WO2014192399A1 - Dc-dcコンバータおよびその制御方法 - Google Patents
Dc-dcコンバータおよびその制御方法 Download PDFInfo
- Publication number
- WO2014192399A1 WO2014192399A1 PCT/JP2014/058973 JP2014058973W WO2014192399A1 WO 2014192399 A1 WO2014192399 A1 WO 2014192399A1 JP 2014058973 W JP2014058973 W JP 2014058973W WO 2014192399 A1 WO2014192399 A1 WO 2014192399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- output
- switching
- switching element
- limit value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
- H02M1/0035—Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a soft switching type DC-DC converter and a control method thereof.
- the switch element provided on the 1 o'clock side of the transformer is turned on / off, and the voltage is induced in the secondary winding by intermittently applying a voltage to the primary winding, and the state of the load on the secondary side
- a switching power supply device having a control circuit for controlling the time for which the switch element is turned on according to (see JP2002-233146A).
- JP2002-233146A a switching power supply device having a control circuit for controlling the time for which the switch element is turned on according to.
- a soft-switching DC-DC converter that uses a resonance phenomenon to turn on / off the switching element after the applied voltage of the switching element becomes 0 V or the conduction current becomes 0 A.
- the soft switching type DC-DC converter has a characteristic of hard switching when the output value requirement is below the minimum output value at which soft switching is established. Therefore, when the technique described in JP2002-233146A is simply applied to a soft switching DC-DC converter, there is a problem that soft switching is not established and loss increases.
- An object of the present invention is to provide a technique for establishing soft switching even in the case where the required output value is lower than the minimum output value at which soft switching is established in a DC-DC converter of soft switching type.
- a soft switching type DC-DC converter includes a switching element, a transformer or a reactor, and a control unit that controls a switching operation of the switching element, and the voltage or current applied to the switching element is zero.
- the switching operation of the switching element is performed in the state.
- the control means includes an operation interval in which the output of the DC-DC converter is equal to or higher than the minimum output and a stop interval in which the output is 0.
- the operation of the switching element is controlled to repeat alternately.
- FIG. 1 is a diagram illustrating a configuration of a DC-DC converter according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of a temporal change in the output of the DC-DC converter according to the first embodiment.
- FIG. 3 is a diagram illustrating an example of a time change of the output when the output of the DC-DC converter is controlled to be the lowest output Pmin at which soft switching is established.
- FIG. 4 is a diagram illustrating an example of a time change of the output voltage of the DC-DC converter according to the second embodiment.
- FIG. 1 is a diagram showing a configuration of a soft switching DC-DC converter (hereinafter also simply referred to as a DC-DC converter) in the first embodiment.
- a DC-DC converter 1 shown in FIG. 1 is a snubber resonance type DC-DC converter, and is mounted on an electric vehicle, for example.
- the application destination of the DC-DC converter in the present embodiment is not limited to the vehicle.
- the DC-DC converter 1 in the first embodiment includes a primary side switching circuit 10, a secondary side switching circuit 20, a transformer 30, a primary side smoothing capacitor C10, a secondary side smoothing capacitor C20, and a controller. 40.
- the primary side switching circuit 10 is connected to the primary winding 31 of the transformer 30, and the secondary side switching circuit 20 is connected to the secondary winding 32 of the transformer 30.
- the primary winding 31 and the secondary winding 32 of the transformer 30 are magnetically coupled.
- the primary side switching circuit 10 includes switching elements H1 to H4, antiparallel diodes D1 to D4, and snubber capacitors C1 to C4.
- the secondary side switching circuit 20 includes switching elements H5 to H8, antiparallel diodes D5 to D, and snubber capacitors C5 to C8.
- the controller 40 controls on / off of the switching elements H1 to H8 according to the output target value of the DC-DC converter.
- the snubber resonance type DC-DC converter 1 shown in FIG. 1 has a known configuration, description of its basic operation is omitted, but by charging and discharging the snubber capacitor during the dead time period of the transformer current. Realize soft switching. As the capacities of the snubber capacitors C1 to C8, the resonance frequency with the leakage inductance of the transformer 30 and the dead time are compared, and an optimum capacity is selected so that charging / discharging is completed during the dead time period.
- the charging / discharging current of the snubber capacitor is mainly supplied by the load current flowing through the transformer 30, in the conventional DC-DC converter, the load current is more than a value that can charge / discharge the snubber capacitor during the dead time period. When it is low, hard switching occurs.
- FIG. 2 is a diagram illustrating an example of a temporal change in output power of the DC-DC converter according to the first embodiment.
- the conventional soft switching DC-DC converter when the output power P is lower than the minimum output power Pmin at which soft switching is established, hard switching is performed. Therefore, in the present embodiment, when the output target power P * of the DC-DC converter is lower than Pmin, an operation period in which the actual output power P is equal to or greater than Pmin and a stop period in which the actual output power P is 0 are alternated.
- the switching elements H1 to H8 are controlled to be turned on / off so that the average value of the actual output power P becomes the output target power P * .
- the actual output power P is controlled to be equal to or higher than Pmin during the operation period T1, and the actual output power P is controlled to be 0 during the stop period T2.
- the amount that the actual output power P exceeds the output target power P * in the operation period T1 and the amount that the actual output power P is insufficient with respect to the output target power P * in the stop period T2 are the same.
- the actual output power P and the periods T1 and T2 in the operation period are determined so that the areas of S1 and S2 in FIG. Thereby, the average value of the actual output power P can be matched with the output target power P * .
- the capacity of the secondary side smoothing capacitor C20 may be increased.
- the conduction loss can be minimized by setting the actual output power P during the operation period to the minimum output power Pmin at which soft switching is established. Thereby, the converter can be operated with the least loss.
- the DC-DC converter 1 in the first embodiment includes the primary side switching circuit 10 connected to the primary winding 31, the secondary side switching circuit 20 connected to the secondary winding 32, and 1 A transformer 30 that magnetically couples the secondary winding 31 and the secondary winding 32 and a controller 40 that controls operations of the primary side switching circuit 10 and the secondary side switching circuit 20 are provided.
- the controller 40 has an operation interval in which the output P of the DC-DC converter is equal to or higher than the minimum output Pmin, and the DC-DC The operations of the primary side switching circuit 10 and the secondary side switching circuit 20 are controlled so as to alternately repeat the stop period in which the output P of the converter is 0.
- the output P of the DC-DC converter becomes equal to or higher than the minimum output Pmin during the operation period, soft switching can be established even when the output request value P * is lower than the minimum output Pmin at which soft switching is established. it can.
- the controller 40 controls the operations of the primary side switching circuit 10 and the secondary side switching circuit 20 so that the average value of the outputs P of the DC-DC converter 1 becomes the output request value P *. Can be satisfied while satisfying the output request value P * . In addition, even a load that is highly sensitive to the voltage fluctuation period can be stably operated.
- the operation of the primary side switching circuit 10 and the secondary side switching circuit 20 is controlled so that the output P of the DC-DC converter in the operation period becomes the minimum output Pmin at which soft switching is established, soft switching is established. In this condition, the conduction loss can be minimized, and the converter can be operated with the least loss.
- the configuration of the DC-DC converter in the second embodiment is the same as the configuration of the DC-DC converter 1 in the first embodiment shown in FIG. Even in the DC-DC converter according to the second embodiment, when the output target power P * is lower than the minimum output power Pmin at which soft switching is established, an operation period in which the actual output power P is equal to or greater than Pmin and a stop period in which the output power is Pmin are zero. Are controlled alternately and the average value of the actual output power P becomes the output target power P * . In the second embodiment, in particular, control is performed in consideration of the voltage fluctuation range allowed by the load that is the supply destination of the output power of the DC-DC converter.
- FIG. 4 is a diagram illustrating an example of a time change of the output voltage of the DC-DC converter according to the second embodiment.
- the voltage upper limit value Vmax is the voltage upper limit value allowed by the load
- the voltage lower limit value Vmin is the voltage lower limit value allowed by the load.
- a period until the output voltage Vout of the DC-DC converter reaches the voltage upper limit value Vmax from the voltage lower limit value Vmin is an operation period, and the output voltage Vout reaches the voltage lower limit value Vmin from the voltage upper limit value Vmax.
- the period until is the suspension period.
- the smoothing capacitor on the output side of the DC-DC converter (secondary side smoothing capacitor) compared to the case where the output voltage becomes larger than the voltage upper limit value Vmax.
- the capacity of C20 can be reduced, and the cost can be reduced.
- the DC-DC converter according to the second embodiment as shown in FIG. 3, if the actual output power P during the operation period is the minimum output power Pmin where soft switching is established, the DC is reduced with the least loss. -The DC converter can be operated.
- the DC-DC converter has an operation interval until the output voltage of the DC-DC converter reaches the predetermined voltage upper limit value from the predetermined voltage lower limit value.
