WO2014208519A1 - 二軸配向ポリエステルフィルム - Google Patents

二軸配向ポリエステルフィルム Download PDF

Info

Publication number
WO2014208519A1
WO2014208519A1 PCT/JP2014/066617 JP2014066617W WO2014208519A1 WO 2014208519 A1 WO2014208519 A1 WO 2014208519A1 JP 2014066617 W JP2014066617 W JP 2014066617W WO 2014208519 A1 WO2014208519 A1 WO 2014208519A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
width
temperature
biaxially oriented
oriented polyester
Prior art date
Application number
PCT/JP2014/066617
Other languages
English (en)
French (fr)
Inventor
真鍋功
荘司秀夫
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014557264A priority Critical patent/JP6627218B2/ja
Priority to KR1020157031306A priority patent/KR102245388B1/ko
Publication of WO2014208519A1 publication Critical patent/WO2014208519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biaxially oriented polyester film and relates to a biaxially oriented polyester film that is particularly suitable for use in molding and optical applications.
  • a polyester film having both high heat resistance and moldability which has a high storage elastic modulus at low temperatures and low molding stress at high temperatures, has been proposed (see, for example, Patent Document 2).
  • liquid crystal displays are used in large TV sets, personal computers, tablets, smartphones, etc., and stable demand is expected in the future.
  • Various films such as surface protective films, release films, retardation films, and process films are used for polarizing plates that make up liquid crystal displays. Uniformity of physical properties in the width direction is very important.
  • Several proposals have been made for stretched polyester films. For example, in order to satisfy the uniformity in the width direction, a polarizing film laminating polyester film with a reduced orientation angle and thickness unevenness has been proposed (see, for example, Patent Document 3).
  • the film of patent document 3 is excellent in the uniformity of the width direction, since a moldability is inadequate, it is the polarizing plate and phase difference which shape
  • the object of the present invention is to eliminate the above-mentioned problems of the prior art. That is, the present invention is to provide a biaxially oriented polyester film that is excellent in moldability and uniformity in physical properties in the width direction and can be suitably used for molding and optical use.
  • the gist of the present invention for solving this problem is as follows. Orientation of a film having a 10% elongation stress in the direction of film MD (hereinafter referred to as MD) at 150 ° C. of 5 to 30 MPa, a thermal shrinkage in the direction of film MD at 150 ° C. of 5% or less, and a width of 1000 mm. Biaxially oriented polyester whose maximum value of the angle ⁇ (the smaller one of the angles formed by the main orientation axis and the film TD (Transverse Direction)) or the film MD direction) is 20 ° or less. the film.
  • MD 10% elongation stress in the direction of film MD
  • the orientation angle of the film having a width of 1000 mm is the width of 1100 mm by taking the main orientation axis direction at an arbitrary position of the film as the TD direction, taking 550 mm width in each of the two directions along the TD direction with the position as the center.
  • the orientation angle is measured at the positions (1000 mm width) of 50 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, and 500 mm from the arbitrary point to the both ends in the TD direction, and the maximum value is obtained.
  • the direction orthogonal to the TD direction be the MD direction within the same film plane.
  • the biaxially oriented polyester film of the present invention has a low molding stress at 150 ° C., it has good moldability, and since the thermal shrinkage at 150 ° C. is low, the film deformation during coating drying is small, Furthermore, since the maximum value of the orientation angle of a 1000 mm wide film is small, it has excellent uniformity of physical properties in the width direction, and is used for decorative decorations for building materials, mobile devices, electrical products, automobile parts, game machine parts, etc., polarizing plates It can use suitably for optical films etc., etc.
  • the polyester constituting the biaxially oriented polyester film of the present invention is a general term for polymer compounds in which main bonds in the main chain are ester bonds.
  • the polyester resin can be usually obtained by polycondensation reaction of dicarboxylic acid or its derivative with glycol or its derivative.
  • 60 mol% or more of the glycol units constituting the polyester is a structural unit derived from ethylene glycol, and 60 mol% of the dicarboxylic acid unit.
  • the above is preferably a structural unit derived from terephthalic acid.
  • the dicarboxylic acid unit (structural unit) or the diol unit (structural unit) means a divalent organic group from which a portion to be removed by polycondensation has been removed. It is represented by
  • a trivalent or higher carboxylic acid or alcohol such as trimellitic acid unit or glycerin unit or a derivative thereof is included
  • the trivalent or higher carboxylic acid or alcohol unit (structural unit) is similarly obtained by polycondensation.
  • the trivalent or higher valent organic group from which the part to be removed is removed is meant.
  • Glycols or derivatives thereof that give polyester for use in the present invention include, in addition to ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Aliphatic dihydroxy compounds such as 1,5-pentanediol, 1,6-hexanediol and neopentyl glycol, polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, polypropylene glycol and polytetramethylene glycol, 1,4-cyclohexanedimethanol , Alicyclic dihydroxy compounds such as spiroglycol, aromatic dihydroxy compounds such as bisphenol A and bisphenol S, and derivatives thereof.
  • diethylene glycol 1,3-propanediol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol are preferably used in terms of moldability and handleability.
  • the dicarboxylic acid or derivative thereof that provides the polyester used in the present invention includes isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid.
  • Acids, aromatic dicarboxylic acids such as 5-sodiumsulfone dicarboxylic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, etc.
  • Alicyclic dicarboxylic acids, oxycarboxylic acids such as paraoxybenzoic acid, and derivatives thereof include dimethyl terephthalate, diethyl terephthalate, 2-hydroxyethyl methyl terephthalate, dimethyl 2,6-naphthalenedicarboxylate, dimethyl isophthalate, dimethyl adipate, diethyl maleate, and dimethyl dimer.
  • An esterified product can be mentioned.
  • isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and esterified products thereof are preferably used from the viewpoint of moldability and handleability.
  • the biaxially oriented polyester film of the present invention has a shape stress to a complex shape and an easy moldability when molding the entire process film, so that the stress at 10% elongation in the MD direction at 150 ° C. is 5 MPa or more and 30 MPa or less. There must be.
  • a 1000 mm wide film is evaluated with the main orientation axis direction at an arbitrary position of the film as the TD direction and the position as the center (hereinafter also referred to as the TD direction center) along the TD direction.
  • a width of 550 mm is sampled, and a 500 mm width (1000 mm width) is evaluated in two directions along the TD direction from the center in the TD direction of the film having a width of 1100 mm.
  • the polyester film of the present invention preferably has a size of 10 m or more in the MD direction and 1100 mm or more in the TD direction.
  • the stress at 10% elongation in the MD direction at 150 ° C.
  • a film sample cut into a rectangular shape with a test length of 50 mm is set in a constant temperature layer set in advance at 150 ° C., and after preheating for 90 seconds, When a tensile test is performed at a strain rate of 300 mm / min, the stress applied to the film when the sample is stretched by 10% is shown.
  • the evaluation was performed by taking a 550 mm width in each of the two directions along the TD direction, with the main orientation axis direction at any position of the film as the TD direction, and the position as the center (hereinafter also referred to as the TD direction center).
  • the TD direction center of a film having a width of 1100 mm 500 mm position in any one direction (A direction) from the TD direction center to the TD direction, 500 mm in the direction opposite to the A direction (B direction) from the TD direction center
  • the measurement was performed 5 times at each of the three points, and the average value of the 15 values was defined as the stress at 10% elongation in the film MD direction at 150 ° C.
  • the stress at 10% elongation in the film MD direction at 150 ° C. is more preferably from 6 MPa to 20 MPa, and most preferably from 7 MPa to 15 MPa.
  • the biaxially oriented polyester film of the present invention as a method of setting the stress in the MD direction 10% elongation of the film at 150 ° C. in the above range is not particularly limited, for example, as a glycol component constituting the polyester film of the present invention, Contains at least 60 mol% of ethylene glycol component, and at least one glycol of diethylene glycol component, 1,3-propanediol component, 1,4-butanediol component, 1,4-cyclohexanedimethanol component and neopentyl glycol component It is preferable to include a component.
  • the dicarboxylic acid component constituting the polyester film of the present invention contains at least 60 mol% of a terephthalic acid component, and contains at least one dicarboxylic acid component of an isophthalic acid component and a 2,6-naphthalenedicarboxylic acid component. Is preferred.
  • the glycol component contains an ethylene glycol component of 85 mol% or more and less than 97 mol%. , Containing at least one of diethylene glycol component, 1,4-cyclohexanedimethanol component and neopentyl glycol component in an amount of 3 mol% to less than 15 mol%, and 85 mol% or more of the dicarboxylic acid component is a terephthalic acid component Is preferred.
  • an ethylene glycol component is contained in an amount of 90 mol% to less than 95 mol%, and at least one of a diethylene glycol component, a 1,4-cyclohexanedimethanol component, and a neopentyl glycol component is contained in an amount of 5 mol% to 10 mol.
  • the dicarboxylic acid component is contained in an amount of less than mol%, and 90 mol% or more is preferably a terephthalic acid component, and more preferably 95 mol% or more of the dicarboxylic acid component is a terephthalic acid component.
  • the above composition in order to make the stress at 10% elongation in the film MD direction at 150 ° C. within the above range, the above composition is used, and the higher one of the plane orientation coefficients on both sides of the film.
  • the plane orientation coefficient is preferably from 0.111 to 0.17.
  • the method in which the higher surface orientation coefficient is 0.111 or more and 0.17 or less is not particularly limited.
  • the above composition is used, and the surface magnification is 9.8 times or more and 13.5 times.
  • stretching is mentioned below.
  • the stretching temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and the heat treatment temperature after biaxial stretching is preferably 200 ° C. or higher and 240 ° C. or lower at the highest temperature.
  • the biaxially oriented polyester film of the present invention needs to have a thermal shrinkage rate in the film MD direction at 150 ° C. of 5% or less.
  • the thermal shrinkage rate in the MD direction at 150 ° C. means that a line is drawn at intervals of 100 mm on a sample obtained by cutting a film into a rectangle 150 mm long ⁇ 10 mm wide in the MD direction (positions at 50 mm from the center to both ends). ) This refers to the rate of change in the distance between the marked lines before and after performing heat treatment by suspending a 3 g weight in a hot air oven heated to 150 ° C. for 30 minutes.
  • the evaluation was performed by taking a 550 mm width in each of the two directions along the TD direction, with the main orientation axis direction at any position of the film as the TD direction, and the position as the center (hereinafter also referred to as the TD direction center). 3 points of TD direction center of the film having a width of 1100 mm, a position of 500 mm in any one direction (A direction) from the center to the TD direction, and a position of 500 mm from the center in the direction opposite to the A direction in the TD direction (B direction) The average value of the 15 values was taken as the thermal shrinkage in the film MD direction at 150 ° C.
  • the biaxially oriented polyester film of the present invention has a thermal shrinkage rate at 150 ° C.
  • the thermal shrinkage at 150 ° C. in the MD direction is more preferably 4% or less, and most preferably 3% or less.
  • Examples of the method of setting the thermal shrinkage rate in the MD direction at 150 ° C. to 5% or less include a method of adjusting the heat treatment conditions of the film after biaxial stretching.
  • the heat treatment temperature after biaxial stretching is 200 ° C. to 240 ° C. from the viewpoint of dimensional stability and film quality. If it is preferable, it is preferably 210 ° C to 235 ° C, more preferably 215 ° C to 230 ° C.
  • the heat treatment temperature of the biaxially oriented polyester film of the present invention is a minute value resulting from the thermal history in the DSC curve when measured at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere with a differential scanning calorimeter (DSC). It can be determined from the endothermic peak.
  • a preferable heat treatment time can be arbitrarily set within 5 to 60 seconds, but is preferably 10 to 40 seconds from the viewpoint of moldability, dimensional stability, color tone, and productivity, and 15 to 30 seconds. Preferably it is seconds.
  • the heat shrinkage can be reduced by performing the heat treatment while relaxing in the longitudinal direction and / or the width direction.
  • the relaxation rate (relaxation rate) when relaxing during heat treatment is preferably 1% or more. From the viewpoint of dimensional stability and productivity, it is preferably 1% or more and 10% or less, and may be 1% or more and 5% or less. Is most preferable.
  • a method of performing heat treatment under two or more conditions is very preferable. After the heat treatment at a high temperature of 200 ° C. to 240 ° C., the heat shrinkage can be further reduced by performing the heat treatment at a temperature lower than the heat treatment temperature while relaxing in the longitudinal direction and / or the width direction.
  • the heat treatment temperature in the second stage at this time is preferably 120 ° C. to less than 200 ° C., more preferably 150 ° C. to 180 ° C.
  • the biaxially oriented polyester film of the present invention has a maximum film orientation angle (the smaller one of the angles formed by the main orientation axis and the film TD direction or the film MD direction) from the viewpoint of uniformity of physical properties.
  • the value needs to be 20 ° or less.
  • the maximum value of the orientation angle of a film having a width of 1000 mm means that the main orientation axis direction at an arbitrary position of the film is the TD direction, and the 550 mm width is sampled in each of the two directions along the TD direction with the position at the center.
  • the maximum value of the orientation angle of a 1000 mm wide film is more preferably 15 ° or less, and most preferably 10 ° or less.
  • the method of setting the maximum value of the orientation angle of a film having a width of 1000 mm to 20 ° or less is not particularly limited, and examples thereof include a method of reducing bowing during film formation.
  • a method of performing heat treatment after once cooling to below the glass transition temperature of the polyester after stretching in the width direction a method of providing a nip roll after stretching in the width direction, and a method of raising the temperature stepwise by dividing the stretching in the width direction into a plurality of zones
  • the biaxially oriented polyester film of the present invention is coated with a functional coating film such as a hard coat layer, a decorative layer, and a retardation layer on the film, and ensures the functionality of the coating film when it is dried.
  • a functional coating film such as a hard coat layer, a decorative layer, and a retardation layer on the film, and ensures the functionality of the coating film when it is dried.
  • the thermal shrinkage rate in the film MD direction and the TD direction at 190 ° C. is 5% or less. Even at temperatures as high as 190 ° C, by reducing the thermal shrinkage in the MD and TD directions, it is possible to maintain high dimensional stability even when the drying temperature of the functional coating film needs to be increased. It is.
  • the thermal shrinkage rate in the film MD direction and TD direction at 190 ° C. to 5% or less for example, the method after biaxial stretching in the same manner as the method of setting the thermal shrinkage rate in the film MD direction at 150 ° C. to 5% or less.
  • the method of adjusting the heat processing conditions of a film is mentioned. Further, it is preferable to perform relaxation during the heat treatment stepwise.
  • the first heat treatment is 230 ° C.
  • the second heat treatment is 200 ° C. with a relaxation rate of 3%
  • the third heat treatment is 180 ° C. with a relaxation rate of 2%. It is a method.
  • the thermal shrinkage ratio in the film MD direction / TD direction at 190 ° C. is preferably 5% or less / 4% or less, and most preferably 5% or less / 3% or less.
  • the biaxially oriented polyester film of the present invention is coated with a functional coating film such as a hard coat layer, a decorative layer, and a retardation layer on the film, from the viewpoint of heat resistance when performing drying, and easy moldability,
