WO2014196442A1 - 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 - Google Patents

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 Download PDF

Info

Publication number
WO2014196442A1
WO2014196442A1 PCT/JP2014/064269 JP2014064269W WO2014196442A1 WO 2014196442 A1 WO2014196442 A1 WO 2014196442A1 JP 2014064269 W JP2014064269 W JP 2014064269W WO 2014196442 A1 WO2014196442 A1 WO 2014196442A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
electrolyte material
electrode active
active material
Prior art date
Application number
PCT/JP2014/064269
Other languages
English (en)
French (fr)
Inventor
了次 菅野
雅章 平山
祐樹 加藤
崇督 大友
久嗣 山崎
Original Assignee
国立大学法人東京工業大学
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, トヨタ自動車株式会社 filed Critical 国立大学法人東京工業大学
Priority to EP14808009.6A priority Critical patent/EP3007262B1/en
Priority to KR1020177024687A priority patent/KR20170104640A/ko
Priority to US14/896,281 priority patent/US10355308B2/en
Priority to EP18158109.1A priority patent/EP3370295A1/en
Priority to JP2015521413A priority patent/JP6315617B2/ja
Priority to CN201480031735.9A priority patent/CN105453324B/zh
Priority to KR1020157033773A priority patent/KR101979487B1/ko
Publication of WO2014196442A1 publication Critical patent/WO2014196442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte material having good ion conductivity and capable of suppressing a decrease in charge / discharge efficiency.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • Non-Patent Document 1 discloses a Li ion conductor (sulfide solid electrolyte material) having a composition of Li (4-x) Ge (1-x) P x S 4 .
  • Patent Document 1 discloses a LiGePS-based sulfide solid electrolyte material having a high proportion of crystal phase having a specific peak in X-ray diffraction measurement.
  • Non-Patent Document 2 discloses a LiGePS-based sulfide solid electrolyte material.
  • Patent Document 1 discloses that a sulfide solid electrolyte material having a high proportion of crystal phase having a specific peak in X-ray diffraction measurement has good ionic conductivity.
  • the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 has low reduction resistance (particularly reduction resistance during charging). Therefore, for example, when a battery is produced using such a sulfide solid electrolyte material, there is a problem that charge and discharge efficiency is low.
  • the present invention has been made in view of the above problems, and has as its main object to provide a sulfide solid electrolyte material that has good ion conductivity and can suppress a decrease in charge and discharge efficiency.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, since the sulfide solid electrolyte material does not substantially contain a metal element belonging to Group 3 to Group 16, a sulfide solid electrolyte material having high reduction resistance and capable of suppressing a decrease in charge / discharge efficiency is provided. Can do.
  • the sulfide solid electrolyte material preferably includes a composition of Li 5x + 2y + 3 P 1-x S 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3).
  • the sulfide solid electrolyte material preferably includes a composition of Li 5x + 3 P 1-x S 4 (0.1 ⁇ x ⁇ 0.2).
  • octahedron O composed of Li element and S element
  • tetrahedron T 1 composed of P element and S element
  • tetrahedron T 2 composed of P element and S element
  • the tetrahedron T 1 and the octahedron O share a ridge
  • the tetrahedron T 2 and the octahedron O contain a crystal structure that shares a vertex. I will provide a.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • the crystal structure is composed of Li, P and S and the crystal structure does not contain a metal element belonging to Group 3 to Group 16, it has high reduction resistance and can suppress a decrease in charge / discharge efficiency. It can be a sulfide solid electrolyte material.
  • the sulfide solid electrolyte material preferably includes a composition of Li 5x + 2y + 3 P 1-x S 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3).
  • the sulfide solid electrolyte material preferably includes a composition of Li 5x + 3 P 1-x S 4 (0.1 ⁇ x ⁇ 0.2).
  • at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • a battery having high output and high reduction resistance can be obtained by using the sulfide solid electrolyte material described above.
  • the above-described method for producing a sulfide solid electrolyte material is made amorphous by a melt quenching method using a raw material composition containing the components of the sulfide solid electrolyte material.
  • a method for producing a sulfide solid electrolyte material is provided.
  • the sulfide solid electrolyte material of the present invention will be described.
  • the sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Therefore, the sulfide solid electrolyte material of the present invention will be described separately for the first embodiment and the second embodiment.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, since the sulfide solid electrolyte material does not substantially contain a metal element belonging to Group 3 to Group 16, a sulfide solid electrolyte material having high reduction resistance and capable of suppressing a decrease in charge / discharge efficiency is provided. Can do. Since the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 contains Ge, reductive decomposition tends to occur when used together with a negative electrode active material having a low potential such as a carbon active material. On the other hand, in the first embodiment, since the metal element that is easily reduced is not contained, a sulfide solid electrolyte material having high reduction resistance can be obtained, and a decrease in charge and discharge efficiency can be suppressed.
  • the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 typically has a crystal structure of Li 10 GeP 2 S 12 .
  • the crystal phase which has this crystal structure be crystal phase A '.
  • the crystal phase A ′ is a crystal phase having high ion conductivity.
  • the sulfide solid electrolyte material of the first embodiment is considered to have a crystal phase A similar to the crystal phase A ′. That is, it is considered that the sulfide solid electrolyte material of the first embodiment typically has a crystal structure in which Li in Ge of Li 10 GeP 2 S 12 is substituted with P.
  • the crystal phase B ′ having this peak is a crystal phase having lower ion conductivity than the above-described crystal phase A ′.
  • the sulfide solid electrolyte material of the first embodiment may have a crystal phase B similar to the crystal phase B ′.
  • the crystal phase B is considered to be within a range of ⁇ 1.0 ° with respect to the peak position of the crystal phase B ′.
  • the value of I B / I A Is, for example, less than 0.50, preferably 0.45 or less, more preferably 0.25 or less, further preferably 0.15 or less, and 0.07 or less. Particularly preferred.
  • the value of I B / I A is preferably 0.
  • the metal element belonging to Group 3 to Group 16 refers to a metal element belonging to Group 3 to Group 12 and a metal element belonging to Group 13 to Group 16.
  • the metal element belonging to Group 13 refers to aluminum and an element having an atomic number larger than that of aluminum
  • the metal element belonging to Group 14 refers to silicon and an element having an atomic number larger than that of silicon.
  • a metal element belonging to Group 15 means arsenic and an element having an atomic number larger than that of arsenic
  • a metal element belonging to Group 16 means an element having an atomic number larger than that of tellurium and tellurium.
  • “substantially does not contain a metal element belonging to Group 3 to Group 16” means the molar ratio of the metal element to the P element (number of moles of the metal element / P element Mole number) is 0.1 or less. Among these, the molar ratio is preferably 0.08 or less, and more preferably 0.05 or less. This is because the reduction resistance can be further improved.
  • the proportion of the metal element can be confirmed by ICP emission spectroscopy. By obtaining the mass distribution by ICP emission spectroscopy and dividing by the atomic weight, the number of moles (molar fraction) of each element can be obtained.
  • the fact that the sulfide solid electrolyte material has Li element, P element and S element can be confirmed by X-ray photoelectron spectroscopy.
  • the sulfide solid electrolyte material of the first embodiment contains Li element, P element and S element.
  • the sulfide solid electrolyte material of the first embodiment may contain only Li element, P element and S element, or may contain other elements.
  • a part of the Li element may be substituted with a monovalent or divalent metal element. It is considered that ion conductivity is improved by substituting a part of the Li element with another element.
  • the monovalent or divalent metal element include at least one of Na, K, Mg, and Ca.
  • the substitution amount of the metal element can be determined, for example, by XRD Rietveld analysis and ICP emission spectroscopy.
  • a part of the S element may be replaced with the O element.
  • the ratio of O element to the total of S element and O element (O / (S + O)) is, for example, preferably 0.1% or more, and more preferably 0.5% or more.
  • the substitution amount ratio of the O element is, for example, preferably 50% or less, and more preferably 34% or less.
