WO2009096255A1 - 正極活物質、正極及び非水二次電池 - Google Patents
正極活物質、正極及び非水二次電池 Download PDFInfo
- Publication number
- WO2009096255A1 WO2009096255A1 PCT/JP2009/050687 JP2009050687W WO2009096255A1 WO 2009096255 A1 WO2009096255 A1 WO 2009096255A1 JP 2009050687 W JP2009050687 W JP 2009050687W WO 2009096255 A1 WO2009096255 A1 WO 2009096255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- battery
- material according
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material, a positive electrode using the positive electrode active material, a non-aqueous secondary battery (lithium secondary battery) using the positive electrode, and more particularly to a non-aqueous secondary battery having excellent cycle characteristics. Is.
- lithium secondary batteries As secondary batteries for portable electronic devices, lithium secondary batteries have been put into practical use and are widely used. Furthermore, in recent years, lithium secondary batteries are attracting attention not only as compact devices for portable equipment but also as large-capacity devices for automobiles and power storage. Therefore, demands for safety, cost, life, etc. are higher.
- a layered transition metal oxide typified by LiCoO 2 is used as the positive electrode active material.
- these layered transition metal oxides tend to cause oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and a thermal runaway reaction of the battery can occur due to the oxygen desorption.
- lithium manganate (LiMn 2 O 4 ) and lithium iron phosphate (LiFePO 4 ) having a spinel structure with a stable structure are expected.
- lithium nickelate (LiNiO 2 ), its solid solution (Li (Co 1-x Ni x ) O 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (LiFePO 4 ) are expected. ing.
- a positive electrode active material As such a positive electrode active material, the general formula A a M b (XY 4 ) c Z d (where A is an alkali) is used for the purpose of increasing capacity, increasing cycle capacity, increasing reversibility, and reducing cost.
- An active material represented by a metal, M is a transition metal, XY 4 is PO 4 or the like, Z is OH or the like has been proposed (for example, see Patent Document 1).
- Patent Document 1 has a problem that the life of the obtained battery is short.
- the present invention has been made in view of the above-mentioned problems, and its purpose is not only excellent in safety and cost, but also a positive electrode active material that can provide a battery having a long life, and the positive electrode active material And a non-aqueous secondary battery using the positive electrode.
- a positive electrode active material has the following general formula (1).
- Li y K a Fe 1-x X x PO 4 ... (1) (Wherein, X is at least one of 2 to 13 groups, 0 ⁇ a ⁇ 0.25, 0 ⁇ x ⁇ 0.25, and y is (1-a))
- y in the general formula (1) is (xa) (where xa ⁇ 0) with respect to the volume of the unit cell when y in the general formula (1) is (1-a) In the case where y is 0), the volume change rate of the volume of the unit cell is 4% or less.
- the degree of decrease in the capacity maintenance rate with respect to the increase in the volume change rate is increased. it can.
- x in the general formula (1) is 0 ⁇ x ⁇ 0.25.
- the positive electrode active material that can be provided can be provided.
- X is preferably a transition element.
- charging / discharging can be performed using the range of the redox potential of X.
- X is preferably +2 in the positive electrode active material according to the present invention.
- the positive electrode active material can be easily synthesized.
- X is +3 valent
- X is preferably Mn, Co or Ni.
- a positive electrode active material that can provide a battery having a longer life can be provided.
- X is preferably Mn.
- a positive electrode active material that can provide a battery having a longer life can be provided.
- a ⁇ x in the general formula (1) it is preferable that a ⁇ x in the general formula (1).
- X is preferably a typical element.
- X is preferably +2 in the positive electrode active material according to the present invention.
- the positive electrode active material can be easily synthesized.
- X is +3 valent
- X is preferably Mg.
- a positive electrode active material that can provide a battery having a longer life can be provided.
- a x in the general formula (1).
- the theoretical discharge capacity decreases linearly as the amount of Li site substitution increases.
- the substitution amount is increased for both the Li site and the Fe site, expansion and contraction tend to be suppressed.
- the positive electrode according to the present invention includes the positive electrode active material according to the present invention, a conductive material, and a binder in order to solve the above-described problems.
- the positive electrode active material according to the present invention since the positive electrode active material according to the present invention is included, not only is it excellent in safety and cost, but there is an effect that it is possible to provide a positive electrode that can provide a battery having a long life.
- the non-aqueous secondary battery according to the present invention is characterized by having the positive electrode, the negative electrode, the electrolyte, and the separator according to the present invention in order to solve the above problems.
