WO2014208764A1 - 加熱蒸散用マイクロカプセル - Google Patents

加熱蒸散用マイクロカプセル Download PDF

Info

Publication number
WO2014208764A1
WO2014208764A1 PCT/JP2014/067296 JP2014067296W WO2014208764A1 WO 2014208764 A1 WO2014208764 A1 WO 2014208764A1 JP 2014067296 W JP2014067296 W JP 2014067296W WO 2014208764 A1 WO2014208764 A1 WO 2014208764A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
microcapsules
dimethyl
tetrafluorobenzyl
cyclopropanecarboxylate
Prior art date
Application number
PCT/JP2014/067296
Other languages
English (en)
French (fr)
Inventor
友紀恵 竹本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US14/392,337 priority Critical patent/US20160192644A1/en
Priority to JP2015524153A priority patent/JPWO2014208764A1/ja
Priority to ES14817376T priority patent/ES2759423T3/es
Priority to EP14817376.8A priority patent/EP3014994B1/en
Publication of WO2014208764A1 publication Critical patent/WO2014208764A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof

Definitions

  • the present invention relates to a microcapsule suitable for heat evaporation containing an insecticidal compound having a low vapor pressure, and a method for controlling harmful arthropods using the microcapsule.
  • microcapsule encapsulating a pyrethroid compound represented by the following general formula, wherein the microcapsule has a volume median diameter of 2 to 100 ⁇ m and a microcapsule film thickness of 0.
  • a microcapsule having a size of 0.02 to 0.3 ⁇ m and substantially not containing a hydrophobic organic solvent is suitable for use in heat transpiration, and has led to the present invention.
  • invention 1 General formula (1) or (2) [Wherein, R a represents a hydrogen atom, a fluorine atom, a chlorine atom or a methyl group, R b represents a fluorine atom, a chlorine atom, a methyl group or a trifluoromethyl group, and R c represents a hydrogen atom, a methyl group, or propargyl. Represents a group or a methoxymethyl group.
  • a harmful arthropod control agent for heat transpiration hereinafter referred to as the present heat transpiration control agent
  • the microcapsules according to any one of the above inventions 1 to 3 are held on a carrier.
  • 2-dimethyl-3- (1-propenyl) cyclopropanecarboxylate hereinafter referred to as compound 1)
  • 4-methyl-2,3,5,6-tetrafluorobenzyl 2,2-dimethyl-3- (1 -Propenyl) cyclopropanecarboxylate
  • 4-methoxymethyl-2,3,5,6-tetrafluorobenzyl 2,2-dimethyl-3- (2-methyl-1-propenyl) Cyclopropanecarboxylate (hereinafter referred to as compound 3)
  • 4-methoxymethyl-2,3,5,6-tetrafluorobenzyl 2,2-dimethyl- -(3,3,3-trifluoro-1-propenyl) cyclopropanecarboxylate (
  • the pyrethroid compound is a compound described in JP-A-11-222463, JP-A-2000-63329, JP-A-2001-11022, JP-A-2004-002363, and the like. Can be produced by the following method.
  • the pyrethroid compound may have isomers derived from two asymmetric carbon atoms and a double bond existing on the cyclopropane ring, but the present invention contains active isomers in an arbitrary ratio. You can use what you want.
  • one or more compounds selected from the pyrethroid compound represented by the general formula (1) or (2) (hereinafter referred to as the present pyrethroid compound) are encapsulated in the microcapsule of the present invention.
  • the present pyrethroid compound preferably compound 1, compound 2, compound 3 or compound 4 is used, and more preferably compound 1, compound 2 or compound 4 is used.
  • the microcapsules in the present invention can be produced by a known microencapsulation method.
  • Known microcapsule production methods include, for example, interfacial polymerization method, in-situ polymerization method, liquid drying method, orifice method, coacervation method, spray drying method, air suspension coating method, high-speed air current impact method It can manufacture by methods, such as.
  • the microcapsule may be produced by any production method, but is preferably produced by an interfacial polymerization method or an in-situ polymerization method, and more preferably produced by an interfacial polymerization method.
  • a substance that can be formed by the above-described production method can be used, and examples thereof include resins such as polyurethane resin, polyurea resin, polyurethane polyurea resin, nylon resin, melamine resin, and polyester resin.
  • resins such as polyurethane resin, polyurea resin, polyurethane polyurea resin, nylon resin, melamine resin, and polyester resin.
  • a polyurethane resin, a polyurea resin, a polyurethane polyurea resin, a nylon resin or a melamine resin is preferable, and a polyurethane resin, a polyurea resin or a polyurethane polyurea resin is more preferable.
  • This microcapsule is a microcapsule having a volume median diameter of 2 to 100 ⁇ m, preferably a microcapsule having a volume median diameter of 4 to 50 ⁇ m.
  • the volume median diameter of the microcapsules is measured using a laser diffraction particle size distribution analyzer.
  • the volume median diameter is a typical characteristic value representing the particle size distribution in an aggregate of particles, and is a value obtained as follows. First, the particle diameter of each particle in the aggregate of particles is obtained, and the total volume of the aggregate of particles is set to 100%. The volume of the particles is accumulated in order from a particle having a smaller particle diameter, and the particle diameter of the particles when a specific ratio (X%) is obtained with respect to the total volume is referred to as accumulated X% volume particle diameter.
  • the volume median diameter is the particle diameter of a particle having a cumulative volume of 50%.
  • the volume median diameter may be called a median diameter.
  • Examples of commercially available laser diffraction particle size distribution analyzers include Mastersizer 2000 (manufactured by Marvern), SALD-2200 (manufactured by Shimadzu Corporation), Microtrac MT3000 (manufactured by Nikkiso), and the like.
  • the film thickness of the microcapsule means a film thickness that can be obtained by calculation from the volume ratio of the core material to the film material in the microcapsule and the volume median diameter of the microcapsule.
  • the film thicknesses of the microcapsules are all calculated using this formula.
  • the weight of the core material of the microcapsule can be calculated from the total weight of the present pyrethroid compound and other components added as necessary.
  • the weight of the membrane material of the microcapsule can be calculated from the total amount of raw materials added as the membrane material.
  • the microcapsule has a microcapsule film thickness of 0.02 to 0.3 ⁇ m, preferably 0.02 to 0.1 ⁇ m, and more preferably 0.02 to 0.08 ⁇ m.
  • the manufacturing method of the present microcapsule will be described by taking a method of manufacturing the microcapsule by the interfacial polymerization method as an example.
  • this pyrethroid compound and auxiliary components added as necessary are mixed, and then a hydrophobic raw material for the resin that forms the film is added and mixed to prepare a uniform oil phase at the operating temperature.
  • the present microcapsules contain substantially no hydrophobic organic solvent, no hydrophobic organic solvent is used in preparing the oil phase.
  • the resin forming the coating is a polyurethane resin and / or a polyurea resin, a polyvalent isocyanate is usually used as a hydrophobic raw material for the resin.
  • a hydrophilic raw material for the resin that forms a film on the obtained dispersion is added.
  • a film forming reaction is performed at the interface (film forming process) to prepare an aqueous dispersion in which the present microcapsules are dispersed.
  • the dispersant used in this case it is preferable to use polyvinyl alcohol.
  • the resin forming the film is a polyurethane resin, a polyhydric alcohol is used as a hydrophilic raw material for the resin.
  • the resin forming the film is a polyurea resin
  • a polyvalent amine is usually used as a hydrophilic raw material for the resin.
  • the film forming temperature in the film forming step is usually in the range of 40 to 85 ° C., and usually 1 to 90 hours.
  • a hydrophilic raw material for the resin that forms the film may be added in the dispersion step.
  • the present heat transpiration control agent can be produced by the method described below.
  • Examples of the polyvalent isocyanate that is a raw material for the resin that forms the microcapsule film include hexamethylene diisocyanate, an adduct of hexamethylene diisocyanate and trimethylolpropane, and biuret condensation of three molecules of hexamethylene diisocyanate.