  • the substitution amount of the O element can be determined by, for example, XRD Rietveld analysis and neutron diffraction Rietveld analysis.
  • the composition of the sulfide solid electrolyte material of the first embodiment is not particularly limited.
  • the sulfide solid electrolyte material of the first embodiment preferably includes a composition of Li 5x + 2y + 3 P 1-x S 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3).
  • a sulfide solid electrolyte material having high reduction resistance can be obtained by having an ionic conductor having a composition of Li 5x + 2y + 3 P 1-x S 4 as a main component.
  • the metal elements belonging to Group 3 to Group 16 may be contained as long as they are in a trace amount (a quantity not substantially contained).
  • the above composition can be expressed more strictly as Li 5x + 2y + 3 P (III) y P (V) 1-xy S 4 .
  • P (III) and P (V) are trivalent and pentavalent phosphorus, respectively.
  • the composition is a composition which deviates from the tie line of Li 2 S and P 2 S 5, for example, Li 2 S, a composition obtained by using a P 2 S 5 and P.
  • the above composition is assumed to be a pseudo ternary system of Li 2 S, Li 5 PS 4 (ortho composition using trivalent phosphorus) and Li 3 PS 4 (ortho composition using pentavalent phosphorus). It has been decided.
  • the sulfide solid electrolyte material of the first embodiment preferably includes a composition of Li 5x + 3 P 1-x S 4 (0.1 ⁇ x ⁇ 0.2).
  • a sulfide solid electrolyte material having high reduction resistance can be obtained.
  • the metal elements belonging to Group 3 to Group 16 may be contained as long as they are in a trace amount (a quantity not substantially contained).
  • the composition is a composition of the tie line of Li 2 S and P 2 S 5.
  • the sulfide solid electrolyte material of the first embodiment is usually a crystalline sulfide solid electrolyte material.
  • the sulfide solid electrolyte material of the first embodiment preferably has high ionic conductivity, and the ionic conductivity of the sulfide solid electrolyte material at 25 ° C. is 1.0 ⁇ 10 ⁇ 4 S / cm or more. It is preferable.
  • the shape of the sulfide solid electrolyte material of the first embodiment is not particularly limited, and examples thereof include powder. Further, the average particle diameter of the powdered sulfide solid electrolyte material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example.
  • the sulfide solid electrolyte material of the first embodiment has good ionic conductivity, it can be used for any application that requires ionic conductivity. Especially, it is preferable that the sulfide solid electrolyte material of a 1st embodiment is what is used for a battery. This is because it can greatly contribute to the high output of the battery.
  • the method for producing the sulfide solid electrolyte material of the first embodiment will be described in detail in “C. Method for producing sulfide solid electrolyte material” described later. Further, the sulfide solid electrolyte material of the first embodiment may have the characteristics of the second embodiment described later.
  • FIG. 1 is a perspective view for explaining an example of the crystal structure of the sulfide solid electrolyte material of the second embodiment.
  • the octahedron O is a LiS 6 octahedron having Li as a central element and six S at the apex of the octahedron.
  • the tetrahedron T 1 is a PS 4 tetrahedron having P as a central element and having four S at the apexes of the tetrahedron.
  • the tetrahedron T 2 is a PS 4 tetrahedron having P as a central element and having four S at the apex of the tetrahedron.
  • tetrahedron T 1 and octahedron O share a ridge
  • tetrahedron T 2 and octahedron O share a vertex.
  • the octahedron O, the tetrahedron T 1 and the tetrahedron T 2 have a predetermined crystal structure (three-dimensional structure), a sulfide solid electrolyte material having good ion conductivity is obtained. Can do. Further, since the crystal structure is composed of Li, P and S and the crystal structure does not contain a metal element belonging to Group 3 to Group 16, it has high reduction resistance and can suppress a decrease in charge / discharge efficiency. It can be a sulfide solid electrolyte material.
  • the sulfide solid electrolyte material of the second embodiment is not particularly limited as long as it has the above crystal structure.
  • a part of the Li element, P element or S element may be substituted with another element.
  • the sulfide solid electrolyte material of the second embodiment preferably contains the above crystal structure as a main component. “Containing mainly the above crystal structure” means that the ratio of the crystal structure is the largest with respect to all crystal phases contained in the sulfide solid electrolyte material.
  • the ratio of the crystal structure is, for example, 50 wt% or more, preferably 70 wt% or more, and more preferably 90 wt% or more.
  • the ratio of the said crystal structure can be measured by synchrotron radiation XRD, for example.
  • the sulfide solid electrolyte material of the second embodiment is preferably a single-phase material having the above crystal structure. This is because the ion conductivity can be further increased. Further, the sulfide solid electrolyte material of the second embodiment may have the characteristics of the first embodiment described above.
  • FIG. 2 is a schematic cross-sectional view showing an example of the battery of the present invention.
  • the battery 10 in FIG. 2 was formed between the positive electrode active material layer 1 containing the positive electrode active material, the negative electrode active material layer 2 containing the negative electrode active material, and the positive electrode active material layer 1 and the negative electrode active material layer 2.
  • At least one of the positive electrode active material layer 1, the negative electrode active material layer 2, and the electrolyte layer 3 contains the sulfide solid electrolyte material described in the above-mentioned “A. Sulfide solid electrolyte material”.
  • a battery having high output and high reduction resistance can be obtained by using the sulfide solid electrolyte material described above.
  • the battery of this invention is demonstrated for every structure.
  • the negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder, if necessary. good.
  • the negative electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is the sulfide solid electrolyte material described above. This is because the sulfide solid electrolyte material has high reduction resistance.
  • the ratio of the sulfide solid electrolyte material contained in the negative electrode active material layer varies depending on the type of the battery. It is preferable to be within the range, particularly within the range of 10% by volume to 50% by volume.
  • Examples of the negative electrode active material include a metal active material and a carbon active material.
  • Examples of the metal active material include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the negative electrode active material layer may further contain a conductive material.
  • a conductive material By adding a conductive material, the conductivity of the negative electrode active material layer can be improved.
  • the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the negative electrode active material layer may contain a binder. Examples of the type of binder include fluorine-containing binders such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • Electrolyte layer The electrolyte layer in this invention is a layer formed between a positive electrode active material layer and a negative electrode active material layer.
  • the electrolyte layer is not particularly limited as long as it is a layer capable of conducting ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a battery with higher safety can be obtained as compared with a battery using an electrolytic solution.
  • a solid electrolyte layer contains the sulfide solid electrolyte material mentioned above.
  • the ratio of the sulfide solid electrolyte material contained in the solid electrolyte layer is, for example, preferably in the range of 10% to 100% by volume, and more preferably in the range of 50% to 100% by volume.
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method of compression-molding a solid electrolyte material etc. can be mentioned, for example.
  • the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
  • the electrolytic solution it is necessary to further consider safety compared to the case where the solid electrolyte layer is used, but a battery with higher output can be obtained.
  • at least one of the positive electrode active material layer and the negative electrode active material layer contains the above-described sulfide solid electrolyte material.
  • the electrolytic solution usually contains a lithium salt and an organic solvent (nonaqueous solvent).
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and the like.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder, if necessary. good.
  • the positive electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is preferably the sulfide solid electrolyte material described above.
  • the ratio of the sulfide solid electrolyte material contained in the positive electrode active material layer varies depending on the type of battery. For example, it is in the range of 0.1% by volume to 80% by volume, particularly 1% by volume to 60% by volume.
  • the positive electrode active material for example, LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc. can be mentioned.
  • the conductive material and the binder used in the positive electrode active material layer are the same as those in the negative electrode active material layer described above.
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the battery of the present invention has at least the negative electrode active material layer, the electrolyte layer, and the positive electrode active material layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • the battery case of a general battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
  • Battery The battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • Examples of the shape of the battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of the battery of this invention will not be specifically limited if it is a method which can obtain the battery mentioned above, The method similar to the manufacturing method of a general battery can be used.
