CN101604916B - 基于π型辅助网络零电压开关全桥直流变换器 - Google Patents

基于π型辅助网络零电压开关全桥直流变换器 Download PDF

Info

Publication number
CN101604916B
CN101604916B CN2009100317561A CN200910031756A CN101604916B CN 101604916 B CN101604916 B CN 101604916B CN 2009100317561 A CN2009100317561 A CN 2009100317561A CN 200910031756 A CN200910031756 A CN 200910031756A CN 101604916 B CN101604916 B CN 101604916B
Authority
CN
China
Prior art keywords
auxiliary
inverter bridge
bridge leg
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100317561A
Other languages
English (en)
Other versions
CN101604916A (zh
Inventor
陈仲
季飚
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2009100317561A priority Critical patent/CN101604916B/zh
Publication of CN101604916A publication Critical patent/CN101604916A/zh
Application granted granted Critical
Publication of CN101604916B publication Critical patent/CN101604916B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公布了一种基于π型辅助网络零电压开关全桥直流变换器,包括直流电源、第一逆变桥臂和第二逆变桥臂、第一/第二辅助电感、辅助电容、隔离变压器及整流滤波电路。本发明采用移相控制方式,由于加入了由辅助电感和辅助电容组成的辅助网络,可以在全负载范围内实现开关管的零电压开关,同时副边电压尖峰和振荡得到很好的抑制。

