WO2013118723A1 - 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 - Google Patents

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 Download PDF

Info

Publication number
WO2013118723A1
WO2013118723A1 PCT/JP2013/052612 JP2013052612W WO2013118723A1 WO 2013118723 A1 WO2013118723 A1 WO 2013118723A1 JP 2013052612 W JP2013052612 W JP 2013052612W WO 2013118723 A1 WO2013118723 A1 WO 2013118723A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
electrolyte material
electrode active
peak
Prior art date
Application number
PCT/JP2013/052612
Other languages
English (en)
French (fr)
Inventor
了次 菅野
雅章 平山
祐樹 加藤
崇督 大友
坂野 充
Original Assignee
国立大学法人東京工業大学
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, トヨタ自動車株式会社 filed Critical 国立大学法人東京工業大学
Priority to DE112013000854.8T priority Critical patent/DE112013000854B8/de
Priority to KR1020147021281A priority patent/KR101760558B1/ko
Priority to CN201380007125.0A priority patent/CN104185873B/zh
Priority to US14/375,571 priority patent/US10033065B2/en
Publication of WO2013118723A1 publication Critical patent/WO2013118723A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/006Compounds containing, besides germanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sulfide solid electrolyte material having good ion conductivity and low reduction potential.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • Non-Patent Document 1 discloses a Li ion conductor (sulfide solid electrolyte material) having a composition of Li (4-x) Ge (1-x) P x S 4 .
  • Patent Document 1 discloses a LiGePS-based sulfide solid electrolyte material having a high proportion of crystal phase having a specific peak in X-ray diffraction measurement.
  • Non-Patent Document 2 discloses a LiGePS-based sulfide solid electrolyte material.
  • Patent Document 1 discloses that a sulfide solid electrolyte material having a high proportion of crystal phase having a specific peak in X-ray diffraction measurement has good ionic conductivity.
  • the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 has a reduction potential of about 0.25 V (vs Li / Li + ), for example, a negative electrode active material having an operating potential lower than 0.25 V
  • the sulfide solid electrolyte material undergoes reductive decomposition and deteriorates.
  • the present invention has been made in view of the above problems, and has as its main object to provide a sulfide solid electrolyte material having good ion conductivity and low reduction potential.
  • the sulfide solid electrolyte material is characterized in that the value of I B / I A is less than 0.50, and the M 2 contains at least P and Si.
  • the M 2 preferably contains an element other than P and Si.
  • Si mole fraction of for the M 2 excluding P is 30% or more.
  • the mole fraction of the M 1 is 3.35 or more.
  • the octahedron O composed of the M 1 element and the S element
  • the tetrahedron T 1 composed of the M 2a element and the S element
  • the tetrahedron composed of the M 2b element and the S element contains mainly a crystalline structure that share vertices
  • the M 1 is , At least Li
  • each of the M 2a and the M 2b is independently selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. It is at least one that, at least one of the M 2a and the M 2b comprises P, at least one of the M 2a and the M 2b provide a sulfide solid electrolyte material characterized by containing Si.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • Si is contained, a sulfide solid electrolyte material having a low reduction potential can be obtained.
  • At least one of the M 2a and the M 2b contains an element other than P and Si.
  • Si mole fraction of for the M 2a and the M 2b excluding P is 30% or more.
  • the a-axis length of the lattice constant is preferably 8.69 mm or less.
  • the mole fraction of the M 1 is 3.35 or more.
  • at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • a high output battery can be obtained by using the above-described sulfide solid electrolyte material.
  • a method for producing a sulfide solid electrolyte material having the above-described peak intensity ratio wherein the raw material composition containing the M 1 element, the M 2 element, and the S element is used to mechanically
  • a method for producing a sulfide solid electrolyte material is provided.
  • a method for producing a sulfide solid electrolyte material having the crystal structure described above wherein a raw material composition containing the M 1 element, the M 2a element, the M 2b element, and the S element is provided. And using an ion conductive material synthesis step of synthesizing an amorphous ion conductive material by mechanical milling, and heating the amorphous ion conductive material to form the sulfide solid electrolyte material. And a heating step for obtaining a sulfide solid electrolyte material.
  • the octahedron O, the tetrahedron T 1 and the tetrahedron T 2 have a predetermined crystal structure (three-dimensional) by performing amorphization in an ion conductive material synthesis step and then performing a heating step.
  • a sulfide solid electrolyte material having a structure can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, since Si is contained, a sulfide solid electrolyte material having a low reduction potential can be obtained.
  • FIG. 7 is an X-ray diffraction spectrum of a sulfide solid electrolyte material obtained in Examples 5 to 7.
  • 3 is an X-ray diffraction spectrum of a sulfide solid electrolyte material obtained in Comparative Examples 1 and 2.
  • FIG. 4 is a charging curve of an evaluation battery using the sulfide solid electrolyte material obtained in Examples 1 to 4.
  • FIG. 6 is a charge curve of an evaluation battery using the sulfide solid electrolyte material obtained in Examples 5 to 7.
  • FIG. It is a charge curve of the battery for evaluation using the sulfide solid electrolyte material obtained in comparative examples 1 and 2.
  • FIG. 4 is a graph showing the relationship between potential and dV / dQ in an evaluation battery using the sulfide solid electrolyte material obtained in Examples 1 to 4.
  • 6 is a graph showing the relationship between potential and dV / dQ in an evaluation battery using the sulfide solid electrolyte material obtained in Examples 5 to 7. It is a graph which shows the electric potential and the relationship of dV / dQ in the battery for evaluation using the sulfide solid electrolyte material obtained in Comparative Examples 1 and 2. This is the reduction potential of the sulfide solid electrolyte materials obtained in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a measurement result of Li ion conductivity of sulfide solid electrolyte materials obtained in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the relationship between the lattice constant of the sulfide solid electrolyte materials obtained in Examples 1 to 3, 5 and Comparative Examples 1 and 2 and the reduction potential. 6 is a graph showing the relationship between the Li amount of the sulfide solid electrolyte materials obtained in Examples 1 and 5 to 7 and Comparative Examples 1 and 2 and the reduction potential. It is a crystal arrangement
  • 3 is a measurement result of Li ion conductivity of the sulfide solid electrolyte material obtained in Reference Examples 1 to 4.
  • the sulfide solid electrolyte material of the present invention will be described.
  • the sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Therefore, the sulfide solid electrolyte material of the present invention will be described separately for the first embodiment and the second embodiment.
  • the sulfide solid electrolyte material of the first embodiment contains an M 1 element, an M 2 element, and an S element.
  • the M 1 includes at least Li
  • I B the value of I B / I A is less than 0.50
  • M 2 includes at least P and Si.
  • Si is in the vicinity of 0.35 V (Li / Li + ), for example, lower than Ge (near 0.4 V) and Sn (near 0.6 V), and alloyed with Li. As a result, the reduction potential is estimated to be low.
  • FIG. 1 is an X-ray diffraction spectrum for explaining a difference between a sulfide solid electrolyte material having high ion conductivity and a sulfide solid electrolyte material having low ion conductivity.
  • the two sulfide solid electrolyte materials in FIG. 1 both have a composition of Li 3.25 Ge 0.25 P 0.75 S 4 .
  • FIG. 1 is an X-ray diffraction spectrum for explaining a difference between a sulfide solid electrolyte material having high ion conductivity and a sulfide solid electrolyte material having low ion conductivity.
  • the two sulfide solid electrolyte materials in FIG. 1 both have a composition of Li
  • the sulfide solid electrolyte material with low ion conductivity also has the same peak.
  • the crystal structure of the crystal phase A is considered to be the crystal structure described in the second embodiment to be described later.
  • Crystal phases A and B are both crystalline phases exhibiting ionic conductivity, but there are differences in ionic conductivity.
  • the crystal phase A is considered to have significantly higher ionic conductivity than the crystal phase B.
  • the proportion of the crystal phase B having low ion conductivity cannot be reduced, and the ion conductivity cannot be sufficiently increased.
  • the crystal phase A having high ion conductivity can be positively precipitated, a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the sulfide solid electrolyte material of the first embodiment contains M 1 element, M 2 element and S element.
  • the M 1 is not particularly limited as long as it contains at least Li, and may be Li alone or a combination of Li and another element.
  • the other element is preferably, for example, a monovalent or divalent element, and specifically, at least one selected from the group consisting of Na, K, Mg, Ca, and Zn is preferable.
  • the M 1 is a monovalent element (for example, Li, Na, K), and a part thereof may be substituted with a divalent or higher element (for example, Mg, Ca, Zn). Thereby, a monovalent element becomes easy to move and ion conductivity improves.
  • M 2 is preferably a trivalent, tetravalent or pentavalent element, and more preferably contains at least a tetravalent element.
  • the M 2 is usually at least one selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb.
  • the first embodiment is characterized in that the M 2 contains at least P and Si.
  • the M 2 may be (i) only P and Si, or (ii) may further contain other elements other than P and Si.
  • the other element M 2x is usually at least one selected from the group consisting of Sb, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb. It is preferably at least one selected from the group consisting of Sn, Al, Ga and B. In the case of the above (ii), it can be considered that the M 2X element is partly replaced with the Si element.
  • the molar fraction of Si with respect to M 2 excluding P is usually greater than zero.
  • M 2 excluding P specifically refers to the following. That is, when M 2 is only P and Si as in (i) above, “M 2 excluding P” refers to Si, and M 2 is added to P and Si as in (ii) above. if it contains M 2x Te, it refers to Si and M 2x and "M 2 excluding P".
  • the mole fraction of Si is, for example, 10 mol% or more, and preferably 30 mol% or more. Note that the case where the mole fraction of Si is 100% corresponds to the case of (i) above. On the other hand, in the case of the above (ii), the molar fraction of Si is preferably 99% or less, for example.
  • the case (ii) is advantageous in terms of Li ion conductivity, for example, compared to the case (i).
  • the sulfide solid electrolyte material of the first embodiment contains an O element. This is because the ion conductivity is further improved.
  • the ratio of the O element contained in the sulfide solid electrolyte material is the same as that of the same sulfide solid electrolyte material (sulfide solid electrolyte material not containing O element) except that the O element is not contained and the valence is adjusted with S. It is preferable that the ratio is such that ion conductivity higher than ion conductivity is obtained.
  • the sulfide solid electrolyte material not containing O element is, for example, a sulfide solid electrolyte material containing O element is Li 3.35 (Ge 1- ⁇ Si ⁇ ) 0.35 P 0.65 (S 1- 1 If it is y O y) 4, Li 3.35 (Ge 1- ⁇ Si ⁇ ) 0.35 P 0.65 S 4 corresponds.
  • the ratio of the O element to the total of the S element and the O element is, for example, preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more. .
  • the ratio of the O element is preferably 25% or less, for example. This is because a sulfide solid electrolyte material having higher ionic conductivity can be obtained.
  • the proportion of the O element can be determined by XPS or EDX, for example.
  • the sulfide solid electrolyte material of the first embodiment usually has a predetermined crystal structure described in the second embodiment described later. It is presumed that the M 1 element and the M 2 element can take the same crystal structure as that of the above-described sulfide solid electrolyte material in any combination thereof.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained in any combination of M 1 element and M 2 element.
  • the position of the peak of X-ray diffraction depends on the crystal structure, it is similar if the sulfide solid electrolyte material has the above crystal structure, regardless of the types of the M 1 element and M 2 element. It is considered that an XRD pattern is obtained.
  • the sulfide solid electrolyte material of a 1st embodiment contains Li element, Ge element, Si element, P element, and S element.
  • the composition of the sulfide solid electrolyte material LiGeSiPS system is not particularly limited as long as the composition can be obtained the value of a given I B / I A, Li ( 4-x) (Ge 1 - ⁇ Si ⁇ ) (1-x) P x (S 1-y O y ) 4 (x satisfies 0 ⁇ x ⁇ 1, y satisfies 0 ⁇ y ⁇ 0.25, and ⁇ is 0 ⁇ Satisfying ⁇ ⁇ 1).
  • the composition of Li (4-x) Ge (1-x) P x S 4 having no Si element and O element corresponds to the composition of the solid solution of Li 3 PS 4 and Li 4 GeS 4 . That is, this composition corresponds to the composition on the tie line of Li 3 PS 4 and Li 4 GeS 4 .
  • Li 3 PS 4 and Li 4 GeS 4 both correspond to the ortho composition and have the advantage of high chemical stability.
  • x in Li (4-x) (Ge 1- ⁇ Si ⁇ ) (1-x) P x (S 1-y O y) 4 it is possible to obtain a value of a predetermined I B / I A
  • fill 0.4 ⁇ x, it is more preferable to satisfy
  • fill 0.5 ⁇ x, and it is still more preferable to satisfy
  • fill 0.6 ⁇ x.
  • the x preferably satisfies x ⁇ 0.8, and more preferably satisfies x ⁇ 0.75. This is because the value of I B / I A can be further reduced by setting the range of such x.