- the positive electrode according to the present invention since the positive electrode according to the present invention is included, not only is it excellent in safety and cost, but there is an effect that a battery having a long life can be provided.
- the cathode active material according to the present embodiment has the following general formula (1) Li y K a Fe 1-x X x PO 4 ... (1) (Wherein, X is at least one of 2 to 13 groups, 0 ⁇ a ⁇ 0.25, 0 ⁇ x ⁇ 0.25, and y is (1-a)) It is represented by
- the a-axis and the b-axis contract, and the c-axis expands.
- the present inventor thought that the volume change can be suppressed by reducing the contraction rate between the a-axis and the b-axis and increasing the expansion rate of the c-axis by some substitution.
- the inventor performs substitution at the Li site, and particularly preferably at the time of Li elimination by substituting part of the Li site with K and at the same time substituting part of the Fe site with other atoms. It has been found that volume change can be suppressed and expansion / contraction due to charge / discharge can be suppressed. At this time, the larger the lattice constant of the initial structure, the more the structure tends to be maintained when Li is desorbed.
- the a-axis of the structure after substitution is preferably 10.40 mm or more, more preferably 10.45 mm or more.
- the b-axis is preferably 6.05 mm or more, and more preferably 6.10 mm or more.
- the c-axis is preferably 4.70 mm or more, and more preferably 4.80 mm or more.
- the lattice constant of a general olivine-type lithium iron phosphate is 10.347 mm for the a-axis, 6.0189 mm for the b-axis, and 4.7039 mm for the c-axis.
- K substitution amount is preferable to 1/4 of Li site. That is, in the positive electrode active material according to the present embodiment, a in the general formula (1) is 0.25 or less.
- a in the general formula (1) is less than 0. It is large and is more preferably 0.0625 or more.
- a typical metal element or a transition metal element can be used as the element X substituting the Fe site.
- X is particularly preferably a +2 valent element.
- Ca, Mg, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, or the like can be used as the +2 valent element.
- X is preferably an element having a hexacoordinate atomic radius larger than that of Fe, and particularly preferably Mn.
- y in general formula (1) is (xa) (where xa ⁇ relative to the volume of the unit cell when y in general formula (1) is (1-a)).
- y is preferably 0
- the volume change rate of the unit cell volume is preferably 4% or less.
- the volume change rate of the capacity retention rate is about 4% as a boundary. This is because the inclination with respect to changes. That is, when the volume change rate is higher than about 4%, the degree of decrease in the capacity maintenance rate with respect to the increase in the volume change rate is increased. Therefore, if the said volume change rate is 4% or less, the fall of a capacity
- x in the general formula (1) is preferably 0 ⁇ x ⁇ 0.25, and more preferably 0.0625 ⁇ x ⁇ 0.25. . That is, it is preferable to replace the Li site and the Fe site at the same time, thereby suppressing expansion and contraction of the volume due to charge / discharge while minimizing the capacity decrease due to the replacement.
- the substitution amount of the Li site and the substitution amount of the Fe site are the same.
- the amount of substitution at the Li site is larger than the amount of substitution at the Fe site, Fe atoms that do not undergo valence change increase, which is not preferable.
- the amount of substitution at the Li site is smaller than the amount of substitution at the Fe site, the typical metal element is not preferable because the valence change cannot be utilized.
- the theoretical discharge capacity decreases linearly when the Li site substitution amount is increased.
- the substitution amount is increased for both the Li site and the Fe site, expansion and contraction tend to be suppressed.
- the substitution amount of the Li site is not more than the substitution amount of the Fe site.
- the amount of substitution at the Li site is smaller than the amount of substitution at the Fe site, it is possible to utilize the change in the valence of the atom substituted at the Fe site, not only suppressing the decrease in capacity due to atom substitution, but also increasing the average potential. It becomes possible.
- Ti, V, Cr, Mn, Co, and Ni can be used as X.
- Mn, Co, and Ni are preferable in consideration of increasing the average potential.
- the stability of the structure can be changed by the positional relationship of the two atoms, so that the superlattice structure can be obtained with the positional relationship of the two atoms being constant. is there.
- the positive electrode active material according to the present embodiment described above uses any combination such as carbonate, hydroxide, chloride, sulfate, acetate, oxide, oxalate, and nitrate of each element as a raw material. Can be manufactured. As a production method, a solid phase method, a coprecipitation method, a hydrothermal method, a spray pyrolysis method, or the like can be used. Further, the conductivity may be improved by attaching a carbon film to the positive electrode active material, which is generally performed for olivine type lithium iron phosphate.
- Nonaqueous secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a separator.