  • the battery of the present invention is an all-solid battery
  • a material constituting the positive electrode active material layer, a material constituting the solid electrolyte layer, and a material constituting the negative electrode active material layer are sequentially provided.
  • Examples of the method include producing a power generation element by pressing, housing the power generation element inside the battery case, and caulking the battery case.
  • FIG. 3 is an explanatory view showing an example of a method for producing a sulfide solid electrolyte material of the present invention.
  • a raw material composition is prepared by mixing Li 2 S, P 2 S 5 , and P.
  • an amorphous ion conductive material is obtained by a melt quenching method using the raw material composition.
  • the amorphous ion conductive material is heated to improve the crystallinity, thereby obtaining a sulfide solid electrolyte material.
  • a slurry-like compound may be obtained when an attempt is made to be amorphous by mechanical milling.
  • a melt quenching method for quenching a melt since a melt quenching method for quenching a melt is used, there is an advantage that a target ion conductive material can be obtained instead of a slurry compound.
  • the manufacturing method of the sulfide solid electrolyte material of this invention is demonstrated for every process.
  • the ion conductive material synthesizing step in the present invention is a step of synthesizing an amorphous ion conductive material by a melting and quenching method using a raw material composition containing the components of the sulfide solid electrolyte material. .
  • the raw material composition in the present invention contains at least Li element, P element and S element, and may contain other elements such as O element.
  • the compound containing Li element include a sulfide of Li and an oxide of Li.
  • Specific examples of the sulfide of Li include Li 2 S.
  • Specific examples of the oxide of Li include Li 2 O.
  • Examples of the compound containing P element include P alone, P oxide, P sulfide, and the like.
  • Specific examples of P sulfide include P 2 S 5 .
  • Specific examples of the P oxide include P 2 O 5 .
  • the compound containing S element is not particularly limited, and may be a simple substance or a sulfide.
  • Examples of the sulfide include a sulfide containing the above-described element.
  • an amorphous ion conductive material is obtained by a melt quenching method.
  • the melt quenching method is a method in which a raw material composition is heated to a molten state, and then amorphized by rapid cooling.
  • the heating temperature of the raw material composition is not particularly limited as long as it is a temperature that can bring the raw material composition into a molten state, but it is, for example, 550 ° C. or higher and within a range of 700 ° C. to 1200 ° C. Is preferred.
  • Examples of the method for heating the raw material composition include a method using a firing furnace.
  • the cooling rate at the time of rapid cooling is, for example, 500 ° C./min or more, and preferably 700 ° C./min or more. Further, it is preferable to cool to 100 ° C. or lower, particularly 50 ° C. or lower by rapid cooling.
  • a method for cooling the melt a method of bringing a refrigerant into contact with the melt directly or indirectly is usually used. Specifically, a method of bringing a container containing the melt into contact with a liquid such as water, a method of bringing the melt into contact with a rotating metal roll, and the like can be mentioned.
  • the raw material composition may be subjected to heat treatment (calcination) before performing the melt quenching method.
  • heat treatment temperature is, for example, in the range of 200 ° C. to 800 ° C., and preferably in the range of 500 ° C. to 700 ° C.
  • the heating time is, for example, in the range of 30 minutes to 20 hours, and preferably in the range of 2 hours to 10 hours.
  • the heat treatment is preferably performed in an inert gas atmosphere or in vacuum from the viewpoint of preventing oxidation.
  • the heating step in the present invention is a step of obtaining the sulfide solid electrolyte material by heating the amorphous ion conductive material.
  • the heating temperature in the present invention is not particularly limited as long as it is a temperature at which a desired sulfide solid electrolyte material can be obtained.
  • the heating temperature is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, further preferably 400 ° C. or higher, and particularly preferably 450 ° C. or higher.
  • the heating temperature is preferably 1000 ° C. or less, more preferably 700 ° C. or less, further preferably 650 ° C. or less, and particularly preferably 600 ° C. or less.
  • the heating time is preferably adjusted as appropriate so that a desired sulfide solid electrolyte material can be obtained, and is preferably in the range of, for example, 30 minutes to 10 hours. Moreover, it is preferable to perform the heating in this invention in inert gas atmosphere or a vacuum from a viewpoint of preventing oxidation.
  • the sulfide solid electrolyte material obtained by the present invention is the same as the contents described in the above-mentioned “A. Sulfide solid electrolyte material”, and therefore description thereof is omitted here.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 As starting materials, lithium sulfide (Li 2 S, manufactured by Nippon Kagaku Kogyo Co., Ltd.), diphosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich), and red phosphorus (P, manufactured by High Purity Chemical Laboratory) are used. It was. These powders were mixed in a glove box under an argon atmosphere at a ratio of 0.470526 g of Li 2 S, 0.515941 g of P 2 S 5 and 0.013533 g of P to obtain a raw material composition. Thereafter, the obtained raw material composition was put in a carbon-coated quartz tube and vacuum-sealed. The pressure of the vacuum sealed quartz tube was about 30 Pa. Next, the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature. As a result, Sample A was obtained.
  • Li 2 S manufactured by Nippon Kagaku Ko
  • the obtained powder of Sample A was pulverized using a vibration mill. TI-100 manufactured by CM Science Co., Ltd. was used for the vibration mill. Specifically, 2 g of the sample A obtained by the above method and an alumina vibrator ( ⁇ 36.3 mm, height 48.9 mm) are placed in a 10 mL zirconia pot, and the treatment is performed at a rotational speed of 1440 rpm for 30 minutes. went. Thereafter, the obtained powder was placed in a carbon-coated quartz tube and vacuum-sealed. The pressure of the vacuum sealed quartz tube was about 30 Pa. Next, the quartz tube was placed in a baking furnace, heated from room temperature to 950 ° C. over 2 hours, maintained at 950 ° C. for 1 hour, and then the quartz tube was put into ice water and rapidly cooled. Thereby, Sample B (amorphized ion conductive material) was obtained.
  • the obtained powder of Sample B was put into a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 300 ° C. over 2 hours, maintained at 300 ° C. for 5 hours, and then gradually cooled to room temperature. Thereby, a sulfide solid electrolyte material having a composition of Li 3.75 P 0.93 S 4 was obtained.
  • Example 1 Sample A in Example 1 was used as a comparative sample.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • GeS 2 germanium sulfide
  • the obtained ion conductive material powder was placed in a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature. This gave a sulfide solid electrolyte material having a composition of Li 3.35 Ge 0.35 P 0.65 S 4 .
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • SnS 2 tin sulfide
  • a sulfide solid electrolyte material was obtained in the same manner as in Comparative Example 3 except that the obtained raw material composition was used.
  • the composition of the obtained sulfide solid electrolyte material was Li 3.275 Sn 0.275 P 0.725 S 4 .
  • FIG. 4B shows the result of XRD measurement for the sulfide solid electrolyte material obtained in Comparative Example 3, and a peak of the crystal phase A ′ substantially coincident with the crystal phase A was obtained. Although not shown, the same peak as the crystal phase A ′ was confirmed also in the sulfide solid electrolyte materials obtained in Comparative Examples 4 and 5. On the other hand, as shown in FIGS. 5 and 6, in Comparative Example 1 and Comparative Example 2, the peak of the crystal phase A having high ion conductivity was not obtained. In particular, as in Comparative Example 1, even when the raw material composition was directly heated, the crystal phase A having high ion conductivity was not formed.
  • the crystal structure of the sulfide solid electrolyte material obtained in Example 1 was identified by X-ray structural analysis. Based on the diffraction pattern obtained by XRD, a crystal system and a crystal group were determined by a direct method, and then a crystal structure was identified by a real space method. As a result, it was confirmed that the crystal structure as shown in FIG. That is, tetrahedron T 1 (PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) share a ridge, and tetrahedron T 2 (PS 4 tetrahedron) and octahedron O (LiS 6 octahedron). ) was a crystal structure sharing a vertex.