Description

基于π型辅助网络零电压开关全桥直流变换器
技术领域
[0001] 发明涉及一种基于π型辅助网络零电压开关全桥直流变换器,属于恒频、隔离的 全桥直流变换器,其利用增加的辅助网络在宽的输入电压和负载电流的范围内工作。
背景技术
[0002] 直直变换作为电力电子技术领域的一个重要组成部分,近年来得到了大量的研 究。在中大功率的直流变换场合,全桥变换器由于开关管容易实现软开关和采用恒定频率 控制而得到了广泛的应用。近二十年来,出现了很多全桥变换器软开关控制策略和电路拓 扑。移相控制零电压开关和移相控制零电压零电流开关全桥变换器均可以实现开关管的软 开关。传统的移相控制零电压开关全桥变换器在负载较轻时滞后臂会失去软开关,甚至在 很轻载时,由于死区时间的限制,超前桥臂也会失去软开关的条件。如果想拓宽原边开关管 的软开关范围,可以将附加的谐振电感与变压器串联。如果选择合适的谐振电感,即便在小 电流下也能实现超前臂开关的ZVS。不过,较大的谐振电感在全负载范围均存储较高的能 量,使得产生相当大的循环能量,使变换器效率变低。此外,和变压器一次侧串联大电感延 长了一次电流从正变负或从负变正所需的时间。这个延长的换向时间引起变压器二次侧的 占空比丢失,这又使得效率降低。最后,值得指出的是在整流器的截止期间,在变压器的二 次侧具有严重的寄生振荡。所谓寄生振荡是由整流器的结电容和变压器的漏感以及外部电 感引起的。为了控制寄生振荡,需要在二次侧使用大的缓冲电路,这同样使得电路的变换效 率大为降低。
发明内容
[0003] 本发明所要解决的技术问题是针对现有技术存在的缺陷提供一种基于π型辅助 网络零电压开关全桥直流变换器,变换器工作在各种负载条件下都可以实现原边开关管的 零电压开关,提高变换效率。
[0004] 本发明为实现上述目的,采用如下技术方案:
[0005] 本发明基于π型辅助网络零电压开关全桥直流变换器,包括直流电源、结构相同 的第一逆变桥臂和第二逆变桥臂、隔离变压器以及整流滤波电路;其中每个逆变桥臂都包 括二个开关管、二个体二极管和二个寄生电容,第一开关管的漏极分别与第一体二极管阴 极、第一寄生电容的一端连接构成逆变桥臂的正输入端,第一开关管的源极分别与第一体 二极管阳极、第一寄生电容的另一端、第二开关管的漏极、第二体二极管阴极、第二寄生电 容的一端连接构成逆变桥臂的输出端,第二开关管的源极分别与第二体二极管阳极、第二 寄生电容的另一端连接构成逆变桥臂的负输入端,直流电源的正极分别接第一逆变桥臂和 第二逆变桥臂的正输入端,直流电源的负极分别接第一逆变桥臂和第二逆变桥臂的负输入 端,隔离变压器副边绕组的输出端接整流滤波电路的输入端,其特征在于:
[0006] 还包括由第一辅助电感、第一辅助电容、第二辅助电感和第二辅助电容构成的η 型辅助网络,其中第一辅助电容的输入端接第一逆变桥臂的输出端,第一辅助电容的输出端分别接第一辅助电感的输入端和隔离变压器原边绕组的同名端,第二辅助电容的输入端 接第二逆变桥臂的输出端,第二辅助电容的输出端分别接第二辅助电感的输入端和隔离变 压器原边绕组的异名端,第一辅助电感和第二辅助电感的输出端分别接直流电源的负极。
[0007] 本发明披露了一种基于π型辅助网络零电压开关全桥直流变换器,其基本消除 了变压器二次侧的寄生振荡,并可以在全负载范围实现开关管的零电压开关。与原有技术 相比的主要技术特点是,由于加入了辅助电路,使得在轻载时一部分能量储存于辅助电感 中,存储于辅助电感的能量可以帮助原边开关管在轻载甚至空载时实现软开关,由于变压 器漏感取值小,输出整流管因反向恢复引起的损耗大大减小,输出整流管的电压应力也随 之减小,变换器的效率可以提高。
附图说明
[0008] 附图1是传统的零电压开关全桥变换器结构示意图。
[0009] 附图2是本发明的一种基于π型辅助网络零电压开关全桥直流变换器电路结构 示意图。
[0010] 附图3是本发明的一种基于JI型辅助网络零电压开关全桥直流变换器主要工作 波形示意图。
[0011] 附图4〜附图8是本发明的一种基于JI型辅助网络零电压开关全桥直流变换器 的各开关模态示意图。
[0012] 上述附图中的主要符号名称:Vin、直流电源。Q1〜Q4、功率开关管。&〜(;、寄生电 容。D1〜D4、体二极管。Lal、第一辅助电感。Cal、第一辅助电容。La2、第二辅助电感。La2、第 二辅助电感。Ί;、隔离变压器。Dki、Dk2、输出整流二极管。Lf、滤波电感。Cf、滤波电容。Ru、 负载。V。、输出电压。vab、A与B两点间电压。
具体实施方式
[0013] 下面结合附图对发明的技术方案进行详细说明:
[0014] 附图1所示的是传统的零电压开关全桥变换器结构示意图。
[0015] 附图2所示的是一种基于π型辅助网络零电压开关全桥直流变换器电路结构示 意图。由直流电源Vin、两个逆变桥臂1和2、隔离变压器3、第一辅助电感4、第一辅助电容 5、第二辅助电感6、第二辅助电容7及整流滤波电路8组成。Q1〜Q4是四只功率开关管, D1〜D4分别是开关管Q1〜Q4的体二极管,C1〜C4分别是开关管Q1〜Q4的寄生电容,Lal, La2是辅助电感,Cal, Ca2是辅助电容,Tr是隔离变压器,Dei,De2是输出整流二极管,Lf是输出 滤波电感,Cf是输出滤波电容,RLd为负载。本变换器采用移相控制,开关管Q1和Q3分别超 前于开关管Q2和Q4 —个相位,称开关管Q1和Q3组成的第一逆变桥臂为超前桥臂,开关管Q2 和Q4组成的第二逆变桥臂则为滞后桥臂。其中分压电容Cal、Ca2的电压为输入电压Vin的一 半,即vcal = vca2 = Vin/2,可看作为Vin/2的电压源。
[0016] 下面以附图2为主电路结构,结合附图3〜附图8叙述本发明的具体工作原理。由 附图3可知整个变换器一个开关周期有10种开关模态,分别是[t0-tj、[t「t2]、[t2-t3]、 [t3-t4]、[t4-t5]、[t5-t6]、[t6-t7]、[t7-t8]、[t8-t9]、[t9-t10],其中,[Vt5]为前半周期, [t5-t10]为后半周期。下面对各开关模态的工作情况进行具体分析。[0017] 在分析之前,先作如下假设:①所有开关管和二极管均为理想器件;②滤波电容 足够大,因此副边输出可等效为电压源,所有电感、电容均为理想元件;③C1 = C3 = Clead, C2
—C4 — Clag0
[0018] 1.开关模态Utft1][对应于附图4]
[0019] 在、时刻之前,Q1和Q4导通,Q2和Q3截止,原边电流近似不变,Vab = Vin,上整流 二极管Dki流过全部负载电流,Dk2截止,原边给负载供电。、时刻关断Q2,电流I1从Q1中转 移到C1和C3支路中,vAB由Vin逐渐变为零,在这个时段里,储存在Lal和Lf中的能量给C1充 电,同时给C3放电。在、时刻,C3的电压下降到零,Q3的反并联二极管D3自然导通,Q3可 实现零电压开通,该模态结束。
[0020] 2.开关模态2[tft2][对应于附图5]
[0021] D3导通后,开通Q3, Q1和Q3驱动信号之间的死区时间td(lMd) > t01o A点电位下降 为零,所以vAB = 0,原边不向负载提供能量。此时辅助电感La2承受的电压为_l/2Vin,因此 iLa2不断减小。在t2时刻,La2中的电流上升为最小值_ILa2。
[0022] 3.开关模态3[t2_t3][对应于附图6]
[0023] 在t2时亥lj,关断Q4,电流i2给C4充电,同时给C2放电,La2储存的能量可供实现软 开关。由于Cdnc4的缓冲作用,Q4是零电压关断。在、时刻,C2上的电压下降到零,Q2的 反并二极管D2自然导通。此时副边整流二极管同时导通。
[0024] 4.开关模态4[t3_t4][对应于附图7]
[0025] D2导通后,可以零电压开通Q2。Q2、Q4驱动信号之间的死区时间td(lag) > t23。Q2开 通后,VAB = -Vin0此时副边两个整流管仍然同时导通,因此变压器原边绕组电压为零,输入 电压Vin直接加在漏感Lk上,原边电流ip由线性下降再反向线性上升。
[0026] 5.开关模态5[t4_t5][对应于附图8]
[0027] 在t4时刻,原边电流折算等于副边电流,Dei关断,De2流过全部负载电流。电源给 负载供电。
[0028] t5时刻,Q3关断,变换器开始另一半个周期[t5,t1(l],其工作情况类似于上述的周 期[t0"t5]。
[0029] 从以上的描述可以得知,本发明提出的一种基于π型辅助网络零电压开关全桥 直流变换器具有以下几方面的优点:
[0030] 1)增加的辅助网络使得漏感取值很小,可以有效的消除输出整流管上的电压尖峰 和电压振荡,降低输出整流二极管的电压应力。
[0031] 2)利用储存在辅助电感的能量在全负载范围内实现开关管的零电压开关。
[0032] 3)改善变换器在轻载时工作条件,提高系统的可靠性,减轻EMI。