- a positive electrode a positive electrode
- a negative electrode a negative electrode
- an electrolyte a separator
- each constituent material will be described.
- the positive electrode includes the positive electrode active material according to the present embodiment, a conductive material, and a binder.
- a slurry obtained by mixing an active material, a conductive material, and a binder with an organic solvent is a current collector. It can be produced by a known method such as coating on the surface.
- binder examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene. Nitrocellulose or the like can be used.
- acetylene black carbon, graphite, natural graphite, artificial graphite, needle coke, or the like can be used.
- a foamed (porous) metal having continuous pores a metal formed in a honeycomb shape, a sintered metal, an expanded metal, a nonwoven fabric, a plate, a foil, a perforated plate, a foil, or the like may be used. it can.
- N-methylpyrrolidone N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. may be used. it can.
- the thickness of the electrode is preferably about 0.01 to 20 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered.
- the electrode obtained by coating and drying may be consolidated by a roller press or the like in order to increase the packing density of the active material.
- the negative electrode can be produced by a known method. Specifically, it can be manufactured in the same manner as described in the method for manufacturing the positive electrode. That is, after mixing the known binder and the known conductive material described in the method for producing the positive electrode with the negative electrode active material, the mixed powder is formed into a sheet shape, and the formed body is made of a conductor such as stainless steel or copper. What is necessary is just to crimp
- a known material can be used as the negative electrode active material.
- the potential at which lithium is inserted / desorbed is close to the deposition / dissolution potential of metallic lithium.
- a typical example is a carbon material such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.).
- artificial graphite examples include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is more preferable because it is inexpensive, close to the redox potential of lithium, and can constitute a high energy density battery.
- lithium transition metal oxide lithium transition metal nitride, transition metal oxide, silicon oxide, and the like can be used as the negative electrode active material.
- Li 4 Ti 5 O 12 is more preferable because it has high potential flatness and a small volume change due to charge and discharge.
- Electrolyte for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. After the electrolyte is injected, the opening of the battery is sealed. Gas generated by energization before sealing may be removed.
- organic solvent constituting the organic electrolytic solution examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl.
- cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl.
- Chain carbonates such as carbonate, lactones such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-di Examples include ethers such as ethoxyethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, and the like. be able to.
- GBL has the properties of having both a high dielectric constant and low viscosity, and also has excellent oxidation resistance, high boiling point, low vapor pressure, high flash point, etc. It is suitable as a solvent for an electrolytic solution of a large lithium secondary battery that is required to be very safe compared to a conventional small lithium secondary battery.
- cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as solvents to be mixed with GBL.
- Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3). COO), lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and the like, and one or more of these can be mixed and used.
- the salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l.
- separator examples include porous materials and nonwoven fabrics.
- the material of the separator the above-described one that does not dissolve or swell in the organic solvent contained in the electrolyte is preferable.
- Specific examples include polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and inorganic materials such as glass.
- various materials used for conventionally known non-aqueous electrolyte secondary batteries can be used for elements such as separators, battery cases, and other structural materials, and there is no particular limitation. .
- the non-aqueous secondary battery according to the present embodiment can be manufactured, for example, by laminating a positive electrode and a negative electrode with a separator between them.
- the stacked electrodes may have, for example, a strip-like planar shape. In the case of manufacturing a cylindrical or flat battery, the stacked electrodes may be wound up.
- One or more of the stacked electrodes are inserted into the battery container. Usually, the positive electrode and the negative electrode are connected to the external conductive terminal of the battery. Thereafter, the battery container is sealed in order to block the electrodes and the separator from the outside air.
- the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the container is caulked.
- a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used.
- a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used.
- a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used.
- An opening for electrolyte injection may be provided at the time of sealing.
- the positive electrode active material according to the present invention has the following general formula (1).
- Li y K a Fe 1-x X x PO 4 ... (1) (Wherein, X is at least one of 2 to 13 groups, 0 ⁇ a ⁇ 0.25, 0 ⁇ x ⁇ 0.25, and y is (1-a))
- y in the general formula (1) is (xa) (where xa ⁇ 0) with respect to the volume of the unit cell when y in the general formula (1) is (1-a) In the case where y is 0), the volume change rate of the volume of the unit cell is 4% or less.
- the positive electrode according to the present invention is characterized by including the positive electrode active material according to the present invention, a conductive material, and a binder.
- the non-aqueous secondary battery according to the present invention is characterized by having the positive electrode, the negative electrode, the electrolyte, and the separator according to the present invention.
- the positive electrode active materials obtained in each of the examples and comparative examples were subjected to ICP emission spectroscopic analysis and confirmed to have a target composition (element ratio).
