜以下であり、且つ、
     BET比表面積が2.0m/g以上である
    ことを特徴とするリチウムイオン二次電池用正極活物質。
  2.  Al、Mg、Zn、Mo、V、Ti及びZrからなる群より選択される少なくとも一種の金属の金属酸化物が表面に被覆されている
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
  3.  リン酸塩が表面に被覆されている
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
  4.  請求項1から請求項3のいずれか1項に記載のリチウムイオン二次電池用正極活物質を含んでなる
    ことを特徴とするリチウムイオン二次電池用正極。
  5.  請求項1から請求項3のいずれか1項に記載のリチウムイオン二次電池用正極活物質を含んでなり、
     前記リチウムイオン二次電池用正極活物質が、複数の一次粒子が集合してなる二次粒子を形成している
    ことを特徴とするリチウムイオン二次電池用正極。
  6.  請求項4又は請求項5に記載のリチウムイオン二次電池用正極を備える
    ことを特徴とするリチウムイオン二次電池。
  7.  請求項4又は請求項5に記載のリチウムイオン二次電池用正極を備え、
     充電時において充電率が50%に達したときの直流内部抵抗Rと、放電時において充電率が50%に達したときの直流内部抵抗Rとの比R/Rが1.0以上1.5以下であり、
     初期放電容量が190mAh/g以上である
    ことを特徴とするリチウムイオン二次電池。
  8.  請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法であって、
     含リチウム化合物、含ニッケル化合物、含マンガン化合物並びに任意に添加されるCo、V、Mo、Ti、Al、Mg及びFeからなる群より選択される少なくとも1種の元素を含む化合物を混合して固体混合物を調製する工程と、
     前記固体混合物を900℃以上1050℃以下の温度で焼成して固相反応させる工程と、
    を含むことを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
  9.  前記含マンガン化合物が、炭酸マンガンである
    ことを特徴とする請求項8に記載のリチウムイオン二次電池用正極活物質の製造方法。
PCT/JP2013/068268 2013-07-03 2013-07-03 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法 WO2015001631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/068268 WO2015001631A1 (ja) 2013-07-03 2013-07-03 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法
PCT/JP2014/066090 WO2015001957A1 (ja) 2013-07-03 2014-06-18 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068268 WO2015001631A1 (ja) 2013-07-03 2013-07-03 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法

Publications (1)

Publication Number Publication Date
WO2015001631A1 true WO2015001631A1 (ja) 2015-01-08

Family

ID=52143251

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/068268 WO2015001631A1 (ja) 2013-07-03 2013-07-03 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法
PCT/JP2014/066090 WO2015001957A1 (ja) 2013-07-03 2014-06-18 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066090 WO2015001957A1 (ja) 2013-07-03 2014-06-18 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法

Country Status (1)

