WO2014194561A1 - 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法 - Google Patents

一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法 Download PDF

Info

Publication number
WO2014194561A1
WO2014194561A1 PCT/CN2013/080951 CN2013080951W WO2014194561A1 WO 2014194561 A1 WO2014194561 A1 WO 2014194561A1 CN 2013080951 W CN2013080951 W CN 2013080951W WO 2014194561 A1 WO2014194561 A1 WO 2014194561A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
microcapsule
self
aldehyde
wall material
Prior art date
Application number
PCT/CN2013/080951
Other languages
English (en)
French (fr)
Inventor
朱光明
陈冠锦
汤皎宁
董必钦
王险峰
韩宁旭
邢峰
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2014194561A1 publication Critical patent/WO2014194561A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Definitions

  • the invention belongs to the technical field of self-healing materials, and particularly relates to a microcapsule using a phenolic resin as a wall material for self-healing materials and a preparation method thereof.
  • Phenolic resin is a polymer widely used in the industry, which has excellent adhesion, excellent heat resistance, unique ablation resistance and good flame retardancy, and has a simple synthesis process and low price.
  • Phenolic resin is a large class of synthetic resin formed by polycondensation of phenol and aldehyde. Commonly used phenols are: phenol, cresol, mixed cresol, nonylphenol, octylphenol, xylenol, cardanol, aralkylphenol.
  • aldehydes are: formaldehyde, paraformaldehyde, furfural, acetaldehyde, etc., of which phenol (Phenol) and formaldehyde (Formaldehyde) synthesis of phenolic resin (PF) is most commonly used.
  • the synthesis reaction of phenolic resin is divided into two steps: the first step is an addition reaction, which is the reaction of formaldehyde with phenol to form monomethylol and dimethylolphenol; the second step is condensation and polycondensation, which is hydroxymethylphenol and phenol. Or a stepwise chain growth reaction between methylol phenols.
  • the structure and properties of the finally obtained PF polymer are mainly determined by the chemical structure of the raw material, the phenol/aldehyde molar ratio (P/F) and the acidity and alkalinity of the reaction medium. It is generally classified into two types: a thermoplastic resin (Novolak) and a thermosetting resin (Resole).
  • Novolak and Resole are soluble and fusible. They have excellent mechanical properties, electrical insulation properties, chemical stability and thermal stability only after crosslinking. However, Novolak cannot cure itself. It requires the addition of catalyst and formaldehyde. Resole can be heated or acidic. Directly solidified in the medium. Resole is usually classified into a third order, a second order, and a half order depending on the degree of curing.
  • A-stage Resole is soluble in alkaline aqueous solution, ethanol, acetone, etc.; B-stage Resole can only be dissolved or even partially dissolved in ethanol or acetone, insoluble in alkaline aqueous solution; C-stage is completely cross-linked and solidified, not dissolved in any The solvent does not melt.
  • the route of the Novolak synthetic phenolic resin is usually referred to as a two-step process, and the one-step method is referred to by the Resole route.
  • Phenolic resin has rarely been reported as a wall material of microcapsules, but the synthesis of phenolic resin is simple and inexpensive, and the wall material used as the microcapsule should have more advantages than the current use of urine aldehyde resin, melamine resin and polyurea. It has been reported that phenolic resin is a good microcapsule wall material, and the preparation process of microcapsules using it as a wall material is not complicated, as in the literature [Plastic Industry, 39 (2011) 89-92] through in situ Fine microcapsules of phenolic-coated red phosphorus (average particle size of only 7.5 ⁇ m) were prepared by polymerization.