  • isocyanurate condensates of hexamethylene diisocyanate isocyanurate condensates of isophorone diisocyanate, aliphatic polyvalent isocyanates such as 4,4′-methylenebis (cyclohexyl isocyanate), trimethylhexamethylene diisocyanate;
  • examples include adducts of tolylene diisocyanate and trimethylol propane, and aromatic polyvalent isocyanates such as isocyanurate condensates of tolylene diisocyanate.
  • the polyhydric alcohol include ethylene glycol, propylene glycol, and 1,4-butanediol.
  • polyvalent amine include ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • This microcapsule has a microcapsule with a volume median diameter of 2 to 100 ⁇ m and a microcapsule film thickness of 0.02 to 0.3 ⁇ m.
  • a microcapsule with a volume median diameter of 2 to 100 ⁇ m is In the dispersion step of the above production method, (1) the type and concentration of the dispersant dissolved in the aqueous phase, (2) the ratio of the aqueous phase to the oil phase, and / or (3) the oil phase in the aqueous phase. It can manufacture by adjusting the dispersion system at the time of making it disperse
  • the type and concentration of the dispersant dissolved in the water phase is determined, and the oil phase is mixed with the water phase at a volume ratio of 0.3 to 2 of the oil phase with respect to the water phase 1 and used. Disperse the oil phase into the water phase under the proper operating conditions of the equipment. The volume median diameter of oil droplets in the obtained dispersion is measured using a laser diffraction particle size distribution analyzer.
  • volume median diameter of the oil droplets in the dispersion obtained at this time is below the range, the dispersant concentration is lowered, the stirring strength when the oil phase is dispersed in the aqueous phase is reduced, the aqueous phase
  • the volume median diameter can be increased by a method such as decreasing the volume ratio of the oil phase relative to and / or changing the dispersant. If the volume median diameter of the oil droplets in the resulting dispersion exceeds the range, increase the dispersant concentration, increase the stirring strength when dispersing the oil phase in the aqueous phase, the oil phase relative to the aqueous phase
  • the volume median diameter can be reduced by a method such as increasing the volume ratio and / or changing the dispersant.
  • the disperser that can be used in the dispersion step include a propeller stirrer, a high-speed rotating stirrer, a homogenizer, and a homomic line flow (manufactured by Special Machine Industries).
  • Microcapsules with a microcapsule film thickness of 0.02 to 0.3 ⁇ m are manufactured by adjusting the weight of the membrane material relative to the weight of the core material and adjusting the volume median diameter of the microcapsules as appropriate. can do.
  • This microcapsule is a microcapsule that substantially does not contain a hydrophobic organic solvent.
  • the hydrophobic organic solvent in the present invention include aromatics such as toluene, xylene, alkylbenzene, alkylnaphthalene, and phenylxylylethane. Examples thereof include hydrocarbons, aliphatic hydrocarbons such as hexane, octane, and decane.
  • the microcapsule substantially does not contain a hydrophobic organic solvent means that the physical properties such as viscosity and specific gravity of the pyrethroid compound and a mixture of the slight amount of the hydrophobic organic solvent and the pyrethroid compound contained. It means that the physical properties are equivalent, for example, the amount of the hydrophobic organic solvent is 5% by weight or less with respect to the total amount of the microcapsules.
  • the microcapsule preferably contains only the pyrethroid compound.
  • the microcapsule may contain auxiliary components such as an antioxidant, a synergist, a stabilizer, and a fragrance as a core substance if necessary.
  • auxiliary component is selected from substances that are uniformly dissolved in the pyrethroid compound.
  • the auxiliary component is preferably 5% by weight or less based on the total amount of the microcapsules.
  • the present pyrethroid compound contained in the present microcapsules can control harmful arthropods by transpiration.
  • the harmful arthropods can be controlled by evaporating the pyrethroid compound through the microcapsule coating by heating.
  • the microcapsule does not destroy the microcapsule coating even under heating conditions, and the pyrethroid compound gradually evaporates through the coating, so that the control effect of the pyrethroid compound on harmful arthropods should be maintained for a long time. Can do.
  • the heating temperature is usually 50 to 300 ° C, preferably 70 to 250 ° C, more preferably 100 to 220 ° C.
  • heating can be performed at 140 to 180 ° C.
  • the heat source for heating include a heat source that uses electricity such as an incandescent bulb and an electric heater; a heat source that uses fire such as lanthanum and incense sticks; and a heat source that uses chemical reactions such as iron powder warmers.
  • the heating device include devices described in, for example, JP-A-2008-253175 and JP-A-2011-142999.
  • the microcapsule When heating the microcapsule, the microcapsule can be directly heated. However, in consideration of ease of use and safety, the microcapsule is preferably used in a form held on a carrier.
  • the carrier used in the present heat transpiration control agent include a fibrous carrier and a porous carrier.
  • the fibrous carrier include natural fibers such as pulp, cellulose, and cotton, synthetic fibers such as polyester and acrylic, and carriers using inorganic fibers such as glass fiber and asbestos.
  • the carrier include a porous inorganic substance such as diatomaceous earth, a porous magnetic substance such as unglazed clay, a porous resin such as foamed urethane and foamed polypropylene, a thermoplastic resin, and a gel-like substance.
  • the shape of the carrier is not necessarily specified, but usually a carrier molded into a flat strip is usually used because of the relationship with the shape of the heating part in the heating device.
  • the size may vary depending on the heating device, and examples include a size of about 2 cm (length) ⁇ about 3 cm (width) ⁇ about 3 mm (thickness).
  • the present heat transpiration control agent is produced by holding the present microcapsules on a carrier using an aqueous dispersion in which the present microcapsules produced by the above production method are dispersed.
  • the content of the present microcapsules in the present heat transpiration control agent can be appropriately determined according to the material of the carrier to be used, the target duration of the harmful arthropod control effect, and the present pyrethroid compound to be used, but usually 1 cm 3 of the carrier. It is about 0.001 to 1 g per unit.
  • the present heat transpiration control agent may contain a dye, an antioxidant, a synergist, a stabilizer, a fragrance and the like, if necessary, in addition to the present microcapsule.
  • the dye include 1,4-dibutylaminoanthraquinone, 1,4-diisopropylaminoanthraquinone, 1,4-bis (2,6-diethyl-4-methylphenylamino) anthraquinone, 1-methylamino-4-ortho Anthraquinone-based blue pigments such as tolylaminoanthraquinone, 1-methylamino-4-metharylaminoanthraquinone, 1-methylamino-4-paratolylaminoanthraquinone and the like can be mentioned.
  • antioxidants examples include dibutylhydroxytoluene, butylhydroxyanisole, 2,2-methylenebis (4-methyl-6-tert-butylphenol), 2,6-di-t-butyl-4-methylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] 4,6-di-tert-pentylphenyl acrylate, 3,9-bis [2-3- (3-tert Phenolic antioxidants such as -butyl-4-hydroxy-5-methylphenyl) propionyloxy-1,1-dimethyl] -2,4,8,10-tetraoxaspiro [5 ⁇ 5] undecane It is done.
  • a synergist for example, bis- (2,3,3,3-tetrachloropropyl) ether (S-421), N- (2-ethylhexyl) bicyclo [2.2.1] hept-5- En-2,3 dicarboximide (MGK264), ⁇ - [2- (2-butoxyethoxy) ethoxy] -4,5-methylenedioxy-2-propyltoluene (PBO) and the like.
  • the stabilizer include ultraviolet absorbers such as benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • Examples of harmful arthropod pests that can be controlled by evaporating the pyrethroid compound by heating the microcapsules include the following insects and mites.
  • Lepidopterous pests iga, koiga, etc .
  • Diptera Culex mosquitoes, Culex mosquitoes, Aedes mosquitoes, etc., Aedes mosquitoes such as Aedes mosquitoes, Aedes mosquitoes, Acer falcons Fly flies such as black flies, fruit flies, seed flies and onion flies; Reticulate pests: German cockroaches, black cockroaches, American cockroaches, American cockroaches, flying cockroaches, German cockroaches, etc .; Hymenoptera: Ants, bees (Futamon wasps, Togarifutamon wasps, Sesophyllum wasps, Chiasawa wasps, Kibosia wasps, Core was
