WO2014204160A1 - 모듈형 용접기 - Google Patents

모듈형 용접기 Download PDF

Info

Publication number
WO2014204160A1
WO2014204160A1 PCT/KR2014/005276 KR2014005276W WO2014204160A1 WO 2014204160 A1 WO2014204160 A1 WO 2014204160A1 KR 2014005276 W KR2014005276 W KR 2014005276W WO 2014204160 A1 WO2014204160 A1 WO 2014204160A1
Authority
WO
WIPO (PCT)
Prior art keywords
welder
cooling
welding
water
modular
Prior art date
Application number
PCT/KR2014/005276
Other languages
English (en)
French (fr)
Inventor
이원구
김영주
조방현
안우영
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to CN201480034532.5A priority Critical patent/CN105377495B/zh
Priority to EP14814093.2A priority patent/EP3015212A4/en
Priority to JP2016519455A priority patent/JP6157727B2/ja
Priority to US14/898,742 priority patent/US20160136749A1/en
Publication of WO2014204160A1 publication Critical patent/WO2014204160A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Definitions

  • the present invention relates to a modular welder, and more particularly, to a modular welder in which a plurality of high frequency inverter type welders having excellent welding arc characteristics are modularized.
  • the construction of a welding machine accommodates and installs each component necessary for manufacturing one welding machine in one box-shaped case.
  • the welding process such as to improve the welding quality and the improvement of the welding productivity
  • it is necessary to replace the analog type (SCR) welding machine with the inverter method.
  • the inverter type welding machine is more expensive than the SCR welding machine, so it is not easy to replace the welding machine.
  • the inverter welder is more economical than SCR welder, but the manufacturing cost is high, but the economical efficiency is low.
  • the situation is limited to where the reliability of the welding quality, such as automated equipment is required.
  • a conventional air-cooled single welding machine using a fan is arranged in a batch of parts constituting the welder in one case.
  • the welder manufactured as described above is different depending on the type, but the SCR welding machine is about 170-200kg in weight and 500mm (W) x684mm (D) x845mm (H), which is relatively heavy and large in size.
  • the inverter type welding machine has different weight and size of the welding machine due to the change of transformer size depending on the frequency of use. It is about 100kg at 20KHz and about 50kg at 70 ⁇ 100KHz, and the size is about 400mm (W) x630mm (D It is lightened by about 480mm (H).
  • a lightweight inverter type welding machine when manufacturing a modular welding machine having a plurality of built-in welding machines, one person should be smaller and lighter to a level that enables handling such as attaching or detaching individual welding machines.
  • FIG. 1 is a perspective view schematically showing a conventional air-cooled inverter welding machine.
  • a conventional air-cooled inverter type welding machine is manufactured in one unit and each component is disposed in one box. Since the air-cooled inverter type welding machine has a high switching control frequency, it is configured to forcibly cool the heat of internal electronic components. Internal electronic components are formed by attaching input and output diodes (4) (7) and IGBT PCB (6) on the heat sink (1).
  • the heat sink 1 supplies cool air as the air cooling fan 2 rotates, thereby providing internal electronic components such as input and output diodes 4 and 7 and an IGBT PCB 6 attached to the heat sink 1.
  • Cooling transformer 5 located at the outlet side of the heat sink 1 while maintaining a low temperature.
  • reference numeral 3 which is not described, is a heat sink temperature sensing sensor, and 8 is a current sensing sensor.
  • the conventional air-cooled inverter type welding machine has a low efficiency of the air-cooling fan (2), so that the size of the heat sink 1 occupies 70% or more of the size of the overall welding machine, and thus the size and weight of the air-cooled inverter type welding machine are modularized. There was a growing problem. In addition, since the conventional air-cooled inverter type welding machine requires many parts to drive one, there is a limit to miniaturization.
  • the present invention applies a high frequency inverter type welder having excellent welding arc characteristics and power consumption efficiency, but modularizes each component constituting the welder in a plurality of welders in one case Integration and assembly provide a modular welder that can reduce the number of components in a welder, reduce manufacturing costs, and increase power efficiency.
  • the present invention provides a modular welder that can efficiently recover the heat generated in each individual welder by applying a light and simplified water-cooled cooling structure.
  • Modular welding machine is provided with a plurality of to perform a plurality of welding operations in a multi-position, each component component constituting the welder is modularized in a single panel and installed in a single case .
  • the high frequency inverter module including a water cooling pump and a heat exchanger for cooling the heat of a plurality of switching elements generated in a process of converting a DC voltage into pulses to form an AC voltage by high speed.
  • a power supply module for supplying control power corresponding to the required number of welders, a main controller for collectively controlling each welding characteristic, a high frequency transformer module for controlling and supplying welding current and voltage, and an output current.
  • Reactor module for stabilizing and an output terminal for connecting the welding feeder and the torch.
  • the main controller includes a first main controller and a second main controller, and when one of the first main controller and the second main controller is inoperative, the other is alternately operated, or the first main controller and the second main controller are configured.
  • the main controller is divided into a number of welding machines, respectively.
  • the exterior of the case includes a plurality of welding output terminals and welding control terminals having a number corresponding to the number of welders configured therein.
  • the plurality of switching elements are installed in contact with at least one surface of the plate-shaped tube in which a flow path for water flows therein, and the plate-shaped tube is connected to a cooling water line to install the water cooling pump and the heat exchanger on the cooling water line.
  • the switching element is provided in each plate-shaped tube.
  • the modular welder according to another aspect of the present invention is capable of performing a plurality of welding operations in a multi-position
  • the individual welder module is provided with a cooling plate of the water-cooling type formed with a flow path through which the coolant is circulated for cooling the heating parts. It includes a plurality.
  • the input plate, the IGBT PCB, the water-cooled transformer, the output diode, and the current sensor constituting the welding machine are arranged in order in the cooling plate.
  • a cooling plate temperature sensor for detecting the temperature of the cooling plate is further installed.
  • the individual welder module is in the form of a removable box.
  • the two-axis motor a water pump connected to one axis of the two-axis motor, a cooling fan connected to the other shaft of the two-axis motor, a water tank for storing the coolant, and to release heat by the rotation of the cooling fan
  • a water cooling device including a radiator; Cooling water from the water tank is supplied to the cold plate of each individual welder module through the inlet distribution pipe, circulates along the flow path of the cold plate, passes through the radiator through the outlet distribution pipe and is recovered to the water tank.
  • the cooling plate is attached to the input and output diodes, IGBT PCB, water-cooled transformer and current sensor;
  • Each of the individual welder modules includes an individual welder controller, a main power supply for power supply, an ON / OFF switch, a terminal portion connected to an output current terminal, and an operation panel.
  • the solenoid valve is installed in accordance with the position of the terminal portion of the individual welder module from the protective gas distribution pipe for welding, the terminal portion constitutes a gas line connected to the external welding torch, and the individual welder controller and according to the welding torch ON / OFF signal A connected solenoid valve is activated by receiving a signal.
  • each of the cooling plate and the water cooling device is connected through a nipple and coupler attached to the inlet distribution pipe and the outlet distribution pipe;
  • the inlet distribution pipe and the outlet distribution pipe are disposed inside the sealed partition wall.
  • Modular welding machine can reduce the welding power energy through the high efficiency of the welding machine in consideration of the external environment, and can reduce the cost, power cable and slimming of the welding machine by modularizing the number of welding machines, close to the workplace As it can be arranged, it can not only increase the efficiency and reduce the cost by shortening the welding cable, but also improve the welding quality due to the excellent welding arc characteristics, and intelligent to the optimal conditions considering the welding characteristics by welding posture and material. As a result, anyone can easily perform welding to improve productivity.
  • the modular welding machine according to the present invention improves the welding power efficiency of about 20% or more by circulating stable cooling water in each water-cooled individual welder module to prevent the heat generation of the welder power conversion element, 70% of the total volume in the air-cooled module welder By eliminating the air-cooled heat dissipating parts that occupy%, it is possible to manufacture ultra-small, lightweight water-cooled modular welders.
  • manufacturing costs can be reduced by integrating power supplies and removing heat dissipation components, optimizing the welding cable length by optimizing the placement of individual welder modules, and optimizing the length of the welding cable by minimizing and lightening the advancement of the workplace. Therefore, not only prevents the loss of welding power, but also improves the welding machine maintenance work efficiency by displaying the failure history, and can reduce the welding power and improve the welding quality by applying an inverter welding machine compared to an SCR welding machine.
  • FIG. 1 is a perspective view schematically showing a conventional air-cooled inverter welding machine
  • Figure 2 shows a schematic configuration of a modular welder according to a first embodiment of the present invention
  • Figure 3 shows the internal configuration of a modular welding machine according to a first embodiment of the present invention
  • FIG. 4 illustrates a water cooling system of a modular welder according to a first embodiment of the present invention
  • FIG. 5 illustrates a water cooling system of a modular welder according to a modification of FIG. 4,
  • FIG. 6 illustrates an internal configuration of a modular welder according to a modification of FIG. 3,
  • FIG. 7 illustrates a schematic configuration of a modular welding machine according to a second embodiment of the present invention
  • FIG. 8 is a front view showing an external configuration of a modular welding machine according to a third embodiment of the present invention.
  • FIG. 9 is a front view showing the internal configuration of a modular welding machine according to a third embodiment of the present invention.
  • FIG. 10 is a perspective view showing an individual welder module according to a third embodiment of the present invention.
  • FIG. 11 is a plan view of an individual welder module according to a third embodiment of the present invention.
  • FIG. 12 is a front view of an individual welder module according to a third embodiment of the present invention.
  • FIG. 13 illustrates a water cooling apparatus of a modular welding machine according to a third embodiment of the present invention
  • FIG. 14 is a plan view showing the internal configuration of a modular welding machine according to a third embodiment of the present invention.
  • FIG. 15 is a left side view showing an internal configuration of a modular welding machine according to a third embodiment of the present invention.