  • Document 2 [Chinese invention patent, publication number CN101249409B, 2008] Ultrafine microcapsules (particle diameters of several hundred nanometers to several micrometers) of phenolic amine coated curing agent were prepared by in-situ polymerization, and amine permeation was possible at 120 °C. Out, curing epoxy.
  • Literature 3 [Chinese invention patent, publication number CN100496698C, 2006] uses a thermosetting phenolic resin (Resole) as a raw material, and first obtains a Resole phenolic-coated alkane microcapsule by phase separation coacervation, and then heats the phenolic wall material.
  • Literature 4 [Chinese invention patent, publication number CN102618223A, 2012] also uses thermosetting phenolic resin as raw material, but microcapsules of phenolic-coated alkane are prepared by in-situ polymerization.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art, and to provide a microcapsule using a phenolic resin as a wall material for a self-healing material and a preparation method thereof.
  • the present invention is achieved by providing a microcapsule using a phenolic resin as a wall material for a self-healing material, wherein the wall material is a crosslinked and cured phenol resin, and the core material is dicyclopentadiene.
  • the embodiment of the invention further provides a preparation method of a microcapsule using a phenolic resin as a wall material for a self-healing material, which comprises the following steps:
  • Preparing a first-order thermosetting resin adjusting the pH of the mixed aqueous solution of phenol and aldehyde to 8-10, raising the temperature to 60-65 ° C, stirring, and then raising the temperature to 70-90 ° C to obtain a reaction liquid, wherein the phenol and aldehyde
  • the molar ratio of phenol to aldehyde in the mixed aqueous solution is 1:1 to 3;
  • Preparing a core material emulsion mixing 40-120% of dicyclopentadiene, polyacrylic acid and water in the total amount of phenol and aldehyde in the phenol and aldehyde aqueous solution, heating to 50-80 ° C, stirring, to obtain a core emulsion , wherein the mass ratio of dicyclopentadiene, polyacrylic acid and water is 1:0.5 to 2:3 to 14;
  • the core material emulsion is mixed with the reaction liquid at 60 to 65 ° C to obtain a mixed liquid, the pH of the mixed solution is adjusted to 2.5 to 1, the temperature is raised to 70 to 80 ° C, the reaction is carried out for 1.5 to 2 hours, and then the temperature is raised. The reaction is carried out for 15 to 2 hours at 85 to 90 ° C, and the microcapsules are precipitated, suction filtered, and dried at 40 to 60 ° C to obtain the microcapsules using the phenolic resin as a wall material for self-healing materials.
  • the microcapsule provided by the invention for using phenolic resin as a wall material for self-healing materials has large size, regular shape, uniform wall thickness, no stickiness, easy dispersion, dense and hard and brittle walls, and is easily broken by stress. It is especially suitable for self-healing materials. Further, since the phenolic resin after curing and crosslinking is hard and brittle, it is particularly suitable as a wall material for mechanically triggered self-repairing microcapsules.
  • Example 1 is an optical micrograph of a microcapsule prepared by using a phenol resin as a wall material for a self-healing material prepared in Example 1 of the present invention
  • Example 2 is a scanning electron micrograph of a microcapsule prepared by using the phenolic resin as a wall material for self-healing materials prepared in Example 1 of the present invention
  • Example 3 is an optical micrograph of a microcapsule prepared by using a phenol resin as a wall material for a self-healing material prepared in Example 2 of the present invention