  • aqueous solution A [GL-05 (manufactured by Nippon Synthetic Chemical Co., Ltd., polyvinyl alcohol) 8% and silicon antifoaming agent (anti-form C emulsion, manufactured by Toray Dow Corning Co.) 0. 8% containing; hereinafter referred to as aqueous solution A] is added to the mixture, and the homogenizer (Polytron (registered trademark) PT) is added. MR3000, and dispersed using a Kinematica Inc.), to obtain an aqueous dispersion which fine droplets of a predetermined volume median diameter are dispersed.
  • ethylene glycol was added to the aqueous dispersion and mixed, and the container was kept in a warm bath at 60 ° C. and reacted for 24 hours to obtain a microcapsule dispersion in which microcapsules were dispersed.
  • 0.20 g of Biohope L (manufactured by Kay Kasei Co., Ltd.) and 56.44 g of deionized water are added, and an aqueous dispersion of microcapsules containing 20% by weight of compound 1A in the composition. (Hereinafter referred to as the present composition 1).
  • the volume median diameter of the obtained microcapsules was 6.36 ⁇ m, and the calculated film thickness was 0.036 ⁇ m.
  • the volume median diameter is a value measured by a laser diffraction type particle size distribution measuring device (manufactured by Marvern, Mastersizer 2000).
  • compositions 2 to 6 of the present invention were obtained using the raw materials having the quantitative ratios shown in Table 1 below.
  • Comparative production example 1 10 parts of Compound 1A, 10 parts of phenylxylylethane and 0.50 part of isocyanate L75 were mixed and homogenized, and then added to 20 parts of an aqueous solution [containing 10% of gum arabic (manufactured by Sanei Pharmaceutical Co., Ltd.)] and stirred with a homomixer. Thus, an aqueous dispersion having a volume median diameter of about 20 ⁇ m was obtained. Next, 2 parts of ethylene glycol was added, and the container was kept in a warm bath at 60 ° C. and reacted for 24 hours to obtain a microcapsule aqueous dispersion.
  • composition 1 100 parts of an aqueous dispersion of microcapsules (hereinafter referred to as comparative composition 1) was obtained.
  • the volume median diameter of the obtained microcapsules was 20 ⁇ m, and the calculated film thickness was 0.066 ⁇ m.
  • Comparative production example 2 4 parts of Compound 1A, 10 parts of butylhydroxyl toluene, 5 parts of diisononyl adipate, 5 parts of acetyltributyl citrate, 25 parts of isopropyl myristate, and 51 parts of Shellsol TM are mixed, and a solution containing Compound 1A in the composition (hereinafter, comparison) (Referred to as composition 2).
  • Formulation Example 1 An aqueous dispersion containing the present microcapsules (a compound selected from compounds 1 to 6 in the composition) is added to a fibrous plate-like carrier made of 2.2 cm ⁇ 3.5 cm ⁇ 0.31 cm pulp and cotton linter. 4% by weight), and then water is evaporated by air drying to obtain the heat transpiration control agent of the present invention.
  • Formulation Example 2 A thick Japanese paper of 2.2 cm ⁇ 3.5 cm ⁇ 0.31 cm is impregnated with an aqueous dispersion containing this microcapsule (containing 4% by weight of any compound selected from compounds 1 to 6 in the composition).
  • Formulation Example 4 Into an aluminum dish of 2.2 cm ⁇ 3.5 cm ⁇ 0.5 cm, an aqueous dispersion containing this microcapsule (containing 20% by weight of any compound selected from compounds 1 to 6 in the composition) is poured, Thereafter, moisture is evaporated by air drying to obtain the heat transpiration control agent of the present invention in which the present microcapsules are held on a dish.
  • Formulation Example 5 The aqueous dispersion containing the present microcapsules (containing 20% by weight of any compound selected from compounds 1 to 6 in the composition) is filtered off, and the microcapsules remaining on the filter paper are collected. The microcapsules collected and dried are sealed in a 3.8 cm ⁇ 2.5 cm aluminum laminate bag to obtain the heat transpiration control agent of the present invention.
  • Formulation Example 6 The aqueous dispersion containing the present microcapsules (containing 20% by weight of any compound selected from compounds 1 to 6 in the composition) is filtered off, and the microcapsules remaining on the filter paper are collected. 50 parts of the microcapsules collected and dried and 50 parts of silica sand are mixed, and the mixture is enclosed in a cylindrical aluminum capsule having a depth of 1 cm to obtain the heat transpiration control agent of the present invention.
  • the test example shows that the present pyrethroid compound, which is an active ingredient, can be gradually evaporated while retaining the active ingredient over a long period of time.
  • Test example 1 Each of the compositions 1 to 6 of the present invention obtained in the above formulation example was diluted 5 times with deionized water to a fibrous carrier (3.5 cm ⁇ 2.2 cm ⁇ 1.5 mm thickness), .5 g impregnation.
  • the support was heated on a flat plate heater whose temperature was controlled at about 200 ° C.
  • the carrier after heating for a predetermined time was collected, immersed in acetone to extract compound 1A, and the remaining amount of compound 1A retained on the carrier was analyzed.
  • compound 1A was similarly retained on the fibrous carrier, the same test was conducted, and the residual amount of compound 1A was analyzed. The results are shown in Table 2.
  • Test example 2 Each of the compositions 1 to 6 of the present invention obtained in the above formulation example was diluted 5 times with deionized water to a fibrous carrier (3.5 cm ⁇ 2.2 cm ⁇ 1.5 mm thickness), .5 g impregnation. The support was heated on a flat plate heater whose temperature was controlled at about 160 ° C. The carrier after heating for a predetermined time was collected, immersed in acetone to extract compound 1A, and the remaining amount of compound 1A retained on the carrier was analyzed. The results are shown in Table 3.
  • Test example 3 Each of the compositions 1 to 6 of the present invention obtained in the above formulation example was diluted 5 times with deionized water to a fibrous carrier (3.5 cm ⁇ 2.2 cm ⁇ 1.5 mm thickness), .5 g impregnation.
  • the support was heated on a flat plate heater whose temperature was controlled at about 120 ° C.
  • the carrier after heating for a predetermined time was collected, immersed in acetone to extract compound 1A, and the remaining amount of compound 1A retained on the carrier was analyzed. The results are shown in Table 4.
  • aqueous microcapsule dispersion for 24 hours to obtain an aqueous microcapsule dispersion.
  • Biohope L (manufactured by Kay Kasei Co., Ltd.) 0.20 parts and deionized water 57.85 parts are added to the obtained aqueous dispersion, and the microcapsules containing 20% by weight of compound 1A in the composition are dispersed in water.
  • a liquid (hereinafter referred to as the present composition 7) was obtained.
  • the volume median diameter of the obtained microcapsules was 26.53 ⁇ m, and the calculated film thickness was 0.031 ⁇ m.
  • the volume median diameter is a value measured by a laser diffraction type particle size distribution measuring device (manufactured by Marvern, Mastersizer 2000).
  • Production Examples 8-10 In the same formulation as in Production Example 7, aqueous dispersions of microcapsules (each of which will be referred to as the present compositions 8 to 10) were obtained using the raw materials having the quantitative ratios shown in Table 5 below.
  • Test example 4 Each of the compositions 7 to 10 of the present invention obtained in the above formulation examples was diluted 5-fold with deionized water. A fibrous carrier (3.5 cm ⁇ 2.2 cm ⁇ 1.5 mm thickness) was impregnated with 0.5 g of each dilution. The support was heated on a flat plate heater whose temperature was controlled at about 160 ° C. The carrier after heating for a predetermined time was collected, immersed in acetone to extract compound 1A, and the remaining amount of compound 1A retained on the carrier was analyzed. The results are shown in Table 6.
  • the control effect is maintained for a long time.
  • the microcapsule of the present invention encapsulates the present pyrethroid compound, which is an active ingredient for controlling harmful arthropods.
  • the microcapsule is gradually destroyed over a long period of time without destroying the microcapsule under heating conditions. It is effective in the control of harmful arthropods.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