  • 16 is a right side view showing the internal configuration of a modular welding machine according to a third embodiment of the present invention.
  • FIG. 2 illustrates a schematic configuration of a modular welder according to a first embodiment of the present invention
  • FIG. 3 illustrates an internal configuration of a modular welder according to a first embodiment of the present invention.
  • the water cooling system of the modular welder according to the first embodiment of the present invention is shown.
  • the modular welder according to the first embodiment of the present invention is a welder which is provided with a plurality of to perform a plurality of welding operations in a multi-position, each component constituting the welder
  • the modular component group is installed in a single case (100).
  • the modular welder is made of a CO 2 inverter welder type, and has been replaced by a high frequency inverter type welder having excellent welding arc characteristics in places where welders are used in large quantities, such as shipbuilding and steel structure manufacturing plants.
  • a high frequency inverter type welder having excellent welding arc characteristics in places where welders are used in large quantities, such as shipbuilding and steel structure manufacturing plants.
  • the modular welding machine includes a power supply module 10 for supplying control power having a capacity corresponding to the number of welding machines required within the single case 100, and a main controller 20 for collectively controlling each welding characteristic. ), A sub control module for individually controlling each welder, a high frequency transformer module 30 for controlling and supplying welding current and voltage, a reactor module for stabilizing the output current, and an output terminal for connecting the welding feeder and the torch. do.
  • the modular welder includes a water cooling pump 82 and a heat exchanger 83 for cooling the heat of the plurality of IGBT switching elements 40 generated in the process of rapidly switching the DC voltage into pulses to form the AC voltage. It includes a high frequency inverter module.
  • the case 100 includes a plurality of welding output terminals 60 and a welding control terminal 70 having a number corresponding to the number of welding machines configured therein, to the welding output terminal 60. It can be used by connecting welding peter and welding torch.
  • the plurality of switching elements 40 are installed in contact with at least one surface of the plate-shaped tube (80).
  • the plate-shaped tube 80 may be formed in the form of a copper plate, and a flow path 81 through which water flows is formed therein.
  • both ends of the plate-shaped tube 80 are connected to the cooling water line 85, and the water cooling pump 82 and the heat exchanger 83 are installed on the cooling water line 85.
  • a cooling water tank 88 for temporarily storing the cooling water may be installed on an upstream side of the water cooling pump 82, and a cooling fan 84 may be installed on at least one side of the heat exchanger 83.
  • the cooling water flowing in the flow path 81 inside the plate-shaped tube 80 exchanges heat with the switching element 40 in contact with the plate-shaped tube 80 to absorb heat generated in the switching element 40, and radiate heat.
  • the internal structure of the case 100 of the modular welder can be configured as a rack type of a type in which individual welder parts are stacked in the case 100, in which case the main controller 20 is provided as a single unit.
  • the IGBT switching element is cooled by a water cooling method, and a fan for cooling the transformer is required as many as the number of welders, and the main controller 20 controls all the welders.
  • reference numeral 32 is a module type PCB
  • 31 is an output terminal
  • 33 is an air cooling unit
  • 34 is a water cooling unit.
  • 6 illustrates an internal configuration of the modular welder according to the modified example of FIG. 3, and the internal structure of the case 100 may have a modified laminated structure as illustrated in FIG. 6.
  • FIG. 5 illustrates a water cooling system of the modular welder according to the modification of FIG. 4.
  • the plate tube 80 is branched on the coolant line 85, a plurality of plate tubes 80 are arranged in parallel to form a plurality of flow paths 81, and the switching elements 40 have respective plate tubes 80. It can be implemented in a configuration provided in. Thus, a more efficient cooling system can be realized.
  • Figure 7 shows a schematic configuration of a modular welding machine according to a second embodiment of the present invention.
  • the structure of the main controller is changed compared to the above-described first embodiment, and only the changed structure is described, and a description of the overlapping structure with the first embodiment will be omitted.
  • the main controller 20 includes a first main controller 21 and a second main controller 22, and one of the first main controller 21 and the second main controller 22 is not included.
  • the other one may be configured to alternately operate, or the first main controller 21 and the second main controller 22 may be divided into a plurality of welders. Therefore, when one of the first main controller 21 and the second main controller 22 has a failure, the other one can be used, and the size reduction, cost reduction, and ease of maintenance can be obtained. .
  • FIG. 8 is a front view illustrating an external configuration of a modular welder according to a third embodiment of the present invention
  • FIG. 9 is a front view illustrating an internal configuration of a modular welder according to a third embodiment of the present invention
  • 10 is a perspective view of an individual welder module according to a third embodiment of the present invention
  • FIG. 11 is a plan view of an individual welder module according to a third embodiment of the present invention
  • FIG. 12 is a third embodiment of the present invention
  • 13 is a front view of an individual welder module according to the present invention
  • FIG. 13 illustrates a water cooling apparatus of a modular welder according to a third embodiment of the present invention
  • FIG. 14 illustrates an internal configuration of a modular welder according to a third embodiment of the present invention.
  • 15 is a left side view illustrating an internal configuration of a modular welding machine according to a third embodiment of the present invention
  • FIG. 16 illustrates an internal configuration of a modular welding machine according to a third embodiment of the present invention. The right side view is shown.
  • the modular welder according to the third embodiment of the present invention is configured to perform a plurality of welding operations in a multi-position, a flow path through which the coolant is circulated to cool the heating element It includes a plurality of individual welder module is installed is installed cooling plate 196 of the water-cooled method. That is, in order to reduce the size and reduce the weight of the welding machine, a cooling plate 196 of a water cooling method is installed in order to replace the conventional air cooling method with a water cooling method having excellent cooling efficiency.
  • the modular welder consists of one box-type individual welder module 102, 103, 104, 105 each of the welders.
  • the individual welder modules 102, 103, 104, and 105 are housed inside a single case 100, and each of the individual welder modules 102, 103, 104, and 105 is provided with a cold plate 196.
  • the cooling plate 196 is formed with a flow path 131 through which cooling water is circulated, and has a water cooling cooling system.
  • the input plate 122, the IGBT PCB 123, the water-cooled transformer 124, the output diode 125 and the current sensor 126 constituting the welding machine is disposed in the cooling plate 196 in order. desirable.
  • the cooling plate 196 is further provided with a cooling plate temperature sensor 199 for sensing the temperature of the cooling plate 196.
  • the modular welder has an input diode 122, an IGBT PCB 123, a water-cooled transformer 124, and an output diode 125 forming the welder on both sides of the cooling plate 196.
  • the cooling water channel may be installed along the inner center of the cooling plate 196 so that the current sensor 126 and the cooling plate temperature sensor 199 may be properly distributed and disposed.
  • an input diode and an IGBT PCB may be installed on an upper side of the cooling plate, and a water-cooled transformer, an output diode, and a current sensor may be disposed on the lower side.
  • each of the cooling plates 196 includes input and output diodes 122 and 125, an IGBT PCB 123, and a cylindrical oil-filled water-cooled transformer 124 for power conversion of the welding machine.
  • the current sensor 126 for sensing the output current and the cooling plate temperature sensor 199 for sensing the temperature of the cooling plate 196 are attached.
  • the individual welder modules 102, 103, 104 and 105 are configured to be detachable from the case 100, and can be replaced with individual welder modules having a problem when the problem of the individual welder modules occurs due to the small size and light weight.
  • the modular welder according to the third embodiment of the present invention includes a water cooling device 109.
  • the water cooling apparatus 109 includes a biaxial motor 191, a water pump 192 connected to one shaft of the biaxial motor 191, a cooling fan 193 connected to the other shaft of the biaxial motor 191, and cooling water. It includes a water tank 195 for storing the, and a radiator 194 for dissipating heat by the rotation of the cooling fan 193.
  • Cooling water from the water tank 195 is supplied to the cooling plate 196 of each individual welder module through the inlet distribution pipe 197b, circulated along the flow path 131 of the cooling plate 196, After passing through the radiator 194 through the pipe (198b) is recovered to the water tank (195).
  • the coolant may be mixed with antifreeze to prevent freezing in winter, and the water tank and radiator of appropriate capacity are determined for efficient heat recovery according to the number of individual welder modules.
  • the respective cooling plate 196 and the water cooling device 109 are connected through nipples and couplers 197a and 198a attached to the inlet distribution pipe 197b and the outlet distribution pipe 198b.
  • the nipples and couplers 197a and 198a may be configured to be coupled and separated in a one-touch structure.
  • a sealed partition 190 is provided inside the case 100, and the inlet distribution pipe 197b and the outlet distribution pipe 198b are disposed in the sealed partition 190. Therefore, when leakage occurs in the cooling water line, the water is separated from the casing 100 of the entire modular welder, and the cooling water flows to the individual welder module and the power supply module to prevent damage.
  • the configuration of the nipples and couplers 197a and 198a enables easy detachment and attachment between the cooling plate 196 and the water cooling device 109, and prevents leakage of cooling water during separation.
  • the modular welder according to the third embodiment of the present invention has a protective gas supply structure for welding.
  • the solenoid valve 151 is installed in accordance with the position of the terminal portion 127 of the individual welder module from the welding protective gas distribution pipe 150, and the terminal portion 127 constitutes a gas line 152 connected to an external welding torch.
  • the solenoid valve 151 connected to the individual welder controller 128 receives a signal and operates according to the welding torch ON / OFF signal. This simplifies the structure of the individual welder module, reducing its size and weight.
  • the modular welding machine using the water cooling method can achieve miniaturization and light weight of the individual welder module, and the control power supply 108, 108a, the integrated controller 106, the integrated controller and the individual controller which are commonly required for each individual welder module.
  • the gas distribution pipe 150, the solenoid valve 151, and the gas line 152 are separately integrated and supplied or separated from the individual welder module to further simplify the individual welder module, thereby facilitating maintenance and repair in the event of failure of the individual welder module. It was made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding Control (AREA)
  • Inverter Devices (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