  • sulfide solid electrolyte material with further favorable ion conductivity.
  • a tetravalent M 2x element other than the Si element may be used instead of the Ge element.
  • the sulfide solid electrolyte material of the first embodiment is usually the same sulfide solid electrolyte material (sulfide solid electrolyte material not containing Si element) except that it does not contain Si element and the valence is adjusted with M 2x element.
  • the reduction potential is lower than
  • the sulfide solid electrolyte material not containing Si element is, for example, a sulfide solid electrolyte material containing Si element is Li 3.35 (Ge 1- ⁇ Si ⁇ ) 0.35 P 0.65 S 4 . In this case, Li 3.35 Ge 0.35 P 0.65 S 4 is applicable.
  • the reduction potential of the sulfide solid electrolyte material containing the Si element is 0.01 V (vs Li / V) than the reduction potential of the sulfide solid electrolyte material containing no Si element. Li + ) or more is preferable, and 0.02 V (vs Li / Li + ) or more is more preferable.
  • the sulfide solid electrolyte material of the first embodiment is preferably, for example, 0.3 V (vs Li / Li + ) or less, and more preferably 0.25 V (vs Li / Li + ) or less.
  • the a-axis length of the lattice constant of the crystal phase A is preferably 8.69 mm or less, more preferably 8.68 mm or less, and still more preferably 8.67 mm or less. This is because a sulfide solid electrolyte material having a lower reduction potential can be obtained. The reason why the reduction potential is lower is considered to be that the metal-sulfur distance is shortened and the bond is not easily broken because the lattice constant is decreased.
  • the a-axis length of the lattice constant is usually 8.0 mm or more.
  • the lattice constant can be obtained, for example, by performing Rietveld analysis based on XRD pattern data.
  • the sulfide solid electrolyte material of the first embodiment has an M 1 element, an M 2 element, and an S element.
  • M 1 the total molar fraction of M 2
  • the mole fraction of M 1 and M 1 amount the mole fraction of M 1 and M 1 amount.
  • the reductive decomposition of the sulfide solid electrolyte material occurs when the sulfide solid electrolyte material receives both Li and electrons. Therefore, it is considered that by increasing the amount of M 1 and decreasing the number of interstitial positions (vacant sites), M 1 is less likely to enter the crystal, and the sulfide solid electrolyte material is less likely to be reduced and decomposed.
  • the value of the amount of M 1 is, for example, 4.5 or less, and preferably, for example, 4.0 or less. This is because if the amount of M 1 is too large, the crystal phase A may not be precipitated.
  • the sulfide solid electrolyte material of the first embodiment is usually a crystalline sulfide solid electrolyte material.
  • the sulfide solid electrolyte material of the first embodiment preferably has high ionic conductivity, and the ionic conductivity of the sulfide solid electrolyte material at 25 ° C. is 1.0 ⁇ 10 ⁇ 3 S / cm or more. It is preferable.
  • the shape of the sulfide solid electrolyte material of the first embodiment is not particularly limited, and examples thereof include powder. Further, the average particle diameter of the powdered sulfide solid electrolyte material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example.
  • the sulfide solid electrolyte material of the first embodiment has high ionic conductivity, it can be used for any application that requires ionic conductivity. Especially, it is preferable that the sulfide solid electrolyte material of a 1st embodiment is what is used for a battery. This is because it can greatly contribute to the high output of the battery.
  • the method for producing the sulfide solid electrolyte material of the first embodiment will be described in detail in “C. Method for producing sulfide solid electrolyte material” described later. Further, the sulfide solid electrolyte material of the first embodiment may have the characteristics of the second embodiment described later.
  • the sulfide solid electrolyte material of the second embodiment is composed of octahedron O composed of M 1 element and S element, tetrahedron T 1 composed of M 2a element and S element, M 2b element and S element.
  • M 1 includes at least Li
  • M 2a and M 2b are each independently P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb.
  • at least one of M 2a and M 2b contains P
  • at least one of M 2a and M 2b contains Si.
  • the octahedron O, the tetrahedron T 1 and the tetrahedron T 2 have a predetermined crystal structure (three-dimensional structure), a sulfide solid electrolyte material having good ion conductivity is obtained. Can do. Furthermore, since Si is contained, a sulfide solid electrolyte material having a low reduction potential can be obtained.
  • FIG. 2 is a perspective view for explaining an example of the crystal structure of the sulfide solid electrolyte material of the second embodiment.
  • the octahedron O has M 1 as a central element, has six S at the apex of the octahedron, and is typically a LiS 6 octahedron.
  • the tetrahedron T 1 has M 2a as a central element, has four S at the apex of the tetrahedron, and is typically a GeS 4 tetrahedron, a SiS 4 tetrahedron, and a PS 4 tetrahedron. .
  • Tetrahedron T 2 are, has M 2b as the central element, has four S to the apex of the tetrahedron, typically PS 4 tetrahedron. Furthermore, the tetrahedron T 1 and the octahedron O share a ridge, and the tetrahedron T 2 and the octahedron O share a vertex.
  • At least one of the M 2a and the M 2b usually contains P. That is, the M 2a or the M 2b may contain P, and both the M 2a and the M 2b may contain P. Further, at least one of the M 2a and the M 2b usually contains Si. That is, the M 2a or the M 2b may contain Si, and both the M 2a and the M 2b may contain Si. Further, at least one of the M 2a and the M 2b may include M 2x . That is, the M 2a or the M 2b may include M 2x , and both the M 2a and the M 2b may include M 2x .
  • the molar fraction of Si relative to M 2a and M 2b excluding P is usually greater than zero. “M 2a and M 2b excluding P” is basically the same as the contents described in the first embodiment. Moreover, since the preferable range of the mole fraction of Si is the same as the content described in the first embodiment, description thereof is omitted here.
  • the sulfide solid electrolyte material of the second embodiment is characterized mainly by containing the above crystal structure as a main component.
  • the ratio of the crystal structure in the entire crystal structure of the sulfide solid electrolyte material is not particularly limited, but is preferably higher. This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the ratio of the crystal structure is preferably 70 wt% or more, and more preferably 90 wt% or more.
  • the ratio of the said crystal structure can be measured by synchrotron radiation XRD, for example.
  • the sulfide solid electrolyte material of the second embodiment is preferably a single-phase material having the above crystal structure. This is because the ion conductivity can be made extremely high.
  • At least one of the above-described octahedron O, tetrahedron T 1 and tetrahedron T 2 may be one in which a part of the S element is replaced by the O element.
  • the fact that part of the S element is replaced with the O element can be confirmed by, for example, analysis of an XRD pattern by the Rietveld method, neutron diffraction, or the like.
  • M 1 element, M 2 element (M 2a element, M 2b element) and other matters in the second embodiment are the same as those in the first embodiment described above, description thereof is omitted here.
  • the battery of the present invention includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, In which at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • a high output battery can be obtained by using the above-described sulfide solid electrolyte material.
  • FIG. 3 is a schematic cross-sectional view showing an example of the battery of the present invention.
  • the battery 10 in FIG. 3 was formed between the positive electrode active material layer 1 containing the positive electrode active material, the negative electrode active material layer 2 containing the negative electrode active material, and the positive electrode active material layer 1 and the negative electrode active material layer 2.
  • At least one of the positive electrode active material layer 1, the negative electrode active material layer 2, and the electrolyte layer 3 contains the sulfide solid electrolyte material described in the above-mentioned “A. Sulfide solid electrolyte material”.
  • the sulfide solid electrolyte material contained in the negative electrode active material layer 2 or the electrolyte layer 3 is preferably in contact with the negative electrode active material.
  • the above-mentioned sulfide solid electrolyte material has a low reduction potential, and has the advantage that the range of selection of usable negative electrode active materials is broader than when a sulfide solid electrolyte material not containing Si is used, and a negative electrode active material having a low operating potential This is because there is an advantage that the battery voltage increases by using.
  • the battery of this invention is demonstrated for every structure.
  • Negative electrode active material layer is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder, if necessary. good.
  • the negative electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is the sulfide solid electrolyte material described above. This is because the sulfide solid electrolyte material has a low reduction potential, and the range of selection of usable negative electrode active materials is wider than when a sulfide solid electrolyte material containing no Si is used.
  • the ratio of the sulfide solid electrolyte material contained in the negative electrode active material layer varies depending on the type of battery. For example, it is in the range of 0.1% by volume to 80% by volume, and in particular, 1% by volume to 60% by volume. It is preferable to be within the range, particularly within the range of 10% by volume to 50% by volume.
  • the negative electrode active material include a metal active material and a carbon active material. Examples of the metal active material include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the negative electrode active material layer contains the sulfide solid electrolyte material, and the operating potential of the negative electrode active material (potential at which Li ion insertion reaction occurs) is less than the reduction potential of the sulfide solid electrolyte material. Is preferably high.
  • the negative electrode active material layer may further contain a conductive material.
  • a conductive material By adding a conductive material, the conductivity of the negative electrode active material layer can be improved.
  • the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the negative electrode active material layer may contain a binder.
  • fluorine-containing binders such as polyvinylidene fluoride (PVDF), etc. can be mentioned, for example.
  • the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • Electrolyte layer The electrolyte layer in this invention is a layer formed between a positive electrode active material layer and a negative electrode active material layer.
  • the electrolyte layer is not particularly limited as long as it is a layer capable of conducting ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a battery with higher safety can be obtained as compared with a battery using an electrolytic solution.
  • a solid electrolyte layer contains the sulfide solid electrolyte material mentioned above.
  • the ratio of the sulfide solid electrolyte material contained in the solid electrolyte layer is, for example, preferably in the range of 10% to 100% by volume, and more preferably in the range of 50% to 100% by volume.
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method of compression-molding a solid electrolyte material etc. can be mentioned, for example.
  • the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
  • the electrolytic solution it is necessary to further consider safety compared to the case where the solid electrolyte layer is used, but a battery with higher output can be obtained.
  • at least one of the positive electrode active material layer and the negative electrode active material layer contains the above-described sulfide solid electrolyte material.
  • the electrolytic solution usually contains a lithium salt and an organic solvent (nonaqueous solvent).
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and the like.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder, if necessary. good.
  • the positive electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is preferably the sulfide solid electrolyte material described above.
  • the ratio of the sulfide solid electrolyte material contained in the positive electrode active material layer varies depending on the type of battery. For example, it is in the range of 0.1% by volume to 80% by volume, particularly 1% by volume to 60% by volume.
  • the positive electrode active material includes LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O. 2 etc. can be mentioned.
  • the conductive material and the binder used for the positive electrode active material layer are the same as those in the negative electrode active material layer described above.
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the battery of the present invention has at least the negative electrode active material layer, the electrolyte layer, and the positive electrode active material layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • the battery case of a general battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
  • Battery The battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • Examples of the shape of the battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of the battery of this invention will not be specifically limited if it is a method which can obtain the battery mentioned above, The method similar to the manufacturing method of a general battery can be used.
  • the battery of the present invention is an all-solid battery
  • a material constituting the positive electrode active material layer, a material constituting the solid electrolyte layer, and a material constituting the negative electrode active material layer are sequentially provided.
  • Examples of the method include producing a power generation element by pressing, housing the power generation element inside the battery case, and caulking the battery case.