一般式(1)または(2)〔式中、Raは水素原子、フッ素原子等を表し、Rbはフッ素原子、塩素原子等を表し、Rは水素原子、メチル基等を表す。〕で示されるピレスロイド化合物から選ばれる1種以上の化合物を内包するマイクロカプセルであって、マイクロカプセルの体積中位径が2~100μmであり、マイクロカプセルの膜厚が0.02~0.3μmであり、且つ、マイクロカプセルが疎水性有機溶剤を実質的に含有しないことを特徴とするマイクロカプセル。

Description

加熱蒸散用マイクロカプセル
本発明は蒸気圧の低い殺虫性化合物を内包する加熱蒸散に適したマイクロカプセル、及び、該マイクロカプセルを使用する有害節足動物の防除方法に関する。
従来より蚊やハエ等の害虫を防除するために殺虫性化合物を加熱により蒸散する方法が行われているが、有効成分である殺虫性化合物(特許文献1を参照)の蒸気圧が低い場合には殺虫効果が長時間持続せず、特殊な構造の蒸散体を使用する必要があった(特許文献2を参照)。従来使用されている加熱蒸散用装置や蒸散体で使用可能な防除剤の開発が望まれている。
特開2000−63329公報 特開2003−201205号公報 特開平07−165505号公報
本発明は、以下に記載の殺虫性化合物を有効成分として内包した、加熱蒸散用途に適したマイクロカプセル、及び、該マイクロカプセルを使用する有害節足動物の防除方法を提供することを課題とする。
本発明者らは、鋭意検討した結果、下記の一般式で示されるピレスロイド化合物を内包するマイクロカプセルであって、マイクロカプセルの体積中位径が2~100μmであり、マイクロカプセルの膜厚が0.02~0.3μmであり、且つ、マイクロカプセルが疎水性有機溶剤を実質的に含有しないことを特徴とするマイクロカプセルが、加熱蒸散用途に適することを見出し、本発明に至った。
即ち、本発明は以下の通りである。
[発明1] 一般式(1)または(2)
Figure JPOXMLDOC01-appb-I000002
〔式中、Rは水素原子、フッ素原子、塩素原子またはメチル基を表し、Rはフッ素原子、塩素原子、メチル基またはトリフルオロメチル基を表し、Rは水素原子、メチル基、プロパルギル基またはメトキシメチル基を表す。〕
で示されるピレスロイド化合物から選ばれる1種以上の化合物を内包するマイクロカプセルであって、マイクロカプセルの体積中位径が2~100μmであり、マイクロカプセルの膜厚が0.02~0.3μmであり、且つ、マイクロカプセルが疎水性有機溶剤を実質的に含有しないことを特徴とするマイクロカプセル。
[発明2] 一般式(1)または(2)で示されるピレスロイド化合物が下記の群Aより選ばれる化合物である発明1記載のマイクロカプセル。
群A:
4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート、
4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート、
4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−メチル−1−プロペニル)シクロプロパンカルボキシレート、
4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレート、
2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2,2−ジクロロビニル)シクロプロパンカルボキシレート、および
4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−クロロ−3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレートからなる群。
[発明3] マイクロカプセルの膜物質がポリウレタン樹脂、ポリウレア樹脂またはポリウレタンポリウレア樹脂のいずれかである発明1または2記載のマイクロカプセル。
[発明4] 上記発明1~3のいずれか記載のマイクロカプセルを、70~250℃に加熱する工程を有する有害節足動物の防除方法。
[発明5] マイクロカプセルが担体に保持されていることを特徴とする発明4に記載の防除方法。
[発明6] 上記発明1~3のいずれか記載のマイクロカプセルが担体に保持されてなる加熱蒸散用有害節足動物防除剤(以下、本加熱蒸散防除剤と記す)。
本発明において、マイクロカプセルに内包される一般式(1)または(2)で示されるピレスロイド化合物としては、具体的には4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート(以下、化合物1と記す)、4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート(以下、化合物2と記す)、4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−メチル−1−プロペニル)シクロプロパンカルボキシレート(以下、化合物3と記す)、4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレート(以下、化合物4と記す)、2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2,2−ジクロロビニル)シクロプロパンカルボキシレート(以下、化合物5と記す)、4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−クロロ−3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレート(以下、化合物6と記す)が挙げられる。ピレスロイド化合物は、特開平11−222463号公報、特開2000−63329号公報、特開2001−11022号公報、特開2004−002363号公報、等に記載される化合物であり、該公報に記載される方法により製造することができる。
該ピレスロイド化合物には、シクロプロパン環上に存在する2つの不斉炭素原子及び二重結合に由来する異性体が存在する場合があるが、本発明には活性な異性体を任意の比率で含有するものを使用することができる。
本発明においては、一般式(1)または(2)で示されるピレスロイド化合物から選ばれる1種以上の化合物(以下、本ピレスロイド化合物と記す)が本発明のマイクロカプセル中に内包される。本ピレスロイド化合物としては、好ましくは化合物1、化合物2、化合物3または化合物4が用いられ、より好ましくは化合物1、化合物2または化合物4が用いられる。
本発明におけるマイクロカプセル(以下、本マイクロカプセルと記す)は公知であるマイクロカプセル化法にて製造することができる。公知のマイクロカプセルの製造方法としては、例えば界面重合法、in−situ重合法、液中乾燥法、オリフィス法、コアセルベーション法、噴霧乾燥法、気中懸濁被覆法、高速気流中衝撃法等の方法により製造することができる。本マイクロカプセルはいずれの製造方法で製造してもよいが、好ましくは界面重合法またはin−situ重合法にて製造されることが好ましく、界面重合法にて製造されることが更に好ましい。
本マイクロカプセルにおける膜物質としては、上記の製造法にて形成し得る物質が使用できるが、例えばポリウレタン樹脂、ポリウレア樹脂、ポリウレタンポリウレア樹脂、ナイロン樹脂、メラミン樹脂、ポリエステル樹脂等の樹脂が挙げられる。本発明においては、ポリウレタン樹脂、ポリウレア樹脂、ポリウレタンポリウレア樹脂、ナイロン樹脂またはメラミン樹脂が好ましく、ポリウレタン樹脂、ポリウレア樹脂またはポリウレタンポリウレア樹脂が更に好ましい。尚、本発明においては、界面重合法にて製造されるポリウレタン樹脂、ポリウレア樹脂またはポリウレタンポリウレア樹脂を膜物質とすることが特に好ましい。
本マイクロカプセルは、体積中位径が2~100μmのマイクロカプセル、好ましくは体積中位径が4~50μmのマイクロカプセルである。
本マイクロカプセルの体積中位径はレーザー回折式粒度分布測定装置を用いて測定する。
体積中位径とは、粒子の集合体における粒度分布を表す代表的な特性値であり、以下のようにして求められる値である。
まず、粒子の集合体において個々の粒子の粒子径を求め、その粒子の集合体の全体積を100%とする。小さな粒子径の粒子から、順に該粒子の体積を累積していき、全体積に対して特定の比率(X%)になった際の粒子の粒子径を、累積X%体積粒子径というが、体積中位径とは、粒子の体積の累積が50%である粒子の粒径である。尚、体積中位径はMedian径と呼ぶ場合もある。
市販のレーザー回折式粒度分布測定装置としては、マスターサイザー2000(Marvern社製)、SALD−2200(島津製作所製)、マイクロトラックMT3000(日機装製)等が挙げられる。
本発明においては、マイクロカプセルの膜厚とは、マイクロカプセルにおける芯物質と膜物質との体積の比と、マイクロカプセルの体積中位径とから計算により求めることができる膜厚を意味する。具体的な計算方法は以下に示す計算式によって算出する。すなわち、マイクロカプセルの芯物質の重量をWc、膜物質の重量をWw、膜物質の密度をρw、芯物質の密度をρc、芯物質の体積中位径をdとすると
 膜厚=(Ww/Wc)×(ρc/ρw)×(d/6)
となる。本マイクロカプセルの膜厚は全て当式を用いて計算したものである。
本発明において、マイクロカプセルの芯物質の重量は、本ピレスロイド化合物と、必要に応じて加えられるその他の成分との合計の重量より算出することができる。マイクロカプセルの膜物質の重量は、膜物質として添加された原料の合計量より算出することができる。
本マイクロカプセルは、マイクロカプセルの膜厚が0.02~0.3μm、好ましくは0.02~0.1μm、更に好ましくは0.02~0.08μmである。
以下、本マイクロカプセルの製造方法を、界面重合法にてマイクロカプセルを製造する方法を例として説明する。
まず第一に、本ピレスロイド化合物と、必要に応じて添加される補助成分とを混合し、更に被膜を形成する樹脂の疎水性原料を加えて混合し、操作温度にて均一の油相を調製する。本マイクロカプセルは疎水性有機溶剤を実質的に含有しないので、当該油相を調製する際に、疎水性有機溶剤を使用しない。被膜を形成する樹脂がポリウレタン樹脂及び/又はポリウレア樹脂である場合は、樹脂の疎水性原料としては、通常多価イソシアナートが用いられる。