본 발명에서는 가볍고 단순해진 수냉식 냉각 구조를 적용함으로써 개별 용접기 각각에서 발생된 열을 효율적으로 회수할 수 있는 모듈형 용접기가 개시된다. 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행하도록 다수개로 구비되며, 상기 용접기를 구성하는 각 구성 부품들을 그룹으로 모듈화하여 단일의 패널에 구성함과 아울러 단일의 케이스 안에 설치된다. 또한, 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행할 수 있는 것으로서, 발열 부품의 냉각을 위하여 냉각수가 순환되는 유로가 형성된 수냉 방식의 냉각판이 설치되는 개별 용접기 모듈을 복 수개 포함한다. 따라서, 각각의 수냉식 개별 용접기 모듈에 안정적인 냉각수를 순환시켜 용접기 전력 변환 소자의 발열을 방지함으로써 약 20%이상의 용접 전력효율이 향상되고, 공냉식 모듈 용접기에서 전체 부피의 70%를 차지하는 공냉식 방열 부품을 생략 가능함에 따라 초소형, 초경량 수냉식 모듈형 용접기를 제작 가능하다.

Description

모듈형 용접기
본 발명은 모듈형 용접기에 관한 것으로, 더욱 상세하게는 용접 아크 특성이 우수한 고주파 인버터 방식의 다수의 용접기를 모듈화한 모듈형 용접기에 관한 것이다.
일반적으로, 용접기의 구성은 용접기 1대의 제작에 필요한 각 구성품들을 1개의 박스 형태의 케이스에 수용시켜 설치하고 있다. 이 경우, 용접 품질의 향상, 용접 생산성의 향상 등 용접 공정의 혁신을 위해서는, 아날로그 방식(SCR) 용접기를 인버터 방식으로 대체 적용하는 것이 필요하다. 하지만, 상기 인버터 방식의 용접기는 SCR 용접기에 비해 고가이므로 대체 적용이 쉽지 않은 것이 현실이다.
이러한 이유로, 인버터 용접기가 SCR 용접기에 비해 용접 특성 및 소비 전력에 따른 효율이 우수함에도 불구하고 제조 원가가 높기 때문에 경제성이 떨어지며, 이로 인해 조선과 철 구조물 제작 공장과 같이 용접기가 대량으로 사용되는 분야에서 자동화 설비와 같은 용접 품질에 대한 신뢰성이 요구되는 부분에 제한적으로 적용하고 있는 실정이다.
최근에는, 환경과 에너지 문제가 전 세계적인 문제로 대두되고 있고, 전력 요금의 현실화, 용도별 차별화 축소, 계절별 및 시간대별 전기 요금제 실시 등 전기 요금 체계가 개편되기 시작하면서 전력 에너지 전반에 걸쳐 큰 변화가 불가피하다. 과거에는, 상대적으로 저렴한 산업용 전력을 사용함에 따라 용접기의 고효율화에 대한 연구 필요성이 부각되지 못하였으나, 최근 전력 수급 문제가 현실화되고 계속적인 전력비 인상이 예상됨에 따라 향후 전력비 저감을 위한 고효율 용접기의 개발과 적용에 대한 연구가 향후에 활발히 일어날것으로 예상된다.
한편, 종래의 팬을 이용한 공냉식 단일 용접기는 하나의 케이스 내에 용접기를 구성하는 부품들을 일괄 배치하게 된다. 이렇게 제작된 용접기는 종류에 따라서 차이가 있지만 대략 SCR 방식의 용접기는 무게가 170~200kg 정도이고, 크기가 500mm(W)x684mm(D)x845mm(H) 정도로서 상대적으로 무겁고 사이즈가 크다. 반면에, 인버터 방식의 용접기는 사용 주파수에 따라서 변압기 크기 변화로 용접기의 무게와 크기가 다른데 20KHz 정도에서 약 100kg, 70~100KHz 정도에서 약 50kg 정도이고, 크기는 대략적으로 400mm(W)x630mm(D)x480mm(H) 정도로 경량화된다. 그러나, 경량화된 인버터 방식의 용접기라 하더라도 다수대를 내장하는 모듈 용접기로 제작하는 경우 1인이 개별 용접기의 착,탈 등 핸들링이 가능한 수준으로 더 작고 경량화되어야 한다.
도 1은 종래의 공냉식 인버터형 용접기를 개략적으로 도시한 사시도이다.
도 1을 참조하면, 종래의 공냉식 인버터형 용접기는 1대로 제작되어 각 구성품들을 1개의 박스에 배치하는 것이 일반적이다. 공냉식 인버터형 용접기는 높은 스위칭 제어주파수를 가지므로, 내부 전자 부품의 열을 강제로 공냉하도록 구성된다. 내부 전자 부품은 입,출력 다이오드(4)(7) 및 IGBT PCB(6)를 방열판(1) 위에 부착하여 이루어진다.
상기 방열판(1)은 공냉팬(2)이 회전함에 따라 차가운 공기를 안으로 공급하여, 방열판(1)에 부착된 입,출력 다이오드(4)(7) 및 IGBT PCB(6) 등의 내부 전자 부품의 온도를 낮게 유지하며 방열판(1)의 출구 측에 위치한 변압기(5)를 냉각한다. 여기서, 미설명된 부호 3은 방열판 온도 감지 센서이고, 8은 전류 감지 센서이다.
하지만, 종래의 공냉식 인버터형 용접기는 공냉팬(2)의 효율이 낮아 방열판(1)의 크기가 전체 용접기 크기의 70%이상을 차지하므로, 다수대의 공냉식 인버터형 용접기를 모듈화할 경우 크기 및 무게가 커지는 문제점이 있었다. 아울러, 종래의 공냉식 인버터형 용접기는 1대를 구동하는데 많은 부품들을 필요로하기 때문에, 소형화하는데 한계가 있었다.
이와 같은 종래의 문제점을 해결하기 위하여, 본 발명에서는 용접 아크 특성 및 소비 전력의 효율이 우수한 고주파 인버터 방식의 용접기를 적용하되, 용접기를 구성하는 각각의 구성품들을 모듈화하여 1개의 케이스에 다수의 용접기를 집적화시켜 조립함으로써 용접기의 구성 부품 수를 줄이고 제조 원가를 낮추며 소비 전력의 효율을 상승시킬 수 있는 모듈형 용접기를 제공한다.
한편, 본 발명에서는 가볍고 단순해진 수냉식 냉각 구조를 적용함으로써 개별 용접기 각각에서 발생된 열을 효율적으로 회수할 수 있는 모듈형 용접기를 제공한다.
본 발명에 따른 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행하도록 다수개로 구비되며, 상기 용접기를 구성하는 각 구성 부품들을 그룹으로 모듈화하여 단일의 패널에 구성함과 아울러 단일의 케이스 안에 설치한다.
상기에서, DC 전압을 펄스로 고속 스위칭하여 AC 전압으로 만드는 과정에서 발생하는 다수의 스위칭 소자의 열을 냉각하기 위한 수냉 펌프 및 열교환기를 구비하는 고주파 인버터 모듈을 포함한다.
상기에서, 케이스의 내부에는, 필요 용접기 개수에 대응되게 제어 전원을 공급하는 전원공급 모듈과, 각 용접 특성을 총괄 제어하는 메인 컨트롤러와, 용접 전류 및 전압을 제어 공급하는 고주파 변압기 모듈과, 출력 전류를 안정화시키는 리액터 모듈 및 용접 피더와 토치를 연결하는 출력 단자를 포함한다.
상기에서, 메인 컨트롤러는 제1 메인 컨트롤러 및 제2 메인 컨트롤러로 구성되고, 제1 메인 컨트롤러와 제2 메인 컨트롤러 중 하나가 비 작동 시 다른 하나가 대체 작동되도록 구성되거나, 제1 메인 컨트롤러와 제2 메인 컨트롤러가 각각 다수의 용접기와 분할 구성된다.
상기에서, 케이스의 외부에는, 내부에 구성된 용접기의 개수에 대응되는 개수를 갖는 다수의 용접 출력 단자 및 용접 제어 단자를 포함한다.
상기에서, 다수의 스위칭 소자는 내부에 물이 유동되는 유로가 형성된 판형 튜브의 적어도 일면에 접촉 설치되고, 상기 판형 튜브에는 냉각수 라인으로 연결되어 상기 냉각수 라인 상에 상기 수냉 펌프 및 열교환기가 설치된다.
상기에서, 판형 튜브는 냉각수 라인 상에서 분지됨에 따라 다수개가 병렬로 배치되어 다수개의 유로를 형성하고, 상기 스위칭 소자는 각각의 판형 튜브에 구비된다.
한편, 본 발명의 다른 양상에 따른 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행할 수 있는 것으로서, 발열 부품의 냉각을 위하여 냉각수가 순환되는 유로가 형성된 수냉 방식의 냉각판이 설치되는 개별 용접기 모듈을 복 수개 포함한다.
상기에서, 냉각판에는 용접기를 구성하는 입력 다이오드, IGBT PCB, 수냉식 변압기, 출력 다이오드 및 전류 센서가 순서대로 배치되어 설치된다.
상기에서, 냉각판의 온도를 감지하기 위한 냉각판 온도 감지센서가 더 설치된다.
상기에서, 냉각판의 양측면에는 용접기를 구성하는 입력 다이오드, IGBT PCB, 수냉식 변압기, 출력 다이오드, 전류 센서 및 냉각판 온도 감지센서가 분산 배치되어 설치된다.
상기에서, 개별 용접기 모듈은 탈착 가능한 박스 형태로 이루어진다.
상기에서, 양축 모터와, 상기 양축 모터의 일축에 연결되는 워터 펌프와, 상기 양축 모터의 타축에 연결되는 냉각팬과, 냉각수를 저장하는 물탱크와, 상기 냉각팬의 회전에 의해 열을 방출하는 라디에이터를 포함하는 수냉장치를 구비하고; 상기 물탱크로부터 나온 냉각수가 인렛 분배관을 통해 각각의 개별 용접기 모듈의 냉각판으로 공급되며, 냉각판의 유로를 따라 순환하고, 아웃렛 분배관을 통해 상기 라디에이터를 통과한 후 물탱크로 회수된다.
상기에서, 냉각판에는 입,출력 다이오드, IGBT PCB, 수냉식 변압기 및 전류센서가 부착되고; 상기 개별 용접기 모듈 각각에는 개별 용접기 제어기, 전원 공급을 위한 메인 전원 공급부, ON/OFF 스위치, 출력 전류 단자와 연결되는 단자부 및 조작 판넬을 구비한다.