  • the method for producing a sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Then, the manufacturing method of the sulfide solid electrolyte material of this invention is divided and demonstrated to a 1st embodiment and a 2nd embodiment.
  • the manufacturing method of the sulfide solid electrolyte material of 1st embodiment is a manufacturing method of the sulfide solid electrolyte material described in "A. Sulfide solid electrolyte material 1. 1st embodiment", Comprising: An ion conductive material synthesizing step for synthesizing an amorphous ion conductive material by mechanical milling using a raw material composition containing the M 1 element, the M 2 element, and the S element, and the amorphous A heating step of obtaining the sulfide solid electrolyte material by heating the ionized conductive material.
  • a solid electrolyte material can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, since Si is contained, a sulfide solid electrolyte material having a low reduction potential can be obtained.
  • FIG. 4 is an explanatory view showing an example of a method for producing a sulfide solid electrolyte material of the first embodiment.
  • a raw material composition is prepared by mixing Li 2 S, P 2 S 5 , GeS 2 and SiS 2 .
  • the raw material composition is ball milled to obtain an amorphous ion conductive material.
  • the amorphous ion conductive material is heated to improve the crystallinity, thereby obtaining a sulfide solid electrolyte material.
  • an ion conductive material that has been made amorphous once is synthesized.
  • Ion conductive material synthesis step First, the ion conductive material synthesis step in the first embodiment will be described. Ion conductive material synthesizing step in the first embodiment, the M 1 element, by using the raw material composition containing the M 2 element and the S element, by mechanical milling, the amorphized ion conductive material It is a process of synthesizing.
  • the raw material composition in the first embodiment is not particularly limited as long as it contains an M 1 element, an M 2 element, and an S element.
  • the M 1 element and the M 2 element in the raw material composition are the same as those described in “A. Sulfide solid electrolyte material”.
  • Compounds containing M 1 element although not particularly limited, for example, a sulfide of a single and M 1 of M 1.
  • Examples of the sulfide of M 1 include Li 2 S, Na 2 S, K 2 S, MgS, CaS, and ZnS.
  • Compounds containing M 2 element but are not particularly limited, for example, a sulfide of a single and M 2 of M 2.
  • Examples of the sulfide of M 2 include Me 2 S 3 (Me is a trivalent element, for example, Al, B, Ga, In, and Sb), MeS 2 (Me is a tetravalent element, for example, Ge , Si, Sn, Zr, Ti, and Nb), Me 2 S 5 (Me is a pentavalent element such as P and V), and the like.
  • the compound containing S element is not particularly limited, and may be a simple substance or a sulfide.
  • the sulfide can include sulfides containing the above M 1 element or M 2 element.
  • the raw material composition may contain an O element.
  • the compound containing O element is usually an oxide.
  • Type oxide is not particularly limited, but is preferably an oxide containing the above M 1 element or M 2 element. This is because unnecessary side reactions do not occur. Examples of the oxide include Me 2 O 3 (Me is a trivalent element, such as Al, B, Ga, In, and Sb), MeO 2 (Me is a tetravalent element, such as Ge, Si, and the like).
  • Me 2 O 5 is a pentavalent element such as P or V
  • Li 5 MeO 4 is a trivalent element such as Al , B, Ga, In, and Sb
  • Li 4 MeO 4 is a tetravalent element, for example, Ge, Si, Sn, Zr, Ti, and Nb
  • Li 3 MeO 4 is five
  • Valent elements such as P and V).
  • Mechanical milling is a method of crushing a sample while applying mechanical energy.
  • an amorphous ion conductive material is synthesized by applying mechanical energy to the raw material composition.
  • Examples of such mechanical milling include a vibration mill, a ball mill, a turbo mill, a mechanofusion, a disk mill, and the like, and among them, a vibration mill and a ball mill are preferable.
  • the conditions of the vibration mill are not particularly limited as long as an amorphous ion conductive material can be obtained.
  • the vibration amplitude of the vibration mill is, for example, preferably in the range of 5 mm to 15 mm, and more preferably in the range of 6 mm to 10 mm.
  • the vibration frequency of the vibration mill is, for example, preferably in the range of 500 rpm to 2000 rpm, and more preferably in the range of 1000 rpm to 1800 rpm.
  • the filling rate of the sample of the vibration mill is, for example, preferably in the range of 1 to 80% by volume, more preferably in the range of 5 to 60% by volume, and particularly in the range of 10 to 50% by volume.
  • a vibrator for example, an alumina vibrator
  • the conditions of the ball mill are not particularly limited as long as an amorphous ion conductive material can be obtained.
  • the rotation speed of the platform when performing the planetary ball mill is preferably in the range of 200 rpm to 500 rpm, and more preferably in the range of 250 rpm to 400 rpm.
  • the treatment time when performing the planetary ball mill is preferably in the range of, for example, 1 hour to 100 hours, and more preferably in the range of 1 hour to 70 hours.
  • Heating step in the first embodiment is a step of obtaining the sulfide solid electrolyte material by heating the amorphous ion conductive material.
  • the crystallinity is improved by heating the amorphized ion conductive material.
  • the temperature is preferably equal to or higher than the crystallization temperature of the phase.
  • the heating temperature is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, further preferably 400 ° C. or higher, and particularly preferably 450 ° C. or higher.
  • the heating temperature is preferably 1000 ° C. or less, more preferably 700 ° C. or less, further preferably 650 ° C. or less, and particularly preferably 600 ° C. or less.
  • the heating in the first embodiment is preferably performed in an inert gas atmosphere or in vacuum from the viewpoint of preventing oxidation.
  • the sulfide solid electrolyte material obtained by the first embodiment is the same as the contents described in the above-mentioned “A. Sulfide solid electrolyte material 1. First embodiment”. .
  • a method for producing a sulfide solid electrolyte material according to a second embodiment is the method for producing a sulfide solid electrolyte material described in “A. Sulfide solid electrolyte material 2. Second embodiment”.
  • the octahedron O, the tetrahedron T 1, and the tetrahedron T 2 are made to have a predetermined crystal structure (amorphization is performed in the ion conductive material synthesis step and then the heating step is performed).
  • a sulfide solid electrolyte material having a three-dimensional structure can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • Si is contained, a sulfide solid electrolyte material having a low reduction potential can be obtained.
  • the ion conductive material synthesizing step and the heating step in the second embodiment are basically the same as the contents described in the above-mentioned “C. Method for producing sulfide solid electrolyte material 1. First embodiment”. The description here is omitted. It is preferable to set various conditions so that a desired sulfide solid electrolyte material can be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 As starting materials, lithium sulfide (Li 2 S, manufactured by Nippon Chemical Industry Co., Ltd.), lithium oxide (Li 2 O, manufactured by High Purity Chemical Co., Ltd.), diphosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich), Silicon sulfide (SiS 2 , manufactured by Kojundo Chemical Co., Ltd.) was used. These powders were mixed in a glove box under an argon atmosphere at a ratio of 0.34083 g of Li 2 S, 0.06819 g of Li 2 O, 0.38049 g of P 2 S 5 and 0.21047 g of SiS 2 , A raw material composition was obtained.
  • the obtained ion conductive material powder was placed in a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature.
  • a crystalline sulfide solid electrolyte material having a composition of Li 3.4 Si 0.4 P 0.6 (S 0.9 O 0.1 ) 4 was obtained.
  • Example 2 As a starting material, instead of lithium oxide (Li 2 O), germanium sulfide (GeS 2 , manufactured by Kojundo Chemical Co., Ltd.) was used, Li 2 S was 0.42166 g, P 2 S 5 was 0.35997 g, and GeS 2 was 0.05906 g and SiS 2 were mixed at a ratio of 0.15929 g to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Li 2 S Li 2 S was 0.42166 g
  • P 2 S 5 was 0.35997 g
  • GeS 2 was 0.05906 g and SiS 2 were mixed at a ratio of 0.15929 g to obtain a raw material composition.
  • a crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Example 3 As a starting material, instead of lithium oxide (Li 2 O), tin sulfide (SnS 2 , manufactured by High Purity Chemical Co., Ltd.) was used, Li 2 S 0.4111972 g, P 2 S 5 0.365571 g, SiS 2 0.14873G, mixed SnS 2 at a rate of 0.073724G, to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Li 2 S 0.4111972 g, P 2 S 5 0.365571 g, SiS 2 0.14873G, mixed SnS 2 at a rate of 0.073724G Li 2 S 0.4111972 g, P 2 S 5 0.365571 g, SiS 2 0.14873G, mixed SnS 2 at a rate of 0.073724G
  • Example 4 As a starting material, instead of lithium oxide (Li 2 O), tin sulfide (SnS 2 , manufactured by High Purity Chemical Co., Ltd.) was used, Li 2 S was 0.37861 g, P 2 S 5 was 0.39526 g, and SiS 2 was 0.0401 g and SnS 2 were mixed at a ratio of 0.185927 g to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Li 2 S Li 2 S was 0.37861 g
  • P 2 S 5 was 0.39526 g
  • SiS 2 was 0.0401 g and SnS 2 were mixed at a ratio of 0.185927 g to obtain a raw material composition.
  • a crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Example 5 As a starting material, instead of lithium oxide (Li 2 O), tin sulfide (SnS 2 , manufactured by High Purity Chemical Co., Ltd.) was used, Li 2 S 0.383807 g, P 2 S 5 0.366893 g, SiS 2 0.0627309G, mixed SnS 2 at a rate of 0.186569G, to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • Li 2 S 0.383807 g, P 2 S 5 0.366893 g, SiS 2 0.0627309G mixed SnS 2 at a rate of 0.186569G
  • Example 6 As a starting material, instead of lithium oxide (Li 2 O), germanium sulfide (GeS 2 , manufactured by Kojundo Chemical Co., Ltd.) was used, 0.415120 g of Li 2 S, 0.375416 g of P 2 S 5 , and SiS 2 0.128062G, mixed GeS 2 at a rate of 0.0814011G, to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • germanium sulfide GeS 2 , manufactured by Kojundo Chemical Co., Ltd.
  • Example 7 As a starting material, instead of lithium oxide (Li 2 O), germanium sulfide (GeS 2 , manufactured by Kojundo Chemical Co., Ltd.) was used, Li 2 S was 0.407909 g, P 2 S 5 was 0.368895 g, and SiS 2 was 0.0898839G, mixed GeS 2 at a rate of 0.1333119G, to obtain a raw material composition.
  • a crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1 except that this raw material composition was used.
  • tetrahedron T 1 (GeS 4 tetrahedron and PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) share a ridge
  • tetrahedron T 2 (PS 4 tetrahedron) and octahedron O (LiS 6 octahedron) was a crystal structure sharing a vertex.
  • Examples 1 to 7 have the same diffraction pattern as Comparative Example 1, and thus it was confirmed that the same crystal structure was formed in Examples 1 to 7.
  • Example 1 is a LiSiPSO system, it was confirmed to have a reduction potential similar to that of Examples 2-4.
  • Li ion conductivity measurement Using the sulfide solid electrolyte materials obtained in Examples 1 to 4 and Comparative Examples 1 and 2, Li ion conductivity at 25 ° C. was measured. First, an appropriate amount of sample is weighed in a glove box in an argon atmosphere and placed in a polyethylene terephthalate tube (PET tube, inner diameter 10 mm, outer diameter 30 mm, height 20 mm), and powder molding made of carbon tool steel S45C anvil from above and below. I pinched it with a jig.
  • PET tube polyethylene terephthalate tube
  • a frequency response analyzer FRA Frequency Response Analyzer
  • Solartron impedance / gain phase analyzer solartron 1260
  • Espec corp, SU-241, -40 ° C ⁇ 150 ° C was used.
  • the measurement was started from the high frequency region under the conditions of an AC voltage of 10 mV to 1000 mV, a frequency range of 1 Hz to 10 MHz, an integration time of 0.2 seconds, and a temperature of 23 ° C.
  • Zplot was used as measurement software, and Zview was used as analysis software. The obtained result is shown in FIG. As shown in FIGS.
  • the lattice constant was determined as follows. First, the obtained sulfide solid electrolyte material was packed in a quartz capillary of ⁇ 0.5 mm, and XRD pattern data was obtained at a wavelength of 0.5 mm at a high-intensity synchrotron radiation facility (Spring-8). Based on the obtained data, the lattice constant was calculated by Rietveld analysis. At that time, the space group was P4 2 / nmc (137). The results are shown in FIG.
  • Li 2 S lithium sulfide
  • Li 2 O lithium oxide
  • P 2 S 5 diphosphorus pentasulfide
  • GeS 2 germanium sulfide
  • the obtained ion conductive material was molded into pellets, and the obtained pellets were placed in a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature.
  • This gave a sulfide solid electrolyte material of the crystalline having a composition of Li 3.35 Ge 0.35 P 0.65 S 3.8 O 0.2.
  • the amount of oxygen substitution is 5%.
  • the crystalline material was the same as in Reference Example 1 except that the raw material composition used was a mixture of Li 2 S 0.390529 g, P 2 S 5 0.366564 g, and GeS 2 0.242907 g.
  • the sulfide solid electrolyte material was obtained.
  • the oxygen substitution amount is 0%.
  • Reference Examples 1 to 3 in which sulfur was substituted with oxygen had higher Li ion conductivity than Reference Example 4 in which sulfur was not substituted with oxygen.
  • the reason for the high Li ion conductivity of the sulfide solid electrolyte materials obtained in Reference Examples 1 to 3 is that the size of the tunnel through which Li ions pass (the tunnel existing in the crystal) is more conductive by introducing the O element. This is thought to be due to the change to a size that is easy to do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Silicon Compounds (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、イオン伝導性が良好であり、かつ、還元電位が低い硫化物固体電解質材料を提供することを主目的とする。 本発明は、M元素(例えばLi元素)、M元素(例えばGe元素、Si元素およびP元素)およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であり、Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料を提供することにより、上記課題を解決する。