  • a functional coating film such as a hard coat layer, a decorative layer, and a retardation layer on the film, from the viewpoint of heat resistance when performing drying, and easy moldability
  • alteration DSC of the film in 1000 mm width is 80 degreeC or more and 110 degrees C or less.
  • the glass transition temperature obtained by the temperature modulation DSC of the film at a width of 1000 mm means that the main orientation axis direction at an arbitrary position of the film is the TD direction, and the width is 550 mm width in each of the two directions along the TD direction.
  • the glass transition temperature was measured at 50 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, and 500 mm positions (1000 mm width) at both ends in the TD direction from the arbitrary point. , Refers to the lowest temperature in it.
  • the glass transition temperature obtained by temperature modulation DSC is measured in a sine wave shape with a temperature modulation amplitude of 1 ° C. with a temperature modulation period of 60 seconds in a nitrogen flow atmosphere at a temperature modulation period of 2 ° C./min in the range of 0 ° C. to 200 ° C.
  • the method described in “9.3 Determination of glass transition temperature (1) Intermediate glass transition temperature Tmg” in JISK7121 (1987) is used as the glass transition temperature. It is the temperature obtained by the same method. From the viewpoint of heat resistance and moldability, the glass transition temperature obtained by temperature modulation DSC is more preferably 85 ° C. or higher and 110 ° C. or lower, and most preferably 85 ° C. or higher and 100 ° C. or lower.
  • the method of setting the minimum glass transition temperature required by temperature-modulated DSC of the film at a width of 1000 mm to 80 ° C. or higher and 110 ° C. or lower is not particularly limited.
  • a method in which the time stress is set to a preferred composition of 5 MPa or more and 30 MPa or less and a fine stretching of 2% or more is preferably used in the heat treatment step after stretching in the width direction.
  • the biaxially oriented polyester film of the present invention is coated with a functional coating film such as a hard coat layer, a decorative layer, and a retardation layer on the film, and ensures the functionality of the coating film when it is dried. From the viewpoint of securing and functional uniformity in the width direction, it is preferable to satisfy the following formula (I).
  • the main orientation axis direction at an arbitrary position of the film is taken as the TD direction, the position is the center (hereinafter also referred to as the center of the TD direction), and a 550 mm width is sampled in each of the two directions along the TD direction.
  • 3 of the center in the TD direction of the width of the film a position of 500 mm in any one direction (A direction) from the center to the TD direction, and a position of 500 mm in the direction opposite to the A direction in the TD direction (B direction) from the center. It is the average value which measured the thermal contraction rate in 190 degreeC 5 times, respectively about the sample cut out into the rectangle of length 150mm (A direction or B direction) x width 10mm about the point.
  • Satisfying the formula (I) indicates that the difference in MD thermal shrinkage in the TD direction of the 1000 mm wide film is small, and the functional coating in the direction when the functional coating is applied to the film and dried. It is possible to suppress film unevenness and film unevenness. From the viewpoint of uniformity in physical properties in the TD direction, it is more preferable to satisfy the formula (I) ′, and it is most preferable to satisfy the formula (I) ′′.
  • the method by which the biaxially oriented polyester film of the present invention satisfies the formula (I) is not particularly limited, but the maximum value of the orientation angle of the above-mentioned 1000 mm wide film is 20 ° or less.
  • the elongation peak temperature in the film MD direction when the temperature is raised from 25 ° C. to 200 ° C. at a rate of temperature rise of 5 ° C./min with a load of 19.6 mN should be 60 ° C. or higher. Is also effective.
  • the stretching peak temperature in the film MD direction refers to a temperature at which the stretched film shifts to shrinkage behavior as the temperature rises. There is a case where the film once shrinks and then shifts to the stretching behavior again.
  • the temperature at which the stretching behavior first shifts to the shrinking behavior when the temperature is raised from 25 ° C. to 200 ° C. is the direction of the film MD.
  • the extension peak temperature of The measurement is 1100 mm wide film (the main orientation axis direction at an arbitrary position of the film is the TD direction, and the position is the center (hereinafter also referred to as the center of the TD direction), and the 550 mm width is sampled in each of the two directions along the TD direction.
  • the center of the TD direction of the film having a width of 1100 mm), a position of 500 mm in any one direction (A direction) from the center to the TD direction, and a distance of 500 mm from the center in the direction opposite to the A direction of the TD direction (B direction)
  • a direction the center to the TD direction
  • B direction a distance of 500 mm from the center in the direction opposite to the A direction of the TD direction
  • MD and TD are each performed three times, and an average value of nine values measured for MD and TD is adopted.
  • the elongation peak temperature in the longitudinal direction of the film when the temperature is raised from 25 ° C. to 200 ° C. at a heating rate of 5 ° C./min at a load of 19.6 mN It is effective to set the draw ratio to 2.8 to 3.4 times, preferably 2.9 to 3.3 times.
  • the film draw ratio is not a special condition.
  • the inventors have made the film draw ratio in the longitudinal direction to be within the above range, specifically at a load of 19.6 mN at 25 ° C. It was found that the elongation peak temperature in the longitudinal direction of the film when the temperature was raised from 1 to 200 ° C. at a temperature raising rate of 5 ° C./min could be 60 ° C. or higher.
  • the biaxially oriented polyester film of the present invention preferably satisfies the following formula (II).
  • SA TD : 1100 mm width film the main orientation axis direction at an arbitrary position of the film is the TD direction, and the position is the center (hereinafter also referred to as the TD direction center), and the two directions along the TD direction are 550 mm wide. From the center in the TD direction of the film (1100 mm width) from the center in the TD direction at a position of 500 mm in any one direction (A direction) in the TD direction TD TD : TD direction of the 1100 mm width film 190 ° C.
  • Satisfying the formula (II) indicates that the difference in TD heat shrinkage in the TD direction of a 1000 mm wide film is small, and the functional coating in the direction when applying a functional coating film to the film and drying is applied. It is possible to suppress film unevenness and film unevenness. From the viewpoint of uniformity of physical properties in the TD direction, it is more preferable to satisfy the formula (II) ′, and it is most preferable to satisfy the formula (II) ′′.
  • the method by which the biaxially oriented polyester film of the present invention satisfies the formula (II) is not particularly limited, but the maximum value of the orientation angle of the above-mentioned 1000 mm wide film is 20 ° or less. Furthermore, in thermo-mechanical analysis (TMA), the elongation peak temperature in the film TD direction is 70 ° C. or higher when the temperature is increased from 25 ° C. to 200 ° C. at a heating rate of 5 ° C./min with a load of 19.6 mN.
  • TMA thermo-mechanical analysis
  • the stretching peak temperature in the film TD direction refers to a temperature at which the stretched film shifts to shrinkage behavior as the temperature rises.
  • the measurement is 1100 mm wide film (the main orientation axis direction at an arbitrary position of the film is the TD direction, and the position is the center (hereinafter also referred to as the center of the TD direction), and the 550 mm width is sampled in each of the two directions along the TD direction.
  • the center of the TD direction of the film having a width of 1100 mm), a position of 500 mm in any one direction (A direction) from the center to the TD direction, and a distance of 500 mm from the center in the direction opposite to the A direction of the TD direction (B direction)
  • a direction a position of 500 mm in any one direction
  • B direction a distance of 500 mm from the center in the direction opposite to the A direction of the TD direction
  • MD and TD are each performed three times, and an average value of nine points measured for MD and TD is adopted.
  • the film is once shrunk and then shifted to the stretching behavior again.
  • the temperature at which the stretching behavior first shifts to the shrinking behavior is set in the film TD direction.
  • TMA thermo-mechanical analysis
  • off-annealing as a method in which the biaxially oriented polyester film of the present invention satisfies the formulas (I) and (II). That is, it is a method in which the polyester film once wound is subjected to heat treatment again.
  • the off-annealing temperature is set to 140 ° C or higher and 200 ° C or lower, and the width direction is free so that there is no difference in thermal shrinkage in the width direction, so it is possible to satisfy the formulas (I) and (II). It becomes.
  • the off-annealing treatment temperature is preferably 150 ° C. or higher and 200 ° C. or lower, and most preferably 160 ° C. or higher and 200 ° C. or lower.
  • the biaxially oriented polyester film of the present invention has a stress at 10% elongation in the film MD direction at 150 ° C. of 5 MPa or more and 30 MPa or less, a thermal shrinkage rate in the film MD direction at 150 ° C. of 5% or less, and an orientation angle of 1000 mm width film. It is very important to satisfy the physical properties of the maximum value of 20 ° or less at the same time. If the stress at 10% elongation in the MD direction at 150 ° C. is set to 5 MPa or more and 30 MPa or less, the thermal shrinkage rate in the MD direction at 150 ° C. may increase, and the maximum value of the film orientation angle of 1000 mm width may be increased. There are cases where it is difficult to control to 20 ° or less.
  • the biaxially oriented polyester film of the present invention has a laminated film configuration having a polyester A layer and a polyester B layer, and the polyester A layer is positioned in at least one outermost layer. Is preferred.
  • the layer having the higher melting point is the polyester A layer.
  • the polyester film of the present invention has a layer A having a high melting point and a layer B having a melting point lower than that of the layer A, so that the layer A is a rigid layer, and the thermal shrinkage rate in the film MD direction at 150 ° C. is 5% or less. It can be kept low, and the maximum value of the orientation angle of a film having a width of 1000 mm can be easily set to 20 ° or less, and fulfills the role of satisfying the physical property uniformity in the width direction, while the B layer is a layer having high mobility, The stress at 10% elongation in the film MD direction at 150 ° C.
  • the layer A in the polyester film of the present invention preferably has a plane orientation coefficient of 0.111 or more and 0.17 or less, preferably 0.13 or more and 0.17 or less, from the viewpoints of dimensional stability and width direction physical property uniformity. More preferably, it is more preferably 0.145 or more and 0.17 or less.
  • the biaxially oriented polyester film of the present invention has a three-layer configuration of A layer / B layer / A layer in the case of a laminated polyester film having a polyester A layer and a polyester B layer. It is preferable.
  • the stress at 10% elongation in the film MD direction at 150 ° C. is 5 MPa or more and 30 MPa or less, and in the film MD direction at 150 ° C.
  • Preferred embodiments of the polyester A layer and the polyester B layer for simultaneously satisfying physical properties such as a thermal shrinkage rate of 5% or less and a maximum orientation angle of a film having a width of 1000 mm of 20 ° or less include the following configurations. It is done.
  • an ethylene glycol component is contained in an amount of 90 mol% to less than 99 mol%, and at least one of a diethylene glycol component, a 1,4-cyclohexanedimethanol component, and neopentyl glycol is 1 mol% to 10 mol. It is preferable that 90 mol% or more is a terephthalic acid component as a dicarboxylic acid component.
  • the glycol component contains an ethylene glycol component of 95 mol% or more and less than 99 mol%, and at least one of a diethylene glycol component, a 1,4-cyclohexanedimethanol component and a neopentyl glycol component is 1 mol% or more and 5 mol% or less.
  • the dicarboxylic acid component is preferably contained in an amount of less than 95% by mole, more preferably 95% by mole or more, more preferably terephthalic acid component, more preferably 98% by mole or more of the dicarboxylic acid component in the glycol component.
  • an ethylene glycol component is contained in an amount of 80 mol% or more and less than 95 mol%, and at least one of a diethylene glycol component, a 1,4-cyclohexanedimethanol component, and a neopentyl glycol component is 5 mol% or more 20 It is preferable to contain less than mol%, and 90 mol% or more is a terephthalic acid component as a dicarboxylic acid component.
  • the glycol component contains an ethylene glycol component of 85 mol% or more and less than 95 mol%, and at least one of a diethylene glycol component, a 1,4-cyclohexanedimethanol component and a neopentyl glycol component is 5 mol% or more and 15 mol% or less.
  • the dicarboxylic acid component is preferably contained in an amount of less than 95% by mole, more preferably 95% by mole or more, more preferably terephthalic acid component, more preferably 98% by mole or more of the dicarboxylic acid component in the glycol component.
  • polyester A used in the polyester A layer a polyethylene terephthalate resin (a) and a 1,4-cyclohexanedimethanol copolymer polyethylene terephthalate resin (b ) At a predetermined rate.
  • polyester B used in the polyester B layer polyethylene terephthalate resin (c) and 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin (d) are weighed at a predetermined ratio.
  • the mixed polyester resin is supplied to a vent type twin screw extruder and melt extruded. At this time, it is preferable to control the resin temperature to 265 ° C. to 295 ° C. under an atmosphere of flowing nitrogen in the extruder with an oxygen concentration of 0.7% by volume or less. Next, foreign matter is removed and the amount of extrusion is leveled through a filter and a gear pump, respectively, and discharged from the T die onto a cooling drum in a sheet form.
  • an electrostatic application method in which a cooling drum and the resin are brought into close contact with each other by static electricity using an electrode applied with a high voltage
  • a casting method in which a water film is provided between the casting drum and the extruded polymer sheet, and the casting drum temperature is set to be equal to that of the polyester resin.
  • a method of applying an electrostatic force is preferably used from the viewpoint of productivity and flatness.
  • the biaxially oriented polyester film of the present invention needs to be a biaxially oriented film from the viewpoints of heat resistance and dimensional stability.
  • the biaxially oriented film is obtained by stretching an unstretched film in the longitudinal direction and then stretching in the width direction, or by stretching in the width direction and then stretching in the longitudinal direction, or by the longitudinal direction of the film. It can be obtained by stretching by a simultaneous biaxial stretching method in which the width direction is stretched almost simultaneously.
  • As the stretching ratio in such a stretching method preferably 2.8 times or more and 3.4 times or less, more preferably 2.9 times or more and 3.3 times or less is employed in the longitudinal direction.
  • the stretching speed is preferably 1,000% / min or more and 200,000% / min or less.
  • stretching temperature of a longitudinal direction shall be 70 degreeC or more and 90 degrees C or less.
  • the stretching ratio in the width direction is preferably 3.1 times to 4.5 times, and more preferably 3.5 times to 4.2 times.
  • the stretching speed in the width direction is desirably 1,000% / min or more and 200,000% / min or less.
  • stretching in the width direction is divided into a plurality of zones so that the maximum value of the orientation angle of a 1000 mm width film is 20 ° or less while the stress at 10% elongation in the film MD direction at 150 ° C. is 5 MPa or more and 30 MPa or less.
  • a method of stretching while gradually raising the temperature is preferable, for example, the first half temperature of stretching is 90 ° C. or more and 120 ° C. or less, the middle temperature of stretching is 100 ° C. or more and 130 ° C. or less, and the second half temperature of stretching is 110 ° C. or more and 150 ° C. or less, A method of increasing the temperature in the order of the first half-stretching temperature, the middle stretching temperature, and the second half-stretching temperature can be mentioned.
  • the film is heat-treated after biaxial stretching.
  • the heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll. This heat treatment is performed at a temperature of 120 ° C. or higher and below the crystal melting peak temperature of the polyester, preferably 200 ° C. or higher and 240 ° C. or lower, more preferably 210 ° C. to 235 ° C., and 215 ° C. to 230 ° C. Most preferred.
  • the preferable heat treatment temperature indicates the highest temperature among the heat treatment temperatures performed after biaxial stretching.
  • the heat treatment time can be arbitrarily set within a range not deteriorating the characteristics, and is preferably 5 seconds to 60 seconds, more preferably 10 seconds to 40 seconds, and most preferably 15 seconds to 30 seconds.
  • the maximum value of the orientation angle of a film having a width of 1000 mm is 20 ° while the stress at 10% elongation in the film MD direction at 150 ° C. is 5 MPa or more and 30 MPa or less and the thermal shrinkage rate in the film MD direction at 150 ° C. is 5% or less.
  • a method in which the heat treatment is divided into a plurality of zones and the temperature is raised or lowered stepwise, or a method of fine stretching in the width direction in the heat treatment step is preferably employed.
  • the first half temperature of the heat treatment is 180 ° C. to 210 ° C.
  • the mid-heat treatment temperature is 200 ° C. to 240 ° C. and 1% to the width direction. More than 10%, preferably 3% or more and 10% or less fine stretching, and the latter half temperature of the heat treatment is 150 ° C. or more and less than 200 ° C. It is also preferable to carry out the latter half of the heat treatment while relaxing 1% or more and 10% or less in order to lower the heat shrinkage rate.
  • At least one surface can be subjected to corona treatment or an easy adhesion layer can be coated.
  • a method of providing the coating layer in-line in the film manufacturing process at least uniaxially stretched film with a coating layer composition dispersed in water is uniformly applied using a metalling ring bar or gravure roll. Then, a method of drying the coating while stretching is preferable, and in this case, the thickness of the easy adhesion layer is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the resin preferably used for the easy-adhesion layer is preferably at least one resin selected from an acrylic resin, a polyester resin, and a urethane resin from the viewpoint of adhesiveness and handleability. Further, off-annealing under conditions of 140 to 200 ° C. is also preferably used.
  • the biaxially oriented polyester film of the present invention has a low molding stress at 150 ° C., it has good moldability, and since the heat shrinkage rate at 150 ° C. is low, the film deformation during coating drying is small, Since the maximum orientation angle of a 1000 mm wide film is small, it has excellent uniformity of physical properties in the width direction.
  • a molding process in which a process film such as a film is molded.
  • a retardation layer is applied to the process film, and the process It is preferably used for applications in which the entire film is molded.
  • Polyester composition Polyester resin and film can be dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol can be quantified using 1 H-NMR and 13 C-NMR. it can.
  • HFIP hexafluoroisopropanol
  • the components constituting each layer can be collected and evaluated by scraping off each layer of the film according to the laminated thickness.
  • the composition was computed by calculation from the mixing ratio at the time of film manufacture.
  • the melting point of each layer was measured, and a layer having a higher melting point was a polyester A layer and a lower layer was a polyester B layer.
  • Tmeta Minute endothermic peak temperature before crystal melting Measurement and analysis were performed using a differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd., RDC220) according to JIS K7121-1987 and JIS K7122-1987. Using 5 mg of a polyester film as a sample, a minute endothermic peak temperature appearing before the crystal melting peak when the temperature was raised from 25 ° C. to 300 ° C. at 20 ° C./min was read as Tmeta.
  • every 50 mm to 500 mm in any one direction (A direction) of the TD direction (50 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, 500mm) and glass transition using the above differential scanning calorimeter at 50mm to 500mm positions in the direction opposite to the A direction (B direction) from the center in the TD direction of the film at every 50mm position.
  • the temperature was measured and the minimum temperature was determined.
  • a tensile tester (Orientec Tensilon UCT-100) the tensile test was performed in the MD direction of the film at an initial tensile chuck distance of 50 mm and a tensile speed of 300 mm / min.
  • a film sample was set in a constant temperature layer set in advance at 150 ° C., and a tensile test was performed after 90 seconds of preheating. Read the load applied to the film when the sample is stretched 10% (when the distance between chucks is 55 mm), and divide by the cross-sectional area (film thickness x 10 mm) of the sample before the test. did.
  • the measurement was performed by taking a main orientation axis direction at an arbitrary position of the film as a TD direction, taking the position as a center (center in the TD direction), collecting a width of 550 mm in each of two directions along the TD direction, and setting the width as 1100 mm. 5 times for each of three points at the center in the TD direction, at a position of 500 mm in any one direction (A direction) from the center to the TD direction, and at a position of 500 mm in the direction opposite to the A direction in the TD direction (B direction) from the center
  • the average value of the 15 values was defined as the stress at 10% elongation in the film MD direction at 150 ° C.
  • the measurement was performed by taking a main orientation axis direction at an arbitrary position of the film as a TD direction, taking the position as a center (center in the TD direction), collecting a width of 550 mm in each of two directions along the TD direction, and setting the width as 1100 mm. 5 times for each of three points at the center in the TD direction, at a position of 500 mm in any one direction (A direction) from the center to the TD direction, and at a position of 500 mm in the direction opposite to the A direction in the TD direction (B direction) from the center The average value of the 15 values was adopted.
  • thermomechanical analysis Thermomechanical analysis (TMA) The film was cut into a rectangular shape with a length of 50 mm and a width of 4 mm in the MD direction and the TD direction, used as a sample, and heated using a thermomechanical analyzer (manufactured by Seiko Instruments, TMA EXSTAR6000) under the following conditions. The extension peak temperature at 200 ° C. was calculated.
  • the stretching peak temperature from 25 ° C. to 200 ° C. refers to the temperature at which the stretched film shifts to shrinkage behavior as the temperature rises. There is a case where the film once shrinks and then shifts to the stretching behavior again.
  • the temperature at which the stretching behavior first shifts to the shrinking behavior when the temperature is raised from 25 ° C. to 200 ° C. is the direction of the film MD.
  • the extension peak temperature in the TD direction is the temperature at which the stretched film shifts to shrinkage behavior as the temperature rises.
  • the measurement was performed by taking a main orientation axis direction at an arbitrary position of the film as a TD direction, taking the position as a center (center in the TD direction), collecting a width of 550 mm in each of two directions along the TD direction, and setting the width as 1100 mm.
  • MD at three points, the center in the TD direction, the 500 mm position in any one direction (A direction) from the center to the TD direction, and the 500 mm position in the direction opposite to the A direction (B direction) from the center in the TD direction.
  • the measurement was performed three times for each TD, and an average value of nine values measured for MD and TD was adopted.
  • the width shrinkage is evaluated by selecting an arbitrary 10 locations of a 1000 mm wide film after coating and drying, and measuring the width, and (1000 mm width-film width average value at 10 optional locations) as the width shrinkage amount. Adopted.
  • the polyester film coated with the polyarylate obtained in (13) was put into a hot air oven and uniaxially stretched in the longitudinal direction (oven temperature: 150 ° C., free in the width direction).
  • the stretchability (moldability) of the film was evaluated according to the following criteria.
  • C The film could not be stretched 1.1 times at a stretching tension of 1500 N / m.
  • the polyarylate layer is peeled from the polyarylate-coated uniaxially stretched polyester film obtained in (14), and the center in the width direction and any one direction in the width direction from the center (A
  • the in-plane retardation was measured at three points, the position of 500 mm in the direction) and the position of 500 mm in the direction (B direction) opposite to the A direction in the width direction from the center, and evaluated according to the following criteria.
  • the retardation was measured using an automatic birefringence meter (KOBRA-21ADH manufactured by Shin-Oji Scientific Instruments).
  • A The difference between the maximum value and the minimum value of the retardation measured at 3 points was less than 10 nm.
  • B The difference between the maximum value and the minimum value of the retardation measured at three points was 10 nm or more and less than 20 nm.
  • C The difference between the maximum and minimum retardation values measured at three points was 20 nm or more.
  • the polyester resin used for film formation was prepared as follows.
  • Polyethylene terephthalate resin (intrinsic viscosity 0.65) in which the terephthalic acid component is 100 mol% as the dicarboxylic acid component and the ethylene glycol component is 100 mol% as the glycol component.
  • polyester B A copolymerized polyester (GN001 manufactured by Eastman Chemical Co.) in which 33 mol% of 1,4-cyclohexanedimethanol was copolymerized with respect to the glycol component was used as cyclohexanedimethanol copolymerized polyethylene terephthalate (inherent viscosity 0.75).
  • Polyethylene terephthalate resin (intrinsic viscosity of 0.75) having a terephthal component of 100 mol% as a dicarboxylic acid component, an ethylene glycol component of 70 mol% as a glycol component, and a neopentyl glycol component of 30 mol%.
  • Polyethylene glycol copolymer polyethylene terephthalate resin (intrinsic viscosity 0.65) in which the terephthalic component is 100 mol% as the dicarboxylic acid component, the ethylene glycol component is 85 mol%, and the diethylene glycol component is 15 mol% as the glycol component.
  • Polyethylene terephthalate resin (inherent viscosity 0.7) having 82.5 mol% of terephthalic component as dicarboxylic acid component, 17.5 mol% of isophthalic component, and 100 mol% of ethylene glycol component as glycol component.
  • Polyethylene terephthalate resin 2,6-Naphthalenedicarboxylic acid copolymerized polyethylene terephthalate resin, in which 85% by mole of terephthalic component as dicarboxylic acid component, 15% by mole of 2,6-naphthalenedicarboxylic acid component, and 100% by mole of ethylene glycol component as glycol component Viscosity 0.7).
  • Polyethylene terephthalate particle master (intrinsic viscosity 0.65) containing agglomerated silica particles having a number average particle size of 2.2 ⁇ m in polyester A at a particle concentration of 2 mass%.
  • Example 1 The composition is as shown in the table, and the raw materials are supplied to separate bent co-directional twin-screw extruders each having an oxygen concentration of 0.2% by volume, the A-layer extruder cylinder temperature is 270 ° C., and the B-layer extruder cylinder temperature is After melting at 277 ° C., the short tube temperature after joining the A layer and B layer was 277 ° C., the die temperature was 280 ° C., and discharged from a T die onto a cooling drum controlled to 25 ° C. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet. Next, the film temperature was raised with a heating roll before stretching in the longitudinal direction, and the film was stretched 3.1 times in the longitudinal direction at a stretching temperature of 85 ° C. and immediately cooled with a metal roll whose temperature was controlled at 40 ° C.
  • the film was stretched 3.9 times in the width direction at a first half temperature of 95 ° C., a middle stretching temperature of 105 ° C., and a second half stretching temperature of 140 ° C. with a tenter type horizontal stretching machine, and the first half temperature of the first half of the heat treatment was maintained at 200 ° C.
  • a heat treatment was performed at a temperature of 230 ° C., and a heat treatment was performed while applying a relaxation of 3% in the width direction at a heat treatment latter half temperature of 180 ° C. to obtain a biaxially oriented polyester film having a film thickness of 75 ⁇ m.
  • Example 2 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
  • Example 3 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
  • Example 4 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 3 except that 5% fine stretching was performed in the width direction in the first half of the heat treatment.
  • Example 5 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
  • Example 6 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
  • Example 7 A three-layer film of A / B / A was obtained.
  • the composition of each layer is as shown in the table, and the raw material for layer A and the raw material for layer B are supplied to separate vented co-directional twin screw extruders each having an oxygen concentration of 0.2% by volume. Cooling with temperature controlled at 270 ° C, B layer extruder cylinder temperature at 277 ° C, short tube temperature after merging with A layer and B layer at 277 ° C, die temperature at 280 ° C, 25 ° C from T die The sheet was discharged onto the drum.
  • a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain a three-layer laminated unstretched film composed of A layer / B layer / A layer.
  • a biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the mid-heat treatment temperature was 225 ° C.
  • Example 8 The composition was changed as shown in the table, and a biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 7 except that 2% fine stretching was performed in the width direction in the first half of the heat treatment.
  • Example 9 The composition was changed as shown in the table, and a biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 17 except that 5% fine stretching was performed in the width direction in the first half of the heat treatment.
  • Example 10 The film thickness was 75 ⁇ m in the same manner as in Example 7 except that the composition was changed as shown in the table, and the film was slightly stretched 5% in the width direction in the first half of the heat treatment, and was further slightly stretched 3% in the width direction in the middle of the heat treatment. A biaxially oriented polyester film was obtained.
  • Example 11 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 7 except that the composition was changed as shown in the table and the mid-heat treatment temperature was set to 205 ° C.
  • Example 12 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 7 except that the composition was changed as shown in the table and the mid-heat treatment temperature was 230 ° C.
  • Example 13 The film thickness was changed to 50 ⁇ m in the same manner as in Example 7 except that the composition was changed as shown in the table, and the film was slightly stretched 5% in the width direction in the first half of the heat treatment, and further 3% stretched in the width direction in the middle of the heat treatment. A biaxially oriented polyester film was obtained.
  • Example 14 The film thickness was 75 ⁇ m in the same manner as in Example 7 except that the composition was changed as shown in the table, and the film was slightly stretched 5% in the width direction in the first half of the heat treatment, and was further slightly stretched 3% in the width direction in the middle of the heat treatment. A biaxially oriented polyester film was obtained.
  • Example 15 The biaxially oriented polyester film obtained in Example 14 was subjected to an off-annealing treatment in a hot air oven at 180 ° C. while reducing the winding speed in the width direction and the longitudinal direction by 1% from the unwinding speed.
  • Example 16 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table and heat treatment was performed at a mid-heat treatment temperature of 235 ° C.
  • Example 17 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 10 except that the composition was changed as shown in the table.
  • Example 1 The composition was changed as shown in the table, and the first half, the middle, and the second half of the horizontal stretching were both 120 ° C. and stretched 3.4 times.
  • heat treatment was performed at the first half of the heat treatment and the middle heat treatment at 230 ° C.
  • a biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 7 except that the heat treatment was performed while applying a 3% relaxation in the width direction at a heat treatment latter half temperature of 180 ° C.
  • Example 2 A biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the composition was as shown in the table and the mid-heat treatment temperature was 220 ° C.
  • Example 3 The composition was as shown in the table, and a biaxially oriented polyester film having a film thickness of 75 ⁇ m was obtained in the same manner as in Example 1 except that the mid-heat treatment temperature was 195 ° C.
  • the biaxially oriented polyester film of the present invention has a low molding stress at 150 ° C., it has good moldability, and since the thermal shrinkage at 150 ° C. is low, the film deformation during coating drying is small, Furthermore, since the maximum value of the orientation angle of a 1000 mm wide film is small, it has excellent uniformity of physical properties in the width direction, and is used for decorative decorations for building materials, mobile devices, electrical products, automobile parts, game machine parts, etc., polarizing plates It can use suitably for optical films etc., etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