상기에서, 용접용 보호 가스 분배관으로부터 개별 용접기 모듈의 단자부 위치에 맞춰 솔레노이드 밸브가 설치되고, 상기 단자부에는 외부 용접 토치로 연결되는 가스 라인을 구성하며, 용접 토치 ON/OFF 신호에 따라 개별 용접기 제어기와 연결된 솔레노이드 밸브가 신호를 받아 동작된다.
상기에서, 각각의 냉각판과 수냉장치 간은 인렛 분배관 및 아웃렛 분배관에 부착된 니플 및 커플러를 통하여 연결되고; 상기 인렛 분배관 및 아웃렛 분배관은 밀폐격벽 내부에 배치된다.
본 발명에 따른 모듈형 용접기는 외부 환경을 고려하여 용접기의 고효율화를 통한 용접 전력 에너지의 절감이 가능하고, 용접기를 다수대로 모듈화하여 원가 절감 및 전력 케이블 절감 및 용접기의 슬림화 구현이 가능하며, 작업장 근접 배치가 가능하여 용접 케이블의 길이 단축에 따른 효율 증대 및 원가 절감할 수 있을 뿐 아니라, 용접 아크 특성이 우수하여 용접 품질이 향상되며 용접 자세별 및 재료별 용접 특성을 고려한 최적의 조건으로 지능화시킬 수 있어 누구나 쉽게 용접을 수행함에 따라 생산성을 향상시킬 수 있다.
또한, 본 발명에 따른 모듈형 용접기는 각각의 수냉식 개별 용접기 모듈에 안정적인 냉각수를 순환시켜 용접기 전력 변환 소자의 발열을 방지함으로써 약 20%이상의 용접 전력효율이 향상되고, 공냉식 모듈 용접기에서 전체 부피의 70%를 차지하는 공냉식 방열 부품을 생략 가능함에 따라 초소형, 초경량 수냉식 모듈형 용접기를 제작 가능하다.
아울러, 전원 장치의 통합화 및 방열 부품 제거를 통해 제조원가를 절감하고, 개별 용접기 모듈의 최적 배치를 통해 용접기 배치 공간의 제약을 해결하며, 소형화 및 경량화를 통한 작업장 전진 배치로 용접 케이블 길이를 최적화할 수 있으므로 용접전력의 손실을 방지할 뿐 아니라, 고장이력 표시를 통한 용접기 유지보수 업무 효율성이 증대되고, SCR 용접기 대비 인버터 용접기 적용을 통한 용접전력 절감 및 용접품질 향상 등의 효과를 얻을 수 있다.
도 1은 종래의 공냉식 인버터형 용접기를 개략적으로 도시한 사시도이고,
도 2는 본 발명의 제1 실시 예에 따른 모듈형 용접기의 개략적인 구성을 도시한 것이고,
도 3은 본 발명의 제1 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 것이며,
도 4는 본 발명의 제1 실시 예에 따른 모듈형 용접기의 수냉 시스템을 도시한 것이고,
도 5는 도 4의 변형 예에 따른 모듈형 용접기의 수냉 시스템을 도시한 것이며,
도 6은 도 3의 변형 예에 따른 모듈형 용접기의 내부 구성을 도시한 것이고,
도 7은 본 발명의 제2 실시 예에 따른 모듈형 용접기의 개략적인 구성을 도시한 것이며,
도 8은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 외부 구성을 도시한 정면도이고,
도 9는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 정면도이며,
도 10은 본 발명의 제3 실시 예에 따른 개별 용접기 모듈을 도시한 사시도이고,
도 11은 본 발명의 제3 실시 예에 따른 개별 용접기 모듈의 평면도이며,
도 12는 본 발명의 제3 실시 예에 따른 개별 용접기 모듈의 정면도이고,
도 13은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 수냉장치를 도시한 것이며,
도 14는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 평면도이고,
도 15는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 좌측면도이며,
도 16은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 우측면도이다.
이하 첨부된 도면에 따라서 모듈형 용접기의 기술적 구성을 상세히 설명하면 다음과 같다.
도 2는 본 발명의 제1 실시 예에 따른 모듈형 용접기의 개략적인 구성을 도시한 것이고, 도 3은 본 발명의 제1 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 것이며, 도 4는 본 발명의 제1 실시 예에 따른 모듈형 용접기의 수냉 시스템을 도시한 것이다.
도 2 내지 도 4에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행하도록 다수개로 구비되는 용접기로서, 상기 용접기를 구성하는 각 구성 부품들을 그룹으로 모듈화하여 단일의 패널에 구성함과 아울러, 상기 모듈화된 부품 그룹을 단일의 케이스(100) 안에 설치하여 이루어진다.
즉, 모듈형 용접기는 CO2 인버터 용접기 타입으로 이루어지는 것으로서, 조선, 철 구조물 제작 공장과 같이 용접기가 대량으로 사용되는 장소에서 용접 아크 특성이 우수한 고주파 인버터 방식의 용접기로 대체 적용을 수행한 것이다. 결국, 다수개의 용접기를 하나의 박스형 케이스(100)로 모듈화 구성함으로써, 용접기를 구성하는 부품의 수를 줄여 용접기의 제작 원가를 절감하고 고효율 용접기를 사용함에 따라 용접 전력비를 절감하며 안정된 용접 아크 출력 특성을 획득할 뿐 아니라, 용접 품질과 생산성을 향상시킬 수 있다.
상기 모듈형 용접기는 상기 단일의 케이스(100)의 내부에, 필요로 하는 용접기 개수에 대응되는 용량의 제어 전원을 공급하는 전원공급 모듈(10)과, 각 용접 특성을 총괄 제어하는 메인 컨트롤러(20)와, 각각의 용접기를 개별 제어하는 Sub 제어 모듈과, 용접 전류 및 전압을 제어 공급하는 고주파 변압기 모듈(30)과, 출력 전류를 안정화시키는 리액터 모듈 및 용접 피더와 토치를 연결하는 출력 단자를 포함한다.
또한, 모듈형 용접기는 DC 전압을 펄스로 고속 스위칭하여 AC 전압으로 만드는 과정에서 발생하는 다수의 IGBT 스위칭 소자(40)의 열을 냉각하기 위한 수냉 펌프(82) 및 열교환기(83)를 구비하는 고주파 인버터 모듈을 포함한다. 아울러, 상기 케이스(100)의 외부에는, 내부에 구성된 용접기의 개수에 대응되는 개수를 갖는 다수의 용접 출력 단자(60) 및 용접 제어 단자(70)를 포함하여, 상기 용접 출력 단자(60)에 용접 피터와 용접 토치 등을 연결하여 사용할 수 있다.
또한, 상기 다수의 스위칭 소자(40)는 판형 튜브(80)의 적어도 일면에 접촉 설치된다. 판형 튜브(80)는 동판의 형태로 이루어질 수 있는 것으로서, 내부에 물이 유동되는 유로(81)가 형성되어 있다. 이 경우, 상기 판형 튜브(80)의 양단에는 냉각수 라인(85)으로 연결되며, 냉각수 라인(85) 상에 수냉 펌프(82) 및 열교환기(83)가 설치되어 있다. 상기 수냉 펌프(82)의 상류 측에는 냉각수를 임시 저장하기 위한 냉각수 탱크(88)가 설치되고, 상기 열교환기(83)의 적어도 일 측에는 냉각 팬(84)이 설치될 수 있다.
이러한 구성을 통해, 판형 튜브(80) 내부 유로(81)를 유동하는 냉각수는 판형 튜브(80)와 접촉된 스위칭 소자(40)와 열교환하여 스위칭 소자(40)에서 발생된 열을 흡열하고, 방열 라디에이터 구조의 열교환기(83) 및 냉각 팬(84)을 통해 외부 공기와 열교환하여 방열하며, 수냉 펌프(82)를 통해 다시 순환되어 일련의 냉각 시스템을 구현한다.
한편, 모듈형 용접기의 케이스(100) 내부 구조는 케이스(100) 내부에 개별 용접기 부품을 적층한 형태의 랙(Rack) 타입으로 구성할 수 있으며, 이 경우 메인 컨트롤러(20)는 단일개로 구비된다. 이 경우, IGBT 스위칭 소자는 수냉각 방식으로 냉각되며, 변압기를 냉각하기 위한 팬이 용접기 개수만큼 각각 필요하고, 메인 컨트롤러(20)가 전체 용접기를 모두 제어하고 있다. 이 경우, 도면부호 32는 모듈타입 PCB이고, 31은 출력 단자이며, 33은 에어 쿨링 유닛이고, 34는 워터 쿨링 유닛이다. 도 6은 도 3의 변형 예에 따른 모듈형 용접기의 내부 구성을 도시한 것으로서, 케이스(100) 내부 구조는 도 6에 도시된 것처럼 변형된 적층 구조를 갖는 것도 가능하다.
도 5는 도 4의 변형 예에 따른 모듈형 용접기의 수냉 시스템을 도시한 것이다. 도 5를 참조하면, 판형 튜브(80)는 냉각수 라인(85) 상에서 분지됨에 따라 다수개가 병렬로 배치되어 다수개의 유로(81)를 형성하고, 스위칭 소자(40)는 각각의 판형 튜브(80)에 구비되는 구성으로도 구현 가능하다. 따라서, 더욱 효율적인 냉각 시스템을 구현할 수 있다.
한편, 도 7은 본 발명의 제2 실시 예에 따른 모듈형 용접기의 개략적인 구성을 도시한 것이다. 도 7에 도시된 실시 예는 전술한 제1 실시 예와 비교하여 메인 컨트롤러의 구조가 변경된 것이며, 변경된 구조에 대해서만 설명하고, 제1 실시 예와 중복되는 구성에 대해서는 설명을 생략한다.