- the operations of the primary side switching circuit 10 and the secondary side switching circuit 20 are controlled so that the period until the output voltage of the DC converter decreases from the predetermined voltage upper limit value to the predetermined voltage lower limit value is a stop period.
- the output voltage of the DC-DC converter is controlled to be equal to or lower than the predetermined voltage upper limit value, the capacity of the smoothing capacitor on the output side of the DC-DC converter can be reduced, and the cost can be reduced.
- the predetermined voltage upper limit value is set as the allowable voltage upper limit value of the load that is the supply destination of the output power of the DC-DC converter
- the predetermined voltage lower limit value is set as the supply destination of the output power of the DC-DC converter. Since the allowable voltage lower limit value is set, appropriate control according to the allowable voltage fluctuation range of the load can be performed.
- the present invention is not limited to the embodiment described above.
- a snubber resonance type DC-DC converter including a snubber capacitor has been described as an example.
- a soft switching DC-DC converter is used. If present, the present invention can be applied.
- the configuration in which the switching circuit is provided not only on the primary side but also on the secondary side has been described.
- the present invention is also applied to a DC-DC converter in which no switching circuit is provided on the secondary side. be able to. In this case, however, a circuit for converting alternating current into direct current is required on the secondary side.
- the present invention can be applied to a DC-DC converter provided with a reactor instead of the transformer 30.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
図1は、第1の実施形態におけるソフトスイッチング方式のDC-DCコンバータ(以下、単にDC-DCコンバータとも呼ぶ)の構成を示す図である。図1に示すDC-DCコンバータ1は、スナバ共振形のDC-DCコンバータであり、例えば、電気自動車に搭載されて使用される。ただし、本実施形態におけるDC-DCコンバータの適用先が車両に限定されることはない。
第2の実施形態におけるDC-DCコンバータの構成は、図1に示す第1の実施形態におけるDC-DCコンバータ1の構成と同じである。第2の実施形態におけるDC-DCコンバータでも、出力目標電力P*がソフトスイッチングの成立する最低出力電力Pminを下回る場合に、実出力電力PがPmin以上となる動作期間と0となる停止期間とが交互になるように、かつ、実出力電力Pの平均値が出力目標電力P*となるように、DC-DCコンバータを制御する。第2の実施形態では、特に、DC-DCコンバータの出力電力の供給先である負荷が許容する電圧変動範囲を考慮した制御を行う。
Claims (6)
- スイッチング素子と、トランスまたはリアクトルと、前記スイッチング素子のスイッチング動作を制御する制御手段とを備え、スイッチング素子にかかる電圧または電流がゼロの状態で前記スイッチング素子のスイッチング動作を行うソフトスイッチング方式のDC-DCコンバータにおいて、
前記制御手段は、該DC-DCコンバータの出力要求値がソフトスイッチングの成立する最低出力より低い場合に、該DC-DCコンバータの出力が前記最低出力以上となる動作区間と、該DC-DCコンバータの出力が0となる停止区間とを交互に繰り返すように、前記スイッチング素子の動作を制御するDC-DCコンバータ。 - 請求項1に記載のDC-DCコンバータにおいて、
前記制御手段は、該DC-DCコンバータの出力の平均値が出力要求値となるように、前記スイッチング素子の動作を制御するDC-DCコンバータ。 - 請求項1または請求項2に記載のDC-DCコンバータにおいて、
前記制御手段は、該DC-DCコンバータの出力電圧が所定の電圧下限値から所定の電圧上限値に達するまでが前記動作区間となるように、かつ、前記DC-DCコンバータの出力電圧が前記所定の電圧上限値から前記所定の電圧下限値に低下するまでが前記停止区間となるように、前記スイッチング素子の動作を制御するDC-DCコンバータ。 - 請求項3に記載のDC-DCコンバータにおいて、
前記所定の電圧上限値は、該DC-DCコンバータの出力電力の供給先である負荷の許容電圧上限値であり、前記所定の電圧下限値は、該DC-DCコンバータの出力電力の供給先である負荷の許容電圧下限値であるDC-DCコンバータ。 - 請求項1から請求項4のいずれか一項に記載のDC-DCコンバータにおいて、
前記制御手段は、前記動作区間における該DC-DCコンバータの出力が前記最低出力となるように、前記スイッチング素子の動作を制御するDC-DCコンバータ。 - スイッチング素子と、トランスまたはリアクトルとを備え、スイッチング素子にかかる電圧または電流がゼロの状態で前記スイッチング素子のスイッチング動作を行うソフトスイッチング方式のDC-DCコンバータの制御方法において、
該DC-DCコンバータの出力要求値がソフトスイッチングの成立する最低出力より低いか否かを判定するステップと、
該DC-DCコンバータの出力要求値がソフトスイッチングの成立する最低出力より低いと判定すると、該DC-DCコンバータの出力が前記最低出力以上となる動作区間と、該DC-DCコンバータの出力が0となる停止区間とを交互に繰り返すように、前記スイッチング素子の動作を制御するステップと、
を備えるDC-DCコンバータの制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480030412.8A CN105264758B (zh) | 2013-05-30 | 2014-03-27 | Dc-dc变换器及其控制方法 |
JP2015519717A JP6061030B2 (ja) | 2013-05-30 | 2014-03-27 | Dc−dcコンバータおよびその制御方法 |
US14/892,768 US9985530B2 (en) | 2013-05-30 | 2014-03-27 | DC-DC converter and control method thereof |
EP14803777.3A EP3007346A4 (en) | 2013-05-30 | 2014-03-27 | DC-DC CONVERTER AND METHOD FOR CONTROLLING SAID CONVERTER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-113811 | 2013-05-30 | ||
JP2013113811 | 2013-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192399A1 true WO2014192399A1 (ja) | 2014-12-04 |
Family
ID=51988442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058973 WO2014192399A1 (ja) | 2013-05-30 | 2014-03-27 | Dc-dcコンバータおよびその制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9985530B2 (ja) |
EP (1) | EP3007346A4 (ja) |
JP (1) | JP6061030B2 (ja) |
CN (1) | CN105264758B (ja) |
WO (1) | WO2014192399A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073650A1 (ja) * | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 変圧器および電力変換装置 |
JP2020036396A (ja) * | 2018-08-27 | 2020-03-05 | ダイヤモンド電機株式会社 | コンバータ |
WO2021100872A1 (ja) * | 2019-11-22 | 2021-05-27 | 株式会社アパード | 電力変換器とその制御方法 |
WO2024018813A1 (ja) * | 2022-07-18 | 2024-01-25 | 株式会社Soken | 電力変換装置および制御プログラム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347167B (zh) | 2017-01-25 | 2021-07-13 | 通用电气公司 | 用于软切换dc—dc转换器的系统和方法 |
JP6883489B2 (ja) * | 2017-08-22 | 2021-06-09 | ダイヤモンド電機株式会社 | コンバータ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001346380A (ja) * | 2000-06-01 | 2001-12-14 | Matsushita Electric Ind Co Ltd | スイッチング電源装置 |
JP2002233146A (ja) | 2001-02-02 | 2002-08-16 | Yokogawa Electric Corp | スイッチング電源装置 |
JP2002238257A (ja) * | 2001-02-06 | 2002-08-23 | Toshiba Corp | 共振型dc−dcコンバータの制御方法 |
JP2005168129A (ja) * | 2003-12-01 | 2005-06-23 | Toyota Industries Corp | スイッチング電源回路 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4953068A (en) * | 1989-11-08 | 1990-08-28 | Unisys Corporation | Full bridge power converter with multiple zero voltage resonant transition switching |
US20060279966A1 (en) * | 2005-04-13 | 2006-12-14 | International Rectifier Corp. | Simple zero voltage switching full-bridge DC bus converters |
US7378826B2 (en) * | 2006-01-05 | 2008-05-27 | Linear Technology Corp. | Methods and circuits for output over-voltage reduction in switching regulators |
US7826236B2 (en) * | 2008-03-19 | 2010-11-02 | International Business Machines Corporation | Apparatus, system, and method for a switching power supply with high efficiency near zero load conditions |
TWI363481B (en) | 2008-03-28 | 2012-05-01 | Delta Electronics Inc | Synchronous rectifying circuit having burst mode controller and controlling method thereof |
TWI406482B (zh) * | 2009-03-12 | 2013-08-21 | System General Corp | 諧振式功率轉換器之控制電路 |
CN101604916B (zh) * | 2009-07-07 | 2011-03-30 | 南京航空航天大学 | 基于π型辅助网络零电压开关全桥直流变换器 |
CN102801318B (zh) * | 2011-05-23 | 2016-06-08 | 崇贸科技股份有限公司 | 谐振式功率转换器的控制电路与控制方法 |
-
2014
- 2014-03-27 CN CN201480030412.8A patent/CN105264758B/zh active Active
- 2014-03-27 US US14/892,768 patent/US9985530B2/en active Active
- 2014-03-27 WO PCT/JP2014/058973 patent/WO2014192399A1/ja active Application Filing
- 2014-03-27 EP EP14803777.3A patent/EP3007346A4/en not_active Ceased
- 2014-03-27 JP JP2015519717A patent/JP6061030B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001346380A (ja) * | 2000-06-01 | 2001-12-14 | Matsushita Electric Ind Co Ltd | スイッチング電源装置 |
JP2002233146A (ja) | 2001-02-02 | 2002-08-16 | Yokogawa Electric Corp | スイッチング電源装置 |
JP2002238257A (ja) * | 2001-02-06 | 2002-08-23 | Toshiba Corp | 共振型dc−dcコンバータの制御方法 |
JP2005168129A (ja) * | 2003-12-01 | 2005-06-23 | Toyota Industries Corp | スイッチング電源回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3007346A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073650A1 (ja) * | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 変圧器および電力変換装置 |
JPWO2019073650A1 (ja) * | 2017-10-12 | 2019-11-14 | 三菱電機株式会社 | 変圧器および電力変換装置 |
US11282625B2 (en) | 2017-10-12 | 2022-03-22 | Mitsubishi Electric Corporation | Transformer and power converter |
JP2020036396A (ja) * | 2018-08-27 | 2020-03-05 | ダイヤモンド電機株式会社 | コンバータ |
WO2020044877A1 (ja) * | 2018-08-27 | 2020-03-05 | ダイヤモンド電機株式会社 | コンバータ |
JP7175137B2 (ja) | 2018-08-27 | 2022-11-18 | ダイヤゼブラ電機株式会社 | コンバータ |
WO2021100872A1 (ja) * | 2019-11-22 | 2021-05-27 | 株式会社アパード | 電力変換器とその制御方法 |
JP7493711B2 (ja) | 2019-11-22 | 2024-06-03 | 株式会社アパード | 電力変換器とその制御方法 |
WO2024018813A1 (ja) * | 2022-07-18 | 2024-01-25 | 株式会社Soken | 電力変換装置および制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN105264758A (zh) | 2016-01-20 |
CN105264758B (zh) | 2018-09-14 |
US20160094133A1 (en) | 2016-03-31 |
JP6061030B2 (ja) | 2017-01-18 |
EP3007346A4 (en) | 2016-06-29 |
US9985530B2 (en) | 2018-05-29 |
EP3007346A1 (en) | 2016-04-13 |
JPWO2014192399A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6061030B2 (ja) | Dc−dcコンバータおよびその制御方法 | |
JP5762617B2 (ja) | Dc/dcコンバータ | |
TW202116003A (zh) | 適用於寬輸出電壓範圍的隔離式dc / dc轉換器及其控制方法 | |
EP1801960B1 (en) | Bi-directional DC-DC converter and control method | |
JP5590124B2 (ja) | Dc−dcコンバータ | |
US9793791B2 (en) | Power conversion apparatus and method for starting up the same | |
WO2015004825A1 (ja) | Dc/dcコンバータ | |
WO2015029374A1 (ja) | 制御回路、スイッチング回路、電力変換装置、充電装置、車両、および、制御方法 | |
CN109687702B (zh) | Dc-dc转换器 | |
CN105359401A (zh) | 功率转换设备 | |
JP6065753B2 (ja) | Dc/dcコンバータおよびバッテリ充放電装置 | |
US8830701B2 (en) | DC-DC converter | |
JP2015070708A (ja) | 電流共振型電源装置 | |
JP6025885B2 (ja) | 電力変換装置 | |
JP2013236428A (ja) | 直流変換装置 | |
JP6007935B2 (ja) | 電流共振型電源装置 | |
US8817490B2 (en) | DC-DC converter | |
JP2006238659A (ja) | 電源装置 | |
JP2014171313A (ja) | Dc/dcコンバータ | |
WO2015072009A1 (ja) | 双方向コンバータ | |
JP6630536B2 (ja) | 電源装置 | |
KR101575493B1 (ko) | Dc-dc 컨버터 전류 추정 방법 | |
JP6137947B2 (ja) | 双方向絶縁型dc−dcコンバータ | |
JP5954256B2 (ja) | 制御方法 | |
JP4148073B2 (ja) | 誘導加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480030412.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803777 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015519717 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14892768 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014803777 Country of ref document: EP |