Description

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
 本発明は、イオン伝導性が良好であり、かつ、還元電位が低い硫化物固体電解質材料に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 全固体リチウム電池に用いられる固体電解質材料として、硫化物固体電解質材料が知られている。例えば、非特許文献1においては、Li(4-x)Ge(1-x)の組成を有するLiイオン伝導体(硫化物固体電解質材料)が開示されている。また、特許文献1においては、X線回折測定において特定のピークを有する結晶相の割合が高いLiGePS系の硫化物固体電解質材料が開示されている。さらに、非特許文献2には、LiGePS系の硫化物固体電解質材料が開示されている。
国際公開第2011/118801号
Ryoji Kanno et al., "Lithium Ionic Conductor Thio-LISICON The Li2S-GeS2-P2S5 System", Journal of The Electrochemical Society, 148 (7) A742-A746 (2001) Noriaki Kamaya et al., "A lithium superionic conductor", Nature Materials, Advanced online publication, 31 July 2011, DOI:10.1038/NMAT3066
 電池の高出力化の観点から、イオン伝導性が良好な固体電解質材料が求められている。特許文献1には、X線回折測定において特定のピークを有する結晶相の割合が高い硫化物固体電解質材料は、良好なイオン伝導性を有することが開示されている。一方、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、還元電位が0.25V(vs Li/Li)程度であり、例えば0.25Vよりも低い作動電位を有する負極活物質とともに電池に用いると、硫化物固体電解質材料が還元分解し、劣化するという問題がある。
 本発明は、上記問題点に鑑みてなされたものであり、イオン伝導性が良好であり、かつ、還元電位が低い硫化物固体電解質材料を提供することを主目的とする。
 上記課題を解決するために、本発明においては、M元素、M元素およびS元素を含有し、上記Mは、少なくともLiを含み、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であり、上記Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、2θ=29.58°付近のピークを有する結晶相の割合が高いため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料とすることができる。
 また、本発明においては、M元素、M元素およびS元素を含有し、上記Mは、少なくともLiを含み、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、上記2θ=27.33°±0.50°の位置にピークを有する場合、上記2θ=29.58°±0.50°のピークの回折強度をIとし、上記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が0.50未満であり、上記Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、2θ=29.58°付近のピークを有する結晶相の割合が高いため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料とすることができる。
 上記発明において、上記Mは、PおよびSi以外の他の元素を含むことが好ましい。
 上記発明においては、Pを除く上記Mに対するSiのモル分率が30%以上であることが好ましい。
 上記発明では、上記2θ=29.58°±0.50°の位置にピークを有する結晶相において、格子定数のa軸長が8.69Å以下であることが好ましい。
 上記発明においては、上記Mのモル分率の合計を1とした場合に、上記Mのモル分率が3.35以上であることが好ましい。
 また、本発明においては、M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mは、少なくともLiを含み、上記M2aおよび上記M2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、上記M2aおよび上記M2bの少なくとも一方はPを含み、上記M2aおよび上記M2bの少なくとも一方はSiを含むことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料とすることができる。
 上記発明において、上記M2aおよび上記M2bの少なくとも一方は、PおよびSi以外の他の元素を含むことが好ましい。
 上記発明においては、Pを除く上記M2aおよび上記M2bに対するSiのモル分率が30%以上であることが好ましい。
 上記発明では、上記結晶構造において、格子定数のa軸長が8.69Å以下であることが好ましい。
 上記発明においては、上記M2aおよび上記M2bのモル分率の合計を1とした場合に、上記Mのモル分率が3.35以上であることが好ましい。
 また、本発明においては、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを含有する電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とする電池を提供する。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、高出力な電池とすることができる。
 また、本発明においては、上述したピーク強度比を有する硫化物固体電解質材料の製造方法であって、上記M元素、上記M元素および上記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料を得ることができる。
 また、本発明においては、上述した結晶構造を有する硫化物固体電解質材料の製造方法であって、上記M元素、上記M2a元素、上記M2b元素および上記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有する硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料を得ることができる。
 本発明においては、イオン伝導性が良好であり、かつ、還元電位が低い硫化物固体電解質材料を得ることができるという効果を奏する。
イオン伝導性の高い硫化物固体電解質材料と、イオン伝導性の低い硫化物固体電解質材料との違いを説明するX線回折スペクトルである。 本発明の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。 本発明の電池の一例を示す概略断面図である。 本発明の硫化物固体電解質材料の製造方法の一例を示す説明図である。 実施例1~4で得られた硫化物固体電解質材料のX線回折スペクトルである。 実施例5~7で得られた硫化物固体電解質材料のX線回折スペクトルである。 比較例1、2で得られた硫化物固体電解質材料のX線回折スペクトルである。 実施例1~4で得られた硫化物固体電解質材料を用いた評価用電池の充電曲線である。 実施例5~7で得られた硫化物固体電解質材料を用いた評価用電池の充電曲線である。 比較例1、2で得られた硫化物固体電解質材料を用いた評価用電池の充電曲線である。 実施例1~4で得られた硫化物固体電解質材料を用いた評価用電池における電位およびdV/dQの関係を示すグラフである。 実施例5~7で得られた硫化物固体電解質材料を用いた評価用電池における電位およびdV/dQの関係を示すグラフである。 比較例1、2で得られた硫化物固体電解質材料を用いた評価用電池における電位およびdV/dQの関係を示すグラフである。 実施例1~4および比較例1、2で得られた硫化物固体電解質材料の還元電位である。 実施例1~4および比較例1、2で得られた硫化物固体電解質材料のLiイオン伝導度の測定結果である。 実施例1~3、5および比較例1、2で得られた硫化物固体電解質材料の格子定数と、還元電位との関係を示すグラフである。 実施例1、5~7および比較例1、2で得られた硫化物固体電解質材料のLi量と、還元電位との関係を示すグラフである。 本発明の効果を説明する結晶配置図である。 参考例1~4で得られた硫化物固体電解質材料のLiイオン伝導度の測定結果である。
 以下、本発明の硫化物固体電解質材料、電池、および硫化物固体電解質材料の製造方法について、詳細に説明する。
A.硫化物固体電解質材料
 まず、本発明の硫化物固体電解質材料について説明する。本発明の硫化物固体電解質材料は、2つの実施態様に大別することができる。そこで、本発明の硫化物固体電解質材料について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の硫化物固体電解質材料は、M元素、M元素およびS元素を含有し、上記Mは、少なくともLiを含み、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であり、上記Mは、少なくともPおよびSiを含むことを特徴とするものである。
 第一実施態様によれば、2θ=29.58°付近のピークを有する結晶相の割合が高いため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料とすることができる。Siは、イオン半径が小さく、Sと強固な結合を作ることから、還元分解されにくい性質を有すると考えられ、その結果、還元電位が低くなると推定される。また、Liとの合金化電位を比べると、Siは0.35V(Li/Li)付近であり、例えばGe(0.4V付近)およびSn(0.6V付近)より低く、Liと合金化しにくく、その結果、還元電位が低くなると推定される。
 図1は、イオン伝導性が高い硫化物固体電解質材料と、イオン伝導性が低い硫化物固体電解質材料との違いを説明するX線回折スペクトルである。なお、図1における2つの硫化物固体電解質材料は、ともにLi3.25Ge0.250.75の組成を有するものである。図1において、イオン伝導性が高い硫化物固体電解質材料は、2θ=29.58°±0.50°の位置、および、2θ=27.33°±0.50°の位置にピークを有する。また、図1において、イオン伝導性が低い硫化物固体電解質材料も同様のピークを有する。ここで、2θ=29.58°付近のピークを有する結晶相と、2θ=27.33°付近のピークを有する結晶相とは、互いに異なる結晶相であると考えられる。なお、第一実施態様においては、2θ=29.58°付近のピークを有する結晶相を「結晶相A」と称し、2θ=27.33°付近のピークを有する結晶相を「結晶相B」と称する場合がある。この結晶相Aの結晶構造は、後述する第二実施態様に記載する結晶構造であると考えられる。
 結晶相A、Bは、ともにイオン伝導性を示す結晶相であるが、そのイオン伝導性には違いがある。結晶相Aは、結晶相Bに比べて、イオン伝導性が顕著に高いと考えられる。従来の合成方法(例えば固相法)では、イオン伝導性の低い結晶相Bの割合を少なくすることができず、イオン伝導性を十分に高くすることができなかった。これに対して、第一実施態様では、イオン伝導性の高い結晶相Aを積極的に析出させることができるため、イオン伝導性の高い硫化物固体電解質材料を得ることができる。
 また、第一実施態様においては、イオン伝導性が低い硫化物固体電解質材料と区別するため、2θ=29.58°付近のピークの回折強度をIとし、2θ=27.33°付近のピークの回折強度をIとし、I/Iの値を0.50未満に規定している。なお、I/Iの値が0.50未満の硫化物固体電解質材料は、従来の合成方法では得ることができないと考えられる。また、イオン伝導性の観点からは、第一実施態様の硫化物固体電解質材料は、イオン伝導性の高い結晶相Aの割合が高いことが好ましい。そのため、I/Iの値はより小さいことが好ましく、具体的には、0.45以下であることが好ましく、0.25以下であることがより好ましく、0.15以下であることがさらに好ましく、0.07以下であることが特に好ましい。また、I/Iの値は0であることが好ましい。言い換えると、第一実施態様の硫化物固体電解質材料は、結晶相Bのピークである2θ=27.33°付近のピークを有しないことが好ましい。
 第一実施態様の硫化物固体電解質材料は、2θ=29.58°付近にピークを有する。このピークは、上述したように、イオン伝導性の高い結晶相Aのピークの一つである。ここで、2θ=29.58°は実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=29.58°から多少前後する場合がある。そのため、第一実施態様においては、結晶相Aの上記ピークを、29.58°±0.50°の位置のピークとして定義する。結晶相Aは、通常、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。
 一方、2θ=27.33°付近のピークは、上述したように、イオン伝導性の低い結晶相Bのピークの一つである。ここで、2θ=27.33°は実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=27.33°から多少前後する場合がある。そのため、第一実施態様においては、結晶相Bの上記ピークを、27.33°±0.50°の位置のピークとして定義する。結晶相Bは、通常、2θ=17.46°、18.12°、19.99°、22.73°、25.72°、27.33°、29.16°、29.78°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲で前後する場合がある。
 また、第一実施態様の硫化物固体電解質材料は、M元素、M元素およびS元素を含有するものである。上記Mは、少なくともLiを含むものであれば特に限定されるものではなく、Liのみであっても良く、Liと、他の元素との組み合わせであっても良い。他の元素は、例えば、一価または二価の元素であることが好ましく、具体的には、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種であることが好ましい。また、上記Mは、一価の元素(例えばLi、Na、K)であり、その一部が二価以上の元素(例えばMg、Ca、Zn)で置換されたものであっても良い。これにより、一価の元素が移動しやすくなりイオン伝導性が向上する。
 一方、上記Mは、三価、四価または五価の元素であることが好ましく、少なくとも四価の元素を含むことがより好ましい。また、上記Mは、通常、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種である。第一実施態様においては、上記Mが少なくともPおよびSiを含むことを大きな特徴とする。上記Mは、(i)PおよびSiのみであっても良く、(ii)PおよびSi以外の他の元素をさらに含んでいても良い。(ii)の場合、他の元素M2xは、通常、Sb、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、Ge、Sn、Al、Ga、Bからなる群から選択される少なくとも一種であることが好ましい。上記(ii)の場合は、M2X元素の一部がSi元素で置換された態様であると捉えることもできる。
 また、第一実施態様において、Pを除くMに対するSiのモル分率は、通常、0よりも大きい。ここで、「Pを除くM」とは、具体的には以下のことをいう。すなわち、上記(i)のように、MがPおよびSiのみである場合、「Pを除くM」とはSiをいい、上記(ii)のように、MがPおよびSiに加えてM2xを含む場合、「Pを除くM」とはSiおよびM2xをいう。上記Siのモル分率は、例えば10mol%以上であり、30mol%以上であることが好ましい。なお、Siのモル分率が100%である場合が上記(i)の場合に相当する。一方、上記(ii)の場合、Siのモル分率は、例えば99%以下であることが好ましい。また、上記(ii)の場合は、上記(i)の場合に比べて、例えばLiイオン伝導度の点で有利である。
 また、第一実施態様の硫化物固体電解質材料は、O元素を含有することが好ましい。イオン伝導性がさらに良好になるからである。硫化物固体電解質材料に含まれるO元素の割合は、O元素を含有せずSで価数を調整したこと以外は同一の硫化物固体電解質材料(O元素を含有しない硫化物固体電解質材料)のイオン伝導性よりも高いイオン伝導性が得られる割合であることが好ましい。なお、O元素を含有しない硫化物固体電解質材料は、例えば、O元素を含有する硫化物固体電解質材料がLi3.35(Ge1-δSiδ0.350.65(S1-yである場合、Li3.35(Ge1-δSiδ0.350.65が該当する。ここで、S元素およびO元素の合計に対するO元素の割合は、例えば0.1%以上であることが好ましく、0.5%以上であることがより好ましく、1%以上であることがさらに好ましい。一方、上記O元素の割合は、例えば25%以下であることが好ましい。より高いイオン伝導性を有する硫化物固体電解質材料とすることができるからである。また、上記O元素の割合は、例えばXPS、EDXにより決定することができる。
 また、後述する実施例では、LiGeSiPS系、LiSnSiPS系、LiSiPSO系の硫化物固体電解質材料を実際に合成し、得られたサンプルのX線回折測定を行い、I/Iが所定の値以下であることを確認している。一方、第一実施態様の硫化物固体電解質材料は、通常、後述する第二実施態様に記載する所定の結晶構造を有する。M元素およびM元素は、その任意の組み合わせにおいて、上記の硫化物固体電解質材料と同様の結晶構造を取ることが可能であると推測される。そのため、M元素およびM元素の任意の組み合わせにおいて、いずれも良好なイオン伝導性を有する硫化物固体電解質材料が得られると考えられる。また、X線回折のピークの位置は、結晶構造に依存することから、硫化物固体電解質材料が上記結晶構造を有していれば、M元素およびM元素の種類に依らず、類似したXRDパターンが得られると考えられる。
 また、第一実施態様の硫化物固体電解質材料は、Li元素、Ge元素、Si元素、P元素およびS元素を含有することが好ましい。さらに、LiGeSiPS系の硫化物固体電解質材料の組成は、所定のI/Iの値を得ることができる組成であれば特に限定されるものではないが、Li(4-x)(Ge1-δSiδ(1-x)(S1-y(xは、0<x<1を満たし、yは、0≦y≦0.25を満たし、δは、0<δ<1を満たす)ことが好ましい。イオン伝導性の高い硫化物固体電解質材料とすることができるからである。ここで、Si元素およびO元素を有しないLi(4-x)Ge(1-x)の組成は、LiPSおよびLiGeSの固溶体の組成に該当する。すなわち、この組成は、LiPSおよびLiGeSのタイライン上の組成に該当する。LiPSおよびLiGeSは、いずれもオルト組成に該当し、化学的安定性が高いという利点を有する。
 また、Li(4-x)(Ge1-δSiδ(1-x)(S1-yにおけるxは、所定のI/Iの値を得ることができる値であれば特に限定されるものではないが、例えば、0.4≦xを満たすことが好ましく、0.5≦xを満たすことがより好ましく、0.6≦xを満たすことがさらに好ましい。一方、上記xは、x≦0.8を満たすことが好ましく、x≦0.75を満たすことがより好ましい。このようなxの範囲とすることにより、I/Iの値をより小さくできるからである。これにより、さらにイオン伝導性が良好な硫化物固体電解質材料とすることができる。なお、上記式において、Ge元素の代わりに、Si元素以外の四価のM2x元素を用いても良い。同様に化学的安定性が高い硫化物固体電解質材料とすることができるからである。