도 7을 참조하면, 메인 컨트롤러(20)는 제1 메인 컨트롤러(21) 및 제2 메인 컨트롤러(22)로 구성되고, 제1 메인 컨트롤러(21)와 제2 메인 컨트롤러(22) 중 하나가 비 작동 시 다른 하나가 대체 작동되도록 구성되거나, 제1 메인 컨트롤러(21)와 제2 메인 컨트롤러(22)가 각각 다수의 용접기와 분할 구성될 수 있다. 따라서, 제1 메인 컨트롤러(21)와 제2 메인 컨트롤러(22) 중 하나가 고장이 발생한 경우에 다른 하나를 사용할 수 있으며, 사이즈의 축소, 원가 절감 및 유지보수의 용이함 등의 효과를 얻을 수 있다.
또한, 도 8은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 외부 구성을 도시한 정면도이고, 도 9는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 정면도이며, 도 10은 본 발명의 제3 실시 예에 따른 개별 용접기 모듈을 도시한 사시도이고, 도 11은 본 발명의 제3 실시 예에 따른 개별 용접기 모듈의 평면도이며, 도 12는 본 발명의 제3 실시 예에 따른 개별 용접기 모듈의 정면도이고, 도 13은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 수냉장치를 도시한 것이며, 도 14는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 평면도이고, 도 15는 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 좌측면도이며, 도 16은 본 발명의 제3 실시 예에 따른 모듈형 용접기의 내부 구성을 도시한 우측면도이다.
도 8 내지 도 16에 도시된 바와 같이, 본 발명의 제3 실시 예에 따른 모듈형 용접기는 멀티 위치에서 다수의 용접 작업을 수행할 수 있도록 구성된 것으로서, 발열 부품의 냉각을 위하여 냉각수가 순환되는 유로가 형성된 수냉 방식의 냉각판(196)이 설치되는 개별 용접기 모듈을 복 수개 포함한다. 즉, 용접기의 사이즈 축소와 경량화 달성 방안의 일환으로 종래의 팬을 이용한 공냉 방식을 냉각 효율이 우수한 수냉 방식으로 대체하기 위하여 수냉 방식의 냉각판(196)이 설치되는 것이다.
더욱 상세하게는, 모듈형 용접기는 용접기 각각이 1개의 박스(Box)형 개별 용접기 모듈(102,103,104,105)로 이루어진다. 상기 개별 용접기 모듈(102,103,104,105)은 단일의 케이스(100) 내부에 수납되며, 각각의 개별 용접기 모듈(102,103,104,105)에 냉각판(196)이 구비된다. 상기 냉각판(196)에는 냉각수가 순환되는 유로(131)가 형성되어, 수냉식 냉각 시스템을 갖는다.
이때, 상기 냉각판(196)에는 용접기를 구성하는 입력 다이오드(122), IGBT PCB(123), 수냉식 변압기(124), 출력 다이오드(125) 및 전류 센서(126)가 순서대로 배치되어 설치되는 것이 바람직하다. 즉, 각 부품간의 연결 케이블을 최소한으로 짧게 하기 위하여 각 부품들을 전력 제어 순서에 맞게 배치하여 설치하는 것이다. 상기 냉각판(196)에는 냉각판(196)의 온도를 감지하기 위한 냉각판 온도 감지센서(199)가 더 설치되는 것이 바람직하다.
한편, 모듈형 용접기는 용접기의 사이즈를 더욱 더 축소하기 위하여, 냉각판(196)의 양측면에는 용접기를 구성하는 입력 다이오드(122), IGBT PCB(123), 수냉식 변압기(124), 출력 다이오드(125), 전류 센서(126) 및 냉각판 온도 감지센서(199)가 적절히 분산 배치 가능하도록 냉각판(196)의 내부 중심부를 따라 냉각수 수로가 설치될 수 있다. 예를 들어, 냉각판의 상측면에는 입력 다이오드 및 IGBT PCB가 설치되고, 하측면에는 수냉식 변압기, 출력 다이오드 및 전류 센서가 배치될 수 있다.
상기 개별 용접기 모듈은 탈착 가능한 박스 형태로 이루어지는 것이 바람직하다. 더욱 상세하게는, 상기 냉각판(196) 각각에는 용접기의 전력 변환을 위한 입,출력 다이오드(122,125)와, IGBT PCB(123)와, 원통형으로 구성되고 내부에 기름이 채워진 수냉식 변압기(124)와, 출력 전류를 센싱하는 전류센서(126) 및 냉각판(196)의 온도를 감지하는 냉각판 온도 감지센서(199)가 부착된다. 또한, 상기 개별 용접기 모듈 각각의 상부 측에는 개별 용접기 제어기(128)와, 전원 공급 위한 메인 전원 공급부(121)와, 케이스(100) 전면에 부착되는 ON/OFF 스위치(120)와, 제어 전원 공급과 중앙 제어기와 인터페이스 및 기타 외부 장치 및 부품과의 신호 입,출력을 위한 커넥터(130)와, 출력 전류 +/- 단자 및 외부 용접 피더와 연결되는 제어 커넥터로 구성된 단자부(127)와, 크레이터 유/무를 조작하는 조작 판넬(129)을 구비한다.
상기 개별 용접기 모듈(102,103,104,105)은 케이스(100)로부터 탈착 가능하게 구성되며, 소형 및 경량으로서 개별 용접기 모듈의 문제 발생 시 바로 문제가 있는 개별 용접기 모듈을 교체할 수 있다.
본 발명의 제3 실시 예에 따른 모듈형 용접기는 수냉장치(109)를 구비한다. 수냉장치(109)는 양축 모터(191)와, 상기 양축 모터(191)의 일축에 연결되는 워터 펌프(192)와, 상기 양축 모터(191)의 타축에 연결되는 냉각팬(193)과, 냉각수를 저장하는 물탱크(195)와, 상기 냉각팬(193)의 회전에 의해 열을 방출하는 라디에이터(194)를 포함한다.
상기 물탱크(195)로부터 나온 냉각수가 인렛 분배관(197b)을 통해 각각의 개별 용접기 모듈의 냉각판(196)으로 공급되며, 냉각판(196)의 유로(131)를 따라 순환하고, 아웃렛 분배관(198b)을 통해 라디에이터(194)를 통과한 후 물탱크(195)로 회수된다. 냉각수는 겨울철 얼지 않도록 부동액이 혼합될 수 있으며, 개별 용접기 모듈의 개수에 맞게 효율적인 발열 회수를 위해 적당한 용량의 물탱크와 라디에이터의 사이즈가 결정된다.
상기 각각의 냉각판(196)과 수냉장치(109) 간은 인렛 분배관(197b) 및 아웃렛 분배관(198b)에 부착된 니플 및 커플러(197a,198a)를 통하여 연결된다. 니플 및 커플러(197a,198a)는 원터치 구조로 결합 및 분리가 이루어지도록 구성될 수 있다. 아울러, 상기 케이스(100) 내측에 밀폐격벽(190)이 구비되며, 인렛 분배관(197b) 및 아웃렛 분배관(198b)은 밀폐격벽(190) 내부에 배치된다. 따라서, 냉각수 라인에 누수가 발생했을 때, 전체 모듈형 용접기의 케이스(100)로부터 분리되어 개별 용접기 모듈 및 전원장치 모듈에 냉각수가 흘러 손상되는 것을 방지할 수 있다. 또한, 니플 및 커플러(197a,198a)의 구성을 통해, 냉각판(196)과 수냉장치(109) 간의 용이한 탈,부착이 가능하고, 분리 시 냉각수의 누수를 방지할 수 있다.
또한, 본 발명의 제3 실시 예에 따른 모듈형 용접기는 용접용 보호 가스 공급 구조를 갖는다. 용접용 보호 가스 분배관(150)으로부터 개별 용접기 모듈의 단자부(127) 위치에 맞춰 솔레노이드 밸브(151)가 설치되고, 단자부(127)에는 외부 용접 토치로 연결되는 가스 라인(152)을 구성한다. 용접 토치 ON/OFF 신호에 따라 개별 용접기 제어기(128)와 연결된 솔레노이드 밸브(151)가 신호를 받아 동작이 이루어진다. 이로 인해, 개별 용접기 모듈의 구조를 단순화시켜 크기 및 무게를 줄일 수 있다.
결국, 수냉각 방식을 적용한 모듈형 용접기는 개별 용접기 모듈의 소형화 및 경량화 달성이 가능하고, 각 개별 용접기 모듈별로 공통적으로 필요한 제어전원 공급장치(108,108a), 통합 제어기(106), 통합 제어기와 개별 용접기 간에 연결을 위한 커넥터(161,130), 메인 전원 공급부(121), ON/OFF 스위치(120), 개별용접기 전류/전압 표시기 및 크레이터 조정기가 포함된 조작 판넬(129), 용접용 보호가스 공급을 위한 가스 분배관(150), 솔레노이드 밸브(151), 가스 라인(152)을 개별 용접기 모듈과 별도로 통합하여 공급하거나 분리시켜 개별 용접기 모듈을 더 단순화시킴으로써, 개별 용접기 모듈의 고장 발생 시 유지 및 보수를 용이하게 하였다.
또한, 각 개별 용접기 모듈의 운전 상태를 모니터링하고 원격 제어를 위해 외부 데이터 입,출력 장치(107)를 구성하여 원격 모니터링을 가능하게 할 수 있다. 이러한 구성을 통해, 고성능 고효율의 인버터 용접기를 확대 보급하기 위한 제조원가의 혁신, 용접전력비 절감, 용접품질 향상, 용접공정관리 기술 개발, 용접 지능화를 통한 생산성 향상을 기대할 수 있다.
지금까지 본 발명에 따른 모듈형 용접기는 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 누구든지 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (16)