本発明の課題は、成型性、幅方向物性均一性に優れており、成型加工用、光学用へ好適に使用することのできる二軸配向ポリエステルフィルムを提供することにある。 本発明の二軸配向ポリエステルフィルムは、150℃におけるフィルムMD方向の10%伸張時応力が5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率が5%以下、かつ1000mm幅におけるフィルムの配向角(主配向軸とフィルムTD方向または、フィルムMD方向とがなす角度のうち小さい方の角度)の最大値が20°以下である二軸配向ポリエステルフィルムである。

Description

二軸配向ポリエステルフィルム
本発明は、二軸配向ポリエステルフィルムに関するものであり、成型加工用途、光学用途に、特に適して用いられる二軸配向ポリエステルフィルムに関するものである。
 近年、環境意識の高まりにより、建材、自動車部品や携帯電話、電機製品などで、溶剤レス塗装、メッキ代替などの要望が高まり、フィルムを使用した加飾方法の導入が進んでいる。
 かかる加飾方法に使用される成型用ポリエステルフィルムとして、いくつかの提案がされている。例えば、低温においても低成型応力、低貯蔵弾性率を示す、高易成型性を満たす成型用ポリエステルフィルムが提案されている(例えば、特許文献1参照)。
 また、低温においては高貯蔵弾性率、高温で低成型応力を示す、耐熱性と成型性を両立したポリエステルフィルムも提案されている(例えば、特許文献2参照)。
また、液晶ディスプレイは、大型テレビ、パソコン、タブレット、スマートフォンなどに使用されており、今後も安定した需要が見込まれている。液晶ディスプレイを構成する偏光板は、表面保護フィルム、離型フィルム、位相差フィルム、工程フィルムなど様々なフィルムが用いられているが、幅方向の物性の均一性が非常に重要であり、二軸延伸ポリエステルフィルムとしてもいくつかの提案がされている。例えば、幅方向の均一性を満たすために、配向角と厚みムラを低減させた偏光フィルム貼り合わせ用ポリエステルフィルムが提案されている(例えば、特許文献3参照)。また、スマートフォン、タブレット端末といったスマートデバイスの拡大に伴い、液晶ディスプレイ薄膜化の要望が高まっており、偏光板・位相差層においても高精細化、薄膜化が進んでいる。このため、位相差層の高精細化、薄膜化を達成するために、工程フィルムに位相差層を塗布し、工程フィルムごと成型することで、位相差層の高精細化、薄膜化を達成させるプロセス開発が進んでいる。
特開2005-290354号公報 国際公開第2012-005097号 特開2002-40249号公報
 しかしながら、特許文献1、2に記載のフィルムは、成型性には優れるものの、幅方向の物性が均一でないため、大型部材の加飾成型等に使用される場合、成型ムラや、成型後の歪みムラが発生してしまうことがある。また、偏光板・位相差層の工程フィルムとして使用しようとすると、物性が均一でないため、特性ムラが生じてしまうことがある。
 また、特許文献3に記載のフィルムは、幅方向の均一性には優れているものの、成型性が不十分なため、深い形状への加飾成型や、工程フィルムごと成型する偏光板・位相差向けには使用することが難しい。
 本発明の課題は上記した従来技術の問題点を解消することにある。すなわち、成型性、幅方向物性均一性に優れており、成型加工用、光学用へ好適に使用することのできる二軸配向ポリエステルフィルムを提供することにある。
かかる課題を解決するための本発明の要旨とするところは、以下の通りである。
150℃におけるフィルムMD(Machine direction 以下、MDと言う。)方向の10%伸張時応力が5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率が5%以下、かつ1000mm幅のフィルムの配向角{(主配向軸とフィルムTD(Transverse Direction 以下、TDと言う。)方向または、フィルムMD方向とがなす角度のうち小さい方の角度)}の最大値が20°以下である二軸配向ポリエステルフィルム。但し、1000mm幅のフィルムの配向角は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムとして該任意の点からTD方向両端に50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mmの位置(1000mm幅)において配向角を測定しその中の最大値を求める。また、同一フィルム面内でTD方向と直交する方向をMD方向とする。
本発明の二軸配向ポリエステルフィルムは、150℃における成型応力が低いため、易成型性が良好であり、また、150℃の熱収縮率が低いため、塗工乾燥時のフィルム変形が小さく、また、さらに1000mm幅のフィルムの配向角の最大値が小さいため、幅方向の物性均一性に優れており、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型加飾用途、偏光板等の光学用フィルム等に好適に用いることができる。
 本発明の二軸配向ポリエステルフィルムを構成するポリエステルとは、主鎖における主要な結合をエステル結合とする高分子化合物の総称である。そして、ポリエステル樹脂は、通常ジカルボン酸あるいはその誘導体とグリコールあるいはその誘導体を重縮合反応させることによって得ることができる。
 本発明では、成型性、外観、耐熱性、寸法安定性、経済性の点から、ポリエステルを構成するグリコール単位の60モル%以上がエチレングリコール由来の構造単位であり、ジカルボン酸単位の60モル%以上がテレフタル酸由来の構造単位であることが好ましい。なお、ここで、ジカルボン酸単位(構造単位)あるいはジオール単位(構造単位)とは、重縮合によって除去される部分が除かれた2価の有機基を意味し、要すれば、以下の一般式で表される。
   ジカルボン酸単位(構造単位):  -CO-R-CO-
   ジオール単位(構造単位):    -O-R’―O-
   (ここで、R、R’は二価の有機基)
なお、トリメリット酸単位やグリセリン単位など3価以上のカルボン酸あるいはアルコール並びにそれらの誘導体が含まれる場合は、3価以上のカルボン酸あるいはアルコール単位(構造単位)についても、同様に、重縮合によって除去される部分が除かれた3価以上の有機基を意味する。
 本発明に用いるポリエステルを与える、グリコールあるいはその誘導体としては、エチレングリコール以外に、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジヒドロキシ化合物、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、1,4-シクロヘキサンジメタノール、スピログリコールなどの脂環族ジヒドロキシ化合物、ビスフェノールA、ビスフェノールSなどの芳香族ジヒドロキシ化合物、並びに、それらの誘導体が挙げられる。中でも、成型性、取り扱い性の点で、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールが好ましく用いられる。
 また、本発明に用いるポリエステルを与えるジカルボン酸あるいはその誘導体としては、テレフタル酸以外には、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、パラオキシ安息香酸などのオキシカルボン酸、並びに、それらの誘導体を挙げることができる。ジカルボン酸の誘導体としてはたとえばテレフタル酸ジメチル、テレフタル酸ジエチル、テレフタル酸2-ヒドロキシエチルメチルエステル、2,6-ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、アジピン酸ジメチル、マレイン酸ジエチル、ダイマー酸ジメチルなどのエステル化物を挙げることができる。中でも、成型性、取り扱い性の点で、イソフタル酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、および、それらのエステル化物が好ましく用いられる。
 本発明の二軸配向ポリエステルフィルムは、複雑な形状への賦形性、工程フィルムごと成型する際の易成型性を満たすため、150℃におけるフィルムMD方向10%伸張時応力が5MPa以上30MPa以下である必要がある。
 ここで、本発明においては、1000mm幅フィルムの評価は、フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向中心からTD方向に沿った2方向に500mm幅(1000mm幅)について評価する。本発明のポリエステルフィルムは、MD方向10m以上、TD方向1100mm以上の大きさであることが好ましい。
また、150℃におけるフィルムMD方向10%伸張時応力とは、試験長50mmの矩形型に切り出したフィルムサンプルを予め150℃に設定した恒温層中にフィルムサンプルをセットし、90秒間の予熱後に、300mm/分のひずみ速度で引張試験を行った際、サンプルが10%伸張したときのフィルムにかかる応力を示す。なお、評価は、フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向中心、TD方向中心からTD方向の任意の一方向(A方向)の500mmの位置、TD方向中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点でそれぞれ5回行い、その15個の値の平均値を150℃におけるフィルムMD方向10%伸張時応力とした。成型性、寸法安定性の観点から、150℃におけるフィルムMD方向10%伸張時応力は、6MPa以上20MPa以下であれば、さらに好ましく、7MPa以上15MPa以下であれば最も好ましい。
 本発明の二軸配向ポリエステルフィルムにおいて、150℃におけるフィルムのMD方向10%伸張時応力を上記の範囲とする方法としては、特に限定されないが、例えば本発明のポリエステルフィルムを構成するグリコール成分として、エチレングリコール成分を60モル%以上含有し、ジエチレングリコール成分、1,3-プロパンジオール成分、1,4-ブタンジオール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上のグリコール成分を含むことが好ましい。なかでも、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上含まれることが好ましい。また、本発明のポリエステルフィルムを構成するジカルボン酸成分として、テレフタル酸成分を60モル%以上含有し、イソフタル酸成分、2,6-ナフタレンジカルボン酸成分の少なくとも1種類以上のジカルボン酸成分を含むことが好ましい。
 本発明の二軸配向ポリエステルフィルムにおいて、150℃におけるフィルムMD方向10%伸張時応力を上記の範囲とする特に好ましい構成として、グリコール成分として、エチレングリコール成分を85モル%以上97モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上を3モル%以上15モル%未満含有し、ジカルボン酸成分として、85モル%以上がテレフタル酸成分であることが好ましい。さらに好ましくは、グリコール成分として、エチレングリコール成分を90モル%以上95モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上を5モル%以上10モル%未満含有し、ジカルボン酸成分として、90モル%以上がテレフタル酸成分、さらに好ましくは、ジカルボン酸成分の95モル%以上がテレフタル酸成分であることが好ましい。
 また、本発明の二軸配向ポリエステルフィルムにおいて、150℃におけるフィルムMD方向10%伸張時応力を上記の範囲とするために、上記組成とし、さらに、フィルム両面の面配向係数のうち、高い方の面配向係数が0.111以上0.17以下であることが好ましい。
 フィルム両面の面配向係数のうち、高い方の面配向係数が0.111以上0.17以下とする方法は特に限定されないが、例えば、上記組成とし、面倍率9.8倍以上13.5倍以下に延伸する方法が挙げられる。また、延伸温度としては、70℃以上150℃以下であることが好ましく、さらに二軸延伸後の熱処理温度は、最も高温となる温度で200℃以上240℃以下とすることが好ましい。
 また、本発明の二軸配向ポリエステルフィルムは、150℃におけるフィルムMD方向の熱収縮率が5%以下である必要がある。ここで、150℃におけるMD方向の熱収縮率とは、フィルムをMD方向に長さ150mm×幅10mmの矩形に切り出したサンプルに100mmの間隔で標線を描き(中央部から両端に50mmの位置)、3gの錘を吊して150℃に加熱した熱風オーブン内に30分間設置し加熱処理を行った前後の標線間距離の変化率を指す。なお、評価は、フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点でそれぞれ5回行い、その15個の値の平均値を150℃におけるフィルムMD方向の熱収縮率とした。本発明の二軸配向ポリエステルフィルムは、MD方向の150℃における熱収縮率を5%以下とすることで、フィルムにハードコート層、加飾層、位相差層といった機能性塗膜を塗工し、乾燥を施す際において、フィルム収縮に起因した塗膜の機能性低下、フィルムの平面性低下等の不具合を抑制することができる。MD方向の150℃における熱収縮率は4%以下であればさらに好ましく、3%以下であれば最も好ましい。
 150℃におけるMD方向の熱収縮率を5%以下とする方法としては、例えば、二軸延伸後のフィルムの熱処理条件を調整する方法が挙げられる。処理温度は高温とすることで、配向緩和がおこり、熱収縮率は低減される傾向になるが、寸法安定性、フィルムの品位の観点から二軸延伸後の熱処理温度は200℃~240℃であれば好ましく、210℃~235℃であればさらに好ましく、215℃~230℃であれば最も好ましい。なお、本発明の二軸配向ポリエステルフィルムの熱処理温度は、示差走査型熱量計(DSC)において窒素雰囲気下、20℃/分の昇温速度で測定したときのDSC曲線に熱履歴に起因する微小吸熱ピークより求めることができる。
 また、好ましい熱処理時間としては、5~60秒間で任意に設定することができるが、成型性、寸法安定性、色調、生産性の観点から、10~40秒とすることが好ましく、15~30秒とすることが好ましい。また、熱処理は、長手方向及び/又は幅方向に弛緩させながら行うことで、熱収縮率を低減させることができる。熱処理時に弛緩させる際の弛緩率(リラックス率)は、1%以上が好ましく、寸法安定性、生産性の観点からは、1%以上10%以下であれば好ましく、1%以上5%以下であれば最も好ましい。