  • Li ion conductivity measurement Using the sulfide solid electrolyte material obtained in Example 1 and Comparative Examples 1 and 2, Li ion conductivity at 25 ° C. was measured. First, 200 mg of the sulfide solid electrolyte material was weighed, placed in a cylinder made by Macor, and pressed at a pressure of 4 ton / cm 2 . Both ends of the obtained pellet were sandwiched between SUS pins, and restraint pressure was applied to the pellet by bolting to obtain an evaluation cell. With the evaluation cell kept at 25 ° C., Li ion conductivity was calculated by the AC impedance method.
  • Example 1 Li ion conductivity higher than Comparative Examples 1 and 2 was shown. Thereby, it was confirmed that the crystalline A contributes to high Li ion conduction.
  • the working electrode was charged to ⁇ 0.62 V with respect to the reference electrode, and then discharged to 1 V.
  • the current density was 0.15 mA / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制できる硫化物固体電解質材料を提供することを課題とする。 本発明は、Li元素、P元素およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=30.21°±0.50°の位置にピークを有し、第3族~第16族に属する金属元素を実質的に含有しないことを特徴とする硫化物固体電解質材料を提供することにより、上記課題を解決する。

Description

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
 本発明は、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制できる硫化物固体電解質材料に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 全固体リチウム電池に用いられる固体電解質材料として、硫化物固体電解質材料が知られている。例えば、非特許文献1においては、Li(4-x)Ge(1-x)の組成を有するLiイオン伝導体(硫化物固体電解質材料)が開示されている。また、特許文献1においては、X線回折測定において特定のピークを有する結晶相の割合が高いLiGePS系の硫化物固体電解質材料が開示されている。さらに、非特許文献2には、LiGePS系の硫化物固体電解質材料が開示されている。
国際公開第2011/118801号
Ryoji Kanno et al., "Lithium Ionic Conductor Thio-LISICON The Li2S-GeS2-P2S5 System", Journal of The Electrochemical Society, 148 (7) A742-A746 (2001) Noriaki Kamaya et al., "A lithium superionic conductor", Nature Materials, Advanced online publication, 31 July 2011, DOI:10.1038/NMAT3066
 電池の高出力化の観点から、イオン伝導性が良好な固体電解質材料が求められている。特許文献1には、X線回折測定において特定のピークを有する結晶相の割合が高い硫化物固体電解質材料は、良好なイオン伝導性を有することが開示されている。一方、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、耐還元性(特に充電時の耐還元性)が低い。そのため、例えば、このような硫化物固体電解質材料を用いて電池を作製した場合、充放電効率が低いという問題がある。
 本発明は、上記問題点に鑑みてなされたものであり、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制できる硫化物固体電解質材料を提供することを主目的とする。
 上記課題を解決するために、本発明においては、Li元素、P元素およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=30.21°±0.50°の位置にピークを有し、第3族~第16族に属する金属元素を実質的に含有しないことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、2θ=30.21°付近のピークを有する結晶相を備えるため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、硫化物固体電解質材料が第3族~第16族に属する金属元素を実質的に含有しないことから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料とすることができる。
 上記発明においては、硫化物固体電解質材料が、Li5x+2y+31-x(0≦x≦0.2、0<y≦0.3)の組成を含むことが好ましい。
 上記発明においては、硫化物固体電解質材料が、Li5x+31-x(0.1≦x≦0.2)の組成を含むことが好ましい。
 上記発明においては、2θ=24.60°±0.50°の位置にさらにピークを有することが好ましい。
 また、本発明においては、Li元素およびS元素から構成される八面体Oと、P元素およびS元素から構成される四面体Tと、P元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を含有することを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、上記結晶構造がLi、PおよびSから構成され、上記結晶構造が第3族~第16族に属する金属元素を含有しないことから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料とすることができる。
 上記発明においては、硫化物固体電解質材料が、Li5x+2y+31-x(0≦x≦0.2、0<y≦0.3)の組成を含むことが好ましい。
 上記発明においては、硫化物固体電解質材料が、Li5x+31-x(0.1≦x≦0.2)の組成を含むことが好ましい。
 また、本発明においては、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを含有する電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とする電池を提供する。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、高出力であり、かつ、耐還元性が高い電池とすることができる。
 また、本発明においては、上述した硫化物固体電解質材料の製造方法であって、上記硫化物固体電解質材料の構成成分を含有する原料組成物を用いて、溶融急冷法により、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、溶融急冷法で非晶質化を行い、その後、加熱工程を行うことにより、2θ=30.21°付近のピークを有する結晶相を備える硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、硫化物固体電解質材料が2θ=30.21°付近のピークを有する結晶相を備えることから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料を得ることができる。
 本発明においては、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制できる硫化物固体電解質材料を得ることができるという効果を奏する。
本発明の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。 本発明の電池の一例を示す概略断面図である。 本発明の硫化物固体電解質材料の製造方法の一例を示す説明図である。 実施例1および比較例3で得られた硫化物固体電解質材料のX線回折スペクトルである。 比較例1で得られた硫化物固体電解質材料のX線回折スペクトルである。 比較例2で得られた硫化物固体電解質材料のX線回折スペクトルである。 実施例1および比較例1、2で得られた硫化物固体電解質材料のLiイオン伝導度の測定結果である。 実施例1で得られた硫化物固体電解質材料を用いた電池の充放電試験の結果である。 比較例3で得られた硫化物固体電解質材料を用いた電池の充放電試験の結果である。 比較例4で得られた硫化物固体電解質材料を用いた電池の充放電試験の結果である。 比較例5で得られた硫化物固体電解質材料を用いた電池の充放電試験の結果である。 実施例1および比較例3~5で得られた硫化物固体電解質材料を用いた電池の充放電効率である。
 以下、本発明の硫化物固体電解質材料、電池、および硫化物固体電解質材料の製造方法について、詳細に説明する。
A.硫化物固体電解質材料
 まず、本発明の硫化物固体電解質材料について説明する。本発明の硫化物固体電解質材料は、2つの実施態様に大別することができる。そこで、本発明の硫化物固体電解質材料について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の硫化物固体電解質材料は、Li元素、P元素およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=30.21°±0.50°の位置にピークを有し、第3族~第16族に属する金属元素を実質的に含有しないことを特徴とする。
 第一実施態様によれば、2θ=30.21°付近のピークを有する結晶相を備えるため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、硫化物固体電解質材料が第3族~第16族に属する金属元素を実質的に含有しないことから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料とすることができる。特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、Geを含有することから、例えばカーボン活物質のような電位の低い負極活物質と共に用いると、還元分解が生じやすい。これに対して、第一実施態様においては、還元されやすい上記金属元素を含有しないことから、耐還元性が高い硫化物固体電解質材料とすることができ、充放電効率の低下を抑制できる。
 ここで、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、典型的には、Li10GeP12の結晶構造を有すると考えられる。この結晶構造を有する結晶相を、結晶相A´とする。結晶相A´は、イオン伝導性が高い結晶相である。また、結晶相A´は、通常、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°の位置にピークを有する。なお、これらのピーク位置は、材料組成等によって結晶格子が若干変化し、±0.50°の範囲で前後する場合がある。