- a positive electrode active material having the same composition as the Li desorption state confirmed by the charge capacity was used as the positive electrode active material after Li desorption at room temperature.
- X-ray measurement was performed. Specifically, the battery is manufactured by the battery manufacturing method described later, the positive electrode is taken out in a fully charged state, the electrode is washed with ethanol, and the XRD measurement of the positive electrode active material after the Li desorption is performed. did.
- the expansion / contraction rate (%) due to charging / discharging is obtained from the lattice constant of the structure at the time of charging and the structural lattice constant at the time of discharging.
- Volume / volume of structure during discharge ⁇ 100 Determined by
- the structure at the time of charging is the structure at the time of Li desorption
- the structure at the time of discharging is the initial structure at the time of synthesis.
- a positive electrode active material, acetylene black (trade name: “DENKA BLACK”, manufactured by Denki Kagaku Kogyo Co., Ltd.) and PVdF (polyvinylidene fluoride) (trade name: “KF polymer”, manufactured by Kureha Co., Ltd.) are 100: 5: 5
- N-methylpyrrolidone manufactured by Kishida Chemical Co., Ltd.
- the electrode size of the positive electrode was 2 cm ⁇ 2 cm.
- the above electrode was used as the positive electrode, 50 ml of the electrolytic solution was placed in a 100 ml glass container, and Li metal was used for the counter electrode.
- LiPF 6 is dissolved in a solvent in which ethylene carbonate and diethyl carbonate are mixed so as to have a volume ratio of 7: 3 so that the concentration becomes 1.4 mol / l. was used.
- LiOH as a lithium source LiOH as a lithium source
- NaOH as a sodium source FePO 4 as an iron source
- NiO a manganese source
- firing was performed at 650 ° C. for 6 hours in a nitrogen atmosphere, and Li 0.75 Na 0.
- a 25 Fe 0.75 Ni 0.25 PO 4 single phase powder was synthesized.
- Various measurement results are shown in Table 1.
- FIG. 1 is a graph showing the change in capacity retention rate with respect to the volume expansion / contraction rate of each positive electrode active material produced in this example.
- the positive electrode active material according to the present embodiment preferably has a volume expansion / contraction rate of about 4% or less.
- a in the general formula (1) is preferably 0.25 or less.
- Examples 4 to 9 other than X Mn also exhibited excellent volume retention and initial discharge capacity as in Examples 1 to 3.
- the positive electrode active material of the present invention is not only excellent in safety and cost, but can provide a battery having a long life. For this reason, it can be suitably used as a positive electrode active material in a non-aqueous secondary battery such as a lithium ion battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
LiyKaFe1-xXxPO4 …(1)
(但し、式中、Xは2~13族の少なくとも1種以上であり、0<a≦0.25、0≦x≦0.25であり、yは(1-a)である)
で表され、一般式(1)におけるyが(1-a)である場合での単位格子の体積に対する、一般式(1)におけるyが(x-a)(但し、x-a<0の場合はyは0)である場合での単位格子の体積の体積変化率が4%以下であることを特徴としている。
本実施の形態に係る正極活物質は、下記一般式(1)
LiyKaFe1-xXxPO4 …(1)
(但し、式中、Xは2~13族の少なくとも1種以上であり、0<a≦0.25、0≦x≦0.25であり、yは(1-a)である)
で表される。
本実施の形態に係る非水二次電池は、正極と負極と電解質とセパレータとを有する。以下、各構成材料について説明する。
上記正極は、本実施の形態に係る上記正極活物質と導電材とバインダーとからなり、例えば、活物質と導電材と結着剤とを有機溶剤と混合したスラリーを集電体に塗布する等の公知の方法によって作製することができる。
上記負極は公知の方法により作製することができる。具体的には、正極の作製法で説明した方法と同様にして作製することができる。つまり、正極の作製法で説明した公知の結着材と公知の導電材とを負極活物質と混合した後、この混合粉末をシート状に成形し、当該成形体をステンレス、銅等の導電体網(集電体)に圧着すればよい。また、上記混合粉末を正極作製法で説明した公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