  1. 멀티 위치에서 다수의 용접 작업을 수행하도록 다수개로 구비되는 용접기에 있어서,
    상기 용접기를 구성하는 각 구성 부품들을 그룹으로 모듈화하여 단일의 패널에 구성함과 아울러 단일의 케이스(100) 안에 설치한 것을 특징으로 하는 모듈형 용접기.
  2. 제1 항에 있어서,
    DC 전압을 펄스로 고속 스위칭하여 AC 전압으로 만드는 과정에서 발생하는 다수의 스위칭 소자(40)의 열을 냉각하기 위한 수냉 펌프(82) 및 열교환기(83)를 구비하는 고주파 인버터 모듈을 포함하는 것을 특징으로 하는 모듈형 용접기.
  3. 제1 항에 있어서,
    상기 케이스(100)의 내부에는, 필요 용접기 개수에 대응되게 제어 전원을 공급하는 전원공급 모듈(10)과, 각 용접 특성을 총괄 제어하는 메인 컨트롤러(20)와, 용접 전류 및 전압을 제어 공급하는 고주파 변압기 모듈(30)과, 출력 전류를 안정화시키는 리액터 모듈 및 용접 피더와 토치를 연결하는 출력 단자를 포함하는 것을 특징으로 하는 모듈형 용접기.
  4. 제3 항에 있어서,
    상기 메인 컨트롤러(20)는 제1 메인 컨트롤러(21) 및 제2 메인 컨트롤러(22)로 구성되고, 제1 메인 컨트롤러(21)와 제2 메인 컨트롤러(22) 중 하나가 비 작동 시 다른 하나가 대체 작동되도록 구성되거나, 제1 메인 컨트롤러(21)와 제2 메인 컨트롤러(22)가 각각 다수의 용접기와 분할 구성되는 것을 특징으로 하는 모듈형 용접기.
  5. 제1 항에 있어서,
    상기 케이스(100)의 외부에는, 내부에 구성된 용접기의 개수에 대응되는 개수를 갖는 다수의 용접 출력 단자(60) 및 용접 제어 단자(70)를 포함하는 것을 특징으로 하는 모듈형 용접기.
  6. 제2 항에 있어서,
    상기 다수의 스위칭 소자(40)는 내부에 물이 유동되는 유로(81)가 형성된 판형 튜브(80)의 적어도 일면에 접촉 설치되고, 상기 판형 튜브(80)에는 냉각수 라인(85)으로 연결되어 상기 냉각수 라인(85) 상에 상기 수냉 펌프(82) 및 열교환기(83)가 설치되는 것을 특징으로 하는 모듈형 용접기.
  7. 제6 항에 있어서,
    상기 판형 튜브(80)는 냉각수 라인(85) 상에서 분지됨에 따라 다수개가 병렬로 배치되어 다수개의 유로(81)를 형성하고, 상기 스위칭 소자(40)는 각각의 판형 튜브(80)에 구비되는 것을 특징으로 하는 모듈형 용접기.
  8. 멀티 위치에서 다수의 용접 작업을 수행할 수 있는 모듈형 용접기에 있어서,
    발열 부품의 냉각을 위하여 냉각수가 순환되는 유로가 형성된 수냉 방식의 냉각판이 설치되는 개별 용접기 모듈을 복 수개 포함하는 것을 특징으로 하는 모듈형 용접기.
  9. 제8 항에 있어서,
    상기 냉각판에는 용접기를 구성하는 입력 다이오드, IGBT PCB, 수냉식 변압기, 출력 다이오드 및 전류 센서가 순서대로 배치되어 설치되는 것을 특징으로 하는 모듈형 용접기.
  10. 제9 항에 있어서,
    상기 냉각판의 온도를 감지하기 위한 냉각판 온도 감지센서가 더 설치되는 것을 특징으로 하는 모듈형 용접기.
  11. 제10 항에 있어서,
    상기 냉각판의 양측면에는 용접기를 구성하는 입력 다이오드, IGBT PCB, 수냉식 변압기, 출력 다이오드, 전류 센서 및 냉각판 온도 감지센서가 분산 배치되어 설치되는 것을 특징으로 하는 모듈형 용접기.
  12. 제8 항에 있어서,
    상기 개별 용접기 모듈은 탈착 가능한 박스 형태로 이루어지는 것을 특징으로 하는 모듈형 용접기.
  13. 제8 항에 있어서,
    양축 모터(191)와, 상기 양축 모터(191)의 일축에 연결되는 워터 펌프(192)와, 상기 양축 모터(191)의 타축에 연결되는 냉각팬(193)과, 냉각수를 저장하는 물탱크(195)와, 상기 냉각팬(193)의 회전에 의해 열을 방출하는 라디에이터(194)를 포함하는 수냉장치(109)를 구비하고;
    상기 물탱크(195)로부터 나온 냉각수가 인렛 분배관(197b)을 통해 각각의 개별 용접기 모듈의 냉각판(196)으로 공급되며, 냉각판(196)의 유로(131)를 따라 순환하고, 아웃렛 분배관(198b)을 통해 상기 라디에이터(194)를 통과한 후 물탱크(195)로 회수되는 것을 특징으로 하는 모듈형 용접기.
  14. 제8 항에 있어서,
    상기 냉각판(196)에는 입,출력 다이오드(122,125), IGBT PCB(123), 수냉식 변압기(124) 및 전류센서(126)가 부착되고;
    상기 개별 용접기 모듈 각각에는 개별 용접기 제어기(128), 전원 공급을 위한 메인 전원 공급부(121), ON/OFF 스위치(120), 출력 전류 단자와 연결되는 단자부(127) 및 조작 판넬(129)을 구비하는 것을 특징으로 하는 모듈형 용접기.
  15. 제14 항에 있어서,
    용접용 보호 가스 분배관(150)으로부터 개별 용접기 모듈의 단자부(127) 위치에 맞춰 솔레노이드 밸브(151)가 설치되고, 상기 단자부(127)에는 외부 용접 토치로 연결되는 가스 라인(152)을 구성하며, 용접 토치 ON/OFF 신호에 따라 개별 용접기 제어기(128)와 연결된 솔레노이드 밸브(151)가 신호를 받아 동작되는 것을 특징으로 하는 모듈형 용접기.
  16. 제13 항에 있어서,
    상기 각각의 냉각판(196)과 수냉장치(109) 간은 인렛 분배관(197b) 및 아웃렛 분배관(198b)에 부착된 니플 및 커플러(197a,198a)를 통하여 연결되고;
    상기 인렛 분배관(197b) 및 아웃렛 분배관(198b)은 밀폐격벽(190) 내부에 배치되는 것을 특징으로 하는 모듈형 용접기.
PCT/KR2014/005276 2013-06-17 2014-06-17 모듈형 용접기 WO2014204160A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480034532.5A CN105377495B (zh) 2013-06-17 2014-06-17 模块型焊机
EP14814093.2A EP3015212A4 (en) 2013-06-17 2014-06-17 Modular welding machine
JP2016519455A JP6157727B2 (ja) 2013-06-17 2014-06-17 モジュール型溶接機
US14/898,742 US20160136749A1 (en) 2013-06-17 2014-06-17 Modular welding machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0068779 2013-06-17
KR20130068779 2013-06-17
KR10-2014-0072833 2014-06-16
KR1020140072833A KR101595285B1 (ko) 2013-06-17 2014-06-16 모듈형 용접기