 第一実施態様の硫化物固体電解質材料は、結晶相A´と同様の結晶相Aを有すると考えられる。すなわち、第一実施態様の硫化物固体電解質材料は、典型的には、Li10GeP12のGeがPに置換した結晶構造を有すると考えられる。また、結晶相Aは、通常、2θ=17.69°、20.60°、21.01°、23.94°、24.60°、26.32°、27.62°、29.96°、30.21°、32.15°、32.54°、34.33°の位置にピークを有する。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。また、結晶相Aおよび結晶相A´のピーク位置の傾向は一致しているが、若干の相違も見られる。その理由は、P元素のイオン半径が、Ge元素のイオン半径よりも小さく、その影響により格子定数が小さくなったためであると考えられる。
 また、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、2θ=27.33°付近にピークを有する。このピークを有する結晶相B´は、上述した結晶相A´よりもイオン伝導性が低い結晶相である。また、結晶相B´は、通常、2θ=17.46°、18.12°、19.99°、22.73°、25.72°、27.33°、29.16°、29.78°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。
 第一実施態様の硫化物固体電解質材料は、結晶相B´と同様の結晶相Bを有する可能性がある。結晶相Bは、結晶相B´の上記ピーク位置に対して、±1.0°の範囲にあると考えられる。第一実施態様においては、2θ=30.21°付近のピークの回折強度をIとし、2θ=27.33°付近のピークの回折強度をIとした場合、I/Iの値が、例えば0.50未満であり、0.45以下であることが好ましく、0.25以下であることがより好ましく、0.15以下であることがさらに好ましく、0.07以下であることが特に好ましい。また、I/Iの値は0であることが好ましい。言い換えると、第一実施態様の硫化物固体電解質材料は、2θ=27.33°付近のピークを有しないことが好ましい。また、第一実施態様の硫化物固体電解質材料は、結晶相Bのピークを有しないことが好ましい。
 第一実施態様の硫化物固体電解質材料は、第3族~第16族に属する金属元素を実質的に含有しないことを一つの特徴とする。これらの金属元素は、硫化物固体電解質材料の耐還元性を低下させる原因となり得る。そのため、第一実施態様においては、これらの金属元素を実質的に用いないことで、耐還元性の向上を図ることができる。ここで、第3族~第16族に属する金属元素とは、第3族~第12族に属する金属元素、および、第13族~第16族に属する金属元素をいう。また、第13族に属する金属元素とは、アルミニウム、および、アルミニウムよりも原子番号が大きい元素をいい、第14族に属する金属元素とは、ケイ素、および、ケイ素よりも原子番号が大きい元素をいい、第15族に属する金属元素とは、ヒ素、および、ヒ素よりも原子番号が大きい元素をいい、第16族に属する金属元素とは、テルル、および、テルルよりも原子番号が大きい元素をいう。
 また、第一実施態様において、「第3族~第16族に属する金属元素を実質的に含有しない」とは、上記金属元素のP元素に対するモル比(上記金属元素のモル数/P元素のモル数)が、0.1以下であることをいう。中でも、上記モル比は、0.08以下であることが好ましく、0.05以下であることがより好ましい。耐還元性の向上をより図ることができるからである。上記金属元素の割合は、ICP発光分光法により確認することができる。ICP発光分光法により質量分布を求め、原子量で割ることで、各元素のモル数(モル分率)を求めることができる。なお、硫化物固体電解質材料が、Li元素、P元素およびS元素を有することは、X線光電子分光法により確認することができる。
 また、第一実施態様の硫化物固体電解質材料は、Li元素、P元素およびS元素を含有するものである。第一実施態様の硫化物固体電解質材料は、Li元素、P元素およびS元素のみを含有していても良く、他の元素を含有していても良い。Li元素の一部は、一価または二価の金属元素により置換されていても良い。Li元素の一部を他の元素で置換することにより、イオン伝導性が向上すると考えられる。一価または二価の金属元素としては、Na、K、MgおよびCaの少なくとも一種を挙げることができる。上記金属元素の置換量は、例えばXRDのリートベルト解析、およびICP発光分光法により決定することができる。
 また、S元素の一部は、O元素で置換されていても良い。S元素の一部をO元素で置換することにより、結晶内においてイオン伝導に寄与するトンネルの形状が変化し、イオン伝導性が向上すると考えられる。S元素およびO元素の合計に対するO元素の割合(O/(S+O))は、例えば0.1%以上であることが好ましく、0.5%以上であることがより好ましい。上記O元素の置換量割合は、例えば、50%以下であることが好ましく、34%以下であることがより好ましい。上記O元素の置換量は、例えばXRDのリートベルト解析、および中性子回折のリートベルト解析により決定することができる。
 第一実施態様の硫化物固体電解質材料の組成は、特に限定されるものではない。中でも、第一実施態様の硫化物固体電解質材料は、Li5x+2y+31-x(0≦x≦0.2、0<y≦0.3)の組成を含むことが好ましい。特に、Li5x+2y+31-xの組成を有するイオン伝導体を主成分として有することで、耐還元性が高い硫化物固体電解質材料とすることができる。また、第3族~第16族に属する金属元素は、微量(実質的に含有しない程度の量)であれば含まれていても良い。なお、上記組成は、より厳密には、Li5x+2y+3(III) (V) 1-x-yと表すこともできる。P(III)およびP(V)は、それぞれ、三価および五価のリンである。また、上記組成は、LiSおよびPのタイラインから外れた組成であり、例えばLiS、PおよびPを用いた場合に得られる組成である。また、上記組成は、LiS、LiPS(三価のリンを用いたオルト組成)、LiPS(五価のリンを用いたオルト組成)の疑似三成分系を仮定して決定されたものである。すなわち、
 x(Li)・yLi(III)・(1-x-y)Li(V)
  →Li5x+2y+3(III) (V) 1-x-y
 また、第一実施態様の硫化物固体電解質材料は、Li5x+31-x(0.1≦x≦0.2)の組成を含むことが好ましい。特に、Li5x+31-xの組成を有するイオン伝導体を主成分として有することで、耐還元性が高い硫化物固体電解質材料とすることができる。また、第3族~第16族に属する金属元素は、微量(実質的に含有しない程度の量)であれば含まれていても良い。また、上記組成は、LiSおよびPのタイライン上の組成である。
 第一実施態様の硫化物固体電解質材料は、通常、結晶質の硫化物固体電解質材料である。また、第一実施態様の硫化物固体電解質材料は、イオン伝導性が高いことが好ましく、25℃における硫化物固体電解質材料のイオン伝導性は、1.0×10-4S/cm以上であることが好ましい。また、第一実施態様の硫化物固体電解質材料の形状は特に限定されるものではないが、例えば粉末状を挙げることができる。さらに、粉末状の硫化物固体電解質材料の平均粒径は、例えば0.1μm~50μmの範囲内であることが好ましい。
 第一実施態様の硫化物固体電解質材料は、良好なイオン伝導性を有するものであるので、イオン伝導性を必要とする任意の用途に用いることができる。中でも、第一実施態様の硫化物固体電解質材料は、電池に用いられるものであることが好ましい。電池の高出力化に大きく寄与することができるからである。また、第一実施態様の硫化物固体電解質材料の製造方法については、後述する「C.硫化物固体電解質材料の製造方法」で詳細に説明する。また、第一実施態様の硫化物固体電解質材料は、後述する第二実施態様の特徴を兼ね備えたものであっても良い。
2.第二実施態様
 次に、本発明の硫化物固体電解質材料の第二実施態様について説明する。
 図1は、第二実施態様の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。図1に示す結晶構造において、八面体Oは、中心元素としてLiを有し、八面体の頂点に6個のSを有するLiS八面体である。四面体Tは、中心元素としてPを有し、四面体の頂点に4個のSを有するPS四面体である。四面体Tは、中心元素としてPを有し、四面体の頂点に4個のSを有するPS四面体である。第二実施態様において、四面体Tおよび八面体Oは稜を共有し、四面体Tおよび八面体Oは頂点を共有している。
 第二実施態様によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、上記結晶構造がLi、PおよびSから構成され、上記結晶構造が第3族~第16族に属する金属元素を含有しないことから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料とすることができる。
 第二実施態様の硫化物固体電解質材料は、上記結晶構造を有するものであれば特に限定されるものではない。上記結晶構造は、Li元素、P元素またはS元素の一部が、他の元素で置換されていても良い。また、第二実施態様の硫化物固体電解質材料は、上記結晶構造を主体として含有することが好ましい。「上記結晶構造を主体として含有する」とは、硫化物固体電解質材料に含まれる全ての結晶相に対して、上記結晶構造の割合が最も大きいことをいう。上記結晶構造の割合は、例えば50wt%以上であり、70wt%以上であることが好ましく、90wt%以上であることがより好ましい。なお、上記結晶構造の割合は、例えば、放射光XRDにより測定することができる。特に、第二実施態様の硫化物固体電解質材料は、上記結晶構造の単相材料であることが好ましい。イオン伝導性をより高くすることができるからである。また、第二実施態様の硫化物固体電解質材料は、上述した第一実施態様の特徴を兼ね備えたものであっても良い。
B.電池
 次に、本発明の電池について説明する。
 図2は、本発明の電池の一例を示す概略断面図である。図2における電池10は、正極活物質を含有する正極活物質層1と、負極活物質を含有する負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5と、これらの部材を収納する電池ケース6とを有するものである。本発明においては、正極活物質層1、負極活物質層2および電解質層3の少なくとも一つが、上記「A.硫化物固体電解質材料」に記載した硫化物固体電解質材料を含有することを大きな特徴とする。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、高出力であり、かつ、耐還元性が高い電池とすることができる。
 以下、本発明の電池について、構成ごとに説明する。
1.負極活物質層
 本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。上記硫化物固体電解質材料は耐還元性が高いからである。負極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。
 負極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、負極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、負極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素含有結着材等を挙げることができる。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
2.電解質層