 また、2段階以上の条件で熱処理する方法も非常に好ましい。200℃~240℃の高温での熱処理後に、熱処理温度より低い温度で、長手方向及び/又は幅方向に弛緩させながら熱処理することで、さらに熱収縮率を低減させることが可能となる。このときの2段階目の熱処理温度は120℃~200℃未満であれば好ましく、150℃~180℃であればさらに好ましい。
 本発明の二軸配向ポリエステルフィルムは、物性均一性の観点から、1000mm幅のフィルムの配向角(主配向軸とフィルムTD方向または、フィルムMD方向とがなす角度のうち小さい方の角度)の最大値が20°以下であることが必要である。ここで、1000mm幅のフィルムの配向角の最大値とは、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムとして該任意の点からTD方向両端(一方をA方向、他方をB方向とする)に50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm(1000mm幅)の位置において配向角を測定し(21点)その中の最大値を求める。
 それぞれ幅方向物性均一性の観点から、1000mm幅のフィルムの配向角の最大値は15°以下であればさらに好ましく、10°以下であれば最も好ましい。
 ここで、1000mm幅のフィルムの配向角の最大値を20°以下とする方法は特に限定されないが、例えば、フィルム製膜中のボーイングを低減させる方法が挙げられる。具体的には、幅方向延伸後に一旦ポリエステルのガラス転移温度以下に冷却した後熱処理する方法、幅方向延伸後にニップロールを設ける方法、幅方向の延伸を複数ゾーンに分けて段階的に昇温する方法、熱処理を複数のゾーンに分けて段階的に昇温・降温する方法、幅方向に温度分布を設けて熱処理ゾーンに導く方法、熱処理室でも幅方向に微延伸する方法などがある。
 また、本発明の二軸配向ポリエステルフィルムは、フィルムにハードコート層、加飾層、位相差層といった機能性塗膜を塗工し、乾燥を施す際の塗膜の機能性確保、フィルム平面性確保の観点から、190℃におけるフィルムMD方向とTD方向の熱収縮率が5%以下であることが好ましい。190℃といった高温においても、フィルムMD方向、TD方向の熱収縮率を低くすることで、機能性塗膜の乾燥温度を高温化する必要がある場合においても、高い寸法安定性を保つことが可能である。
 190℃におけるフィルムMD方向とTD方向の熱収縮率を5%以下とする方法としては、例えば、150℃のフィルムMD方向の熱収縮率を5%以下とする方法と同様に二軸延伸後のフィルムの熱処理条件を調整する方法が挙げられる。さらに、熱処理時の弛緩を、段階的に行うことが好ましく用いられ、例えば、第一熱処理を230℃、第二熱処理を弛緩率3%で200℃、第三熱処理を弛緩率2%で180℃といった方法である。190℃におけるフィルムMD方向/TD方向の熱収縮率は、5%以下/4%以下であることが好ましく、5%以下/3%以下であれば最も好ましい。
 また、本発明の二軸配向ポリエステルフィルムは、フィルムにハードコート層、加飾層、位相差層といった機能性塗膜を塗工し、乾燥を施す際の耐熱性、易成型性の観点から、1000mm幅におけるフィルムの温度変調DSCにより求められるガラス転移温度の最低温度が、80℃以上110℃以下であることが好ましい。ここで、1000mm幅におけるフィルムの温度変調DSCにより求められるガラス転移温度とは、フィルム任意の位置における主配向軸方向をTD方向とし、該位置を中心として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムとして該任意の点からTD方向両端に50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm位置(1000mm幅)においてガラス転移温度を測定し、その中の最低温度を指す。温度変調DSCにより求められるガラス転移温度とは、フィルムを窒素流雰囲気下、0℃から200℃の範囲で2℃/min、温度変調周期が60秒で温度変調振幅1℃の正弦波状で測定し、得られた可逆成分温度変調DSCチャートの階段状の変化部分において、ガラス転移温度をJISK7121(1987)の「9.3ガラス転移温度の求め方(1)中間点ガラス転移温度Tmg」記載の方法と同様の方法にて、求めた温度のことである。耐熱性と成型性の観点から、温度変調DSCにより求められるガラス転移温度は85℃以上110℃以下であればより好ましく、85℃以上100℃以下であれば最も好ましい。
 本発明において、1000mm幅におけるフィルムの温度変調DSCにより求められるガラス転移温度の最低温度を80℃以上110℃以下とする方法は特に限定されないが、例えば、上記した150℃におけるフィルムMD方向10%伸張時応力を5MPa以上30MPa以下とする好ましい組成とし、幅方向延伸後の熱処理工程において、2%以上微延伸を行う方法が好ましく用いられる。
また、本発明の二軸配向ポリエステルフィルムは、フィルムにハードコート層、加飾層、位相差層といった機能性塗膜を塗工し、乾燥を施す際の塗膜の機能性確保、フィルム平面性確保および、幅方向での機能均一性の観点から、下記(I)式を満たすことが好ましい。
 (SAMD+SBMD)/(SCMD×2)≦1.2 (I)
但し、SAMD:1100mm幅フィルムのTD方向の中心から、TD方向の任意の一方向(A方向)の500mmの位置におけるMD方向の190℃熱収縮率
   SBMD:1100mm幅フィルムの幅方向の中心から、TD方向のA方向と反対の方向(B方向)の500mmの位置におけるMD方向の190℃熱収縮率
   SCMD:1100mm幅フィルムのTD方向の中心におけるMD方向の190℃熱収縮率、である。
1100mm幅フィルム(フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルム)のTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点について長さ150mm(A方向又はB方向)×幅10mmの矩形に切り出したサンプルについて190℃における熱収縮率をそれぞれ5回測定した、それぞれその平均値である。
 (I)式を満たすということは、1000mm幅フィルムのTD方向のMD熱収縮率の差が小さいことを示し、フィルムに機能性塗膜を塗工し、乾燥を施す際の方向の機能性塗膜のムラ、フィルムのムラを抑制することが可能となる。TD方向物性均一性の観点から、(I)’式を満たすことがさらに好ましく、(I)’’式を満たすことが最も好ましい。
 (SAMD+SBMD)/SCMD×2≦1.15(I)’
 (SAMD+SBMD)/SCMD×2≦1.1(I)’’
 本発明の二軸配向ポリエステルフィルムが、(I)式を満たす方法は特に限定されないが、上記した1000mm幅のフィルムの配向角の最大値を20°以下とする。
 さらに、熱機械分析(TMA)にて、荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルムMD方向の伸張ピーク温度を60℃以上とすることも有効である。ここで、フィルムMD方向の伸張ピーク温度とは、昇温に伴い、伸張していったフィルムが収縮挙動にシフトする温度のことを指す。フィルムが一旦収縮後、再度伸張挙動にシフトする場合もあるが、本発明では、25℃から200℃まで昇温していった際の最初に伸張挙動が収縮挙動にシフトする温度をフィルムMD方向の伸張ピーク温度とした。測定は、1100mm幅フィルム(フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルム)のTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれMD、TDとも3回ずつ行い、MD、TDについて測定した9個の値の平均値を採用する。荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルム長手方向の伸張ピーク温度を60℃以上とするためには、フィルム製膜時の長手方向の延伸倍率を2.8倍~3.4倍、好ましくは2.9~3.3倍に設定することが有効である。フィルムの延伸倍率としては特別な条件ではないが、発明者らは種々検討を行った結果、フィルムの長手方向の延伸倍率を上記範囲とすることで、特異的に荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルム長手方向の伸張ピーク温度を60℃以上とできることを見出した。
 また、本発明の二軸配向ポリエステルフィルムは、下記(II)式を満たすことが好ましい。
 (SATD+SBTD)/SCTD×2≦1.2 (II)
但し、SATD:1100mm幅フィルム(フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルム)のTD方向の中心から、TD方向の任意の一方向(A方向)の500mmの位置におけるTD方向の190℃熱収縮率
   SBTD:1100mm幅フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の500mmの位置におけるTD方向の190℃熱収縮率
   SCTD:1100mm幅フィルムのTD方向の中心におけるTD方向の190℃熱収縮率、である。
(II)式を満たすということは、1000mm幅フィルムのTD方向のTD熱収縮率の差が小さいことを示し、フィルムに機能性塗膜を塗工し、乾燥を施す際の方向の機能性塗膜のムラ、フィルムのムラを抑制することが可能となる。TD方向物性均一性の観点から、(II)’式を満たすことがさらに好ましく、(II)’’式を満たすことが最も好ましい。
 (SATD+SBTD)/SCTD×2≦1.15(II)’
 (SATD+SBTD)/SCTD×2≦1.1(II)’’
 本発明の二軸配向ポリエステルフィルムが、(II)式を満たす方法は特に限定されないが、上記した1000mm幅のフィルムの配向角の最大値を20°以下とする。さらに、熱機械分析(TMA)にて、荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルムTD方向の伸張ピーク温度が70℃以上とすることで、(II)式を満足しやすくなる。ここで、フィルムTD方向の伸張ピーク温度とは、昇温に伴い、伸張していったフィルムが収縮挙動にシフトする温度のことを指す。測定は、1100mm幅フィルム(フィルムの任意の位置における主配向軸方向をTD方向とし、その位置を中心(以下、TD方向中心とも言う。)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルム)のTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれMD、TDとも3回ずつ行い、MD、TDについて測定した9点の平均値を採用する。フィルムが一旦収縮後、再度伸張挙動にシフトする場合もあるが、本発明では、25℃から200℃まで昇温していった際の最初に伸張挙動が収縮挙動にシフトする温度をフィルムTD方向の伸張ピーク温度とした。熱機械分析(TMA)にて、荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルムTD方向の伸張ピーク温度70℃以上とするためには、製膜時の長手方向の延伸倍率を2.8倍~3.4倍とする方法、さらに、幅方向延伸後の熱処理工程での微延伸を強化することが有効である。
 また、本発明の二軸配向ポリエステルフィルムが(I)式、(II)式を満たす方法として、オフアニールすることも有効である。すなわち、一度巻き取ったポリエステルフィルムに、再び熱処理を施す方法である。オフアニール処理温度は、140℃以上200℃以下とし、幅方向はフリーな状態にすることで、幅方向の熱収縮の差がなくなるため、(I)式、(II)式を満たすことが可能となる。オフアニール処理温度は、150℃以上200℃以下であれば好ましく、160℃以上200℃以下であれば最も好ましい。
 本発明の二軸配向ポリエステルフィルムは、150℃におけるフィルムMD方向の10%伸張時応力が5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率が5%以下、1000mm幅のフィルムの配向角の最大値が20°以下といった物性を同時に満足することが非常に重要である。150℃におけるフィルムMD方向の10%伸張時応力を5MPa以上30MPa以下にしようとすると、150℃におけるMD方向の熱収縮率が高くなる場合があり、また、1000mm幅のフィルム配向角の最大値を20°以下に制御することが難しい場合が生じる。このジレンマを解決する方法として、本発明の二軸配向ポリエステルフィルムは、ポリエステルA層とポリエステルB層とを有する積層フィルム構成とし、ポリエステルA層が、少なくとも一方の最外層に位置する構成であることが好ましい。
なお、本発明において、ポリエステルA層と、ポリエステルB層とを有する積層フィルムの場合、融点の高い方の層をポリエステルA層とする。
 本発明のポリエステルフィルムは、融点の高いA層と融点がA層より低いB層とを有することにより、A層が剛直な層として、150℃におけるフィルムMD方向の熱収縮率を5%以下と低く保ち、さらに1000mm幅のフィルムの配向角の最大値が20°以下とすることが容易にでき、幅方向の物性均一性を満たす役割を果たし、一方、B層が運動性の高い層として、150℃におけるフィルムMD方向の10%伸張時応力を5MPa以上30MPa以下とすることが容易にでき、易成形性を達成する役割を果たすことで、単膜構成では両立が難しい特性を満たすことができる。本発明のポリエステルフィルムにおけるA層は、寸法安定性、幅方向物性均一性の観点から、面配向係数が、0.111以上0.17以下であれば好ましく、0.13以上0.17以下であればさらに好ましく、0.145以上0.17以下であれば最も好ましい。
 また、フィルムのカール抑制の観点から、本発明の二軸配向ポリエステルフィルムは、ポリエステルA層とポリエステルB層とを有する積層ポリエステルフィルムの場合、A層/B層/A層の3層構成であることが好ましい。
 本発明の二軸配向ポリエステルフィルムにおいて、ポリエステルA層とポリエステルB層とを有する積層フィルムの場合、150℃におけるフィルムMD方向の10%伸張時応力が5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率が5%以下、1000mm幅のフィルムの配向角の最大値が20°以下といった物性を同時に満足するためのポリエステルA層、ポリエステルB層の好ましい態様としては、下記のような構成が挙げられる。