  • Example 4 is a scanning electron micrograph of a microcapsule prepared by using a phenol resin as a wall material for a self-healing material prepared in Example 2 of the present invention.
  • Embodiments of the present invention provide a microcapsule using a phenolic resin as a wall material for a self-healing material, wherein the wall material is a crosslinked and cured phenolic resin, and the core material is dicyclopentadiene (DCPD).
  • DCPD dicyclopentadiene
  • the size of the microcapsules is 30 to 1000 ⁇ m.
  • the embodiment of the invention further provides a preparation method of a microcapsule using a phenolic resin as a wall material for a self-healing material, comprising the following steps:
  • S01 preparing a first-order thermosetting resin: adjusting the pH of the mixed aqueous solution of phenol and aldehyde to 8 to 10, raising the temperature to 60 to 65 ° C, stirring, and then raising the temperature to 70 to 90 ° C to obtain a reaction liquid, wherein the phenol
  • the molar ratio of phenol to aldehyde in the aqueous solution mixed with aldehyde is 1:1 to 3;
  • S02 preparing a core material emulsion: mixing 40-120% of dicyclopentadiene, polyacrylic acid and water in the total molar mass of phenol and aldehyde in the phenol and aldehyde aqueous solution, heating to 50-80 ° C, stirring, a core material emulsion, wherein the mass ratio of dicyclopentadiene, polyacrylic acid and water is 1: (0.5 to 2): (3 to 14);
  • the phenol is at least one of phenol, cresol and mixed cresol, preferably phenol;
  • the aldehyde is at least one of formaldehyde, paraformaldehyde, furfural and acetaldehyde, preferably Is a formaldehyde;
  • the phenol / aldehyde molar ratio is 1: (1.2 ⁇ 2.0), preferably 1: 1.5;
  • the pH of the adjusted phenol and aldehyde aqueous solution is selected 5 wt% Aqueous NaOH solution.
  • step S02 the polyacrylic acid is the key to successfully obtaining the phenolic epoxy microcapsules.
  • Step S03 specifically includes the following steps:
  • S032 acid-reducing B-stage Resole wall: adding a pH adjuster to the reaction solution of S031 and the core emulsion, adjusting the pH to 2.5 to 1, keeping the temperature and stirring rate in the step S031 unchanged;
  • the preparation method of the microcapsules using the phenolic resin as the wall material for the self-healing material can avoid the defects that the microcapsules prepared in the literature 1 and 2 in the background art are too small, and are not suitable for the use of the self-repairing material.
  • a phenolic-coated DCPD microcapsule having a large particle size (30 to 1000 ⁇ m) can be prepared.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • DCPD dicyclopentadiene
  • Distilled water 50 g Distilled water as a continuous phase, heated to 70 ° C, and stirred at a conversion rate of 1000 rpm for 20 minutes to obtain a DCPD white emulsion.
  • the pH was adjusted to 1, then the temperature was raised to 70 ° C, the reaction was allowed to stand for 2 hours, and then raised to 90 ° C. The reaction was kept for 2 hours, the stirring was stopped, and cooling was carried out to obtain reddish-brown spherical microcapsules at the bottom of the reaction liquid.
  • FIG. 1 is an optical microscope.
  • Picture, Figure 2 is a SEM image. As shown, the capsule has a particle size of 60 to 300 ⁇ m and a wall thickness of about 3 ⁇ m.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • DCPD dicyclopentadiene
  • microcapsules using phenolic resin as a wall material for self-healing materials were observed by optical and scanning electron microscopy.
  • Figure 3 is an optical microscope.
  • Picture, Figure 4 is a SEM image.
  • the microcapsules have a particle diameter of 400 to 1000 ⁇ m and a wall thickness of about 3 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

