WO2014208679A1 - 強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法 - Google Patents

強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法 Download PDF

Info

Publication number
WO2014208679A1
WO2014208679A1 PCT/JP2014/067028 JP2014067028W WO2014208679A1 WO 2014208679 A1 WO2014208679 A1 WO 2014208679A1 JP 2014067028 W JP2014067028 W JP 2014067028W WO 2014208679 A1 WO2014208679 A1 WO 2014208679A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempered glass
scribe
glass plate
line
scribe line
Prior art date
Application number
PCT/JP2014/067028
Other languages
English (en)
French (fr)
Inventor
広之 中津
久博 竹内
清貴 木下
隼人 奥
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/897,001 priority Critical patent/US20160130172A1/en
Priority to CN201480021502.0A priority patent/CN105143120A/zh
Priority to KR1020157018172A priority patent/KR20160022797A/ko
Priority to JP2014530854A priority patent/JPWO2014208679A1/ja
Publication of WO2014208679A1 publication Critical patent/WO2014208679A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/105Details of cutting or scoring means, e.g. tips
    • C03B33/107Wheel design, e.g. materials, construction, shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/06Grooving involving removal of material from the surface of the work
    • B26D3/065On sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/002Precutting and tensioning or breaking
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/03Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a tempered glass plate scribing method for forming a scribe line for cutting a tempered glass plate by running a scribe rotary blade, and a tempered glass plate cutting method.
  • the tempered glass plate has a surface layer portion reinforced by an ion exchange method or an air cooling tempering method, and a compressive stress layer is formed on the surface side and the back side in the plate thickness direction, A tensile stress layer is formed between the compressive stress layers on both sides.
  • a tempered glass sheet has a significantly increased fracture strength with respect to the tensile stress acting on the surface layer as compared with a normal glass sheet.
  • this tempered glass plate for example, the following methods are widely used. That is, by running a scribe wheel, the surface of the tempered glass plate is pressed along a planned cutting line to form a scribe line (see Patent Document 1).
  • This scribe line includes a median crack extending in the thickness direction. Thereafter, a bending moment is applied to the periphery of the scribe line, and the tempered glass sheet is cut (cleaved) by executing the splitting.
  • the scribe wheel starts running at a position spaced inward from the edge portion of the tempered glass plate, and formation of the scribe line is started. Due to this, in the initial stage of forming the scribe line, the scribe wheel may not roll suitably on the surface of the tempered glass plate, and may idle, and the depth of the scribe line (median crack) However, there is a drawback that it is easy to form shallowly with respect to the depth suitable for the execution of folding.
  • the present invention made in view of the above circumstances has a technical problem of avoiding deterioration in quality at a cut surface when a tempered glass plate is broken and cut.
  • the tempered glass sheet scribing method according to the present invention which was created to solve the above-mentioned problems, is a method of scribing the tempered glass sheet with a scribe rotary blade that runs along a planned cutting line while pressing the surface of the tempered glass sheet.
  • the scribe rotary blade is formed on the edge portion located on one end side of the planned cutting line among the edge portions of the tempered glass plate, thereby forming the scribe line.
  • the formation of the scribe line is terminated by running to a position where the vicinity of the edge portion located on the other end side of the planned cutting line is a remaining portion.
  • edge portion positioned on the other end side of the planned cutting line means not only the edge portion constituting the outer peripheral contour of the tempered glass plate, but also the surface of the tempered glass plate and the tempered glass plate already formed. It also includes minute edge portions formed by other scribe lines.
  • the scribing rotary blade rides on the edge portion located on one end side of the planned cutting line, the scribing rotary blade is prevented from idling by being caught by the edge portion, and is preferably rotated. The movement starts. Therefore, even in the initial stage of forming the scribe line, the depth of the scribe line can be formed to a depth suitable for breaking and cutting the tempered glass plate. This eliminates the need to apply an excessive bending moment to the tempered glass plate when the tempered glass plate is broken and cut along the scribe line, and cracks generated from the scribe line are formed on the surface of the tempered glass plate.
  • the scribing rotary blade travels to a position where the vicinity of the edge portion located on the other end side of the planned cutting line becomes the remaining portion and finishes the formation of the scribe line. Can be avoided. That is, if the scribe line is formed up to the edge portion located on the other end side, for example, when the tempered glass plate is conveyed by a belt conveyor or the like, it is caused by the tensile stress layer formed on the tempered glass plate.
  • produced from the scribe line may progress in a plate
  • the tempered glass sheet is prevented from being cut in the remaining portion, it is possible to suitably eliminate the possibility of such a situation.
  • the depth of the scribe line is not less than three times the thickness of the compressive stress layer formed on the surface layer portion of the tempered glass plate, and 60 times the thickness of the tempered glass plate. % Or less is preferable.
  • the scribe line is formed deeper in the plate thickness direction than in the prior art, when the tempered glass plate is broken and cut along the scribe line, with a small bending moment, It is possible to break the tempered glass plate and to prevent the crack generated from the scribe line from progressing in an unintended direction. Furthermore, since the allowable range of the depth of the scribe line to be formed is wider than the conventional case, when the scribe line is formed, the pressing force with which the scribe rotary blade presses the tempered glass plate is, for example, tempered glass. Even when the surface fluctuates due to fine irregularities on the surface of the plate, the scribe line can be stably formed at a depth within the above range. That is, it becomes possible to control the pressing force extremely easily.
  • the scribing rotary blade is run in a direction orthogonal to the edge portion located on the one end side of the planned cutting line, and the formation of the scribing line is started. preferable.
  • the separation distance between the edge portion located on the other end side of the planned cutting line and the end of the scribe line is 0.5 times or more the diameter of the scribe rotary blade. And it is preferable to make it 3 times or less.
  • the tempered glass plate is in a state in which a scribe line connecting an edge portion located on one end side of the planned cutting line and an edge portion located on the other end side is formed.
  • a production line that forms a scribe line in a tempered glass sheet in an upstream process and conveys the tempered glass sheet to a downstream process by a belt conveyor or the like, and then breaks and cuts the following:
  • the following problems occur. That is, due to the tensile stress layer formed on the tempered glass plate, cracks generated from the scribe line propagate in the plate thickness direction, and the tempered glass plate extends over the entire length of the scribe line during conveyance of the tempered glass plate. May be cut off. That is, the tempered glass plate is cut at an unintended timing. As a result, the opposing cut surfaces come into contact with each other due to vibrations during conveyance, and the quality of the cut surfaces is reduced.
  • the separation distance is too long, when the tempered glass plate is broken and cut along the scribe line, the crack generated from the scribe line may deviate from the planned cutting line and develop in an unintended direction. There is. However, when the separation distance is within the above range, the occurrence of these problems can be suitably avoided.
  • a plurality of notches are formed along the circumferential direction of the scribe rotary blade at the cutting edge of the scribe rotary blade, and the plurality of notches have a formation pitch of 20 ⁇ m to 160 ⁇ m.
  • each of the plurality of notches preferably has a depth of 1.0 ⁇ m to 2.5 ⁇ m and a width along the circumferential direction of the scribe rotary blade of 3 ⁇ m to 8 ⁇ m.
  • the scribe rotary blade will not be properly rolled, such as the scribe rotary blade slips on the surface of the tempered glass plate, and the scribe line May be difficult to form.
  • the depth of the notch is shallower than 1.0 ⁇ m, it may be difficult to form a scribe line having a depth sufficient to cut the tempered glass sheet.
  • the depth of the notch is deeper than 2.5 ⁇ m, the impact force acting on the tempered glass plate becomes too large when the scribe line is formed, and the self-force is generated by the tensile stress acting on the inside of the tempered glass plate. May cause destruction.
  • the width along the circumferential direction of the scribe rotary blade in the notch is smaller than 3 ⁇ m, it may be difficult to form a scribe line having a depth sufficient to cut the tempered glass sheet.
  • the width is larger than 8 ⁇ m, the surface of the tempered glass plate is easily crushed during the formation of the scribe line, and glass powder is generated to reduce the product value of the tempered glass plate, and the strength of the cut surface. May decrease.
  • the formation pitch, depth, and width of the notches are within the above ranges, the possibility of these problems occurring can be eliminated as much as possible.
  • the tempered glass plate has a compressive stress layer formed on each surface layer portion on the front surface side and the back surface side, and a tensile stress layer formed between both compressive stress layers.
  • the thickness of the tempered glass plate is t [ ⁇ m]
  • the compressive stress acting on the compressive stress layer is CS [MPa]
  • the tensile stress acting on the tensile stress layer is CT [MPa].
  • 300 ⁇ t ⁇ 2000 ⁇ 0.00308 ⁇ t + 20.5343 ⁇ CT ⁇ ⁇ 0.00405 ⁇ t + 27.3791 600 ⁇ CS ⁇ 700 It is preferable to satisfy.
  • the scribe rotary blade is brought into contact with the edge portion located on the one end side of the planned cutting line in an accelerated state to start the formation of the scribe line. Is preferred.
  • the scribe rotary blade can be easily mounted on the edge by bringing the scribe rotary blade into contact with the edge portion in an accelerated state.
  • the cutting method of the tempered glass board which concerns on this invention cut
  • the tempered glass is cut into strips after being chopped into strips as described above, it will be in an unintended direction due to compressive stress or tensile stress compared to the case of breaking after forming scribe lines in multiple directions. Cutting defects such as division and self-destruction can be suppressed.
  • the method for cutting a tempered glass plate according to the present invention is the method of forming a scribe line on the tempered glass plate by using the scribe method for the tempered glass plate, and then applying a bending stress to the tempered glass plate. Characterized by cutting the plate into pieces.
  • the tempered glass plate is cut into pieces by applying a bending stress to the tempered glass plate within 180 seconds after the scribe line is formed on the tempered glass plate. .
  • the tempered glass plate is cut by applying a bending stress after forming the scribe line as described above, the tempered glass plate can be surely cut regardless of the natural progress of cracks in the scribe line.
  • the tempered glass plate when the tempered glass plate is broken and cut, it is possible to avoid a reduction in quality on the cut surface.
  • the tempered glass plate to be subjected to the method is merely an example of the configuration, and as described later,
  • the scribing method of the tempered glass sheet according to the invention is not intended only for such a tempered glass sheet.
  • a plurality of notches C are formed in the cutting edge of the scribe wheel H along the circumferential direction.
  • the plurality of notches C have a formation pitch P of 20 ⁇ m to 160 ⁇ m.
  • Each of the plurality of notches C has a depth DH of 1.0 ⁇ m to 2.5 ⁇ m and a width W along the circumferential direction of 3 ⁇ m to 8 ⁇ m.
  • the opening angle ⁇ at the cutting edge of the scribe wheel H shown in FIG. 1b is 110 ° to 150 °.
  • FIG. 2 is a plan view showing the tempered glass sheet scribing method according to the first embodiment of the present invention.
  • the tempered glass sheet G to be subjected to the method has a rectangular shape.
  • a compressive stress layer A is formed on the front surface side and the back surface side in the thickness direction, and a tensile stress is formed between both the compressive stress layers A on the front surface side and the back surface side.
  • a stress layer B is formed.
  • the plate thickness is t [ ⁇ m]
  • the compressive stress acting on each of the compressive stress layers A is CS [MPa]
  • the tensile stress acting on the tensile stress layer B is CT.
  • [MPa] these satisfy the following relationships (1) to (3).
  • 600 ⁇ CS ⁇ 800 Note that the magnitude CT of the tensile stress acting on the tensile stress layer B is expressed by the following expression, where the depth of each of the compressive stress layers A is DOL.
  • CT CS ⁇ DOL / (t-DOL ⁇ 2)
  • the magnitude CS of the compressive stress in both compressive stress layers A is 710 MPa
  • the thickness DOL of both compressive stress layers A is 20.8 ⁇ m
  • the tensile stress magnitude CT in the tensile stress layer B is 21.4 MPa.
  • the thickness t of the tempered glass sheet G is 700 ⁇ m.
  • the tempered glass plate G (the glass plate that is the base of the tempered glass plate G) has a glass composition of SiO 2 : 50 to 80%, Al 2 O 3 : 5 to 25%, B 2 O 3 : A composition containing 0 to 15%, Na 2 O: 1 to 20%, and K 2 O: 0 to 10% is preferable. If it does in this way, it is possible to obtain the tempered glass board G excellent in both ion exchange performance and devitrification resistance.
  • a scribe line for cutting the tempered glass sheet G by running a scribe wheel H as a scribe rotary blade along the planned cutting line CL shown in FIG. S is formed.
  • the scribe wheel H is made to ride on the edge portion Ea located on one end side of the planned cutting line CL among the edge portions in the tempered glass sheet G, and the formation of the scribe line S is started. .
  • the scribe wheel H rides in a direction orthogonal to the edge portion Ea.
  • the scribe wheel H rides on the edge portion Ea.
  • the scribe wheel H is pressed against the edge portion Ea, hooked, and moved upward so as to draw an arc trajectory centered on the edge portion Ea. To reach. Thereby, the start end Sa of the scribe line S is formed in the tempered glass sheet G.
  • the depth K is preferably 5 to 50%, more preferably 10 to 40%, and further preferably 25 to 35% of the plate thickness t.
  • the depth K is preferably 0.04 to 0.35 mm, more preferably 0.07 to 0.28 mm, and still more preferably 0.18 to 0.25 mm.
  • the scribe wheel H is run along the planned cutting line CL.
  • the pressing force with which the scribe wheel H presses the surface Ga of the tempered glass sheet G is set to 8.5N.
  • the speed at which the scribe wheel H travels is 100 mm / s.
  • the scribe wheel H is stopped or it is by scribe wheel H Release the pressing force.
  • the scribe wheel H is set such that the separation distance X between the end Sb of the scribe line S and the edge portion Eb is not less than 0.5 times the diameter HD of the scribe wheel H and not more than 3 times.
  • the scribe wheel H rides on the edge portion Ea, the scribe wheel H is prevented from idling by being caught by the edge portion Ea, and is preferably rotated. The movement starts. Therefore, even in the initial stage of forming the scribe line S, the depth D of the scribe line S is set to a depth suitable for breaking and cutting the tempered glass sheet G (in this embodiment, the compressive stress layer A). 3 times the thickness DOL and 60% or less of the plate thickness).