 ポリエステルA層のグリコール成分として、エチレングリコール成分を90モル%以上99モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコールの少なくとも1種類以上が1モル%以上10モル%未満含有し、ジカルボン酸成分として、90モル%以上がテレフタル酸成分であることが好ましい。さらに好ましくは、グリコール成分として、エチレングリコール成分を95モル%以上99モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上が1モル%以上5モル%未満含有し、ジカルボン酸成分として、95モル%以上がテレフタル酸成分、さらに好ましくは、上記グリコール成分に、ジカルボン酸成分の98モル%以上がテレフタル酸成分であることが好ましい。
 ポリエステルB層のグリコール成分として、エチレングリコール成分を80モル%以上95モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上が5モル%以上20モル%未満含有し、ジカルボン酸成分として、90モル%以上がテレフタル酸成分であることが好ましい。さらに好ましくは、グリコール成分として、エチレングリコール成分を85モル%以上95モル%未満含有し、ジエチレングリコール成分、1,4-シクロヘキサンジメタノール成分、ネオペンチルグリコール成分の少なくとも1種類以上が5モル%以上15モル%未満含有し、ジカルボン酸成分として、95モル%以上がテレフタル酸成分、さらに好ましくは、上記グリコール成分に、ジカルボン酸成分の98モル%以上がテレフタル酸成分であることが好ましい。
 次に本発明の二軸配向ポリエステルフィルムの具体的な製造方法の例について記載するが、本発明はかかる例に限定して解釈されるものではない。
 ポリエステルA層とポリエステルB層とを有する積層ポリエステルフィルムとする場合、まず、ポリエステルA層に使用するポリエステルAとして、ポリエチレンテレフタレート樹脂(a)と1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(b)を所定の割合で計量する。また、ポリエステルB層に使用するポリエステルBとして、ポリエチレンテレフタレート樹脂(c)と1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(d)を所定の割合で計量する。
 そして、混合したポリエステル樹脂をベント式二軸押出機に供給し溶融押出する。この際、押出機内を流通窒素雰囲気下で、酸素濃度を0.7体積%以下とし、樹脂温度は265℃~295℃に制御することが好ましい。ついで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点~(ガラス転移点-20℃)にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。
 本発明の二軸配向ポリエステルフィルムは、耐熱性、寸法安定性の観点から二軸配向フィルムとすることが必要である。二軸配向フィルムは、未延伸フィルムを長手方向に延伸した後、幅方向に延伸する、あるいは、幅方向に延伸した後、長手方向に延伸する逐次二軸延伸方法により、または、フィルムの長手方向、幅方向をほぼ同時に延伸していく同時二軸延伸方法などにより延伸を行うことで得ることができる。
かかる延伸方法における延伸倍率としては、長手方向に、好ましくは、2.8倍以上3.4倍以下、さらに好ましくは2.9倍以上3.3倍以下が採用される。また、延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。また長手方向の延伸温度は、70℃以上90℃以下とすることが好ましい。また、幅方向の延伸倍率としては、好ましくは3.1倍以上4.5倍以下、さらに好ましくは、3.5倍以上4.2倍以下が採用される。幅方向の延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。また、150℃におけるフィルムMD方向の10%伸張時応力を5MPa以上30MPa以下としつつ、1000mm幅のフィルムの配向角の最大値を20°以下とするために、幅方向の延伸は複数ゾーンに分けて段階的に昇温しながら延伸する方法が好ましく、例えば延伸前半温度を90℃以上120℃以下、延伸中盤温度を100℃以上130℃以下、さらに延伸後半温度を110℃以上150℃以下で、延伸前半温度、延伸中盤温度、延伸後半温度の順に温度を高くしていく方法が挙げられる。
 さらに、二軸延伸の後にフィルムの熱処理を行う。熱処理はオーブン中、加熱したロール上など従来公知の任意の方法により行うことができる。この熱処理は120℃以上ポリエステルの結晶融解ピーク温度以下の温度で行われるが、好ましくは200℃以上240℃以下であり、210℃~235℃であればさらに好ましく、215℃~230℃であれば最も好ましい。ここで好ましい熱処理温度とは、二軸延伸後に行う熱処理温度の中で、最も高温となる温度を示す。また、熱処理時間は特性を悪化させない範囲において任意とすることができ、好ましくは5秒以上60秒以下、より好ましくは10秒以上40秒以下、最も好ましくは15秒以上30秒以下で行うのがよい。また、150℃におけるフィルムMD方向の10%伸張時応力を5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率を5%以下にしながら、1000mm幅のフィルムの配向角の最大値が20°以下とするために、熱処理を複数のゾーンに分けて段階的に昇温・降温する方法や、熱処理工程で幅方向に微延伸する方法が好ましく採用される。例えば熱処理前半温度を180℃以上210℃以下で幅方向に1%以上10%以下、好ましくは3%以上10%以下微延伸し、熱処理中盤温度を200℃以上240℃以下で幅方向に1%以上10%以下、好ましくは3%以上10%以下微延伸し、熱処理後半温度を150℃以上200℃未満とする方法が挙げられる。熱処理後半温度は熱収縮率を低くするために1%以上10%以下弛緩しながら実施することも好ましい。さらに、印刷層や接着剤、蒸着層、ハードコート層、耐候層といった各種加工層との接着力を向上させるため、少なくとも片面にコロナ処理を行ったり、易接着層をコーティングさせることもできる。コーティング層をフィルム製造工程内のインラインで設ける方法としては、少なくとも一軸延伸を行ったフィルム上にコーティング層組成物を水に分散させたものをメタリングリングバーやグラビアロールなどを用いて均一に塗布し、延伸を施しながら塗剤を乾燥させる方法が好ましく、その際、易接着層厚みとしては0.01μm以上1μm以下とすることが好ましい。また、易接着層中に各種添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、赤外線吸収剤、顔料、染料、有機または無機粒子、帯電防止剤、核剤などを添加してもよい。易接着層に好ましく用いられる樹脂としては、接着性、取扱い性の点からアクリル樹脂、ポリエステル樹脂およびウレタン樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。さらに、140~200℃条件下でオフアニールすることも好ましく用いられる。
 本発明の二軸配向ポリエステルフィルムは、150℃における成型応力が低いため、易成型性が良好であり、また、150℃の熱収縮率が低いため、塗工乾燥時のフィルム変形が小さく、さらに1000mm幅のフィルムの最大配向角が小さいため、幅方向の物性均一性に優れており、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型加飾用途や、偏光板等の光学用フィルム等の工程フィルムごと成型を施すような成型加工用途に好適に用いることができる。中でも、幅方向の物性均一性に非常に優れているので、光学用途、具体的には位相差層の高精細化、薄膜化を達成するために、工程フィルムに位相差層を塗布し、工程フィルムごと成型する用途に好ましく使用される。
 (1)ポリエステルの組成
 ポリエステル樹脂およびフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、H-NMRおよび13C-NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量することができる。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、評価することができる。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。
 (2)ポリエステルの固有粘度
 ポリエステル樹脂およびフィルムの極限粘度は、ポリエステルをオルトクロロフェノールに溶解し、オストワルド粘度計を用いて25℃にて測定した。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体の固有粘度を評価することができる。
 (3)フィルム厚み、層厚み
 フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日立製作所製TEM H7100)で5000倍の倍率で観察し、フィルム厚みおよびポリエステル層の厚みを求めた。
 (4)融点
示差走査熱量計(セイコー電子工業製、RDC220)を用い、JIS K7121-1987、JIS K7122-1987に準拠して測定および、解析を行った。ポリエステルフィルムを5mg、サンプルに用い、25℃から20℃/分で300℃まで昇温した際のDSC曲線より得られた吸熱ピークの頂点の温度を融点とした。なお、積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体の融点を測定することができる。本発明において、ポリエステルA層とポリエステルB層とを有する積層ポリエステルフィルムの場合は、各層の融点を測定し、融点の高い層をポリエステルA層、低い方の層をポリエステルB層とした。
 (5)結晶融解前の微小吸熱ピーク温度(Tmeta)
示差走査熱量計(セイコー電子工業製、RDC220)を用い、JIS K7121-1987、JIS K7122-1987に準拠して測定および、解析を行った。ポリエステルフィルムを5mg、サンプルに用い、25℃から20℃/分で300℃まで昇温した際の結晶融解ピークの前に現れる微小の吸熱ピーク温度をTmetaとして読み取った。
(6)1000mm幅フィルムの主配向軸、配向角最大値
フィルムの任意の点において100mm×100mmの寸法でサンプルを切り出し、KSシステムズ製(現王子計測機器)のマイクロ波分子配向計MOA-2001A(周波数4GHz)を用い、ポリエステルフィルムの面内の主配向軸を求め、TD方向とした。また、この任意の点をフィルムのTD方向の中心として、TD方向の任意の一方向(A方向)の50mm~500mm間を50mmごと(50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm)の位置および、フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の50mm~500mm間を50mmごとの位置において、上記マイクロ波分子配向計MOA-2001A(周波数4GHz)を用いて、配向角(主配向軸とフィルムTD方向または、フィルムMD方向とがなす角度のうち小さい方の角度)を測定し、その最大値を求めた。
(7)温度変調DSCより求められるガラス転移温度
 (6)と同様にして、フィルム任意の点において100mm×100mmの寸法でサンプルを切り出し、そこから5mg採取して、アルミニウム製標準容器に入れ、示差走査熱量計(TA Instrument製 Q100)を用いて、窒素流雰囲気下(流速50mL/min)にて0℃から200℃の範囲で、2℃/min、温度変調周期が60秒で温度変調振幅1℃の正弦波状で測定を実施した。なお比熱校正はサファイアで実施し、データ解析にはTA Instrument社製 “Universal Analysis 2000”を用いた。得られた可逆成分の温度変調DSCチャートの階段状の変化部分において、ガラス転移温度をJISK7121(1987)の「9.3ガラス転移温度の求め方(1)中間点ガラス転移温度Tmg」記載の方法と同様の方法にて、温度変調DSCのガラス転移温度を求めた(各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点を温度変調DSCのガラス転移温度とした)。また、この任意の点をフィルムのTD方向の中心として、TD方向の任意の一方向(A方向)の50mm~500mmごと(50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm)の位置および、フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の50mm~500mm間を50mmごとの位置において、上記示差走査熱量計を用いて、ガラス転移温度を測定し、その最低温度を求めた
 (8)150℃におけるフィルムMD方向の10%伸張時応力
 フィルムをMD方向に長さ150mm×幅10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離50mmとし、引張速度を300mm/分としてフィルムのMD方向に引張試験を行った。測定は予め150℃に設定した恒温層中にフィルムサンプルをセットし、90秒間の予熱の後で引張試験を行った。サンプルが10%伸張したとき(チャック間距離が55mmとなったとき)のフィルムにかかる荷重を読み取り、試験前の試料の断面積(フィルム厚み×10mm)で除した値を10%伸張時応力とした。なお、測定は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心(TD方向中心)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれ5回ずつ行い、その15個の値の平均値を150℃におけるフィルムMD方向10%伸張時応力とした。
 (9)熱収縮率(150℃、190℃)
 フィルムをMD方向およびTD方向にそれぞれ長さ150mm×幅10mmの矩形に切り出しサンプルとした。サンプルに100mmの間隔(中央部から両端に50mmの位置)で標線を描き、3gの錘を吊して所定温度(150℃、190℃)に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離を測定し、加熱前後の標線間距離の変化から下記式により熱収縮率を算出した。なお、評価は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心(TD方向中心)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれ5回ずつ行い、その15個の値の平均値を所定温度(150℃、190℃)におけるフィルムMD方向およびTD方向の熱収縮率とした。
熱収縮率(%)={(加熱処理前の標線間距離)-(加熱処理後の標線間距離)}/(加熱処理前の標線間距離)×100。
 (10)式(I)、式(II)算出方法
 (9)と同様にして、1100mm幅フィルムのTD方向の中心値のMD、TD方向の190℃における熱収縮率(SCMD、SCTD)、1100mm幅フィルムの幅方向の中心から、TD方向の任意の一方向(A方向)の500mmの位置におけるMD、TD方向の190℃における熱収縮率(SAMD、SATD)、1100mm幅フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の500mmの位置におけるMD、TD方向の190℃における熱収縮率(SBMD、SBTD)の測定を行い(それぞれ5回測定の平均値を採用)、式(I)、式(II)の左辺の値の算出を行った。
(SAMD+SBMD)/SCMD×2≦1.2 (I)
(SATD+SBTD)/SCTD×2≦1.2 (II) 。
 (11)面配向係数
 ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて、フィルムのMD方向の屈折率(nMD)、TD方向の屈折率(nTD)、厚み方向の屈折率(nZD)を測定し、下記式から面配向係数(fn)を算出した。
fn=(nMD+nTD)/2-nZD
面配向係数は、フィルムの両面について測定を行い、表には、高い方の面配向係数の値を記載した。
 なお、測定は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心(TD方向中心)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれ5回ずつ行い、その15個の値の平均値を採用した。
 (12)熱機械分析(TMA)
 フィルムをMD方向およびTD方向に長さ50mm×幅4mmの矩形に切り出しサンプルとし、熱機械分析装置(セイコ-インスツルメンツ製、TMA EXSTAR6000)を使用して、下記条件下で昇温し、25℃から200℃における伸張ピーク温度を算出した。
 試長:15mm、荷重:19.6mN、昇温速度:5℃/分、
 測定温度範囲:25~200℃
 本発明における、25℃から200℃における伸張ピーク温度は昇温に伴い、伸張していったフィルムが収縮挙動にシフトする温度のことを指す。フィルムが一旦収縮後、再度伸張挙動にシフトする場合もあるが、本発明では、25℃から200℃まで昇温していった際の最初に伸張挙動が収縮挙動にシフトする温度をフィルムMD方向、TD方向の伸張ピーク温度とした。
 なお、測定は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心(TD方向中心)として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムのTD方向の中心、中心からTD方向の任意の一方向(A方向)の500mmの位置、中心からTD方向のA方向と反対の方向(B方向)の500mmの位置の3点についてそれぞれMD、TDとも3回ずつ行い、MD、TDについて測定した9個の値の平均値を採用した。
 (13)寸法安定性
 1100mm幅のポリエステルフィルム表面に、ポリアリレート/MEK分散体をダイコーターにて塗工・乾燥を行った(乾燥温度:150℃、乾燥時間:1分、巻出張力:200N/m、巻取張力:100N/m)。乾燥後のポリエステルフィルムの幅を測定し、下記の基準で評価を行った(乾燥後のポリアリレート厚みは25μm)。
A:幅縮みが5mm未満(乾燥後のポリエステルフィルムの幅が995mm以上)であった。
B:幅縮みが5mm以上10mm未満(乾燥後のポリエステルフィルムの幅が990mm以上995mm未満)であった。
C:幅縮みが10mm以上(乾燥後のポリエステルフィルムの幅が990mm未満)であった。
 なお、幅縮みの評価は、塗工・乾燥後の1000mm幅フィルムの任意の10箇所を選定して幅測定を行い、その(1000mm幅-任意10箇所のフィルム幅平均値)を幅縮み量として採用した。
 (14)成型加工性
 (13)で得られたポリアリレートが塗布されたポリエステルフィルムを、熱風オーブンに投入し、長手方向に一軸延伸を行った(オーブン温度:150℃、幅方向フリー)。フィルムの延伸性(成型加工性)について、下記の基準で評価を行った。
A:延伸張力1200N/m未満で、1.1倍延伸が可能であった。
B:延伸張力1200N/m以上1500N/m未満で、1.1倍延伸が可能であった。
C:延伸張力1500N/mで1.1倍延伸ができなかった。
 (15)機能性塗膜幅方向均一性
 (14)で得られたポリアリレート塗布一軸延伸ポリエステルフィルムから、ポリアリレート層を剥離し、幅方向の中心、中心から幅方向の任意の一方向(A方向)の500mmの位置、中心から幅方向のA方向と反対の方向(B方向)の500mmの位置の3点について、面内レタデーションを測定し、下記の基準で評価を行った。なお、レタデーションは、(新王子計測機器製自動複屈折計(KOBRA-21ADH)を用いて測定を行った。
A:3点測定したレタデーションの最大値と最小値の差が10nm未満であった。
B:3点測定したレタデーションの最大値と最小値の差が10nm以上20nm未満であった。
C:3点測定したレタデーションの最大値と最小値の差が20nm以上であった。
 (ポリエステルの製造)
 製膜に供したポリエステル樹脂は以下のように準備した。
 (ポリエステルA)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂(固有粘度0.65)。
 (ポリエステルB)
 1,4-シクロヘキサンジメタノール がグリコール成分に対し33mol%共重合された共重合ポリエステル(イーストマン・ケミカル社製 GN001)を、シクロヘキサンジメタノール共重合ポリエチレンテレフタレートとして使用した(固有粘度0.75)。
 (ポリエステルC)
 ジカルボン酸成分としてテレフタル成分が100モル%、グリコール成分としてエチレングリコール成分が70モル%、ネオペンチルグリコール成分が30モル%であるネオペンチルグリコール共重合ポリエチレンテレフタレート樹脂(固有粘度0.75)。
 (ポリエステルD)
 ジカルボン酸成分としてテレフタル成分が100モル%、グリコール成分としてエチレングリコール成分が85モル%、ジエチレングリコール成分が15モル%であるジエチレングリコール共重合ポリエチレンテレフタレート樹脂(固有粘度0.65)。
 (ポリエステルE)
 ジカルボン酸成分としてテレフタル成分が82.5モル%、イソフタル成分が17.5モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7)。
 (ポリエステルF)
 ジカルボン酸成分としてテレフタル成分が85モル%、2,6-ナフタレンジカルボン酸成分が15モル%、グリコール成分としてエチレングリコール成分が100モル%である2,6-ナフタレンジカルボン酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7)。
 (粒子マスター)
 ポリエステルA中に数平均粒子径2.2μmの凝集シリカ粒子を粒子濃度2質量%で含有したポリエチレンテレフタレート粒子マスター(固有粘度0.65)。
 (実施例1)
組成を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給し、A層押出機シリンダー温度を270℃、B層押出機シリンダー温度を277℃で溶融し、A層とB層合流後の短管温度を277℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、延伸温度85℃で、長手方向に3.1倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。
 次いでテンター式横延伸機にて延伸前半温度95℃、延伸中盤温度105℃、延伸後半温度140℃で幅方向に3.9倍延伸し、そのままテンター内にて、熱処理前半温度200℃、熱処理中盤温度230℃で熱処理を行い、熱処理後半温度180℃で、幅方向に3%のリラックスを掛けながら熱処理を行い、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例2)
組成を表の通りに変更した以外は実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例3)
組成を表の通りに変更した以外は実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例4)
熱処理前半に幅方向に5%微延伸を行った以外は、実施例3と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例5)
組成を表の通りに変更した以外は実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例6)
組成を表の通りに変更した以外は実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例7)
A/B/Aの3層積層フィルムとした。各層の組成を表の通りとして、A層用の原料とB層用の原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給し、A層押出機シリンダー温度を270℃、B層押出機シリンダー温度を277℃で溶融し、A層とB層合流後の短管温度を277℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させA層/B層/A層からなる3層積層未延伸フィルムを得た。
その後は、熱処理中盤温度を225℃とした以外は、実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例8)
組成を表の通りに変更し、熱処理前半に幅方向に2%微延伸を行った以外は、実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例9)
組成を表の通りに変更し、熱処理前半に幅方向に5%微延伸を行った以外は、実施例17同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例10)
組成を表の通りに変更し、熱処理前半に幅方向に5%微延伸を行い、さらに熱処理中盤に幅方向に3%微延伸を行った以外は、実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例11)
組成を表の通りに変更し、熱処理中盤温度を205℃とした以外は、実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例12)
組成を表の通りに変更し、熱処理中盤温度を230℃とした以外は、実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例13)
組成を表の通りに変更し、熱処理前半に幅方向に5%微延伸を行い、さらに熱処理中盤に幅方向に3%微延伸を行った以外は、実施例7と同様にして、フィルム厚み50μmの二軸配向ポリエステルフィルムを得た。
 (実施例14)
組成を表の通りに変更し、熱処理前半に幅方向に5%微延伸を行い、さらに熱処理中盤に幅方向に3%微延伸を行った以外は、実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例15)
実施例14で得られた二軸配向ポリエステルフィルムに、180℃の熱風オーブン中で幅方向フリー、長手方向の巻き取り速度を巻きだし速度より1%低下させながらオフアニール処理を行った。
 (実施例16)
組成を表の通りに変更し、熱処理中盤温度を235℃で熱処理を行った以外は実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (実施例17)
組成を表の通りに変更した以外は、実施例10と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (比較例1)
組成を表の通りに変更し、横延伸前半、中盤、後半温度をともに120℃として、3.4倍延伸し、そのままテンター内にて、熱処理前半温度、熱処理中盤温度230℃で熱処理を行い、熱処理後半温度180℃で、幅方向に3%のリラックスを掛けながら熱処理を行った以外は実施例7と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (比較例2)
組成を表の通りとし、熱処理中盤温度を220℃とした以外は、実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
 (比較例3)
組成を表の通りといし、熱処理中盤温度を195℃とした以外は、実施例1と同様にして、フィルム厚み75μmの二軸配向ポリエステルフィルムを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表中の略語の意味は以下のとおりである。
EG:エチレングリコール
CHDM:1,4-シクロヘキサンジメタノール
DEG:ジエチレングリコール
NPG:ネオペンチルグリコール
TPA:テレフタル酸
IPA:イソフタル酸
NDC:2,6-ナフタレンジカルボン酸
本発明の二軸配向ポリエステルフィルムは、150℃における成型応力が低いため、易成型性が良好であり、また、150℃の熱収縮率が低いため、塗工乾燥時のフィルム変形が小さく、また、さらに1000mm幅のフィルムの配向角の最大値が小さいため、幅方向の物性均一性に優れており、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型加飾用途、偏光板等の光学用フィルム等に好適に用いることができる。
 