提供了一种以酚酸树脂为壁材的用于自修复材料的微胶囊及其制备方法。该微胶囊的壁材为交联固化的酚酸树脂,芯材为二环戊二烯。该微胶囊的制备方法包括以下步骤:制备甲阶热固性树脂,得反应液;制备芯材乳液;在60-65°C将该芯材乳液与该反应液混合得到混合液,调节该混合液的pH值至2.5-1,升温至70-80°C,反应1.5-2小时,再升温至85-90°C,反应1.5-2小时,得到微胶囊沉淀;抽滤、在40-60°C干燥,获得该以酚酸树脂为壁材的用于自修复材料的微胶囊。

Description

一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法 技术领域
本发明属于自修复材料技术领域,具体涉及一种以酚醛树脂为壁材用于自修复材料的微胶囊及其制备方法。
背景技术
   酚醛树脂是工业上广泛使用的一种聚合物,它具有卓越的粘附性、优良的耐热性、独特的抗烧蚀能力和良好的阻燃性,且合成工艺简单、价格低廉。酚醛树脂是通过酚与醛缩聚而形成的一大类合成树脂,常用的酚有:苯酚、甲酚、混甲酚、壬基酚、辛基酚、二甲酚、腰果酚、芳烷基酚、双酚A等,常用的醛有:甲醛、多聚甲醛、糠醛、乙醛等,其中以苯酚(Phenol)与甲醛(Formaldehyde)合成的酚醛树脂(PF)最常用。
   酚醛树脂的合成反应分两步:第一步为加成反应,是甲醛与苯酚作用生成一羟甲基和二羟甲基苯酚;第二步是缩合和缩聚反应,是羟甲基苯酚与苯酚,或者是羟甲基苯酚之间的逐步链增长反应。最终得到的PF聚合物的结构和性质主要决定于原料的化学结构、酚/醛摩尔比(P/F)和反应介质的酸碱性。其通常分为热塑性树脂(Novolak)和热固性树脂(Resole)两种。Novolak形成条件一般是:pH < 3,P/F > 1,反应温度> 60℃;而Resole的形成条件是:pH > 7,P/F < 1,反应温度> 60℃。Novolak和Resole可溶可熔,只有交联固化后才具有优良的力学性能、电绝缘性能、化学稳定性和热稳定性,但Novolak不能自行固化,需要添加催化剂和甲醛,Resole可加热或在酸性介质中直接固化。根据固化程度的不同,通常将Resole分为甲阶、乙阶和丙阶。甲阶Resole可溶于碱性水溶液、乙醇、丙酮等;乙阶Resole只能溶于甚至是部分溶于乙醇或丙酮中,不溶于碱性水溶液;丙阶已完全交联固化,不溶解于任何溶剂,亦不熔化。通常将经Novolak合成酚醛树脂的路线称二步法,经Resole的路线称一步法。
   酚醛树脂作为微胶囊的壁材鲜有报道,但酚醛树脂合成简单、价格低廉,用作微胶囊的壁材比目前广泛使用尿醛树脂、密胺树脂和聚脲应更具优势。已有的报道显示,酚醛树脂是很好的微胶囊壁材,以其为壁材的微胶囊制备工艺也并不复杂,如文献一【塑料工业,39(2011)89-92】通过原位聚合法制备了酚醛包覆红磷的细小微胶囊(平均粒径只有7.5μm)。文献二【中国发明专利,公开号CN101249409B,2008】通过原位聚合法制备了酚醛包覆胺固化剂的超细微胶囊(粒径几百纳米至几微米),可在120℃下可使胺渗出,固化环氧。文献三【中国发明专利,公开号CN100496698C,2006】则以热固性酚醛树脂(甲阶Resole)为原料,通过相分离凝聚法先制得Resole酚醛包覆烷烃的微胶囊,再加热使酚醛壁材固化。文献四【中国发明专利,公开号CN102618223A,2012】也以热固性酚醛树脂为原料,但采用原位聚合法制备了酚醛包覆烷烃的微胶囊。
迄今为止未见到有关以酚醛树脂为壁材用于自修复材料的微胶囊的报道。一个可能的原因是自修复材料常用环氧树脂做修复剂,而酚醛树脂与环氧互为固化剂,也许这使得合成酚醛树脂包覆环氧的微胶囊变得困难。
技术问题
   本发明所要解决的技术问题在于克服现有技术的缺陷,提供一种以酚醛树脂为壁材用于自修复材料的微胶囊及其制备方法。
技术解决方案
   本发明是这样实现的,提供一种以酚醛树脂为壁材用于自修复材料的微胶囊,其壁材为交联固化的酚醛树脂,芯材为二环戊二烯。
   本发明实施例还提供一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其包括如下步骤:
   制取甲阶热固性树脂:调节酚和醛混合水溶液的pH值至8~10,升温至60~65℃,搅拌,再升温至70~90℃反应,得反应液,其中,所述酚和醛混合水溶液中酚和醛的摩尔比为1:1~3;
   制取芯材乳液:取所述酚和醛水溶液中酚和醛质量总和的40~120%的二环戊二烯、聚丙烯酸和水混合,升温至50~80℃,搅拌,得芯材乳液,其中,二环戊二烯、聚丙烯酸和水的质量比为1:0.5~2:3~14;
在60~65℃下将所述芯材乳液与所述反应液混合,得混合液,调节所述混合液pH值至2.5~1,升温至70~80℃,反应1.5~2小时,再升温至85~90℃,反应1.5~2小时,得微胶囊沉淀,抽滤,40~60℃干燥,获得所述以酚醛树脂为壁材用于自修复材料的微胶囊。
有益效果
本发明提供的以酚醛树脂为壁材用于自修复材料的微胶囊,尺寸大,形态规整,壁厚均匀,不粘黏,易分散,囊壁致密、硬且脆、容易被应力触发而破碎,特别适合自修复材料使用。进一步,由于固化交联后的酚醛树脂硬而脆,特别适合用作力学触发的自修复微胶囊的壁材。
附图说明
   图1是本发明实施例1制备的以酚醛树脂为壁材用于自修复材料的微胶囊的光学显微镜照片;
   图2是本发明实施例1制备的以酚醛树脂为壁材用于自修复材料的微胶囊的扫描电镜照片;
   图3是本发明实施例2制备的以酚醛树脂为壁材用于自修复材料的微胶囊的光学显微镜照片;
   图4是本发明实施例2制备的以酚醛树脂为壁材用于自修复材料的微胶囊的扫描电镜照片。
本发明的实施方式
   为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
   本发明实施例提供一种以酚醛树脂为壁材用于自修复材料的微胶囊,其壁材为交联固化的酚醛树脂,芯材为二环戊二烯(DCPD)。
   其中,所述微胶囊的尺寸为30~1000μm。
   本发明实施例还提供一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,包括如下步骤:
   S01:制取甲阶热固性树脂:调节酚和醛混合水溶液的pH值至8~10,升温至60~65℃,搅拌,再升温至70~90℃反应,得反应液,其中,所述酚和醛混合水溶液中酚和醛的摩尔比为1:1~3;
   S02:制取芯材乳液:取所述酚和醛水溶液中酚和醛摩尔质量总和的40~120%的二环戊二烯、聚丙烯酸和水混合,升温至50~80℃,搅拌,得芯材乳液,其中,二环戊二烯、聚丙烯酸和水的质量比为1:(0.5~2):(3~14);
   S03:在60~65℃下将所述芯材乳液与所述反应液混合,得混合液,调节所述混合液pH值至2.5~1,升温至70~80℃,反应1.5~2个小时,再升温至85~90℃,反应1.5~2小时,得微胶囊沉淀,抽滤,40~60℃干燥,获得所述以酚醛树脂为壁材用于自修复材料的微胶囊。
   具体地,步骤S01中,所述酚为苯酚、甲酚、混甲酚中的至少一种,优选为苯酚;所述醛为甲醛、多聚甲醛、糠醛、乙醛中的至少一种,优选为甲醛;所述酚/醛摩尔比为1:(1.2~2.0),优选1:1.5;所述调节酚和醛水溶液pH值选用5wt% NaOH水溶液。
   步骤S02中,所述聚丙烯酸是成功获得酚醛包环氧微胶囊的关键。
   步骤S03具体包括下述步骤:
   S031:混合:调节所述芯材乳液的温度至60~65℃,并调节搅拌速率至280~550转每分钟,将所述反应液,即Resole溶液全部加到所述芯材乳液中;
   S032:调酸制乙阶Resole囊壁:向S031的反应液和芯材乳液中加入pH值调节剂,调节pH值至2.5~1,保持S031步骤中的温度和搅拌速率不变;
   S033:升温固化制丙阶Resole囊壁:维持S032步骤中搅拌速率不变,先将温度调至70~80℃,并保温反应1.5~2小时,再将温度升至85~90℃,保温反应1.5~2小时,得红棕色球状微胶囊沉淀,所得沉淀物真空抽虑,40~60℃干燥,得目标产物。其中,所述pH值调节选用2wt%的盐酸水溶液。
   本发明提供的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,能够避免背景技术中文献一和二制备的微胶囊粒径过小,并不适合自修复材料使用的缺陷,可以制备出了大粒径(30~1000μm)的酚醛包覆DCPD微胶囊。
   