Country Link
WO (2) WO2015001631A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219278A (ja) * 2015-05-21 2016-12-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2018508943A (ja) * 2015-01-23 2018-03-29 ユミコア 高電圧リチウムイオン電池用のリチウム金属酸化物カソード粉末
WO2021066216A1 (ko) * 2019-10-01 2021-04-08 주식회사 엘 앤 에프 신규한 리튬 복합금속 산화물 및 이를 포함하는 리튬 이차전지
CN114388783A (zh) * 2022-01-04 2022-04-22 万华化学集团股份有限公司 一种高镍正极材料、其制备方法及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836369B2 (ja) 2016-10-31 2021-03-03 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP7316903B2 (ja) * 2018-12-27 2023-07-28 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質及びその製造方法
WO2021125344A1 (ja) * 2019-12-20 2021-06-24 Dowaエレクトロニクス株式会社 非晶質リチウムイオン伝導酸化物粉末およびその製造方法、並びに、nasicon型結晶構造を有するリチウムイオン伝導酸化物粉末の製造方法
CN116072829B (zh) * 2021-11-02 2024-09-24 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167761A (ja) * 1999-12-07 2001-06-22 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003007299A (ja) * 2001-06-14 2003-01-10 Samsung Sdi Co Ltd 電池用活物質及びその製造方法、並びに電池の製造方法
JP2010135285A (ja) * 2008-10-31 2010-06-17 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法
WO2011021686A1 (ja) * 2009-08-21 2011-02-24 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2012043716A (ja) * 2010-08-20 2012-03-01 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
WO2012091015A1 (ja) * 2010-12-27 2012-07-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及びその二次電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260906A (ja) * 2005-03-16 2006-09-28 Sony Corp 電池
JP2007188699A (ja) * 2006-01-12 2007-07-26 Nihon Kagaku Sangyo Co Ltd 非水電解質二次電池及び同用正極活物質の製造方法
JP5111421B2 (ja) * 2009-03-27 2013-01-09 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
TWI489682B (zh) * 2009-12-29 2015-06-21 Gs Yuasa Int Ltd 鋰二次電池用活性物質、鋰二次電池用電極、鋰二次電池及其製造方法
JP5757139B2 (ja) * 2010-12-27 2015-07-29 株式会社Gsユアサ 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167761A (ja) * 1999-12-07 2001-06-22 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003007299A (ja) * 2001-06-14 2003-01-10 Samsung Sdi Co Ltd 電池用活物質及びその製造方法、並びに電池の製造方法
JP2010135285A (ja) * 2008-10-31 2010-06-17 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法
WO2011021686A1 (ja) * 2009-08-21 2011-02-24 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2012043716A (ja) * 2010-08-20 2012-03-01 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
WO2012091015A1 (ja) * 2010-12-27 2012-07-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及びその二次電池の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508943A (ja) * 2015-01-23 2018-03-29 ユミコア 高電圧リチウムイオン電池用のリチウム金属酸化物カソード粉末
US10854874B2 (en) 2015-01-23 2020-12-01 Umicore Lithium metal oxide cathode powders for high voltage lithium-ion batteries
JP2016219278A (ja) * 2015-05-21 2016-12-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021066216A1 (ko) * 2019-10-01 2021-04-08 주식회사 엘 앤 에프 신규한 리튬 복합금속 산화물 및 이를 포함하는 리튬 이차전지
CN114388783A (zh) * 2022-01-04 2022-04-22 万华化学集团股份有限公司 一种高镍正极材料、其制备方法及其应用

Also Published As

Publication number Publication date
WO2015001957A1 (ja) 2015-01-08

Similar Documents

Publication Publication Date Title
EP3336939B1 (en) Positive electrode active material for lithium-ion secondary battery and preparation method and use thereof
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR101606153B1 (ko) 전기 디바이스용 정극 활물질, 전기 디바이스용 정극 및 전기 디바이스
US8535829B2 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP5843766B2 (ja) 正極活物質、正極及び非水系二次電池
WO2015001631A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法
WO2013137380A1 (ja) 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2008147068A (ja) 非水電解液二次電池用リチウム複合酸化物
WO2009096255A1 (ja) 正極活物質、正極及び非水二次電池
JP2016076470A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP7207261B2 (ja) 正極活物質の製造方法、及びリチウムイオン電池の製造方法
JP2012206925A (ja) ナトリウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したナトリウム二次電池
KR20140111045A (ko) 망간계 스피넬형 리튬 천이 금속 산화물
WO2020027158A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2015118742A (ja) 非水電解質二次電池
JP2013087040A (ja) リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
WO2014073701A1 (ja) 正極活物質、リチウム電池および正極活物質の製造方法
WO2014073700A1 (ja) リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池
JP5017010B2 (ja) リチウム二次電池
US20220131139A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5847204B2 (ja) 正極活物質、正極及び非水系二次電池
WO2015001632A1 (ja) リチウムイオン二次電池用正極材、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法
JP7235130B2 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
CN107316984B (zh) 正极活性物质前体、其制造方法及正极活性物质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP