WO2012005097A1 - 成型用二軸配向ポリエステルフィルム - Google Patents

成型用二軸配向ポリエステルフィルム Download PDF

Info

Publication number
WO2012005097A1
WO2012005097A1 PCT/JP2011/063796 JP2011063796W WO2012005097A1 WO 2012005097 A1 WO2012005097 A1 WO 2012005097A1 JP 2011063796 W JP2011063796 W JP 2011063796W WO 2012005097 A1 WO2012005097 A1 WO 2012005097A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
layer
less
mol
Prior art date
Application number
PCT/JP2011/063796
Other languages
English (en)
French (fr)
Inventor
真鍋功
内田裕仁
高橋弘造
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020127029799A priority Critical patent/KR101848724B1/ko
Priority to JP2011528125A priority patent/JP5810915B2/ja
Priority to CN201180027299.4A priority patent/CN102933372B/zh
Publication of WO2012005097A1 publication Critical patent/WO2012005097A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biaxially oriented polyester film that is particularly suitable for use in molding.
  • Patent Document 2 a molding polyester film in which a molding stress and a storage elastic modulus at a specific temperature are defined has been proposed (see, for example, Patent Document 2).
  • Patent Document 1 is not necessarily designed to be a film that is not always sufficiently moldable and has dimensional stability taken into consideration.
  • the film described in Patent Document 2 is a film having inferior processability due to insufficient dimensional stability in the vicinity of 80 ° C., which is the film processing temperature.
  • the film described in Patent Document 3 exhibits a low storage elastic modulus in a wide temperature range, and thus is excellent in moldability, but is still not sufficient in terms of dimensional stability and exhibits satisfactory heat resistance. is not.
  • an object of the present invention is to eliminate the above-mentioned problems of the prior art. That is, an object of the present invention is to provide a biaxially oriented polyester film for molding which is excellent in moldability, dimensional stability, heat resistance, and appearance, and can be suitably used for various molded members after being subjected to molding processing.
  • the gist of the present invention for solving the problems is that the stress at 100% elongation (F100 value) in the film longitudinal direction and the width direction at 150 ° C. is 5 MPa or more and 60 MPa or less, respectively, and the film longitudinal direction at 80 ° C. And a storage elastic modulus in the width direction of 2001 MPa to 4000 MPa, respectively, and a biaxially oriented polyester film for molding having a storage elastic modulus in the film longitudinal direction and width direction at 180 ° C. of 41 MPa to 400 MPa.
  • the biaxially oriented polyester film for molding of the present invention has a low molding stress in the molding temperature range, various molding methods such as vacuum molding, pressure molding, vacuum pressure molding, in-mold molding molded by injection resin pressure, etc.
  • the storage modulus in the processing temperature range is in a specific range, it has excellent dimensional stability in processing processes such as coating, laminating, printing, and vapor deposition. It can be decorated by other means, and since it has a high storage elastic modulus in a high temperature region, it has excellent heat resistance, excellent surface properties even after molding, and excellent color tone, so the appearance is good
  • it can be suitably used for decorating molded members such as building materials, mobile devices, electrical products, automobile parts, and gaming machine parts.
  • the polyester constituting the biaxially oriented polyester film for molding of the present invention is a general term for polymer compounds having main bonds in the main chain as ester bonds.
  • the polyester resin can be usually obtained by polycondensation reaction of dicarboxylic acid or its derivative with glycol or its derivative.
  • 60 mol% or more of the glycol units constituting the polyester is a structural unit derived from ethylene glycol, and 60 mol% of the dicarboxylic acid unit.
  • the above is preferably a structural unit derived from terephthalic acid.
  • the dicarboxylic acid unit (structural unit) or the diol unit (structural unit) means a divalent organic group from which a portion to be removed by polycondensation has been removed.
  • Dicarboxylic acid units represented by: —CO—R—CO— Diol unit (structural unit): —O—R′—O— (Where R and R ′ are divalent organic groups)
  • R and R ′ are divalent organic groups
  • units (structural units) of trivalent or higher carboxylic acids such as trimellitic acid units and glycerin units, and alcohols and derivatives thereof.
  • Aliphatic dihydroxy compounds such as 5-pentanediol, 1,6-hexanediol and neopentyl glycol, polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, polypropylene glycol and polytetramethylene glycol, 1,4-cyclohexanedimethanol, spiro Examples thereof include alicyclic dihydroxy compounds such as glycol, aromatic dihydroxy compounds such as bisphenol A and bisphenol S, and derivatives thereof. Of these, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol are preferably used from the viewpoint of moldability and handleability.
  • the dicarboxylic acid or derivative thereof that provides the polyester used in the present invention includes isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid.
  • Acids, aromatic dicarboxylic acids such as 5-sodiumsulfone dicarboxylic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, etc.
  • Alicyclic dicarboxylic acids, oxycarboxylic acids such as paraoxybenzoic acid, and derivatives thereof include dimethyl terephthalate, diethyl terephthalate, 2-hydroxyethyl methyl terephthalate, dimethyl 2,6-naphthalenedicarboxylate, dimethyl isophthalate, dimethyl adipate, diethyl maleate, and dimethyl dimer.
  • An esterified product can be mentioned.
  • isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and esterified products thereof are preferably used from the viewpoint of moldability and handleability.
  • the biaxially oriented polyester film for molding of the present invention is required to have a stress at 100% elongation (F100 value) of 5 MPa or more and 60 MPa or less in the longitudinal direction and the width direction at 150 ° C. from the viewpoint of moldability.
  • the molding method of the molded member include heat molding methods such as vacuum molding, pressure molding, vacuum pressure molding, press molding, plug assist molding, and any of these molding methods increases the temperature of the film by a preheating process using an infrared heater or the like. It has the process shape
  • the 100% elongation stress (F100 value) in the film longitudinal direction and width direction at 150 ° C. is preferably from 10 MPa to 50 MPa, and most preferably from 15 MPa to 45 MPa.
  • the stress at 100% elongation (F100 value) in the film longitudinal direction and width direction at 150 ° C. is preferably 5 MPa or more and 36 MPa or less.
  • the biaxially oriented polyester film for molding of the present invention is preferably 100% or more and 500% or less in breaking direction in the film longitudinal direction and width direction at 150 ° C. in order to be molded into a more complicated shape. . Even when it is molded into a complicated shape, it can follow a high molding processing magnification, and can be excellent in economic efficiency and heat resistance.
  • the elongation in the longitudinal direction and the width direction is preferably 100% or more and 400% or less, and most preferably 120% or more and 300% or less.
  • the elongation in the longitudinal direction or width direction of the film is preferably 120% or more and 200% or less.
  • examples of a method for setting the stress at 100% elongation at 150 ° C. and the elongation at break in the above ranges include, for example, a structural unit derived from neopentyl glycol for the polyester used. And a structural unit derived from 1,4-cyclohexanedimethanol, a structural unit derived from isophthalic acid, or a structural unit derived from 2,6-naphthalenedicarboxylic acid. Such a structural unit suppresses orientational crystallization of the film at the time of molding, so that the stress at 100% elongation (F100 value) of the film at 150 ° C.
  • the preferred concentration is such that the structural unit derived from isophthalic acid and / or the structural unit derived from 2,6-naphthalenedicarboxylic acid with respect to the dicarboxylic acid component in the film is 5 mol% or more and 15 mol% or less, or 1 with respect to the glycol component.
  • the structural unit derived from 1,4-cyclohexanedimethanol and / or the structural unit derived from neopentyl glycol may be 5 mol% or more and 15 mol% or less.
  • the biaxially oriented polyester film for molding of the present invention needs to have a storage elastic modulus at 80 ° C. of from 2001 MPa to 4000 MPa from the viewpoint of dimensional stability during processing. Preferably, it is 2200 MPa or more and 3500 MPa or less, more preferably 2400 MPa or more and 3000 MPa or less. If the storage elastic modulus at 80 ° C. is less than 2001 MPa, the dimensional stability in processing steps such as printing, vapor deposition, coating, and laminating decreases. Conversely, when the storage elastic modulus is greater than 4000 MPa, the dimensional stability is excellent, but the moldability may be deteriorated, which is not preferable.
  • a structural unit derived from neopentyl glycol as the polyester to be used, 1 , 4-cyclohexanedimethanol-derived structural unit, isophthalic acid-derived structural unit, or 2,6-naphthalenedicarboxylic acid-derived structural unit is preferably contained. It will decline. That is, moldability and dimensional stability are usually contradictory properties, and it was very difficult to achieve both.
  • the 100% elongation stress (F100 value) in the film longitudinal direction and the width direction at 150 ° C. is 5 MPa or more and 60 MPa or less
  • the storage elastic modulus at 80 ° C. is 2001 MPa or more and 4000 MPa or less. Has succeeded in achieving both stability and dimensional stability.
  • a method for setting the storage elastic modulus at 80 ° C. within the above range for example, a method of setting the peak temperature of loss tangent to 100 ° C. or higher and 120 ° C. or lower is preferably used.
  • the loss tangent peak temperature is based on the glass transition of the polymer. If the loss tangent peak temperature is less than 100 ° C., the storage elastic modulus at 80 ° C. may be less than 2001 MPa, and the dimensional stability decreases. End up.
  • the 100% elongation stress (F100 value) in the film longitudinal direction and the width direction at 150 ° C. may be larger than 60 MPa, and the moldability is lowered. End up.
  • a more preferable range of the loss tangent is 100 ° C. or higher and 115 ° C. or lower.
  • the biaxially oriented polyester film for molding of the present invention has a storage elastic modulus of 1001 MPa or more and 3000 MPa or less in the film longitudinal direction and width direction at 100 ° C. in order to further improve the dimensional stability during processing. Is preferred. More preferably, it is 1050 MPa or more and 2500 MPa or less, and most preferably 1100 MPa or more and 2000 MPa or less.
  • the method for setting the storage elastic modulus at 100 ° C. in the above range is not particularly limited, but, for example, the loss tangent peak temperature is 105 ° C. or more and 120 ° C. or less. Is preferably used, and more preferably 105 ° C. or higher and 110 ° C. or lower.
  • the stretching ratio is preferably 10 times or more in terms of surface magnification, more preferably 11 times or more, and most preferably 12 times or more. Further, it is preferable to lower the stretching temperature to such an extent that uneven stretching does not occur.
  • a method of lowering the stretching temperature in the longitudinal direction specifically a method of 80 ° C. to 90 ° C. is preferable, and the stretching temperature in the width direction is preferred. Is preferably 90 ° C. to 100 ° C., which is higher than the stretching temperature in the longitudinal direction.
  • a structural unit derived from 2,6-naphthalenedicarboxylic acid having a rigid structure or 1,4-cyclohexanedimethanol having a ring structure is included in the film.
  • a dicarboxylic acid component The structural unit derived from 2,6-naphthalenedicarboxylic acid is contained in an amount of 5 mol% to 15 mol%, or the structural unit derived from 1,4-cyclohexanedimethanol as a glycol component is contained in an amount of 5 mol% to 15 mol%. Is preferred.
  • a component having many flexible methylene groups such as 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 , 6-Hexanediol, succinic acid, adipic acid, sebacic acid, dimer acid, and the like reduce the peak temperature of loss tangent, so the content is preferably 5 mol% or less, and if it is 3 mol% or less Further preferred.
  • the biaxially oriented polyester film for molding of the present invention is preferably a laminated polyester film having a polyester A layer and a polyester B layer. It is because the function by each layer can be provided by setting it as the laminated polyester film which has a polyester A layer and a polyester B layer. For example, by providing dimensional stability with the polyester A layer and providing moldability with the polyester B layer, it is possible to achieve both dimensional stability and moldability, which are the objects of the present invention.
  • the surface orientation coefficient of a polyester A layer shall be 0.14 or more and 0.17 or less, melting
  • the difference between the melting point (TmA) of the polyester A layer and the melting point (TmB) of the polyester B layer (TmA-TmB) from the viewpoint of moldability, dimensional stability, and interlayer adhesion between the A layer and the B layer.
  • TmA-TmB melting point
  • the plane orientation coefficient of the polyester A layer is more preferably from 0.145 to 0.165, and most preferably from 0.149 to 0.165.
  • the polyester A layer has a melting point (TmA) of 250 ° C. or more and 255 ° C. or less and a density of 1.380 g / cm 3 or more and 1.400 g / cm 3 or less from the viewpoint of heat resistance and dimensional stability. Is preferred.
  • TmA melting point
  • the polyester A layer contains 95 to 99 mol% of structural units derived from ethylene glycol, or a structure derived from 1,4-cyclohexanedimethanol. It is preferable to contain 1 mol% or more and less than 5 mol% of the unit.
  • the structural unit derived from ethylene glycol is contained in the polyester A layer in an amount of 95 mol% or more and less than 99 mol%, and derived from 1,4-cyclohexanedimethanol. It is particularly preferable that the structural unit is contained in an amount of 1 mol% or more and less than 5 mol%. Moreover, it is preferable to contain 95 mol% or more and 100 mol% or less of the structural unit derived from a terephthalic acid in the polyester A layer with respect to the structural unit derived from dicarboxylic acid (a dicarboxylic acid ester is included).
  • the polyester B layer has a melting point (TmB) of 235 ° C. or more and 245 ° C. or less and a density of 1.350 g / cm 3 or more and 1.365 g / cm 3 or less from the viewpoint of moldability. preferable.
  • TmB melting point
  • the polyester B layer contains a structural unit derived from ethylene glycol of 85 mol% or more and less than 90 mol%, or a structure derived from 1,4-cyclohexanedimethanol. It is preferable to contain 10 mol% or more and less than 15 mol% of the unit.
  • the structural unit derived from ethylene glycol is contained in the polyester B layer in an amount of 85 mol% or more and less than 90 mol%, and derived from 1,4-cyclohexanedimethanol. It is particularly preferable that the structural unit is contained in an amount of 10 mol% or more and less than 15 mol%. Moreover, it is preferable to contain 95 mol% or more and 100 mol% or less of the structural unit derived from terephthalic acid in the polyester B layer with respect to the structural unit derived from dicarboxylic acid (including dicarboxylic acid ester).
  • the polyester A layer is located in at least one outermost layer particularly from the viewpoint of dimensional stability.
  • the lamination ratio H ( ⁇ ) of the A layer: (the thickness of the A layer) / (the thickness of the entire film) is 0.05 to 0.4. Preferably there is.
  • the biaxially oriented polyester film for molding of the present invention needs to have a storage elastic modulus in the longitudinal direction and the width direction at 180 ° C. of 41 MPa or more and 400 MPa or less from the viewpoint of heat resistance. If the storage elastic modulus at 180 ° C. is less than 41 MPa, the heat resistance is lowered, and the quality such as roughening of the film surface may be deteriorated during molding. Conversely, if the storage elastic modulus is greater than 400 MPa, the moldability may be deteriorated, which is not preferable. From the viewpoint of heat resistance and moldability, the storage elastic modulus in the film longitudinal direction and the width direction at 180 ° C. is more preferably from 100 MPa to 300 MPa, and most preferably from 130 MPa to 250 MPa.
  • the melting point of the polyester film is preferably 220 ° C. or more.
  • the melting point of the polyester film is preferably 230 ° C. or higher and 255 ° C. or lower, and most preferably 235 ° C. or higher and 245 ° C. or lower.
  • fusing point (TmA) of a polyester A layer shall be 250 degreeC or more and 255 degrees C or less.
  • the melting point (TmB) of the polyester B layer is preferably 230 ° C. or higher and 245 ° C. or lower.
  • a laminated polyester film having a polyester A layer and a polyester B layer, wherein the polyester A layer is a structural unit derived from ethylene glycol and a structural unit derived from diol.
  • the polyester A layer is a structural unit derived from ethylene glycol and a structural unit derived from diol.
  • the structural unit derived from ethylene glycol in the polyester B layer is 85 mol% or more and less than 90 mol%, and the structural unit derived from 1,4-cyclohexanedimethanol is 10 mol% or more and 15 mol% based on the structural unit derived from diol. It is preferable to contain less than.
  • the polyester A layer contains 1 mol% or more and less than 5 mol% of structural units derived from 1,4-cyclohexanedimethanol
  • the polyester B layer contains 10 mol% or more of structural units derived from 1,4-cyclohexanedimethanol.
  • a configuration in which the content is less than mol% and the melting point of the film (in the case of a laminated film, the melting point of the polyester B layer) is 235 ° C. or more and 245 ° C. or less is a very preferable embodiment. In such a configuration, in order to set the melting point of the film (the melting point of the polyester B layer in the case of a laminated film) to 235 ° C. or more and 245 ° C.
  • polyester B layer a polyethylene terephthalate resin and 1,4-cyclohexane diester are used as the polyester B layer.
  • a method of mixing a methanol copolymerized polyethylene terephthalate resin in an extruder is preferably used.
  • the copolymerization amount of 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin with 1,4-cyclohexanedimethanol is preferably 25 mol% or more and 35 mol% or less.
  • the melting point of the film in the case of a laminated film, the melting point of the polyester B layer
  • the residence time in the extruder of the polyester resin of the polyester B layer is preferably 5 minutes or more and 15 minutes or less.
  • the melting point of the polyester film is an endothermic peak temperature expressed by a melting phenomenon when measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC) (details will be described later).
  • DSC differential scanning calorimeter
  • the endothermic peak temperature appearing at the highest temperature is set to the temperature of the polyester film of the present invention.
  • the biaxially oriented polyester film for molding of the present invention preferably has a color tone b value of ⁇ 1.5 or more and 1.5 or less from the viewpoint of appearance after molding.
  • the color tone b value is smaller than ⁇ 1.5, the molded body using the biaxially oriented polyester film for molding of the present invention becomes bluish and the appearance is impaired.
  • the color tone b value is larger than 1.5, the appearance becomes yellowish and the appearance is deteriorated.
  • the color tone b value is from 0 to 1.5, most preferably from 0 to 1.2.
  • the color tone b value is a value obtained by transmission measurement based on JIS Z-8722-2000 for measuring the b value in the Lab color system.
  • the method for adjusting the color tone b value from ⁇ 1.5 to 1.5 is not particularly limited, but the resin temperature during extrusion when the biaxially oriented polyester film for molding of the present invention is produced is controlled to 275 ° C. to 295 ° C. It is preferable to do. Since the resin temperature at the time of extrusion may become higher than the extruder temperature due to shear heat generation of the resin, it is necessary to set the extruder temperature from the resin kneading time, resin viscosity, and the like. Further, it is preferable that the inside of the extruder is an inert gas, preferably a flowing nitrogen atmosphere, and the oxygen concentration inside the supply unit is 0.7 vol% or less, more preferably 0.5 vol% or less.
  • the biaxially oriented polyester film for molding of the present invention has a stress at 100% elongation in the film longitudinal direction and the width direction at 150 ° C., and the storage elastic modulus in the film longitudinal direction and the width direction at 80 ° C.
  • the film composition is a structural unit derived from neopentyl glycol, a structural unit derived from 1,4-cyclohexanedimethanol, isophthalic acid It is preferable to contain a structural unit derived from a structural unit derived from 2,6-naphthalenedicarboxylic acid, but by including these components, the heat resistance of extrusion may decrease, the resin temperature during extrusion, The oxygen concentration is important. In addition, by adopting the above extrusion temperature and oxygen concentration, the color tone b value can be set to -1.5 or more and 1.5 or less.
  • the heat treatment temperature after biaxial stretching is also effective to set the heat treatment temperature after biaxial stretching to a specific range in the production process of the biaxially oriented polyester film for molding of the present invention.
  • it is effective to set the heat treatment temperature to a high temperature for a long time but if the heat treatment temperature is high for a long time, the color tone b value is in the range of ⁇ 1.5 to 1.5. May fall off
  • a multi-stage heat treatment method in which heat treatment is performed again at a high temperature and in a short time and then heat treatment at a low temperature is preferable.
  • the preferable high temperature heat treatment temperature is 200 ° C.
  • the high temperature heat treatment time is preferably 10 to 40 seconds, more preferably 15 to 30 seconds.
  • the low temperature heat treatment temperature after the high temperature heat treatment is preferably 120 ° C. to 180 ° C., and the low temperature heat treatment temperature is preferably 5 seconds to 15 seconds. Further, a method of performing an annealing treatment offline after producing a film by performing a heat treatment at a high temperature for a short time is also very effective.
  • the thermal shrinkage rate in the longitudinal direction and the width direction at 150 ° C. is 1% or less in order to improve the dimensional stability after molding.
  • the thermal shrinkage rate in the longitudinal direction and the width direction at 150 ° C. is preferably ⁇ 1% or more.
  • the heat shrinkage rate in the longitudinal direction and the width direction at 150 ° C. means that a film is cut into a rectangle 150 mm long ⁇ 10 mm wide in the longitudinal direction and the width direction, and marked lines are drawn on the sample at intervals of 100 mm. Is the rate of change in the distance between the marked lines before and after the heat treatment is performed by installing in a hot air oven heated to 150 ° C. for 30 minutes.
  • both the longitudinal direction and the width direction have a heat shrinkage rate at 150 ° C. of ⁇ 1% or more, or 1% or less, deformation or the like when a molded member after film molding is heated can be suppressed. Highly preferred.
  • Examples of a method for adjusting the thermal shrinkage in the longitudinal direction and the width direction at 150 ° C. to ⁇ 1% or more and 1% or less include a method of adjusting the heat treatment conditions of the film after biaxial stretching.
  • the heat treatment temperature after biaxial stretching is 200 ° C. to 240 ° C. from the viewpoint of dimensional stability and film quality. If it is preferable, it is preferably 210 ° C to 235 ° C, more preferably 215 ° C to 230 ° C.
  • the heat processing temperature of the biaxially oriented polyester film for molding of the present invention is caused by thermal history in a DSC curve when measured at a heating rate of 20 ° C./min in a nitrogen atmosphere in a differential scanning calorimeter (DSC). It can be determined from the minute endothermic peak.
  • a preferable heat treatment time can be arbitrarily set within 5 to 60 seconds, but is preferably 10 to 40 seconds from the viewpoint of moldability, dimensional stability, color tone, and productivity, and 15 to 30 seconds. Preferably it is seconds. Further, the heat treatment is preferably performed while relaxing in the longitudinal direction and / or the width direction, since the heat shrinkage rate can be reduced.
  • a preferable relaxation rate (relaxation rate) at the time of heat treatment is 3% or more. From the viewpoint of dimensional stability and productivity, 3% to 10% is preferable, and 3% to 5% is most preferable. preferable.
  • the heat shrinkage rate can be further reduced by performing the heat treatment at a temperature lower than the heat treatment temperature while relaxing in the longitudinal direction and / or the width direction.
  • the heat treatment temperature in the second stage is preferably 120 ° C. to 180 ° C., more preferably 150 ° C. to 180 ° C.
  • off-annealing treatment is a method in which the polyester film once wound is subjected to heat treatment again.
  • the thermal shrinkage rate at 150 ° C. is more preferably 0.8% or less, and most preferably 0.5% or less.
  • the biaxially oriented polyester film for molding of the present invention is at least when heated at a heating rate of 5 ° C./min from 25 ° C. to 220 ° C. under a load of 19.6 mN. It is preferable that the thermal deformation rate of the film at 150 ° C. in one direction is 0 to + 3%.
  • the dimensional stability after molding can be evaluated by, for example, [Example] (21) Dimensional stability after molding 1).
  • the off-annealing treatment is very effective as described above, but the off-annealing treatment temperature is set to 140 ° C. or more and less than 160 ° C., and the width direction is free, that is, the film Is not restricted in the film width direction, the thermal deformation rate in the width direction can be in the above range, and the winding speed in the longitudinal direction is +0.5 to 5% from the unwinding speed.
  • the thermal deformation rate in the longitudinal direction is very effective as described above, but the off-annealing treatment temperature is set to 140 ° C. or more and less than 160 ° C.
  • the width direction is free, that is, the film Is not restricted in the film width direction
  • the thermal deformation rate in the width direction can be in the above range
  • the winding speed in the longitudinal direction is +0.5 to 5% from the unwinding speed.
  • it is preferable to provide a stepwise cooling zone after the off-annealing treatment because the thermal contraction rate can be further reduced.
  • the film has a thermal deformation rate of 0 to + 3% at 150 ° C. in the longitudinal direction and the width direction when the temperature is raised from 25 ° C. to 220 ° C. at a heating rate of 5 ° C./min with a load of 19.6 mN. It is most preferable if the thermal deformation rate of the film at 150 ° C. in the longitudinal direction and in the width direction is +0.5 to + 2%.
  • the biaxially oriented polyester film for molding of the present invention has a load of 19.6 mN and a heating rate of 5 ° C./min from 25 ° C. to 220 ° C. when it is developed for applications in which dimensional stability after molding is particularly severe.
  • the thermal deformation rate of the film at 180 ° C. in at least one direction when the temperature is raised is 0 to + 3%. More preferably, the film has a thermal deformation rate of 0 to + 3% at 150 ° C. in the longitudinal direction and the width direction when the temperature is raised from 25 ° C. to 220 ° C. at a heating rate of 5 ° C./min with a load of 19.6 mN.
  • the thermal deformation rate of the film at 180 ° C. in the longitudinal direction and in the width direction is +0.5 to + 2%.
  • the dimensional stability after molding can be evaluated by, for example, [Example] (22) Dimensional stability after molding 2).
  • the off-annealing treatment temperature is set to 160 ° C. or more and 180 ° C. or less, and the width direction is in a free state, that is, the film is not restrained in the film width direction. It is possible to set the thermal deformation rate of the longitudinal direction to the above range by reducing the longitudinal winding speed by 0.5 to 5% from the unwinding speed. Is possible. Furthermore, it is preferable to provide a stepwise cooling zone after the off-annealing treatment because the thermal contraction rate can be further reduced. More preferably, the film has a thermal deformation rate of 0 to + 3% at 180 ° C. in the longitudinal and width directions when the temperature is raised from 25 ° C. to 220 ° C. at a heating rate of 5 ° C./min with a load of 19.6 mN. It is most preferable if the thermal deformation rate of the film at 180 ° C. in the longitudinal direction and in the width direction is +0.5 to + 2%.
  • the biaxially oriented polyester film for molding of the present invention preferably has a birefringence ( ⁇ n) of less than 20 ⁇ 10 ⁇ 3 from the viewpoint of uniform moldability.
  • uniform moldability means that the anisotropy of the film is small and the difference in the degree of molding is small depending on the direction.
  • Birefringence is a numerical value defined by the refractive index of the film measured with an Abbe refractometer or the like, where n MD is the refractive index in the longitudinal direction of the film, and n TD is the refractive index in the width direction.
  • a birefringence of 20 ⁇ 10 ⁇ 3 or more is not preferable because the orientation balance in the plane direction of the film is poor, and the moldability may deteriorate due to the influence of the direction of high orientation.
  • it is more preferably less than 15 ⁇ 10 ⁇ 3 , and most preferably less than 10 ⁇ 10 ⁇ 3 .
  • it can achieve by adjusting a draw ratio, for example.
  • birefringence can be reduced by bringing the stretching ratios in the longitudinal direction and the width direction close to each other.
  • the stretching ratio in the longitudinal direction is 3 to 3.8 times
  • the stretching ratio in the width direction is 3 to 3.8 times
  • the stretching ratio in the longitudinal direction is 3 to 3.5 times
  • the stretching ratio in the width direction is It is preferably 3 to 3.5 times.
  • the preheating temperature for transverse stretching is preferably 80 to 100 ° C., more preferably 85 to 95 ° C.
  • the transverse stretching temperature is preferably 90 ° C. or higher and 120 ° C. or lower, more preferably 95 ° C. or higher and 110 ° C. or lower, and most preferably 90 ° C. or higher and 100 ° C. or lower.
  • the biaxially oriented polyester film for molding of the present invention preferably has a haze of less than 0.01% / ⁇ m from the viewpoint of the design properties of the molded member after molding. It is preferable that the haze is less than 0.01% / ⁇ m because the design of the molded member is improved.
  • Examples of the method of setting the haze to 0.01% / ⁇ m or less include a method of reducing the concentration of particles to be contained in order to improve the film transportability.
  • the biaxially oriented polyester film for molding of the present invention can contain particles in the film in order to improve the transportability of the film.
  • the particles to be used are not particularly limited, but externally added particles are preferably used in terms of transportability and appearance.
  • the external additive particles include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, and aluminum oxide
  • organic particles include styrene, silicone, acrylic acids, methacrylic acids, Particles containing polyesters, divinyl compounds and the like as constituent components can be used.
  • inorganic particles such as wet and dry silica and alumina, and particles containing styrene, silicone, acrylic acid, methacrylic acid, polyester, divinylbenzene and the like as constituent components.
  • these externally added particles may be used in combination of two or more. From the viewpoint of transportability and appearance, the content of particles in the film is preferably 0.001 to 0.02% by mass, more preferably 0.002 to 0.01% by mass, based on 100% by mass of the entire film. .
  • a method for reducing the particle concentration without reducing the transportability of the film for example, a method of adding two or more layers having at least an A layer and a B layer and adding particles only to the A layer or the B layer can be mentioned. It is done. By adding particles only to the A layer or the B layer, the amount of particles added can be reduced, and haze can be reduced without deteriorating the handleability. In order to further improve the handleability, a mode in which particles are contained only in the A layer and the C layer as a three-layer constitution of A layer / B layer / C layer is very preferable.
  • the stacking ratio H ( ⁇ ) is preferably 0.02 or more and 0.3 or less, and most preferably 0.03 or more and 0.25 or less.
  • the laminated thickness of the A layer and the C layer is preferably the same.
  • Said lamination thickness ratio can be achieved by adjusting the discharge amount when extruding the polyester A constituting the A layer and the polyester B constituting the B layer.
  • the discharge amount can be appropriately adjusted depending on the number of rotations of the screw of the extruder, the number of rotations of the gear pump, the extrusion temperature, the viscosity of the polyester raw material, etc. when a gear pump is used.
  • the film lamination ratio is determined by measuring the thickness of each layer by observing the cross section of the film with a scanning electron microscope, transmission electron microscope, optical microscope or the like at a magnification of 500 to 10,000 times. be able to.
  • the biaxially oriented polyester film for molding of the present invention has a film thickness of preferably 25 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 300 ⁇ m or less, more preferably 75 ⁇ m or more, from the viewpoint of the depth and shape retention of the molded member. Most preferably, it is 250 ⁇ m or less.
  • polyester A used for the polyester A layer a polyethylene terephthalate resin (a) and a 1,4-cyclohexanedimethanol copolymer polyethylene terephthalate resin (b) Is measured at a predetermined rate.
  • polyester B used in the polyester B layer polyethylene terephthalate resin (c) and 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin (d) are weighed at a predetermined ratio.
  • the mixed polyester resin is supplied to a vent type twin screw extruder and melt extruded. At this time, it is preferable to control the resin temperature to 275 ° C. to 295 ° C. under an atmosphere of flowing nitrogen in the extruder, with an oxygen concentration of 0.7% by volume or less. Next, foreign matter is removed and the amount of extrusion is leveled through a filter and a gear pump, respectively, and discharged from the T die onto a cooling drum in a sheet form.
  • an electrostatic application method in which a cooling drum and the resin are brought into close contact with each other by static electricity using an electrode applied with a high voltage
  • a casting method in which a water film is provided between the casting drum and the extruded polymer sheet, Adhere the extruded polymer from the glass transition point to (glass transition point-20 ° C), or a combination of these methods, the sheet polymer is brought into close contact with the casting drum, cooled and solidified, and unstretched Get a film.
  • a method of applying an electrostatic force is preferably used from the viewpoint of productivity and flatness.
  • the film of the present invention needs to be a biaxially oriented film from the viewpoint of heat resistance and dimensional stability.
  • the biaxially oriented film is obtained by stretching an unstretched film in the longitudinal direction and then stretching in the width direction, or by stretching in the width direction and then stretching in the longitudinal direction, or by the longitudinal direction of the film. It can be obtained by stretching by a simultaneous biaxial stretching method in which the width direction is stretched almost simultaneously.
  • the stretching ratio in such a stretching method is preferably 3.0 times or more and 4.2 times, more preferably 3.0 times or more and 4.0 times or less, particularly preferably in each of the longitudinal direction and the width direction. 3.0 times or more and 3.8 times or less are adopted.
  • the stretching speed is desirably 1,000% / min or more and 200,000% / min or less.
  • the stretching temperature is preferably 70 ° C. or higher and 120 ° C. or lower in the longitudinal direction and 80 ° C. or higher and 120 ° C. or lower in the width direction. Further, the stretching may be performed a plurality of times in each direction.
  • the film is heat-treated after biaxial stretching.
  • the heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll. This heat treatment is performed at a temperature of 120 ° C. or more and below the melting point of the polyester, preferably 200 ° C. or more and 240 ° C. or less, more preferably 210 ° C. to 235 ° C., and even more preferably 215 ° C. to 230 ° C. Is most preferable.
  • the heat treatment time can be arbitrarily set within a range not deteriorating the characteristics, and is preferably 5 seconds to 60 seconds, more preferably 10 seconds to 40 seconds, and most preferably 15 seconds to 30 seconds. Good.
  • the heat treatment may be performed by relaxing the film in the longitudinal direction and / or the width direction.
  • at least one surface can be subjected to corona treatment or an easy adhesion layer can be coated.
  • a method of providing the coating layer in-line in the film manufacturing process at least uniaxially stretched film with a coating layer composition dispersed in water is uniformly applied using a metalling ring bar or gravure roll.
  • the thickness of the easy-adhesion layer is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • various additives such as antioxidants, heat stabilizers, ultraviolet absorbers, infrared absorbers, pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added to the easy-adhesion layer.
  • the resin preferably used for the easy-adhesion layer is preferably at least one resin selected from an acrylic resin, a polyester resin, and a urethane resin from the viewpoint of adhesiveness and handleability. Among them, an acrylic resin is preferable because it is excellent in weather resistance, heat resistance, and moisture resistance. Further, in order to improve the dimensional stability after molding, it is preferable to perform off-annealing at 140 to 180 ° C.
  • the biaxially oriented polyester film for molding of the present invention preferably contains an antioxidant from the viewpoint of film quality.
  • an antioxidant By containing the antioxidant, it is possible to suppress the oxidative decomposition in the drying step and the extrusion step of the polyester resin, and it is possible to prevent the deterioration of the quality due to the gel-like foreign matter.
  • the antioxidant classified into hindered phenols, hydrazine, phosphites, etc. can be used conveniently.
  • pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris (2,4-di-t-butylphenyl) phosphite, etc. Is preferably used.
  • the biaxially oriented polyester film for molding of the present invention can impart weather resistance when used outdoors.
  • Examples of a method for imparting weather resistance include a method of laminating a weather resistant layer.
  • the weathering layer absorbs light energy with a wavelength of 350 nm or more and 360 nm or less, emits harmless heat energy, phosphorescence and fluorescence by very fast energy conversion, suppresses photoexcitation and photochemical reaction of impurities in the polymer, and whitens It is a layer having a function of preventing embrittlement, cracking, yellowing, etc., and is composed of, for example, a weather resistant resin layer or a layer in which various resin layers contain an ultraviolet absorber.
  • the average transmittance of the film after the lamination in the wavelength range of 350 nm to 360 nm is 45% or less, preferably 30% or less, and more preferably 10% or less.
  • the preferred thickness range of the weather resistant layer is 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 15 ⁇ m or less, and most preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the method of adding a weathering agent is also mentioned.
  • the average transmittance of the film in the wavelength range of 350 nm to 360 nm is 45% or less, preferably 30% or less, more preferably 10% or less, as in the method of laminating the weathering layer.
  • the weathering agent to be used is not particularly limited, but benzophenone compounds, triazine compounds, benzotriazole compounds, salicylic acid compounds, salicylate compounds, cyanoacrylate compounds, nickel compounds, benzoxazinone compounds, cyclic iminos. An ester compound or the like can be preferably used.
  • benzotriazole compounds benzophenone compounds, and benzoxazinone compounds are preferably used, and benzoxazinone compounds are particularly preferably used from the viewpoint of dispersibility.
  • benzotriazole compounds can be used alone or in combination of two or more.
  • stabilizers such as HALS (Hindered Amine Light Stabilizer) and antioxidants can be used in combination, and it is particularly preferable to use a phosphorus-based antioxidant in combination.
  • benzotriazole-based compound examples include 2-2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2- (2H-benzotriazole-2- Yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2- (2H-benzotriazol-2-yl) -4-methylphenol, 2- (2H-benzotriazol-2-yl) -4,6-di-t-butylphenol, 2- (2H-benzotriazol-2-yl) -4,6-di-t-amylphenol, 2- (2H-benzotriazol-2-yl) -4- t-butylphenol, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', '- can be exemplified di -t- butyl phenyl) -5-chloro
  • benzophenone compounds include 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4' -Tetrahydroxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and the like.
  • benzoxazinone compounds examples include 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2- (p-benzoylphenyl) -3,1-benzoxazin-4-one, 2- ( 2-naphthyl) -3,1-benzoxazin-4-one, 2,2'-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 '-(2,6-naphthylene) Examples thereof include bis (3,1-benzoxazin-4-one). Furthermore, it is preferable to use a cyanoacrylate-based tetramer compound in combination with another ultraviolet absorber in terms of imparting excellent weather resistance.
  • the cyanoacrylate tetramer compound is preferably contained in an amount of 0.05 to 2% by weight, more preferably 0.1 to 1.0% by weight.
  • the cyanoacrylate-based tetramer compound is a compound based on a tetramer of cyanoacrylate. For example, 1,3-bis (2′cyano-3,3-diphenylacryloyloxy) -2,2-bis- (2′cyano-3,3-diphenylacryloyloxymethylpropane).
  • the UV absorber used in combination with cyanoacrylate is preferably a benzoxazinone compound, particularly 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one),
  • the addition amount is preferably 0.3 to 1.5% by weight in the film.
  • the biaxially oriented polyester film for molding of the present invention can be laminated with a hard coat layer when used for applications with particularly severe scratch resistance.
  • the hard coat layer only needs to have high hardness, scratch resistance, and wear resistance, and may be composed of acrylic, urethane, melamine, organic silicate compound, silicone, metal oxide, etc. it can.
  • an acrylic, particularly active ray curable acrylic composition, or a thermosetting acrylic composition is preferably used in terms of hardness and durability, as well as curability and productivity.
  • the pencil hardness of the film after laminating the hard coat layer is preferably HB or more, more preferably H or more, and most preferably 2H or more.
  • the biaxially oriented polyester film for molding of the present invention is preferably used by depositing a metal compound on at least one surface of the film when used for metallic decoration.
  • a metal compound having a melting point of 150 ° C. or higher and 400 ° C. or lower by vapor deposition it is more preferable to use a metal compound having a melting point within the range because the polyester film can be molded at a temperature range, and the deposited metal layer can be molded, and the occurrence of defects in the deposited layer due to molding can be easily suppressed.
  • a particularly preferable melting point of the metal compound is 150 ° C. or higher and 300 ° C. or lower.
  • fusing point is 150 degreeC or more and 400 degrees C or less
  • Indium (157 degreeC) and tin (232 degreeC) are preferable, and indium is used preferably especially at the point of metallic luster and a color tone. be able to.
  • a method for producing a vapor deposition film a vacuum vapor deposition method, an EB vapor deposition method, a sputtering method, an ion plating method, or the like can be used.
  • the surface of the film may be pretreated by a method such as a corona discharge treatment or an anchor coating agent.
  • the thickness of the deposited film is preferably 1 nm or more and 500 nm or less, and more preferably 3n or more and 300 nm or less. From the viewpoint of productivity, it is preferably 3 nm or more and 200 nm or less.
  • the biaxially oriented polyester film for molding of the present invention can impart appearance and design properties when printed on the surface of the molded member.
  • the printing method is not particularly limited, but gravure printing, offset printing, screen printing, and the like are preferably used.
  • the thickness of the printing layer is preferably 1 nm or more and 20 ⁇ m or less.
  • the biaxially oriented polyester film for molding of the present invention is preferably used for decorating molded members, but is preferably used for, for example, in-mold molding and insert molding as a molding decoration method.
  • the in-mold molding referred to here is a molding method in which a film itself is placed in a mold and molded into a desired shape with a resin pressure to be injected to obtain a molded decorative body.
  • insert molding is to create a film molded body to be installed in the mold by vacuum molding, pressure molding, vacuum pressure molding, press molding, plug assist molding, etc., and filling the shape with resin, This is a molding method for obtaining a molded decorative body. Since a more complicated shape can be obtained, the biaxially oriented polyester film for molding of the present invention is particularly preferably used for insert molding.
  • the biaxially oriented polyester film for molding of the present invention has a low molding stress in the molding temperature range, various molding methods such as vacuum molding, pressure molding, vacuum pressure molding, in-mold molding molded by injection resin pressure, etc.
  • the storage modulus in the processing temperature range is in a specific range, it has excellent dimensional stability in processing processes such as coating, laminating, printing, and vapor deposition. It can be decorated by other means, and since it has a high storage elastic modulus in a high temperature region, it has excellent heat resistance, excellent surface properties even after molding, and excellent color tone, so the appearance is good
  • it can be suitably used for decorating molded members such as building materials, mobile devices, electrical products, automobile parts, and gaming machine parts.
  • the specific heat change based on the transition from the glass state to the rubber state is read, and the straight line that is equidistant from the extended straight line of each baseline in the direction of the vertical axis (the axis indicating the heat flow)
  • the midpoint glass transition temperature at the point where the curve intersects was determined and used as the glass transition temperature.
  • Polyester resin and film can be dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol can be quantified using 1 H-NMR and 13 C-NMR. it can.
  • HFIP hexafluoroisopropanol
  • the components constituting each layer can be collected and evaluated by scraping off each layer of the film according to the laminated thickness.
  • the composition was computed by calculation from the mixing ratio at the time of film manufacture.
  • Haze Film haze was measured using a haze meter (HGM-2GP manufactured by Suga Test Instruments Co., Ltd.) based on JIS K 7105 (1985). The measurement was performed at three arbitrary locations, and the average value was adopted. In addition, the haze in this invention shows the haze value with respect to film thickness.
  • Frequency 10 Hz
  • test length 20 mm
  • minimum load about 100 mN
  • amplitude 10 ⁇ m
  • Measurement temperature range ⁇ 50 ° C. to 200 ° C.
  • temperature rising rate 5 ° C./min.
  • Heat shrinkage rate (%) ⁇ (distance between marked lines before heat treatment) ⁇ (distance between marked lines after heat treatment) ⁇ / (distance between marked lines before heat treatment) ⁇ 100.
  • thermomechanical analyzer manufactured by Seiko Instruments, TMA EXSTAR6000 was used under the following conditions. The rate of change of the film length at each temperature when the temperature was raised was defined as the thermal deformation rate.
  • the polyester film of the present invention was heated using a far-infrared heater at 450 ° C. so that the surface temperature was 150 ° C. and heated to 60 ° C. (70 ⁇ 70 mm, high And vacuum / pressure formation (pressure: 0.2 Ma).
  • Three types of square dies, R, 1 mm, 2 mm, and 3 mm were prepared for the edge portion, respectively, and vacuum / compression molding was performed.
  • the state of being molded along the mold was evaluated according to the following criteria. S: Molded with R1 mm (R1 mm could be reproduced). A: Molding was possible at R2 mm (R2 mm could be reproduced), but molding was not possible at R1 mm. B: R3 mm could be molded (R3 mm could be reproduced), but R2 mm could not be molded. C: Can not be molded with R3 mm.
  • the surface of the molded body molded with heat resistance (15) was evaluated according to the following criteria. S: The surface of the molded body was completely rough, no waviness was observed, and the surface property was excellent. A: Slight undulation was observed on the surface of the molded body, but the surface property was excellent. B: Waviness was observed on the surface of the molded body, but the surface property was at a level that is not a problem. C: Roughness occurred on the surface of the molded body and the surface property was inferior.
  • Illuminance 100 mW / cm 2 , temperature: 60 ° C., relative humidity: 50% RH, irradiation time: 6 hours
  • a spectral color difference meter SE-2000 type manufactured by Nippon Denshoku Industries Co., Ltd.
  • the b value was measured by the transmission method according to JIS-K-7105, and the evaluation was performed according to the following criteria based on the amount of change in the b value.
  • Interlayer adhesion In the same manner as in (8), a tensile test was performed 5 times each in the longitudinal direction and the width direction of the film, and the film was broken. Nitto Denko Co., Ltd. OPP adhesive tape (Damplon Ace No. 375) was bonded to both sides of the broken part, and the composition of OPP adhesive tape / film sample after tensile test / OPP adhesive tape was created. The tape was forcibly peeled by 180 °, the film sample after the tensile test was observed, and the evaluation was performed according to the following criteria. A: No delamination occurred between the layers. B: Peeling between the A layer / B layer occurred once or more.
  • the polyester resin used for film formation was prepared as follows.
  • Polyethylene terephthalate resin (inherent viscosity 0.65) in which the terephthalic component is 100 mol% as the dicarboxylic acid component, the ethylene glycol component is 98.8 mol%, and the diethylene glycol component is 1.2 mol% as the glycol component.
  • polyester B A copolymerized polyester (GN001 manufactured by Eastman Chemical Co.) in which 33 mol% of 1,4-cyclohexanedimethanol was copolymerized with respect to the glycol component was used as cyclohexanedimethanol copolymerized polyethylene terephthalate (inherent viscosity 0.75).
  • Polyethylene terephthalate having 100 mol% of terephthalic component as dicarboxylic acid component, 68.5 mol% of ethylene glycol component, 30 mol% of neopentyl glycol component and 1.5 mol% of diethylene glycol component as glycol component Resin (intrinsic viscosity 0.75).
  • Polyethylene Isophthalic acid copolymer polyethylene comprising 82.5 mol% of terephthalic component as dicarboxylic acid component, 17.5 mol% of isophthalic component, 98.5 mol% of ethylene glycol component and 1.5 mol% of diethylene glycol component as glycol components Terephthalate resin (intrinsic viscosity 0.7).
  • Polybutylene terephthalate resin (intrinsic viscosity 1.22) having 100 mol% of terephthalic component as dicarboxylic acid component and 100 mol% of 1,4-butanediol component as glycol component.
  • Particle Master A Polyethylene terephthalate particle master (intrinsic viscosity 0.65) containing polyester A with aggregated silica particles having an average particle size of 2.2 ⁇ m at a particle concentration of 2 mass%.
  • Polyester A prepared as described above and 2,2 ′-(1,4-phenylene) bis (4H-3,1benzoxazin-4-one) were mixed at a mass ratio of 95: 5 to produce a bent biaxial
  • a weathering agent master of 2,2 ′-(1,4-phenylene) bis (4H-3,1benzoxazin-4-one) was produced by kneading at 280 ° C. using an extruder.
  • Example 1 Polyester A and polyester B are mixed at a mass ratio of 70:30 and supplied to a vented twin screw extruder having an oxygen concentration of 0.2% by volume, melted at 275 ° C. to remove foreign matter and level the amount of extrusion. After performing, it discharged in the sheet form on the cooling drum temperature-controlled at 25 degreeC from T die. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
  • the film temperature is raised with a heated roll, the preheating temperature is 85 ° C., the stretching temperature is 90 ° C., and the film is stretched 3 times in the longitudinal direction, and immediately controlled at 40 ° C. Cooled down.
  • the wetting tension on both sides of the base film is set to 50 mN / m, and the following coating agents A, B, C, D, E, and F are mixed on the treated surface while ultrasonically dispersing. And # 4 metering bar.
  • A Water-dispersed polyester resin (acid group 4.5 mg / g)
  • B Methylolated melamine (diluent: isopropyl alcohol / water)
  • C Oxazoline crosslinking agent (Nippon Shokubai "Epocross" WS-500
  • D Colloidal silica (average particle size 140 nm)
  • E Colloidal silica (average particle size 300 nm)
  • F Fluorine-based surfactant (diluent: water)
  • Solid content mass ratio: A / B / C / D / E / F 100 parts by weight / 38 parts by weight / 5 parts by weight / 2 parts by weight / 0.5 parts by weight / 0.2 parts by weight
  • the preheating temperature is 95 ° C.
  • the stretching temperature is 100 ° C.
  • the width direction is 3
  • the film was stretched 8 times and subjected to heat treatment at 230 ° C. for 5 seconds while relaxing 4% in the width direction in
  • Example 2 The film of Example 1 is free in the width direction in a hot air oven at 150 ° C. (in a state where the film is not restrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 3 In the hot air oven at 180 ° C., the film of Example 1 is free in the width direction (in a state where the film is not restrained in the film width direction), and is turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 4 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 5 In the hot air oven at 150 ° C., the film of Example 4 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 6 In the hot air oven at 180 ° C., the film of Example 4 is free in the width direction (in a state where the film is not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 7 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 8 In the hot air oven at 180 ° C., the film of Example 7 is free in the width direction (in a state where the film is not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 9 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 10 In the hot air oven at 150 ° C., the film of Example 9 is free in the width direction (in a state where the film is not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 11 In the hot air oven at 180 ° C., the film of Example 9 is free in the width direction (in a state where the film is not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 12 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 13 In the hot air oven at 180 ° C., the film of Example 12 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 14 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 15 In the hot air oven at 180 ° C., the film of Example 14 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 16 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 17 The film of Example 16 was subjected to an off-annealing treatment in a hot air oven at 180 ° C. in a width direction free state (a state in which the film was not restrained in the film width direction) and a longitudinal winding tension was controlled, and a film thickness of 188 ⁇ m. A biaxially oriented polyester film was obtained.
  • Example 18 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 19 The film of Example 16 was subjected to an off-annealing treatment in a hot air oven at 180 ° C. in a width direction free state (a state in which the film was not restrained in the film width direction) and a longitudinal winding tension was controlled, and a film thickness of 188 ⁇ m. A biaxially oriented polyester film was obtained.
  • Example 20 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained. Furthermore, the film obtained is free in the width direction in a 180 ° C hot air oven (the film is not constrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 21 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained. Furthermore, the film obtained is free in the width direction in a 180 ° C hot air oven (the film is not constrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 22 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained. Furthermore, the film obtained is free in the width direction in a 180 ° C hot air oven (the film is not constrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 125 ⁇ m.
  • Example 23 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained. Furthermore, the film obtained is free in the width direction in a 180 ° C hot air oven (the film is not constrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 24 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 25 In the hot air oven at 180 ° C., the film of Example 24 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 26 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 27 The film of Example 26 was turned off in a hot air oven at 180 ° C. while being free in the width direction (in a state where the film was not restrained in the film width direction), and the longitudinal winding speed was reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 28 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 29 In the hot air oven at 180 ° C., the film of Example 28 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 30 The composition and film configuration were changed as shown in the table, the oxygen concentration in the bent twin-screw extruder was 1% by volume, the extrusion temperature was 300 ° C., the stretch ratio in the longitudinal direction was 3.3 times, and the stretch ratio in the width direction was 3.
  • a biaxially oriented polyester film having a film thickness of 188 ⁇ m was obtained in the same manner as in Example 1 except that the ratio was 7 times. Furthermore, the film obtained is free in the width direction in a 180 ° C hot air oven (the film is not constrained in the film width direction), and the longitudinal winding speed is reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 31 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 32 In the hot air oven at 180 ° C., the film of Example 31 is free in the width direction (in a state where the film is not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 33 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 34 In the hot air oven at 180 ° C., the film of Example 33 was free in the width direction (in a state where the film was not restrained in the film width direction), and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 35 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 36 The film of Example 35 was turned off in a hot air oven at 180 ° C. while being free in the width direction (in a state where the film was not restrained in the film width direction) and the longitudinal winding speed being reduced by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 37 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 38 In the hot air oven at 180 ° C., the film of Example 37 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 39 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 40 In the hot air oven at 180 ° C., the film of Example 39 was free in the width direction (in a state where the film was not restrained in the film width direction) and turned off while lowering the winding speed in the longitudinal direction by 1.5% from the unwinding speed. Annealing treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • Example 1 A biaxially oriented polyester film having a film thickness of 188 ⁇ m was obtained in the same manner as in Example 1 except that the composition and the film configuration were changed as shown in the table.
  • Example 2 A biaxial film having a film thickness of 188 ⁇ m was changed in the same manner as in Example 1 except that the composition and film configuration were changed as shown in the table, and the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.7 times. An oriented polyester film was obtained.
  • Example 4 The composition and film configuration were changed as shown in the table, the oxygen concentration in the bent twin-screw extruder was 1% by volume, the extrusion temperature was 300 ° C., the stretch ratio in the longitudinal direction was 3.3 times, and the stretch ratio in the width direction was 3.
  • a biaxially oriented polyester film having a film thickness of 188 ⁇ m was obtained in the same manner as in Example 1 except that the ratio was 7 times.
  • the biaxially oriented polyester film for molding of the present invention has a low molding stress in the molding temperature range, various molding methods such as vacuum molding, pressure molding, vacuum pressure molding, in-mold molding molded by injection resin pressure, etc.
  • the storage modulus in the processing temperature range is in a specific range, it has excellent dimensional stability in processing processes such as coating, laminating, printing, and vapor deposition. It can be decorated by other means, and since it has a high storage elastic modulus in a high temperature region, it has excellent heat resistance, excellent surface properties even after molding, and excellent color tone, so the appearance is good
  • it can be suitably used for decorating molded members such as building materials, mobile devices, electrical products, automobile parts, and gaming machine parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 成型性、寸法安定性に優れており、成型加工を施して、様々な成型部材への加飾に使用することができるフィルムを提供する。 150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)がそれぞれ5MPa以上60MPa未満であり、80℃におけるフィルム長手方向および幅方向の貯蔵弾性率がそれぞれ2001MPa以上4000MPa未満であり、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率が41MPa以上400MPa未満である成型用二軸配向ポリエステルフィルム。

Description

成型用二軸配向ポリエステルフィルム
 本発明は成型加工に特に適して用いられる二軸配向ポリエステルフィルムに関する。
 近年、環境意識の高まりにより、建材、自動車部品や携帯電話、電機製品などで、溶剤レス塗装、メッキ代替などの要望が高まり、フィルムを使用した加飾方法の導入が進んでいる。
 係る加飾方法に使用される成型用ポリエステルフィルムとして、いくつかの提案がされている。例えば、常温での特定の成型応力を規定した成型用ポリエステルフィルムが提案されている(例えば、特許文献1参照)。
 また、特定温度での成型応力、貯蔵弾性率を規定した成型用ポリエステルフィルムも提案されている(例えば、特許文献2参照)。
 さらに、広い温度範囲での貯蔵弾性率を規定した成型用ポリエステルフィルムも提案されている(例えば、特許文献3参照)。
特開2001-347565号公報 特開2005-290354号公報 特開2008-162220号公報
 しかしながら、特許文献1に記載のフィルムは、成型性が必ずしも十分ではなく、また寸法安定性に関しても考慮されているフィルムに設計されてはいない。
 また、特許文献2に記載のフィルムは、フィルムの加工温度である80℃付近での寸法安定性が十分でなく、加工適性に劣るフィルムである。
 また、特許文献3に記載のフィルムは、広い温度範囲で低い貯蔵弾性率を示すため、成型性には優れるものの、やはり寸法安定性に関しては十分ではなく、また耐熱性も満足な特性を示すものではない。
 本発明の課題は上記した従来技術の問題点を解消することにある。すなわち、成型性、寸法安定性、耐熱性、外観に優れており、成型加工を施して、様々な成型部材へ好適に使用することのできる成型用二軸配向ポリエステルフィルムを提供することにある。
 係る課題を解決するための本発明の要旨とするところは、150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)がそれぞれ5MPa以上60MPa以下であり、80℃におけるフィルム長手方向および幅方向の貯蔵弾性率がそれぞれ2001MPa以上4000MPa以下であり、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率が41MPa以上400MPa以下である成型用二軸配向ポリエステルフィルム、である。
 本発明の成型用二軸配向ポリエステルフィルムは、成型温度領域での成型応力が低いため、真空成型、圧空成型、真空圧空成型や、射出樹脂圧で成型されるインモールド成形などといった様々な成型方法で成型が可能であり、また、加工温度領域での貯蔵弾性率が特定の範囲であるため、コーティング、ラミネート、印刷、蒸着といった加工工程での寸法安定性に優れていることから、印刷、蒸着等により加飾を施すことができ、さらに高温領域での貯蔵弾性率が高いことから耐熱性に優れ、成型後も優れた表面性を示し、さらに色調も優れているため、外観が良好であり、例えば、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型部材の加飾に好適に用いることができる。
 本発明の成型用二軸配向ポリエステルフィルムを構成するポリエステルとは、主鎖における主要な結合をエステル結合とする高分子化合物の総称である。そして、ポリエステル樹脂は、通常ジカルボン酸あるいはその誘導体とグリコールあるいはその誘導体を重縮合反応させることによって得ることができる。
 本発明では、成型性、外観、耐熱性、寸法安定性、経済性の点から、ポリエステルを構成するグリコール単位の60モル%以上がエチレングリコール由来の構造単位であり、ジカルボン酸単位の60モル%以上がテレフタル酸由来の構造単位であることが好ましい。なお、ここで、ジカルボン酸単位(構造単位)あるいはジオール単位(構造単位)とは、重縮合によって除去される部分が除かれた2価の有機基を意味し、要すれば、以下の一般式で表される
   ジカルボン酸単位(構造単位):  -CO-R-CO-
   ジオール単位(構造単位):    -O-R’―O-
   (ここで、R、R’は二価の有機基)
なお、トリメリット酸単位やグリセリン単位など3価以上のカルボン酸あるいはアルコール並びにそれらの誘導体についての単位(構造単位)の意味についても同様である。
 本発明に用いるポリエステルを与える、グリコールあるいはその誘導体としては、エチレングリコール以外に、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジヒドロキシ化合物、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、1,4-シクロヘキサンジメタノール、スピログリコールなどの脂環族ジヒドロキシ化合物、ビスフェノールA、ビスフェノールSなどの芳香族ジヒドロキシ化合物、並びに、それらの誘導体が挙げられる。中でも、成型性、取り扱い性の点で、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールが好ましく用いられる。
 また、本発明に用いるポリエステルを与えるジカルボン酸あるいはその誘導体としては、テレフタル酸以外には、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、パラオキシ安息香酸などのオキシカルボン酸、並びに、それらの誘導体を挙げることができる。ジカルボン酸の誘導体としてはたとえばテレフタル酸ジメチル、テレフタル酸ジエチル、テレフタル酸2-ヒドロキシエチルメチルエステル、2,6-ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、アジピン酸ジメチル、マレイン酸ジエチル、ダイマー酸ジメチルなどのエステル化物を挙げることができる。中でも、成型性、取り扱い性の点で、イソフタル酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、および、それらのエステル化物が好ましく用いられる。
 本発明の成型用二軸配向ポリエステルフィルムは、成型性の点から150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)がそれぞれ5MPa以上60MPa以下であることが必要である。成型部材の成型方法としては、真空成型、圧空成型、真空圧空成型、プレス成型、プラグアシスト成型といった加熱成型方法が挙げられるが、何れの成型法も赤外線ヒーターなどによる予熱工程でフィルムの温度を高い状態とした後に成型される工程を有する。このため、高温での成型応力を低くすることで、複雑な形状に成型することが可能となる。このため、150℃における100%伸長時応力(F100値)が5MPa以上60MPa以下とすることが重要である。F100値が5MPa未満であると、成型加工での予熱工程でフィルム移送のための張力に耐えることができず、フィルムが変形、場合によっては破断してしまう場合があり、成型用途への使用に耐えないフィルムとなってしまう。逆に60MPaを超える場合は、熱成型時に変形が不十分であり、複雑な形状への成型が困難となってしまう。取扱い性、成型性の点で、150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)は10MPa以上50MPa以下であれば好ましく、15MPa以上45MPa以下であれば最も好ましい。また、特に複雑な形状へ使用される場合は、150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)は5MPa以上36MPa以下とすることが好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、より複雑な形状へ成型するために、150℃におけるフィルム長手方向および幅方向の破断伸度がそれぞれ100%以上500%以下であることが好ましい。複雑な形状に成型する場合でも高い成型加工倍率に追随でき、また、経済性や耐熱性にも優れたものとできる。成型性、耐熱性、経済性の点で、フィルム長手方向および幅方向の伸度は100%以上400%以下であれば好ましく、120%以上300%以下であれば最も好ましい。また、特に寸法安定性が必要な用途で用いられる場合は、フィルムの長手方向または幅方向の伸度が120%以上200%以下であることが好ましい。
 本発明の成型用二軸配向ポリエステルフィルムにおいて、150℃におけるフィルムの100%伸長時応力、破断伸度を上記の範囲とする方法としては、例えば、用いるポリエステルにネオペンチルグリコール由来の構造単位、1,4-シクロヘキサンジメタノール由来の構造単位、イソフタル酸由来の構造単位、あるいは、2,6-ナフタレンジカルボン酸由来の構造単位を含有させることが挙げられる。係る構造単位は、成型時のフィルムの配向結晶化を抑制するので、150℃におけるフィルムの100%伸長時応力(F100値)を低く抑えることができ、さらに、破断伸度も向上させることができる。好ましい濃度としては、フィルム中のジカルボン酸成分に対するイソフタル酸由来の構造単位および/または、2,6-ナフタレンジカルボン酸由来の構造単位を5モル%以上15モル%以下とするか、グリコール成分に対する1,4-シクロヘキサンジメタノール由来の構造単位および/またはネオペンチルグリコール由来の構造単位を5モル%以上15モル%以下とすることが挙げられる。
 本発明の成型用二軸配向ポリエステルフィルムは加工時の寸法安定性の観点から、80℃における貯蔵弾性率を2001MPa以上4000MPa以下とすることが必要である。好ましくは、2200MPa以上3500MPa以下、さらに好ましくは2400MPa以上3000MPa以下である。80℃における貯蔵弾性率が、2001MPa未満であれば、印刷、蒸着、コーティング、ラミネートといった加工工程での寸法安定性が低下してしまう。逆に、貯蔵弾性率が4000MPaより大きくなると、寸法安定性には優れるが、成型性が悪化する場合があるので好ましくない。
 成型性を向上させるために150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)をそれぞれ5MPa以上60MPa以下とするためには、用いるポリエステルとしてネオペンチルグリコール由来の構造単位、1,4-シクロヘキサンジメタノール由来の構造単位、イソフタル酸由来の構造単位、あるいは、2,6-ナフタレンジカルボン酸由来の構造単位を含有させることが好ましいが、該組成とすると、加工時に寸法安定性が低下してしまう。つまり、成型性と寸法安定性は通常は相反する特性であり、両立させることは非常に困難であった。本発明は、150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)をそれぞれ5MPa以上60MPa以下とし、かつ、80℃における貯蔵弾性率を2001MPa以上4000MPa以下とすることで、成型性と寸法安定性を両立させることに成功した。
 本発明の成型用二軸配向ポリエステルフィルムにおいて、80℃における貯蔵弾性率を上記の範囲とする方法としては、例えば、損失正接のピーク温度を100℃以上120℃以下とする方法が好ましく用いられる。損失正接ピーク温度を上記範囲とすることで、成型性を維持しながら、80℃における貯蔵弾性率を2001MPa以上3500MPa以下に制御することが可能となる。損失正接のピークは高分子のガラス転移に基づくものであり、損失正接のピーク温度が100℃未満であれば80℃の貯蔵弾性率が2001MPa未満となる場合があり、寸法安定性が低下してしまう。一方、損失正接のピーク温度を120℃より大きくしようとすると、150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)が60MPaより大きくなる場合があり、成型性が低下してしまう。損失正接のより好ましい範囲は、100℃以上115℃以下である。
 また、本発明の成型用二軸配向ポリエステルフィルムは、さらに加工時の寸法安定性を向上させるために、100℃におけるフィルム長手方向および幅方向の貯蔵弾性率は、1001MPa以上で3000MPa以下であることが好ましい。より好ましくは、1050MPa以上2500MPa以下であり、1100MPa以上2000MPa以下であれば最も好ましい。100℃におけるフィルム長手方向および幅方向の貯蔵弾性率を上記範囲とすることで、加工時の寸法安定性をさらに向上させることができ、加工温度領域が広がるため非常に好ましい。
 本発明の成型用二軸配向ポリエステルフィルムにおいて、100℃における貯蔵弾性率を上記の範囲とする方法としては、特に限定されないが、例えば、損失正接のピーク温度を105℃以上120℃以下とする方法が好ましく用いられ、より好ましくは105℃以上110℃以下である。
 損失正接のピーク温度を制御する方法として、延伸倍率を高倍とすることが好ましい。延伸倍率としては、面倍率で10倍以上であれば好ましく、11倍以上であればさらに好ましく、12倍以上であれば最も好ましい。さらに延伸温度を延伸ムラが生じない程度に低くすることが好ましい。特に長手方向に延伸後、幅方向に延伸を行う逐次二軸延伸においては、長手方向の延伸温度を低くする方法、具体的には80℃~90℃とする方法が好ましく、幅方向の延伸温度は、長手方向の延伸温度より高めの90℃~100℃とする方法が好ましい。
 さらに、剛直な構造を有する2,6-ナフタレンジカルボン酸、あるいは環構造を有する1,4-シクロヘキサンジメタノールに由来の構造単位を含む構成とすることが好ましく、フィルム中に、ジカルボン酸成分として、2,6-ナフタレンジカルボン酸由来の構造単位を5モル%以上15モル%以下とするか、グリコール成分として1,4-シクロヘキサンジメタノール由来の構造単位を5モル%以上15モル%以下含有することが好ましい。一方で、たわみやすいメチレン基を多く有する成分、例えば、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、コハク酸、アジピン酸、セバシン酸、ダイマー酸などは損失正接のピーク温度を低下させるため、含有量としては5モル%以下であることが好ましく、3モル%以下であればさらに好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであることが好ましい。ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムとすることで、それぞれの層による機能を付与することができるためである。例えば、ポリエステルA層により寸法安定性を付与し、ポリエステルB層で成型性を付与することで、本発明の目的である寸法安定性と成型性を両立することが可能となる。
 また、ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムとした場合、ポリエステルA層の面配向係数を0.14以上0.17以下とし、ポリエステルA層の融点(TmA)とポリエステルB層の融点(TmB)の差(TmA-TmB)を7℃以上15℃以下とすることも非常に好ましい。ポリエステルA層の面配向係数を0.14以上0.17以下とすることで、寸法安定性を確保でき、ポリエステルB層の融点をポリエステルA層よりも低融点の構成とすることで、成型性を達成することができる。この際、成型性、寸法安定性、さらにはA層とB層との層間密着性の観点から、ポリエステルA層の融点(TmA)とポリエステルB層の融点(TmB)の差(TmA-TmB)を7℃以上15℃以下とすることが好ましい。
 成型性、寸法安定性の観点からポリエステルA層の面配向係数は0.145以上0.165以下であればさらに好ましく、0.149以上0.165以下であれば最も好ましい。
 ポリエステルA層としては、耐熱性、寸法安定性の観点から融点(TmA)が250℃以上255℃以下であり、かつ、密度が1.380g/cm以上1.400g/cm以下であることが好ましい。ポリエステルA層の融点、密度をかかる範囲とするためには、ポリエステルA層中にエチレングリコール由来の構造単位を95モル%以上99モル%未満含有せしめたり、1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有せしめたりすることが好ましい。ポリエステルA層の融点、密度をかかる範囲とするためには、ポリエステルA層中にエチレングリコール由来の構造単位を95モル%以上99モル%未満含有せしめ、かつ、1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有せしめることが特に好ましい。また、ポリエステルA層中にテレフタル酸由来の構造単位を、ジカルボン酸(ジカルボン酸エステルを含む)に由来の構造単位に対して、95モル%以上100モル%以下含有することが好ましい。
 また、ポリエステルB層としては、成型性の観点から、融点(TmB)が235℃以上245℃以下であり、かつ、密度が1.350g/cm以上1.365g/cm以下とすることが好ましい。ポリエステルB層の融点、密度をかかる範囲とするためには、ポリエステルB層中にエチレングリコール由来の構造単位を85モル%以上90モル%未満含有せしめたり、1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有せしめたりすることが好ましい。ポリエステルB層の融点、密度をかかる範囲とするためには、ポリエステルB層中にエチレングリコール由来の構造単位を85モル%以上90モル%未満含有せしめ、かつ、1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有せしめることが特に好ましい。また、ポリエステルB層中にテレフタル酸由来の構造単位を、ジカルボン酸(ジカルボン酸エステルを含む)に由来の構造単位に対して、95モル%以上100モル%以下含有することが好ましい。
 該構成とすることで、成型性、寸法安定性、耐熱性に優れ、さらには高倍率成型後のA層とB層の層間密着性にも優れるため、好ましい態様となる。
 積層構成とする場合、特に寸法安定性の観点から、ポリエステルA層が少なくとも一方の最外層に位置することが好ましい。
 また、積層構成とする場合、成型性、寸法安定性の観点からA層の積層比H(-):(A層の厚み)/(フィルム全体の厚み)が0.05以上0.4以下であることが好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、耐熱性の観点から、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率が41MPa以上400MPa以下であることが必要である。180℃における貯蔵弾性率が、41MPa未満であれば、耐熱性が低くなってしまい、成型時にフィルム表面の粗化など品位が低下してしまう場合がある。逆に、貯蔵弾性率が400MPaより大きくなると、成型性が悪化する場合があるので好ましくない。耐熱性、成型性の観点から、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率が100MPa以上300MPa以下であればさらに好ましく、130MPa以上250MPa以下であれば最も好ましい。