 第一実施態様の硫化物固体電解質材料は、通常、Si元素を含有せずM2x元素で価数を調整したこと以外は同一の硫化物固体電解質材料(Si元素を含有しない硫化物固体電解質材料)よりも還元電位が低い。なお、Si元素を含有しない硫化物固体電解質材料は、例えば、Si元素を含有する硫化物固体電解質材料がLi3.35(Ge1-δSiδ0.350.65である場合、Li3.35Ge0.350.65が該当する。Si元素を含有する硫化物固体電解質材料(第一実施態様の硫化物固体電解質材料)の還元電位は、Si元素を含有しない硫化物固体電解質材料の還元電位よりも、0.01V(vs Li/Li)以上低いことが好ましく、0.02V(vs Li/Li)以上低いことがより好ましい。また、第一実施態様の硫化物固体電解質材料は、例えば0.3V(vs Li/Li)以下であることが好ましく、0.25V(vs Li/Li)以下であることがより好ましい。
 第一実施態様において、結晶相A(2θ=29.58°±0.50°の位置にピークを有する結晶相)の格子定数は、特に限定されるものではない。中でも、結晶相Aの格子定数のa軸長は、例えば8.69Å以下であることが好ましく、8.68Å以下であることがより好ましく、8.67Å以下であることがさらに好ましい。還元電位がより低い硫化物固体電解質材料とすることができるからである。還元電位がより低くなる理由は、格子定数が小さくなることで、金属-硫黄距離が短くなり、結合が切れにくくなるためであると考えられる。一方、格子定数のa軸長は、通常8.0Å以上である。格子定数は、例えばXRDパターンのデータを基にリートベルト解析を行うことで求めることができる。
 また、第一実施態様の硫化物固体電解質材料は、M元素、M元素およびS元素を有する。Mのモル分率の合計を1とした場合における、Mのモル分率をM量とする。例えば、硫化物固体電解質材料がLi3.4(Ge0.2Si0.80.40.6の組成を有する場合、M量(Li量)は、3.4/(0.4+0.6)=3.4になる。M量の値は、特に限定されるものではないが、例えば3.35以上であることが好ましく、3.38以上であることがより好ましい。還元電位がより低い硫化物固体電解質材料とすることができるからである。その理由は、次のように考えられる。すなわち、硫化物固体電解質材料の還元分解は、硫化物固体電解質材料がLiおよび電子の両方を受け取ることで生じると考えられる。そのため、M量を多くし、格子間位置(空きサイト)を少なくすることで、Mが結晶内に侵入しにくくなり、硫化物固体電解質材料が還元分解されにくくなると考えられる。一方、M量の値は、例えば4.5以下であり、例えば4.0以下であることが好ましい。M量が多すぎると、結晶相Aが析出しない可能性があるからである。
 第一実施態様の硫化物固体電解質材料は、通常、結晶質の硫化物固体電解質材料である。また、第一実施態様の硫化物固体電解質材料は、イオン伝導性が高いことが好ましく、25℃における硫化物固体電解質材料のイオン伝導性は、1.0×10-3S/cm以上であることが好ましい。また、第一実施態様の硫化物固体電解質材料の形状は特に限定されるものではないが、例えば粉末状を挙げることができる。さらに、粉末状の硫化物固体電解質材料の平均粒径は、例えば0.1μm~50μmの範囲内であることが好ましい。
 第一実施態様の硫化物固体電解質材料は、高いイオン伝導性を有するものであるので、イオン伝導性を必要とする任意の用途に用いることができる。中でも、第一実施態様の硫化物固体電解質材料は、電池に用いられるものであることが好ましい。電池の高出力化に大きく寄与することができるからである。また、第一実施態様の硫化物固体電解質材料の製造方法については、後述する「C.硫化物固体電解質材料の製造方法」で詳細に説明する。また、第一実施態様の硫化物固体電解質材料は、後述する第二実施態様の特徴を兼ね備えたものであっても良い。
 なお、第一実施態様においては、M元素、M元素およびS元素を含有し、上記Mは、少なくともLiを含み、上記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、上記2θ=27.33°±0.50°の位置にピークを有する場合、上記2θ=29.58°±0.50°のピークの回折強度をIとし、上記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が0.50未満であり、上記Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料を提供することができる。第一実施態様の硫化物固体電解質材料が結晶相Bのピークである2θ=27.33°付近のピークを有しない場合を包含することは、上述した記載から明らかであるが、この表現により、2θ=27.33°付近のピークを有しない場合をさらに明確に規定できる。
2.第二実施態様
 次に、本発明の硫化物固体電解質材料の第二実施態様について説明する。第二実施態様の硫化物固体電解質材料は、M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mは、少なくともLiを含み、上記M2aおよび上記M2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、上記M2aおよび上記M2bの少なくとも一方はPを含み、上記M2aおよび上記M2bの少なくとも一方はSiを含むことを特徴とするものである。
 第二実施態様によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料とすることができる。
 図2は、第二実施態様の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。図2に示す結晶構造において、八面体Oは、中心元素としてMを有し、八面体の頂点に6個のSを有しており、典型的にはLiS八面体である。四面体Tは、中心元素としてM2aを有し、四面体の頂点に4個のSを有しており、典型的にはGeS四面体、SiS四面体およびPS四面体である。四面体Tは、中心元素としてM2bを有し、四面体の頂点に4個のSを有しており、典型的にはPS四面体である。さらに、四面体Tおよび八面体Oは稜を共有し、四面体Tおよび八面体Oは頂点を共有している。
 上記M2aおよび上記M2bの少なくとも一方は、通常、Pを含む。すなわち、上記M2aまたは上記M2bがPを含んでいても良く、上記M2aおよび上記M2bの両方がPを含んでいても良い。また、上記M2aおよび上記M2bの少なくとも一方は、通常、Siを含む。すなわち、上記M2aまたは上記M2bがSiを含んでいても良く、上記M2aおよび上記M2bの両方がSiを含んでいても良い。また、上記M2aおよび上記M2bの少なくとも一方は、M2xを含んでいても良い。すなわち、上記M2aまたは上記M2bがM2xを含んでいても良く、上記M2aおよび上記M2bの両方がM2xを含んでいても良い。また、第二実施態様において、Pを除くM2aおよびM2bに対するSiのモル分率は、通常、0よりも大きい。また、「Pを除くM2aおよびM2b」については、基本的に第一実施態様に記載した内容と同様である。また、上記Siのモル分率の好ましい範囲についても、第一実施態様に記載した内容と同様であるので、ここでの記載は省略する。
 第二実施態様の硫化物固体電解質材料は、上記結晶構造を主体として含有することを大きな特徴とする。硫化物固体電解質材料の全結晶構造における上記結晶構造の割合は特に限定されるものではないが、より高いことが好ましい。イオン伝導性の高い硫化物固体電解質材料とすることができるからである。上記結晶構造の割合は、具体的には、70wt%以上であることが好ましく、90wt%以上であることがより好ましい。なお、上記結晶構造の割合は、例えば、放射光XRDにより測定することができる。特に、第二実施態様の硫化物固体電解質材料は、上記結晶構造の単相材料であることが好ましい。イオン伝導性を極めて高くすることができるからである。
 また、上述した八面体O、四面体Tおよび四面体Tの少なくとも一つは、S元素の一部がO元素に置換されたものであっても良い。なお、S元素の一部がO元素に置換されていることは、例えば、リートベルト法によるXRDパターンの解析、中性子回折等により確認することができる。
 なお、第二実施態様におけるM元素、M元素(M2a元素、M2b元素)およびその他の事項については、上述した第一実施態様と同様であるので、ここでの記載は省略する。
B.電池
 次に、本発明の電池について説明する。本発明の電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを含有する電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とするものである。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、高出力な電池とすることができる。
 図3は、本発明の電池の一例を示す概略断面図である。図3における電池10は、正極活物質を含有する正極活物質層1と、負極活物質を含有する負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5と、これらの部材を収納する電池ケース6とを有するものである。本発明においては、正極活物質層1、負極活物質層2および電解質層3の少なくとも一つが、上記「A.硫化物固体電解質材料」に記載した硫化物固体電解質材料を含有することを大きな特徴とする。中でも、本発明においては、負極活物質層2または電解質層3に含まれる上記硫化物固体電解質材料が、負極活物質と接していることが好ましい。上記硫化物固体電解質材料は還元電位が低く、Siを含有しない硫化物固体電解質材料を用いる場合に比べて、使用可能な負極活物質の選択の幅が広がるという利点、作動電位が低い負極活物質を用いることで電池電圧が大きくなるという利点があるからである。
 以下、本発明の電池について、構成ごとに説明する。
1.負極活物質層
 本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。上記硫化物固体電解質材料は還元電位が低く、Siを含有しない硫化物固体電解質材料を用いる場合に比べて、使用可能な負極活物質の選択の幅が広がるからである。負極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。特に、本発明においては、負極活物質層が上記硫化物固体電解質材料を含有し、負極活物質の作動電位(Liイオンの挿入反応が生じる電位)が、上記硫化物固体電解質材料の還元電位よりも高いことが好ましい。
 負極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、負極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、負極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素含有結着材等を挙げることができる。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
2.電解質層
 本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、イオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。電解液を用いる電池に比べて、安全性の高い電池を得ることができるからである。さらに、本発明においては、固体電解質層が、上述した硫化物固体電解質材料を含有することが好ましい。固体電解質層に含まれる上記硫化物固体電解質材料の割合は、例えば10体積%~100体積%の範囲内、中でも50体積%~100体積%の範囲内であることが好ましい。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。また、固体電解質層の形成方法としては、例えば、固体電解質材料を圧縮成形する方法等を挙げることができる。
 また、本発明における電解質層は、電解液から構成される層であっても良い。電解液を用いる場合、固体電解質層を用いる場合に比べて安全性をさらに配慮する必要があるが、より高出力な電池を得ることができる。また、この場合は、通常、正極活物質層および負極活物質層の少なくとも一方が、上述した硫化物固体電解質材料を含有することになる。電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)等を挙げることができる。
3.正極活物質層
 本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。正極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、正極活物質としては、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。なお、正極活物質層に用いられる導電化材および結着材については、上述した負極活物質層における場合と同様である。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
4.その他の構成
 本発明の電池は、上述した負極活物質層、電解質層および正極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。また、正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、本発明に用いられる電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
5.電池
 本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。本発明の電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、本発明の電池の製造方法は、上述した電池を得ることができる方法であれば特に限定されるものではなく、一般的な電池の製造方法と同様の方法を用いることができる。例えば、本発明の電池が全固体電池である場合、その製造方法の一例としては、正極活物質層を構成する材料、固体電解質層を構成する材料、および負極活物質層を構成する材料を順次プレスすることにより、発電要素を作製し、この発電要素を電池ケースの内部に収納し、電池ケースをかしめる方法等を挙げることができる。
C.硫化物固体電解質材料の製造方法
 次に、本発明の硫化物固体電解質材料の製造方法について説明する。本発明の硫化物固体電解質材料の製造方法は、2つの実施態様に大別することができる。そこで、本発明の硫化物固体電解質材料の製造方法について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の硫化物固体電解質材料の製造方法は、「A.硫化物固体電解質材料 1.第一実施態様」に記載した硫化物固体電解質材料の製造方法であって、上記M元素、上記M元素および上記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とするものである。
 第一実施態様によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料を得ることができる。
 図4は、第一実施態様の硫化物固体電解質材料の製造方法の一例を示す説明図である。図4における硫化物固体電解質材料の製造方法では、まず、LiS、P、GeSおよびSiSを混合することにより、原料組成物を作製する。この際、空気中の水分によって原料組成物が劣化することを防止するために、不活性ガス雰囲気下で原料組成物を作製することが好ましい。次に、原料組成物にボールミルを行い、非晶質化したイオン伝導性材料を得る。次に、非晶質化したイオン伝導性材料を加熱し、結晶性を向上させることで、硫化物固体電解質材料を得る。
 第一実施態様においては、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができるが、以下、その理由について説明する。第一実施態様においては、従来の合成方法である固相法と異なり、一度、非晶質化したイオン伝導性材料を合成する。これにより、イオン伝導性の高い結晶相A(2θ=29.58°付近のピークを有する結晶相)が析出しやすい環境になり、その後の加熱工程により、結晶相Aを積極的に析出させることができ、I/Iの値を、従来不可能であった0.50未満にすることができると考えられる。非晶質化により結晶相Aが析出しやすい環境になる理由は、完全には明らかではないが、メカニカルミリングによりイオン伝導性材料における固溶域が変化し、結晶相Aが析出しにくい環境から析出しやすい環境に変化した可能性が考えられる。
 以下、第一実施態様の硫化物固体電解質材料の製造方法について、工程ごとに説明する。
(1)イオン伝導性材料合成工程
 まず、第一実施態様におけるイオン伝導性材料合成工程について説明する。第一実施態様におけるイオン伝導性材料合成工程は、上記M元素、上記M元素および上記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成する工程である。
 第一実施態様における原料組成物は、M元素、M元素およびS元素を含有するものであれば特に限定されるものではない。なお、原料組成物におけるM元素およびM元素については、上記「A.硫化物固体電解質材料」に記載した事項と同様である。M元素を含有する化合物は、特に限定されるものではないが、例えば、Mの単体およびMの硫化物を挙げることができる。Mの硫化物としては、例えばLiS、NaS、KS、MgS、CaS、ZnS等を挙げることができる。M元素を含有する化合物は、特に限定されるものではないが、例えば、Mの単体およびMの硫化物を挙げることができる。Mの硫化物としては、Me(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、MeS(Meは四価の元素であり、例えばGe、Si、Sn、Zr、Ti、Nbである)、Me(Meは五価の元素であり、例えばP、Vである)等を挙げることができる。
 S元素を含有する化合物は、特に限定されるものではなく、単体であっても良く、硫化物であっても良い。硫化物としては、上述したM元素またはM元素を含有する硫化物を挙げることができる。また、原料組成物は、O元素を含有していても良い。O元素を含有する化合物は、通常、酸化物である。酸化物の種類は特に限定されるものではないが、上述したM元素またはM元素を含有する酸化物であることが好ましい。不要な副反応が生じないからである。上記酸化物としては、Me(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、MeO(Meは四価の元素であり、例えばGe、Si、Sn、Zr、Ti、Nbである)、Me(Meは五価の元素であり、例えばP、Vである)、LiMeO(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、LiMeO(Meは四価の元素であり、例えばGe、Si、Sn、Zr、Ti、Nbである)、LiMeO(Meは五価の元素であり、例えばP、Vである)等を挙げることができる。
 メカニカルミリングは、試料を、機械的エネルギーを付与しながら粉砕する方法である。第一実施態様においては、原料組成物に対して、機械的エネルギーを付与することで、非晶質化したイオン伝導性材料を合成する。このようなメカニカルミリングとしては、例えば、振動ミル、ボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でも振動ミルおよびボールミルが好ましい。
 振動ミルの条件は、非晶質化したイオン伝導性材料を得ることができるものであれば特に限定されるものではない。振動ミルの振動振幅は、例えば5mm~15mmの範囲内、中でも6mm~10mmの範囲内であることが好ましい。振動ミルの振動周波数は、例えば500rpm~2000rpmの範囲内、中でも1000rpm~1800rpmの範囲内であることが好ましい。振動ミルの試料の充填率は、例えば1体積%~80体積%の範囲内、中でも5体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、振動ミルには、振動子(例えばアルミナ製振動子)を用いることが好ましい。