Claims (2)

1. 一种基于η型辅助网络零电压开关全桥直流变换器,包括直流电源(Vin)、结构相同 的第一逆变桥臂⑴和第二逆变桥臂⑵、隔离变压器(3)以及整流滤波电路⑶;其中每 个逆变桥臂都包括二个开关管、二个体二极管和二个寄生电容,第一开关管的漏极分别与 第一体二极管阴极、第一寄生电容的一端连接构成逆变桥臂的正输入端,第一开关管的源 极分别与第一体二极管阳极、第一寄生电容的另一端、第二开关管的漏极、第二体二极管阴 极、第二寄生电容的一端连接构成逆变桥臂的输出端,第二开关管的源极分别与第二体二 极管阳极、第二寄生电容的另一端连接构成逆变桥臂的负输入端,直流电源(Vin)的正极分 别接第一逆变桥臂(1)和第二逆变桥臂(2)的正输入端,直流电源(Vin)的负极分别接第一 逆变桥臂(1)和第二逆变桥臂(2)的负输入端,隔离变压器(3)副边绕组的输出端接整流 滤波电路(8)的输入端,其特征在于:所述基于η型辅助网络零电压开关全桥直流变换器还包括由第一辅助电感(4)、第一 辅助电容(5)、第二辅助电感(6)和第二辅助电容(7)构成的π型辅助网络,其中第一辅助 电容(5)的输入端接第一逆变桥臂(1)的输出端,第一辅助电容(5)的输出端分别接第一 辅助电感(4)的输入端和隔离变压器(3)原边绕组的同名端,第二辅助电容(7)的输入端 接第二逆变桥臂(2)的输出端,第二辅助电容(7)的输出端分别接第二辅助电感(6)的输 入端和隔离变压器(3)原边绕组的异名端,第一辅助电感(4)和第二辅助电感(6)的输出 端分别接直流电源(Vin)的负极。
2.如权利要求1所述的一种基于η型辅助网络零电压开关全桥直流变换器,其特征在 于,所述的整流滤波电路(8)采用半波整流电路、全波整流电路、全桥整流电路或倍流整流 电路。
CN2009100317561A 2009-07-07 2009-07-07 基于π型辅助网络零电压开关全桥直流变换器 Expired - Fee Related CN101604916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100317561A CN101604916B (zh) 2009-07-07 2009-07-07 基于π型辅助网络零电压开关全桥直流变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100317561A CN101604916B (zh) 2009-07-07 2009-07-07 基于π型辅助网络零电压开关全桥直流变换器