第二に、得られた油相を、分散剤を含有する水相にて加えて混合し、分散させた(分散工程)後に、得られた分散液に被膜を形成する樹脂の親水性原料を加え、界面にて被膜形成反応を行わせて(被膜形成工程)、本マイクロカプセルが分散した水分散液を調製する。
この際に使用する分散剤としては、ポリビニルアルコールを使用することが好ましい。被膜を形成する樹脂がポリウレタン樹脂である場合は、樹脂の親水性原料として、多価アルコールが用いられる。被膜を形成する樹脂がポリウレア樹脂である場合は、樹脂の親水性原料として、通常、多価アミンが用いられる。被膜形成工程における被膜の形成温度は、通常40~85℃の範囲であり、通常1~90時間である。また、分散工程の際の温度が、被膜形成工程の温度よりも十分に低い場合には、被膜を形成する樹脂の親水性原料を、分散工程において添加してもよい。
本マイクロカプセルが分散した水分散液を濾過する等の方法により単離することもできる。単離した本マイクロカプセルまたはマイクロカプセルが分散した水分散液を用いて、以下に記載の方法により本加熱蒸散防除剤を製造することができる。
マイクロカプセルの被膜を形成する樹脂の原料である多価イソシアナートとしては、例えばヘキサメチレンジイソシアナート、ヘキサメチレンジイソシアナートとトリメチロールプロパンとの付加体、ヘキサメチレンジイソシアナート3分子のビウレット縮合物、ヘキサメチレンジイソシアナートのイソシアヌレート縮合物、イソホロンジイソシアナートのイソシアヌレート縮合物、4,4’−メチレンビス(シクロヘキシルイソシアナート)、トリメチルヘキサメチレンジイソシアナート等の脂肪族多価イソシアナート;トリレンジイソシアナートとトリメチロールプロパンとの付加体、トリレンジイソシアナートのイソシアヌレート縮合物等の芳香族多価イソシアナートが挙げられる。多価アルコールとしては、例えばエチレングリコール、プロピレングリコール、1,4−ブタンジオールが挙げられ、多価アミンとしては、例えばエチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンが挙げられる。
本マイクロカプセルは、マイクロカプセルの体積中位径が2~100μmであり、且つマイクロカプセルの膜厚が0.02~0.3μmであるが、体積中位径が2~100μmであるマイクロカプセルは、上記の製造方法の分散工程において、(1)水相に溶解される分散剤の種類と濃度、(2)水相と油相との比率、及び/又は(3)水相に油相を分散させる際の分散方式、攪拌強度を調整することにより製造することができる。
具体的には例えば、水相に溶解される分散剤の種類と濃度を定め、水相1に対して油相0.3~2の容量比で水相に油相を混合し、使用する分散機器の適切な運転条件で油相を水相に分散させる。得られた分散液中の油滴の体積中位径をレーザー回折式粒度分布測定装置を用いて測定する。この際に得られた分散液中の油滴の体積中位径が範囲を下回る場合には、分散剤濃度を低くする、水相に油相を分散させる際の攪拌強度を小さくする、水相に対する油相の容量比を小さくする、及び/又は分散剤を変更する等の方法により体積中位径を大きくすることができる。得られた分散液中の油滴の体積中位径が範囲を上回る場合には、分散剤濃度を高くする、水相に油相を分散させる際の攪拌強度を大きくする、水相に対する油相の容量比を大きくする、及び/又は分散剤を変更する等の方法により体積中位径を小さくすることができる。
分散工程において使用することのできる分散機としては、プロペラ攪拌機、高速回転攪拌機、ホモジナイザー、ホモミックラインフロー(特殊機化工業製)が挙げられる。
またマイクロカプセルの膜厚が0.02~0.3μmであるマイクロカプセルは、芯物質の重量に対する膜物質の重量を適宜調整すると伴に、マイクロカプセルの体積中位径を適宜調節することにより製造することができる。
本マイクロカプセルは、疎水性有機溶剤を実質的に含有しないマイクロカプセルであるが、本発明における疎水性有機溶剤としては、例えば、トルエン、キシレン、アルキルベンゼン、アルキルナフタレン、フェニルキシリルエタン等の芳香族炭化水素類、ヘキサン、オクタン、デカン等の脂肪族炭化水素類等が挙げられる。
本発明において、マイクロカプセルが疎水性有機溶剤を実質的に含有しないとは、本ピレスロイド化合物の粘度、比重等の物理的性質と、含有されたわずかな疎水性有機溶剤と本ピレスロイド化合物の混合物の物理的性質が同等であることを意味し、例えばマイクロカプセル全量に対して疎水性有機溶剤の量が5重量%以下を意味する。本マイクロカプセルは、本ピレスロイド化合物のみを内包することが好ましい。
本マイクロカプセルは、必要により酸化防止剤、共力剤、安定化剤、香料等の補助成分を芯物質として含有していてもよい。当該補助成分は、本ピレスロイド化合物に均一に溶解する物質より選ばれる。当該補助成分は、マイクロカプセル全量に対して5重量%以下であることが好ましい。
本マイクロカプセルに含有されている本ピレスロイド化合物は、蒸散させることにより有害節足動物を防除することができる。本マイクロカプセルを有害節足動物の防除方法に用いる場合には、加熱することによりマイクロカプセルの被膜を通して本ピレスロイド化合物を蒸散させることにより、有害節足動物を防除することができる。
本マイクロカプセルは加熱条件においても、マイクロカプセルの被膜が破壊されることがなく、被膜を通じて徐々に本ピレスロイド化合物が蒸散するので、有害節足動物に対する本ピレスロイド化合物の防除効果を長時間持続させることができる。
本マイクロカプセルを本発明の防除方法に使用する場合の加熱温度は、通常50~300℃、好ましくは70~250℃、より好ましくは100~220℃である。また、一般的に使用される加熱蒸散用有害節足動物防除剤用の加熱装置では140~180℃で加熱することができる。加熱するための熱源としては、白熱球や電気ヒーター等の電気を使う熱源;ランタンや線香等の火を使う熱源;鉄粉カイロ等の化学反応を使う熱源等が挙げられる。これらの熱源を適宜用いることにより、目的とする温度に本マイクロカプセルを加熱する装置が製造することができる。
加熱装置としては、例えば特開2008−253175号や特開2011−142999号等に記載の装置が具体的に例示される。
本マイクロカプセルを加熱する場合は、本マイクロカプセルを直接加熱することもできるが、使用し易さや安全性等を考慮して、本マイクロカプセルを担体に保持された形態にて使用することが好ましい。本加熱蒸散防除剤に用いられる担体としては、繊維質担体や多孔質担体等が挙げられる。具体的に繊維質担体としては、例えばパルプ、セルロース、綿等の天然繊維、ポリエステル、アクリル等の合成繊維、ガラス繊維、石綿などの無機繊維等を用いた担体を挙げることができ、多孔質担体としては、例えばケイソウ土等の多孔質無機物質、素焼等の多孔質磁性物質、発泡ウレタン、発泡ポリプロピレン等の多孔質樹脂、熱可塑性樹脂、ゲル状物質等を用いた担体を挙げることができる。
該担体の形状は必ずしも特定されるものではないが、通常は加熱装置における加熱部の形状との関係から、通常は平板条に成型された担体が使用される。その大きさは加熱装置により変わり得るが、例えば約2cm(縦)×約3cm(横)×約3mm(厚み)程度のものが挙げられる。
本加熱蒸散防除剤は、上記の製造方法にて製造した本マイクロカプセルが分散した水分散液を用いて、本マイクロカプセルを担体に保持させることにより製造する。
本加熱蒸散防除剤における本マイクロカプセルの含有量は、使用する担体の材質、目標とする有害節足動物防除効果持続期間、使用する本ピレスロイド化合物により適宜決めることができるが、通常は担体1cmあたり0.001~1g程度である。
本加熱蒸散防除剤は、本マイクロカプセルのほかに、必要により色素、酸化防止剤、共力剤、安定化剤、香料などを含有していてもよい。
色素としては、例えば、1,4−ジブチルアミノアントラキノン、1,4−ジイソプロピルアミノアントラキノン、1,4−ビス(2,6−ジエチル−4−メチルフェニルアミノ)アントラキノン、1−メチルアミノ−4−オルトトリルアミノアントラキノン、1−メチルアミノ−4−メタトリルアミノアントラキノン、1−メチルアミノ−4−パラトリルアミノアントラキノン等のアントラキノン系青色色素等があげられる。これらを単独で、或いは2種以上の混合物で使用してもよく、また色の異なる他の色素との混合物として使用することもできる。
酸化防止剤としては、例えばジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、2,2−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,6−ジ−t−ブチル−4−メチルフェノ−ル、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]4,6−ジ−tert−ペンチルフェニルアクリレ−ト、3,9−ビス[2−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニロキシ−1,1−ジメチル]−2,4,8,10−テトラオキサスピロ[5・5]ウンデカン等のフェノール系抗酸化剤等が挙げられる。
共力剤としては、例えばビス−(2,3,3,3−テトラクロロプロピル)エ−テル(S−421)、N−(2−エチルヘキシル)ビシクロ[2.2.1]ヘプト−5−エン−2,3ジカルボキシイミド(MGK264)、α−[2−(2−ブトキシエトキシ)エトキシ]−4,5−メチレンジオキシ−2−プロピルトルエン(PBO)等が挙げられる。
安定化剤としては、例えばベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤等の紫外線吸収剤等が挙げられる。
本マイクロカプセルを加熱することにより、本ピレスロイド化合物を蒸散させて防除できる有害節足害虫としては、例えば以下の昆虫やダニが挙げられる。
鱗翅目害虫:イガ、コイガ等;
双翅目害虫:アカイエカ、コガタアカイエカ、ネッタイイエカ等のイエカ類、ネッタイシマカ、ヒトスジシマカ等のヤブカ類、シナハマダラカ、ガンビエハマダラカ(Anopheles gambiae)等のハマダラカ類、ユスリカ類、イエバエ、オオイエバエ、ヒメイエバエ等のイエバエ類、クロバエ類、ニクバエ類、タネバエ、タマネギバエ等のハナバエ類、ミバエ類、ショウジョウバエ類、チョウバエ類、ノミバエ類、アブ類、ブユ類、サシバエ類、ヌカカ類等;
網翅目害虫:チャバネゴキブリ、クロゴキブリ、ワモンゴキブリ、コワモンゴキブリ、トビイロゴキブリ、コバネゴキブリ等;