 ボールミルの条件は、非晶質化したイオン伝導性材料を得ることができるものであれば特に限定されるものではない。一般的に、回転数が大きいほど、イオン伝導性材料の生成速度は速くなり、処理時間が長いほど、原料組成物からイオン伝導性材料への転化率は高くなる。遊星型ボールミルを行う際の台盤回転数としては、例えば200rpm~500rpmの範囲内、中でも250rpm~400rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間は、例えば1時間~100時間の範囲内、中でも1時間~70時間の範囲内であることが好ましい。
 なお、第一実施態様においては、2θ=29.58°付近のピークを有する結晶相が析出しやすい環境となるように、非晶質化したイオン伝導性材料を合成することが好ましい。
(2)加熱工程
 第一実施態様における加熱工程は、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る工程である。
 第一実施態様においては、非晶質化したイオン伝導性材料を加熱することにより、結晶性の向上を図る。この加熱を行うことで、イオン伝導性の高い結晶相A(2θ=29.58°付近のピークを有する結晶相)を積極的に析出させることができ、I/Iの値を、従来不可能であった0.50未満にすることができる。
 第一実施態様における加熱温度は、所望の硫化物固体電解質材料を得ることができる温度であれば特に限定されるものではないが、結晶相A(2θ=29.58°付近のピークを有する結晶相)の結晶化温度以上の温度であることが好ましい。具体的には、上記加熱温度が300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましく、450℃以上であることが特に好ましい。一方、上記加熱温度は、1000℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることがさらに好ましく、600℃以下であることが特に好ましい。また、加熱時間は、所望の硫化物固体電解質材料が得られるように適宜調整することが好ましい。また、第一実施態様における加熱は、酸化を防止する観点から、不活性ガス雰囲気下または真空中で行うことが好ましい。また、第一実施態様により得られる硫化物固体電解質材料については、上記「A.硫化物固体電解質材料 1.第一実施態様」に記載した内容と同様であるので、ここでの記載は省略する。
2.第二実施態様
 第二実施態様の硫化物固体電解質材料の製造方法は、「A.硫化物固体電解質材料 2.第二実施態様」に記載した硫化物固体電解質材料の製造方法であって、上記M元素、上記M2a元素、上記M2b元素および上記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とするものである。
 第二実施態様によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有する硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、Siが含まれることから、還元電位が低い硫化物固体電解質材料を得ることができる。
 第二実施態様におけるイオン伝導性材料合成工程および加熱工程については、基本的に、上述した「C.硫化物固体電解質材料の製造方法 1.第一実施態様」に記載した内容と同様であるので、ここでの記載は省略する。所望の硫化物固体電解質材料が得られるように、各種条件を設定することが好ましい。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)と、酸化リチウム(LiO、高純度化学社製)と、五硫化二リン(P、アルドリッチ社製)と、硫化珪素(SiS、高純度化学社製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.34083g、LiOを0.06819g、Pを0.38049g、SiSを0.21047gの割合で混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(10mmφ、10個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで、40時間メカニカルミリングを行った。これにより、非晶質化したイオン伝導性材料を得た。
 次に、得られたイオン伝導性材料の粉末を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.4Si0.40.6(S0.90.1の組成を有する結晶質の硫化物固体電解質材料を得た。なお、上記組成は、Li(4-x)((M2x1-δSiδ(1-x)(S1-yにおけるx=0.6、y=0.1、δ=1の組成に該当するものである。
[実施例2]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化ゲルマニウム(GeS、高純度化学社製)を用い、LiSを0.42166g、Pを0.35997g、GeSを0.05906g、SiSを0.15929gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.4(Ge0.2Si0.80.40.6の組成を有し、この組成はLi(4-x)(Ge1-δSiδ(1-x)(S1-yにおけるx=0.6、y=0、δ=0.8の組成に該当するものである。
[実施例3]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化スズ(SnS、高純度化学社製)を用い、LiSを0.411972g、Pを0.365571g、SiSを0.14873g、SnSを0.073724gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.38(Sn0.2Si0.80.380.62の組成を有し、この組成はLi(4-x)(Sn1-δSiδ(1-x)(S1-yにおけるx=0.62、y=0、δ=0.8の組成に該当するものである。
[実施例4]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化スズ(SnS、高純度化学社製)を用い、LiSを0.37861g、Pを0.39526g、SiSを0.0401g、SnSを0.185927gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.29(Sn0.7Si0.30.290.71の組成を有し、この組成はLi(4-x)(Sn1-δSiδ(1-x)(S1-yにおけるx=0.71、y=0、δ=0.3の組成に該当するものである。
[実施例5]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化スズ(SnS、高純度化学社製)を用い、LiSを0.383807g、Pを0.366893g、SiSを0.0627309g、SnSを0.186569gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.34(Sn0.7Si0.30.340.66の組成を有し、この組成はLi(4-x)(Sn1-δSiδ(1-x)(S1-yにおけるx=0.66、y=0、δ=0.3の組成に該当するものである。
[実施例6]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化ゲルマニウム(GeS、高純度化学社製)を用い、LiSを0.415120g、Pを0.375416g、SiSを0.128062g、GeSを0.0814011gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.38(Ge0.3Si0.70.380.62の組成を有し、この組成はLi(4-x)(Ge1-δSiδ(1-x)(S1-yにおけるx=0.62、y=0、δ=0.7の組成に該当するものである。
[実施例7]
 出発原料として、酸化リチウム(LiO)の代わりに、硫化ゲルマニウム(GeS、高純度化学社製)を用い、LiSを0.407909g、Pを0.368895g、SiSを0.0898839g、GeSを0.1333119gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.37(Ge0.5Si0.50.370.63の組成を有し、この組成はLi(4-x)(Ge1-δSiδ(1-x)(S1-yにおけるx=0.63、y=0、δ=0.5の組成に該当するものである。
[比較例1]
 出発原料として、LiS、P、GeSを用い、LiSを0.39019g、Pを0.377515g、GeSを0.232295gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.33Ge0.330.67の組成を有し、この組成はLi(4-x)(Ge1-δSiδ(1-x)(S1-yにおけるx=0.67、y=0、δ=0の組成に該当するものである。
[比較例2]
 出発原料として、LiS、P、SnSを用い、LiSを0.365069g、Pを0.390958g、SnSを0.243972gの割合で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.275Sn0.2750.725の組成を有し、この組成はLi(4-x)(Sn1-δSiδ(1-x)(S1-yにおけるx=0.725、y=0、δ=0の組成に該当するものである。
[評価]
(X線回折測定)
 実施例1~7および比較例1、2で得られた硫化物固体電解質材料を用いて、X線回折(XRD)測定を行った。XRD測定は、粉末試料に対して、不活性雰囲気下、CuKα線使用の条件で行った。その結果を図5~図7に示す。図7(a)に示すように、比較例1では、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°の位置にピークが現れた。これらのピークが、イオン伝導性の高い結晶相Aのピークであると考えられる。なお、イオン伝導性の低い結晶相Bのピークである2θ=27.33°±0.50°のピークは確認されなかった。また、比較例2および実施例1~7は、比較例1と同様の回折パターンを有することが確認された。
(X線構造解析)
 比較例1で得られた硫化物固体電解質材料の結晶構造をX線構造解析により同定した。XRDで得られた回折図形を基に直接法で晶系・結晶群を決定し、その後、実空間法により結晶構造を同定した。その結果、上述した図2のような結晶構造を有することが確認された。すなわち、四面体T(GeS四面体およびPS四面体)と、八面体O(LiS八面体)とは稜を共有し、四面体T(PS四面体)と、八面体O(LiS八面体)とは頂点を共有している結晶構造であった。また、上述したように実施例1~7は比較例1と同様の回折パターンを有することから、実施例1~7においても同様の結晶構造が形成されていることが確認された。
(還元電位測定)
 実施例1~7および比較例1、2で得られた硫化物固体電解質材料の粉末を用いて、評価用電池を作製した。まず、硫化物固体電解質材料100mgをマコール製のシリンダに添加し、1ton/cmでプレスし、固体電解質層を形成した。次に、SUS粉末および硫化物固体電解質材料を、重量比でSUS粉末:硫化物固体電解質材料=80:20となるように秤量し、メノウ乳鉢で混合した。これにより、作用極合材を得た。この作用極合材12mgを固体電解質層の一方の表面に添加し、4ton/cmでプレスし、固体電解質層上に作用極を形成した。次に、固体電解質層の他方の表面に、LiIn箔を配置し、1ton/cmでプレスし、参照極を形成した。これにより発電要素を得た。その発電要素を6Ncmで拘束し、評価用電池を得た。
 得られた評価用電池を用い、0.15mA/cmの電流密度で-0.62Vまで定電流充電を行った。これにより、横軸を容量とし、縦軸を作用極の電位(vs. LiIn)とした充電曲線を得た。得られた充電曲線の電位に0.62Vを足し、電位基準をLiInからLi/Liに変更した(図8~図10)。変更した充電曲線において、電位を容量で微分し、横軸を電位とし、縦軸をdV/dQのグラフを作成した(図11~図13)。dV/dQの値が-0.01~0.01の範囲内にある直線部Aと、傾きを有する直線部Bとの交点を還元電位と考え、直線部Aであり、かつ、dV/dQ=0となる最大の電位を還元電位と定義した。実施例1~4および比較例1、2の結果を図14に示す。図14(a)では、LiGePS系である、実施例2と比較例1とを比較すると、Geの一部をSiで置換することにより、還元電位が低下することが確認された。図14(b)では、LiSnPS系である、実施例3および実施例4と比較例2とを比較すると、Snの一部をSiで置換することにより、還元電位が低下することが確認された。なお、実施例1はLiSiPSO系であるが、実施例2~4と同様の還元電位を有することが確認された。
(Liイオン伝導度測定)
 実施例1~4および比較例1、2で得られた硫化物固体電解質材料を用いて、25℃でのLiイオン伝導度を測定した。まず、アルゴン雰囲気のグローブボックス内で、試料を適量秤量し、ポリエチレンテレフタラート管(PET管、内径10mm、外径30mm、高さ20mm)に入れ、上下から、炭素工具鋼S45Cアンビルからなる粉末成型治具で挟んだ。次に、一軸プレス機(理研精機社製P-6)を用いて、表示圧力6MPa(成型圧力約110MPa)でプレスし、直径10mm、任意の厚さのペレットを成型した。次に、ペレットの両面に、金粉末(ニラコ社製、樹状、粒径約10μm)を13mg~15mgずつ乗せて、均一にペレット表面上に分散させ、表示圧力30MPa(成型圧力約560MPa)で成型した。その後、得られたペレットを、アルゴン雰囲気を維持できる密閉式電気化学セルに入れた。
 測定には、周波数応答解析装置FRA(Frequency Response Analyzer)として、ソーラトロン社製のインピーダンス・ゲインフェーズアナライザー(solartron 1260)を用い、恒温装置として小型環境試験機(Espec corp, SU-241, -40℃~150℃)を用いた。交流電圧10mV~1000mV、周波数範囲1Hz~10MHz、積算時間0.2秒、温度23℃の条件で、高周波領域から測定を開始した。測定ソフトにはZplotを用い、解析ソフトにはZviewを用いた。得られた結果を図15に示す。図15(a)、(b)に示すように、実施例1~4および比較例1、2で得られた硫化物固体電解質材料は、いずれも高いLiイオン伝導度を示した。置換量δに着目すると、δ=1の場合よりもδ<1の場合に、より高いLiイオン伝導度を示すことが確認された。
(格子定数が還元電位に与える影響)
 実施例1~3、5および比較例1、2で得られた硫化物固体電解質材料の格子定数と、還元電位との関係を調べた。格子定数は次のようにして求めた。まず、得られた硫化物固体電解質材料をφ0.5mmの石英製のキャピラリに詰め、高輝度放射光施設(Spring-8)にて波長0.5ÅでXRDパターンのデータを得た。得られたデータを基に、リートベルト解析により格子定数を算出した。その際、空間群はP4/nmc(137)とした。その結果を図16および表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図16および表1に示すように、a軸長が8.69Å以下である場合、還元電位がより低くなることが確認された。
(Li量が還元電位に与える影響)
 実施例1、5~7および比較例1、2で得られた硫化物固体電解質材料のLi量と、還元電位との関係を調べた。その結果を図17および表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図17および表2に示すように、Li量が3.35以上である場合、還元電位がより低くなることが確認された。これは、図18に示すように、格子間位置(空きサイト)に新たにLiが入ることで、硫化物固体電解質材料に侵入できるLiの場所が減少し、還元電位が低下すると考えられる。
[参考例1]
 出発原料として、硫化リチウム(LiS)と、酸化リチウム(LiO)と、五硫化二リン(P)と、硫化ゲルマニウム(GeS)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、LiSを0.3495g、LiOを0.03082g、Pを0.372641g、GeSを0.2469gの割合で混合し、原料組成物を得た。得られた原料組成物を、振動ミルを用いて粉砕した。振動ミルにはシーエムティー科学社製TI-100を使用した。具体的には、10mLのポットに、原料組成物1gと、アルミナ製振動子(φ36.3mm、高さ48.9mm)とを入れ、回転数1440rpmで30分間処理を行った。これにより、非晶質化したイオン伝導性材料を得た。
 次に、得られたイオン伝導性材料をペレット状に成型し、得られたペレットを、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.35Ge0.350.653.80.2の組成を有する結晶質の硫化物固体電解質材料を得た。なお、上記組成は、Li(4-x)Ge(1-x)4-yにおけるx=0.65、y=0.2の組成に該当するものである。酸素置換量は5%である。
[参考例2]
 原料組成物として、LiSを0.30728g、LiOを0.06269g、Pを0.378922g、GeSを0.251096gの割合で混合したものを用いたこと以外は、参考例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.35Ge0.350.653.60.4の組成を有し、この組成はLi(4-x)Ge(1-x)4-yにおけるx=0.65、y=0.4の組成に該当するものである。酸素置換量は10%である。
[参考例3]
 原料組成物として、LiSを0.190304g、LiOを0.150803g、Pを0.3962890g、GeSを0.262604gの割合で混合したものを用いたこと以外は、参考例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.35Ge0.350.653.080.92の組成を有し、この組成はLi(4-x)Ge(1-x)4-yにおけるx=0.65、y=0.92の組成に該当するものである。酸素置換量は23%である。
[参考例4]
 原料組成物として、LiSを0.390529g、Pを0.366564g、GeSを0.242907gの割合で混合したものを用いたこと以外は、参考例1と同様にして結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.35Ge0.350.65の組成を有し、この組成はLi(4-x)Ge(1-x)4-yにおけるx=0.65、y=0の組成に該当するものである。酸素置換量は0%である。
[評価]
(Liイオン伝導度測定)
 参考例1~4で得られた硫化物固体電解質材料を用いて、25℃でのLiイオン伝導度を測定した。測定条件は、上記内容と同様である。得られた結果を図19に示す。
 図19に示されるように、硫黄を酸素で置換した参考例1~3は、硫黄を酸素で置換していない参考例4に比べて、Liイオン伝導度が高いことが確認された。参考例1~3で得られた硫化物固体電解質材料のLiイオン伝導度が高い理由は、Liイオンが通過するトンネル(結晶中に存在するトンネル)のサイズが、O元素の導入により、より伝導しやすいサイズに変化したためであると考えられる。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 4 … 正極集電体
 5 … 負極集電体
 6 … 電池ケース
 10 … 電池