 180℃におけるフィルム長手方向および幅方向の貯蔵弾性率を41MPa以上400MPa以下とする方法としては、例えば、ポリエステルフィルムの融点を220℃以上とすることが好ましく挙げられる。また、耐熱性と成型性の観点からは、ポリエステルフィルムの融点は230℃以上255℃以下であることが好ましく、235℃以上245℃以下であれば最も好ましい。また、積層構成とする場合、ポリエステルA層の融点(TmA)を250℃以上255℃以下とすることが好ましい。また、ポリエステルB層の融点(TmB)を230℃以上245℃以下とすることが好ましい。
 成型性、寸法安定性、耐熱性を満たすためには、ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、ポリエステルA層が、エチレングリコール由来の構造単位を、ジオールに由来の構造単位に対して、95モル%以上99モル%未満、1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有し、
ポリエステルB層にエチレングリコール由来の構造単位を、ジオールに由来の構造単位に対して、85モル%以上90モル%未満、1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有することが好ましい。さらに、ポリエステルA層に1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有し、ポリエステルB層に1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有し、フィルムの融点(積層フィルムの場合は、ポリエステルB層の融点)が235℃以上245℃以下とする構成が非常に好ましい態様である。このような構成で、フィルムの融点(積層フィルムの場合は、ポリエステルB層の融点)を235℃以上245℃以下とするためには、ポリエステルB層として、ポリエチレンテレフタレート樹脂と1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂を押出機内で混合させる方法が好ましく用いられる。また、その際、1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂の1,4-シクロヘキサンジメタノールの共重合量は、25モル%以上35モル%以下とすることが好ましい。共重合量を上記範囲の樹脂と使用することで適度なエステル交換反応が進行して、フィルムの融点(積層フィルムの場合は、ポリエステルB層の融点)を235℃以上245℃以下とすることが可能となる。さらに、ポリエステルB層のポリエステル樹脂の押出機内の滞留時間としては、5分以上15分以下とすることが好ましい。
 ここで、ポリエステルフィルムの融点としては示差走査熱量計(DSC)を用いて、昇温速度20℃/分で測定を行った際の融解現象で発現する吸熱ピーク温度である(詳しくは後述する)。異なる組成のポリエステル樹脂をブレンドして使用し、フィルムとした場合などには複数の融解に伴う吸熱ピークが現れる場合があるが、その場合、最も高温に現われる吸熱ピーク温度を本発明のポリエステルフィルムの融点とする。
また、本発明の成型用二軸配向ポリエステルフィルムは、成型後の外観の観点から色調b値が-1.5以上1.5以下であることが好ましい。色調b値が-1.5より小さい場合、本発明の成型用二軸配向ポリエステルフィルムを用いた成型体の見た目が青っぽくなり、外観が損なわれる。一方、色調b値が1.5より大きい場合は、見た目が黄っぽくなり、外観が低下してしまう。より好ましくは、色調b値は0以上1.5以下であり、0以上1.2以下であれば最も好ましい。ここで、色調b値とは、Lab表色系におけるb値の測定はJIS Z-8722-2000に基づき、透過測定により求めた値である。色調b値を-1.5以上1.5以下とする方法は特に限定されないが、本発明の成型用二軸配向ポリエステルフィルムを製造する際の押出時の樹脂温度を275℃~295℃に制御することが好ましい。押出時の樹脂温度は、樹脂の剪断発熱により押出機温度よりも高温化する場合があるため、樹脂の混練時間、樹脂粘度などから押出機温度を設定する必要がある。また、押出機内部を不活性ガス、好ましくは流通窒素雰囲気下とし、供給部内部の酸素濃度を0.7体積%以下、さらに好ましくは0.5体積%以下とすることが好ましい。本発明の成型用二軸配向ポリエステルフィルムは、成型性、寸法安定性の観点から150℃におけるフィルム長手方向および幅方向の100%伸長時応力、80℃におけるフィルム長手方向および幅方向の貯蔵弾性率、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率を特定範囲としているが、上記した通り、フィルム組成としてネオペンチルグリコール由来の構造単位、1,4-シクロヘキサンジメタノール由来の構造単位、イソフタル酸由来の構造単位、2,6-ナフタレンジカルボン酸由来の構造単位を含有させることが好ましいが、これらの成分を含有することで、押出耐熱性が低下する場合があるため、押出時の樹脂温度、酸素濃度が重要となる。また、上記した押出温度、酸素濃度を採用することで、色調b値を-1.5以上1.5以下とすることができる。また、成型性、寸法安定性、色調を制御するためには、本発明の成型用二軸配向ポリエステルフィルムの製造工程において、二軸延伸後の熱処理温度を特定の範囲とすることも有効である。成型性、寸法安定性の観点からは熱処理温度は高温、長時間とすることが有効であるが、熱処理温度を高温、長時間とすると色調b値が-1.5以上1.5以下の範囲から外れる場合がある。このため、高温、短時間で熱処理後、熱処理温度を低温として再度熱処理を行う多段熱処理する方法は好ましい。この場合、好ましい高温熱処理温度としては200℃~240℃であり、215~230℃であればさらに好ましい。また、高温熱処理時間は、10秒~40秒であれば好ましく、15秒から30秒であればさらに好ましい。また、高温熱処理後の低温熱処理温度としては、120℃~180℃、低温熱処理温度は5秒~15秒であれば好ましい。また、高温、短時間での熱処理を行いフィルムを製造した後に、オフラインでアニール処理を行う方法も非常に有効である。
 本発明の成型用二軸配向ポリエステルフィルムは、成型後の寸法安定性を向上させるために、150℃における長手方向および幅方向の熱収縮率がいずれも1%以下であることが好ましい。また、成型後の寸法安定性を向上させるために、150℃における長手方向および幅方向の熱収縮率は、-1%以上であることが好ましい。ここで、150℃における長手方向および幅方向の熱収縮率とは、フィルムを長手方向および幅方向に長さ150mm×幅10mmの矩形に切り出しサンプルに100mmの間隔で標線を描き、3gの錘を吊して150℃に加熱した熱風オーブン内に30分間設置し加熱処理を行った前後の標線間距離の変化率を指す。
 長手方向および幅方向のいずれも150℃における熱収縮率を-1%以上としたり、1%以下とすることで、フィルム成型後の成型部材を加熱した際の変形等を抑制することができるため非常に好ましい。
 150℃における長手方向および幅方向の熱収縮率をいずれも-1%以上1%以下とする方法としては、例えば、二軸延伸後のフィルムの熱処理条件を調整する方法が挙げられる。処理温度は高温とすることで、配向緩和がおこり、熱収縮率は低減される傾向になるが、寸法安定性、フィルムの品位の観点から二軸延伸後の熱処理温度は200℃~240℃であれば好ましく、210℃~235℃であればさらに好ましく、215℃~230℃であれば最も好ましい。なお、本発明の成型用二軸配向ポリエステルフィルムの熱処理温度は、示差走査型熱量計(DSC)において窒素雰囲気下、20℃/分の昇温速度で測定したときのDSC曲線に熱履歴に起因する微小吸熱ピークより求めることができる。
 また、好ましい熱処理時間としては、5~60秒間で任意に設定することができるが、成型性、寸法安定性、色調、生産性の観点から、10~40秒とすることが好ましく、15~30秒とすることが好ましい。また、熱処理は、長手方向及び/又は幅方向に弛緩させながら、行うことで、熱収縮率を低減させることができるため好ましい。熱処理時の好ましい弛緩率(リラックス率)は、3%以上であり、寸法安定性、生産性の観点からは、3%以上10%以下であれば好ましく、3%以上5%以下であれば最も好ましい。
 また、2段階以上の条件で熱処理する方法も非常に好ましい。200℃~245℃の高温での熱処理後に、熱処理温度より低い温度で、長手方向及び/又は幅方向に弛緩させながら熱処理することで、さらに熱収縮率を低減させることが可能となる。このときの2段階目の熱処理温度は120℃~180℃であれば好ましく、150℃~180℃であればさらに好ましい。
 また、さらに熱収縮率を低減させる方法としては、オフアニール処理が挙げられる。すなわち、一度巻き取ったポリエステルフィルムに、再び熱処理を施す方法である。
 150℃における熱収縮率は、いずれも0.8%以下とすることがさらに好ましく、0.5%以下とすることが最も好ましい。
 本発明の成型用二軸配向ポリエステルフィルムは、成型後の寸法安定性を向上させるために、荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の少なくとも一方向の150℃でのフィルムの熱変形率が0~+3%であることが好ましい。当該特性を満たすことにより、フィルム成型後に、加熱条件下に保管した際のフィルムの変形を抑制することができ、例えばインサート成形、インモールド成形品の反り、樹脂からフィルム剥がれるといった不具合の発生を防ぐことができる(成型後の寸法安定性は、例えば、[実施例](21)成型後寸法安定性1で評価することができる)。
成型後の寸法安定性を向上するためには、上記した通りオフアニール処理が非常に有効であるが、オフアニール処理温度を140℃以上160℃未満とし、幅方向はフリーな状態、つまり、フィルムをフィルム幅方向に拘束していない状態にすることで幅方向の熱変形率を上記範囲にすることが可能であり、また、長手方向の巻き取り速度を巻き出し速度より+0.5~5%低下させることで、長手方向の熱変形率を上記の範囲とすることが可能である。さらに、オフアニール処理後に段階的な冷却ゾーンを設けることで、より熱収縮率を低減させることができるため好ましい。より好ましくは、荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の長手方向および幅方向の150℃でのフィルムの熱変形率が0~+3%であり、長手方向および幅方向の150℃でのフィルムの熱変形率が+0.5~+2%であれば最も好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、成型後の寸法安定性が特に厳しい用途へ展開する場合は、荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の少なくとも一方向の180℃でのフィルムの熱変形率が0~+3%であることが好ましい。より好ましくは、荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の長手方向および幅方向の150℃でのフィルムの熱変形率が0~+3%であり、長手方向および幅方向の180℃でのフィルムの熱変形率が+0.5~+2%であれば最も好ましい。当該特性を満たすことにより、フィルム成型後に、高温加熱条件下に保管した際のフィルムの変形を抑制することができ、例えばインサート成形、インモールド成形品の反り、樹脂からフィルム剥がれるといった不具合の発生を防ぐことができる(成型後の寸法安定性は、例えば、[実施例](22)成型後寸法安定性2で評価することができる)。
 上記熱変形率を達成するためには、オフアニール処理温度を160℃以上180℃以下とし、幅方向はフリーな状態、つまり、フィルムをフィルム幅方向に拘束していない状態にすることで幅方向の熱変形率を上記範囲にすることが可能であり、また、長手方向の巻き取り速度を巻き出し速度より0.5~5%低下させることで、長手方向の熱変形率を上記の範囲とすることが可能である。さらに、オフアニール処理後に段階的な冷却ゾーンを設けることで、より熱収縮率を低減させることができるため好ましい。より好ましくは、荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の長手方向および幅方向の180℃でのフィルムの熱変形率が0~+3%であり、長手方向および幅方向の180℃でのフィルムの熱変形率が+0.5~+2%であれば最も好ましい。
 本発明の成型用二軸配向ポリエステルフィルムは、均一成型性の観点から複屈折(Δn)が20×10-3未満であることが好ましい。ここで、均一成型性とは、フィルムの異方性が小さく、方向によって成型度合いの差が小さいことを指す。また、複屈折とは、アッベ屈折率計等で測定されるフィルムの屈折率により定義される数値であり、フィルムの長手方向の屈折率をnMD、幅方向の屈折率をnTDとすると、Δn=|nMD-nTD|の関係式で表される。複屈折が20×10-3以上の場合は、フィルムの面方向の配向バランスが悪いため、配向の高い方向の影響で成型性が低下してしまう場合があるため、好ましくない。より均一成型性を高めるためには15×10-3未満であればさらに好ましく、10×10-3未満であれば最も好ましい。複屈折を上記の範囲とするためには、例えば、延伸倍率を調整することにより達成することができる。二軸延伸方法の場合は、長手方向と幅方向の延伸倍率を近づけることで、複屈折を小さくすることができる。例えば、長手方向の延伸倍率を3~3.8倍とし、幅方向の延伸倍率を3~3.8倍、好ましくは長手方向の延伸倍率を3~3.5倍、幅方向の延伸倍率を3~3.5倍とすることが好ましい。複屈折を上記範囲とするためには、横延伸の予熱温度を80~100℃、さらに好ましくは85~95℃とすることが好ましい。横延伸温度は90℃以上120℃以下であれば好ましく、95℃以上110℃以下であればさらに好ましく、90℃以上100℃以下であれば最も好ましい。
 本発明の成型用二軸配向ポリエステルフィルムは、成型後の成型部材の意匠性の観点から、ヘイズが0.01%/μm未満であることが好ましい。ヘイズを0.01%/μm未満とすることで成型部材の意匠性が向上するために好ましい。
 ヘイズを0.01%/μm以下とする方法としては、フィルムの搬送性を向上させるために含有させる粒子の濃度をできるだけ低減する方法が挙げられる。本発明の成型用二軸配向ポリエステルフィルムは、フィルムの搬送性を向上させるためにフィルム中に粒子を含有させることができる。ここで、使用する粒子としては特に限定されないが、搬送性、外観の点で、外部添加粒子が好ましく用いられる。外部添加粒子としては、たとえば、湿式および乾式シリカ、コロイダルシリカ、ケイ酸アルミ、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、酸化アルミなど、有機粒子としては、スチレン、シリコーン、アクリル酸類、メタクリル酸類、ポリエステル類、ジビニル化合物などを構成成分とする粒子を使用することができる。なかでも、湿式および乾式シリカ、アルミナなどの無機粒子およびスチレン、シリコーン、アクリル酸、メタクリル酸、ポリエステル、ジビニルベンゼンなどを構成成分とする粒子を使用することが好ましい。さらに、これらの外部添加粒子は2種以上を併用してもよい。搬送性、外観の点からフィルム中の粒子含有量はフィルム全体を100質量%として、0.001~0.02質量%であれば好ましく、0.002~0.01質量%であればさらに好ましい。
 フィルムの搬送性を低下させずに、粒子濃度を低減させる方法としては、例えば少なくともA層とB層を有する2層以上の積層フィルムとし、A層またはB層のみに粒子を添加する方法が挙げられる。A層またはB層のみに粒子を添加することで、粒子の添加量を少なくでき、取扱い性を悪化させることなく、ヘイズを低減させることができる。取扱い性をさらに向上させるために、A層/B層/C層の3層構成として、A層およびC層のみに粒子を含有させる態様は非常に好ましい。
 A層の積層比H(-)(H(-)=(A層の厚み)(μm)/(フィルム全体の厚み)(μm))が0.01以上0.4以下であることが好ましい。積層比を0.01未満にしようとすると、A層の厚みが薄くなりすぎて、積層むらが生じる場合があるため好ましくない。また、積層比が0.4より大きい場合は、粒子の含有量が増えるため、ヘイズが高くなってしまう場合がある。積層比H(-)は0.02以上0.3以下であれば好ましく、0.03以上0.25以下であれば最も好ましい。また、A/B/Cの3層構成の場合、{(A層の厚み)+(C層の厚み))/(フィルム全体の厚み)も同様に0.01以上0.4以下であることが好ましい。製膜性の点からは、A層とC層の積層厚みは同等であることが好ましい。上記の積層厚み比は、A層を構成するポリエステルAと、B層を構成するポリエステルBを押出すときの吐出量を調整することにより達成することができる。吐出量は押出機のスクリューの回転数、ギヤポンプを使用する場合はギヤポンプの回転数、押出温度、ポリエステル原料の粘度などにより適宜調整できる。フィルムの積層比は、フィルムの断面を走査型電子顕微鏡、透過型電子顕微鏡、光学顕微鏡などで500倍以上10000倍以下の倍率で観察することによって、積層各層の厚みを測定し、積層比を求めることができる。
 本発明の成型用二軸配向ポリエステルフィルムは、成型部材の深み性、形状保持性の点から、フィルム厚みは25μm以上500μm以下であることが好ましく、50μm以上300μm以下であればさらに好ましく、75μm以上250μm以下であれば最も好ましい。
 次に本発明の成型用二軸配向ポリエステルフィルムの具体的な製造方法の例について記載するが、本発明は係る例に限定して解釈されるものではない。
 ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムとする場合、まず、ポリエステルA層に使用するポリエステルAとして、ポリエチレンテレフタレート樹脂(a)と1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(b)を所定の割合で計量する。また、ポリエステルB層に使用するポリエステルBとして、ポリエチレンテレフタレート樹脂(c)と1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(d)を所定の割合で計量する。
 そして、混合したポリエステル樹脂をベント式二軸押出機に供給し溶融押出する。この際、押出機内を流通窒素雰囲気下で、酸素濃度を0.7体積%以下とし、樹脂温度は275℃~295℃に制御することが好ましい。ついで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点~(ガラス転移点-20℃)にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。
 本発明のフィルムは、耐熱性、寸法安定性の観点から二軸配向フィルムとすることが必要である。二軸配向フィルムは、未延伸フィルムを長手方向に延伸した後、幅方向に延伸する、あるいは、幅方向に延伸した後、長手方向に延伸する逐次二軸延伸方法により、または、フィルムの長手方向、幅方向をほぼ同時に延伸していく同時二軸延伸方法などにより延伸を行うことで得ることができる。
 かかる延伸方法における延伸倍率としては、長手方向、幅方向のそれぞれの方向に、好ましくは、3.0倍以上4.2倍、さらに好ましくは3.0倍以上4.0倍以下、特に好ましくは3.0倍以上3.8倍以下が採用される。また、延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。また延伸温度は、長手方向は70℃以上120℃以下、幅方向は、80℃以上120℃以下とすることが好ましい。また、延伸は各方向に対して複数回行っても良い。
 さらに二軸延伸の後にフィルムの熱処理を行う。熱処理はオーブン中、加熱したロール上など従来公知の任意の方法により行うことができる。この熱処理は120℃以上ポリエステルの融点以下の温度で行われるが、好ましくは200℃以上240℃以下であり、より好ましくは、210℃~235℃であればさらに好ましく、215℃~230℃であれば最も好ましい。また、熱処理時間は特性を悪化させない範囲において任意とすることができ、好ましくは5秒以上60秒以下、より好ましくは10秒以上40秒以下、最も好ましくは15秒以上30秒以下で行うのがよい。さらに、熱処理はフィルムを長手方向および/または幅方向に弛緩させて行ってもよい。さらに、印刷層や接着剤、蒸着層、ハードコート層、耐候層といった各種加工層との接着力を向上させるため、少なくとも片面にコロナ処理を行ったり、易接着層をコーティングさせることもできる。コーティング層をフィルム製造工程内のインラインで設ける方法としては、少なくとも一軸延伸を行ったフィルム上にコーティング層組成物を水に分散させたものをメタリングリングバーやグラビアロールなどを用いて均一に塗布し、延伸を施しながら塗剤を乾燥させる方法が好ましく、その際易接着層厚みとしては0.01μm以上1μm以下とすることが好ましい。また、易接着層中に各種添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、赤外線吸収剤、顔料、染料、有機または無機粒子、帯電防止剤、核剤などを添加してもよい。易接着層に好ましく用いられる樹脂としては、接着性、取扱い性の点からアクリル樹脂、ポリエステル樹脂およびウレタン樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。中でもアクリル樹脂は、耐候性、耐熱・耐湿性に優れるため好ましい。さらに、成型後の寸法安定性を向上させるためには、140~180℃条件下でオフアニールすることが好ましい。
 本発明の成型用二軸配向ポリエステルフィルムは、フィルムの品位の点から酸化防止剤を含有していることが好ましい。酸化防止剤を含有することで、ポリエステル樹脂の乾燥工程、押出工程での酸化分解を抑制することができ、ゲル状異物による品位の低下を防ぐことができる。酸化防止剤の種類としては特に限定されないが、例えばヒンダードフェノール類、ヒドラジン類、フォスファイト類などに分類される酸化防止剤を好適に使用することができる。なかでもペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイトなどが好ましく用いられる。
 また、本発明の成型用二軸配向ポリエステルフィルムは、屋外で使用させる場合、耐候性を付与することができる。耐候性を付与する方法としては、耐候層を積層する方法が挙げられる。耐候層とは、少なくとも波長350nm以上360nm以下の光エネルギーを吸収し、非常に速いエネルギー変換により無害な熱エネルギー、燐光や蛍光を放射し、ポリマー中の不純物の光励起、光化学反応を抑制し、白化、脆化、亀裂、黄変などを防止する機能を有する層のことであり、例えば耐候性樹脂層や、各種樹脂層に紫外線吸収剤を含有させた層などから構成される。特に積層したあとの、フィルムの波長範囲350nm以上360nm以下の平均透過率が45%以下、好ましくは30%以下、さらに好ましくは10%以下となることが好ましい。耐候層の好ましい厚みの範囲としては0.5μm以上20μm以下であり、1μm以上15μm以下であればさらに好ましく、2μm以上10μm以下であれば最も好ましい。また、耐候剤を添加する方法も挙げられる。耐候剤を添加する場合も耐候層を積層する方法と同様にフィルムの波長範囲350nm以上360nm以下の平均透過率が45%以下、好ましくは30%以下、さらに好ましくは10%以下となることが好ましい。使用する耐候剤としては特に限定されないが、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾトリアゾール系化合物、サリチル酸系化合物、サリシレート系化合物、シアノアクリルレート系化合物、ニッケル系化合物、ベンゾオキサジノン系化合物、環状イミノエステル系化合物などを好ましく使用できる。中でも、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ベンゾオキサジノン系化合物が好ましく使用され、分散性の点から、特にベンゾオキサジノン系化合物が好ましく使用される。これらの化合物は1種単独であるいは2種以上一緒に併用することができる。またHALS(Hindered Amine LightStabilizer)、酸化防止剤等の安定剤を併用することもでき、特にリン系の酸化防止剤を併用することが好ましい。ここでベンゾトリアゾール系の化合物としては、例えば2-2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-アミルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-t-ブチルフェノール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール等を例示することができる。ベンゾフェノン系化合物としては、例えば2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸等をあげることができる。ベンゾオキサジノン系化合物としては、例えば2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-(p-ベンゾイルフェニル)-3,1-ベンゾオキサジン-4-オン、2-(2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2,2′-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2′-(2,6-ナフチレン)ビス(3,1-ベンゾオキサジン-4-オン)等を例示することができる。さらに優れた耐候性を付与する点で、シアノアクリレート系4量体化合物を他の紫外線吸収剤と併用することが好ましい。この場合、シアノアクリレート系4量体化合物は0.05~2重量%含有させることが好ましく、より好ましくは0.1~1.0重量%である。シアノアクリレート系4量体化合物とは、シアノアクリレートの4量体を基本とする化合物であり、例えば、1,3ビス(2’シアノ-3,3-ジフェニルアクリロイルオキシ)-2,2-ビス-(2’シアノ-3,3-ジフェニルアクリロイルオキシメチルプロパン) である。ここでシアノアクリレートと併用する紫外線吸収剤としてはベンゾオキサジノン系化合物、特に2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジン-4-オン)が好ましく、その添加量はフィルム中で0.3~1.5重量%が好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、耐傷性が特に厳しい用途に用いられる場合は、ハードコート層を積層することができる。ハードコート層とは、硬度が高く、耐傷性、耐摩耗性に優れたものであれば良く、アクリル系、ウレタン系、メラミン系、有機シリケート化合物、シリコーン系、金属酸化物などで構成することができる。特に、硬度と耐久性、更に、硬化性、生産性の点でアクリル系、特に活性線硬化型のアクリル系組成物、または熱硬化型のアクリル系組成物からなるものが好ましく用いられる。また、本発明ではハードコート層積層後のフィルムの鉛筆硬度がHB以上であることが好ましく、より好ましくはH以上であり、2H以上であれば最も好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、金属調加飾に用いられる場合、フィルムの少なくとも片面に金属化合物を蒸着して使用することが好ましい。金属化合物を蒸着して使用することで、外観が金属調となり、現在メッキした樹脂が用いられている成型部品の代替品としても使用することができる。中でも、融点が150℃以上400℃以下である金属化合物を蒸着して使用することがより好ましい。掛かる融点範囲の金属を使用することで、ポリエステルフィルムが成型可能温度領域で、蒸着した金属層も成形加工が可能であり、成型による蒸着層欠点の発生を抑制しやすくなるので好ましい。特に好ましい金属化合物の融点としては150℃以上300℃以下である。融点が150℃以上400℃以下である金属化合物としては特に限定されるものではないが、インジウム(157℃)やスズ(232℃)が好ましく、特に金属調光沢、色調の点でインジウムを好ましく用いることができる。また、蒸着簿膜の作製方法としては、真空蒸着法、EB蒸着法、スパッタリング法、イオンプレーティング法などを用いることができる。なお、ポリエステルフィルムと蒸着層との密着性をより向上させるために、フィルムの表面をあらかじめコロナ放電処理やアンカーコート剤を塗布するなどの方法により前処理しておいても良い。また、蒸着膜の厚みとしては、1nm以上500nm以下であれば好ましく、3n以上300nm以下であればより好ましい。生産性の点からは3nm以上200nm以下であることが好ましい。
 また、本発明の成型用二軸配向ポリエステルフィルムは、印刷を施すことによって、成型部材の表面に用いられた場合、外観、意匠性を付与することができる。印刷方法は特に限定されないが、グラビヤ印刷、オフセット印刷、スクリーン印刷などが好ましく用いられる。また、印刷層の厚みは好ましくは、1nm以上20μm以下である。
 本発明の成型用二軸配向ポリエステルフィルムは、成型部材の加飾用途に好ましく用いられるが、成型加飾方法として、例えばインモールド成形用途、インサート成形用途に好ましく使用される。ここで言うインモールド成形とは、金型内にフィルムそのものを設置して、インジェクションする樹脂圧で所望の形状に成形して成形加飾体を得る成形方法である。また、インサート成形とは、金型内に設置するフィルム成型体を真空成型、圧空成型、真空圧空成型、プレス成型、プラグアシスト成型などで作成しておき、その形状に樹脂を充填することで、成形加飾体を得る成形方法である。より複雑な形状を出すことができることから、本発明の成型用二軸配向ポリエステルフィルムはインサート成形用途に特に好ましく用いられる。
 本発明の成型用二軸配向ポリエステルフィルムは、成型温度領域での成型応力が低いため、真空成型、圧空成型、真空圧空成型や、射出樹脂圧で成型されるインモールド成形などといった様々な成型方法で成型が可能であり、また、加工温度領域での貯蔵弾性率が特定の範囲であるため、コーティング、ラミネート、印刷、蒸着といった加工工程での寸法安定性に優れていることから、印刷、蒸着等により加飾を施すことができ、さらに高温領域での貯蔵弾性率が高いことから耐熱性に優れ、成型後も優れた表面性を示し、さらに色調も優れているため、外観が良好であり例えば、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型部材の加飾に好適に用いることができる。
 (1)融点、ガラス転移温度
 示差走査熱量計(セイコー電子工業製、RDC220)を用い、JIS K7121-1987、JIS K7122-1987に準拠して測定および、解析を行った。ポリエステルフィルム5mgをサンプルに用い、25℃から20℃/分で300℃まで昇温した際のDSC曲線より得られた吸熱ピークの頂点の温度を融点とした。なお、吸熱ピークが複数存在する場合は、最も高温側の吸熱ピークの頂点の温度を融点とした。また、ガラス状態からゴム状態への転移に基づく比熱変化を読み取り、各ベースラインの延長した直線から縦軸(熱流を示す軸)方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の中間点ガラス転移温度を求め、ガラス転移温度とした。
 (2)ポリエステルの固有粘度
 ポリエステル樹脂およびフィルムの極限粘度は、ポリエステルをオルトクロロフェノールに溶解し、オストワルド粘度計を用いて25℃にて測定した。
 (3)ポリエステルの組成
 ポリエステル樹脂およびフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、H-NMRおよび13C-NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量することができる。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、評価することができる。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。
 (4)フィルム中の含有粒子濃度
 ポリエステルフィルム10gをオルトクロロフェノール100g中に溶解させ、粒子をポリエステルから遠心分離することによってフィルム中に粒子を含有しているか評価することができる。また、粒子濃度は下記より求められる。
(粒子濃度)=(粒子の質量)/(フィルム全体の質量)×100
なお、本発明のフィルムについては、重合時に粒子を添加して作製した粒子マスター中の粒子濃度と、フィルム中のその粒子マスター濃度から計算により算出した。
 (5)ヘイズ
 JIS K 7105(1985年)に基づいて、ヘーズメーター(スガ試験器社製HGM-2GP)を用いてフィルムヘイズの測定を行った。測定は任意の3ヶ所で行い、その平均値を採用した。なお、本発明におけるヘイズは、フィルム厚みに対するヘイズ値を示す。
 (6)フィルム厚み、層厚み
 フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日立製作所製TEM H7100)で5000倍の倍率で観察し、フィルム厚みおよびポリエステル層の厚みを求めた。
 (7)面配向係数、複屈折
 ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて、フィルムの長手方向の屈折率(nMD)、幅方向の屈折率(nTD)、厚み方向の屈折率(nZD)を測定し、下記式から面配向係数(fn)、複屈折(Δn)を算出した。
fn=(nMD+nTD)/2-nZD
Δn=|nMD-nTD|   。
 (8)150℃での100%伸長時応力(F100値)
 フィルムを長手方向および幅方向に長さ150mm×幅10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離50mmとし、引張速度を300mm/分としてフィルムの長手方向と幅方向にそれぞれ引張試験を行った。測定は予め150℃に設定した恒温層中にフィルムサンプルをセットし、90秒間の予熱の後で引張試験を行った。サンプルが100%伸長したとき(チャック間距離が100mmとなったとき)のフィルムにかかる荷重を読み取り、試験前の試料の断面積(フィルム厚み×10mm)で除した値を100%伸長時応力(F100値)とした。なお、測定は各サンプル、各方向に5回ずつ行い、その平均値で評価を行った。
 (9)150℃での破断伸度
 (8)と同様の方法で、フィルムの長手方向と幅方向にそれぞれ引張試験を行い、フィルムが破断したときの伸度をそれぞれの伸度とした。なお、測定は各サンプル、各方向に5回ずつ行い、その平均値で評価を行った。
 (10)貯蔵粘弾性率、損失正接
 フィルムを長手方向および幅方向に長さ60mm×幅5mmの矩形に切り出しサンプルとした。動的粘弾性測定装置(セイコーインスツルメンツ製、DMS6100)を用い、下記の条件下で、80℃、100℃および180℃での貯蔵弾性率(E‘)、および、損失正接のピーク温度を求めた。
  周波数:10Hz、試長:20mm、最小荷重:約100mN、振幅:10μm、
  測定温度範囲:-50℃~200℃、昇温速度:5℃/分。
 (11)熱収縮率
 フィルムを長手方向および幅方向にそれぞれ長さ150mm×幅10mmの矩形に切り出しサンプルとした。サンプルに100mmの間隔で標線を描き、3gの錘を吊して150℃に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離を測定し、加熱前後の標線間距離の変化から下記式により熱収縮率を算出した。測定は各フィルムとも長手方向および幅方向に5サンプル実施して平均値で評価を行った。
 熱収縮率(%)={(加熱処理前の標線間距離)-(加熱処理後の標線間距離)}/(加熱処理前の標線間距離)×100   。
 (12)熱変形率
 フィルムを長手方向および幅方向に長さ50mm×幅4mmの矩形に切り出しサンプルとし、熱機械分析装置(セイコ-インスツルメンツ製、TMA EXSTAR6000)を使用して、下記の条件下で昇温した際の各温度でのフィルム長の変化率を熱変形率とした。
 試長:15mm、荷重:19.6mN、昇温速度:5℃/分、
 測定温度範囲:25~220℃
 熱変形率(%)
=[{目的温度でのフィルム長(mm)-試長(mm)}/試長(mm)]×100 。
 (13)密度
 25℃に保たれた臭化ナトリウム水溶液から作製された密度勾配管を用いて、25℃にてフィルムを12時間含浸させ、その到達位置によって密度を測定した。なお、各水準とも3サンプルずつ含浸させ、その平均値を採用した。
 (14)b値
 JIS Z 8722(2000年)に基づき、分光式色差計(日本電色工業製SE-2000、光源 ハロゲンランプ 12V4A、0°~-45°後分光方式)を用いて、各フィルムのb値を透過法により測定した。
 (15)成型性
 本発明のポリエステルフィルムを、450℃の遠赤外線ヒーターを用いて、表面温度が150℃の温度になるように加熱し、60℃に加熱した角形金型(70×70mm、高さ25mm)に沿って真空・圧空成型(圧空:0.2Ma)を行った。角形金型は、それぞれエッジ部分のRを1mm、2mm、3mmの3種類準備して真空・圧空成型を行った。金型に沿って成型できた状態を以下の基準で評価した。
S:R1mmで成型できた(R1mmを再現できた)。
A:R2mmで成型できた(R2mmを再現できた)が、R1mmでは成型できなかった。
B:R3mmで成型できた(R3mmを再現できた)が、R2mmは成型できなかった。
C:R3mmで成型できなかった。
 (16)均一成型性
 (8)で実施した引張試験において、フィルム長手方向と幅方向のF100値の絶対値の差を下記の通り評価した。
S:フィルム長手方向と幅方向のF100値の絶対値の差が10未満
A:フィルム長手方向と幅方向のF100値の絶対値の差が10以上15未満
B:フィルム長手方向と幅方向のF100値の絶対値の差が15以上20未満
C:フィルム長手方向と幅方向のF100値の絶対値の差が20以上。
 (17)フィルム外観
 フィルム表面にスクリーン印刷を行った。印刷は、ミノグループ(株)製インキU-PET(517)、スクリーンSX270Tを用いて、スキージスピード300mm/sec、スキージ角度45°の条件で行い、次いで70℃条件下の熱風オーブン中で15分間乾燥して、印刷層積層フィルムを得た。得られた印刷層積層フィルムについて、印刷層の反対面からのフィルム外観について、下記の基準で評価を行った。
S:印刷が鮮明であり、意匠性に優れた外観であった。
A:印刷が若干ヘイジーではあったが意匠性に優れた外観であった。
B:印刷がヘイジーではあったが、意匠性は問題ないレベルであった。
C:印刷が不鮮明であり、外観に劣るものであった。
 (18)寸法安定性1
 (17)と同様の条件でスクリーン印刷、乾燥を行った印刷層積層フィルムについて、印刷層の反対面のフィルム表面について、下記の基準で評価を行った下記の基準で評価を行った。
S:フィルム表面に全く粗れ、うねりが見られず、表面性に優れたものであった。
A:フィルム表面に若干のうねりが見られたが、表面性に優れたものであった。
B:フィルム表面にうねりが見られたが、表面性は問題ないレベルであった。
C:フィルム表面に粗れが発生し、表面性に劣るものであった。
 (19)寸法安定性2
 (17)と同様の条件でスクリーン印刷を行い、80℃条件下の熱風オーブン中で15分間乾燥を行った印刷層積層フィルムについて、印刷層の反対面のフィルム表面について、下記の基準で評価を行った。
S:フィルム表面に全く粗れ、うねりが見られず、表面性に優れたものであった。
A:フィルム表面に若干のうねりが見られたが、表面性に優れたものであった。
B:フィルム表面にうねりが見られたが、表面性は問題ないレベルであった。
C:フィルム表面に粗れが発生し、表面性に劣るものであった。
 (20)耐熱性
(15)で成型した成型体の表面について、下記の基準で評価を行った。
S:成型体表面に全く粗れ、うねりが見られず、表面性に優れたものであった。
A:成型体表面に若干のうねりが見られたが、表面性に優れたものであった。
B:成型体表面にうねりが見られたが、表面性は問題ないレベルであった。
C:成型体表面に粗れが発生し、表面性に劣るものであった。
 (21)成型後寸法安定性1
 (15)で成型した成型体を射出成形金型にセットし、住友ダウ(株)製PC/ABS樹脂(SDポリカ IM6011)を、成形温度260℃にて射出成形し、インサート成形を行った。得られた成形体を70℃×10hの耐熱試験を行い、下記の基準で評価を行った。
A:成形体の形状に全く変化が見られなかった。
B:成形体がフィルム側へ、反りを生じたが、実用上問題ないレベルであった。
C:成形体がフィルム側へ反り、成形体端部からフィルムの剥離が生じた。
 (22)成型後寸法安定性2
 (15)で成型した成型体を射出成形金型にセットし、住友ダウ(株)製PC/ABS樹脂(SDポリカ IM6011)を、成形温度260℃にて射出成形し、インサート成形を行った。得られた成形体を80℃×10hの耐熱試験を行い、下記の基準で評価を行った。
A:成形体の形状に全く変化が見られなかった。
B:成形体がフィルム側へ、反りを生じたが、実用上問題ないレベルであった。
C:成形体がフィルム側へ反り、成形体端部からフィルムの剥離が生じた。
 (23)耐候性試験
 紫外線劣化促進試験機アイスーパーUVテスターSUV-W131(岩崎電気製)を用い、下記の条件で強制紫外線照射試験を行った。
 照度:100mW/cm、温度:60℃ 、相対湿度:50%RH、照射時間:6時間
 耐光性試験前後のフィルムについて、分光式色差計SE-2000型(日本電色工業製)を用い、JIS-K-7105に従って透過法でb値を測定し、b値の変化量により、以下の基準で評価を行った。
A:Δb値が4未満
B:Δb値が4以上
 (24)層間密着性
 (8)と同様の方法で、フィルムの長手方向と幅方向にそれぞれ5回ずつ引張試験を行い、フィルムが破断したときの破断箇所の両面に、日東電工(株)製OPP粘着テープ(ダンプロンエースNo.375)を貼り合わせ、OPP粘着テープ/引張試験後フィルムサンプル/OPP粘着テープの構成を作成し、ダンプロンテープを強制的に180°剥離をして引張試験後のフィルムサンプルの観察を行い、下記の基準で評価を行った。
A:層間の剥離が全く発生しなかった。
B:A層/B層間での剥離が、1回以上発生した。
 (ポリエステルの製造)
 製膜に供したポリエステル樹脂は以下のように準備した。
 (ポリエステルA)
 ジカルボン酸成分としてテレフタル成分が100モル%、グリコール成分としてエチレングリコール成分が98.8モル%、ジエチレングリコール成分が1.2モル%であるポリエチレンテレフタレート樹脂(固有粘度0.65)。
 (ポリエステルB)
 1,4-シクロヘキサンジメタノールがグリコール成分に対し33mol%共重合された共重合ポリエステル(イーストマン・ケミカル社製 GN001)を、シクロヘキサンジメタノール共重合ポリエチレンテレフタレートとして使用した(固有粘度0.75)。
 (ポリエステルC)
 ジカルボン酸成分としてテレフタル成分が100モル%、グリコール成分としてエチレングリコール成分が68.5モル%、ネオペンチルグリコール成分が30モル%、ジエチレングリコール成分が1.5モル%であるネオペンチルグリコール共重合ポリエチレンテレフタレート樹脂(固有粘度0.75)。
 (ポリエステルD)
ジカルボン酸成分としてテレフタル成分が82.5モル%、イソフタル成分が17.5モル%、グリコール成分としてエチレングリコール成分が98.5モル%、ジエチレングリコール成分が1.5モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7)。
 (ポリエステルE)
 ジカルボン酸成分としてテレフタル成分が100モル%、グリコール成分として1,4-ブタンジオール成分が100モル%であるポリブチレンテレフタレート樹脂(固有粘度1.22)。
 (粒子マスターA)
 ポリエステルA中に平均粒子径2.2μmの凝集シリカ粒子を粒子濃度2質量%で含有したポリエチレンテレフタレート粒子マスター(固有粘度0.65)。
 (耐候剤マスター)
上記のように作成したポリエステルAと、2,2’-(1,4-フェニレン)ビス(4H-3,1ベンズオキサジン-4-オン)を質量比95:5で混合し、ベント式二軸押出機を用いて、280℃で混練し、2,2’-(1,4-フェニレン)ビス(4H-3,1ベンズオキサジン-4-オン)の耐候剤マスターを作製した。
 (実施例1)
 ポリエステルAとポリエステルBとを質量比70:30で混合し、酸素濃度を0.2体積%としたベント二軸押出機に供給、275℃で溶融し、異物の除去、押出量の均整化を行った後、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸フィルムを得た。
 次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、予熱温度を85℃、延伸温度を90℃で長手方向に3倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。
 その後、コロナ放電処理を施し、基材フィルムの両面の濡れ張力を50mN/mとし、その処理面に、以下の塗剤A、B、C、D、E、Fを超音波分散させながら混合し、#4メタリングバーにて均一に塗布した。
A : 水分散ポリエステル樹脂(酸基4.5mg/g)
B : メチロール化メラミン(希釈剤: イソプロピルアルコール/ 水)
C : オキサゾリン架橋剤(日本触媒製“エポクロス”WS-500
D : コロイダルシリカ(平均粒径140nm)
E : コロイダルシリカ(平均粒径300nm)
F : フッ素系界面活性剤(希釈剤:水)
固形分質量比:A/B/C/D/E/F 
=100質量部/38質量部/5質量部/2質量部/0.5質量部/0.2質量部
 次いでテンター式横延伸機にて予熱温度95℃、延伸温度100℃で幅方向に3.8倍延伸し、そのままテンター内にて幅方向に4%のリラックスを掛けながら温度230℃で5秒間の熱処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例2)
 実施例1のフィルムを、150℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例3)
 実施例1のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例4)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例5)
 実施例4のフィルムを、150℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例6)
 実施例4のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例7)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例8)
 実施例7のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例9)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例10)
 実施例9のフィルムを、150℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例11)
 実施例9のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例12)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例13)
実施例12のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例14)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例15)
 実施例14のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例16)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例17)
 実施例16のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り張力を制御してオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例18)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例19)
 実施例16のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り張力を制御してオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例20)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。さらに得られたフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例21)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。さらに得られたフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例22)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。さらに得られたフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み125μmの二軸配向ポリエステルフィルムを得た。
 (実施例23)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。さらに得られたフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例24)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例25)
 実施例24のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (実施例26)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例27)
 実施例26のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例28)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例29)
 実施例28のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例30)
 組成、フィルム構成を表の通り変更し、ベント二軸押出機内の酸素濃度を1体積%、押出温度を300℃とし、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。さらに得られたフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例31)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例32)
 実施例31のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例33)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例34)
 実施例33のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例35)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例36)
 実施例35のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例37)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例38)
 実施例37のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例39)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
(実施例40)
 実施例39のフィルムを、180℃の熱風オーブン中で幅方向フリー(フィルムをフィルム幅方向に拘束していない状態)、長手方向の巻き取り速度を巻きだし速度より1.5%低下させながらオフアニール処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (比較例1)
 組成、フィルム構成を表の通り変更した以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (比較例2)
 組成、フィルム構成を表の通り変更し、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (比較例3)
 組成、フィルム構成を表の通り変更し、ベント二軸押出機内の酸素濃度を1体積%、押出温度を285℃とし、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
 (比較例4)
 組成、フィルム構成を表の通り変更し、ベント二軸押出機内の酸素濃度を1体積%、押出温度を300℃とし、長手方向の延伸倍率を3.3倍、幅方向の延伸倍率を3.7倍とした以外は実施例1と同様にして、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表中の略語の意味は以下のとおりである。
EG:エチレングリコール
CHDM:1,4-シクロヘキサンジメタノール
DEG:ジエチレングリコール
NPG:ネオペンチルグリコール
TPA:テレフタル酸
IPA:イソフタル酸
 本発明の成型用二軸配向ポリエステルフィルムは、成型温度領域での成型応力が低いため、真空成型、圧空成型、真空圧空成型や、射出樹脂圧で成型されるインモールド成形などといった様々な成型方法で成型が可能であり、また、加工温度領域での貯蔵弾性率が特定の範囲であるため、コーティング、ラミネート、印刷、蒸着といった加工工程での寸法安定性に優れていることから、印刷、蒸着等により加飾を施すことができ、さらに高温領域での貯蔵弾性率が高いことから耐熱性に優れ、成型後も優れた表面性を示し、さらに色調も優れているため、外観が良好であり、例えば、建材、モバイル機器、電機製品、自動車部品、遊技機部品などの成型部材の加飾に好適に用いることができる。