Claims (12)

  1. 150℃におけるフィルムMD方向の10%伸張時応力が5MPa以上30MPa以下、150℃におけるフィルムMD方向の熱収縮率が5%以下、かつ1000mm幅におけるフィルムの配向角(主配向軸とフィルムTD方向または、フィルムMD方向とがなす角度のうち小さい方の角度)の最大値が20°以下である二軸配向ポリエステルフィルム。
    但し、1000mm幅のフィルムの配向角は、フィルムの任意の位置における主配向軸方向をTD方向とし、該位置を中心として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムとして該任意の点からTD方向両端に50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mmの位置(1000mm幅)において配向角を測定しその中の最大値を求める。また、同一フィルム面内でTD方向と直交する方向をMD方向とする。
  2. MD方向10m以上、TD方向1100mm以上のフィルムである請求項1に記載の二軸配向ポリエステルフィルム。
  3. 1000mm幅におけるフィルムの温度変調DSCにより求められるガラス転移温度の最低温度が、80℃以上110℃以下である請求項1または2に記載の二軸配向ポリエステルフィルム。
    但し、1000mm幅におけるフィルムの温度変調DSCにより求められるガラス転移温度は、フィルム任意の位置における主配向軸方向をTD方向とし、当該位置を中心として、TD方向に沿って2方向それぞれ550mm幅を採取し、1100mm幅としたフィルムとして当該任意の点からTD方向両端に50mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm位置(1000mm幅)においてガラス転移温度を測定しその中の最低温度を求める。
  4. 190℃におけるフィルムMD方向とTD方向の熱収縮率が5%以下である請求項1~3のいずれかに記載の二軸配向ポリエステルフィルム。
  5. 下記(I)式を満たす、請求項1~4のいずれかに記載の二軸配向ポリエステルフィルム。
     (SAMD+SBMD)/(SCMD×2)≦1.2 (I)
    但し、SAMD:1100mm幅フィルムのTD方向の中心から、TD方向の任意の一方向(A方向)の500mmの位置におけるMD方向の190℃熱収縮率
       SBMD:1100mm幅フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の500mmの位置におけるMD方向の190℃熱収縮率
       SCMD:1100mm幅フィルムのTD方向の中心におけるMD方向の190℃熱収縮率
  6. 下記(II)式を満たす、請求項1~5のいずれかに記載の二軸配向ポリエステルフィルム。
     (SATD+SBTD)/(SCTD×2)≦1.2 (II)
    但し、SATD:1100mm幅フィルムのTD方向の中心から、TD方向の任意の一方向(A方向)の500mmの位置におけるTD方向の190℃熱収縮率
       SBTD:1100mm幅フィルムのTD方向の中心から、TD方向のA方向と反対の方向(B方向)の500mmの位置におけるTD方向の190℃熱収縮率
       SCTD:1100mm幅フィルムのTD方向の中心におけるTD方向の190℃熱収縮率
  7. フィルム両面における面配向係数のうち、高い方の面における面配向係数が0.111以上0.17以下である請求項1~6のいずれかに記載の二軸配向ポリエステルフィルム。
  8. ポリエステルA層とポリエステルA層より融点の低いポリエステルB層とを有する積層ポリエステルフィルムであって、ポリエステルA層が、少なくとも一方の最外層に位置する請求項1~7記載の二軸配向ポリエステルフィルム。
  9. 熱機械分析(TMA)にて、荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルムTD方向の伸張ピーク温度が70℃以上である請求項1~8のいずれかに記載の二軸配向ポリエステルフィルム。
  10. 熱機械分析(TMA)にて、荷重19.6mNで、25℃から200℃まで昇温速度5℃/分で昇温した際のフィルムMD方向の伸張ピーク温度が、60℃以上である請求項1~9のいずれかに記載の二軸配向ポリエステルフィルム。
  11. 成型加工用途に使用される請求項1~10のいずれかに記載の二軸配向ポリエステルフィルム。
  12. 光学用途に使用される請求項1~11のいずれかに記載の二軸配向ポリエステルフィルム。
     
PCT/JP2014/066617 2013-06-28 2014-06-24 二軸配向ポリエステルフィルム WO2014208519A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014557264A JP6627218B2 (ja) 2013-06-28 2014-06-24 二軸配向ポリエステルフィルム
KR1020157031306A KR102245388B1 (ko) 2013-06-28 2014-06-24 2축 배향 폴리에스테르 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136005 2013-06-28
JP2013136005 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208519A1 true WO2014208519A1 (ja) 2014-12-31

Family

ID=52141853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066617 WO2014208519A1 (ja) 2013-06-28 2014-06-24 二軸配向ポリエステルフィルム

Country Status (4)

Country Link
JP (1) JP6627218B2 (ja)
KR (1) KR102245388B1 (ja)
TW (1) TWI632053B (ja)
WO (1) WO2014208519A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151529A (ja) * 2014-02-19 2015-08-24 東レ株式会社 二軸配向ポリエステルフィルム
JP2016089150A (ja) * 2014-10-31 2016-05-23 東レ株式会社 光学フィルム製造用ポリエステルフィルム
WO2016199675A1 (ja) * 2015-06-11 2016-12-15 東レ株式会社 二軸配向ポリエステルフィルム
JP2017002307A (ja) * 2015-06-15 2017-01-05 東レ株式会社 ポリエステルフィルム、および偏光板保護フィルム
JPWO2015037527A1 (ja) * 2013-09-10 2017-03-02 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム
JP2017067821A (ja) * 2015-09-28 2017-04-06 東レ株式会社 光学用ポリエステルフィルム及びそれを用いた偏光板、透明導電性フィルム
WO2017142035A1 (ja) * 2016-02-18 2017-08-24 富士フイルム株式会社 加飾フィルム、画像表示装置、タッチパネルおよび加飾フィルムの製造方法
KR20180077585A (ko) * 2016-12-29 2018-07-09 코오롱인더스트리 주식회사 이축연신 폴리에스테르 필름 및 이의 제조방법
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
US10180597B2 (en) 2011-05-18 2019-01-15 Toyobo Co., Ltd. Liquid crystal display device, polarizing plate, and polarizer protection film
JP2019014109A (ja) * 2017-07-05 2019-01-31 東レ株式会社 積層フィルム
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US20210301126A1 (en) * 2018-08-09 2021-09-30 Polyplex Corporation Limited Biaxially oriented formable polyester film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787126B2 (ja) * 2015-06-17 2020-11-18 東レ株式会社 多層積層フィルム
JP7010218B2 (ja) * 2017-04-24 2022-01-26 東レ株式会社 フィルム、及びフィルムの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328159A (ja) * 2000-05-24 2001-11-27 Toray Ind Inc 二軸延伸フィルムの製造方法
JP2006003687A (ja) * 2004-06-18 2006-01-05 Toray Ind Inc 偏光板離型用二軸延伸ポリエステルフィルム
JP2006264136A (ja) * 2005-03-24 2006-10-05 Toray Ind Inc 成型加飾材用ポリエステルフィルム
JP2009235231A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 離型用ポリエステルフィルム
JP2011213770A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc フィルムおよび偏光反射体ならびにその製造方法。
WO2012005097A1 (ja) * 2010-07-06 2012-01-12 東レ株式会社 成型用二軸配向ポリエステルフィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656356A (en) 1994-01-11 1997-08-12 Teijin Limited Biaxially oriented laminated polyester film
JP4644916B2 (ja) 2000-07-25 2011-03-09 東レ株式会社 偏光フィルム貼り合わせ用ポリエステルフィルム
JP2005290354A (ja) 2003-09-03 2005-10-20 Toyobo Co Ltd 成型用ポリエステルフィルム
KR20110054990A (ko) * 2009-11-19 2011-05-25 도레이첨단소재 주식회사 이형필름용 2축 연신 폴리에스테르 필름 및 이를 이용한 이형필름
WO2013031511A1 (ja) * 2011-08-30 2013-03-07 東レ株式会社 偏光板離型フィルム用二軸配向ポリエステルフィルムおよびそれを用いた積層体、ならびに、偏光板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328159A (ja) * 2000-05-24 2001-11-27 Toray Ind Inc 二軸延伸フィルムの製造方法
JP2006003687A (ja) * 2004-06-18 2006-01-05 Toray Ind Inc 偏光板離型用二軸延伸ポリエステルフィルム
JP2006264136A (ja) * 2005-03-24 2006-10-05 Toray Ind Inc 成型加飾材用ポリエステルフィルム
JP2009235231A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 離型用ポリエステルフィルム
JP2011213770A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc フィルムおよび偏光反射体ならびにその製造方法。
WO2012005097A1 (ja) * 2010-07-06 2012-01-12 東レ株式会社 成型用二軸配向ポリエステルフィルム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
US10180597B2 (en) 2011-05-18 2019-01-15 Toyobo Co., Ltd. Liquid crystal display device, polarizing plate, and polarizer protection film
JPWO2015037527A1 (ja) * 2013-09-10 2017-03-02 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム
JP2015151529A (ja) * 2014-02-19 2015-08-24 東レ株式会社 二軸配向ポリエステルフィルム
JP2016089150A (ja) * 2014-10-31 2016-05-23 東レ株式会社 光学フィルム製造用ポリエステルフィルム
WO2016199675A1 (ja) * 2015-06-11 2016-12-15 東レ株式会社 二軸配向ポリエステルフィルム
KR102528867B1 (ko) * 2015-06-11 2023-05-04 도레이 카부시키가이샤 2축 배향 폴리에스테르 필름
KR20180018481A (ko) * 2015-06-11 2018-02-21 도레이 카부시키가이샤 2축 배향 폴리에스테르 필름
JPWO2016199675A1 (ja) * 2015-06-11 2018-04-05 東レ株式会社 二軸配向ポリエステルフィルム
JP2017002307A (ja) * 2015-06-15 2017-01-05 東レ株式会社 ポリエステルフィルム、および偏光板保護フィルム
JP2017067821A (ja) * 2015-09-28 2017-04-06 東レ株式会社 光学用ポリエステルフィルム及びそれを用いた偏光板、透明導電性フィルム
JPWO2017142035A1 (ja) * 2016-02-18 2018-08-16 富士フイルム株式会社 加飾フィルム、画像表示装置、タッチパネルおよび加飾フィルムの製造方法
KR20180086241A (ko) * 2016-02-18 2018-07-30 후지필름 가부시키가이샤 가식 필름, 화상 표시 장치, 터치 패널 및 가식 필름의 제조 방법
KR102149589B1 (ko) * 2016-02-18 2020-08-28 후지필름 가부시키가이샤 가식 필름, 화상 표시 장치, 터치 패널 및 가식 필름의 제조 방법
WO2017142035A1 (ja) * 2016-02-18 2017-08-24 富士フイルム株式会社 加飾フィルム、画像表示装置、タッチパネルおよび加飾フィルムの製造方法
KR20180077585A (ko) * 2016-12-29 2018-07-09 코오롱인더스트리 주식회사 이축연신 폴리에스테르 필름 및 이의 제조방법
KR102544690B1 (ko) * 2016-12-29 2023-06-15 코오롱인더스트리 주식회사 이축연신 폴리에스테르 필름 및 이의 제조방법
JP2019014109A (ja) * 2017-07-05 2019-01-31 東レ株式会社 積層フィルム
US20210301126A1 (en) * 2018-08-09 2021-09-30 Polyplex Corporation Limited Biaxially oriented formable polyester film

Also Published As

Publication number Publication date
JP6627218B2 (ja) 2020-01-08
JPWO2014208519A1 (ja) 2017-02-23
TWI632053B (zh) 2018-08-11
KR102245388B1 (ko) 2021-04-28
TW201509640A (zh) 2015-03-16
KR20160026846A (ko) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6627218B2 (ja) 二軸配向ポリエステルフィルム
JP6973584B2 (ja) 積層フィルム
WO2018147249A1 (ja) 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP6870725B2 (ja) 二軸配向ポリエステルフィルム
WO2013099608A1 (ja) 成型用二軸配向ポリエステルフィルム
WO2012005097A1 (ja) 成型用二軸配向ポリエステルフィルム
JP2009042653A (ja) 偏光膜保護用ポリエステルフィルム
JP6531555B2 (ja) 光学フィルム製造用ポリエステルフィルム
JP6838284B2 (ja) 光学フィルム製造用ポリエステルフィルム
JP2016141058A (ja) 二軸配向ポリエステルフィルムおよびその製造方法
JP2018021168A (ja) 二軸配向ポリエステルフィルム
JP2017105985A (ja) 光学フィルム製造用ポリエステルフィルム
JP6609940B2 (ja) 光学フィルム製造用ポリエステルフィルム
JP2015010121A (ja) 成型用二軸配向ポリエステルフィルム
JP6361159B2 (ja) 二軸配向ポリエステルフィルム
WO2015182406A1 (ja) ポリエステルフィルムおよび蒸着ポリエステルフィルム
JP6852598B2 (ja) 積層フィルム
JP2013237171A (ja) 積層ポリエステルフィルム
JP2018122438A (ja) フィルムロール
JP6992259B2 (ja) 積層フィルムおよびその製造方法
JP7419722B2 (ja) 二軸配向ポリエステルフィルム
JP2014233901A (ja) 光学用積層ポリエステルフィルムロール
WO2013136875A1 (ja) 二軸配向ポリエステルフィルム
JP6701790B2 (ja) ポリエステルフィルム
JP2009078536A (ja) 熱収縮性ポリエステル系フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557264

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031306

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818829

Country of ref document: EP

Kind code of ref document: A1