膜翅目害虫:アリ類、ハチ類(フタモンアシナガバチ、トガリフタモンアシナガバチ、セグロアシナガバチ、キアシナガバチ、キボシアシナガバチ、コアシナガバチ、ヤマトアシナガバチ等のアシナガバチ類、オオスズメバチ、キイロスズメバチ、コガタスズメバチ、モンスズメバチ、ヒメスズメバチ、クロスズメバチ、シダクロスズメバチ、キオビホオナガスズメバチ等のスズメバチ類、アリガタバチ類、クマバチ、ベッコウバチ、ジガバチ、ドロバチ等)。
次に本発明を本マイクロカプセルの製造例、試験例等の実施例により具体的に示す。
まず本マイクロカプセルの製剤例を記す。尚、以下の製造例等において物質の量を表す“部”とは重量部を意味する。
製造例1
デスモジュールL−75(住化バイエルウレタン社製;トリメチロールプロパンとトリレンジイソシアナートとの付加体で平均分子量656の芳香族ポリイソシアネート;以下、イソシアネートAと記す)0.89gと4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート(純度96.4%;以下、化合物1Aと記す)20.75gを混合して均一にした後、本混合物と同量の水溶液A〔GL−05(日本合成化学社製、ポリビニルアルコール)8%及びシリコン系消泡剤(東レダウコーニング社製、アンチフォームCエマルション)0.8%を含有;以下、水溶液Aと記す〕に本混合物を加え、ホモジナイザー(Polytron(登録商標)PT−MR3000、Kinematica社製)を用いて分散し、所定の体積中位径の微小液滴が分散した水分散液を得た。次いで該水分散液にエチレングリコール0.09gを加えて混合し、容器を60℃の温浴中で保持して24時間反応させ、マイクロカプセルが分散したマイクロカプセル分散液を得た。得られたマイクロカプセル分散液にバイオホープL(ケイ・アイ化成社製)0.20g及び脱イオン水56.44gを加えて、組成中に20重量%の化合物1Aを含むマイクロカプセルの水分散液(以下、本発明組成物1と記す)を得た。得られたマイクロカプセルの体積中位径は6.36μmで、計算された膜厚は0.036μmであった。なお、体積中位径はレーザー回折式粒度分布測定装置(Marvern社製、マスターサイザー2000)により計測した値である。
製造例2~6
製造例1と同様の処方にて、下記の表1に記載の量比の原材料を用いてマイクロカプセルの水分散液(夫々を以下、本発明組成物2~6と記す)を得た。
Figure JPOXMLDOC01-appb-T000003
比較製造例1
化合物1A10部、フェニルキシリルエタン10部およびイソシアネートL75 0.50部を混合して均一にした後、水溶液〔アラビアガム(三栄薬品社製)10%を含有〕20部に加え、ホモミキサーで攪拌して体積中位径が約20μmの水分散液を得た。次いでエチレングリコール2部を加え、容器を60℃の温浴中で保持して24時間反応させ、マイクロカプセル水分散液を得た。得られた水分散液にケルザンS(三昌社製)0.2部、ビーガムグラニュー1.0部及び脱イオン水56.3部を加えて、組成中に10重量%の化合物1Aを含むマイクロカプセルの水分散液100部(以下、比較組成物1と記す)を得た。得られたマイクロカプセルの体積中位径は20μmで、計算された膜厚は0.066μmであった。
比較製造例2
化合物1A4部、ブチルヒドロキシルトルエン10部、アジピン酸ジイソノニル5部、クエン酸アセチルトリブチル5部、ミリスチン酸イソプロピル25部及びシェルゾールTM 51部を混合し、組成中に化合物1Aを含む溶液(以下、比較組成物2と記す)を得た。
次に、本マイクロカプセルを含有する本加熱蒸散防除剤の製剤例を以下に記載する。
製剤例1
2.2cm×3.5cm×0.31cmのパルプ及びコットンリンターからなる繊維質板状担体に、本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を4重量%含有する)を含浸させ、その後風乾により水分を蒸発させて、本発明の加熱蒸散防除剤を得る。
製剤例2
2.2cm×3.5cm×0.31cmの厚手の和紙に、本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を4重量%含有する)を含浸させ、その後風乾により水分を蒸発させて、本発明の加熱蒸散防除剤を得る。
製剤例3
2.2cm×3.5cm×0.31cmの多孔質セラミック板に、本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を4重量%含有する)を含浸させ、その後風乾により水分を蒸発させて、本発明の加熱蒸散防除剤を得る。
製剤例4
2.2cm×3.5cm×0.5cmのアルミ皿に、本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を20重量%含有する)を注ぎ、その後風乾により水分を蒸発させて、皿上に本マイクロカプセルが保持された本発明の加熱蒸散防除剤を得る。
製剤例5
本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を20重量%含有する)をろ別して、ろ紙上に残ったマイクロカプセルを捕集する。捕集し、乾燥させたマイクロカプセルを、3.8cm×2.5cmのアルミラミネ−ト袋に封入し、本発明の加熱蒸散防除剤を得る。
製剤例6
本マイクロカプセルを含有する水分散液(組成中に化合物1~6から選ばれるいずれかの化合物を20重量%含有する)をろ別して、ろ紙上に残ったマイクロカプセルを捕集する。捕集し、乾燥させたマイクロカプセル50部と、珪砂50部とを混合し、該混合物を深さ1cmの円筒形状のアルミニウム製のカプセル内に封入し、本発明の加熱蒸散防除剤を得る。
次に、本発明のマイクロカプセルを加熱蒸散で使用した場合でも、長時間に渉り有効成分を保持して、徐々に有効成分である本ピレスロイド化合物を蒸散させることができることを試験例により示す。
試験例1
繊維質担体(3.5cm×2.2cm×1.5mm厚)に、上記の製剤例にて得た本発明組成物1~6の夫々を脱イオン水で5倍に希釈し、これを0.5g含浸させた。該担体を約200℃に温度がコントロールされた平板ヒーター上で加熱した。所定時間加熱後の該担体を回収し、アセトンに浸漬して化合物1Aを抽出し、該担体に保持された化合物1Aの残存量を分析した。
また、上記の比較組成物1および比較組成物2を用いて同様に繊維質担体に化合物1Aを保持させ、同様に試験を行い、化合物1Aの残存量を分析した。
結果を表2に記す。
Figure JPOXMLDOC01-appb-T000004
試験例2
繊維質担体(3.5cm×2.2cm×1.5mm厚)に、上記の製剤例にて得た本発明組成物1~6の夫々を脱イオン水で5倍に希釈し、これを0.5g含浸させた。該担体を約160℃に温度がコントロールされた平板ヒーター上で加熱した。所定時間加熱後の該担体を回収し、アセトンに浸漬して化合物1Aを抽出し、該担体に保持された化合物1Aの残存量を分析した。
結果を表3に記す。
Figure JPOXMLDOC01-appb-T000005
試験例3
繊維質担体(3.5cm×2.2cm×1.5mm厚)に、上記の製剤例にて得た本発明組成物1~6の夫々を脱イオン水で5倍に希釈し、これを0.5g含浸させた。該担体を約120℃に温度がコントロールされた平板ヒーター上で加熱した。所定時間加熱後の該担体を回収し、アセトンに浸漬して化合物1Aを抽出し、該担体に保持された化合物1Aの残存量を分析した。
結果を表4に記す。
Figure JPOXMLDOC01-appb-T000006
製造例7
デスモジュールL−75(住化バイエルウレタン社製;トリメチロールプロパンとトリレンジイソシアナートとの付加体で平均分子量656の芳香族ポリイソシアネート;以下、イソシアネートAと記す)0.18部と4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート(一般名はメトフルトリン;使用した化合物は純度96.4%;以下、化合物1Aと記す)20.75部を混合して均一な混合物を得た。本混合物と同量の水溶液B〔ARABICCOL SS(三栄薬品貿易製、アラビアガム)8%及びシリコン系消泡剤(東レダウコーニング社製、アンチフォームCエマルション)0.8%を含有;以下、水溶液Bと記す〕に、本混合物を加え、ホモジナイザー(Polytron(登録商標)PT−MR3000、Kinematica社製)を用いて分散処理を行い、所定の体積中位径の微小滴の水分散液を得た。次いでエチレングリコール0.02部を加えて混合し、容器を60℃の温浴中で24時間反応させ、マイクロカプセル水分散液を得た。得られた水分散液にバイオホープL(ケイ・アイ化成社製)0.20部及び脱イオン水57.85部を加えて、組成中に20重量%の化合物1Aを含むマイクロカプセルの水分散液(以下、本発明組成物7と記す)を得た。得られたマイクロカプセルの体積中位径は26.53μmで、計算された膜厚は0.031μmであった。なお、体積中位径はレーザー回折式粒度分布測定装置(Marvern社製、マスターサイザー2000)により計測した値である。
製造例8~10
製造例7と同様の処方にて、下記の表5に記載の量比の原材料を用いてマイクロカプセルの水分散液(夫々を以下、本発明組成物8~10と記す)を得た。
Figure JPOXMLDOC01-appb-T000007
試験例4
上記の製剤例にて得た本発明組成物7~10の夫々を脱イオン水で5倍に希釈した。各希釈物0.5gを、繊維質担体(3.5cm×2.2cm×1.5mm厚)に含浸させた。該担体を約160℃に温度がコントロールされた平板ヒーター上で加熱した。所定時間加熱後の該担体を回収し、アセトンに浸漬して化合物1Aを抽出し、該担体に保持された化合物1Aの残存量を分析した。
結果を表6に記す。
Figure JPOXMLDOC01-appb-T000008
 本発明により、一般式(1)または(2)で示される揮散性の高いピレスロイド化合物を有効成分とする有害節足動物防除剤を加熱蒸散にて使用した場合に、防除効果を長期間持続させることができる。
 本発明のマイクロカプセルは、有害節足動物防除の有効成分である本ピレスロイド化合物を内包しており、加熱条件下にてマイクロカプセルが破壊することなく、長時間に渉って本ピレスロイド化合物を徐々に蒸散させることができるので、有害節足動物の防除において有効である。