 本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、イオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。電解液を用いる電池に比べて、安全性の高い電池を得ることができるからである。さらに、本発明においては、固体電解質層が、上述した硫化物固体電解質材料を含有することが好ましい。固体電解質層に含まれる上記硫化物固体電解質材料の割合は、例えば10体積%~100体積%の範囲内、中でも50体積%~100体積%の範囲内であることが好ましい。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。また、固体電解質層の形成方法としては、例えば、固体電解質材料を圧縮成形する方法等を挙げることができる。
 また、本発明における電解質層は、電解液から構成される層であっても良い。電解液を用いる場合、固体電解質層を用いる場合に比べて安全性をさらに配慮する必要があるが、より高出力な電池を得ることができる。また、この場合は、通常、正極活物質層および負極活物質層の少なくとも一方が、上述した硫化物固体電解質材料を含有することになる。電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)等を挙げることができる。
3.正極活物質層
 本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。正極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、正極活物質としては、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。なお、正極活物質層に用いられる導電化材および結着材については、上述した負極活物質層における場合と同様である。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
4.その他の構成
 本発明の電池は、上述した負極活物質層、電解質層および正極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。また、正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、本発明に用いられる電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
5.電池
 本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。本発明の電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、本発明の電池の製造方法は、上述した電池を得ることができる方法であれば特に限定されるものではなく、一般的な電池の製造方法と同様の方法を用いることができる。例えば、本発明の電池が全固体電池である場合、その製造方法の一例としては、正極活物質層を構成する材料、固体電解質層を構成する材料、および負極活物質層を構成する材料を順次プレスすることにより、発電要素を作製し、この発電要素を電池ケースの内部に収納し、電池ケースをかしめる方法等を挙げることができる。
C.硫化物固体電解質材料の製造方法
 次に、本発明の硫化物固体電解質材料の製造方法について説明する。
 図3は、本発明の硫化物固体電解質材料の製造方法の一例を示す説明図である。図3における硫化物固体電解質材料の製造方法では、まず、LiS、P、Pを混合することにより、原料組成物を作製する。この際、空気中の水分によって原料組成物が劣化することを防止するために、不活性ガス雰囲気下で原料組成物を作製することが好ましい。次に、原料組成物を用いた溶融急冷法により、非晶質化したイオン伝導性材料を得る。次に、非晶質化したイオン伝導性材料を加熱し、結晶性を向上させることで、硫化物固体電解質材料を得る。
 本発明によれば、溶融急冷法で非晶質化を行い、その後、加熱工程を行うことにより、2θ=30.21°付近のピークを有する結晶相を備える硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、硫化物固体電解質材料が第3族~第16族に属する金属元素を実質的に含有しないことから、耐還元性が高く、充放電効率の低下を抑制できる硫化物固体電解質材料を得ることができる。
 また、特に原料組成物が単体のリンを含有する場合、メカニカルミリングにより非晶質化を試みると、スラリー状の化合物が得られる場合がある。これに対して、本発明においては、溶融物を急冷する溶融急冷法を用いるため、スラリー状の化合物ではなく、目的とするイオン伝導性材料が得られるという利点がある。
 以下、本発明の硫化物固体電解質材料の製造方法について、工程ごとに説明する。
1.イオン伝導性材料合成工程
 まず、本発明におけるイオン伝導性材料合成工程について説明する。本発明におけるイオン伝導性材料合成工程は、上記硫化物固体電解質材料の構成成分を含有する原料組成物を用いて、溶融急冷法により、非晶質化したイオン伝導性材料を合成する工程である。
 本発明における原料組成物は、Li元素、P元素およびS元素を少なくとも含有し、O元素等の他の元素を含有していても良い。Li元素を含有する化合物は、例えば、Liの硫化物およびLiの酸化物を挙げることができる。Liの硫化物としては、具体的にはLiSを挙げることができる。Liの酸化物としては、具体的にはLiOを挙げることができる。また、P元素を含有する化合物は、例えば、Pの単体、Pの酸化物、Pの硫化物等を挙げることができる。Pの硫化物としては、具体的にはP等を挙げることができる。Pの酸化物としては、具体的にはP挙げることができる。S元素を含有する化合物は、特に限定されるものではなく、単体であっても良く、硫化物であっても良い。硫化物としては、上述した元素を含有する硫化物を挙げることができる。
 本発明においては、溶融急冷法により、非晶質化したイオン伝導性材料を得る。溶融急冷法とは、原料組成物を加熱することで溶融状態とし、その後、急冷することで非晶質化する方法である。原料組成物の加熱温度は、原料組成物を溶融状態とすることができる温度であれば特に限定されるものではないが、例えば550℃以上であり、700℃~1200℃の範囲内であることが好ましい。原料組成物の加熱方法としては、例えば焼成炉を用いる方法を挙げることができる。一方、急冷時の冷却速度は、例えば500℃/分以上であり、700℃/分以上であることが好ましい。また、急冷により、例えば100℃以下、中でも50℃以下まで冷却することが好ましい。溶融物の冷却方法は、通常、溶融物に対して、直接的または間接的に冷媒を接触させる方法が用いられる。具体的には、溶融物が入った容器を水等の液体に接触させる方法、溶融物を回転する金属ロールに接触させる方法等を挙げることができる。
 また、溶融急冷法を行う前に、原料組成物に熱処理(仮焼き)を行っても良い。予め熱処理を行った固体を用いることで、その後の溶融処理において分散性が高い溶融物を得ることができるからである。熱処理の温度は、例えば200℃~800℃の範囲内であり、500℃~700℃の範囲内であることが好ましい。また、加熱時間は、例えば30分間~20時間の範囲内であり、2時間~10時間の範囲内であることが好ましい。熱処理は、酸化を防止する観点から、不活性ガス雰囲気下または真空中で行うことが好ましい。
2.加熱工程
 本発明における加熱工程は、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る工程である。
 本発明における加熱温度は、所望の硫化物固体電解質材料を得ることができる温度であれば特に限定されるものではないが、結晶相A(2θ=30.21°付近のピークを有する結晶相)の結晶化温度以上の温度であることが好ましい。具体的には、上記加熱温度が300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましく、450℃以上であることが特に好ましい。一方、上記加熱温度は、1000℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることがさらに好ましく、600℃以下であることが特に好ましい。また、加熱時間は、所望の硫化物固体電解質材料が得られるように適宜調整することが好ましく、例えば30分間~10時間の範囲内であることが好ましい。また、本発明における加熱は、酸化を防止する観点から、不活性ガス雰囲気下または真空中で行うことが好ましい。また、本発明により得られる硫化物固体電解質材料については、上記「A.硫化物固体電解質材料」に記載した内容と同様であるので、ここでの記載は省略する。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)と、五硫化二リン(P、アルドリッチ社製)と、赤リン(P、高純度化学研究所製)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.470526g、Pを0.515941g、Pを0.013533gの割合で混合し、原料組成物を得た。その後、得られた原料組成物を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、サンプルAを得た。
 次に、得られたサンプルAの粉末を、振動ミルを用いて粉砕した。振動ミルにはシーエムティー科学社製TI-100を使用した。具体的には、10mLのジルコニア製ポットに、上記方法で得られたサンプルAを2gと、アルミナ製振動子(φ36.3mm、高さ48.9mm)を入れ、回転数1440rpmで30分間処理を行った。その後、得られた粉末を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、2時間かけて室温から950℃まで昇温し、950℃を1時間維持し、その後、石英管を氷水に投入し急冷した。これにより、サンプルB(非晶質化したイオン伝導性材料)を得た。
 次に、得られたサンプルBの粉末を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、2時間かけて室温から300℃まで昇温し、300℃を5時間維持し、その後室温まで徐冷した。これにより、Li3.750.93の組成を有する硫化物固体電解質材料を得た。
[比較例1]
 実施例1におけるサンプルAを比較用サンプルとした。
[比較例2]
 実施例1におけるサンプルBを比較用サンプルとした。
[比較例3]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)と、五硫化二リン(P、アルドリッチ社製)と、硫化ゲルマニウム(GeS、高純度化学社製)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.390529g、Pを0.366564g、GeSを0.242907gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(10mmφ、10個)とともに、ジルコニア製ポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで、40時間メカニカルミリングを行った。これにより、非晶質化したイオン伝導性材料を得た。
 次に、得られたイオン伝導性材料の粉末を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.35Ge0.350.65の組成を有する硫化物固体電解質材料を得た。
[比較例4]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)と、五硫化二リン(P、アルドリッチ社製)と、硫化ケイ素(SiS、Alfa Aesar(登録商標))とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.429936g、Pを0.367033g、SiSを0.203031gの割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、比較例3と同様にして硫化物固体電解質材料を得た。得られた硫化物固体電解質材料の組成は、Li3.4Si0.40.6であった。