Claims (14)

  1.  M元素、M元素およびS元素を含有し、
     前記Mは、少なくともLiを含み、
     前記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、
     CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、
     前記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が0.50未満であり、
     前記Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料。
  2.  M元素、M元素およびS元素を含有し、
     前記Mは、少なくともLiを含み、
     前記Mは、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、
     CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、
     CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、
     前記2θ=27.33°±0.50°の位置にピークを有する場合、前記2θ=29.58°±0.50°のピークの回折強度をIとし、前記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が0.50未満であり、
     前記Mは、少なくともPおよびSiを含むことを特徴とする硫化物固体電解質材料。
  3.  前記Mは、PおよびSi以外の他の元素を含むことを特徴とする請求項1または請求項2に記載の硫化物固体電解質材料。
  4.  Pを除く前記Mに対するSiのモル分率が30%以上であることを特徴とする請求項1から請求項3までのいずれかの請求項に記載の硫化物固体電解質材料。
  5.  前記2θ=29.58°±0.50°の位置にピークを有する結晶相において、格子定数のa軸長が8.69Å以下であることを特徴とする請求項1から請求項4までのいずれかの請求項に記載の硫化物固体電解質材料。
  6.  前記Mのモル分率の合計を1とした場合に、前記Mのモル分率が3.35以上であることを特徴とする請求項1から請求項5までのいずれかの請求項に記載の硫化物固体電解質材料。
  7.  M元素およびS元素から構成される八面体Oと、M2a元素およびS元素から構成される四面体Tと、M2b元素およびS元素から構成される四面体Tとを有し、前記四面体Tおよび前記八面体Oは稜を共有し、前記四面体Tおよび前記八面体Oは頂点を共有する結晶構造を主体として含有し、
     前記Mは、少なくともLiを含み、
     前記M2aおよび前記M2bは、それぞれ独立に、P、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される少なくとも一種であり、
     前記M2aおよび前記M2bの少なくとも一方はPを含み、
     前記M2aおよび前記M2bの少なくとも一方はSiを含むことを特徴とする硫化物固体電解質材料。
  8.  前記M2aおよび前記M2bの少なくとも一方は、PおよびSi以外の他の元素を含むことを特徴とする請求項7に記載の硫化物固体電解質材料。
  9.  Pを除く前記M2aおよび前記M2bに対するSiのモル分率が30%以上であることを特徴とする請求項7または請求項8に記載の硫化物固体電解質材料。
  10.  前記結晶構造において、格子定数のa軸長が8.69Å以下であることを特徴とする請求項7から請求項9までのいずれかの請求項に記載の硫化物固体電解質材料。
  11.  前記M2aおよび前記M2bのモル分率の合計を1とした場合に、前記Mのモル分率が3.35以上であることを特徴とする請求項7から請求項10までのいずれかの請求項に記載の硫化物固体電解質材料。
  12.  正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを含有する電池であって、
     前記正極活物質層、前記負極活物質層および前記電解質層の少なくとも一つが、請求項1から請求項11までのいずれかの請求項に記載の硫化物固体電解質材料を含有することを特徴とする電池。
  13.  請求項1または請求項2に記載の硫化物固体電解質材料の製造方法であって、
     前記M元素、前記M元素および前記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、
     前記非晶質化したイオン伝導性材料を加熱することにより、前記硫化物固体電解質材料を得る加熱工程と、
     を有することを特徴とする硫化物固体電解質材料の製造方法。
  14.  請求項7に記載の硫化物固体電解質材料の製造方法であって、
     前記M元素、前記M2a元素、前記M2b元素および前記S元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、
     前記非晶質化したイオン伝導性材料を加熱することにより、前記硫化物固体電解質材料を得る加熱工程と、
     を有することを特徴とする硫化物固体電解質材料の製造方法。
PCT/JP2013/052612 2012-02-06 2013-02-05 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 WO2013118723A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013000854.8T DE112013000854B8 (de) 2012-02-06 2013-02-05 Sulfidfestkörperelektrolytmaterial, Batterie und Herstellungsverfahren für das Sulfidfestkörperelektrolytmaterial
KR1020147021281A KR101760558B1 (ko) 2012-02-06 2013-02-05 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
CN201380007125.0A CN104185873B (zh) 2012-02-06 2013-02-05 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
US14/375,571 US10033065B2 (en) 2012-02-06 2013-02-05 Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012022964 2012-02-06
JP2012-022964 2012-02-06
JP2012234144A JP5888609B2 (ja) 2012-02-06 2012-10-23 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2012-234144 2012-10-23