上記電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。電解質を注入した後に電池の開口部を封止する。封止の前に通電し発生したガスを取り除いてもよい。
上記セパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、上述した、電解質中に含まれる有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー、ガラスのような無機材料等が挙げられる。
本実施の形態に係る非水二次電池は、例えば、正極と負極とを、それらの間にセパレータを挟んで積層することにより作製することができる。積層した電極は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層した電極を巻き取ってもよい。
LiyKaFe1-xXxPO4 …(1)
(但し、式中、Xは2~13族の少なくとも1種以上であり、0<a≦0.25、0≦x≦0.25であり、yは(1-a)である)
で表され、一般式(1)におけるyが(1-a)である場合での単位格子の体積に対する、一般式(1)におけるyが(x-a)(但し、x-a<0の場合はyは0)である場合での単位格子の体積の体積変化率が4%以下であることを特徴としている。
(1)正極と負極と電解質とセパレータを有し、前記正極が正極活物質と導電材とバインダーとからなる非水二次電池において、正極活物質がLi1-a-bKaFe1-xXxPO4(0<a≦0.25、0≦x≦0.25)で表され、Xは2~12族の少なくとも1種以上であり、充放電による体積変化率がb=0での単位格子の体積に対する、b=1-x(但し、x<aの場合は、b=1-a)での単位格子の体積の体積変化率が4%以下となる正極活物質を用いた電池。
正極活物質を乳鉢ですり潰して微粉化し、室温にて、Cu管球を用いて10°~90°までX線測定を行い、格子定数を求めた。
体積膨張率(%)=(1-充電時の構造の体積/放電時の構造の体積)×100
により求めた。
正極活物質とアセチレンブラック(商品名:「デンカブラック」、電気化学工業社製)とPVdF(ポリビニリデンフルオライド)(商品名:「KFポリマー」、クレハ社製)とを100:5:5の比率で混合後、N-メチルピロリドン(キシダ化学社製)と混合することによりスラリー状にし、厚さ20μmのアルミ箔に厚さが50μm~100μmとなるように塗布して正極を得た。尚、正極の電極サイズは2cm×2cmとした。
容量維持率を求めるため、作製した上記電池を用いて、電流密度0.2mA/cm2で充放電を行うことによりサイクル試験を実施した。充電は、3.8Vにて定電流充電モードから定電圧充電モードに切り替え、電流値が定電流充電時の電流値の10分の1になるまで充電を行った。放電に関しては、2.25Vまで定電流にて行った。容量維持率は、300サイクル後の容量を用いて評価し、下記式
容量維持率(%)=(300サイクル後の放電容量)/(初期の放電容量)
により求めた。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マンガン源としてMnO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mn:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Mn0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マンガン源としてMnO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mn:P=0.875:0.125:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間焼成を行い、オリビン型の正極活物質であるLi0.875K0.125Fe0.75Mn0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マンガン源としてMnO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mn:P=0.875:0.125:0.875:0.125:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.875K0.125Fe0.875Mn0.125PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マグネシウム源としてMgO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mg:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Mg0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、ニッケル源としてNiO、リン酸源として(NH4)2HPO4をLi:K:Fe:Ni:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Ni0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、コバルト源としてCo3O4、リン酸源として(NH4)2HPO4をLi:K:Fe:Co:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Co0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、銅源としてCuO、リン酸源として(NH4)2HPO4をLi:K:Fe:Cu:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Cu0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マンガン源としてMnO、ニッケル源としてNiOを、リン酸源として(NH4)2HPO4をLi:K:Fe:Mn:Ni:P=0.75:0.25:0.75:0.125:0.125:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25Fe0.75Mn0.125Ni0.125PO4単相粉末を合成した。各種測定結果については表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、リン酸源として(NH4)2HPO4をLi:K:Fe:P=0.75:0.25:1:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75K0.25FePO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マグネシウム源としてMgO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mg:P=0.875:0.125:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.875K0.125Fe0.75Mg0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、ナトリウム源としてNaOH、鉄源としてFePO4、マンガン源としてMnO、リン酸源として(NH4)2HPO4をLi:Na:Fe:Mn:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75Na0.25Fe0.75Mn0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、カリウム源としてKOH、鉄源としてFePO4、マンガン源としてMnO、リン酸源として(NH4)2HPO4をLi:K:Fe:Mn:P=0.7:0.3:0.7:0.3:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.7K0.3Fe0.7Mn0.3PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、ナトリウム源としてNaOH、鉄源としてFePO4、マンガン源としてMgO、リン酸源として(NH4)2HPO4をLi:Na:Fe:Mg:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75Na0.25Fe0.75Mg0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
出発原料にリチウム源としてLiOH、ナトリウム源としてNaOH、鉄源としてFePO4、マンガン源としてNiO、リン酸源として(NH4)2HPO4をLi:Na:Fe:Ni:P=0.75:0.25:0.75:0.25:1となるように混合した後、窒素雰囲気中で650℃、6時間の焼成を行い、オリビン型の正極活物質であるLi0.75Na0.25Fe0.75Ni0.25PO4単相粉末を合成した。各種測定結果について表1に示す。
Claims (13)
- 下記一般式(1)
LiyKaFe1-xXxPO4 …(1)
(但し、式中、Xは2~13族の少なくとも1種以上であり、0<a≦0.25、0≦x≦0.25であり、yは(1-a)である)
で表され、
一般式(1)におけるyが(1-a)である場合での単位格子の体積に対する、一般式(1)におけるyが(x-a)(但し、x-a<0の場合はyは0)である場合での単位格子の体積の体積変化率が4%以下であることを特徴とする正極活物質。 - 一般式(1)におけるxが、0<x≦0.25であることを特徴とする請求項1に記載の正極活物質。
- Xが遷移元素であることを特徴とする請求項1又は2に記載の正極活物質。
- Xが+2価であることを特徴とする請求項3に記載の正極活物質。
- XがMn、Co、又はNiであることを特徴とする請求項4に記載の正極活物質。
- XがMnであることを特徴とする請求項5に記載の正極活物質。
- 一般式(1)において、a≦xであることを特徴とする請求項3~6の何れか1項に記載の正極活物質。
- Xが典型元素であることを特徴とする請求項1又は2に記載の正極活物質。
- Xが+2価であることを特徴とする請求項8に記載の正極活物質。
- XがMgであることを特徴とする請求項9に記載の正極活物質。
- 一般式(1)において、a=xであることを特徴とする請求項8~10の何れか1項に記載の正極活物質。
- 請求項1~11の何れか1項に記載の正極活物質と、導電材と、バインダーとを含むことを特徴とする正極。
- 請求項12に記載の正極と、負極と、電解質と、セパレータとを有することを特徴とする非水二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112009000230T DE112009000230T5 (de) | 2008-01-28 | 2009-01-19 | Aktives Kathodenmaterial, Kathode und nichtwässrige Sekundärbatterie |
CN2009801032149A CN101926030A (zh) | 2008-01-28 | 2009-01-19 | 正极活性物质、正极和非水二次电池 |
CA2713274A CA2713274C (en) | 2008-01-28 | 2009-01-19 | Cathode active material, cathode, and nonaqueous secondary battery |
US12/864,790 US20100310936A1 (en) | 2008-01-28 | 2009-01-19 | Cathode active material, cathode and nonaqueous secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-016537 | 2008-01-28 | ||
JP2008016537A JP5370937B2 (ja) | 2008-01-28 | 2008-01-28 | 正極活物質、正極及び非水二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009096255A1 true WO2009096255A1 (ja) | 2009-08-06 |
Family
ID=40912608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050687 WO2009096255A1 (ja) | 2008-01-28 | 2009-01-19 | 正極活物質、正極及び非水二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100310936A1 (ja) |
JP (1) | JP5370937B2 (ja) |
CN (1) | CN101926030A (ja) |
CA (1) | CA2713274C (ja) |
DE (1) | DE112009000230T5 (ja) |
WO (1) | WO2009096255A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013177671A1 (en) | 2012-05-29 | 2013-12-05 | Clariant(Canada) Inc. | Process for preparing crystalline electrode materials and materials obtained therefrom |
US8668842B2 (en) | 2009-12-17 | 2014-03-11 | Clariant (Canada) Inc. | Method for heat treating a carbon coated alkali metal oxyanion electrode material |
WO2014141020A1 (en) | 2013-03-15 | 2014-09-18 | Clariant (Canada) Inc. | Alkali metal oxyanion electrode material having a carbon deposited by pyrolysis and process for making same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5107213B2 (ja) * | 2008-11-18 | 2012-12-26 | シャープ株式会社 | 正極活物質、正極及び非水二次電池 |
JP5551019B2 (ja) * | 2009-09-02 | 2014-07-16 | シャープ株式会社 | 正極活物質、正極及び非水二次電池 |
KR101740692B1 (ko) * | 2009-09-30 | 2017-05-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 축전 장치용 전극의 제작 방법 및 축전 장치의 제작 방법 |
WO2011118420A1 (en) | 2010-03-26 | 2011-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and method for forming electrode of secondary battery |
US10658633B2 (en) * | 2011-02-16 | 2020-05-19 | Panasonic Intellectual Property Management Co., Ltd. | Battery and manufacturing method of the battery |