Publications (2)

Publication Number Publication Date
CN101604916A CN101604916A (zh) 2009-12-16
CN101604916B true CN101604916B (zh) 2011-03-30

Family

ID=41470501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100317561A Expired - Fee Related CN101604916B (zh) 2009-07-07 2009-07-07 基于π型辅助网络零电压开关全桥直流变换器

Country Status (1)

Country Link
CN (1) CN101604916B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801324A (zh) * 2011-05-25 2012-11-28 江苏兆能电子有限公司 一种直流-直流变换器副边有源吸收线路和控制方法
CN102931844A (zh) * 2011-08-09 2013-02-13 南京航空航天大学 有效抑制副边电压尖峰的宽负载范围零电压开关全桥变换器
CN102710138A (zh) * 2012-05-28 2012-10-03 西安爱科赛博电气股份有限公司 宽范围zvs低输出谐波直流变换器
US9985530B2 (en) * 2013-05-30 2018-05-29 Nissan Motor Co., Ltd. DC-DC converter and control method thereof
CN105406724A (zh) * 2015-12-31 2016-03-16 西安爱科赛博电气股份有限公司 移相控制全桥零电流变换器及直流开关电源
CN106452033A (zh) * 2016-11-23 2017-02-22 湖南继善高科技有限公司 基于移相控制的大功率发送机
CN106452151A (zh) * 2016-12-02 2017-02-22 中车青岛四方车辆研究所有限公司 动车组用单相逆变器

Also Published As

Publication number Publication date
CN101604916A (zh) 2009-12-16

Similar Documents

Publication Publication Date Title
CN101860216B (zh) 加耦合电感的倍流整流方式全桥直流变换器
CN100353652C (zh) 复合式全桥三电平直流变换器和全桥三电平直流变换器
CN101604916B (zh) 基于π型辅助网络零电压开关全桥直流变换器
CN1545194A (zh) 级联式双向dc-dc变换器
CN101018017A (zh) 混合式三电平谐振直流变换器及双移相控制方法
CN100379132C (zh) 软开关pwm交错并联双管正激变换器
CN100561840C (zh) 零电压开关全桥直流变换器
CN101604917A (zh) 采用无源辅助网络的零电压开关全桥直流变换器
CN103595258A (zh) 一种升压型软开关谐振变换器及其定频控制方法
CN100379137C (zh) 零电压开关复合式交错并联双管正激三电平直流变换器
CN202094804U (zh) 交错串联dc/dc变换器电路
CN102361403A (zh) 交错串联dc/dc变换器电路
CN105119496A (zh) 一种宽输入范围的三电平llc谐振变换器及电平切换控制方法
CN101312330A (zh) 谐振变换器高压电源装置
CN103618449A (zh) 带有电荷泵的三绕组耦合电感双管升压变换器
CN106505866B (zh) 一种三电平全桥直流变换装置
CN103986330A (zh) 一种适用于高压大功率场合的谐振升压直/直变换器及其控制方法
CN102931843B (zh) 自驱动有源辅助网络的软开关全桥直流变换器
CN101847936B (zh) 滞后臂并联辅助网络的软开关全桥直流变换器
CN1937380A (zh) 零电压开关半桥三电平直流变换器
CN103441680B (zh) 一种减小环流损耗的软开关全桥直流变换器
CN109217681B (zh) 一种双向谐振变换器
CN107395041B (zh) 高转换效率隔离型微型并网逆变器及其控制方法
CN104638932A (zh) 一种多谐振变换器
CN102931844A (zh) 有效抑制副边电压尖峰的宽负载范围零电压开关全桥变换器

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110330

Termination date: 20130707

C17 Cessation of patent right