  • the scribe wheel H is mounted on the edge portion Ea in a direction orthogonal to the edge portion Ea, the scribe wheel H is more easily caught on the edge portion Ea. Therefore, in the initial stage of forming the scribe line S. In forming the scribe line S having a depth suitable for cutting the tempered glass sheet G, it is more advantageous.
  • the depth D of the scribe line S is set to 3 times or more the thickness DOL of the compressive stress layer A and 60% or less of the plate thickness. Less than about 10 to 20% of the plate thickness), the scribe line S is deeply formed in the plate thickness direction, and the tempered glass plate G is broken and cut along the scribe line S. In this case, the tempered glass sheet G can be broken with a small bending moment, and the progress of the crack generated from the scribe line S in the unintended direction can be prevented more accurately.
  • the permissible range of the depth D of the scribe line S to be formed is wider than in the past, when the scribe line S is formed, the pressing force with which the scribe wheel H presses the tempered glass plate G is For example, even if the surface Ga of the tempered glass plate G varies due to fine irregularities, the scribe line S is stably formed to a depth suitable for breaking and cutting the tempered glass plate G. be able to. That is, it becomes possible to control the pressing force extremely easily.
  • the separation distance X between the end Sb of the scribe line S and the edge portion Eb is not less than 0.5 times and not more than 3 times the diameter HD of the scribe wheel H, the following effects can be obtained. Can also be obtained.
  • the separation distance X is too short, after the formation of the scribe line S is finished, the crack generated from the scribe line S develops due to the tensile stress layer B formed on the tempered glass sheet G, and the edge portion Eb May reach up to.
  • the tempered glass sheet G is in a state in which a scribe line S connecting the edge portion Ea located on one end side of the planned cutting line CL and the edge portion Eb located on the other end side is formed. Therefore, for example, in the upstream process, a scribe line S is formed on the tempered glass sheet G, and the tempered glass sheet G is conveyed to the downstream process by a belt conveyor or the like and then broken and cut.
  • a belt conveyor or the like is conveyed to the downstream process by a belt conveyor or the like and then broken and cut.
  • the cracks generated from the scribe line S propagate in the thickness direction, and the tempered glass sheet is transferred to the scribe line during the conveyance of the tempered glass sheet G. It may be cut over the entire length of S. That is, the tempered glass sheet G is cut at an unintended timing. As a result, the opposing cut surfaces come into contact with each other due to vibrations during conveyance, and the quality of the cut surfaces is reduced.
  • the following actions and effects can be obtained by using the scribing wheel H having the above-described configuration. That is, when the scribe line S is formed, the scribe wheel H slips on the surface Ga of the tempered glass plate G, the impact force acting on the tempered glass plate G becomes too large, or the surface Ga of the tempered glass plate G is crushed. It can avoid becoming easy. Therefore, it becomes possible to reliably form a scribe line S having a depth D sufficient to cut the tempered glass sheet G.
  • a scribe line may be further formed to cut the tempered glass sheet G into three or more pieces.
  • a scribe line may be further formed and cut along a plurality of planned cutting lines CL ′ shown in FIG.
  • the tempered glass sheet G is cut into strips and then cut into pieces, it is less likely to be in an unintended direction due to compressive stress or tensile stress than in the case of breaking after forming scribe lines in a plurality of directions. Dividing and self-destruction can be suppressed.
  • the above cutting method is an example, and the present invention is not limited to this.
  • a plurality of scribe lines may be formed in a lattice shape on the tempered glass plate G using the above-described method and cut into pieces.
  • the tempered glass sheet G can be cut into pieces in a short time, and the productivity of the pieces of glass can be improved.
  • the tempered glass sheet G When the tempered glass sheet G is cut, it may be cut by natural progress of cracks in the scribe line S (hereinafter referred to as natural cutting), or the tempered glass sheet G is bent along the scribe line S. As described above, the cutting may be performed by applying a stress (hereinafter referred to as a split cutting). In addition, when it is desired to perform split cutting, after the scribe line S is formed, the bending stress is applied to the tempered glass sheet G preferably within 180 seconds, more preferably within 120 seconds, and even more preferably within 60 seconds. Good. If the scribe line S is formed and then left for 180 seconds or longer, the crack may naturally develop and the tempered glass sheet G may be unintentionally cut.
  • natural cutting natural progress of cracks in the scribe line S
  • the bending stress is applied to the tempered glass sheet G preferably within 180 seconds, more preferably within 120 seconds, and even more preferably within 60 seconds. Good. If the scribe line S is formed and then left for 180 seconds or longer, the crack
  • the scribe line S is formed in consideration of workability and the like, preferably after 5 seconds or more, more preferably after 10 seconds or more, and even more preferably 15 seconds. It is preferable to apply a bending stress to the tempered glass sheet G after the above.
  • FIG. 5 is a plan view showing a method of scribing a strengthened glass sheet according to the second embodiment of the present invention.
  • the tempered glass sheet G to be subjected to the method has a rectangular shape.
  • a closed loop scribe line S ′ is already formed so as to surround the effective surface portion in order to cut out an effective surface portion having a corner portion curved in an R shape. ing.
  • this tempered glass sheet G is the same as the tempered glass sheet G to be subjected to the method in the tempered glass sheet scribing method according to the first embodiment described above.
  • the size is 710 MPa each, and the thickness DOL of both compressive stress layers A is 20.8 ⁇ m each. Moreover, the magnitude of the tensile stress in the tensile stress layer B is 21.4 MPa. Further, other configurations and preferable compositions are the same as those in the first embodiment.
  • Four lines S are formed.
  • all the aspects which form each of the four scribe lines S are the same.
  • the scribe wheel H is run on the edge portion located on one end side of the planned cutting line CL among the edge portions of the tempered glass sheet G, and the formation of the scribe line S is started.
  • the overlapping description is abbreviate
  • the scribe wheel H is run along the planned cutting line CL.
  • the pressing force with which the scribe wheel H presses the tempered glass plate G is 10N.
  • the speed at which the scribe wheel H travels is 15 mm / s.
  • the scribe wheel H is stopped or it is by scribe wheel H Release the pressing force.
  • the edge portion Eb is a minute edge portion formed by the surface Ga of the tempered glass sheet G and the scribe line S ′ already formed on the tempered glass sheet G, as shown in FIG. Say.
  • the separation distance X between the end Sb of the scribe line S and the edge portion Eb (scribe line S ′) is not less than 0.5 times the diameter HD of the scribe wheel H and not more than 3 times. Or the pressing force by the scribe wheel H is released. Thus, the formation of the scribe line S is completed.
  • the separation distance X is too short, after the formation of the scribe line S is finished, the crack generated from the scribe line S is developed due to the tensile stress layer B formed on the tempered glass sheet G, and the effective surface portion May reach up to. And when a crack reaches
  • the separation distance X is not less than 0.5 times and not more than 3 times the diameter HD of the scribe wheel H, occurrence of such a situation can be suitably avoided.
  • FIG. 7 is a plan view showing a method of scribing a strengthened glass sheet according to the third embodiment of the present invention.
  • the tempered glass sheet G to be subjected to the method has a rectangular shape.
  • the compressive stress in both the compressive stress layers A is carried out similarly to the tempered glass board G used as the object which implements the said method.
  • the thickness DOL of both compressive stress layers A is 20.8 ⁇ m each.
  • the magnitude of the tensile stress in the tensile stress layer B is 21.4 MPa.
  • other configurations and preferable compositions are the same as those in the first embodiment.
  • a curved corner portion is formed by running a scribe wheel H as a scribe rotation blade along a closed loop-like cutting planned line CL indicated by a two-dot chain line.
  • a scribe line S for cutting out the substantially rectangular effective surface portion from the tempered glass plate G is formed.
  • a portion of the planned cutting line CL that extends from the edge portion toward the closed loop-shaped cutting planned line CL is in contact with a straight line portion of the closed-loop-shaped cutting planned line CL.
  • the scribe wheel H is run on the edge portion located on one end side of the planned cutting line CL among the edge portions of the tempered glass sheet G, and the formation of the scribe line S is started. And while making the scribe wheel H press the surface Ga of the tempered glass board G and gradually changing the advancing direction, the scribe line S is curved and smoothly merged with the planned closed line CL. At this time, the pressing force with which the scribe wheel H presses the tempered glass plate G is set to 9.4N. The traveling speed of the scribe wheel H is 15 mm / s.
  • the overlapping description is abbreviate
  • the scribe wheel H is caused to travel along the scheduled cut line CL having a closed loop shape.
  • the pressing force with which the scribe wheel H presses the tempered glass sheet G is 8.5 N in the straight line portion on the planned cutting line CL.
  • the traveling speed of the scribe wheel H is 100 mm / s at the straight part in the planned cutting line CL, and 20 mm / s at the curved part.
  • DOL thickness of the compressive stress layer A at the straight portion of the closed loop-shaped cutting line CL.
  • the curved portion is formed deeper than the straight portion. For this reason, when the tempered glass sheet G is broken, the tempered glass sheet G can be broken with a smaller bending moment at the curved portion than at the straight portion.
  • FIG. 8 enlarged view in which the Z portion in FIG. 7 is enlarged
  • FIG. 9 it is caused to travel to a position where the vicinity of the edge portion Eb located on the other end side of the planned cutting line CL becomes the remaining portion.
  • the scribe wheel H is stopped or the pressing force by the scribe wheel H is released.
  • the edge part Eb here is the minute formed by the surface Ga of the tempered glass plate G and the scribe line S already formed on the tempered glass plate G, as shown in FIGS. 8 and 9. This means the edge part.
  • the scribe wheel H has a separation distance X between the end Sb of the scribe line S and the edge portion Eb (the already formed scribe line S) is 0.5 times or more the diameter HD of the scribe wheel H, and Stop to 3 times or less, or cancel the pressing force by the scribe wheel H.
  • the formation of the scribe line S is completed.
  • the separation distance X is too short, after the formation of the scribe line S is finished, the crack generated from the scribe line S is developed due to the tensile stress layer B formed on the tempered glass sheet G, and already formed.
  • the scribe line S may extend in a different direction.
  • the separation distance X is not less than 0.5 times and not more than 3 times the diameter HD of the scribe wheel H, occurrence of such a situation can be suitably avoided.
  • the scribing method of the tempered glass sheet according to the present invention is not limited to the aspect described in each of the above embodiments.
  • the scribe wheel rides in a direction perpendicular to the edge portion located on one end side of the planned cutting line to form the start end of the scribe line.
  • the starting end of the scribe line may be formed by riding in a direction that forms an inclination angle with respect to the edge portion.
  • the value of the inclination angle is preferably 45 ° or less with reference to a direction orthogonal to the edge portion.
  • the formation of the scribe line is completed by stopping the running of the scribe wheel or releasing the pressing force by the scribe wheel H.
  • this is not restrictive.
  • the scribing wheel that has traveled to the position where the vicinity of the edge portion located on the other end side of the planned cutting line becomes the remaining portion is moved upward and separated from the surface of the tempered glass plate (takeoff) ), The formation of the scribe line may be terminated.
  • the scribe line is formed on a rectangular tempered glass plate.
  • a tempered glass plate having an arbitrary shape such as a circle or an ellipse
  • the tempered glass sheet scribing method according to the present invention can be applied.
  • the scribe wheel H when the scribe line S is formed, it is preferable that the scribe wheel H is brought into contact with the edge portion Ea while being accelerated. Specifically, as shown in FIG. 10, in the case where the speed of the scribe wheel H is gradually increased from time T1 to time T3, the tempered glass sheet G has an arbitrary time T2 between time T1 and time T3. It is preferable to control the operation of the scribe wheel H or adjust the position of the tempered glass plate G so as to ride on the edge portion Ea. That is, it is preferable that acceleration is continuously accelerated before and after the scribe wheel H rides on the edge portion Ea, and acceleration is continued while traveling on the surface Ga of the tempered glass sheet G until a predetermined target speed ⁇ 1 is reached.
  • the scribe wheel H can be easily ridden on the edge portion Ea, and the scribe line S can be formed stably.
  • the speed of the scribe wheel H during acceleration may be increased linearly, exponentially, or logarithmically.
  • the contact speed ⁇ 2 is preferably adjusted to be in the range of 1 to 40 mm / second. If the contact speed 2 exceeds 40 mm / second, the tempered glass plate G may be damaged when the scribe wheel H contacts the edge portion Ea.
  • the pressing force to the tempered glass plate from the scribe wheel running on the surface of the tempered glass plate by the same aspect as the scribe method of the tempered glass plate according to the first embodiment.
  • a scribe line was formed.
  • disconnection by splitting was tried with respect to the tempered glass board in which the scribe line was formed. And it verified about the range of the pressing force which enables the cutting
  • each glass plate (NO. 1 to No. 1) having a length ⁇ width dimension of 370 mm ⁇ 470 mm and having a thickness described in [Table 1] and [Table 2]. .12 glass plate).
  • the composition of each glass plate is common, and by mass%, SiO 2 is 66%, Al 2 O 3 is 14.2%, Na 2 O is 13.4%, and K 2 O is 0.6%. , 0.1% Li 2 O, 2.3% B 2 O 3 , 3.0% MgO, and 0.4% SnO 2 .
  • each glass plate is chemically strengthened by the ion exchange method so that it becomes the magnitude of the compressive stress listed in [Table 1] and [Table 2], and the thickness of the compressive stress layer. Produced.
  • a scribe line is applied while applying a pressing force to the surface of each tempered glass plate using a scribe wheel having the pitch, depth, and width of the notches shown in [Table 1] and [Table 2]. Formed. Then, the cutting
  • the range of the pressing force that enables cutting of the tempered glass sheet was determined. More specifically, as a result of attempting to cut each of the 15 tempered glass plates on which scribe lines were formed, a range of pressing force capable of cutting 9 or more sheets was determined.

Abstract

 強化ガラス板Gの表面Gaを押圧しつつ、切断予定線CLに沿って走行するスクライブホイールHにより、強化ガラス板Gを切断するためのスクライブラインSを形成する強化ガラス板のスクライブ方法において、スクライブホイールHを、強化ガラス板Gにおけるエッジ部のうち、切断予定線CLの一端側に位置するエッジ部Eaに乗り上げさせて、スクライブラインSの形成を開始すると共に、切断予定線CLの他端側に位置するエッジ部Ebの近傍が残余部となる位置まで走行させて、スクライブラインSの形成を終了した。

Description

強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法
 本発明は、スクライブ回転刃を走行させることによって、強化ガラス板を切断するためのスクライブラインを形成する強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法に関する。
 周知のように、強化ガラス板は、イオン交換法や風冷強化法によって表層部が強化されており、その板厚方向における表面側、及び裏面側には、圧縮応力層が形成されると共に、両側の圧縮応力層の間には、引張応力層が形成される。このような強化ガラス板は、通常のガラス板と比較して、表層部に作用する引張応力に対して、破壊強度が大幅に高められている。
 この強化ガラス板を切断するような場合には、例えば、以下のような手法が広く用いられている。すなわち、スクライブホイールを走行させることで、強化ガラス板の表面を切断予定線に沿って押圧し、スクライブラインを形成する(特許文献1参照)。このスクライブラインには、板厚方向に延びたメディアンクラックが含まれる。その後、スクライブラインの周辺に曲げモーメントを作用させ、折割りを実行することで、強化ガラス板を切断(割断)する手法である。
国際公開第2012-009253号
 ところで、特許文献1に開示された態様により、強化ガラス板にスクライブラインを形成した場合には、当該強化ガラス板を折割って切断する際に、以下のような問題が生じていた。
 すなわち、同文献に開示されたスクライブラインは、強化ガラス板のエッジ部から内側に離間した位置において、スクライブホイールが走行し始め、当該スクライブラインの形成が開始される。このことに起因して、スクライブラインを形成する初期段階では、強化ガラス板の表面に対し、スクライブホイールが好適に転動せず、空転することがあり、スクライブライン(メディアンクラック)の深さが、折割りの実行に適した深さに対して、浅く形成されやすいという難点がある。
 このため、スクライブラインの始端付近では、浅く形成されたスクライブラインに沿って強化ガラス板を折割るために、適切な深さに形成されたスクライブラインに沿って折割りを実行する場合と比較して、過大な曲げモーメントを強化ガラス板に作用させる必要が生じる。その結果、折割りを実行した際に、スクライブライン(メディアンクラック)から発生した亀裂が、強化ガラス板の表面に対して垂直な方向から逸れる等、意図しない方向へと進展して、強化ガラス板に形成される切断面の品質が、大きく低下してしまう不具合を招いていた。
 上記事情に鑑みなされた本発明は、強化ガラス板を折割って切断する場合に、切断面における品質の低下を回避することを技術的課題とする。
 上記課題を解決するために創案された本発明に係る強化ガラス板のスクライブ方法は、強化ガラス板の表面を押圧しつつ、切断予定線に沿って走行するスクライブ回転刃により、前記強化ガラス板を切断するためのスクライブラインを形成する方法において、前記スクライブ回転刃を、前記強化ガラス板におけるエッジ部のうち、前記切断予定線の一端側に位置するエッジ部に乗り上げさせて、前記スクライブラインの形成を開始すると共に、前記切断予定線の他端側に位置するエッジ部の近傍が残余部となる位置まで走行させて、前記スクライブラインの形成を終了することに特徴付けられる。
 ここで、「エッジ部に乗り上げ」とは、スクライブ回転刃がエッジ部にスクライブラインを形成する際に、当該スクライブ回転刃が上方に移動した後、強化ガラス板の表面上へと至る動作をいう。また、「切断予定線の他端側に位置するエッジ部」とは、強化ガラス板の外周輪郭を構成するエッジ部のみでなく、強化ガラス板の表面と、当該強化ガラス板に既に形成済みの他のスクライブラインとによって形成される微小なエッジ部をも含む。
 このような方法によれば、スクライブ回転刃が、切断予定線の一端側に位置するエッジ部に乗り上げる際に、当該エッジ部に引っ掛かることで、当該スクライブ回転刃の空転が防止され、好適に転動が開始される。そのため、スクライブラインを形成する初期段階においても、当該スクライブラインの深さを、強化ガラス板を折割って切断するのに適した深さに形成することができる。これにより、スクライブラインに沿って強化ガラス板を折割って切断する際に、過大な曲げモーメントを当該強化ガラス板に作用させる必要がなくなり、スクライブラインから発生した亀裂が、強化ガラス板の表面に対して垂直な方向から逸れる等、意図しない方向へと進展するような事態の発生を防止することが可能となる。その結果、強化ガラス板に形成される切断面における品質の低下を回避することができる。また、スクライブ回転刃が、切断予定線の他端側に位置するエッジ部の近傍が残余部となる位置まで走行してスクライブラインの形成を終了することにより、以下のような不具合の発生を的確に回避することができる。すなわち、スクライブラインを他端側に位置するエッジ部まで形成してしまうと、例えば、強化ガラス板をベルトコンベア等により搬送するような場合に、当該強化ガラス板に形成された引張応力層に起因して、スクライブラインから発生した亀裂が板厚方向に進展し、搬送中の強化ガラス板がスクライブラインの全長に亘って切断されてしまうことがある。つまり、意図しないタイミングで強化ガラス板が切断されてしまう。その結果、搬送中の振動等によって、対向する切断面同士が接触し、その品質が低下するような事態を招いてしまう。しかしながら、本発明によれば、残余部において強化ガラス板の切断が防止されるため、このような事態が発生する恐れを好適に排除することが可能である。
 上記の強化ガラス板のスクライブ方法において、前記スクライブラインの深さを、前記強化ガラス板の表層部に形成された圧縮応力層の厚みの3倍以上で、且つ前記強化ガラス板の板厚の60%以下とすることが好ましい。
 このようにすれば、従来と比較して、スクライブラインが板厚方向に深く形成されるため、当該スクライブラインに沿って強化ガラス板を折割って切断する際に、小さな曲げモーメントでもって、当該強化ガラス板を折割ることが可能となると共に、スクライブラインから発生した亀裂の意図しない方向への進展が、より的確に防止される。さらに、従来と比較して、形成すべきスクライブラインの深さの許容範囲が広いため、当該スクライブラインを形成する際に、スクライブ回転刃が強化ガラス板を押圧する押圧力が、例えば、強化ガラス板の表面の細かい凹凸等によって変動した場合であっても、スクライブラインを上記の範囲内の深さに、安定して形成することができる。すなわち、押圧力の制御を極めて容易なものとすることが可能となる。
 上記の強化ガラス板のスクライブ方法において、前記スクライブ回転刃を、前記切断予定線の前記一端側に位置するエッジ部に対して直交する方向に乗り上げさせて、前記スクライブラインの形成を開始することが好ましい。
 このようにすれば、スクライブ回転刃が、よりエッジ部に対して引っ掛かりやすくなるため、スクライブラインを形成する初期段階において、強化ガラス板の切断に適した深さのスクライブラインを形成する上で、より有利となる。
 上記の強化ガラス板のスクライブ方法において、前記切断予定線の前記他端側に位置するエッジ部と、前記スクライブラインの終端との離間距離を、前記スクライブ回転刃の径の0.5倍以上で、且つ3倍以下とすることが好ましい。
 スクライブラインの終端と、切断予定線の他端側に位置するエッジ部との離間距離が短すぎる場合、スクライブラインの形成が終了した後、強化ガラス板に形成された引張応力層に起因して、当該スクライブラインから発生した亀裂が進展し、切断予定線の他端側に位置するエッジ部まで到達することがある。このとき、強化ガラス板には、切断予定線の一端側に位置するエッジ部と、他端側に位置するエッジ部とを結ぶスクライブラインが形成された状態となる。そのため、例えば、上流側工程にて、強化ガラス板にスクライブラインを形成すると共に、当該強化ガラス板をベルトコンベア等により下流側工程に搬送した後、折割って切断するような生産ラインにおいて、以下のような不具合が生じる。すなわち、強化ガラス板に形成された引張応力層に起因して、スクライブラインから発生した亀裂が板厚方向に進展し、強化ガラス板の搬送中に、当該強化ガラス板がスクライブラインの全長に亘って切断されてしまうことがある。つまり、意図しないタイミングで強化ガラス板が切断されてしまう。その結果、搬送中の振動等によって、対向する切断面同士が接触し、その品質が低下するような事態を招いてしまう。一方、離間距離が長すぎる場合、スクライブラインに沿って強化ガラス板を折割って切断する際に、スクライブラインから発生した亀裂が、切断予定線から逸れて意図しない方向へと進展してしまうことがある。しかしながら、離間距離が上記の範囲内にある場合には、これらの不具合の発生を好適に回避することが可能である。
 上記の強化ガラス板のスクライブ方法において、スクライブ回転刃の刃先に、スクライブ回転刃の周方向に沿って複数の切欠き部を形成し、複数の切欠き部は、形成ピッチが20μm~160μmであると共に、複数の切欠き部の各々は、深さが1.0μm~2.5μmで、且つスクライブ回転刃の周方向に沿った幅が3μm~8μmであることが好ましい。
 切欠き部の形成ピッチが20μmよりも小さかったり、160μmよりも大きかったりすると、強化ガラス板の表面でスクライブ回転刃が滑る等、当該スクライブ回転刃の転動が適切に行われ難くなり、スクライブラインを形成し難くなるおそれがある。また、切欠き部の深さが1.0μmよりも浅いと、強化ガラス板を切断するのに十分な深さのスクライブラインを形成し難くなるおそれがある。一方、切欠き部の深さが2.5μmよりも深いと、スクライブラインの形成時において、強化ガラス板に作用する衝撃力が大きくなりすぎ、当該強化ガラス板の内部に作用する引張応力によって自己破壊を誘発するおそれがある。さらに、切欠き部におけるスクライブ回転刃の周方向に沿った幅が3μmよりも狭いと、強化ガラス板を切断するのに十分な深さのスクライブラインを形成し難くなるおそれがある。一方、この幅が8μmより広いと、スクライブラインの形成時において、強化ガラス板の表面が破砕され易くなり、ガラス粉が発生することで強化ガラス板の製品価値を低下させたり、切断面の強度が低下したりするおそれがある。しかしながら、切欠き部の形成ピッチ、深さ、幅を上記の範囲内とすれば、これらの不具合が発生するおそれを可及的に排除することができる。