Claims (6)

  1.  一般式(1)または(2)
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Rは水素原子、フッ素原子、塩素原子またはメチル基を表し、Rはフッ素原子、塩素原子、メチル基またはトリフルオロメチル基を表し、Rは水素原子、メチル基、プロパルギル基またはメトキシメチル基を表す。〕
    で示されるピレスロイド化合物から選ばれる1種以上の化合物を内包するマイクロカプセルであって、マイクロカプセルの体積中位径が2~100μmであり、マイクロカプセルの膜厚が0.02~0.3μmであり、且つ、マイクロカプセルが疎水性有機溶剤を実質的に含有しないことを特徴とするマイクロカプセル。
  2.  一般式(1)または(2)で示されるピレスロイド化合物が下記の群Aより選ばれる化合物である第1項に記載のマイクロカプセル。
    群A:
    4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート、
    4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(1−プロペニル)シクロプロパンカルボキシレート、
    4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−メチル−1−プロペニル)シクロプロパンカルボキシレート、
    4−メトキシメチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレート、
    2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2,2−ジクロロビニル)シクロプロパンカルボキシレート、および
    4−メチル−2,3,5,6−テトラフルオロベンジル=2,2−ジメチル−3−(2−クロロ−3,3,3−トリフルオロ−1−プロペニル)シクロプロパンカルボキシレートからなる群。
  3.  マイクロカプセルの膜物質がポリウレタン樹脂、ポリウレア樹脂またはポリウレタンポリウレア樹脂のいずれかである第1項に記載のマイクロカプセル。
  4.  上記第1項~第3項のいずれかに記載のマイクロカプセルを、70~250℃に加熱する工程を有する有害節足動物の防除方法。
  5.  マイクロカプセルが担体に保持されていることを特徴とする第4項に記載の防除方法。
  6.  上記第1項~第3項のいずれかに記載のマイクロカプセルが担体に保持されてなる加熱蒸散用有害節足動物防除剤。
PCT/JP2014/067296 2013-06-26 2014-06-23 加熱蒸散用マイクロカプセル WO2014208764A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/392,337 US20160192644A1 (en) 2013-06-26 2014-06-23 Microcapsules for thermal transpiration
JP2015524153A JPWO2014208764A1 (ja) 2013-06-26 2014-06-23 加熱蒸散用マイクロカプセル
ES14817376T ES2759423T3 (es) 2013-06-26 2014-06-23 Microcápsulas para difusión térmica
EP14817376.8A EP3014994B1 (en) 2013-06-26 2014-06-23 Microcapsules for thermal transpiration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-133588 2013-06-26
JP2013133588 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014208764A1 true WO2014208764A1 (ja) 2014-12-31

Family

ID=52142086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067296 WO2014208764A1 (ja) 2013-06-26 2014-06-23 加熱蒸散用マイクロカプセル

Country Status (6)

Country Link
US (1) US20160192644A1 (ja)
EP (1) EP3014994B1 (ja)
JP (1) JPWO2014208764A1 (ja)
ES (1) ES2759423T3 (ja)
MY (1) MY175650A (ja)
WO (1) WO2014208764A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212147B2 (en) 2015-10-23 2021-12-28 Huawei Technologies Co., Ltd. Systems and methods for configuring carriers using overlapping sets of candidate numerologies