Publications (1)

Publication Number Publication Date
WO2013118723A1 true WO2013118723A1 (ja) 2013-08-15

Family

ID=48947486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052612 WO2013118723A1 (ja) 2012-02-06 2013-02-05 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Country Status (6)

Country Link
US (1) US10033065B2 (ja)
JP (1) JP5888609B2 (ja)
KR (1) KR101760558B1 (ja)
CN (1) CN104185873B (ja)
DE (1) DE112013000854B8 (ja)
WO (1) WO2013118723A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556616A (zh) * 2013-09-26 2016-05-04 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
WO2017022464A1 (ja) * 2015-07-31 2017-02-09 国立大学法人東京工業大学 α-リチウム固体電解質
US9748602B2 (en) 2013-04-16 2017-08-29 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
WO2019007501A1 (en) * 2017-07-05 2019-01-10 Toyota Motor Europe NEW LITHIUM MIXED METAL SULFIDE WITH HIGH ION CONDUCTIVITY
US10461363B2 (en) 2014-06-25 2019-10-29 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP2020123581A (ja) * 2020-04-07 2020-08-13 国立大学法人東京工業大学 α−リチウム固体電解質
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method
WO2024014382A1 (ja) * 2022-07-11 2024-01-18 Agc株式会社 硫化物系固体電解質及びその製造方法、電極合剤、固体電解質層、並びに、全固体リチウムイオン二次電池

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518906B (zh) 2013-05-15 2019-04-16 量子世界公司 用于使用LiAMPBSC的电池的固态阴极电解质或电解质(M=Si、Ge和/或Sn)
US10355308B2 (en) 2013-06-07 2019-07-16 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
CN105830260B (zh) 2013-11-29 2018-10-26 汉阳大学校产学协力团 用于全固态锂二次电池的活性材料,其制造方法和包含其的全固态锂二次电池
JP6044587B2 (ja) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6044588B2 (ja) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2015187466A1 (en) 2014-06-04 2015-12-10 Quantumscape Corporation Electrode materials with mixed particle sizes
US10116003B2 (en) 2015-02-03 2018-10-30 Quantumscape Corporation Metal sulfide anolytes for electrochemical cells
KR101684130B1 (ko) * 2015-06-16 2016-12-07 현대자동차주식회사 리튬 이온 전도성 황화물의 제조방법, 이에 의하여 제조된 리튬 이온 전도성 황화물, 및 이를 포함하는 고체전해질, 전고체 배터리
US10374254B2 (en) 2015-06-24 2019-08-06 Quantumscape Corporation Composite electrolytes
CN107683510B (zh) * 2015-07-02 2019-09-24 国立大学法人东京工业大学 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
EP3384548A4 (en) 2015-12-04 2019-07-24 QuantumScape Corporation COMPOSITIONS OF ELECTROLYTES AND CATHOLYTES COMPRISING LITHIUM, PHOSPHORUS, SULFUR AND IODINE, ELECTROLYTE MEMBRANES FOR ELECTROCHEMICAL DEVICES, AND ANNEALING METHODS FOR THE PRODUCTION OF THESE ELECTROLYTES AND CATHOLYTES
JP6352960B2 (ja) * 2016-02-09 2018-07-04 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US20190074541A1 (en) * 2016-03-11 2019-03-07 Tokyo Institute Of Technology Sulfide solid electrolyte
CN107394120B (zh) * 2016-05-16 2022-03-29 松下知识产权经营株式会社 硫化物固体电解质材料、正极材料以及电池
JP7049665B2 (ja) * 2016-08-22 2022-04-07 公立大学法人大阪 全固体二次電池用の複合正極活物質、その製造方法、正極及び全固体二次電池
JP7034486B2 (ja) * 2016-08-23 2022-03-14 国立大学法人東京工業大学 硫化物固体電解質
EP3504749A4 (en) 2016-08-29 2020-05-06 QuantumScape Corporation SOLID STATE RECHARGEABLE BATTERY CATHOLYTES, BATTERY ARCHITECTURES SUITABLE FOR USE WITH SUCH CATHOLYTES, AND METHODS OF MAKING AND USING THE SAME
CN108238616A (zh) * 2016-12-23 2018-07-03 华中科技大学 一种立方相硫化物及其制备方法
CN106684460A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和银卤族化合物的硫化锂系固体电解质材料及其制备方法
CN106785000A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂锡合金、碘化银和溴化银的硫化锂系固体电解质材料及其制备方法
CN106684459A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和溴化银的硫化锂系固体电解质材料及其制备方法
CN106684442A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和碘化银的硫化锂系固体电解质材料及其制备方法
WO2018165606A1 (en) 2017-03-10 2018-09-13 Quantumscape Corporation Metal negative electrode ultrasonic charging
CN111344811B (zh) * 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
JP7010011B2 (ja) * 2018-01-17 2022-01-26 トヨタ自動車株式会社 硫化物固体電解質
JP7294334B2 (ja) * 2018-06-13 2023-06-20 三菱瓦斯化学株式会社 Lgps系固体電解質および製造方法
CN112673506A (zh) * 2018-08-30 2021-04-16 株式会社杰士汤浅国际 硫化物固体电解质和全固体电池
US11108084B2 (en) 2018-11-08 2021-08-31 Mitsui Mining & Smelting Co., Ltd. Sulfide solid electrolyte and battery
CN109888376B (zh) * 2019-03-29 2021-04-06 华中科技大学 一种硫化物钠离子固体电解质及其制备方法
CN110808407B (zh) * 2019-11-01 2020-11-20 宁德新能源科技有限公司 一种不含磷的硫化物固态电解质
CN111129572B (zh) * 2019-12-23 2022-02-11 来骑哦互联网技术(深圳)有限公司 一种硫化物电解质及其制备方法
CN111710902B (zh) * 2020-06-01 2021-11-09 国联汽车动力电池研究院有限责任公司 玻璃-陶瓷型硫化物电解质及其制备方法和应用
CN112751087B (zh) * 2020-12-31 2021-11-23 李龙德 提高导电性的电池材料及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103229A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質成形体の製造方法及びこれを用いる全固体電池
JP2010030889A (ja) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物ガラスの製造方法、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法及び硫化物ガラス製造用のメカニカルミリング処理装置
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2013033659A (ja) * 2011-08-02 2013-02-14 Toyota Motor Corp 固体電解質材料含有体および電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813767B2 (ja) 2004-02-12 2011-11-09 出光興産株式会社 リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2010036823A (ja) 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd 移動体
JP2010040457A (ja) 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd 移動体
WO2010084583A1 (ja) * 2009-01-21 2010-07-29 トヨタ自動車株式会社 硫化物固体電解質材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103229A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質成形体の製造方法及びこれを用いる全固体電池
JP2010030889A (ja) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物ガラスの製造方法、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法及び硫化物ガラス製造用のメカニカルミリング処理装置
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2013033659A (ja) * 2011-08-02 2013-02-14 Toyota Motor Corp 固体電解質材料含有体および電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748602B2 (en) 2013-04-16 2017-08-29 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
DE112014004476B4 (de) 2013-09-26 2023-11-09 Toyota Jidosha Kabushiki Kaisha Sulfidfestelektrolytmaterial, Batterie und Herstellungsverfahren für Sulfidfestelektrolytmaterial
US9761908B2 (en) 2013-09-26 2017-09-12 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
CN105556616B (zh) * 2013-09-26 2017-10-03 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
CN105556616A (zh) * 2013-09-26 2016-05-04 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
US10461363B2 (en) 2014-06-25 2019-10-29 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
WO2017022464A1 (ja) * 2015-07-31 2017-02-09 国立大学法人東京工業大学 α-リチウム固体電解質
JP2017033770A (ja) * 2015-07-31 2017-02-09 国立大学法人東京工業大学 α−リチウム固体電解質
US10741299B2 (en) 2015-07-31 2020-08-11 Tokyo Insititute of Technology Solid α-lithium electrolyte
WO2019007501A1 (en) * 2017-07-05 2019-01-10 Toyota Motor Europe NEW LITHIUM MIXED METAL SULFIDE WITH HIGH ION CONDUCTIVITY
US11370670B2 (en) 2017-07-05 2022-06-28 Toyota Motor Europe Lithium mixed metal sulfide with high ionic conductivity
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method
JP2020123581A (ja) * 2020-04-07 2020-08-13 国立大学法人東京工業大学 α−リチウム固体電解質
WO2024014382A1 (ja) * 2022-07-11 2024-01-18 Agc株式会社 硫化物系固体電解質及びその製造方法、電極合剤、固体電解質層、並びに、全固体リチウムイオン二次電池

Also Published As

Publication number Publication date
CN104185873B (zh) 2017-04-12
US10033065B2 (en) 2018-07-24
CN104185873A (zh) 2014-12-03
JP5888609B2 (ja) 2016-03-22
DE112013000854T8 (de) 2014-11-27
KR101760558B1 (ko) 2017-07-21
DE112013000854T5 (de) 2014-10-30
JP2013177288A (ja) 2013-09-09
KR20140117467A (ko) 2014-10-07
DE112013000854B8 (de) 2020-08-20
DE112013000854B4 (de) 2020-06-18
US20150037687A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5888609B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888610B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5880581B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5527673B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5742562B2 (ja) 固体電解質材料含有体および電池
JP6037444B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6288716B2 (ja) 硫化物固体電解質材料の製造方法
JP5720753B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5975071B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5561383B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6315617B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6036996B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5895917B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013084944A1 (ja) 電池
JP2015032550A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2024076931A (ja) 硫化物固体電解質材料、電池、および硫化物固体電解質材料の製造方法
KR20240078378A (ko) 황화물 고체 전해질 재료, 전지, 및 황화물 고체 전해질 재료의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746111

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147021281

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14375571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000854

Country of ref document: DE

Ref document number: 1120130008548

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746111

Country of ref document: EP

Kind code of ref document: A1