 上記の強化ガラス板のスクライブ方法において、強化ガラス板は、表面側及び裏面側のそれぞれの表層部に形成された圧縮応力層と、両圧縮応力層の間に形成された引張応力層とを有し、強化ガラス板の板厚をt[μm]、圧縮応力層に作用する圧縮応力の大きさをCS[MPa]、引張応力層に作用する引張応力の大きさをCT[MPa]としたとき、
 300≦t≦2000
 -0.00308×t+20.5343≦CT≦-0.00405×t+27.3791
 600≦CS≦700
を満たすことが好ましい。
 強化ガラス板の厚みt、圧縮応力層に作用する圧縮応力の大きさCS、引張応力層に作用する引張応力の大きさCTが、上記の関係を満たすような強化ガラス板に対しては、とりわけ好適にスクライブラインを形成することが可能である。
 上記の強化ガラス板のスクライブ方法において、前記スクライブ回転刃を、前記切断予定線の前記一端側に位置するエッジ部に対して加速させた状態で接触させて、前記スクライブラインの形成を開始することが好ましい。
 このようにすれば、エッジ部に対してスクライブ回転刃を加速させた状態で接触させることによって、スクライブ回転刃を当該エッジに容易に乗り上げさせることができる。
 また、本発明に係る強化ガラス板の切断方法は、上記の強化ガラス板のスクライブ方法を用いて強化ガラス板を短冊状に切断した後、該短冊状の強化ガラス板をさらに個片に切断することに特徴付けられる。
 上記のように強化ガラスを短冊状に切断した後に個片に切断すれば、複数方向にスクライブラインを形成した後に折割る場合等に比べ、圧縮応力や引張応力に起因する意図せぬ方向への分断や自己破壊等の切断不良を抑制することができる。
 さらに、本発明に係る強化ガラス板の切断方法は、上記の強化ガラス板のスクライブ方法を用いて強化ガラス板にスクライブラインを形成した後、前記強化ガラス板に曲げ応力を作用させて該強化ガラス板を折割り切断することに特徴付けられる。
 上記の強化ガラス板の切断方法において、前記強化ガラス板に前記スクライブラインを形成した後、180秒以内に前記強化ガラス板に曲げ応力を作用させて該強化ガラス板を折割り切断することが好ましい。
 上記のようにスクライブラインを形成した後、曲げ応力を作用させて強化ガラス板を切断すれば、スクライブラインの亀裂の自然な進展によらず、確実に強化ガラス板を切断することができる。
 以上のように、本発明によれば、強化ガラス板を折割って切断する場合に、切断面における品質の低下を回避することが可能となる。
本発明の各実施形態に係る強化ガラス板のスクライブ方法に用いるスクライブホイールを示す側面図である。 本発明の各実施形態に係る強化ガラス板のスクライブ方法に用いるスクライブホイールを示す正面図である。 本発明の第一実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。 本発明の第一実施形態に係る強化ガラス板のスクライブ方法を示す側面図である。 本発明の第一実施形態に係る強化ガラス板のスクライブ方法を示す側面図である。 本発明の第二実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。 本発明の第二実施形態に係る強化ガラス板のスクライブ方法を示す側面図である。 本発明の第三実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。 図7におけるZ部を拡大した拡大図である。 本発明の第三実施形態に係る強化ガラス板のスクライブ方法を示す側面図である。 本発明の各実施形態に係るスクライブの速度制御のイメージを示す図である。
 以下、本発明の実施形態について添付の図面を参照して説明する。なお、以下に説明する各実施形態に係る強化ガラス板のスクライブ方法において、当該方法を実施する対象となる強化ガラス板は、その一構成例を示したものにすぎず、後述のように、本発明に係る強化ガラス板のスクライブ方法は、このような強化ガラス板のみを対象とするものではない。
 まず、本発明の各実施形態に係る強化ガラス板のスクライブ方法に用いるスクライブ回転刃としてのスクライブホイールの構成について説明する。
 図1aに示すように、スクライブホイールHの刃先には、周方向に沿って複数の切欠き部Cが形成されている。そして、複数の切欠き部Cは、その形成ピッチPが20μm~160μmとされている。また、複数の切欠き部Cの各々は、その深さDHが1.0μm~2.5μmとされると共に、周方向に沿った幅Wが3μm~8μmとされている。さらに、図1bに示すスクライブホイールHの刃先における開き角度θは、110°~150°とされている。
 以下、本発明の第一実施形態に係る強化ガラス板のスクライブ方法について説明する。
 図2は、本発明の第一実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。同図に示すように、当該方法を実施する対象となる強化ガラス板Gは、矩形形状を有する。また、図3に示すように、板厚方向における表面側、及び裏面側には、圧縮応力層Aが形成されると共に、表面側、及び裏面側の両圧縮応力層Aの間には、引張応力層Bが形成されている。
 この強化ガラス板Gについて、板厚をt[μm]、両圧縮応力層Aの各々に作用する圧縮応力の大きさをCS[MPa]、引張応力層Bに作用する引張応力の大きさをCT[MPa]とすると、これらは以下の(1)~(3)の関係を満たしている。
(1)300≦t≦2000
(2)-0.00308×t+20.5343≦CT≦-0.00405×t+27.3791
(3)600≦CS≦800
なお、引張応力層Bに作用する引張応力の大きさCTは、両圧縮応力層Aの各々の深さをDOLとすると、以下の式で表される。
CT=CS×DOL/(t-DOL×2)
ここで、本実施形態において、両圧縮応力層Aにおける圧縮応力の大きさCSは、各710MPaであり、両圧縮応力層Aの厚みDOLは、各20.8μmである。また、引張応力層Bにおける引張応力の大きさCTは、21.4MPaである。さらに、強化ガラス板Gの板厚tは、700μmとなっている。
 なお、強化ガラス板G(強化ガラス板Gの元となるガラス板)は、ガラス組成として、質量%でSiO2:50~80%、Al23:5~25%、B23:0~15%、Na2O:1~20%、K2O:0~10%を含有する組成であることが好ましい。このようにすれば、イオン交換性能と耐失透性との双方に優れた強化ガラス板Gを得ることが可能である。
 この強化ガラス板Gに対し、図2に二点鎖線で示す切断予定線CLに沿って、スクライブ回転刃としてのスクライブホイールHを走行させることで、当該強化ガラス板Gを切断するためのスクライブラインSを形成する。まず、同図に示すように、スクライブホイールHを、強化ガラス板Gにおけるエッジ部のうち、切断予定線CLの一端側に位置するエッジ部Eaに乗り上げさせて、スクライブラインSの形成を開始する。このとき、スクライブホイールHは、エッジ部Eaに対して直交する方向に乗り上げる。
 ここで、スクライブホイールHが、エッジ部Eaに乗り上げる態様について詳述する。図3に示すように、スクライブホイールHをエッジ部Eaに押付けて引っ掛け、当該エッジ部Eaを中心とした円弧軌道を描くように上方に移動させることで、強化ガラス板Gの表面Ga上へと至らせる。これにより、スクライブラインSの始端Saが、強化ガラス板Gに形成される。
 なお、スクライブホイールHとエッジ部Eaとが接触する際、強化ガラス板Gの表面GaからスクライブホイールHの下端までの深さKは、強化ガラス板Gの板厚tに応じて定めることが好ましい。具体的には、上記の深さKは、好ましくは板厚tの5~50%、より好ましくは10~40%、さらに好ましくは25~35%である。例えば、板厚tが700μmである場合、深さKは、好ましくは0.04~0.35mm、より好ましくは0.07~0.28mm、さらに好ましくは0.18~0.25mmである。このような深さKの範囲でスクライブホイールHとエッジ部Eaとを接触させれば、スクライブホイールHをエッジ部Eaに引っ掛け易く、スムーズにスクライブラインSを形成することができる。
 次に、スクライブホイールHに強化ガラス板Gの表面Gaを押圧させつつ、切断予定線CLに沿って走行させる。ここで、スクライブホイールHが、切断予定線CLに沿って走行する際において、当該スクライブホイールHが、強化ガラス板Gの表面Gaを押圧する押圧力は、8.5Nとしている。また、スクライブホイールHが走行する速度は、100mm/sとしている。これにより、強化ガラス板Gに形成されるスクライブラインSは、その深さDが、圧縮応力層Aの厚みDOL(=20.8μm)の3倍以上で、且つ板厚(=700μm)の60%以下に形成されていく。
 そして、図4に示すように、切断予定線CLの他端側に位置するエッジ部Ebの近傍が残余部となる位置まで走行させた後、スクライブホイールHを停止させ、或いは、スクライブホイールHによる押圧力を解除する。このとき、スクライブホイールHは、スクライブラインSの終端Sbと、エッジ部Ebとの離間距離Xが、スクライブホイールHの径HDの0.5倍以上で、且つ3倍以下となるようにする。以上により、スクライブラインSの形成が終了する。
 以下、上述した本発明の第一実施形態に係る強化ガラス板のスクライブ方法の作用・効果について説明する。
 第一実施形態に係る強化ガラス板のスクライブ方法によれば、スクライブホイールHが、エッジ部Eaに乗り上げる際に、当該エッジ部Eaに引っ掛かることで、スクライブホイールHの空転が防止され、好適に転動が開始される。そのため、スクライブラインSを形成する初期段階においても、当該スクライブラインSの深さDを、強化ガラス板Gを折割って切断するのに適した深さ(本実施形態においては、圧縮応力層Aの厚みDOLの3倍以上で、且つ板厚の60%以下)に形成することができる。
 これにより、スクライブラインSに沿って強化ガラス板Gを折割って切断する際に、過大な曲げモーメントを当該強化ガラス板Gに作用させる必要がなくなるため、スクライブラインSから発生した亀裂が、強化ガラス板Gの表面Gaに対して垂直な方向から逸れる等、意図しない方向へと進展するような事態の発生を防止することが可能となる。その結果、強化ガラス板Gに形成される切断面における品質の低下を回避することができる。
 また、スクライブホイールHを、エッジ部Eaに対して直交する方向に乗り上げさせたことで、当該スクライブホイールHが、よりエッジ部Eaに対して引っ掛かりやすくなるため、スクライブラインSを形成する初期段階において、強化ガラス板Gの切断に適した深さのスクライブラインSを形成する上で、より有利となる。