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178703A (ja) * 1991-07-15 1993-07-20 Mitsui Toatsu Chem Inc 殺虫剤組成物及びその製造方法
JPH05201814A (ja) * 1992-01-29 1993-08-10 Sumitomo Chem Co Ltd 飛翔性双翅目衛生害虫防除剤
JPH07165505A (ja) 1993-12-15 1995-06-27 Sumitomo Chem Co Ltd マイクロカプセル化された農薬組成物
JPH11511151A (ja) * 1995-08-16 1999-09-28 バイエル・アクチエンゲゼルシヤフト 殺虫作用を示す組成物
JP2000063329A (ja) 1998-02-26 2000-02-29 Sumitomo Chem Co Ltd エステル化合物
JP2000239232A (ja) * 1999-02-22 2000-09-05 Sumitomo Chem Co Ltd 含フッ素エステル化合物
JP2001011022A (ja) 1998-11-20 2001-01-16 Sumitomo Chem Co Ltd ピレスロイド化合物およびそれを有効成分として含有する有害生物防除剤
JP2003201205A (ja) 2001-10-23 2003-07-18 Sumitomo Chem Co Ltd 害虫防除用加熱蒸散体
JP2004002363A (ja) 2002-04-12 2004-01-08 Sumitomo Chem Co Ltd エステル化合物およびその用途
JP2004502519A (ja) * 2000-06-05 2004-01-29 シンジェンタ リミテッド 新規マイクロカプセル
JP2007230997A (ja) * 2006-01-31 2007-09-13 Sumitomo Chemical Co Ltd ストロビルリン殺菌化合物を含有する植物病害防除組成物
JP2008253175A (ja) 2007-04-03 2008-10-23 Sumitomo Chemical Co Ltd 蒸散方法
JP2011142999A (ja) 2010-01-13 2011-07-28 Daiei Kogyo Kk 揮発性成分揮散用装置、揮発性成分揮散用カートリッジおよび電子機器
JP2013049685A (ja) * 2006-05-17 2013-03-14 Bayer Cropscience Ag 殺虫剤を含浸させた紙
US20130115261A1 (en) * 2011-11-04 2013-05-09 Sipcam S. P. A. Use of formulations having insecticidal activity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676287B2 (ja) * 1986-03-17 1994-09-28 住友化学工業株式会社 農業用殺虫、殺ダニ組成物
SE468740B (sv) * 1986-03-17 1993-03-15 Sumitomo Chemical Co Mikroinkapslad insekticid och/eller akaricid pyretroidkomposition, saett att reglera insekter och/eller kvalster daermed samt foerfarande foer framstaellning daerav
JPH0764686B2 (ja) * 1986-07-11 1995-07-12 住友化学工業株式会社 ピレスロイド系殺虫、殺ダニ組成物
JPH0676286B2 (ja) * 1986-03-17 1994-09-28 住友化学工業株式会社 農業用殺虫、殺ダニ組成物
JP2676082B2 (ja) * 1987-12-25 1997-11-12 住友化学工業株式会社 ゴキブリ防除用マイクロカプセル剤
JPH11335331A (ja) * 1998-05-22 1999-12-07 Sumitomo Chem Co Ltd ピレスロイド化合物および該化合物を含有する害虫防除剤
TW529911B (en) * 1998-11-20 2003-05-01 Sumitomo Chemical Co Pyrethroid compounds and composition for controlling pest containing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178703A (ja) * 1991-07-15 1993-07-20 Mitsui Toatsu Chem Inc 殺虫剤組成物及びその製造方法
JPH05201814A (ja) * 1992-01-29 1993-08-10 Sumitomo Chem Co Ltd 飛翔性双翅目衛生害虫防除剤
JPH07165505A (ja) 1993-12-15 1995-06-27 Sumitomo Chem Co Ltd マイクロカプセル化された農薬組成物
JPH11511151A (ja) * 1995-08-16 1999-09-28 バイエル・アクチエンゲゼルシヤフト 殺虫作用を示す組成物
JP2000063329A (ja) 1998-02-26 2000-02-29 Sumitomo Chem Co Ltd エステル化合物
JP2001011022A (ja) 1998-11-20 2001-01-16 Sumitomo Chem Co Ltd ピレスロイド化合物およびそれを有効成分として含有する有害生物防除剤
JP2000239232A (ja) * 1999-02-22 2000-09-05 Sumitomo Chem Co Ltd 含フッ素エステル化合物
JP2004502519A (ja) * 2000-06-05 2004-01-29 シンジェンタ リミテッド 新規マイクロカプセル
JP2003201205A (ja) 2001-10-23 2003-07-18 Sumitomo Chem Co Ltd 害虫防除用加熱蒸散体
JP2004002363A (ja) 2002-04-12 2004-01-08 Sumitomo Chem Co Ltd エステル化合物およびその用途
JP2007230997A (ja) * 2006-01-31 2007-09-13 Sumitomo Chemical Co Ltd ストロビルリン殺菌化合物を含有する植物病害防除組成物
JP2013049685A (ja) * 2006-05-17 2013-03-14 Bayer Cropscience Ag 殺虫剤を含浸させた紙
JP2008253175A (ja) 2007-04-03 2008-10-23 Sumitomo Chemical Co Ltd 蒸散方法
JP2011142999A (ja) 2010-01-13 2011-07-28 Daiei Kogyo Kk 揮発性成分揮散用装置、揮発性成分揮散用カートリッジおよび電子機器
US20130115261A1 (en) * 2011-11-04 2013-05-09 Sipcam S. P. A. Use of formulations having insecticidal activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERBERT B. SCHER ET AL.: "Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry", PESTIC. SCI., vol. 54, no. 4, 1 December 1998 (1998-12-01), pages 394 - 400, XP055302362, DOI: 10.1002/(SICI)1096-9063(199812)54:4<394::AID-PS829>3 *
THE PESTICIDE MANUAL, FOURTEENTH EDITION, 2006, pages 715, 996-997 - 1050-1051, XP008182663 *

Also Published As

Publication number Publication date
EP3014994A4 (en) 2016-12-28
EP3014994B1 (en) 2019-11-20
JPWO2014208764A1 (ja) 2017-02-23
MY175650A (en) 2020-07-03
US20160192644A1 (en) 2016-07-07
ES2759423T3 (es) 2020-05-11
EP3014994A1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
GB2057389A (en) Process for the preparation of stable suspensions or powders of stable microcapsules of selected porosity and products so obtained
JP2676082B2 (ja) ゴキブリ防除用マイクロカプセル剤
EP2034840B1 (en) Pesticidal composition comprising tetrafluorobenzyl cyclopropane carboxylates
US20140335140A1 (en) Natural volatile plant oils to repel arthropods
JP7364312B2 (ja) 害虫忌避成分の選択的蒸散方法
Abd Manaf et al. Microencapsulation methods of volatile essential oils-a review
FR2567036A1 (fr) Diffuseur a liberation lente de produits volatils
JP2001017055A (ja) 害虫の駆除方法
WO2014208764A1 (ja) 加熱蒸散用マイクロカプセル
CA3123709A1 (en) Diffuser of volatile substances by combustion
CN108739872A (zh) 一种天然除虫菊酯微胶囊及其制备方法
JPH11308955A (ja) 害虫防除方法
JP4289870B2 (ja) 殺虫組成物
JP4720244B2 (ja) 害虫防除液
JPS62215504A (ja) 農業用殺虫、殺ダニ組成物
EP0906013A1 (de) Siliconelastomere mit insektizider wirkung
CN108697092B (zh) 水性害虫防除液
JP2002003313A (ja) 飛翔害虫防除方法
CN101124910B (zh) 通过加热熏蒸来控制害虫
US20130185817A1 (en) Microencapsulated Volatile Insect Repellent and/or Insecticide Agent and Methods of Making and Using the Same
JP2003335604A (ja) 油溶性農薬活性成分のマイクロカプセルおよびその製造方法
JP2006282643A (ja) ジョチュウギクエキスを有効成分とする加熱蒸散用害虫防除液および害虫防除方法
CN101124909B (zh) 通过加热熏蒸来控制害虫
JP4660885B2 (ja) 電気蚊取り用マット
JP4348896B2 (ja) 加熱蒸散用害虫防除液及び害虫防除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524153

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014817376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14392337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600111

Country of ref document: ID