Claims (14)

  1. 150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)がそれぞれ5MPa以上60MPa以下であり、80℃におけるフィルム長手方向および幅方向の貯蔵弾性率がそれぞれ2001MPa以上4000MPa以下であり、180℃におけるフィルム長手方向および幅方向の貯蔵弾性率が41MPa以上400MPa以下である成型用二軸配向ポリエステルフィルム。
  2. フィルムの色調b値が-1.5以上1.5以下である請求項1に記載の成型用二軸配向ポリエステルフィルム。
  3. ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、ポリエステルA層の面配向係数が0.14以上0.17以下であり、ポリエステルA層の融点(TmA)とポリエステルB層の融点(TmB)の差(TmA-TmB)が7℃以上15℃以下であり、かつ損失正接のピーク温度が100℃以上120℃以下である請求項1または2に記載の成型用二軸配向ポリエステルフィルム。
  4. ポリエステルA層の融点(TmA)が250℃以上255℃以下、かつ、ポリエステルA層の密度が1.380g/cm以上1.400g/cm以下であり、ポリエステルB層の融点(TmB)が235℃以上245℃以下、かつ、ポリエステルB層の密度が1.350g/cm以上1.365g/cm以下である請求項3に記載の成型用二軸配向ポリエステルフィルム。
  5. 150℃におけるフィルム長手方向および幅方向の100%伸長時応力(F100値)がそれぞれ5MPa以上36MPa以下である、請求項1~4のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  6. ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、ポリエステルA層に1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有し、
    ポリエステルB層に1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有してなる請求項1~5のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  7. フィルムの融点が235℃以上245℃以下である請求項1~6のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  8. ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、ポリエステルA層が、エチレングリコール由来の構造単位を、ジオール由来の構造単位に対して、95モル%以上99モル%未満、1,4-シクロヘキサンジメタノール由来の構造単位を1モル%以上5モル%未満含有し、
    ポリエステルB層にエチレングリコール由来の構造単位を、ジオールに由来の構造単位に対して、85モル%以上90モル%未満、1,4-シクロヘキサンジメタノール由来の構造単位を10モル%以上15モル%未満含有してなる請求項1~7のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  9. ポリエステルA層が、テレフタル酸(テレフタル酸エステルを含む)由来の構造単位を、ジカルボン酸(ジカルボン酸エステルを含む)に由来の構造単位に対して、95モル%以上100モル%以下含有し、
    ポリエステルB層が、テレフタル酸由来の構造単位を、ジカルボン酸(ジカルボン酸エステルを含む)に由来の構造単位に対して、95モル%以上100モル%以下含有してなる請求項8に記載の成型用二軸配向ポリエステルフィルム。
  10. ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、積層比H(-)が0.01以上0.4以下である請求項1~9のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  11. ポリエステルA層とポリエステルB層を有する積層ポリエステルフィルムであって、ポリエステルA層が、少なくとも一方の最外層に位置する請求項1~10のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  12. 150℃における長手方向および幅方向の熱収縮率がいずれも-1%以上1%以下である請求項1~11のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  13. 荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の少なくとも一方向の150℃でのフィルムの熱変形率が0~+3%である請求項1~12のいずれかに記載の成型用二軸配向ポリエステルフィルム。
  14. 荷重19.6mNで、25℃から220℃まで昇温速度5℃/分で昇温した際の少なくとも一方向の180℃でのフィルムの熱変形率が0~+3%である請求項1~13のいずれかに記載の成型用二軸配向ポリエステルフィルム。
PCT/JP2011/063796 2010-07-06 2011-06-16 成型用二軸配向ポリエステルフィルム WO2012005097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127029799A KR101848724B1 (ko) 2010-07-06 2011-06-16 성형용 2축 배향 폴리에스테르 필름
JP2011528125A JP5810915B2 (ja) 2010-07-06 2011-06-16 成型用二軸配向ポリエステルフィルム
CN201180027299.4A CN102933372B (zh) 2010-07-06 2011-06-16 成型用双轴取向聚酯膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-153567 2010-07-06
JP2010153567 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005097A1 true WO2012005097A1 (ja) 2012-01-12

Family

ID=45441083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063796 WO2012005097A1 (ja) 2010-07-06 2011-06-16 成型用二軸配向ポリエステルフィルム

Country Status (5)

Country Link
JP (1) JP5810915B2 (ja)
KR (1) KR101848724B1 (ja)
CN (1) CN102933372B (ja)
TW (1) TWI519417B (ja)
WO (1) WO2012005097A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087206A (ja) * 2011-10-19 2013-05-13 Toray Ind Inc 成型用ポリエステルフィルム
WO2014208519A1 (ja) * 2013-06-28 2014-12-31 東レ株式会社 二軸配向ポリエステルフィルム
EP2799469A4 (en) * 2011-12-28 2015-05-27 Toray Industries BIAXIALLY ORIENTED POLYESTER FOIL FOR FORMING PROCESSES
JP2015151529A (ja) * 2014-02-19 2015-08-24 東レ株式会社 二軸配向ポリエステルフィルム
JP2016089150A (ja) * 2014-10-31 2016-05-23 東レ株式会社 光学フィルム製造用ポリエステルフィルム
JP2016107409A (ja) * 2014-12-02 2016-06-20 東レフィルム加工株式会社 樹脂成型品の表面被覆用積層フィルムおよび樹脂成型品
WO2016106207A1 (en) * 2014-12-24 2016-06-30 3M Innovative Properties Company Film and decorative film capable of covering article having three-dimensional shape by heat expansion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281773B1 (ko) * 2014-09-19 2021-07-26 에스케이씨 주식회사 고내열성 및 고내광성을 가지는 폴리에스터계 적층 필름
KR102402833B1 (ko) * 2014-11-28 2022-05-27 도레이 카부시키가이샤 폴리에스테르 필름
US11630239B2 (en) * 2019-10-28 2023-04-18 Skc Co., Ltd. Polyester film and flexible display apparatus comprising same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023521A1 (ja) * 2003-09-02 2005-03-17 Toyo Boseki Kabushiki Kaisha 成型用ポリエステルフィルム
WO2006104116A1 (ja) * 2005-03-28 2006-10-05 Toray Industries, Inc. 二軸配向ポリエステルフィルムおよび金属調積層フィルム
WO2007123095A1 (ja) * 2006-04-19 2007-11-01 Toray Industries, Inc. 成形部材用二軸配向ポリエステルフィルム
JP2008030475A (ja) * 2006-06-30 2008-02-14 Toyobo Co Ltd 成型用積層ポリエステルフィルムおよびその製造方法
JP2008162220A (ja) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd 成型同時転写用ポリエステルフィルム
JP2010018789A (ja) * 2008-06-09 2010-01-28 Toray Ind Inc ポリエステルフィルム
JP2010065065A (ja) * 2008-09-08 2010-03-25 Toray Ind Inc 成形用ポリエステルフィルム
JP2010189593A (ja) * 2009-02-20 2010-09-02 Toray Ind Inc 成型用二軸配向ポリエステルフィルム
JP2011073151A (ja) * 2009-09-29 2011-04-14 Toray Ind Inc 成型用二軸配向ポリエステルフィルム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692976B2 (ja) * 2001-07-11 2005-09-07 東洋紡績株式会社 熱収縮性ポリエステル系フィルム
JP2003327655A (ja) * 2002-03-08 2003-11-19 Sekisui Chem Co Ltd シート
JP4543743B2 (ja) * 2003-05-14 2010-09-15 東レ株式会社 成形用二軸延伸ポリ乳酸フィルムおよび容器
JP2005290354A (ja) * 2003-09-03 2005-10-20 Toyobo Co Ltd 成型用ポリエステルフィルム
KR100625375B1 (ko) * 2004-09-02 2006-09-20 에스케이씨 주식회사 이축배향 폴리에스테르계 필름 및 제조방법
WO2006051920A1 (ja) * 2004-11-11 2006-05-18 Mitsubishi Plastics, Inc. 熱収縮性積層フィルム、該フィルムを用いた成形品、熱収縮性ラベル及び容器
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
US20100104883A1 (en) * 2007-03-29 2010-04-29 Mitsubishi Plastics, Inc. Aliphatic polyester series resin composition, aliphatic polyester series film, reflective film and reflective plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023521A1 (ja) * 2003-09-02 2005-03-17 Toyo Boseki Kabushiki Kaisha 成型用ポリエステルフィルム
WO2006104116A1 (ja) * 2005-03-28 2006-10-05 Toray Industries, Inc. 二軸配向ポリエステルフィルムおよび金属調積層フィルム
WO2007123095A1 (ja) * 2006-04-19 2007-11-01 Toray Industries, Inc. 成形部材用二軸配向ポリエステルフィルム
JP2008030475A (ja) * 2006-06-30 2008-02-14 Toyobo Co Ltd 成型用積層ポリエステルフィルムおよびその製造方法
JP2008162220A (ja) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd 成型同時転写用ポリエステルフィルム
JP2010018789A (ja) * 2008-06-09 2010-01-28 Toray Ind Inc ポリエステルフィルム
JP2010065065A (ja) * 2008-09-08 2010-03-25 Toray Ind Inc 成形用ポリエステルフィルム
JP2010189593A (ja) * 2009-02-20 2010-09-02 Toray Ind Inc 成型用二軸配向ポリエステルフィルム
JP2011073151A (ja) * 2009-09-29 2011-04-14 Toray Ind Inc 成型用二軸配向ポリエステルフィルム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087206A (ja) * 2011-10-19 2013-05-13 Toray Ind Inc 成型用ポリエステルフィルム
EP2799469A4 (en) * 2011-12-28 2015-05-27 Toray Industries BIAXIALLY ORIENTED POLYESTER FOIL FOR FORMING PROCESSES
US9776383B2 (en) 2011-12-28 2017-10-03 Toray Industries, Inc. Biaxially oriented polyester film for molding
WO2014208519A1 (ja) * 2013-06-28 2014-12-31 東レ株式会社 二軸配向ポリエステルフィルム
KR20160026846A (ko) 2013-06-28 2016-03-09 도레이 카부시키가이샤 2축 배향 폴리에스테르 필름
JPWO2014208519A1 (ja) * 2013-06-28 2017-02-23 東レ株式会社 二軸配向ポリエステルフィルム
KR102245388B1 (ko) * 2013-06-28 2021-04-28 도레이 카부시키가이샤 2축 배향 폴리에스테르 필름
JP2015151529A (ja) * 2014-02-19 2015-08-24 東レ株式会社 二軸配向ポリエステルフィルム
JP2016089150A (ja) * 2014-10-31 2016-05-23 東レ株式会社 光学フィルム製造用ポリエステルフィルム
JP2016107409A (ja) * 2014-12-02 2016-06-20 東レフィルム加工株式会社 樹脂成型品の表面被覆用積層フィルムおよび樹脂成型品
WO2016106207A1 (en) * 2014-12-24 2016-06-30 3M Innovative Properties Company Film and decorative film capable of covering article having three-dimensional shape by heat expansion
US10046545B2 (en) 2014-12-24 2018-08-14 3M Innovative Properties Company Film and decorative film capable of covering article having three-dimensional shape by heat expansion

Also Published As

Publication number Publication date
CN102933372B (zh) 2016-03-30
JPWO2012005097A1 (ja) 2013-09-02
KR101848724B1 (ko) 2018-04-13
TWI519417B (zh) 2016-02-01
JP5810915B2 (ja) 2015-11-11
KR20130098152A (ko) 2013-09-04
CN102933372A (zh) 2013-02-13
TW201213131A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP5810915B2 (ja) 成型用二軸配向ポリエステルフィルム
JP6051869B2 (ja) 成型用二軸配向ポリエステルフィルム
TWI418578B (zh) 成型用聚酯薄膜
KR101461458B1 (ko) 성형부재용 2축 배향 폴리에스테르 필름
JP4968064B2 (ja) 二軸配向ポリエステルフィルムおよび金属調積層フィルム
JP6627218B2 (ja) 二軸配向ポリエステルフィルム
WO2010038655A1 (ja) ポリエステルフィルム
US20100167016A1 (en) Polyester film for molded part
TWI297706B (en) Polyester film for molding
TW200808551A (en) Laminated polyester film for forming and method for producing the same
JP5564875B2 (ja) 成型用二軸配向ポリエステルフィルム
JP2014024341A (ja) インモールド転写用ポリエステルフィルム
JP5257127B2 (ja) 成型用二軸配向ポリエステルフィルム
JP2009220479A (ja) 成形部材用二軸配向ポリエステルフィルム及び成形用積層体
JP2015010121A (ja) 成型用二軸配向ポリエステルフィルム
JP2004231727A (ja) 表面加工ポリエステルフィルムおよびそれを用いた転写箔
JP6361159B2 (ja) 二軸配向ポリエステルフィルム
JP2016190438A (ja) 成型用二軸配向ポリエステルフィルム及びその製造方法
JP2017105149A (ja) 成型用二軸配向積層ポリエステルフィルムおよびそれを用いた成型部材
JP2016159537A (ja) 成型用二軸配向ポリエステルフィルム
JP2010253678A (ja) インモールド転写用ポリエステルフィルム
JP2013001855A (ja) インサート成形用ポリエステルフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027299.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011528125

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127029799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803433

Country of ref document: EP

Kind code of ref document: A1