Publications (1)

Publication Number Publication Date
WO2014204160A1 true WO2014204160A1 (ko) 2014-12-24

Family

ID=52676005

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/005257 WO2014204155A1 (ko) 2013-06-17 2014-06-16 수냉식 단일 용접기 모듈 및 수냉식 용접기
PCT/KR2014/005276 WO2014204160A1 (ko) 2013-06-17 2014-06-17 모듈형 용접기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005257 WO2014204155A1 (ko) 2013-06-17 2014-06-16 수냉식 단일 용접기 모듈 및 수냉식 용접기

Country Status (6)

Country Link
US (2) US20160136748A1 (ko)
EP (2) EP3012058A4 (ko)
JP (2) JP2016521639A (ko)
KR (2) KR101595285B1 (ko)
CN (2) CN105283263A (ko)
WO (2) WO2014204155A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010088A1 (de) * 2013-06-18 2014-12-18 VENSYS Elektrotechnik GmbH Kühlvorrichtung für ein Stromumrichtermodul
EP3351060A1 (en) * 2015-09-18 2018-07-25 The Esab Group, Inc. Printed circuit board arrangement for welding and cutting apparatus
CN105689881B (zh) * 2016-04-26 2018-11-30 柳州福能机器人开发有限公司 一种焊接机器人的控制系统
KR102498709B1 (ko) * 2016-09-20 2023-02-13 대우조선해양 주식회사 혹서기 용접가능시간 알람 용접기
KR101716143B1 (ko) 2016-12-19 2017-03-14 태경 주식회사 인버터 저항용접기의 변압기
JP6939034B2 (ja) * 2017-04-05 2021-09-22 富士通株式会社 冷却システム、冷却装置、及び電子システム
JP6954176B2 (ja) * 2018-02-21 2021-10-27 トヨタ自動車株式会社 ユニット
CN108453512A (zh) * 2018-05-10 2018-08-28 厦门鑫河精密科技股份有限公司 高频焊接机
CN108393621A (zh) * 2018-05-30 2018-08-14 广州亨龙智能装备股份有限公司 一种焊机水冷系统以及水冷式焊机
US10897807B2 (en) * 2018-09-21 2021-01-19 The Esab Group Inc. Power source cooling apparatus, method, and configuration
CN109454364B (zh) * 2018-10-29 2024-02-06 佛山闽雄机电科技有限公司 一种焊接机
US20200189020A1 (en) * 2018-12-13 2020-06-18 Illinois Tool Works Inc. Methods and apparatus for a removable welder system
CN110026655A (zh) * 2019-05-07 2019-07-19 吴忠市黄河电焊机有限公司 具有埋弧焊、堆焊及气保焊功能的大功率数字化焊接电源
CN110083186B (zh) * 2019-05-10 2024-04-26 佛山闽雄机电科技有限公司 一种止水带接头焊机及其温控系统
CN110434446A (zh) * 2019-08-29 2019-11-12 安徽三花制冷新材料科技有限公司 一种新型带有制冷设备的高频焊机
KR102229015B1 (ko) * 2020-02-27 2021-03-16 이병민 방열 용접기
CN113182658A (zh) * 2021-04-12 2021-07-30 怀宁县鑫盛制冷设备有限公司 一种新型带有制冷设备的高频焊机
CN114485784A (zh) * 2021-12-28 2022-05-13 南京合信自动化有限公司 智能采集盒
KR102656275B1 (ko) * 2021-12-31 2024-04-09 공순란 하이브리드 용접기
CN117238901B (zh) * 2023-11-16 2024-03-08 西安西电电力系统有限公司 压接式igbt结构及功率组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920007551B1 (ko) * 1990-06-19 1992-09-07 오바라 가부시끼가이샤 인버터식(inverter type) 저항 용접기
JPH11285854A (ja) * 1998-03-31 1999-10-19 Dengen Kk ポータブルスポット溶接機
JP2000246488A (ja) * 1999-02-26 2000-09-12 Kokuho:Kk 溶接機搭載装置
KR100983844B1 (ko) * 2010-05-03 2010-09-27 이선정 직류전원을 갖는 전기용접 장치
KR101271872B1 (ko) * 2011-03-31 2013-06-07 주식회사 포스코 탠덤 일렉트로 가스 아크 용접 장치 및 이의 스틱 아웃 제어 방법