[比較例5]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)と、五硫化二リン(P、アルドリッチ社製)と、硫化スズ(SnS、高純度化学社製)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.365069g、Pを0.390958g、SnSを0.243972gの割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、比較例3と同様にして硫化物固体電解質材料を得た。得られた硫化物固体電解質材料の組成は、Li3.275Sn0.2750.725であった。
[評価]
(X線回折測定)
 実施例1および比較例1~5で得られた硫化物固体電解質材料を用いて、X線回折(XRD)測定を行った。XRD測定は、粉末試料に対して、不活性雰囲気下、CuKα線使用の条件で行った。その結果を図4~図6に示す。図4(a)に示すように、実施例1では、2θ=17.69°、20.60°、21.01°、23.94°、24.60°、26.32°27.62°、29.96°、30.21°、32.15°、32.54°、34.33°の位置にピークが現れた。これらのピークは、イオン伝導性の高い結晶相Aのピークである。なお、イオン伝導性の低い結晶相Bのピークは確認されなかった。また、図4(b)は、比較例3で得られた硫化物固体電解質材料に対するXRD測定の結果であり、結晶相Aの略一致した結晶相A´のピークが得られた。図示しないが、比較例4、5で得られた硫化物固体電解質材料においても結晶相A´と同様のピークが確認された。一方、図5、図6に示すように、比較例1および比較例2では、イオン伝導性の高い結晶相Aのピークは得られなかった。特に比較例1のように、原料組成物を直接加熱しても、イオン伝導性の高い結晶相Aは形成されなかった。
(X線構造解析)
 実施例1で得られた硫化物固体電解質材料の結晶構造をX線構造解析により同定した。XRDで得られた回折図形を基に直接法で晶系・結晶群を決定し、その後、実空間法により結晶構造を同定した。その結果、上述した図1のような結晶構造を有することが確認された。すなわち、四面体T(PS四面体)と、八面体O(LiS八面体)とは稜を共有し、四面体T(PS四面体)と、八面体O(LiS八面体)とは頂点を共有している結晶構造であった。
(Liイオン伝導度測定)
 実施例1および比較例1、2で得られた硫化物固体電解質材料を用いて、25℃でのLiイオン伝導度を測定した。まず、硫化物固体電解質材料を200mg秤量し、マコール製のシリンダに入れ、4ton/cmの圧力でプレスした。得られたペレットの両端をSUS製ピンで挟み、ボルト締めによりペレットに拘束圧を印加し、評価用セルを得た。評価用セルを25℃に保った状態で、交流インピーダンス法によりLiイオン伝導度を算出した。測定には、ソーラトロン1260を用い、印加電圧5mV、測定周波数域0.01~1MHzとした。その結果を図7に示す。図7に示すように、実施例1では、比較例1、2よりも高いLiイオン伝導度を示した。これにより、結晶性Aが高Liイオン伝導に寄与することが確認できた。
(充放電試験)
 実施例1および比較例3~5で得られた硫化物固体電解質材料を用いて評価用電池を作製し、充放電効率を評価した。まず、LiPS粉末を100mg秤量し、マコール製のシリンダに入れ、1ton/cmの圧力でプレスし、固体電解質層を得た。次に、硫化物固体電解質材料およびグラファイト粉末を50:50の重量比で混合し、得られた粉末を12mg秤量し、固体電解質層の一方の表面に配置し、4ton/cmの圧力でプレスし、作用極を得た。最後に、参照極であるLiIn箔を固体電解質層の他方の表面に配置し、1ton/cmの圧力でプレスし、6Ncmでボルト締めし、評価用電池を得た。
 作用極の電位を、参照極に対して-0.62Vまで充電し、その後、1Vまで放電した。電流密度は、0.15mA/cmとした。下記式により、充放電効率を算出した。
 充放電効率(%)=放電容量/充電容量×100
 得られた結果を図8~図12に示す。
 図8~図11に示すように、それぞれの充放電挙動を比較すると、同じ結晶相Aを有する硫化物固体電解質材料であっても、構成する元素の種類によって、充放電効率に差が生じた。また、図12に示すように、比較例3~5では、充放電効率が、それぞれ7.3%、18%、33%と低い値となった。これは、金属元素の還元反応により電気量が消費されたことが原因であると考えられる。これに対して、実施例1では、充放電効率が96%と顕著に高くなった。これは、還元分解を生じさせる金属元素を含有しないことが要因であると考えられる。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 4 … 正極集電体
 5 … 負極集電体
 6 … 電池ケース
 10 … 電池

Claims (9)

  1.  Li元素、P元素およびS元素を含有し、
     CuKα線を用いたX線回折測定における2θ=30.21°±0.50°の位置にピークを有し、
     第3族~第16族に属する金属元素を実質的に含有しないことを特徴とする硫化物固体電解質材料。
  2.  Li5x+2y+31-x(0≦x≦0.2、0<y≦0.3)の組成を含むことを特徴とする請求項1に記載の硫化物固体電解質材料。
  3.  Li5x+31-x(0.1≦x≦0.2)の組成を含むことを特徴とする請求項1に記載の硫化物固体電解質材料。
  4.  2θ=24.60°±0.50°の位置にさらにピークを有することを特徴とする請求項1から請求項3までのいずれかの請求項に記載の硫化物固体電解質材料。
  5.  Li元素およびS元素から構成される八面体Oと、P元素およびS元素から構成される四面体Tと、P元素およびS元素から構成される四面体Tとを有し、前記四面体Tおよび前記八面体Oは稜を共有し、前記四面体Tおよび前記八面体Oは頂点を共有する結晶構造を含有することを特徴とする硫化物固体電解質材料。
  6.  Li5x+2y+31-x(0≦x≦0.2、0<y≦0.3)の組成を含むことを特徴とする請求項5に記載の硫化物固体電解質材料。
  7.  Li5x+31-x(0.1≦x≦0.2)の組成を含むことを特徴とする請求項5に記載の硫化物固体電解質材料。
  8.  正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを含有する電池であって、
     前記正極活物質層、前記負極活物質層および前記電解質層の少なくとも一つが、請求項1から請求項7までのいずれかの請求項に記載の硫化物固体電解質材料を含有することを特徴とする電池。
  9.  請求項1から請求項7までのいずれかの請求項に記載の硫化物固体電解質材料の製造方法であって、
     前記硫化物固体電解質材料の構成成分を含有する原料組成物を用いて、溶融急冷法により、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、
     前記非晶質化したイオン伝導性材料を加熱することにより、前記硫化物固体電解質材料を得る加熱工程と、
     を有することを特徴とする硫化物固体電解質材料の製造方法。
PCT/JP2014/064269 2013-06-07 2014-05-29 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 WO2014196442A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14808009.6A EP3007262B1 (en) 2013-06-07 2014-05-29 Sulfide solid electrolyte material, cell, and method for producing sulfide solid electrolyte material
KR1020177024687A KR20170104640A (ko) 2013-06-07 2014-05-29 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
US14/896,281 US10355308B2 (en) 2013-06-07 2014-05-29 Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
EP18158109.1A EP3370295A1 (en) 2013-06-07 2014-05-29 Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP2015521413A JP6315617B2 (ja) 2013-06-07 2014-05-29 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN201480031735.9A CN105453324B (zh) 2013-06-07 2014-05-29 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
KR1020157033773A KR101979487B1 (ko) 2013-06-07 2014-05-29 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-121317 2013-06-07
JP2013121317 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014196442A1 true WO2014196442A1 (ja) 2014-12-11

Family

ID=52008089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064269 WO2014196442A1 (ja) 2013-06-07 2014-05-29 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Country Status (6)

Country Link
US (1) US10355308B2 (ja)
EP (2) EP3370295A1 (ja)
JP (1) JP6315617B2 (ja)
KR (2) KR20170104640A (ja)
CN (1) CN105453324B (ja)
WO (1) WO2014196442A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198848A1 (ja) * 2014-06-25 2015-12-30 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2017033770A (ja) * 2015-07-31 2017-02-09 国立大学法人東京工業大学 α−リチウム固体電解質
JP2017117639A (ja) * 2015-12-24 2017-06-29 出光興産株式会社 硫化物固体電解質、硫化物ガラス、電極合材及びリチウムイオン電池
WO2018173939A1 (ja) 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JP2018174129A (ja) * 2017-03-31 2018-11-08 国立大学法人東京工業大学 固体電解質材料およびその製造方法
WO2019044517A1 (ja) 2017-09-01 2019-03-07 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
US10396395B2 (en) 2017-03-31 2019-08-27 Tokyo Institute Of Technology Solid electrolyte material and method for producing the same