JP6121325B2 (ja) * | 2011-07-29 | 2017-04-26 | 株式会社Uacj | 集電体、電極構造体、非水電解質電池及び蓄電部品 |
CN103346295B (zh) * | 2013-07-11 | 2016-06-15 | 宁波晟腾新材料有限公司 | 一种多元素掺杂磷酸铁锂复合正极材料的制备方法 |
JP6302751B2 (ja) * | 2014-06-03 | 2018-03-28 | シャープ株式会社 | 正極活物質、正極及び非水電解質二次電池 |
DE102015203679A1 (de) | 2015-03-02 | 2016-09-08 | Ford Global Technologies, Llc | Bypassventil |
CN106299342B (zh) * | 2016-10-28 | 2019-01-18 | 长沙矿冶研究院有限责任公司 | K离子掺杂和高电压尖晶石/碳双层包覆的富锂正极材料及其制备方法 |
DE102017202442A1 (de) | 2017-02-15 | 2018-08-16 | Bayerische Motoren Werke Aktiengesellschaft | Flexible Stromabnehmerfolien |
CN112786949B (zh) * | 2019-11-06 | 2022-06-07 | 宁德时代新能源科技股份有限公司 | 二次电池及含有该二次电池的电池模组、电池包、装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004079276A (ja) * | 2002-08-13 | 2004-03-11 | Sony Corp | 正極活物質及びその製造方法 |
WO2004057691A1 (en) * | 2002-12-19 | 2004-07-08 | Valence Technology, Inc. | Electrode active material and method of making the same |
JP2005158673A (ja) * | 2003-10-31 | 2005-06-16 | Toyota Motor Corp | 電極活物質およびその製造方法ならびに非水電解質二次電池 |
WO2005071776A1 (en) * | 2004-01-22 | 2005-08-04 | Valence Technology, Inc. | Secondary battery electrode active materials and methods for making the same |
JP2006155941A (ja) * | 2004-11-25 | 2006-06-15 | Kyushu Univ | 電極活物質の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1243664C (zh) * | 1999-12-10 | 2006-03-01 | Fmc公司 | 锂钴氧化物及其制备方法 |
JP3952491B2 (ja) * | 2000-04-24 | 2007-08-01 | 株式会社ジーエス・ユアサコーポレーション | 電極材料及びそれを用いた電池 |
US7524584B2 (en) * | 2000-04-27 | 2009-04-28 | Valence Technology, Inc. | Electrode active material for a secondary electrochemical cell |
US6964827B2 (en) * | 2000-04-27 | 2005-11-15 | Valence Technology, Inc. | Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials |
US6777132B2 (en) * | 2000-04-27 | 2004-08-17 | Valence Technology, Inc. | Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials |
US8367036B2 (en) * | 2000-04-27 | 2013-02-05 | Valence Technology, Inc. | Alkali/transition metal halo-and hydroxy-phosphates and related electrode active materials |
US6387568B1 (en) * | 2000-04-27 | 2002-05-14 | Valence Technology, Inc. | Lithium metal fluorophosphate materials and preparation thereof |
US8057769B2 (en) * | 2000-04-27 | 2011-11-15 | Valence Technology, Inc. | Method for making phosphate-based electrode active materials |
JP4126862B2 (ja) * | 2000-10-05 | 2008-07-30 | ソニー株式会社 | 非水電解液電池及び固体電解質電池 |
JP4686859B2 (ja) * | 2000-12-27 | 2011-05-25 | 株式会社デンソー | 正極活物質および非水電解質二次電池 |
US6815122B2 (en) * | 2002-03-06 | 2004-11-09 | Valence Technology, Inc. | Alkali transition metal phosphates and related electrode active materials |
US20030190527A1 (en) * | 2002-04-03 | 2003-10-09 | James Pugh | Batteries comprising alkali-transition metal phosphates and preferred electrolytes |
US7041239B2 (en) * | 2003-04-03 | 2006-05-09 | Valence Technology, Inc. | Electrodes comprising mixed active particles |
JP4900888B2 (ja) * | 2004-03-10 | 2012-03-21 | 三井金属鉱業株式会社 | リチウム電池用リチウム遷移金属酸化物 |
KR100725705B1 (ko) * | 2004-07-16 | 2007-06-07 | 주식회사 엘지화학 | 리튬 이차 전지용 전극 활물질 |
KR101329669B1 (ko) * | 2004-12-28 | 2013-11-15 | 보스톤-파워, 인크. | 리튬 이온 2차 배터리 |
WO2007134091A2 (en) * | 2006-05-09 | 2007-11-22 | Valence Technology, Inc. | Secondary electrochemical cell with increased current collecting efficiency |
TW200827549A (en) * | 2006-12-18 | 2008-07-01 | Ming-Hsin Sun | Small wind power storage system using super capacitor |
KR100821832B1 (ko) * | 2007-04-20 | 2008-04-14 | 정성윤 | 리튬전이금속 인산화물의 나노입자 분말의 제조방법 |