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE325765B (ko) * 1968-02-08 1970-07-06 Elektriska Svetsnings Ab
JPS60176873U (ja) * 1984-04-26 1985-11-22 新潟工事株式会社 ア−ク溶接機仮設コンテナ
JPH0755378B2 (ja) * 1989-02-21 1995-06-14 小原株式会社 インバータ式抵抗溶接機の制御装置
JP2892125B2 (ja) * 1990-08-22 1999-05-17 本田技研工業株式会社 溶接ユニットの冷却装置
US5189277A (en) * 1991-04-08 1993-02-23 Thermal Dynamics Corporation Modular, stackable plasma cutting apparatus
JP2851214B2 (ja) * 1992-10-26 1999-01-27 ダイハツ工業株式会社 溶接機の冷却方法
JPH0899182A (ja) * 1994-09-29 1996-04-16 Miyachi Technos Corp インバータ式溶接電源ユニット
TW283274B (ko) * 1994-11-08 1996-08-11 Sansha Denki Seisakusho Co Ltd
JP3488558B2 (ja) * 1995-11-01 2004-01-19 英雄 芝田 溶接器設置装置
US5760361A (en) * 1996-05-24 1998-06-02 Square D Company Multiple single phase weld control systems from a polyphase power source
JPH1110351A (ja) * 1997-06-19 1999-01-19 Kyoshin Kogyo Kk 抵抗溶接装置
US5916464A (en) * 1997-08-26 1999-06-29 Geiger; Michael B. Welding force feedback wire feed system
US6310320B1 (en) * 1999-01-07 2001-10-30 Illinois Tool Works Inc. Dual operator phase control engine driven welder
US6512195B2 (en) * 1999-12-20 2003-01-28 Bryan W. Domschot Modular welding machine
FR2812122B1 (fr) * 2000-07-21 2006-08-11 Michel Roche Transformateurs et circuits de redressement associes pour convertisseurs statiques
KR20030073455A (ko) 2002-03-11 2003-09-19 이용중 파이프 자동 용접 시스템
JP3909755B2 (ja) * 2002-04-22 2007-04-25 Obara株式会社 抵抗溶接装置の冷却方法
JP2004268123A (ja) * 2003-03-11 2004-09-30 Toshiba Plant Systems & Services Corp 溶接用電源装置
US6831838B1 (en) * 2003-05-14 2004-12-14 Illinois Tool Works Inc. Circuit board assembly for welding power supply
JP2005191082A (ja) * 2003-12-24 2005-07-14 Toyota Motor Corp 電気機器の冷却装置
DE102004058614A1 (de) * 2004-12-04 2006-06-22 Bosch Rexroth Aktiengesellschaft Energieversorgung für Widerstandsschweißanlagen
JP4333587B2 (ja) * 2005-01-14 2009-09-16 三菱電機株式会社 ヒートシンクおよび冷却ユニット
US20060266745A1 (en) * 2005-05-31 2006-11-30 Honeywell International, Inc. Gas shielding apparatus and method of use
JP5240529B2 (ja) * 2005-08-31 2013-07-17 Tdk株式会社 スイッチング電源装置
CN2930942Y (zh) * 2005-11-07 2007-08-08 北京时代科技股份有限公司 多头逆变焊机及其输入控制电路
JP4861840B2 (ja) * 2007-01-26 2012-01-25 アイシン・エィ・ダブリュ株式会社 発熱体冷却構造及び駆動装置
CN101814709A (zh) * 2009-02-20 2010-08-25 上海东升焊接集团有限公司 焊接电源箱体的结构
JP2011249495A (ja) * 2010-05-26 2011-12-08 Daihen Corp 電源装置
WO2012011198A1 (ja) * 2010-07-21 2012-01-26 Taguchi Koshiro 液体流路内蔵式高効率温水発生車載用ヒータ
KR101291674B1 (ko) * 2010-07-26 2013-08-01 유상록 고주파 유도 가열을 통한 이종금속 융착장치 및 이를 이용한 융착방법
JP5577220B2 (ja) * 2010-11-02 2014-08-20 株式会社ダイヘン 溶接用電源装置の保護装置
JP2012187595A (ja) * 2011-03-09 2012-10-04 Daihen Corp 溶接用電源装置
CN202106127U (zh) * 2011-06-10 2012-01-11 李峰华 Cpu控制大功率便携式电焊机
CN202147078U (zh) * 2011-07-13 2012-02-22 李俊永 高散热性能小型逆变电焊机
CN202261060U (zh) * 2011-09-22 2012-05-30 上海南泰整流器有限公司 适于电焊机的水冷散热双整流模块
US20130329355A1 (en) * 2012-06-12 2013-12-12 Victoria Isabella Polubinska Scalable hardware architecture, scalable cooling system, and convection-cooled electrical circuit
CN202894548U (zh) * 2012-11-19 2013-04-24 浙江肯得机电股份有限公司 一种超小型高负载持续率逆变焊机的电路板结构
CN202984893U (zh) * 2012-11-30 2013-06-12 扬州市继业机械有限公司 一种氩弧焊机循环冷却装置
CN202922071U (zh) * 2012-11-30 2013-05-08 甘肃西柴动力机电制造有限公司 一种新型数字化逆变焊机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920007551B1 (ko) * 1990-06-19 1992-09-07 오바라 가부시끼가이샤 인버터식(inverter type) 저항 용접기
JPH11285854A (ja) * 1998-03-31 1999-10-19 Dengen Kk ポータブルスポット溶接機
JP2000246488A (ja) * 1999-02-26 2000-09-12 Kokuho:Kk 溶接機搭載装置
KR100983844B1 (ko) * 2010-05-03 2010-09-27 이선정 직류전원을 갖는 전기용접 장치
KR101271872B1 (ko) * 2011-03-31 2013-06-07 주식회사 포스코 탠덤 일렉트로 가스 아크 용접 장치 및 이의 스틱 아웃 제어 방법

Also Published As

Publication number Publication date
KR20140147030A (ko) 2014-12-29
JP6157727B2 (ja) 2017-07-05
US20160136748A1 (en) 2016-05-19
EP3015212A1 (en) 2016-05-04
US20160136749A1 (en) 2016-05-19
JP2016521640A (ja) 2016-07-25
CN105283263A (zh) 2016-01-27
CN105377495A (zh) 2016-03-02
EP3012058A4 (en) 2017-03-01
EP3012058A1 (en) 2016-04-27
JP2016521639A (ja) 2016-07-25
KR20140147027A (ko) 2014-12-29
EP3015212A4 (en) 2017-03-08
CN105377495B (zh) 2018-06-12
WO2014204155A1 (ko) 2014-12-24
KR101595285B1 (ko) 2016-02-19

Similar Documents

Publication Publication Date Title
WO2014204160A1 (ko) 모듈형 용접기
CN114667033A (zh) 散热方法、散热装置、和机柜
WO2018105981A1 (en) Removable battery component carrier, battery system including removable battery component carriers and vehicle including the battery system
CN105993210B (zh) 液体冷却式电子模块和用于更换该模块的方法
US20220123580A1 (en) Charging pile and charging unit thereof
WO2015130057A1 (ko) 전지모듈
CN107026560B (zh) 一种变流器机柜
WO2013141577A1 (ko) 전기차 추진 제어장치
CN113707988A (zh) 一种储能充放电设备
CN209823203U (zh) 一种适合用于含尘环境中的电控箱
CN114765425B (zh) 一种整流模块并联组件及其整流柜与直流供电系统
CN110492721B (zh) 一种多端口电力电子变压器
CN220711877U (zh) 一种igbt制氢电源单元结构
CN108122866B (zh) 一种集成化功率模块
CN217010070U (zh) 一种水冷功率模块单元
CN220492849U (zh) 一种激光焊接设备专用开关电源
WO2023239029A1 (ko) 정수기
CN218735709U (zh) 一种新型模块化变流器
WO2023113264A1 (ko) 서브모듈
CN212935759U (zh) 一种等离子体炬电源柜
CN218275738U (zh) 一种ups不间断电源
CN219457730U (zh) 一种化成监控装置
CN216751559U (zh) 一种模块化维也纳整流装置
CN207010532U (zh) 一种链式变流器功率模块单元安装结构
CN212659594U (zh) 一种气冷电池包及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519455

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014814093

Country of ref document: EP