   以下通过具体实施例来举例说明上述以酚醛树脂为壁材用于自修复材料的微胶囊的制备。
   
   实施例一:
   分别称量5 g苯酚(P)和6.5 g甲醛(F),置于500 mL装有冷凝管回流装置的三口烧瓶中,加入5 wt% NaOH水溶液调节pH值至9,先在65℃下搅拌10分钟,然后升温至70℃并保温反应2个小时,得到红棕色甲阶Resole溶液。
   在另一装有搅拌器、温度计的500 mL三口烧瓶中,加入7 g二聚环戊二烯(DCPD)作为芯材、7 g聚丙烯酸(pH = 6~7)作为乳化剂和50 g蒸馏水作为连续相,加热至70℃,以1000转每分钟的转率搅拌20分钟,得DCPD白色乳液。调节DCPD乳液温度至65℃,降低搅拌速率为500转每分钟,将甲阶Resole溶液以每4秒一滴的速率全部滴加到DCPD乳液中,混合均匀后,缓慢滴加2%的盐酸溶液,调节pH值至1,然后升温至70℃,保温反应2小时,再升至90℃,保温反应2个小时,停止搅拌,冷却,在反应液底部得红棕色球状微胶囊。
   将产物真空抽虑、清水洗涤,40~60℃干燥4小时后,将获得的以酚醛树脂为壁材用于自修复材料的微胶囊进行光学和扫描电子显微观察,图1是光学显微图片,图2是扫描电镜图片。如图所示,胶囊粒径为60~300μm,壁厚约为3μm。
   
   实施例二:
   分别称量5g苯酚(P)和7.5g甲醛(F),置于500mL装有冷凝管回流装置的三口烧瓶中,加入5wt% NaOH水溶液调节pH值至10,先在65℃下搅拌10分钟,然后升温至80℃并保温反应1.5小时,得到红棕色甲阶Resole溶液。
   在另一装有搅拌器、温度计的500mL三口烧瓶中,加入14g二聚环戊二烯(DCPD)作为芯材、20g聚丙烯酸(pH=6~7)作为乳化剂和100g蒸馏水作为连续相,加热至70℃,以1000转每分钟的转率搅拌20分钟,得DCPD白色乳液。调节DCPD乳液温度至65℃,降低搅拌速率为300转每分钟,将甲阶Resole溶液直接全部加入到DCPD乳液中,混合均匀后,缓慢滴加2%的盐酸溶液,调节pH值至2,然后升温至75℃,保温反应2小时,再升至90℃,保温反应2个小时,停止搅拌,冷却,在反应液底部得红棕色球状微胶囊。
   将产物真空抽虑、清水洗涤,40~60℃干燥4小时后,将获得的以酚醛树脂为壁材用于自修复材料的微胶囊进行光学和扫描电子显微观察,图3是光学显微图片,图4是扫描电镜图片。从图中可以看出,微胶囊粒径为400~1000μm,壁厚约为3μm。
   
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种以酚醛树脂为壁材用于自修复材料的微胶囊,其特征在于,所述微胶囊的壁材为交联固化的酚醛树脂,芯材为二环戊二烯。
  2. 如权利要求1所述的以酚醛树脂为壁材用于自修复材料的微胶囊,其特征在于,所述微胶囊的尺寸为30~1000μm。
  3. 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其包括如下步骤:
       制取甲阶热固性树脂:调节酚和醛混合水溶液的pH值至8~10,升温至60~65℃,搅拌,再升温至70~90℃反应,得反应液,其中,所述酚和醛混合水溶液中酚和醛的摩尔比为1:1~3;
       制取芯材乳液:取所述酚和醛水溶液中酚和醛质量总和的40~120%的二环戊二烯、聚丙烯酸和水混合,升温至50~80℃,搅拌,得芯材乳液,其中,二环戊二烯、聚丙烯酸和水的质量比为1:0.5~2:3~14;
    在60~65℃下将所述芯材乳液与所述反应液混合,得混合液,调节所述混合液pH值至2.5~1,升温至70~80℃,反应1.5~2小时,再升温至85~90℃,反应1.5~2小时,得微胶囊沉淀,抽滤,40~60℃干燥,获得所述以酚醛树脂为壁材用于自修复材料的微胶囊。
  4. 如权利要求3所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述酚为苯酚、甲酚、混甲酚中的至少一种,所述醛为甲醛、多聚甲醛、糠醛、乙醛中的至少一种。
  5. 如权利要求3或4所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述酚为苯酚,所述醛为甲醛。
  6. 如权利要求3所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述酚和醛水溶液中酚和醛的摩尔比为1:1.2~2.0。
  7. 如权利要求3或6所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述酚和醛水溶液中酚和醛的摩尔比为1:1.5。
  8. 如权利要求3所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述调节酚和醛水溶液的pH值至8~10选用5 wt% NaOH水溶液来调节。
  9. 如权利要求3所述的以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法,其特征在于,所述将所述反应液全部加到所述芯材乳液中,调节pH值至2.5~1选用2 wt%的盐酸水溶液调节。
PCT/CN2013/080951 2013-06-07 2013-08-07 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法 WO2014194561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310224906.7A CN103301789B (zh) 2013-06-07 2013-06-07 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法
CN201310224906.7 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014194561A1 true WO2014194561A1 (zh) 2014-12-11

Family

ID=49127764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080951 WO2014194561A1 (zh) 2013-06-07 2013-08-07 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法

Country Status (2)

Country Link
CN (1) CN103301789B (zh)
WO (1) WO2014194561A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298729A (zh) * 2018-12-11 2020-06-19 中国船舶重工集团公司第七二五研究所 一种自修复微胶囊及制备和应用方法
CN117645430A (zh) * 2023-11-30 2024-03-05 吉林省水利科学研究院(吉林省水利科技推广总站、吉林省水利水电工程质量检测中心、吉林省灌溉试验中心站) 一种用于混凝土冻融损伤自修复的双微胶囊制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599739B (zh) * 2013-11-25 2015-10-21 深圳大学 一种以酚醛树脂为壁材的环氧微胶囊的制备方法
CN104944833A (zh) * 2015-03-31 2015-09-30 深圳大学 用于自修复混凝土的微胶囊和自修复混凝土的制备方法
CN104801248B (zh) * 2015-04-23 2016-06-01 北京宇田相变储能科技有限公司 水溶性无机盐微胶囊及制备方法
CN105032313B (zh) * 2015-07-23 2017-04-26 北京宇田相变储能科技有限公司 一种苯并噁嗪树脂包覆的水溶性盐微胶囊及其制备方法
CN105080441B (zh) * 2015-07-28 2017-10-13 西北工业大学 一种包覆液态烯微胶囊的制备方法
CN107224945B (zh) * 2017-06-26 2020-04-03 西北工业大学 一种以酚醛树脂为壁材固体粒子为乳化剂的双环戊二烯微胶囊及制备方法
CN109453499B (zh) * 2018-10-27 2021-03-23 汇昇(厦门)运动器材有限公司 一种篮球及其制造工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1927187A (zh) * 2005-09-06 2007-03-14 西北工业大学 三聚氰胺甲醛包覆双环戊二烯微胶囊及其制备方法
CN1927445A (zh) * 2005-09-06 2007-03-14 西北工业大学 聚脲包覆双环戊二烯微胶囊及其制备方法
CN101249409A (zh) * 2008-03-20 2008-08-27 江南大学 一种包埋有胺类活性物质微胶囊的制备方法及应用
CN101671440A (zh) * 2009-10-29 2010-03-17 哈尔滨工业大学 一种壳聚糖-脲醛树脂微胶囊及其合成方法
CN102618223A (zh) * 2012-02-27 2012-08-01 李雨杉 一种热固性酚醛树脂包覆的相变材料微胶囊及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869624B1 (fr) * 2004-04-28 2006-06-09 Inst Francais Du Petrole Structure et revetement auto-reparables pour milieu corrosif
CN102205225B (zh) * 2011-06-02 2013-02-27 北京科技大学 一种增强型环氧树脂/固化剂双壁微胶囊的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1927187A (zh) * 2005-09-06 2007-03-14 西北工业大学 三聚氰胺甲醛包覆双环戊二烯微胶囊及其制备方法
CN1927445A (zh) * 2005-09-06 2007-03-14 西北工业大学 聚脲包覆双环戊二烯微胶囊及其制备方法
CN101249409A (zh) * 2008-03-20 2008-08-27 江南大学 一种包埋有胺类活性物质微胶囊的制备方法及应用
CN101671440A (zh) * 2009-10-29 2010-03-17 哈尔滨工业大学 一种壳聚糖-脲醛树脂微胶囊及其合成方法
CN102618223A (zh) * 2012-02-27 2012-08-01 李雨杉 一种热固性酚醛树脂包覆的相变材料微胶囊及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298729A (zh) * 2018-12-11 2020-06-19 中国船舶重工集团公司第七二五研究所 一种自修复微胶囊及制备和应用方法
CN117645430A (zh) * 2023-11-30 2024-03-05 吉林省水利科学研究院(吉林省水利科技推广总站、吉林省水利水电工程质量检测中心、吉林省灌溉试验中心站) 一种用于混凝土冻融损伤自修复的双微胶囊制备方法

Also Published As

Publication number Publication date
CN103301789B (zh) 2016-05-25
CN103301789A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014194561A1 (zh) 一种以酚醛树脂为壁材用于自修复材料的微胶囊的制备方法
Wang et al. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions
CN101198632B (zh) 环氧树脂组合物以及固化物
CN102766242B (zh) 一种改性酚醛树脂的制备方法
CN101321790B (zh) 酚醛树脂组合物、其固化物、覆铜层压板用树脂组合物、覆铜层压板、以及新型酚醛树脂
CN104086947B (zh) 用于整流子的酚醛模塑料
JP3576433B2 (ja) 球状フェノール樹脂の製造方法
JPS63291945A (ja) 低収縮性フェノール樹脂成形材料
CN110144046B (zh) 一种含硼酚醛树脂微球及碳微球的制备方法
CN101234759A (zh) 一种微孔炭的制备方法
WO2015074341A1 (zh) 一种以酚醛树脂为壁材的环氧微胶囊的制备方法
CN102850561B (zh) 介孔分子筛原位增强酚醛树脂基摩擦材料的制备方法
CA1216697A (en) Process for producing particulate novolac resins and aqueous dispersions
US9328236B2 (en) Polysiloxane modified resol resin, moulded bodies and composites obtained therefrom and methods for producing the resin, the moulded bodies and the composites
CN103917604A (zh) 高玻璃化转变温度树脂制剂
JP7318831B2 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP3277810B2 (ja) 速硬化性と耐熱性に優れたフェノール系樹脂とその製造方法
CN108368218A (zh) 恶嗪化合物、组合物及固化物
CA2109915A1 (en) Phenolic resins for reinforced composites
CN105131517A (zh) 一种汽车刹车片用改性热塑性酚醛树脂粘合剂及其制备方法
CN1251824C (zh) 用于铸造覆膜砂的粘土/酚醛树脂纳米复合物、生产方法及用途
JPH0791420B2 (ja) タルク系充填剤、その製造法およびそれを含むアミノ樹脂組成物
JP2007246689A (ja) 摩擦材用フェノール樹脂組成物、及び摩擦材
CN108368216A (zh) 恶嗪化合物、组合物及固化物
JPH0148228B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 12-02-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13886576

Country of ref document: EP

Kind code of ref document: A1