JP5551019B2 (ja) * | 2009-09-02 | 2014-07-16 | シャープ株式会社 | 正極活物質、正極及び非水二次電池 |
-
2008
- 2008-01-28 JP JP2008016537A patent/JP5370937B2/ja not_active Expired - Fee Related
-
2009
- 2009-01-19 WO PCT/JP2009/050687 patent/WO2009096255A1/ja active Application Filing
- 2009-01-19 DE DE112009000230T patent/DE112009000230T5/de not_active Withdrawn
- 2009-01-19 US US12/864,790 patent/US20100310936A1/en not_active Abandoned
- 2009-01-19 CA CA2713274A patent/CA2713274C/en not_active Expired - Fee Related
- 2009-01-19 CN CN2009801032149A patent/CN101926030A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004079276A (ja) * | 2002-08-13 | 2004-03-11 | Sony Corp | 正極活物質及びその製造方法 |
WO2004057691A1 (en) * | 2002-12-19 | 2004-07-08 | Valence Technology, Inc. | Electrode active material and method of making the same |
JP2005158673A (ja) * | 2003-10-31 | 2005-06-16 | Toyota Motor Corp | 電極活物質およびその製造方法ならびに非水電解質二次電池 |
WO2005071776A1 (en) * | 2004-01-22 | 2005-08-04 | Valence Technology, Inc. | Secondary battery electrode active materials and methods for making the same |
JP2006155941A (ja) * | 2004-11-25 | 2006-06-15 | Kyushu Univ | 電極活物質の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8668842B2 (en) | 2009-12-17 | 2014-03-11 | Clariant (Canada) Inc. | Method for heat treating a carbon coated alkali metal oxyanion electrode material |
WO2013177671A1 (en) | 2012-05-29 | 2013-12-05 | Clariant(Canada) Inc. | Process for preparing crystalline electrode materials and materials obtained therefrom |
WO2014141020A1 (en) | 2013-03-15 | 2014-09-18 | Clariant (Canada) Inc. | Alkali metal oxyanion electrode material having a carbon deposited by pyrolysis and process for making same |
Also Published As
Publication number | Publication date |
---|---|
JP5370937B2 (ja) | 2013-12-18 |
JP2009176669A (ja) | 2009-08-06 |
US20100310936A1 (en) | 2010-12-09 |
CN101926030A (zh) | 2010-12-22 |
CA2713274C (en) | 2015-06-16 |
DE112009000230T5 (de) | 2010-12-09 |
CA2713274A1 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370937B2 (ja) | 正極活物質、正極及び非水二次電池 | |
JP5843766B2 (ja) | 正極活物質、正極及び非水系二次電池 | |
JP4061586B2 (ja) | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 | |
JP5107213B2 (ja) | 正極活物質、正極及び非水二次電池 | |
JP4963330B2 (ja) | リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池 | |
JP5271975B2 (ja) | 正極活物質、正極及び非水電解質二次電池 | |
JP2011077030A (ja) | 正極活物質、正極及び非水二次電池 | |
JP5451671B2 (ja) | 正極活物質、正極及び非水系二次電池 | |
JP3633223B2 (ja) | 正極活物質及びその製造方法並びに非水電解質二次電池 | |
JP5451681B2 (ja) | 正極活物質、正極及び非水系二次電池 | |
JP5548523B2 (ja) | 正極活物質、正極及び非水電解質二次電池 | |
JP5847204B2 (ja) | 正極活物質、正極及び非水系二次電池 | |
JP5463208B2 (ja) | 正極活物質、正極及び非水電解質二次電池 | |
JP5463222B2 (ja) | 正極活物質、正極及び非水電解質二次電池 | |
KR101602419B1 (ko) | 양극활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬전지 | |
JP5189466B2 (ja) | リチウム二次電池 | |
WO2014021395A1 (ja) | 非水電解質二次電池用正極活物質 | |
KR102194076B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
JP5463207B2 (ja) | 正極活物質、正極及び非水電解質二次電池 | |
WO2013099967A1 (ja) | 酸化物およびその製造方法 | |
KR20150116701A (ko) | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
WO2014077118A1 (ja) | 正極および非水系二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980103214.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09706317 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2713274 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12864790 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 112009000230 Country of ref document: DE Date of ref document: 20101209 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09706317 Country of ref document: EP Kind code of ref document: A1 |