 さらに、スクライブラインSの深さDを、圧縮応力層Aの厚みDOLの3倍以上で、且つ板厚の60%以下としたことで、従来(圧縮応力層の厚みの1倍以上~3倍未満で、且つ板厚の10~20%程度)と比較して、スクライブラインSが板厚方向に深く形成されているため、当該スクライブラインSに沿って強化ガラス板Gを折割って切断する際に、小さな曲げモーメントでもって、当該強化ガラス板Gを折割ることが可能となると共に、スクライブラインSから発生した亀裂の意図しない方向への進展が、より的確に防止される。
 また、従来と比較して、形成すべきスクライブラインSの深さDの許容範囲が広いため、当該スクライブラインSを形成する際に、スクライブホイールHが強化ガラス板Gを押圧する押圧力が、例えば、強化ガラス板Gの表面Gaの細かい凹凸等によって変動した場合であっても、スクライブラインSを、強化ガラス板Gを折割って切断するのに適した深さに、安定して形成することができる。すなわち、押圧力の制御を極めて容易なものとすることが可能となる。
 加えて、スクライブラインSの終端Sbと、エッジ部Ebとの離間距離Xが、スクライブホイールHの径HDの0.5倍以上で、且つ3倍以下であることにより、以下のような効果をも得ることができる。離間距離Xが短すぎる場合、スクライブラインSの形成が終了した後、強化ガラス板Gに形成された引張応力層Bに起因して、当該スクライブラインSから発生した亀裂が進展し、エッジ部Ebまで到達することがある。
 このとき、強化ガラス板Gには、切断予定線CLの一端側に位置するエッジ部Eaと、他端側に位置するエッジ部Ebとを結ぶスクライブラインSが形成された状態となる。そのため、例えば、上流側工程にて、強化ガラス板GにスクライブラインSを形成すると共に、当該強化ガラス板Gをベルトコンベア等により下流側工程に搬送した後、折割って切断するような生産ラインにおいて、以下のような不具合が生じる。
 すなわち、強化ガラス板Gに形成された引張応力層Bに起因して、スクライブラインSから発生した亀裂が板厚方向に進展し、強化ガラス板Gの搬送中に、当該強化ガラス板がスクライブラインSの全長に亘って切断されてしまうことがある。つまり、意図しないタイミングで強化ガラス板Gが切断されてしまう。その結果、搬送中の振動等によって、対向する切断面同士が接触し、その品質が低下するような事態を招いてしまう。
 一方、離間距離Xが長すぎる場合、スクライブラインSに沿って強化ガラス板Gを折割って切断する際に、スクライブラインSから発生した亀裂が、切断予定線CLから逸れて意図しない方向へと進展することがある。しかしながら、離間距離XがスクライブホイールHの径HDの0.5倍以上で、且つ3倍以下の範囲内にある場合には、これらの不具合の発生を好適に回避することが可能である。
 なお、この強化ガラス板のスクライブ方法では、上記の構成を有するスクライブホイールHを使用することにより、以下のような作用・効果をも得ることが可能である。すなわち、スクライブラインSの形成時において、強化ガラス板Gの表面GaでスクライブホイールHが滑ったり、強化ガラス板Gに作用する衝撃力が大きくなりすぎたり、強化ガラス板Gの表面Gaが破砕され易くなったりすることを回避することができる。そのため、強化ガラス板Gを切断するのに十分な深さDのスクライブラインSを確実に形成することが可能となる。
 ここで、上述のようにして強化ガラス板Gを短冊状に分断した後、さらにスクライブラインを形成し、強化ガラス板Gを3つ以上の個片に切断してもよい。例えば、図2に示す複数の切断予定線CL’に沿ってさらにスクライブラインを形成し、切断してもよい。なお、強化ガラス板Gを短冊状に切断した後に個片に切断すれば、複数方向にスクライブラインを形成した後に折割る場合等に比べ、圧縮応力や引張応力に起因する意図せぬ方向への分断や自己破壊を抑制できる。また、上記の切断方法は一例であって、これに限定されるものではない。例えば、強化ガラス板Gに上述の方法を用いて格子状に複数のスクライブラインを形成して個片に切断してもよい。このような構成の場合、短時間で強化ガラス板Gを個片に切断でき、個片のガラスの生産性を向上させることができる。
 なお、強化ガラス板Gを切断する際には、スクライブラインSの亀裂の自然な進展により切断(以下、自然切断と称する)してもよいし、スクライブラインSに沿って強化ガラス板Gを折り曲げるように応力を作用させて切断(以下、折割り切断と称する)してもよい。なお、折割り切断を行いたい場合には、スクライブラインSを形成した後、好ましくは180秒以内、より好ましくは120秒以内、さらに好ましくは60秒以内に強化ガラス板Gに曲げ応力を作用させるとよい。スクライブラインSを形成した後、180秒以上放置すると、亀裂が自然に進展して強化ガラス板Gが意図せず自然切断されてしまう場合がある。また、折割り切断を行いたい場合には、作業性等を考慮して、スクライブラインSを形成した後、好ましくは5秒以上経過後、より好ましくは10秒以上経過後、さらに好ましくは15秒以上経過後に強化ガラス板Gに曲げ応力を作用させるとよい。
 以下、本発明の第二実施形態に係る強化ガラス板のスクライブ方法について、添付の図面を参照して説明する。なお、第二実施形態に係る強化ガラス板のスクライブ方法の説明において、上記の第一実施形態に係る強化ガラス板のスクライブ方法で既に説明した要素については、第二実施形態について説明するための図面に、同一の符号を付すことにより重複する説明を省略している。
 図5は、本発明の第二実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。同図に示すように、当該方法を実施する対象となる強化ガラス板Gは、矩形形状を有する。また、強化ガラス板Gを折割って切断することにより、R状に湾曲したコーナー部を有する有効面部を切出すために、当該有効面部を囲うように閉ループ状のスクライブラインS’が既に形成されている。
 さらに、この強化ガラス板Gは、上記の第一実施形態に係る強化ガラス板のスクライブ方法において、当該方法を実施する対象となる強化ガラス板Gと同様に、両圧縮応力層Aにおける圧縮応力の大きさは、各710MPaであり、両圧縮応力層Aの厚みDOLは、各20.8μmである。また、引張応力層Bにおける引張応力の大きさは、21.4MPaである。さらに、その他の構成、及び好ましい組成についても上記の第一実施形態と同一である。
 この強化ガラス板Gに対し、図5に二点鎖線で示す切断予定線CLに沿って、スクライブ回転刃としてのスクライブホイールHを走行させることで、有効面部の円滑な切出しを補助するためのスクライブラインSを4本形成する。なお、4本のスクライブラインSの各々を形成する態様は、全て同一である。
 まず、同図に示すように、スクライブホイールHを、強化ガラス板Gにおけるエッジ部のうち、切断予定線CLの一端側に位置するエッジ部に乗り上げさせて、スクライブラインSの形成を開始する。なお、本実施形態において、スクライブホイールHをエッジ部に乗り上げさせる態様については、上記の第一実施形態と同様であるため、重複する説明を省略する。
 次に、スクライブホイールHに強化ガラス板Gの表面Gaを押圧させつつ、切断予定線CLに沿って走行させる。ここで、スクライブホイールHが、切断予定線CLに沿って走行する際において、当該スクライブホイールHが、強化ガラス板Gを押圧する押圧力は、10Nとしている。また、スクライブホイールHが走行する速度は、15mm/sとしている。これにより、強化ガラス板Gに形成されるスクライブラインSは、その深さDが、圧縮応力層Aの厚みDOL(=20.8μm)の3倍以上で、且つ板厚(=700μm)の60%以下に形成されていく。
 そして、図6に示すように、切断予定線CLの他端側に位置するエッジ部Ebの近傍が残余部となる位置まで走行させた後、スクライブホイールHを停止させ、或いは、スクライブホイールHによる押圧力を解除する。なお、ここでいうエッジ部Ebとは、図6に示すように、強化ガラス板Gの表面Gaと、当該強化ガラス板Gに既に形成済みのスクライブラインS’とによって形成される微小なエッジ部をいう。
 このとき、スクライブホイールHは、スクライブラインSの終端Sbと、エッジ部Eb(スクライブラインS’)との離間距離Xが、スクライブホイールHの径HDの0.5倍以上で、且つ3倍以下となるように停止させ、或いは、スクライブホイールHによる押圧力を解除する。以上により、スクライブラインSの形成が終了する。
 以下、上述した本発明の第二実施形態に係る強化ガラス板のスクライブ方法の作用・効果について説明する。
 第二実施形態に係る強化ガラス板のスクライブ方法によれば、上述した第一実施形態に係る強化ガラス板のスクライブ方法と同一の作用・効果を得ることができる、なお、この第二実施形態において、離間距離Xが短すぎる場合、スクライブラインSの形成が終了した後、強化ガラス板Gに形成された引張応力層Bに起因して、当該スクライブラインSから発生した亀裂が進展し、有効面部まで到達することがある。そして、亀裂が有効面部まで到達した場合には、切断後の強化ガラス板Gの強度が低下するおそれがある。しかしながら、離間距離XをスクライブホイールHの径HDの0.5倍以上で、且つ3倍以下としたことで、このような事態の発生を好適に回避することが可能となる。
 以下、本発明の第三実施形態に係る強化ガラス板のスクライブ方法について、添付の図面を参照して説明する。なお、第三実施形態に係る強化ガラス板のスクライブ方法の説明において、上記の第一実施形態に係る強化ガラス板のスクライブ方法で既に説明した要素については、第三実施形態について説明するための図面に、同一の符号を付すことにより重複する説明を省略している。
 図7は、本発明の第三実施形態に係る強化ガラス板のスクライブ方法を示す平面図である。同図に示すように、当該方法を実施する対象となる強化ガラス板Gは、矩形形状を有する。さらに、この強化ガラス板Gについても、上記の第一実施形態に係る強化ガラス板のスクライブ方法において、当該方法を実施する対象となる強化ガラス板Gと同様に、両圧縮応力層Aにおける圧縮応力の大きさは、各710MPaであり、両圧縮応力層Aの厚みDOLは、各20.8μmである。また、引張応力層Bにおける引張応力の大きさは、21.4MPaである。さらに、その他の構成、及び好ましい組成についても上記の第一実施形態と同一である。
 この強化ガラス板Gに対し、図7に示すように、二点鎖線で示す閉ループ状の切断予定線CLに沿って、スクライブ回転刃としてのスクライブホイールHを走行させることで、湾曲したコーナー部を有する略矩形の有効面部を強化ガラス板Gから切出すためのスクライブラインSを形成する。なお、本実施形態において、切断予定線CLのうち、エッジ部から閉ループ状の切断予定線CLへと向かって延びた部位は、閉ループ状の切断予定線CLにおける直線部位と接している。
 まず、同図に示すように、スクライブホイールHを、強化ガラス板Gにおけるエッジ部のうち、切断予定線CLの一端側に位置するエッジ部に乗り上げさせて、スクライブラインSの形成を開始する。そして、スクライブホイールHに強化ガラス板Gの表面Gaを押圧させると共に、その進行方向を漸次に転換させることで、スクライブラインSを湾曲させつつ滑らかに閉ループ状の切断予定線CLに合流させる。このとき、スクライブホイールHが、強化ガラス板Gを押圧する押圧力は、9.4Nとしている。また、スクライブホイールHの走行速度は、15mm/sとしている。なお、本実施形態において、スクライブホイールHをエッジ部に乗り上げさせる態様については、上記の第一実施形態と同様であるため、重複する説明を省略する。
 次に、スクライブホイールHに強化ガラス板Gの表面Gaを押圧させつつ、閉ループ状の切断予定線CLに沿って走行させる。ここで、スクライブホイールHが、切断予定線CLに沿って走行する際において、当該スクライブホイールHが、強化ガラス板Gを押圧する押圧力は、切断予定線CLにおける直線部位では、8.5Nとし、曲線部位にでは、9.4Nとしている。また、スクライブホイールHの走行速度は、切断予定線CLにおける直線部位では、100mm/sとし、曲線部位では、20mm/sとしている。
 これにより、強化ガラス板Gに形成されるスクライブラインSは、閉ループ状の切断予定線CLにおける直線部位では、その深さDが、圧縮応力層Aの厚みDOL(=20.8μm)の3倍以上で、且つ板厚(=700μm)の60%以下に形成されていく。また、曲線部位では、直線部位よりも深く形成される。このため、強化ガラス板Gを折割る際に、曲線部位では、直線部位と比較して小さな曲げモーメントでもって、当該強化ガラス板Gを折割ることが可能となる。
 そして、図8(図7におけるZ部を拡大した拡大図)、及び図9に示すように、切断予定線CLの他端側に位置するエッジ部Ebの近傍が残余部となる位置まで走行させた後、スクライブホイールHを停止させ、或いは、スクライブホイールHによる押圧力を解除する。なお、ここでいうエッジ部Ebとは、図8、及び図9に示すように、強化ガラス板Gの表面Gaと、当該強化ガラス板Gに既に形成済みのスクライブラインSとによって形成される微小なエッジ部をいう。
 このとき、スクライブホイールHは、スクライブラインSの終端Sbと、エッジ部Eb(既に形成済みのスクライブラインS)との離間距離Xが、スクライブホイールHの径HDの0.5倍以上で、且つ3倍以下となるように停止させ、或いは、スクライブホイールHによる押圧力を解除する。以上により、スクライブラインSの形成が終了する。
 以下、上述した本発明の第三実施形態に係る強化ガラス板のスクライブ方法の作用・効果について説明する。
 第三実施形態に係る強化ガラス板のスクライブ方法によれば、上述した第一実施形態に係る強化ガラス板のスクライブ方法と同一の作用・効果を得ることができる、なお、この第三実施形態において、離間距離Xが短すぎる場合、スクライブラインSの形成が終了した後、強化ガラス板Gに形成された引張応力層Bに起因して、当該スクライブラインSから発生した亀裂が進展し、既に形成されたスクライブラインSとは異なる方向へと延びる場合がある。しかしながら、離間距離XをスクライブホイールHの径HDの0.5倍以上で、且つ3倍以下としたことで、このような事態の発生を好適に回避することが可能となる。
 ここで、本発明に係る強化ガラス板のスクライブ方法は、上記の各実施形態で説明した態様に限定されるものではない。上記の各実施形態においては、スクライブホイールが、切断予定線の一端側に位置するエッジ部に対して直交する方向に乗り上げることで、スクライブラインの始端を形成しているが、例えば、スクライブホイールを、エッジ部に対して傾斜角をなすような方向に乗り上げさせることで、スクライブラインの始端を形成してもよい。ここで、この傾斜角の値としては、エッジ部に直交する方向を基準として45°以下であることが好ましい。
 また、上記の各実施形態においては、スクライブホイールの走行を停止させ、或いは、スクライブホイールHによる押圧力を解除することで、スクライブラインの形成を終了する態様となっている。しかしながら、この限りではなく、例えば、切断予定線の他端側に位置するエッジ部の近傍が残余部となる位置まで走行したスクライブホイールを上方へと移動させ、強化ガラス板の表面から離間(離陸)させることで、スクライブラインの形成を終了してもよい。
 さらに、上記の各実施形態においては、矩形の強化ガラス板に対してスクライブラインを形成する態様となっているが、例えば、円形、楕円形等、任意の形状を有する強化ガラス板に対して、本発明に係る強化ガラス板のスクライブ方法を適用することが可能である。
 なお、上記の各実施形態において、スクライブラインSを形成する際には、スクライブホイールHを加速させた状態でエッジ部Eaに接触させ、乗り上げさせることが好ましい。具体的には、図10に示すように、スクライブホイールHの速度を時刻T1から時刻T3までの間に漸増させる場合、時刻T1と時刻T3との間の任意の時刻T2において強化ガラス板Gのエッジ部Eaに乗り上げるように、スクライブホイールHの動作を制御したり強化ガラス板Gの位置を調整したりするとよい。すなわち、スクライブホイールHをエッジ部Eaに乗り上げる前後において継続的に加速させ、予め定められた目標速度∨1に到達するまで強化ガラス板Gの表面Gaを走行させながら加速を継続させることが好ましい。このような構成によれば、スクライブホイールHをエッジ部Eaに容易に乗り上げさせることができ、スクライブラインSを安定して形成できる。なお、加速中のスクライブホイールHの速度は、線形的、指数的、または対数的に増加させて良い。また、エッジ部Eaと接触する時点のスクライブホイールHの速度を接触速度∨2とした場合、接触速度∨2は1~40mm/秒の範囲内となるよう調整することが好ましい。接触速度∨2が40mm/秒を超えると、スクライブホイールHがエッジ部Eaに接触した際に強化ガラス板Gが破損する場合がある。
 本発明の実施例として、上記の第一実施形態に係る強化ガラス板のスクライブ方法と同一の態様により、強化ガラス板の表面を走行するスクライブホイールから当該強化ガラス板に押圧力を付与することでスクライブラインを形成した。その後、スクライブラインが形成された強化ガラス板に対し、折割りによる切断を試みた。そして、押圧力を変更しながらスクライブラインの形成と切断の試行とを実施することで、強化ガラス板の切断を可能とする押圧力の範囲について検証した。
 以下、本実施例の実施条件について説明する。
 強化ガラス板としては、下記の〔表1〕、〔表2〕に掲載するNo.1~No.12の12種類の強化ガラス板を使用した。これら強化ガラス板の作製方法について説明すると、まず、縦×横の寸法が370mm×470mmで、且つ〔表1〕、〔表2〕に掲載の板厚を有する各ガラス板(NO.1~No.12の元となるガラス板)を用意した。なお、各ガラス板の組成は共通しており、質量%で、SiO2を66%、Al23を14.2%、Na2Oを13.4%、K2Oを0.6%、Li2Oを0.1%、B23を2.3%、MgOを3.0%、SnO2を0.4%含有している。そして、各ガラス板を〔表1〕、〔表2〕に掲載の圧縮応力の大きさ、及び圧縮応力層の厚みとなるように、イオン交換法によって化学強化することにより、各強化ガラス板を作製した。
 次に、〔表1〕、〔表2〕に掲載の切欠き部のピッチ、深さ、及び幅を有するスクライブホイールを使用して、各強化ガラス板の表面に押圧力を付与しながらスクライブラインを形成した。その後、スクライブラインが形成された各強化ガラスに対し、折割による切断を試みた。なお、スクライブラインの形成は押圧力を変更しながら行った。詳述すると、No.1~No.12のそれぞれについて15枚の強化ガラス板を用意し、同じ押圧力で15枚の強化ガラス板に対してスクライブラインの形成を行った後、その各々について切断を試みた。その後、押圧力を変更し、再び同じ押圧力(変更後の押圧力)で15枚の強化ガラス板に対してスクライブラインの形成を行った後、その各々について切断を試みた。このようにして、スクライブラインの形成、切断の試行、押圧力の変更を繰り返した。
 最後に、強化ガラス板の切断を可能とする押圧力の範囲を割り出した。詳述すると、スクライブラインが形成された15枚の強化ガラス板の各々について切断を試みた結果、9枚以上を切断することができる押圧力の範囲を割り出した。ここで、下記の〔表1〕に掲載のNo.1の強化ガラス板を例に挙げて説明する。下記の〔表1〕において、No.1の強化ガラス板は、スクライブラインを形成する際の押圧力が10N~13Nの範囲である場合に、15枚の強化ガラス板のうち、9枚以上を切断することが可能であったことを意味している。すなわち、強化ガラス板の切断を可能とする押圧力の範囲は、10N~13Nとなる。
 〔表1〕、〔表2〕にNo.1~No.12の強化ガラス板について、強化ガラス板の切断を可能とする押圧力の範囲を検証した結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 〔表1〕、〔表2〕の結果から、No.1~No.8では、No.9~No.12と比較して強化ガラス板の切断を可能とする押圧力の範囲が広くなっていることが分かる。つまり、スクライブラインの形成条件におけるバラツキの影響を受けにくく、安定した切断が可能となっている。このような結果が得られたのは、No.1~No.8では、スクライブホイールにおける切欠き部の形成ピッチが20μm~160μmで、切欠き部の深さが1.0μm~2.5μmで、且つ切欠き部の幅が3~8μmであることに起因しているものと想定される。
 G     強化ガラス板
 Ga    強化ガラス板の表面
 t     強化ガラス板の板厚
 CL    切断予定線
 H     スクライブホイール
 HD    スクライブホイールの径
 C     切欠き部
 P     切欠き部のピッチ
 DH    切欠き部の深さ
 W     切欠き部の幅
 K     スクライブホイールの初期位置
 S     スクライブライン
 Sa    スクライブラインの始端
 Sb    スクライブラインの終端
 D     スクライブラインの深さ
 Ea    切断予定線の一端側に位置するエッジ部
 Eb    切断予定線の他端側に位置するエッジ部
 A     圧縮応力層
 DOL   圧縮応力層の厚み
 X     離間距離

Claims (10)

  1.  強化ガラス板の表面を押圧しつつ、切断予定線に沿って走行するスクライブ回転刃により、前記強化ガラス板を切断するためのスクライブラインを形成する強化ガラス板のスクライブ方法において、
     前記スクライブ回転刃を、前記強化ガラス板におけるエッジ部のうち、前記切断予定線の一端側に位置するエッジ部に乗り上げさせて、前記スクライブラインの形成を開始すると共に、前記切断予定線の他端側に位置するエッジ部の近傍が残余部となる位置まで走行させて、前記スクライブラインの形成を終了することを特徴とする強化ガラス板のスクライブ方法。
  2.  前記スクライブラインの深さを、前記強化ガラス板の表層部に形成された圧縮応力層の厚みの3倍以上で、且つ前記強化ガラス板の板厚の60%以下としたことを特徴とする請求項1に記載の強化ガラス板のスクライブ方法。
  3.  前記スクライブ回転刃を、前記切断予定線の前記一端側に位置するエッジ部に対して直交する方向に乗り上げさせて、前記スクライブラインの形成を開始することを特徴とする請求項1又は2に記載の強化ガラス板のスクライブ方法。
  4.  前記切断予定線の前記他端側に位置するエッジ部と、前記スクライブラインの終端との離間距離を、前記スクライブ回転刃の径の0.5倍以上で、且つ3倍以下としたことを特徴とする請求項1~3のいずれかに記載の強化ガラス板のスクライブ方法。
  5.  前記スクライブ回転刃の刃先に、該スクライブ回転刃の周方向に沿って複数の切欠き部を形成し、
     前記複数の切欠き部は、形成ピッチが20μm~160μmであると共に、
     前記複数の切欠き部の各々は、深さが1.0μm~2.5μmで、且つ前記スクライブ回転刃の周方向に沿った幅が3μm~8μmであることを特徴とする請求項1~4のいずれかに記載の強化ガラス板のスクライブ方法。
  6.  前記強化ガラス板は、表面側及び裏面側のそれぞれの表層部に形成された圧縮応力層と、両圧縮応力層の間に形成された引張応力層とを有し、
     前記強化ガラス板の板厚をt[μm]、前記圧縮応力層に作用する圧縮応力の大きさをCS[MPa]、前記引張応力層に作用する引張応力の大きさをCT[MPa]としたとき、
     300≦t≦2000
     -0.00308×t+20.5343≦CT≦-0.00405×t+27.3791
     600≦CS≦700
    を満たすことを特徴とする請求項1~5のいずれかに記載の強化ガラス板のスクライブ方法。
  7.  前記スクライブ回転刃を、前記切断予定線の前記一端側に位置するエッジ部に対して加速させた状態で接触させて、前記スクライブラインの形成を開始することを特徴とする請求項1~6のいずれかに記載の強化ガラス板のスクライブ方法。
  8.  請求項1~7のいずれかに記載の強化ガラス板のスクライブ方法を用いて強化ガラス板を短冊状に切断した後、該短冊状の強化ガラス板をさらに個片に切断することを特徴とする強化ガラス板の切断方法。
  9.  請求項1~7のいずれかに記載の強化ガラス板のスクライブ方法を用いて強化ガラス板にスクライブラインを形成した後、前記強化ガラス板に曲げ応力を作用させて該強化ガラス板を折割り切断することを特徴とする強化ガラス板の切断方法。
  10.  前記強化ガラスに前記スクライブラインを形成した後、180秒以内に前記強化ガラス板に曲げ応力を作用させて該強化ガラス板を折割り切断することを特徴とする、請求項9に記載の強化ガラス板の切断方法。
PCT/JP2014/067028 2013-06-27 2014-06-26 強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法 WO2014208679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/897,001 US20160130172A1 (en) 2013-06-27 2014-06-26 Method for scribing tempered glass plate and method for cutting tempered glass plate
CN201480021502.0A CN105143120A (zh) 2013-06-27 2014-06-26 强化玻璃板的划线方法、以及强化玻璃板的切割方法
KR1020157018172A KR20160022797A (ko) 2013-06-27 2014-06-26 강화 유리판의 스크라이빙 방법 및 강화 유리판의 절단 방법
JP2014530854A JPWO2014208679A1 (ja) 2013-06-27 2014-06-26 強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135016 2013-06-27
JP2013135016 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208679A1 true WO2014208679A1 (ja) 2014-12-31

Family

ID=52142005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067028 WO2014208679A1 (ja) 2013-06-27 2014-06-26 強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法

Country Status (6)

Country Link
US (1) US20160130172A1 (ja)
JP (1) JPWO2014208679A1 (ja)
KR (1) KR20160022797A (ja)
CN (1) CN105143120A (ja)
TW (1) TW201509846A (ja)
WO (1) WO2014208679A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015153707A1 (en) * 2014-04-04 2015-10-08 Corning Incorporated Method and system for scoring glass sheet
JP2016216305A (ja) * 2015-05-21 2016-12-22 三星ダイヤモンド工業株式会社 分断方法及び分断装置
JP2019112281A (ja) * 2017-12-26 2019-07-11 三星ダイヤモンド工業株式会社 貼り合わせ基板のスクライブ方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961328A (zh) * 2015-06-17 2015-10-07 京东方科技集团股份有限公司 一种脆性材料切割刀轮
JP6897951B2 (ja) * 2016-12-28 2021-07-07 三星ダイヤモンド工業株式会社 カッターホイール
CN114380488B (zh) * 2021-12-10 2023-09-01 安徽南玻新能源材料科技有限公司 生产线、玻璃以及应用于生产线的裁切方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757419U (ja) * 1980-09-19 1982-04-05
JPH06345471A (ja) * 1993-06-03 1994-12-20 Mitsuboshi Daiyamondo Kogyo Kk スクライブ装置
JP2012031018A (ja) * 2010-07-30 2012-02-16 Asahi Glass Co Ltd 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法
JP2012210747A (ja) * 2011-03-31 2012-11-01 Mitsuboshi Diamond Industrial Co Ltd スクライビングホイールおよびスクライブ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168584A (ja) * 2002-11-19 2004-06-17 Thk Co Ltd ガラス基板材の切断方法
CN102344245B (zh) * 2005-07-06 2015-10-28 三星钻石工业股份有限公司 脆性材料用划线轮和采用该划线轮的划线方法及装置、工具
ITTO20080497A1 (it) * 2008-06-25 2009-12-26 Bottero Spa Metodo e macchina per il troncaggio di una lastra di vetro
TWI494284B (zh) * 2010-03-19 2015-08-01 Corning Inc 強化玻璃之機械劃割及分離
US8864005B2 (en) * 2010-07-16 2014-10-21 Corning Incorporated Methods for scribing and separating strengthened glass substrates
TWI474981B (zh) * 2011-10-06 2015-03-01 Taiwan Mitsuboshi Diamond Ind Co Ltd 伴隨表面壓縮應力控制,切割一強化玻璃基板之方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757419U (ja) * 1980-09-19 1982-04-05
JPH06345471A (ja) * 1993-06-03 1994-12-20 Mitsuboshi Daiyamondo Kogyo Kk スクライブ装置
JP2012031018A (ja) * 2010-07-30 2012-02-16 Asahi Glass Co Ltd 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法
JP2012210747A (ja) * 2011-03-31 2012-11-01 Mitsuboshi Diamond Industrial Co Ltd スクライビングホイールおよびスクライブ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015153707A1 (en) * 2014-04-04 2015-10-08 Corning Incorporated Method and system for scoring glass sheet
JP2016216305A (ja) * 2015-05-21 2016-12-22 三星ダイヤモンド工業株式会社 分断方法及び分断装置
JP2019112281A (ja) * 2017-12-26 2019-07-11 三星ダイヤモンド工業株式会社 貼り合わせ基板のスクライブ方法

Also Published As

Publication number Publication date
US20160130172A1 (en) 2016-05-12
TW201509846A (zh) 2015-03-16
KR20160022797A (ko) 2016-03-02
CN105143120A (zh) 2015-12-09
JPWO2014208679A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014208679A1 (ja) 強化ガラス板のスクライブ方法、及び強化ガラス板の切断方法
WO2013089124A1 (ja) 板ガラスの割断離反方法
US20160115068A1 (en) Method for scribing tempered glass sheet
JP4203015B2 (ja) 脆性材料基板のスクライブ方法及びその装置
KR20130094304A (ko) 강화 유리 기판을 스크라이빙 및 분리하기 위한 방법
TW201805255A (zh) 包含預裂過程之玻璃基板分斷方法
CN109715570B (zh) 玻璃板的制造方法
JP2015027933A (ja) 強化ガラス板のスクライブ方法
JP2014051048A (ja) 脆性材料基板のスクライブ方法
JP2015010004A (ja) 強化ガラス板のスクライブ方法
JP5416381B2 (ja) 脆性材料基板の分断方法
JP5833968B2 (ja) ガラス基板の分断方法
TWI474981B (zh) 伴隨表面壓縮應力控制,切割一強化玻璃基板之方法
JP5889755B2 (ja) 帯状鋼板のノッチング方法及び帯状鋼板の冷間圧延方法
TWI474983B (zh) Scoring Method and Breaking Method of Mother Substrate
JP5971474B2 (ja) 化学強化ガラスの割断方法
JP5352641B2 (ja) ガラス基板のスクライブ方法
KR20190024656A (ko) 단재 분리방법
JP5352642B2 (ja) ガラス基板のスクライブ方法
WO2016067728A1 (ja) 脆性基板の分断方法
TWI682906B (zh) 劃線之形成方法
TWI684505B (zh) 複合基板之刻劃方法及刻劃裝置
TW201522251A (zh) 切割方法及切割設備
KR20200112655A (ko) 취성 재료 기판의 브레이크 장치 및 브레이크 방법
JP2015083347A (ja) スクライビング工具、スクライビング工具の製造方法、およびスクライブラインの形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201480021502.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018172

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897001

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816989

Country of ref document: EP

Kind code of ref document: A1