US10403933B2 (en) 2017-03-31 2019-09-03 Tokyo Institute Of Technology Solid electrolyte material and method for producing the same
JP2020123581A (ja) * 2020-04-07 2020-08-13 国立大学法人東京工業大学 α−リチウム固体電解質
WO2022215518A1 (ja) 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352960B2 (ja) * 2016-02-09 2018-07-04 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JPWO2019098245A1 (ja) * 2017-11-14 2020-11-19 出光興産株式会社 金属元素含有硫化物系固体電解質及びその製造方法
EP3751585A4 (en) * 2018-02-09 2021-11-10 Nagoya Institute Of Technology FIXED ELECTROLYTE
EP3809425B1 (en) 2018-06-13 2022-08-17 Mitsubishi Gas Chemical Company, Inc. Lgps-based solid electrolyte and production method
FR3129250A1 (fr) 2021-11-18 2023-05-19 Saft Electrolytes ceramiques de type sulfure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118801A1 (ja) 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池
JP2013037897A (ja) * 2011-08-08 2013-02-21 Toyota Motor Corp 硫化物固体電解質材料の製造方法、および、硫化物固体電解質材料
WO2013080540A1 (ja) * 2011-11-30 2013-06-06 出光興産株式会社 電解質シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732152B1 (en) * 2004-04-01 2014-03-05 Sumitomo Electric Industries, Ltd. Negative electrode member for secondary lithium battery and process for producing the same
CN101326673B (zh) * 2005-12-09 2010-11-17 出光兴产株式会社 锂离子传导性硫化物类固体电解质及使用其的全固体锂电池
JP5825077B2 (ja) * 2011-12-02 2015-12-02 トヨタ自動車株式会社 ガラスセラミックス
JP5888610B2 (ja) 2011-12-22 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888609B2 (ja) 2012-02-06 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
KR101660609B1 (ko) 2012-02-06 2016-09-27 도요타지도샤가부시키가이샤 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118801A1 (ja) 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池
JP2013037897A (ja) * 2011-08-08 2013-02-21 Toyota Motor Corp 硫化物固体電解質材料の製造方法、および、硫化物固体電解質材料
WO2013080540A1 (ja) * 2011-11-30 2013-06-06 出光興産株式会社 電解質シート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NORIAKI KAMAYA ET AL.: "A lithium superionic conductor", NATURE MATERIALS, 31 July 2011 (2011-07-31)
RYOJI KANNO ET AL.: "Lithium Ionic Conductor Thio-LISICON The Li S-GeS -P S System", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 7, pages A742 - A746

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461363B2 (en) 2014-06-25 2019-10-29 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP2016027545A (ja) * 2014-06-25 2016-02-18 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2015198848A1 (ja) * 2014-06-25 2015-12-30 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2017033770A (ja) * 2015-07-31 2017-02-09 国立大学法人東京工業大学 α−リチウム固体電解質
CN107851477A (zh) * 2015-07-31 2018-03-27 国立大学法人东京工业大学 α‑锂固体电解质
CN107851477B (zh) * 2015-07-31 2020-12-29 国立大学法人东京工业大学 α-锂固体电解质
US10741299B2 (en) 2015-07-31 2020-08-11 Tokyo Insititute of Technology Solid α-lithium electrolyte
JP2017117639A (ja) * 2015-12-24 2017-06-29 出光興産株式会社 硫化物固体電解質、硫化物ガラス、電極合材及びリチウムイオン電池
WO2018173939A1 (ja) 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JP2018174129A (ja) * 2017-03-31 2018-11-08 国立大学法人東京工業大学 固体電解質材料およびその製造方法
US10403933B2 (en) 2017-03-31 2019-09-03 Tokyo Institute Of Technology Solid electrolyte material and method for producing the same
US10396395B2 (en) 2017-03-31 2019-08-27 Tokyo Institute Of Technology Solid electrolyte material and method for producing the same
WO2019044517A1 (ja) 2017-09-01 2019-03-07 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JP2020123581A (ja) * 2020-04-07 2020-08-13 国立大学法人東京工業大学 α−リチウム固体電解質
WO2022215518A1 (ja) 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Also Published As

Publication number Publication date
EP3007262B1 (en) 2019-05-15
EP3007262A1 (en) 2016-04-13
EP3370295A1 (en) 2018-09-05
EP3007262A4 (en) 2016-05-25
JPWO2014196442A1 (ja) 2017-02-23
US20160149258A1 (en) 2016-05-26
JP6315617B2 (ja) 2018-04-25
KR20160004358A (ko) 2016-01-12
CN105453324B (zh) 2018-09-04
KR20170104640A (ko) 2017-09-15
CN105453324A (zh) 2016-03-30
EP3370295A8 (en) 2019-01-23
US10355308B2 (en) 2019-07-16
KR101979487B1 (ko) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6315617B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6288716B2 (ja) 硫化物固体電解質材料の製造方法
JP6222134B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888610B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6044588B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6044587B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5720753B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5975071B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6037444B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5561383B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013118723A1 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013118722A1 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6036996B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5895917B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2015032550A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013084944A1 (ja) 電池
JP6256980B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031735.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521413

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033773

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014808009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14896281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE