WO2014188768A1 - 電子部品実装装置および電子部品の製造方法 - Google Patents

電子部品実装装置および電子部品の製造方法 Download PDF

Info

Publication number
WO2014188768A1
WO2014188768A1 PCT/JP2014/057293 JP2014057293W WO2014188768A1 WO 2014188768 A1 WO2014188768 A1 WO 2014188768A1 JP 2014057293 W JP2014057293 W JP 2014057293W WO 2014188768 A1 WO2014188768 A1 WO 2014188768A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mounting
heating
stage
electronic component
Prior art date
Application number
PCT/JP2014/057293
Other languages
English (en)
French (fr)
Inventor
耕平 瀬山
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to SG11201509575WA priority Critical patent/SG11201509575WA/en
Priority to JP2015518129A priority patent/JP6142276B2/ja
Priority to CN201480003595.4A priority patent/CN104871300B/zh
Priority to KR1020157006425A priority patent/KR101994667B1/ko
Publication of WO2014188768A1 publication Critical patent/WO2014188768A1/ja
Priority to US14/948,385 priority patent/US9968020B2/en
Priority to US15/680,207 priority patent/US10568245B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27318Manufacturing methods by local deposition of the material of the layer connector in liquid form by dispensing droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/755Cooling means
    • H01L2224/75501Cooling means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/756Means for supplying the connector to be connected in the bonding apparatus
    • H01L2224/75611Feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7565Means for transporting the components to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75701Means for aligning in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75702Means for aligning in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75733Magnetic holding means
    • H01L2224/75734Magnetic holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75801Lower part of the bonding apparatus, e.g. XY table
    • H01L2224/75802Rotational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75801Lower part of the bonding apparatus, e.g. XY table
    • H01L2224/75804Translational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75821Upper part of the bonding apparatus, i.e. bonding head
    • H01L2224/75822Rotational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75821Upper part of the bonding apparatus, i.e. bonding head
    • H01L2224/75824Translational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • the present invention relates to a structure of an electronic component mounting apparatus, in particular, a structure of a mounting stage of the electronic component mounting apparatus, and an electronic component manufacturing method using the electronic component mounting apparatus.
  • flip chip mounting in which bump electrodes called bumps are formed on the semiconductor chip and the semiconductor chip is directly mounted on the circuit board has been widely adopted.
  • a plurality of bumps are formed on a circuit surface of a semiconductor chip with a material such as solder, and the bumps are bonded to a plurality of electrodes formed on a circuit board by heating and melting.
  • a semiconductor chip and a circuit board are bonded to each other, and have advantages such as a reduction in mounting area, good electrical characteristics, and no need for mold sealing as compared with a conventional wire mounting method.
  • thermosetting non-conductive paste NCP is previously applied to the circuit board by a dispenser, and the bumps of the semiconductor chip are pressed against the electrodes of the circuit board by a heated mounting tool to heat and melt the bumps.
  • a flip chip mounting method is used in which a semiconductor chip and a circuit board are electrically mounted, and at the same time, a non-conductive paste (NCP) is heat-cured and resin-sealed between the semiconductor chip and the circuit board (for example, , See Patent Document 1).
  • NCP non-conductive paste
  • JP 2005-150446 A Japanese Patent Laid-Open No. 2005-72444
  • the mounting tool that adsorbs the semiconductor chip is often heated to, for example, about 300 ° C. and the circuit board is heated to about 70 ° C. for mounting. Since the mounting time of one semiconductor chip is about 15 to 20 seconds, for example, when about 100 semiconductor chips are mounted on one substrate, 30 minutes from the start of mounting until the mounting of all the semiconductor chips is completed. It will take about a degree.
  • a non-conductive paste (NCP) is applied by a dispenser to all positions where semiconductor chips are mounted at room temperature, and then the substrate is mounted in a state heated to about 70 ° C.
  • NCP non-conductive paste
  • the semiconductor chip is mounted immediately after the non-conductive paste (NCP) is heated to 70 ° C., whereas the last mounting is performed.
  • the semiconductor chip is mounted after about 30 minutes have passed while the non-conductive paste (NCP) is heated to 70 ° C.
  • non-conductive paste is thermosetting, it often changes in quality even at a temperature of about 70 ° C. over time. For example, after heating to 70 ° C., mounting must be performed within 30 minutes. There are many things that don't work. For this reason, for example, when it takes 15 to 20 seconds to mount one semiconductor chip, a non-conductive paste (NCP) is applied to the substrate by a dispenser, and the substrate is heated to about 70 ° C. and then mounted continuously. The number of semiconductor chips that can be performed is about 100 (the number that can be mounted within 30 minutes after heating the substrate to about 70 ° C.).
  • an object of the present invention is to provide an electronic component mounting apparatus capable of efficiently mounting a large number of electronic components on a substrate with a simple apparatus.
  • the electronic component mounting apparatus of the present invention has at least one section mounting stage divided into a heating area for heating the substrate fixed to the surface and a non-heating area for not heating the substrate fixed to the surface.
  • 1 is an electronic component mounting apparatus for mounting electronic components.
  • the section mounting stage includes a flat base portion having a flat step portion, and a heat insulating layer superimposed on the step portion so that the surface thereof is flush with the surface of the base portion.
  • the substrate is fixed to the surface of the base portion and the surface of the heat insulation layer, the heating region is the surface of the base portion, and the non-heating region is the surface of the heat insulation layer.
  • a first division mounting stage divided into a heating region for heating the substrate fixed to the surface thereof, a non-heating region for not heating the substrate fixed to the surface, and a heating region
  • a second section mounting stage in which the arrangement of the non-heated region is opposite to the first section mounting stage.
  • the electronic component mounting apparatus further includes at least one entire heating mounting stage for heating the entire substrate fixed to the surface.
  • the electronic component manufacturing method of the present invention includes a first divided mounting stage divided into a heating region for heating a substrate fixed to the surface thereof, and a non-heating region for not heating the substrate fixed to the surface thereof, and heating A step of preparing an electronic component mounting apparatus having a second section mounting stage in which the arrangement of the region and the non-heated area is opposite to the first section mounting stage, and using the electronic component mounting apparatus, A paste application step for applying a non-conductive paste at each position where each electronic component is mounted, a first fixing step for fixing the substrate to the first section mounting stage, and a heating region for the first section mounting stage on the substrate A first heating process for heating only the part fixed above, a first mounting process for mounting each electronic component at each position of the heated part of the board, and fixing the board to the second section mounting stage Second fixing step A second heating step of heating only a portion fixed on the heating region of the second section mounting stage of the substrate, and a second mounting step of mounting each electronic component at each position of the heated portion of the substrate And an electronic component manufacturing method for mounting
  • the method of manufacturing an electronic component according to the present invention includes a divided mounting stage divided into a heating region for heating a substrate fixed to the surface thereof, and a non-heating region for not heating the substrate fixed to the surface thereof, and fixing to the surface.
  • a step of preparing an electronic component mounting apparatus having a whole heating mounting stage for heating the entire substrate, a paste applying step of applying a non-conductive paste to each position where each electronic component is mounted on the substrate, and a substrate A first fixing step for fixing the substrate to the section mounting stage, a first heating step for heating only a portion fixed on the heating area of the section mounting stage of the substrate, and a heating portion of the substrate at each position.
  • the first mounting process for mounting electronic components, the third fixing process for fixing the board to the entire heating mounting stage, the third heating process for heating the entire board, and mounting the electronic parts in the first mounting process do it Has a third mounting step of mounting the electronic components on the not each position, the process fabricates the electronic devices performing the mounting of a plurality of electronic components on a substrate.
  • An electronic component manufacturing method includes an electronic component mounting apparatus having a section mounting stage divided into a heating region for heating a substrate fixed to the surface thereof and a non-heating region for heating the substrate fixed to the surface thereof.
  • a fourth fixing step in which the substrate is rotated 180 degrees in the horizontal plane, and the region where the electronic component is not mounted in the first mounting step is fixed to the heating region of the sectional mounting stage, and the additional mounting stage of the substrate is added.
  • the present invention has an effect that it is possible to provide an electronic component mounting apparatus capable of efficiently mounting a large number of electronic components on a substrate with a simple apparatus.
  • FIG. 1 It is a top view which shows the structure of the flip chip mounting apparatus in embodiment of this invention. It is a top view which shows arrangement
  • the flip chip mounting apparatus 500 of this embodiment includes a substrate supply block 10, an NCP (non-conductive paste) application block 20, an upstream preheating block 30, and an upstream mounting block 40.
  • the substrate 200 is transferred from the substrate supply block 10 toward the product storage block 90 as indicated by white arrows 19, 29, 39, 49, 69, 79, 89.
  • the substrate 200 is transported in the X direction, the horizontal direction perpendicular to the substrate transport direction is the Y direction, and the direction perpendicular to the surface of the substrate 200 (height direction) is the Z direction.
  • suction or
  • the method of fixing the substrate 200 to each block 30, 40, 60, 70 is not limited to suction or vacuum suction.
  • magnetic suction or electromagnetic clamps are used. It may be fixed.
  • the substrate supply block 10 has a substrate storage shelf (not shown) inside, and supplies the substrates 200 stored in the shelf one by one to the NCP coating block 20.
  • the NCP application block 20 includes a frame 21, an X-direction guide 22 attached to the frame 21, a Y-direction guide 23 that is guided by the X-direction guide 22 and moves in the X-direction, and a Y-direction guide 23 that is guided by the Y-direction guide 23.
  • a dispenser head 24 that moves in a direction, a dispenser stage 25 that sucks and fixes the substrate 200, and a transport rail 26 that transports the substrate 200 supplied from the substrate supply block 10 to the dispenser stage 25 are provided.
  • the dispenser head 24 is configured to be freely movable in the X and Y directions by the X direction guide 22 and the Y direction guide 23.
  • a dispenser 241 shown in FIG. 5A is attached to the dispenser head 24.
  • the upstream side preheating block 30 includes a frame 31, a substrate transfer robot 32 attached to the frame 31, and an upstream side preheating stage 35.
  • the substrate transfer robot 32 includes a rotatable main body 33 and a telescopic arm 34 attached to the main body 33.
  • the arm 34 includes a hand (not shown) that holds the substrate 200 at the tip, picks up the substrate 200 from the dispenser stage 25, moves and places it on the upstream preheating stage 35, and also performs upstream preheating.
  • the substrate 200 is picked up from the top of the stage 35 and moved and placed on the upstream mounting stage 45.
  • the upstream side mounting block 40 includes a frame 41, an X direction frame 42 attached to the frame 41, a Y direction frame 43 attached to the X direction frame 42, and an upstream side mounting head 44 attached to the Y direction frame 43. And an upstream mounting stage 45 that holds the substrate 200 by suction.
  • the upstream mounting stage 45 is mounted on an XY table (not shown) and can move in the XY direction, and the upstream mounting head 44 can move freely in the Z direction. Further, an upstream mounting tool 441 shown in FIG. 7N is attached to the upstream mounting head 44.
  • the downstream preheating block 60 includes a frame 61, a substrate transport robot 62 attached to the frame 61, and a downstream preheating stage 65, as in the upstream preheating block 30.
  • the substrate transfer robot 62 includes a rotatable main body 63 and a telescopic arm 64 attached to the main body 63.
  • the arm 64 has a hand (not shown) for gripping the substrate 200 at the tip, picks up the substrate 200 from the upstream mounting stage 45, moves it on the downstream preheating stage 65, and places it on the downstream side.
  • the substrate 200 is picked up from the preheating stage 65 and moved and placed on the downstream mounting stage 75.
  • the downstream side mounting block 70 includes a frame 71, an X direction frame 72 attached to the frame 71, a Y direction frame 73 attached to the X direction frame 72, and a downstream side mounting head 74 attached to the Y direction frame 73. And a downstream side mounting stage 75 on which the substrate 200 is fixed by suction.
  • the downstream mounting stage 75 is mounted on an XY table (not shown) and can move in the XY direction, and the downstream mounting head 74 can move freely in the Z direction. Further, the downstream side mounting head 74 is attached with a downstream side mounting tool 741 shown in FIG.
  • the product carry-out block 80 includes a frame 81, a substrate transfer robot 82 attached to the frame 81, and a transfer rail 86 attached to the frame 81.
  • the substrate transfer robot 82 includes a rotatable main body 83 and a telescopic arm 84 attached to the main body 83.
  • the arm 84 includes a hand (not shown) that holds the substrate 200 at the tip, picks up the substrate 200 from the downstream mounting stage 75, moves it on the transport rail 86, and places it on it.
  • the transport rail 86 transports the substrate 200 to the product storage block 90 by a transport device (not shown).
  • the product storage block 90 has a substrate storage shelf (not shown) inside, and stores the mounted substrate 200 in each shelf. When a predetermined number of substrates 200 are stored on the shelf of the product storage block 90, the substrates 200 of the product storage block 90 are transported to a curing device (not shown).
  • the semiconductor chip pickup block 50 includes a frame 51, a pickup stage 55 that sucks and fixes the wafer 300 attached to the frame 51, a Y-direction guide 52 attached to the frame 51, and an X-direction attached to the Y-direction guide 52.
  • a pickup head 54 that can be freely moved in the XY direction on the pickup stage 55 by a guide 53 and a transfer head 57 that is attached to an X-direction guide 56 that is guided by the Y-direction guide 52 and that can freely move in the XY direction.
  • the pickup head 54 includes a pickup collet 541 that is rotatable around a rotation shaft 543 shown in FIG. Further, as shown in FIGS. 6G and 6H, the transfer head 57 is attached with a transfer collet 571 that receives the inverted semiconductor chip 400 from the pickup collet 541 and moves to the transfer stage 112.
  • the semiconductor chip transport block 110 is a transport path for transporting the transfer stage 112 (shown in FIG. 6G and FIG. 6H) that receives the inverted semiconductor chip 400 to the upstream mounting block 40 and the downstream mounting block 70. is there.
  • the board bypass transport block 100 bypasses the upstream mounting block 40 or the downstream mounting block 70 from the upstream preheating block 30 to the downstream preheating block 60 or the product carry-out block 80 and transports the board 200. is there.
  • the upstream preheating stage 35, the upstream mounting stage 45, the downstream preheating stage 65, and the downstream mounting stage 75 are a heating region 352 that heats the substrate 200 adsorbed on the surface thereof.
  • These are divided mounting stages divided into 452, 652, and 752, and non-heated regions 356, 456, 656, and 756 in which the substrate 200 adsorbed on the surface is not heated.
  • the heating regions 352, 452, 652, and 752 are slightly wider than the non-heating regions 356, 456, 656, and 756, and extend beyond the center lines 360, 460, 660, and 760 in the Y-axis direction of each stage.
  • heating regions 352 and 452 are disposed on the downstream side in the transport direction of the substrate 200, and non-heating regions 356 and 456 are disposed on the upstream side in the transport direction of the substrate 200.
  • Arranged first type segmented stage, first type segmented mounting stage, downstream preheating stage 65 and downstream side mounting stage 75 are the first type segmented mounting in the arrangement of heating area and non-heating area Contrary to the arrangement of the upstream preheating stage 35 and the upstream mounting stage 45 which are stages, heating regions 652 and 752 are arranged on the upstream side in the conveyance direction of the substrate 200, and non-positions on the downstream side in the conveyance direction of the substrate 200.
  • the arrangement of the heating area 652 and the non-heating area 656 of the downstream preheating stage 65 is reversed around the central axis 360 in the Y direction with respect to the arrangement of the heating area 352 and the non-heating area 356 of the upstream preheating stage 35. It is arranged.
  • the arrangement of the heating region 752 and the non-heating region 756 of the downstream mounting stage 75 is reversed around the central axis 460 in the Y direction with respect to the arrangement of the heating region 452 and the non-heating region 456 of the upstream mounting stage 45. It is an arrangement.
  • the upstream preheating stage 35 and the upstream mounting stage 45 include flat base portions 351 and 451 having flat step portions 353 and 453 on the upstream side in the transport direction of the substrate 200. , Heat insulating layers 354 and 454 overlaid on the step portions 353 and 453, and heater bases 358 and 458 overlaid under the base portions 351 and 451, respectively.
  • the base portions 351 and 451 are made of a metal having good thermal conductivity such as stainless steel, and the heat insulating layers 354 and 454 are made of heat insulating spacers 355 and 455 made of a material having low thermal conductivity such as plastic. ing.
  • the heat insulating spacers 355 and 455 are provided with concave portions 357 and 457 on the surface on the side of the step portions 353 and 453, and an air heat insulating layer is formed between the surfaces of the step portions 353 and 453 so that the surfaces of the step portions 353 and 453 It is comprised so that between can be effectively insulated.
  • the heater base 358 has heaters 359 and 459 disposed therein.
  • the surfaces of the base portions 351 and 451 are heating regions 352 and 452, and the surfaces of the heat insulating spacers 355 and 455 are non-heating regions 356 and 456.
  • the heat insulating spacers 355 and 455 are respectively attached to the step portions 353 and 453 by fasteners such as bolts (not shown) and can be easily removed and replaced.
  • the base portions 351 and 451 are also attached to the heater bases 358 and 458 with fastening members such as bolts, and can be easily replaced together with the heat insulating spacers 355 and 455.
  • the downstream preheating stage 65 and the downstream mounting stage 75 are arranged on the center lines 360 and 460 with respect to the arrangement of the heating area and the non-heating area of the upstream preheating stage 35 and the upstream mounting stage 45.
  • 754 and heater bases 658, 758 superimposed under the base portions 651, 751, and the surfaces of the base portions 651, 751 are heating regions 652, 752, and constitute the heat insulating layers 654, 754.
  • the surfaces of the heat insulating spacers 655 and 755 to be performed are non-heated regions 656 and 756.
  • the heat insulating spacers 655 and 755 are provided with concave portions 657 and 757 on the surface of the step portions 653 and 753, and an air heat insulating layer is formed between the step portions 653 and 753 and the step portions 653 and 753. It is comprised so that between the surfaces of can be effectively insulated.
  • the heat insulating spacers 655 and 755 are respectively attached to the step portions 653 and 753 by fasteners such as bolts (not shown), and the base portions 651 and 751 are also heater bases. 658 and 758 are attached with fastening members such as bolts.
  • the NCP coating block 20 shown in FIG. 1 sucks and fixes the substrate 200 transported from the substrate supply block 10 on the dispenser stage 25, and moves the dispenser head 24 in the XYZ directions as shown in FIG.
  • NCP (non-conductive paste) 201 is applied by a dispenser 241 to a plurality of positions on the substrate 200 where the semiconductor chip 400 is mounted.
  • the application of NCP (non-conductive paste) 201 is performed in a state where the substrate 200 is at room temperature (paste application process).
  • NCP (non-conductive paste) 201 When NCP (non-conductive paste) 201 is applied to a predetermined position of the substrate 200, the substrate 200 is picked up from the dispenser stage 25 by the substrate transfer robot 32 shown in FIG. 1, and FIGS. As indicated by an arrow a in b), the sheet is transported onto the upstream preheating stage 35 and placed on the upstream preheating stage 35.
  • the upstream preheating stage 35 sucks and fixes the substrate 200 on the surface thereof.
  • the upstream preheating stage 35 has a heating region 352 disposed on the downstream side in the transport direction of the substrate 200, and a non-heating region on the upstream side in the transport direction of the substrate 200.
  • the temperature of the NCP (non-conductive paste) 201 applied on the substrate 200 in this region also rises to about 70 ° C.
  • the region slightly smaller than the half of the upstream side of the substrate 200 in the transport direction (the portion fixed to the non-heated region 356) is not heated because the heat insulation layer 354 blocks the heat of the heater 359. It is kept at a little higher than normal temperature. For this reason, the temperature of the NCP (non-conductive paste) 201 applied on the substrate 200 in this region is also maintained at room temperature or slightly higher than room temperature.
  • the substrate 200 is picked up from the upstream preheating stage 35 by the substrate transport robot 32 shown in FIG. 5 (b) and the arrow b in FIG. 5 (c), the sheet is transported onto the upstream mounting stage 45 and placed on the upstream mounting stage 45.
  • the upstream mounting stage 45 sucks and fixes the substrate 200 to the surface thereof (first sucking (fixing) step).
  • the upstream mounting stage 45 has a heating region 452 disposed downstream in the transport direction of the substrate 200, and a non-heating region 456 disposed upstream in the transport direction of the substrate 200.
  • a region that is a first type division stage and is slightly larger than a half on the downstream side in the transport direction of the substrate 200 (portion fixed to the heating region 452) is held at a temperature of about 70 ° C. by the heater 459.
  • the temperature of the NCP (nonconductive paste) 201 applied to the substrate 200 is also maintained at about 70 ° C.
  • the temperature of the NCP (non-conductive paste) 201 applied to the substrate 200 in this region is also kept at room temperature or a little higher than room temperature (first heating step).
  • the semiconductor chip 400 obtained by dicing the wafer 300 shown in FIG. 1 is held on the upper surface 551 of the pickup stage 55.
  • Bumps 401 are formed on the mounting surface of the semiconductor chip 400 (the upper surface in FIG. 6C).
  • the pickup collet 541 descends to the mounting surface of the semiconductor chip 400 to be picked up.
  • FIG. 6D when the pickup collet 541 descends toward the semiconductor chip 400 and the suction surface 542 at the tip of the pickup collet 541 comes into contact with the mounting surface of the semiconductor chip 400, the semiconductor chip 400 is at the tip of the pickup collet 541.
  • the semiconductor chip 400 is picked up from the upper surface 551 of the pickup stage 55.
  • the pick-up collet turned downward by rotating the rotating shaft 543 of the pick-up collet 541 180 degrees in the direction of arrow f in FIG. 6F.
  • the semiconductor chip 400 is inverted so that the suction surface 542 of 541 faces upward and the surface 402 of the semiconductor chip 400 (surface opposite to the mounting surface on which the bump 401 is formed) is upward in FIG.
  • the pickup head 54 is moved in the XY directions while holding the semiconductor chip 400 while keeping the suction surface 542 of the pickup collet 541 upward.
  • the collet 541 is moved to a position where the semiconductor chip 400 is transferred to and from the transfer collet 571.
  • the transfer head 57 also moves the transfer collet 571 to the above-described delivery position. 6G, the suction surface 572 of the transfer collet 571 is lowered toward the surface 402 of the semiconductor chip 400 that is attracted to the suction surface 542 of the pickup collet 541.
  • the pickup of the semiconductor chip 400 by the pickup collet 541 is released and the semiconductor chip 400 is sucked to the suction surface 572 of the transfer collet 571.
  • the semiconductor chip 400 is delivered from the collet 541 to the transfer collet 571.
  • the transfer head 57 moves the transfer collet 571 that has received the semiconductor chip 400 to the transfer position to the transfer stage 112. Then, the transfer collet 571 is lowered on the transfer stage 112 and the semiconductor chip 400 is delivered to the surface 113 of the transfer stage 112. The semiconductor chip 400 is placed on the surface 113 of the transfer stage 112 with the surface 402 on the upper side in the Z direction and the mounting surface on which the bumps 401 are formed on the lower side in the Z direction, and is transferred to the transfer stage 112. .
  • the transfer head 57 delivers the semiconductor chip 400 to the surface 113 of the transfer stage 112
  • the transfer head 57 moves upward as indicated by an arrow k in FIG.
  • the transfer stage 112 that has received the semiconductor chip 400 moves from the semiconductor chip pick-up block 50 shown in FIG. 1 along the transport path 111 of the semiconductor chip transport block 110 to the white arrows in FIGS. 7 (k) and 7 (m). As shown by k2, it is conveyed to the upstream mounting block 40.
  • the upstream mounting head 44 lowers the upstream mounting tool 441 on the transfer stage 112.
  • the suction surface 442 is brought into contact with the surface 402 of the semiconductor chip 400, and the semiconductor chip 400 is sucked onto the suction surface 442 of the upstream mounting tool 441.
  • the upstream mounting tool 441 sucks the semiconductor chip 400 on the suction surface 442
  • the upstream chip 441 heats the semiconductor chip 400 to about 300 ° C. by a heater (not shown) disposed therein, and the arrow n in FIG.
  • the semiconductor chip 400 is mounted at a predetermined position of the portion of the substrate 200 that is sucked and fixed onto the heating region 452 of the upstream mounting stage 45. Since the temperature of the substrate 200 adsorbed and fixed on the heating region 452 and the NCP (non-conductive paste) 201 applied to the substrate 200 in that region is about 70 ° C., it is heated to about 300 ° C.
  • the bump 401 formed on the mounting surface of the semiconductor chip 400 is melted and joined to the electrode of the substrate 200, and the NCP (non-conductive paste) 201 is heated, After curing, the semiconductor chip 400 is fixed and mounted on the substrate 200 (first mounting step).
  • the semiconductor chip 400 is mounted on the substrate 200 from the back side (Y direction + side) of the rightmost (X direction + side) row in FIG.
  • the upstream mounting stage 45 is moved by X (+
  • the semiconductor chip 400 is mounted in the second column from the rightmost.
  • the upstream mounting stage 45 is moved in the X (+) direction by one chip using an XY table (not shown) to mount the semiconductor chips 400 in the next row.
  • the semiconductor chip 400 is mounted on all the predetermined positions of the portion of the substrate 200 that is sucked and fixed on the heating region 452 of the upstream mounting stage 45, the first mounting process in the upstream mounting stage 45 is performed. finish.
  • the semiconductor chip 400 is not mounted on the portion of the substrate 200 adsorbed on the non-heating region 456 disposed on the upstream side of the upstream mounting stage 45 in the transport direction (X direction) of the substrate 200.
  • This part is held at room temperature or slightly higher than room temperature because the heat from the heater 459 is blocked by the heat insulating layer 454, and the NCP (non-conductive paste) applied to the substrate 200 and the substrate 200.
  • 201 is also held at room temperature or slightly higher than room temperature. Therefore, in the upstream mounting stage 45, the temperature of the NCP (non-conductive paste) 201 is at room temperature or slightly below room temperature while the semiconductor chip 400 is mounted in a range slightly narrower than half of the upstream side in the transport direction of the substrate 200. It can be kept at a high level, and deterioration due to a rise in temperature of the NCP (non-conductive paste) 201 can be suppressed.
  • the substrate transport robot 62 shown in FIG. The substrate 200 is picked up from above 45, transported onto the downstream preheating stage 65 and placed thereon, as indicated by the arrow p in FIG. 8 (p).
  • the downstream preheating stage 65 adsorbs and fixes the substrate 200 to the surface thereof.
  • the portion of the substrate 200 that has been formed (region slightly larger than the half on the downstream side of the substrate 200) has a temperature of about 70 ° C., but the portion of the substrate 200 on which the semiconductor chip 400 is not mounted, or the upstream
  • the portion of the substrate 200 that has been suction-fixed on the non-heating region 456 of the side mounting stage 45 (region slightly smaller than the half on the upstream side of the substrate 200) is at room temperature or a temperature slightly higher than room temperature. .
  • the downstream preheating stage 65 has a heating region 652 arranged upstream in the conveyance direction of the substrate 200, and a non-heating region downstream in the conveyance direction of the substrate 200.
  • the second type division stage 656 is arranged, and a region (a portion fixed to the heating region 652) that is slightly larger than the half of the upstream side in the transport direction of the substrate 200 is heated by the heater 659 until it reaches about 70 ° C. Is done.
  • the portion of the substrate 200 on which the semiconductor chip 400 that was at room temperature or a little higher than room temperature was not mounted, or the substrate that was adsorbed and fixed on the non-heated region 456 of the upstream mounting stage 45.
  • the 200 portion (region slightly smaller than half of the upstream side of the substrate 200) is heated from room temperature or a little higher than room temperature to about 70 ° C., and NCP (non-conductive paste) applied on the substrate 200 in this region. )
  • the temperature of 201 also rises to about 70 ° C.
  • the region slightly larger than half is adsorbed at a temperature of about 70 ° C. at a region slightly smaller than half of the downstream preheating stage 65 on the downstream side in the transport direction of the substrate 200 (the portion fixed to the non-heating region 656). Fixed.
  • the temperature of the portion of the substrate 200 on which the semiconductor chip 400 is mounted gradually decreases from about 70 ° C.
  • the temperature of the NCP (non-conductive paste) 201 applied on the substrate 200 in this region gradually decreases from a temperature of about 70 ° C.
  • the substrate 200 is picked up from the downstream preheating stage 65 by the substrate transport robot 62 shown in FIG. 8 (p), as indicated by an arrow q in FIG. 8 (q), the sheet is transported onto the downstream mounting stage 75 and placed on the downstream mounting stage 75.
  • the downstream mounting stage 75 suction-fixes the substrate 200 on the surface (second suction (fixing) step).
  • the downstream mounting stage 75 has a heating region 752 disposed upstream in the transport direction of the substrate 200 and a non-heating region 756 disposed downstream in the transport direction of the substrate 200.
  • a region that is a second type division stage and is slightly larger than half of the upstream side in the transport direction of the substrate 200 (a portion that is adsorbed and fixed to the heating region 752) is maintained at a temperature of about 70 ° C. by the heater 759.
  • the temperature of the NCP (nonconductive paste) 201 applied to the substrate 200 is also maintained at about 70 ° C.
  • the downstream preheating stage 65 The temperature is further lowered than the temperature at the time of being placed on (second heating step).
  • the semiconductor chip 400 on the upper surface 551 of the pickup stage 55 is picked up by the pickup collet 541, inverted 180 degrees, and then transferred. It is delivered to the collet 571 and further delivered from the transfer collet 571 to the transfer stage 112.
  • the transfer head 57 delivers the semiconductor chip 400 to the surface 113 of the transfer stage 112
  • the transfer head 57 moves upward as indicated by an arrow r in FIG. 9R and moves away from the semiconductor chip 400.
  • the transfer stage 112 that has received the semiconductor chip 400 moves from the semiconductor chip pickup block 50 shown in FIG. 1 along the transfer path 111 of the semiconductor chip transfer block 110 in FIG. 9 (r) and FIG. As shown in FIG.
  • the downstream mounting head 74 lowers the downstream mounting tool 741 onto the transfer stage 112. Then, the suction surface 742 of the downstream side mounting tool 741 is brought into contact with the surface 402 of the semiconductor chip 400, and the semiconductor chip 400 is attracted to the suction surface 742 of the downstream side mounting tool 741.
  • the downstream mounting tool 741 attracts the semiconductor chip 400 to the attracting surface 742, the semiconductor chip 400 is heated to about 300 ° C. by a heater (not shown) disposed therein, and the arrow t in FIG.
  • the semiconductor chip 400 is mounted at a predetermined position of the portion of the substrate 200 that is sucked and fixed onto the heating region 752 of the downstream mounting stage 75. Since the temperature of the substrate 200 adsorbed and fixed on the heating region 752 and the NCP (non-conductive paste) 201 applied to the substrate 200 in that region is about 70 ° C., it is heated to about 300 ° C.
  • the bump 401 formed on the mounting surface of the semiconductor chip 400 is melted and joined to the electrode of the substrate 200, and the NCP (non-conductive paste) 201 is heated, After curing, the semiconductor chip 400 is fixed and mounted on the substrate 200 (second mounting step).
  • the mounting of the semiconductor chip 400 on the substrate 200 is performed on the column adjacent to the column of the semiconductor chip 400 mounted last in the first mounting step, that is, on the downstream side shown in FIG. This is performed from the far right side (Y direction + side) of the rightmost (X direction + side) row in the heating region 752 of the mounting stage 75 toward the front side (Y direction minus side) of the row of the semiconductor.
  • the downstream mounting stage 75 is moved in the X (+) direction by one chip using an XY table (not shown), and the semiconductor chip 400 is mounted in the next row.
  • the downstream mounting stage 75 is moved in the X (+) direction by one chip using an XY table (not shown) to mount the semiconductor chips 400 in the next row. Then, when the semiconductor chip 400 is mounted at all predetermined positions of the portion of the substrate 200 that is sucked and fixed onto the heating region 752 of the downstream mounting stage 75, the second mounting process in the downstream mounting stage 75 is performed. finish.
  • the substrate transport robot 82 shown in FIG. The substrate 200 is picked up from above 75 and moved and placed on the transfer rail 86.
  • the substrate 200 that has become a product after all the semiconductor chips 400 are mounted is transported to the product storage block 90 on the transport rail 86 by a transport device (not shown).
  • the substrates 200 of the product storage block 90 are transported to a curing device (not shown) and, for example, cured at a temperature of about 200 ° C. for about 1 hour.
  • the NCP (non-conductive paste) 201 is completely cured.
  • the upstream preheating stage 35 heats only about a half region downstream in the transport direction of the substrate 200 to about 70 ° C.
  • the upstream mounting stage 45 causes the substrate 200 to Only about half of the region downstream in the transport direction is held at about 70 ° C., and the semiconductor chip 400 is mounted only on this portion, and during that time, half of the region upstream in the transport direction of the substrate 200 is at room temperature or slightly higher than room temperature.
  • the temperature is maintained at a certain level, and the alteration of the NCP (non-conductive paste) 201 applied to the substantially half region upstream of the transport direction of the substrate 200 is suppressed, and the downstream preheating stage 65 and the downstream mounting stage are suppressed.
  • a half region on the upstream side in the transport direction of the substrate 200 previously held at a temperature close to room temperature is heated to about 70 ° C., and the semiconductor chip to this region is heated. Therefore, while the semiconductor chip 400 is mounted on the downstream half of the substrate 200, the upstream half of the substrate 200 is kept at room temperature or a temperature slightly higher than room temperature. It is possible to prevent the NCP (non-conductive paste) 201 from being deteriorated by heat before mounting the upstream half of. For this reason, after the NCP (non-conductive paste) 201 is applied on the substrate 200, the maximum time for waiting for the semiconductor chip 400 to be mounted in a state heated to about 70 ° C. is half of the upstream side of the substrate 200.
  • the flip chip mounting apparatus 500 is mounted before the NCP (non-conductive paste) 201 applied on the substrate 200 is altered by heat, as compared with the conventional flip chip mounting apparatus.
  • the number of possible semiconductor chips 400 is doubled. That is, this embodiment has an effect that a large number of semiconductor chips 400 can be mounted on the substrate 200 while suppressing the NCP (non-conductive paste) 201 from being deteriorated by heat.
  • the downstream preheating stage 65 and the downstream mounting stage 75 are not heated in the downstream half region of the substrate 200 that has been mounted on the upstream mounting stage 45.
  • the NCP (non-conductive paste) 201 is applied to the substrate 200 and after the mounting of all the semiconductor chips 400 is completed on the downstream mounting stage 75, the NCP ( Since the period during which the non-conductive paste) 201 is heated to about 70 ° C. is substantially the same time, the NCP (non-conductive paste) 201 can be cured substantially uniformly by curing.
  • the flip chip mounting apparatus 500 of the present embodiment applies the substrate 200 to the substrate supply block 10 and NCP (non-conductive paste) coating as shown by the white arrows 19, 29, 39 shown in FIG.
  • NCP non-conductive paste
  • the substrate 200 is mounted as indicated by white arrows 49 and 69.
  • the semiconductor chip 400 is sequentially transferred to the downstream preheating block 60 and the downstream mounting block 70 and mounted on the upstream half of the substrate 200, various types of mounting are performed as described below. You can also.
  • the NCP coating block 20 applies NCP (non-conductive paste) 201 only to the upstream half of the substrate 200
  • the substrate 200 is picked up from the top of the dispenser stage 25 and placed on the upstream preheating block line 101 of the substrate bypass transport block 100.
  • the white arrow 109 shown in FIG. The preheating block line 102 and the substrate 200 are transported, and the substrate transport robot 62 picks up the substrate 200 from the downstream preheating block line 102 and places the substrate 200 on the downstream preheating stage 65, and the downstream preheating stage 65.
  • Heating block 60, downstream mounting block It may be mounted a semiconductor chip 400 only on the upstream side half of the substrate 200 by click 70.
  • the substrate 200 is made of the substrate supply block 10, the NCP (non-conductive paste) coating block 20, the upstream preheating block 30, the upstream.
  • the substrate 200 is picked up from above the upstream mounting stage 45 by the substrate transport robot 62 and downstream of the substrate bypass transport block 100.
  • the substrate carrying robot 82 picks up the substrate 200 from the product carry-out block line 103, and the product carry-out block 80 To be placed on the transport rail 86 It may be.
  • the NCP (non-conductive paste) 201 is applied by the NCP application block 20, and then the substrate Using the transfer robot 32 and the substrate bypass transfer block 100, the substrate 200 is transferred in parallel to the upstream preheating block 30, the upstream mounting block 40, the downstream preheating block 60, and the downstream mounting block 70.
  • Each mounting block is mounted in parallel with the substrate 200, and the mounted substrate 200 is transferred from the product carry-out block 80 to the product storage block 90 using the substrate transfer robot 82 and the substrate bypass transfer block 100. May be.
  • the single flip chip mounting apparatus 500 can efficiently mount on a small substrate.
  • the downstream preheating block 120, the downstream preheating stage 125 of the downstream mounting block 130, and the downstream mounting stage 135 are set as a whole heating stage without a non-heating region.
  • the downstream preheating block 120 includes a frame 121, a substrate transport robot 122 attached to the frame 121, and a downstream preheating stage 125.
  • the substrate transfer robot 122 includes a rotatable main body 123 and a telescopic arm 124 attached to the main body 123.
  • the downstream side mounting block 130 includes a frame 131, an X direction frame 132 attached to the frame 131, a Y direction frame 133 attached to the X direction frame 132, and a downstream side mounting head 134 attached to the Y direction frame 133. And a downstream mounting stage 135 that holds the substrate 200 by suction. Then, as indicated by white arrows 49 and 129, the substrate 200 is sequentially transferred to the downstream preheating block 120 and the downstream mounting block 130.
  • the downstream preheating stage 125 and the downstream mounting stage 135 of the present embodiment have heating surfaces 1252 and 1352 as a whole, and as shown in FIG.
  • Each stage 125, 135 is a fastener such as a bolt by superimposing heater bases 1258, 1358, in which heaters 1259, 1359 are incorporated, on the lower side of base portions 1251, 1351 made of metal such as stainless steel. It is an integrated one. Heat of the heaters 1259 and 1359 is transmitted through the base portions 1251 and 1351 to increase the temperature of the heating regions 1252 and 1352 on the surface where the substrate 200 is adsorbed.
  • the process of mounting the semiconductor chip 400 on the substrate 200 using the flip chip mounting apparatus 600 of the present embodiment will be described with reference to FIGS.
  • NCP non-conductive paste
  • the upstream side preheating stage 35 heats about half the region on the downstream side of the substrate 200 to about 70 ° C., and the upstream side mounting stage 45.
  • the semiconductor chip 400 is picked up from the wafer 300, reversed, placed on the transfer stage 112 and transferred to the upstream mounting block 40, and the semiconductor chip 400 is transferred to the upstream mounting stage 45.
  • the mounting process is the same as the embodiment described with reference to FIGS. 5 to 7 (paste application process, first adsorption (fixing) process, first heating process, first mounting process).
  • the substrate 200 is picked up from the upstream mounting stage 45 by the substrate transfer robot 62 shown in FIG. It is transferred onto the heating stage 125 and placed on the downstream mounting stage 135.
  • the downstream mounting stage 135 sucks and fixes the substrate 200 on the surface thereof.
  • the downstream preheating stage 125 is a whole heating preheating stage whose entire surface is the heating region 1252, and the entire substrate 200 adsorbed and fixed to the surface (heating region 1252) is heated to about 70 ° C. by the heater 1259. Until heated. Accordingly, as described with reference to FIGS.
  • the portion of the substrate 200 on which the semiconductor chip 400 is not mounted on the upstream mounting stage 45 or the non-heating region 456 of the upstream mounting stage 45 is heated from room temperature or slightly higher than room temperature to about 70 ° C.
  • the temperature of the applied NCP (non-conductive paste) 201 also rises to about 70 ° C.
  • the region larger than half is maintained at a temperature of about 70 ° C.
  • the substrate 200 is removed from the downstream preheating stage 125 by the substrate transfer robot 62 shown in FIG.
  • the pickup is picked up, transported onto the downstream mounting stage 135 and placed on the downstream mounting stage 135 as indicated by an arrow q in FIGS. 12 (p) and 12 (q).
  • the downstream mounting stage 135 sucks and fixes the substrate 200 on its surface (third sucking (fixing) step).
  • the downstream mounting stage 135 is an overall heating mounting stage that heats the entire substrate 200, similar to the downstream preheating stage 125. (Third heating step).
  • the semiconductor chip 400 on the upper surface 551 of the pickup stage 55 is picked up by the pickup collet 541, inverted 180 degrees, and then transferred. It is delivered to the collet 571 and further delivered from the transfer collet 571 to the transfer stage 112.
  • the transfer head 57 delivers the semiconductor chip 400 to the surface 113 of the transfer stage 112
  • the transfer head 57 moves upward and moves away from the semiconductor chip 400 as indicated by an arrow r in FIG.
  • the transfer stage 112 that has received the semiconductor chip 400 moves from the semiconductor chip pickup block 50 shown in FIG. 1 along the transfer path 111 of the semiconductor chip transfer block 110 in FIG. 13 (r) and FIG. As indicated by r2, it is transported to the downstream mounting block 130.
  • the downstream mounting head 74 lowers the downstream mounting tool 741 onto the transfer stage 112.
  • the suction surface 742 of the downstream mounting tool 741 is brought into contact with the surface 402 of the semiconductor chip 400, and the semiconductor chip 400 is suctioned to the suction surface 742 of the downstream mounting tool 741.
  • the downstream mounting tool 741 attracts the semiconductor chip 400 to the attracting surface 742, the semiconductor chip 400 is heated to about 300 ° C. by a heater (not shown) disposed therein, and an arrow t in FIG.
  • the semiconductor chip 400 is mounted at a predetermined position on an approximately half region on the upstream side of the portion of the substrate 200 fixed to the downstream mounting stage 135 by suction. Since the temperature of the substrate 200 adsorbed and fixed to the surface which is the heating region 1352 of the downstream mounting stage 135 and the NCP (non-conductive paste) 201 applied to the substrate 200 is about 70 ° C., 300 When the semiconductor chip 400 heated to about 0 ° C. is mounted, the bump 401 formed on the mounting surface of the semiconductor chip 400 is melted and joined to the electrode of the substrate 200, and an NCP (non-conductive paste) 201 is mounted. Is heated and cured, and the semiconductor chip 400 is fixed and mounted on the substrate 200 (third mounting step).
  • the mounting of the semiconductor chip 400 on the substrate 200 is performed in the heating region of the downstream mounting stage 135 shown in FIG. 13 (t) as described above with reference to FIG. 9 (t). Mounting from the back side (Y direction + side) of the rightmost row (X direction + side) of the row 1352 toward the front side (Y direction minus side) of the row is completed. Then, the downstream mounting stage 135 is moved in the X (+) direction by one chip using an XY table (not shown), and the semiconductor chip 400 is mounted on the next column.
  • the downstream mounting stage 135 is moved in the X (+) direction by one chip using an XY table (not shown) to mount the semiconductor chips 400 in the next row.
  • the semiconductor chip 400 is mounted at all predetermined positions of the portion of the substrate 200 that is sucked and fixed onto the heating region 1352 of the downstream mounting stage 135, the third mounting process in the downstream mounting stage 135 is performed. finish.
  • the substrate 200 is transferred to a curing device (not shown), for example, And curing at a temperature of about 200 ° C. for about 1 hour.
  • a curing device not shown
  • NCP non-conductive paste
  • the flip chip mounting apparatus 600 of the present embodiment mounts the semiconductor chip 400 on the downstream half of the substrate 200 in the same manner as the flip chip mounting apparatus 500 of the embodiment described above with reference to FIGS. While the upper half of the substrate 200 is kept at room temperature or a temperature slightly higher than room temperature, the NCP (non-conductive paste) 201 is changed by heat before the upstream half of the substrate 200 is mounted. Can be suppressed. For this reason, the number of semiconductor chips 400 that can be mounted before the NCP (non-conductive paste) 201 applied on the substrate 200 is altered by heat as compared with the conventional flip chip mounting apparatus is as follows. The same effect is obtained in that the number of semiconductor chips 400 can be mounted on the substrate 200 while the NCP (non-conductive paste) 201 is prevented from being deteriorated by heat.
  • an NCP (non-conductive paste) 201 is provided on the substrate 200 as in the flip chip mounting apparatus 500 of the embodiment described above with reference to FIGS.
  • the NCP (non-conductive paste) 201 applied on the substrate 200 is heated to about 70 ° C. after the application and until the mounting of all the semiconductor chips 400 is completed at the downstream mounting stage 75.
  • the period during which the NCP (non-conductive paste) 201 applied on the downstream half of the substrate 200 is heated to about 70 ° C. is not the same time, but the upstream half of the substrate 200 This is twice as long as the NCP (non-conductive paste) 201 applied on the substrate is heated to about 70 ° C.
  • the flip chip mounting apparatus 600 of the present embodiment which has a simpler configuration than the flip chip mounting apparatus 500, is advantageous.
  • the first type segmentation stage, the first type segmentation mounting stage, the second type segmentation stage, and the second type segmentation mounting stage are each of the substrate 200.
  • the heating area and the non-heating area have been described as being separated on the upstream side and the downstream side in the transport direction (X direction), as shown in FIGS. 14A and 14B, the upstream side mounting stage 145 of the upstream side mounting block 140.
  • the heating regions 1452 and 1552 and the non-heating regions 1456 and 1556 of the downstream mounting stage 155 of the downstream mounting block 150 are divided into an upper side and a lower side in a direction perpendicular to the conveyance direction of the substrate 200 (Y direction). May be.
  • the effect of this embodiment is the same as that of the embodiment described with reference to FIGS.
  • the divisional mounting stages 165, 175, and 185 are arranged in the three mounting blocks 160, 170, and 180, respectively, and about 1 / of the mounting stages 165, 175, and 185, respectively.
  • 3 is a heating region 1652, 1752, 1852, and about 2/3 is a non-heating region 1656, 1756, 1856. You may make it arrange
  • a larger number of semiconductor chips 400 than those described with reference to FIGS. 1 to 9 are mounted on the substrate 200 while suppressing the NCP (non-conductive paste) 201 from being deteriorated by heat. There is an effect that can be.
  • the flip chip mounting apparatus 700 of this embodiment has only one preheating block and one mounting block. As shown in FIG. 16, the flip chip mounting apparatus 700 of this embodiment includes a substrate supply block 10, an NCP (non-conductive paste) coating block 20, a preheating block 7030, a mounting block 7040, and a product carry-out. A block 80, a product storage block 90, a semiconductor chip pickup block 50, and a semiconductor chip transfer block 110 are provided.
  • NCP non-conductive paste
  • the mounting block 7040 includes a frame 7041, an X-direction frame 7042 attached to the frame 7041, a Y-direction frame 7043 attached to the X-direction frame 7042, a mounting head 7044 attached to the Y-direction frame 7043, and the substrate 200. And a mounting stage 7045 for sucking and fixing the substrate.
  • the substrate 200 is conveyed from the substrate supply block 10 toward the NCP (non-conductive paste) coating block 20, the preheating block 7030, and the mounting block 7040 as indicated by white arrows 19, 29, and 7039.
  • the substrate 200 After mounting the semiconductor chip 400 on the downstream half of the substrate 200, the substrate 200 is rotated 180 degrees in the horizontal plane by the substrate transfer robot 7032 attached to the frame 7031, and reversely transferred toward the preheating block 7030, Then, as indicated by the white arrow 7039, after being transported again from the preheating block 7030 to the mounting block 7040, the product is transported from the product carry-out block 80 to the product storage block 90 as indicated by the white arrows 7049 and 89. It will be done.
  • the preheating stage 7035 and the mounting stage 7045 are the upstream preheating stage 35 and the upstream mounting stage described above with reference to FIG. 45, the divided mounting stages are divided into heating regions 70352 and 70452 for heating the substrate 200 adsorbed on the surface and non-heating regions 70356 and 70456 for not heating the substrate 200 adsorbed on the surface.
  • the heating regions 70352 and 70452 are slightly wider than the non-heating regions 70356 and 70456, and extend beyond the center lines 70360 and 70460 in the Y-axis direction of the respective stages.
  • heating regions 70352 and 70452 are arranged on the downstream side in the conveyance direction of the substrate 200, and non-heating regions 70356 and 70456 are arranged on the upstream side in the conveyance direction of the substrate 200.
  • One type division stage and a first type division mounting stage are arranged in the preheating stage 7035 and the mounting stage 7045.
  • the preheating stage 7035 and the mounting stage 7045 are the same as the upstream preheating stage 35 and the upstream mounting stage 45 described with reference to FIG. , Flat base portions 70351 and 70451 having flat step portions 70353 and 70453 on the upstream side in the transport direction of the substrate 200, heat insulating layers 70354 and 70454 overlaid on the step portions 70353 and 70453, and a base portion 70351. , 70451, and heater bases 70358, 70458 overlaid under each other.
  • the base portions 70351 and 70451 are made of a metal having good thermal conductivity such as stainless steel, and the heat insulating layers 70354 and 70454 are made of heat insulating spacers 70355 and 70455 made of a material having low heat conductivity such as plastic. ing.
  • the heat insulating spacers 70355 and 70455 are provided with recesses 70357 and 70457 on the surface of the step portions 70353 and 70453, and an air heat insulating layer is formed between the surfaces of the step portions 70353 and 70453, so that the surfaces of the step portions 70353 and 70453 are formed. It is comprised so that between can be effectively insulated.
  • the heater base 70358 has heaters 70359 and 70459 disposed therein.
  • the surfaces of the base portions 70351 and 70451 are heating regions 70352 and 70452, and the surfaces of the heat insulating spacers 70355 and 70455 are non-heating regions 70356 and 70456.
  • NCP coating block 20 shown in FIG. 16 sucks and fixes the substrate 200 transported from the substrate supply block 10 on the dispenser stage 25, and moves the dispenser head 24 in the XYZ directions as shown in FIG.
  • NCP (non-conductive paste) 201 is applied by a dispenser 241 to a plurality of positions on the substrate 200 where the semiconductor chip 400 is mounted.
  • the application of NCP (non-conductive paste) 201 is performed in a state where the substrate 200 is at room temperature (paste application process).
  • NCP (non-conductive paste) 201 When NCP (non-conductive paste) 201 is applied to a predetermined position of the substrate 200, the substrate 200 is picked up from the dispenser stage 25 by the substrate transfer robot 7032 shown in FIG. 16, and FIG. As indicated by the arrow a in b), the sheet is transferred onto the preheating stage 7035 and placed on the preheating stage 7035.
  • the preheating stage 7035 sucks and fixes the substrate 200 on the surface thereof.
  • a heating region 70352 is disposed on the downstream side in the transport direction of the substrate 200
  • a non-heating region 70356 is disposed on the upstream side in the transport direction of the substrate 200.
  • a region that is a first type division stage and is slightly larger than half of the substrate 200 on the downstream side in the transport direction (portion fixed to the heating region 70352) is heated by the heater 70359 until the temperature reaches about 70 ° C.
  • the temperature of the NCP (non-conductive paste) 201 applied on the substrate 200 in this region also rises to about 70 ° C.
  • the region slightly smaller than the half of the upstream side in the transport direction of the substrate 200 (the portion adsorbed and fixed to the non-heating region 70356) is not heated. It is kept at a little higher than normal temperature. For this reason, the temperature of the NCP (non-conductive paste) 201 applied on the substrate 200 in this region is also maintained at room temperature or slightly higher than room temperature.
  • the substrate 200 is picked up from the preheating stage 7035 by the substrate transport robot 7032 shown in FIG. b) As shown by an arrow b in FIG. 17C, the sheet is transported onto the mounting stage 7045 and placed on the mounting stage 7045.
  • the mounting stage 7045 suction-fixes the substrate 200 on its surface (first suction (fixing) step).
  • the mounting stage 7045 is a first type division stage in which a heating region 70452 is arranged on the downstream side in the conveyance direction of the substrate 200 and a non-heating region 70456 is arranged on the upstream side in the conveyance direction of the substrate 200.
  • a region slightly larger than half of the downstream side in the direction (portion fixed to the heating region 70452) is maintained at a temperature of about 70 ° C. by the heater 70459, and NCP (non-conductive paste) applied to the substrate 200 in this region. )
  • the temperature of 201 is also maintained at about 70 ° C.
  • a region slightly smaller than half of the upstream side of the substrate 200 in the conveyance direction (portion adsorbed and fixed to the non-heating region 70456) is kept at a normal temperature or a little higher than normal temperature by the heat insulation layer 70454 blocking the heat of the heater 70459.
  • the temperature of the NCP (non-conductive paste) 201 applied to the substrate 200 in this region is also kept at room temperature or a little higher than room temperature (first heating step).
  • the semiconductor chip 400 is picked up from the pickup stage 55, inverted, and transported by the semiconductor chip transport block 110 shown in FIG. 111 is conveyed to the mounting block 7040.
  • the semiconductor chip 400 is heated by a heater (not shown) disposed therein. Is heated to about 300 ° C., and the semiconductor chip 400 is mounted at a predetermined position of the portion of the substrate 200 that is sucked and fixed onto the heating region 70452 of the mounting stage 7045 as indicated by an arrow c in FIG. . Since the temperature of the substrate 200 adsorbed and fixed on the heating region 70452 and the NCP (non-conductive paste) 201 applied to the substrate 200 in that region is about 70 ° C., it is heated to about 300 ° C.
  • the bump 401 formed on the mounting surface of the semiconductor chip 400 is melted and joined to the electrode of the substrate 200, and the NCP (non-conductive paste) 201 is heated, After curing, the semiconductor chip 400 is fixed and mounted on the substrate 200 (first mounting step).
  • the mounting of the semiconductor chip 400 on the substrate 200 is performed from the back side (Y direction + side) of the rightmost (X direction + side) row of FIG.
  • the mounting stage 7045 is moved by one chip in the X (+) direction by an XY table (not shown).
  • the semiconductor chip 400 is mounted in the second column from the rightmost.
  • the mounting stage 7045 is moved in the X (+) direction by one chip using an XY table (not shown) to mount the semiconductor chip 400 in the next row.
  • the semiconductor chip 400 is mounted on all the predetermined positions of the portion of the substrate 200 that is sucked and fixed onto the heating region 70452 of the mounting stage 7045, the first mounting process at the mounting stage 7045 is finished.
  • the substrate 200 and the NCP (non-conductive paste) 201 applied to the substrate 200 are also held at a room temperature or a little higher than the room temperature. Therefore, in the mounting stage 7045, the range slightly narrower than the half on the upstream side in the transport direction of the substrate 200 is such that the temperature of the NCP (non-conductive paste) 201 is room temperature or slightly higher than room temperature even while the semiconductor chip 400 is mounted. Therefore, it is possible to suppress deterioration due to a rise in the temperature of the NCP (non-conductive paste) 201.
  • the substrate transfer robot 7032 shown in FIG. 16 picks up the substrate 200 from above the mounting stage 7045, and the substrate 200 is placed in the horizontal plane (in the XY plane) at the downstream end (X direction + side). Rotate 180 degrees so that the end becomes the upstream end (X-direction end). As a result, the semiconductor chip 400 mounted on the substrate 200 in the first mounting process is positioned on the upstream side in the transport direction. Then, the substrate transport robot 7032 transports the substrate 200 in the reverse direction toward the preheating stage 7035 as indicated by an arrow d in FIG. 19E, and the semiconductor chip 400 is mounted thereon.
  • the substrate 200 is placed so that the portion is upstream in the transport direction (X direction minus side) and the portion where the semiconductor chip 400 is not mounted is downstream in the transport direction (X direction + side).
  • the preheating stage 7035 suction-fixes the placed substrate 200 (fourth suction (fixing) step).
  • the preheating stage 7035 is a first type in which a heating region 70352 is disposed on the downstream side in the transport direction of the substrate 200 and a non-heating region 70356 is disposed on the upstream side in the transport direction of the substrate 200.
  • a portion of the substrate 200 on which the semiconductor chip 400 is not mounted is heated by the heater 70359 until the temperature reaches about 70 ° C.
  • the temperature of the NCP (non-conductive paste) 201 applied to the portion of the substrate 200 where the semiconductor chip 400 is not mounted rises to about 70 ° C. .
  • the portion where the semiconductor chip 400 is mounted (the portion that is adsorbed and fixed to the non-heated region 70356) is not heated and is slightly higher than normal temperature. Kept to a degree. For this reason, the portion of the substrate 200 where the semiconductor chip 400 is mounted is not heated by the heater 70359, and the temperature gradually decreases (fourth heating step).
  • the substrate 200 is pre-processed by the substrate transport robot 7032 shown in FIG. Picked up from the heating stage 7035, transported again onto the mounting stage 7045, and placed on the mounting stage 7045 as indicated by the arrow e in FIGS. 19 (e) and 19 (f).
  • the portion where the semiconductor chip 400 is mounted on the substrate 200 is the upstream side in the transport direction (X direction ⁇ side), and the portion where the semiconductor chip 400 is not mounted on the substrate 200 is the downstream side in the transport direction (X direction ⁇ side).
  • the substrate 200 is placed so that The mounting stage 7045 suction-fixes the substrate 200 on its surface (fourth suction (fixing) step).
  • the mounting stage 7045 is a first type division stage in which a heating region 70452 is arranged on the downstream side in the conveyance direction of the substrate 200 and a non-heating region 70456 is arranged on the upstream side in the conveyance direction of the substrate 200.
  • the part of the substrate 200 where the semiconductor chip 400 is not mounted (the part fixed to the heating region 70452) is heated to about 70 ° C. by the heater 70459.
  • the temperature of the NCP (non-conductive paste) 201 applied to the portion of the substrate 200 where the semiconductor chip 400 is not mounted rises to about 70 ° C. .
  • the temperature of the portion where the semiconductor chip 400 is mounted gradually decreases ( Fourth heating step).
  • the semiconductor chip 400 is picked up from the pickup stage 55, inverted, and transported by the semiconductor chip transport block 110 shown in FIG. 111 is conveyed to the mounting block 7040.
  • the semiconductor chip 400 is heated by a heater (not shown) disposed therein. Is heated to about 300 ° C., and the semiconductor chip 400 is mounted at a predetermined position of the portion of the substrate 200 that is suction-fixed on the heating region 70452 of the mounting stage 7045 as indicated by an arrow f in FIG. . Since the temperature of the substrate 200 adsorbed and fixed on the heating region 70452 and the NCP (non-conductive paste) 201 applied to the substrate 200 in that region is about 70 ° C., it is heated to about 300 ° C.
  • the bump 401 formed on the mounting surface of the semiconductor chip 400 is melted and joined to the electrode of the substrate 200, and the NCP (non-conductive paste) 201 is heated, After curing, the semiconductor chip 400 is fixed and mounted on the substrate 200 (fourth mounting step).
  • the mounting stage 7045 is moved by one chip X (+) using an XY table (not shown).
  • the semiconductor chip 400 of the next row is mounted by moving in the direction. Then, when the semiconductor chip 400 is mounted on all the predetermined positions of the portion of the substrate 200 that is suction-fixed on the heating region 70452 of the mounting stage 7045, the fourth mounting process on the mounting stage 7045 is finished.
  • the substrate transfer robot 82 shown in FIG. The substrate 200 that has become a product after all the semiconductor chips 400 are mounted is transported to the product storage block 90 on the transport rail 86 by a transport device (not shown).
  • a transport device not shown
  • the substrates 200 of the product storage block 90 are transported to a curing device (not shown) and, for example, cured at a temperature of about 200 ° C. for about 1 hour.
  • the NCP (non-conductive paste) 201 is completely cured.
  • the orientation of the substrate 200 in the flip chip mounting apparatus 700 including one preheating stage and one mounting stage, each of which is a first type sorting stage (first type sorting mounting stage).
  • the NCP (non-conductive paste) 201 applied on the substrate 200 is compared with the conventional flip chip mounting apparatus. It is possible to increase the number of semiconductor chips 400 that can be mounted before the heat is changed by heat, and it is possible to increase the number of semiconductors on the substrate 200 while suppressing the NCP (non-conductive paste) 201 from being changed by heat. There is an effect that the chip 400 can be mounted.
  • the present invention is not limited to the flip chip mounting apparatus.
  • the present invention can be applied to various devices for mounting electronic devices such as mounting devices and electronic components such as LEDs on a substrate.

Abstract

 基板(200)に半導体チップ(400)の実装を行うフリップチップ実装装置において、その表面に固定した基板(200)を加熱する加熱領域(452)と、その表面に固定した基板(200)を加熱しない非加熱領域(456)と、に区分された少なくとも1つの区分実装ステージ(45)を有する。これにより、簡便な装置で基板に多数の電子部品を効率的に実装することができる電子部品実装装置を提供する。

Description

電子部品実装装置および電子部品の製造方法
 本発明は、電子部品実装装置の構造、特に電子部品実装装置の実装ステージの構造、および、その電子部品実装装置を用いた電子部品の製造方法に関する。
 電子部品である半導体チップを回路基板に実装する方法として、半導体チップにバンプと呼ばれる突起電極を形成し、半導体チップを回路基板に直接実装するフリップチップ実装が広く採用されるようになっている。フリップチップ実装は、半導体チップの回路面に対してはんだなどの材料でバンプ(突起電極)を複数形成し、このバンプを回路基板上に形成された複数の電極に加熱溶融により接合することによって、半導体チップと回路基板とを接合するものであり、従来のワイヤ実装方式に比べて、実装面積を小さくできるうえ、電気的特性が良好、モールド封止が不要などの利点を有している。
 フリップチップ実装においては、半導体チップと回路基板との接合部の接続信頼性を確保するため、半導体チップと回路基板との空隙をアンダーフィルなどにより樹脂封止することが必要となるが、アンダーフィルを用いると液状樹脂の充填に時間がかかるなどの問題がある上、半導体チップと回路基板との間の隙間が狭くなりつつある近年の現状では、液状樹脂の注入が困難となるという問題もある。このため、ディスペンサによって回路基板に予め熱硬化性の非導電性ペースト(NCP)を塗布しておき、加熱した実装ツールにより半導体チップのバンプを回路基板の電極に押圧してバンプを加熱溶融させて半導体チップと回路基板とを電気的に実装すると同時に、非導電性ペースト(NCP)を加熱硬化させて半導体チップと回路基板との間を樹脂封止するフリップチップ実装方法が用いられている(例えば、特許文献1参照)。
 また、近年、一つの基板に実装される半導体チップの数が多くなってきており、100~200、まれには、1000以上の半導体チップを基板に実装する場合もある。このような場合、効率的に実装を行うことができるように、実装ヘッドを複数備えた実装装置が提案されている(例えば、特許文献2参照)。
特開2005-150446号公報 特開2005-72444号公報
 ところで、半導体チップを回路基板に実装する際には、半導体チップを吸着した実装ツールを、例えば、300℃程度まで加熱すると共に、回路基板を70℃程度に加熱して実装を行うことが多い。1つの半導体チップの実装時間は、大体15~20秒程度なので、例えば、1つの基板に100個程度の半導体チップを実装する場合、実装開始から全ての半導体チップの実装が完了するまでに30分程度かかることになる。
 一方、フリップチップ実装装置では、常温の状態で、半導体チップを実装する全ての位置にディスペンサにより非導電性ペースト(NCP)を塗布してから、基板を70℃程度まで加熱した状態で実装することが多い。1つの基板に100個程度の半導体チップを実装する場合、最初の実装位置では、非導電性ペースト(NCP)が70℃に加熱された直後に半導体チップが実装されるのに対し、最後の実装位置では、非導電性ペースト(NCP)が70℃に加熱された状態で30分程度経過した後に、半導体チップが実装されることとなる。
 ところが、非導電性ペースト(NCP)は熱硬化性であるため、時間がたつと70℃程度の温度でも変質するものが多く、例えば、70℃に加熱後、30分以内で実装を行わなければならないものが多い。このため、例えば、1つの半導体チップの実装に15~20秒かかる場合には、ディスペンサによって非導電性ペースト(NCP)を基板に塗布し、基板を70℃程度まで加熱した後に連続して実装を行える半導体チップの数は100個程度(基板を70℃程度に加熱後30分以内に実装できる数)となり、一枚の基板に実装する半導体チップの数がこれ以上となる場合には、非導電性ペースト(NCP)が変質しない常温まで一旦基板を冷却した後、再度、ディスペンサによって非導電性ペースト(NCP)を基板に塗布し、再度、70℃程度まで基板を加熱した後に、再度実装することが必要となってくる。このため、ディスペンサが複数必要となったり、基板を冷却する装置が必要となったりして設備が大型化すると共に、基板の冷却に時間がかかり、全体の実装時間が長くなってしまうという問題があった。また、半導体チップの実装のみならず、LEDなど他の電子部品を基板に実装する際にも同様の問題があった。
 そこで、本発明は、簡便な装置で基板に多数の電子部品を効率的に実装することができる電子部品実装装置を提供することを目的とする。
 本発明の電子部品実装装置は、その表面に固定した基板を加熱する加熱領域と、その表面に固定した基板を加熱しない非加熱領域とに区分された少なくとも1つの区分実装ステージを有し、基板に電子部品の実装を行う電子部品実装装置である。
 本発明の電子部品実装装置において、区分実装ステージは、平面状の段部を有する平板状の基体部と、その表面が基体部の表面と同一面となるよう段部に重ねあわされた断熱層と、を備え、基体部の表面と断熱層の表面とに基板を固定し、加熱領域は、基体部の表面であり、非加熱領域は、断熱層の表面であること、としても好適である。
 本発明の電子部品実装装置において、その表面に固定した基板を加熱する加熱領域と、その表面に固定した基板を加熱しない非加熱領域とに区分された第一の区分実装ステージと、加熱領域と非加熱領域の配置を第一の区分実装ステージと反対にした第二の区分実装ステージと、を有すること、としても好適である。
 本発明の電子部品実装装置において、更に、表面に固定した基板全体を加熱する少なくとも1つの全体加熱実装ステージを有すること、としても好適である。
 本発明の電子部品の製造方法は、その表面に固定した基板を加熱する加熱領域と、その表面に固定した基板を加熱しない非加熱領域と、に区分された第一の区分実装ステージと、加熱領域と非加熱領域の配置を第一の区分実装ステージと反対にした第二の区分実装ステージと、を有する電子部品実装装置を準備する工程と、電子部品実装装置を用いて、基板の上の各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、基板を第一の区分実装ステージに固定する第一の固定工程と、基板の第一の区分実装ステージの加熱領域上に固定された部分のみを加熱する第一の加熱工程と、基板の加熱された部分の各位置に各電子部品を実装する第一の実装工程と、基板を第二の区分実装ステージに固定する第二の固定工程と、基板の第二の区分実装ステージの加熱領域上に固定された部分のみを加熱する第二の加熱工程と、基板の加熱された部分の各位置に各電子部品を実装する第二の実装工程と、を有し、基板に複数の電子部品の実装を行う電子部品の製造方法である。
 本発明の電子部品の製造方法は、その表面に固定した基板を加熱する加熱領域と、その表面に固定した基板を加熱しない非加熱領域と、に区分された区分実装ステージと、その表面に固定した基板全体を加熱する全体加熱実装ステージと、を有する電子部品実装装置を準備する工程と、基板の上の各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、基板を区分実装ステージに固定する第一の固定工程と、基板の区分実装ステージの加熱領域上に固定された部分のみを加熱する第一の加熱工程と、基板の加熱された部分の各位置に各電子部品を実装する第一の実装工程と、基板を全体加熱実装ステージに固定する第三の固定工程と、基板全体を加熱する第三の加熱工程と、第一の実装工程で電子部品を実装していない各位置に各電子部品を実装する第三の実装工程と、を有し、基板に複数の電子部品の実装を行う電子部品の製造方法である。
 本発明の電子部品の製造方法は、その表面に固定した基板を加熱する加熱領域と、その表面に固定した基板を加熱しない非加熱領域と、に区分された区分実装ステージを有する電子部品実装装置を準備する工程と、電子部品実装装置を用いて、基板の上の各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、基板を区分実装ステージに固定する第一の固定工程と、基板の区分実装ステージの加熱領域上に固定された部分のみを加熱する第一の加熱工程と、基板の加熱された部分の各位置に各電子部品を実装する第一の実装工程と、基板を水平面内で180度回転させ、第一の実装工程で電子部品が実装されていない領域を区分実装ステージの加熱領域に固定する第四の固定工程と、基板の区分実装ステージの加熱領域上に固定された部分のみを加熱する第四の加熱工程と、基板の加熱された部分の各位置に各電子部品を実装する第四の実装工程と、を有し、基板に複数の電子部品の実装を行う電子部品の製造方法である。
 本発明は、簡便な装置で基板に多数の電子部品を効率的に実装することができる電子部品実装装置を提供することができるという効果を奏する。
本発明の実施形態におけるフリップチップ実装装置の構成を示す平面図である。 本発明の実施形態におけるフリップチップ実装装置の実装ステージの配置を示す平面図である。 本発明の実施形態におけるフリップチップ実装装置の上流側プレヒーティングステージ、上流側実装ステージの断面図である。 本発明の実施形態におけるフリップチップ実装装置の下流側プレヒーティングステージ、下流側実装ステージの断面図である。 本発明の実施形態におけるフリップチップ実装装置を用いた実装工程のうちのNCP塗布工程と、上流側プレヒーティング工程と、上流側実装ステージへの移送工程とを示す説明図である。 本発明の実施形態におけるフリップチップ実装装置を用いた実装工程のうち、半導体チップをピックアップしてから反転して移送ステージに載置するまでの工程を示す説明図である。 本発明の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの上流側実装工程を示す説明図である。 本発明の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの、下流側プレヒーティング工程と、下流側実装ステージへの移送工程とを示す説明図である。 本発明の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの下流側実装工程を示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの配置を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の下流側プレヒーティングステージ、下流側実装ステージの断面図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの、下流側プレヒーティング工程と、下流側実装ステージへの移送工程とを示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの下流側実装工程を示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の実装ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置の構成を示す平面図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちのNCP塗布工程と、プレヒーティング工程と、実装ステージへの移送工程とを示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの実装工程を示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの、プレヒーティング工程と、実装ステージへの移送工程とを示す説明図である。 本発明の他の実施形態におけるフリップチップ実装装置を用いた実装工程のうちの実装工程を示す説明図である。
 以下、図面を参照しながら本発明をフリップチップ実装装置に適用した場合の実施形態について説明する。図1に示すように、本実施形態のフリップチップ実装装置500は、基板供給ブロック10と、NCP(非導電性ペースト)塗布ブロック20と、上流側プレヒーティングブロック30と、上流側実装ブロック40と、下流側プレヒーティングブロック60と、下流側実装ブロック70と、製品搬出ブロック80と、製品格納ブロック90と、半導体チップピックアップブロック50と、半導体チップ搬送ブロック110と、基板バイパス搬送ブロック100と、を備えている。基板200は、基板供給ブロック10から製品格納ブロック90に向かって白抜き矢印19,29,39,49,69,79,89のように搬送されていく。本実施形態では、基板200の搬送方向がX方向、基板の搬送方向と直角の水平方向がY方向、基板200の面に垂直方向(高さ方向)がZ方向として説明する。なお、以下の実施形態では、基板200を上流側プレヒーティングブロック30と、上流側実装ブロック40と、下流側プレヒーティングブロック60と、下流側実装ブロック70に固定する方法として、吸着、あるいは真空吸着を用いることとして説明するが、基板200を各ブロック30,40,60,70に固定する方法は、吸着、あるいは、真空吸着に限らず、例えば、磁気吸着あるいは、電磁クランプ等を用いて固定するようにしてもよい。
 基板供給ブロック10は、内部に図示しない基板ストレージ棚を有し、棚に格納している基板200を一枚ずつNCP塗布ブロック20に供給するものである。
 NCP塗布ブロック20は、フレーム21と、フレーム21に取りつけられたX方向ガイド22と、X方向ガイド22にガイドされてX方向に移動するY方向ガイド23と、Y方向ガイド23にガイドされてY方向に移動するディスペンサヘッド24と、基板200を吸着固定するディスペンサステージ25と、基板供給ブロック10から供給された基板200をディスペンサステージ25に搬送する搬送レール26とを備えている。ディスペンサヘッド24は、X方向ガイド22とY方向ガイド23とによってXY方向に自由に移動することができるよう構成されている。また、ディスペンサヘッド24には、図5(a)に示すディスペンサ241が取り付けられている。
 上流側プレヒーティングブロック30は、フレーム31と、フレーム31に取り付けられた基板搬送ロボット32と、上流側プレヒーティングステージ35とを備えている。基板搬送ロボット32は、回転自在の本体33と、本体33に取り付けられた伸縮自在のアーム34とを備えている。アーム34は先端に基板200をつかむハンド(図示せず)を備え、ディスペンサステージ25上から基板200をピックアップし、上流側プレヒーティングステージ35の上に移動、載置すると共に、上流側プレヒーティングステージ35上から基板200をピックアップし、上流側実装ステージ45上に移動、載置する。
 上流側実装ブロック40は、フレーム41と、フレーム41に取りつけられたX方向フレーム42と、X方向フレーム42に取り付けられたY方向フレーム43と、Y方向フレーム43に取り付けられた上流側実装ヘッド44と、基板200を吸着固定する上流側実装ステージ45と、を備えている。上流側実装ステージ45は、図示しないXYテーブルの上に取り付けられて、XY方向に移動でき、上流側実装ヘッド44はZ方向に自由に移動することができるよう構成されている。また、上流側実装ヘッド44には図7(n)に示す上流側実装ツール441が取り付けられている。
 下流側プレヒーティングブロック60は、上流側プレヒーティングブロック30と同様、フレーム61と、フレーム61に取り付けられた基板搬送ロボット62と、下流側プレヒーティングステージ65とを備えている。基板搬送ロボット62は、回転自在の本体63と、本体63に取り付けられた伸縮自在のアーム64とを備えている。アーム64は先端に基板200をつかむハンド(図示せず)を備え、上流側実装ステージ45上から基板200をピックアップし、下流側プレヒーティングステージ65の上に移動、載置すると共に、下流側プレヒーティングステージ65上から基板200をピックアップし、下流側実装ステージ75上に移動、載置する。
 下流側実装ブロック70は、フレーム71と、フレーム71に取りつけられたX方向フレーム72と、X方向フレーム72に取り付けられたY方向フレーム73と、Y方向フレーム73に取り付けられた下流側実装ヘッド74と、基板200を吸着固定する下流側実装ステージ75と、を備えている。下流側実装ステージ75は、図示しないXYテーブルの上に取り付けられて、XY方向に移動でき、下流側実装ヘッド74はZ方向に自由に移動することができるよう構成されている。また、下流側実装ヘッド74には図9(t)に示す下流側実装ツール741が取り付けられている。
 製品搬出ブロック80は、フレーム81と、フレーム81に取り付けられた基板搬送ロボット82と、フレーム81に取り付けられた搬送レール86とを備えている。基板搬送ロボット82は、回転自在の本体83と、本体83に取り付けられた伸縮自在のアーム84とを備えている。アーム84は先端に基板200をつかむハンド(図示せず)を備え、下流側実装ステージ75上から基板200をピックアップし、搬送レール86の上に移動、載置する。搬送レール86は図示しない搬送装置によって基板200を製品格納ブロック90に搬送する。
 製品格納ブロック90は、内部に図示しない基板格納棚を有し、実装の終了した基板200をそれぞれの棚に格納している。製品格納ブロック90の棚に所定の数の基板200が格納されたら、製品格納ブロック90の基板200は、図示しないキュアリング装置に搬送される。
 半導体チップピックアップブロック50は、フレーム51と、フレーム51に取り付けられたウェハ300を吸着固定するピックアップステージ55と、フレーム51に取り付けられたY方向ガイド52と、Y方向ガイド52に取り付けられたX方向ガイド53とによりピックアップステージ55の上をXY方向に自在に移動可能なピックアップヘッド54と、Y方向ガイド52にガイドされるX方向ガイド56に取り付けられ、XY方向に自在に移動可能な移送ヘッド57と、を備えている。ピックアップヘッド54は、図6(c)に示す回転軸543の回りに回転自在のピックアップコレット541を備えている。また、移送ヘッド57は、図6(g)、図6(h)に示すように、ピックアップコレット541から反転した半導体チップ400を受け取って移送ステージ112に移動する移送コレット571が取り付けられている。
 半導体チップ搬送ブロック110は、反転した半導体チップ400を受け取る移送ステージ112(図6(g)、図6(h)に示す)を上流側実装ブロック40、下流側実装ブロック70に搬送する搬送路である。
 基板バイパス搬送ブロック100は、上流側プレヒーティングブロック30から下流側プレヒーティングブロック60または製品搬出ブロック80に上流側実装ブロック40または下流側実装ブロック70をバイパスして基板200を搬送するものである。
 図2に示すように、上流側プレヒーティングステージ35、上流側実装ステージ45、下流側プレヒーティングステージ65、下流側実装ステージ75は、その表面に吸着した基板200を加熱する加熱領域352,452,652,752と、その表面に吸着した基板200を加熱しない非加熱領域356,456,656,756と、に区分された区分実装ステージである。加熱領域352,452,652,752は非加熱領域356,456,656,756よりも少し広く、各ステージのY軸方向の各中心線360,460,660,760を超えて伸びている。上流側プレヒーティングステージ35と上流側実装ステージ45とは、基板200の搬送方向の下流側に加熱領域352,452が配置され、基板200の搬送方向の上流側に非加熱領域356,456が配置された第一タイプ区分ステージ、第一タイプの区分実装ステージであり、下流側プレヒーティングステージ65と下流側実装ステージ75とは、加熱領域と非加熱領域の配置を第一タイプの区分実装ステージである上流側プレヒーティングステージ35、上流側実装ステージ45の配置と反対に、基板200の搬送方向の上流側に加熱領域652,752が配置され、基板200の搬送方向の下流側に非加熱領域656,756が配置された第二タイプ区分ステージ、第二タイプの区分実装ステージである。下流側プレヒーティングステージ65の加熱領域652と非加熱領域656の配置は、上流側プレヒーティングステージ35の加熱領域352と非加熱領域356の配置をY方向の中心軸360の回りに反転させた配置となっている。同様に、下流側実装ステージ75の加熱領域752と非加熱領域756の配置は、上流側実装ステージ45の加熱領域452と非加熱領域456の配置をY方向の中心軸460の回りに反転させた配置となっている。
 図3に示すように、上流側プレヒーティングステージ35、上流側実装ステージ45は、基板200の搬送方向の上流側に平面状の段部353,453を有する平板状の基体部351,451と、段部353,453に重ねあわされた断熱層354,454と、基体部351,451の下に重ねあわされたヒータベース358,458とを備えている。基体部351,451は、例えば、ステンレス鋼等の熱伝導率の良い金属製であり、断熱層354,454は、例えば、プラスチック等の熱伝導率の低い材料の断熱スペーサ355,455で構成されている。断熱スペーサ355,455は、段部353,453の側の面に凹部357,457を備え、段部353,453の表面との間に空気の断熱層を形成して段部353,453の表面との間を効果的に断熱することができるよう構成されている。また、ヒータベース358は、内部にヒータ359,459が配置されている。基体部351,451の表面は加熱領域352,452であり、断熱スペーサ355,455の表面は非加熱領域356,456である。断熱スペーサ355,455はそれぞれ段部353,453に図示しないボルト等の締結具によって取り付けられており、簡単に取り外し、交換が可能となっている。同様に基体部351,451もヒータベース358,458にボルト等の締結部材で取り付けられており、断熱スペーサ355,455と共に簡単に交換できるよう構成されている。
 図4に示すように、下流側プレヒーティングステージ65、下流側実装ステージ75は、上流側プレヒーティングステージ35、上流側実装ステージ45の加熱領域と非加熱領域の配置を中心線360,460の回りに反転したもので、基板200の搬送方向の下流側に平面状の段部653,753を有する平板状の基体部651,751と、段部653,753に重ねあわされた断熱層654,754と、基体部651,751の下に重ねあわされたヒータベース658,758とを備えており、基体部651,751の表面は加熱領域652,752であり、断熱層654,754を構成する断熱スペーサ655,755の表面は非加熱領域656,756である。また、断熱スペーサ655,755は、段部653,753の側の面に凹部657,757を備え、段部653,753の表面との間に空気の断熱層を形成して段部653,753の表面との間を効果的に断熱することができるよう構成されている。上流側プレヒーティングステージ35、上流側実装ステージ45と同様、断熱スペーサ655,755はそれぞれ段部653,753に図示しないボルト等の締結具によって取り付けられており、基体部651,751もヒータベース658,758にボルト等の締結部材で取り付けられている。
 以上のように構成されたフリップチップ実装装置500を用いて半導体チップ400を基板200の上に実装する工程について図5から図9を用いて説明する。
 図1に示すNCP塗布ブロック20は、基板供給ブロック10から搬送された基板200をディスペンサステージ25の上に吸着固定し、図5(a)に示すように、ディスペンサヘッド24をXYZ方向に移動させながら基板200の上の半導体チップ400を実装する複数の位置にディスペンサ241によってNCP(非導電性ペースト)201を塗布していく。NCP(非導電性ペースト)201の塗布は基板200が常温となっている状態で行う(ペースト塗布工程)。
 基板200の所定の位置にNCP(非導電性ペースト)201が塗布されると、基板200は、図1に示す基板搬送ロボット32によってディスペンサステージ25からピックアップされ、図5(a)、図5(b)の矢印aのように、上流側プレヒーティングステージ35の上に搬送され、上流側プレヒーティングステージ35の上に載置される。上流側プレヒーティングステージ35は、その表面に基板200を吸着固定する。図2、図5(b)に示すように、上流側プレヒーティングステージ35は、基板200の搬送方向の下流側に加熱領域352が配置され、基板200の搬送方向の上流側に非加熱領域356が配置された第一タイプ区分ステージであり、基板200の搬送方向下流側の半分より少し大きい領域(加熱領域352に吸着固定されている部分)は、ヒータ359によって70℃程度になるまで加熱される。これにより、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。一方、基板200の搬送方向上流側の半分より少し小さい領域(非加熱領域356に吸着固定されている部分)は、断熱層354によってヒータ359の熱が遮断されるので、加熱されず、常温あるいは常温より少し高い程度に保たれる。このため、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も常温あるいは常温よりも少し高い程度に保持される。
 そして、基板200の加熱領域352に吸着固定されている部分の温度が70℃程度まで上昇したら、基板200は、図1に示す基板搬送ロボット32によって上流側プレヒーティングステージ35からピックアップされ、図5(b)、図5(c)の矢印bのように、上流側実装ステージ45の上に搬送され、上流側実装ステージ45の上に載置される。上流側実装ステージ45は、その表面に基板200を吸着固定する(第一の吸着(固定)工程)。
 上流側実装ステージ45は、上流側プレヒーティングステージ35と同様、基板200の搬送方向の下流側に加熱領域452が配置され、基板200の搬送方向の上流側に非加熱領域456が配置された第一タイプ区分ステージであり、基板200の搬送方向下流側の半分より少し大きい領域(加熱領域452に吸着固定されている部分)は、ヒータ459によって70℃程度の温度に保持され、この領域の基板200に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に保たれる。基板200の搬送方向上流側の半分より少し小さい領域(非加熱領域456に吸着固定されている部分)は、断熱層454によってヒータ459の熱が遮断され、常温あるいは常温より少し高い程度に保たれ、この領域の基板200に塗布されたNCP(非導電性ペースト)201の温度も常温あるいは常温より少し高い程度に保持される(第一の加熱工程)。
 一方、図6(c)に示すように、ピックアップステージ55の上面551には図1に示すウェハ300をダイシングした半導体チップ400が保持されている。半導体チップ400の実装面(図6(c)における上側の面)には、バンプ401が形成されている。まず、図6(c)の矢印cに示すように、ピックアップコレット541がピックアップしようとする半導体チップ400の実装面に下降してくる。図6(d)に示すように、ピックアップコレット541が半導体チップ400に向かって下降し、ピックアップコレット541先端の吸着面542が半導体チップ400の実装面に接すると、半導体チップ400がピックアップコレット541先端の吸着面542に吸着される。そして、図6(e)に示すように、ピックアップコレット541を矢印eのように上昇させると、半導体チップ400がピックアップステージ55の上面551からピックアップされる。図6(e)に示すように、半導体チップ400をピックアップしたら、ピックアップコレット541の回転軸543を図6(f)の矢印fの方向に180度回転させることによって下側に向いていたピックアップコレット541の吸着面542を上向きとし、半導体チップ400の表面402(バンプ401が形成されている実装面と反対側の面)が図6(f)において上方向となるように、半導体チップ400を反転させる。
 図6(g)の白抜き矢印g1に示すように、ピックアップコレット541の吸着面542を上方向に保ったまま、半導体チップ400を保持した状態で、ピックアップヘッド54をXY方向に移動させ、ピックアップコレット541を移送コレット571との間で半導体チップ400の受け渡しを行う位置まで移動させる。また、図6(g)の白抜き矢印g2に示すように、移送ヘッド57も移送コレット571を上記の受け渡し位置まで移動させる。そして、図6(g)の矢印gに示すように、移送コレット571の吸着面572を反転したピックアップコレット541の吸着面542に吸着されている半導体チップ400の表面402に向かって下降させる。そして、移送コレット571の吸着面572が半導体チップ400の表面402に接したら、ピックアップコレット541による半導体チップ400の吸着を解除すると共に、移送コレット571の吸着面572に半導体チップ400を吸着させ、ピックアップコレット541から移送コレット571に半導体チップ400を受け渡す。
 図6(h)の矢印hに示すように、移送ヘッド57は、半導体チップ400を受け取った移送コレット571を移送ステージ112への受け渡し位置まで移動させる。そして、移送ステージ112の上に移送コレット571を下降させ、移送ステージ112の表面113に半導体チップ400を受け渡す。半導体チップ400は、表面402がZ方向上側で、バンプ401が形成されている実装面がZ方向下側の状態で移送ステージ112の表面113の上に載置され、移送ステージ112に受け渡される。移送ヘッド57は、移送ステージ112の表面113に半導体チップ400を受け渡すと、図7(k)の矢印kに示すように上昇し、半導体チップ400から離れる。そして、半導体チップ400を受け取った移送ステージ112は、図1に示す半導体チップピックアップブロック50から半導体チップ搬送ブロック110の搬送路111に沿って図7(k)、図7(m)の白抜き矢印k2に示すように、上流側実装ブロック40に搬送される。
 図7(m)の矢印mに示すように、移送ステージ112が上流側実装ブロック40に搬送されると、上流側実装ヘッド44は、上流側実装ツール441を移送ステージ112の上に下降させて吸着面442を半導体チップ400の表面402に接触させ、上流側実装ツール441の吸着面442に半導体チップ400を吸着させる。上流側実装ツール441は、吸着面442に半導体チップ400を吸着すると、内部に配置されているヒータ(図示せず)によって半導体チップ400を300℃程度まで加熱し、図7(n)の矢印nのように、上流側実装ステージ45の加熱領域452の上に吸着固定されている基板200の部分の所定の位置に半導体チップ400を実装する。加熱領域452の上に吸着固定されている基板200及び、その領域の基板200に塗布されているNCP(非導電性ペースト)201の温度は70℃程度となっているので、300℃程度に加熱された半導体チップ400が実装されると、半導体チップ400の実装面に形成されているバンプ401が溶融して基板200の電極と接合されると共に、NCP(非導電性ペースト)201が加熱され、硬化し、半導体チップ400が基板200の上に固定、実装される(第一の実装工程)。
 この第一の実装工程においては、基板200の半導体チップ400の実装は、図7(n)の一番右側(X方向+側)の列の紙面奥側(Y方向+側)から紙面手前側(Y方向マイナス側)に向かって行い、図7(n)に示す一番右側の列の半導体チップ400の実装が終わったら、図示しないXYテーブルによって上流側実装ステージ45を1チップ分X(+)方向に移動させ、一番右から二番目の列に半導体チップ400の実装を行う。以下、一つの列の半導体チップ400の実装が終了したら、図示しないXYテーブルによって上流側実装ステージ45を1チップ分X(+)方向に移動させ、次の列の半導体チップ400の実装を行う。そして、上流側実装ステージ45の加熱領域452の上に吸着固定されている基板200の部分の全ての所定の位置に半導体チップ400を実装すると、上流側実装ステージ45での第一の実装工程を終了する。
 この際、上流側実装ステージ45の基板200の搬送方向(X方向)の上流側に配置されている非加熱領域456の上に吸着された基板200の部分には半導体チップ400は実装されない。この部分は、ヒータ459からの熱が断熱層454によって遮断されているので、常温あるいは常温よりも少し高い程度に保持されており、基板200及び基板200に塗布されているNCP(非導電性ペースト)201も常温あるいは常温より少し高い程度に保持されている。したがって,上流側実装ステージ45では、基板200の搬送方向上流側の半分より少し狭い範囲は、半導体チップ400を実装している間もNCP(非導電性ペースト)201の温度が常温あるいは常温より少し高い程度に保たれ、NCP(非導電性ペースト)201の温度の上昇による変質を抑制することができる。
 上流側実装ステージ45の加熱領域452の上に吸着固定されている基板200の部分の所定の位置への半導体チップ400の実装が終了したら、図1に示す基板搬送ロボット62は、上流側実装ステージ45の上から基板200をピックアップし、図8(p)の矢印pに示すように、下流側プレヒーティングステージ65の上に搬送し、その上に載置する。下流側プレヒーティングステージ65は、基板200をその表面に吸着固定する。
 下流側プレヒーティングステージ65の上に吸着固定された際、上流側実装ステージ45において半導体チップ400が実装された基板200の部分、あるいは、上流側実装ステージ45の加熱領域452の上に吸着固定されていた基板200の部分(基板200の下流側の半分よりも少し大きい領域)は、70℃程度の温度となっているが、半導体チップ400が実装されなかった基板200の部分、あるいは、上流側実装ステージ45の非加熱領域456の上に吸着固定されていた基板200の部分(基板200の上流側の半分よりも少し小さい領域)は、常温あるいは常温より少し高い程度の温度となっている。
 図2、図8(p)に示すように、下流側プレヒーティングステージ65は、基板200の搬送方向の上流側に加熱領域652が配置され、基板200の搬送方向の下流側に非加熱領域656が配置された第二タイプ区分ステージであり、基板200の搬送方向上流側の半分より少し大きい領域(加熱領域652に吸着固定されている部分)は、ヒータ659によって70℃程度になるまで加熱される。これにより、常温または常温よりも少し高い程度の温度であった半導体チップ400が実装されなかった基板200の部分、あるいは、上流側実装ステージ45の非加熱領域456の上に吸着固定されていた基板200の部分(基板200の上流側の半分よりも少し小さい領域)は、常温あるいは常温より少し高い程度から70℃程度まで加熱され、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。
 一方、上流側実装ステージ45において半導体チップ400が実装された基板200の部分、あるいは、上流側実装ステージ45の加熱領域452の上に吸着固定されていた基板200の部分(基板200の下流側の半分よりも少し大きい領域)は70℃程度の温度で下流側プレヒーティングステージ65の基板200の搬送方向下流側の半分より少し小さい領域(非加熱領域656に吸着固定されている部分)に吸着固定される。この部分は、断熱層654によってヒータ659の熱が遮断されているので、半導体チップ400が実装された基板200の部分の温度は、70℃程度から次第に低下してくる。このため、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度の温度からしだいに低下してくる。
 そして、基板200の加熱領域652に吸着固定されている部分の温度が70℃程度まで上昇したら、基板200は、図1に示す基板搬送ロボット62によって下流側プレヒーティングステージ65からピックアップされ、図8(p)、図8(q)の矢印qのように、下流側実装ステージ75の上に搬送され、下流側実装ステージ75の上に載置される。下流側実装ステージ75は、その表面に基板200を吸着固定する(第二の吸着(固定)工程)。
 下流側実装ステージ75は、下流側プレヒーティングステージ65と同様、基板200の搬送方向の上流側に加熱領域752が配置され、基板200の搬送方向の下流側に非加熱領域756が配置された第二タイプ区分ステージであり、基板200の搬送方向上流側の半分より少し大きい領域(加熱領域752に吸着固定されている部分)は、ヒータ759によって70℃程度の温度に保持され、この領域の基板200に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に保たれる。基板200の搬送方向下流側の半分より少し小さい領域(非加熱領域756に吸着固定されている部分)は、断熱層754によってヒータ759の熱が遮断されるので、下流側プレヒーティングステージ65の上に載置されていた際の温度よりもさらに温度が低下してくる(第二の加熱工程)。
 先に、図6(c)から図7(k)を参照して説明したように、ピックアップステージ55の上面551の半導体チップ400は、ピックアップコレット541によってピックアップされ、180度反転された後、移送コレット571に受け渡され、さらに、移送コレット571から移送ステージ112に受け渡される。移送ヘッド57は、移送ステージ112の表面113に半導体チップ400を受け渡すと、図9(r)の矢印rに示すように上昇し、半導体チップ400から離れる。そして、半導体チップ400を受け取った移送ステージ112は図1に示す半導体チップピックアップブロック50から半導体チップ搬送ブロック110の搬送路111に沿って図9(r)、図9(s)の白抜き矢印r2に示すように、下流側実装ブロック70に搬送される。
 図9(s)の矢印sに示すように、移送ステージ112が下流側実装ブロック70に搬送されると、下流側実装ヘッド74は、下流側実装ツール741を移送ステージ112の上に下降させて、下流側実装ツール741の吸着面742を半導体チップ400の表面402に接触させ、下流側実装ツール741の吸着面742に半導体チップ400を吸着させる。下流側実装ツール741は、吸着面742に半導体チップ400を吸着すると、内部に配置されているヒータ(図示せず)によって半導体チップ400を300℃程度まで加熱し、図9(t)の矢印tのように、下流側実装ステージ75の加熱領域752の上に吸着固定されている基板200の部分の所定の位置に半導体チップ400を実装する。加熱領域752の上に吸着固定されている基板200及び、その領域の基板200に塗布されているNCP(非導電性ペースト)201の温度は70℃程度となっているので、300℃程度に加熱された半導体チップ400が実装されると、半導体チップ400の実装面に形成されているバンプ401が溶融して基板200の電極と接合されると共に、NCP(非導電性ペースト)201が加熱され、硬化し、半導体チップ400が基板200の上に固定、実装される(第二の実装工程)。
 この第二の実装工程においては、基板200の半導体チップ400の実装は、第一の実装工程で最後に実装した半導体チップ400の列に隣接する列、つまり、図9(t)に示す下流側実装ステージ75の加熱領域752の中の一番右側(X方向+側)の列の紙面奥側(Y方向+側)から紙面手前側(Y方向マイナス側)に向かって行い、その列の半導体チップ400の実装が終わったら、図示しないXYテーブルによって下流側実装ステージ75を1チップ分X(+)方向に移動させ、次の列に半導体チップ400の実装を行う。以下、一つの列の半導体チップ400の実装が終了したら、図示しないXYテーブルによって下流側実装ステージ75を1チップ分X(+)方向に移動させ、次の列の半導体チップ400の実装を行う。そして、下流側実装ステージ75の加熱領域752の上に吸着固定されている基板200の部分の全ての所定の位置に半導体チップ400を実装すると、下流側実装ステージ75での第二の実装工程を終了する。
 下流側実装ステージ75の加熱領域752の上に吸着固定されている基板200の部分の所定の位置への半導体チップ400の実装が終了したら、図1に示す基板搬送ロボット82は、下流側実装ステージ75の上から基板200をピックアップし、搬送レール86の上に移動、載置する。すべての半導体チップ400の実装が終了して製品となった基板200は、図示しない搬送装置によって搬送レール86上を製品格納ブロック90に搬送される。製品格納ブロック90の棚に所定の数の基板200が格納されたら、製品格納ブロック90の基板200は、図示しないキュアリング装置に搬送され、例えば、200℃程度の温度で1時間程度キュアリングされる。これによってNCP(非導電性ペースト)201は完全に硬化する。
 以上説明したように、本実施形態では、上流側プレヒーティングステージ35で基板200の搬送方向下流側の略半分の領域のみを70℃程度まで加熱し、上流側実装ステージ45では、基板200の搬送方向下流側の略半分の領域のみを70℃程度に保持し、この部分にのみ半導体チップ400を実装し、その間、基板200の搬送方向上流側の略半分の領域を常温あるいは常温より少し高い程度の温度に保持し、基板200の搬送方向上流側の略半分の領域に塗布されているNCP(非導電性ペースト)201の変質を抑制し、下流側プレヒーティングステージ65、下流側実装ステージ75では、先に常温に近い温度で保持された基板200の搬送方向上流側の略半分の領域を70℃程度まで加熱すると共に、この領域への半導体チップ400の実装を行うようにしたので、基板200の下流側半分に半導体チップ400を実装している間、基板200の上流側の半分を常温あるいは常温より少し高い程度の温度に保ち、基板200の上流側半分の実装を行う前にNCP(非導電性ペースト)201が熱で変質することを抑制することができる。このため、基板200の上にNCP(非導電性ペースト)201が塗布されてから、70℃程度まで加熱された状態で半導体チップ400が実装されるのを待つ最大時間が基板200の上流側半分、あるいは下流側半分の各領域に半導体チップ400を実装する時間となる。従来技術のフリップチップ実装装置では、基板200の上にNCP(非導電性ペースト)201が塗布されてから、70℃程度まで加熱された状態で半導体チップ400が実装されるのを待つ最大時間が基板200の全面に半導体チップ400を実装する時間であるのと比較すると、本実施形態のフリップチップ実装装置500における上記の待ち時間は、従来技術のフリップチップ実装装置の約半分の時間となる。したがって、本実施形態のフリップチップ実装装置500は、従来技術のフリップチップ実装装置に比較して、基板200の上に塗布されたNCP(非導電性ペースト)201が熱によって変質する前に実装することが可能な半導体チップ400の数は2倍となる。つまり、本実施形態は、NCP(非導電性ペースト)201が熱によって変質することを抑制しながら、基板200に多数の半導体チップ400を実装することができるという効果を奏するものである。
 また、本実施形態では、上流側実装ステージ45で実装の終了した基板200の下流側の約半分の領域について、下流側プレヒーティングステージ65、下流側実装ステージ75では加熱しないようにしているので、基板200にNCP(非導電性ペースト)201が塗布されてから、下流側実装ステージ75で全ての半導体チップ400の実装が終了するまでの間に、基板200の上に塗布されているNCP(非導電性ペースト)201が70℃程度に加熱されている期間が略同一の時間となるので、キュアリングによりNCP(非導電性ペースト)201を略均一に硬化させることができるという効果を奏する。
 以上の説明では、本実施形態のフリップチップ実装装置500は、図1に示す、白抜き矢印19,29,39で示すように、基板200を基板供給ブロック10、NCP(非導電性ペースト)塗布ブロック20、上流側プレヒーティングブロック30、上流側実装ブロック40に順次搬送し、基板200の下流側半分に半導体チップ400を実装した後、白抜き矢印49,69で示すように、基板200を下流側プレヒーティングブロック60、下流側実装ブロック70に順次搬送し、基板200の上流側半分に半導体チップ400を実装することとして説明したが、次に説明するように様々な方式の実装を行うこともできる。
 例えば、基板の上流側半分にのみ半導体チップ400を実装したい場合には、NCP塗布ブロック20で基板200の上流側半分にのみNCP(非導電性ペースト)201を塗布した後、基板搬送ロボット32によってディスペンサステージ25の上から基板200をピックアップして基板バイパス搬送ブロック100の上流側プレヒーティングブロックライン101に載せ、図1に示す白抜き矢印109に示すように、X方向搬送ライン104、下流側プレヒーティングブロックライン102と基板200を搬送し、基板搬送ロボット62によって下流側プレヒーティングブロックライン102から基板200をピックアップして下流側プレヒーティングステージ65の上に載置し、下流側プレヒーティングブロック60、下流側実装ブロック70で基板200の上流側半分にのみ半導体チップ400を実装するようにしてもよい。また、逆に、基板の下流側半分にのみ半導体チップ400を実装したい場合には、基板200を基板供給ブロック10、NCP(非導電性ペースト)塗布ブロック20、上流側プレヒーティングブロック30、上流側実装ブロック40に順次搬送し、基板200の下流側半分に半導体チップ400を実装した後、基板搬送ロボット62によって上流側実装ステージ45の上から基板200をピックアップして基板バイパス搬送ブロック100の下流側プレヒーティングブロックライン102に載せ、X方向搬送ライン104、製品搬出ブロックライン103と基板200を搬送し、基板搬送ロボット82によって製品搬出ブロックライン103から基板200をピックアップして製品搬出ブロック80の搬送レール86の上に載置するようにしてもよい。
 さらに、基板200の大きさが、各ステージ25,35,45,65,75の半分以下の大きさの場合には、NCP塗布ブロック20でNCP(非導電性ペースト)201を塗布した後、基板搬送ロボット32、基板バイパス搬送ブロック100を用いて基板200を上流側プレヒーティングブロック30、上流側実装ブロック40と、下流側プレヒーティングブロック60、下流側実装ブロック70とに並行して搬送し、各実装ブロックでそれぞれ基板200と並行して実装を行い、実装した後の基板200を基板搬送ロボット82、基板バイパス搬送ブロック100を用いて製品搬出ブロック80から製品格納ブロック90に搬送するようにしてもよい。この場合には、1台のフリップチップ実装装置500で小さな基板に効率よく実装を行うことができる。
 次に、図10から図13を参照しながら本発明の他の実施形態のフリップチップ実装装置600について説明する。図1から図9を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。図10に示すように、本実施形態は、下流側プレヒーティングブロック120、下流側実装ブロック130の下流側プレヒーティングステージ125、下流側実装ステージ135を非加熱領域のない全体加熱ステージとしたものである。下流側プレヒーティングブロック120は、フレーム121と、フレーム121に取り付けられた基板搬送ロボット122と、下流側プレヒーティングステージ125とを備えている。基板搬送ロボット122は、回転自在の本体123と、本体123に取り付けられた伸縮自在のアーム124とを備えている。下流側実装ブロック130は、フレーム131と、フレーム131に取り付けられたX方向フレーム132と、X方向フレーム132に取り付けられたY方向フレーム133と、Y方向フレーム133に取り付けられた下流側実装ヘッド134と、基板200を吸着固定する下流側実装ステージ135とを備えている。そして、白抜き矢印49、129で示すように、基板200を下流側プレヒーティングブロック120、下流側実装ブロック130に順次搬送する。
 図10に示すように、本実施形態の下流側プレヒーティングステージ125、下流側実装ステージ135は、その表面全体が加熱領域1252,1352となっているものであり、図11に示す様に、各ステージ125,135は、それぞれステンレス鋼等の金属製の平板の基体部1251,1351の下側に内部にヒータ1259,1359が内蔵されたヒータベース1258,1358を重ね合わせてボルト等の締結具によって一体としたものである。ヒータ1259,1359の熱は、基体部1251,1351を伝わって、基板200を吸着する表面の加熱領域1252,1352の温度を上昇させるものである。
 本実施形態のフリップチップ実装装置600を用いて基板200に半導体チップ400を実装する工程について図12、図13を参照して説明する。基板200にディスペンサ241によってNCP(非導電性ペースト)201を塗布する工程から上流側プレヒーティングステージ35によって基板200の下流側の約半分の領域を70℃程度に加熱し、上流側実装ステージ45に移送、載置する工程と、ウェハ300から半導体チップ400をピックアップして反転し、移送ステージ112に載置して上流側実装ブロック40に搬送する工程、上流側実装ステージ45において半導体チップ400を実装する工程については、図5から図7を参照して説明した実施形態と同様である(ペースト塗布工程、第一の吸着(固定)工程、第一の加熱工程、第一の実装工程)。
 図10、図12(p)に示すように、基板200は、図1に示す基板搬送ロボット62によって上流側実装ステージ45からピックアップされ、図12(p)の矢印pのように、下流側プレヒーティングステージ125の上に搬送され、下流側実装ステージ135の上に載置される。下流側実装ステージ135は、その表面に基板200を吸着固定する。下流側プレヒーティングステージ125は、表面全体が加熱領域1252である全体加熱のプレヒーティングステージであり、表面(加熱領域1252)に吸着固定された基板200全体がヒータ1259によって70℃程度になるまで加熱される。これにより、図5から図7を参照して説明したように、上流側実装ステージ45で半導体チップ400が実装されなかった基板200の部分、あるいは、上流側実装ステージ45の非加熱領域456の上に吸着固定されていた基板200の部分(基板200の上流側の半分よりも少し小さい領域)の温度は、常温あるいは常温より少し高い程度から70℃程度まで加熱され、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。また、上流側実装ステージ45で半導体チップ400が実装された基板200の部分、あるいは、上流側実装ステージ45の加熱領域452の上に吸着固定されていた基板200の部分(基板200の下流側の半分よりも大きい領域)は、70℃程度の温度に維持される。
 そして、下流側プレヒーティングステージ125の表面に吸着されている基板200全体の温度が70℃程度となったら、基板200は、図1に示す基板搬送ロボット62によって下流側プレヒーティングステージ125からピックアップされ、図12(p)、図12(q)の矢印qのように、下流側実装ステージ135の上に搬送され、下流側実装ステージ135の上に載置される。下流側実装ステージ135は、その表面に基板200を吸着固定する(第三の吸着(固定)工程)。
 下流側実装ステージ135は、下流側プレヒーティングステージ125と同様、基板200全体を加熱する全体加熱実装ステージであり、加熱領域1352である表面に吸着固定された基板200全体が70℃程度の温度に保持される(第三の加熱工程)。
 先に、図6(c)から図7(k)を参照して説明したように、ピックアップステージ55の上面551の半導体チップ400は、ピックアップコレット541によってピックアップされ、180度反転された後、移送コレット571に受け渡され、さらに、移送コレット571から移送ステージ112に受け渡される。移送ヘッド57は、移送ステージ112の表面113に半導体チップ400を受け渡すと、図13(r)の矢印rに示すように、上昇し、半導体チップ400から離れる。そして、半導体チップ400を受け取った移送ステージ112は、図1に示す半導体チップピックアップブロック50から半導体チップ搬送ブロック110の搬送路111に沿って図13(r)、図13(s)の白抜き矢印r2に示すように、下流側実装ブロック130に搬送される。
 図13(s)の矢印sに示すように、移送ステージ112が下流側実装ブロック130に搬送されると、下流側実装ヘッド74は、下流側実装ツール741を移送ステージ112の上に下降させて下流側実装ツール741の吸着面742を半導体チップ400の表面402に接触させ、下流側実装ツール741の吸着面742に半導体チップ400を吸着させる。下流側実装ツール741は、吸着面742に半導体チップ400を吸着すると、内部に配置されているヒータ(図示せず)によって半導体チップ400を300℃程度まで加熱し、図13(t)の矢印tのように、下流側実装ステージ135に吸着固定されている基板200の部分の上流側の約半分の領域の上の所定の位置に半導体チップ400を実装する。下流側実装ステージ135の加熱領域1352である表面に吸着固定されている基板200及び、基板200に塗布されているNCP(非導電性ペースト)201の温度は70℃程度となっているので、300℃程度に加熱された半導体チップ400が実装されると、半導体チップ400の実装面に形成されているバンプ401が溶融して基板200の電極と接合されると共に、NCP(非導電性ペースト)201が加熱され、硬化し、半導体チップ400が基板200の上に固定、実装される(第三の実装工程)。
 この第三の実装工程においては、基板200の半導体チップ400の実装は、先に図9(t)を参照して説明したと同様、図13(t)に示す下流側実装ステージ135の加熱領域1352の中の一番右側(X方向+側)の列の紙面奥側(Y方向+側)から紙面手前側(Y方向マイナス側)に向かって行い、その列の半導体チップ400の実装が終わったら、図示しないXYテーブルによって下流側実装ステージ135を1チップ分X(+)方向に移動させ、次の列に半導体チップ400の実装を行う。以下、一つの列の半導体チップ400の実装が終了したら、図示しないXYテーブルによって下流側実装ステージ135を1チップ分X(+)方向に移動させ、次の列の半導体チップ400の実装を行う。そして、下流側実装ステージ135の加熱領域1352の上に吸着固定されている基板200の部分の全ての所定の位置に半導体チップ400を実装すると、下流側実装ステージ135での第三の実装工程を終了する。
 下流側実装ステージ135の加熱領域1352の上に吸着固定されている基板200の部分の所定の位置への半導体チップ400の実装が終了したら、基板200は、図示しないキュアリング装置に搬送され、例えば、200℃程度の温度で1時間程度キュアリングされる。これによってNCP(非導電性ペースト)201は完全に硬化する。
 本実施形態のフリップチップ実装装置600は、先に、図1から図9を参照して説明した実施形態のフリップチップ実装装置500と同様、基板200の下流側半分に半導体チップ400を実装している間、基板200の上流側の半分を常温あるいは常温より少し高い程度の温度に保ち、基板200の上流側半分の実装を行う前にNCP(非導電性ペースト)201が熱で変質することを抑制することができる。このため、従来技術のフリップチップ実装装置に比較して、基板200の上に塗布されたNCP(非導電性ペースト)201が熱によって変質する前に実装することが可能な半導体チップ400の数は2倍となり、NCP(非導電性ペースト)201が熱によって変質することを抑制しながら、基板200に多数の半導体チップ400を実装することができるという点については同様の効果を奏するものである。
 また、本実施形態のフリップチップ実装装置600は、先に図1から図9を参照して説明した実施形態のフリップチップ実装装置500のように、基板200にNCP(非導電性ペースト)201が塗布されてから、下流側実装ステージ75で全ての半導体チップ400の実装が終了するまでの間に、基板200の上に塗布されているNCP(非導電性ペースト)201が70℃程度に加熱されている期間が略同一の時間ではなく、基板200の下流側半分の上に塗布されているNCP(非導電性ペースト)201が70℃程度に加熱されている期間は、基板200の上流側半分の上に塗布されているNCP(非導電性ペースト)201が70℃程度に加熱されている期間の2倍となる。しかし、基板200の上流側半分の上に塗布されているNCP(非導電性ペースト)201は上流側実装ステージ45での実装により硬化しているので、その後70℃の温度が保持されても、キュアリングにおける硬化状態にはあまり影響がない場合がある。このような場合には、フリップチップ実装装置500よりも構成が簡便となる本実施形態のフリップチップ実装装置600は有利である。
 次に、図14A,図14Bを参照しながら本発明の他の実施形態について説明する。図1から図9を参照して説明した実施形態では、第一タイプ区分ステージ、第一タイプの区分実装ステージと、第二タイプ区分ステージ、第二タイプの区分実装ステージは、それぞれ、基板200の搬送方向(X方向)の上流側と下流側とで加熱領域と非加熱領域を区分したものとして説明したが、図14A、図14Bに示す様に、上流側実装ブロック140の上流側実装ステージ145、下流側実装ブロック150の下流側実装ステージ155の加熱領域1452,1552,と非加熱領域1456,1556を基板200の搬送方向と直角方向(Y方向)の上側と下側とで区分するようにしてもよい。本実施形態の効果は、図1から図9を参照して説明した実施形態と同様である。
 また、図15A,図15B,図15Cに示すように、3つの実装ブロック160,170,180にそれぞれ区分実装ステージ165,175,185を配置し、各実装ステージ165,175,185の約1/3を加熱領域1652,1752,1852とし、約2/3を非加熱領域1656,1756,1856とし、その配置を図15A,図15B,図15Cに示す様にX方向長さの1/3ずつずらして配置するようにしてもよい。本実施形態は、図1から図9を参照して説明した実施形態よりも多くの半導体チップ400をNCP(非導電性ペースト)201が熱によって変質することを抑制しつつ基板200に実装することができるという効果を奏する。
 次に図16から図20を参照しながら、本発明の他の実施形態について説明する。先に図1から図9を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。本実施形態のフリップチップ実装装置700は、プレヒーティングブロック、実装ブロックをそれぞれ1つだけ有するものである。図16に示す様に、本実施形態のフリップチップ実装装置700は、基板供給ブロック10と、NCP(非導電性ペースト)塗布ブロック20と、プレヒーティングブロック7030と、実装ブロック7040と、製品搬出ブロック80と、製品格納ブロック90と、半導体チップピックアップブロック50と、半導体チップ搬送ブロック110と、を備えている。実装ブロック7040は、フレーム7041と、フレーム7041に取り付けられたX方向フレーム7042と、X方向フレーム7042に取り付けられたY方向フレーム7043と、Y方向フレーム7043に取り付けられた実装ヘッド7044と、基板200を吸着固定する実装ステージ7045とを備えている。基板200は、基板供給ブロック10からNCP(非導電性ペースト)塗布ブロック20、プレヒーティングブロック7030、実装ブロック7040に向かって白抜き矢印19,29,7039のように搬送され、実装ブロック7040で基板200の下流側半分に半導体チップ400を実装した後、フレーム7031に取り付けられた基板搬送ロボット7032によって基板200を水平面内で180度回転させて、プレヒーティングブロック7030に向けて逆搬送し、その後、白抜き矢印7039に示す様に、再度プレヒーティングブロック7030から実装ブロック7040に搬送された後、白抜き矢印7049,89に示すように、製品搬出ブロック80から製品格納ブロック90へと搬送されていく。
 図17(b)、図17(c)に示す様に、プレヒーティングステージ7035、実装ステージ7045は、先に図2を参照して説明した、上流側プレヒーティングステージ35、上流側実装ステージ45と同様、その表面に吸着した基板200を加熱する加熱領域70352,70452と、その表面に吸着した基板200を加熱しない非加熱領域70356,70456に区分された区分実装ステージである。加熱領域70352,70452は非加熱領域70356,70456よりも少し広く、各ステージのY軸方向の各中心線70360,70460を超えて伸びている。プレヒーティングステージ7035と実装ステージ7045とは、基板200の搬送方向の下流側に加熱領域70352,70452が配置され、基板200の搬送方向の上流側に非加熱領域70356,70456が配置された第一タイプ区分ステージ、第一タイプの区分実装ステージである。
 図17(b)、図17(c)に示す様に、プレヒーティングステージ7035、実装ステージ7045は、図3を参照して説明した上流側プレヒーティングステージ35、上流側実装ステージ45と同様、基板200の搬送方向の上流側に平面状の段部70353,70453を有する平板状の基体部70351,70451と、段部70353,70453に重ねあわされた断熱層70354,70454と、基体部70351,70451の下に重ねあわされたヒータベース70358,70458とを備えている。基体部70351,70451は、例えば、ステンレス鋼等の熱伝導率の良い金属製であり、断熱層70354,70454は、例えば、プラスチック等の熱伝導率の低い材料の断熱スペーサ70355,70455で構成されている。断熱スペーサ70355,70455は、段部70353,70453の側の面に凹部70357,70457を備え、段部70353,70453の表面との間に空気の断熱層を形成して段部70353,70453の表面との間を効果的に断熱することができるよう構成されている。また、ヒータベース70358は、内部にヒータ70359,70459が配置されている。基体部70351,70451の表面は加熱領域70352,70452であり、断熱スペーサ70355,70455の表面は非加熱領域70356,70456である。
 以上のように構成されたフリップチップ実装装置700を用いて半導体チップ400を基板200の上に実装する工程について図17から図20を用いて説明する。
 図16に示すNCP塗布ブロック20は、基板供給ブロック10から搬送された基板200をディスペンサステージ25の上に吸着固定し、図17(a)に示すように、ディスペンサヘッド24をXYZ方向に移動させながら基板200の上の半導体チップ400を実装する複数の位置にディスペンサ241によってNCP(非導電性ペースト)201を塗布していく。NCP(非導電性ペースト)201の塗布は基板200が常温となっている状態で行う(ペースト塗布工程)。
 基板200の所定の位置にNCP(非導電性ペースト)201が塗布されると、基板200は、図16に示す基板搬送ロボット7032によってディスペンサステージ25からピックアップされ、図17(a)、図17(b)の矢印aのように、プレヒーティングステージ7035の上に搬送され、プレヒーティングステージ7035の上に載置される。プレヒーティングステージ7035は、その表面に基板200を吸着固定する。図17(b)に示すように、プレヒーティングステージ7035は、基板200の搬送方向の下流側に加熱領域70352が配置され、基板200の搬送方向の上流側に非加熱領域70356が配置された第一タイプ区分ステージであり、基板200の搬送方向下流側の半分より少し大きい領域(加熱領域70352に吸着固定されている部分)は、ヒータ70359によって70℃程度になるまで加熱される。これにより、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。一方、基板200の搬送方向上流側の半分より少し小さい領域(非加熱領域70356に吸着固定されている部分)は、断熱層70354によってヒータ70359の熱が遮断されるので、加熱されず、常温あるいは常温より少し高い程度に保たれる。このため、この領域の基板200上に塗布されたNCP(非導電性ペースト)201の温度も常温あるいは常温よりも少し高い程度に保持される。
 そして、基板200の加熱領域70352に吸着固定されている部分の温度が70℃程度まで上昇したら、基板200は、図16に示す基板搬送ロボット7032によってプレヒーティングステージ7035からピックアップされ、図17(b)、図17(c)の矢印bのように、実装ステージ7045の上に搬送され、実装ステージ7045の上に載置される。実装ステージ7045は、その表面に基板200を吸着固定する(第一の吸着(固定)工程)。
 実装ステージ7045は、基板200の搬送方向の下流側に加熱領域70452が配置され、基板200の搬送方向の上流側に非加熱領域70456が配置された第一タイプ区分ステージであり、基板200の搬送方向下流側の半分より少し大きい領域(加熱領域70452に吸着固定されている部分)は、ヒータ70459によって70℃程度の温度に保持され、この領域の基板200に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に保たれる。基板200の搬送方向上流側の半分より少し小さい領域(非加熱領域70456に吸着固定されている部分)は、断熱層70454によってヒータ70459の熱が遮断され、常温あるいは常温より少し高い程度に保たれ、この領域の基板200に塗布されたNCP(非導電性ペースト)201の温度も常温あるいは常温より少し高い程度に保持される(第一の加熱工程)。
 先に、図6(c)から図7(n)を参照して説明したように、半導体チップ400は、ピックアップステージ55からピックアップされ、反転され、図16に示す半導体チップ搬送ブロック110の搬送路111に沿って、実装ブロック7040に搬送される。
 そして、図18(d)の二点鎖線で示すように、実装ツール70441は搬送された半導体チップ400を吸着面70442に吸着すると、内部に配置されているヒータ(図示せず)によって半導体チップ400を300℃程度まで加熱し、図18(c)の矢印cのように、実装ステージ7045の加熱領域70452の上に吸着固定されている基板200の部分の所定の位置に半導体チップ400を実装する。加熱領域70452の上に吸着固定されている基板200及び、その領域の基板200に塗布されているNCP(非導電性ペースト)201の温度は70℃程度となっているので、300℃程度に加熱された半導体チップ400が実装されると、半導体チップ400の実装面に形成されているバンプ401が溶融して基板200の電極と接合されると共に、NCP(非導電性ペースト)201が加熱され、硬化し、半導体チップ400が基板200の上に固定、実装される(第一の実装工程)。
 この第一の実装工程においては、基板200の半導体チップ400の実装は、図18(c)の一番右側(X方向+側)の列の紙面奥側(Y方向+側)から紙面手前側(Y方向マイナス側)に向かって行い、図18(c)に示す一番右側の列の半導体チップ400の実装が終わったら、図示しないXYテーブルによって実装ステージ7045を1チップ分X(+)方向に移動させ、一番右から二番目の列に半導体チップ400の実装を行う。以下、一つの列の半導体チップ400の実装が終了したら、図示しないXYテーブルによって実装ステージ7045を1チップ分X(+)方向に移動させ、次の列の半導体チップ400の実装を行う。そして、実装ステージ7045の加熱領域70452の上に吸着固定されている基板200の部分の全ての所定の位置に半導体チップ400を実装すると、実装ステージ7045での第一の実装工程を終了する。
 この際、実装ステージ7045の基板200の搬送方向(X方向)の上流側に配置されている非加熱領域70456の部分は、ヒータ459からの熱が断熱層454によって遮断されているので、常温あるいは常温よりも少し高い程度に保持されており、基板200及び基板200に塗布されているNCP(非導電性ペースト)201も常温あるいは常温より少し高い程度に保持されている。したがって、実装ステージ7045では、基板200の搬送方向上流側の半分より少し狭い範囲は、半導体チップ400を実装している間もNCP(非導電性ペースト)201の温度が常温あるいは常温より少し高い程度に保たれ、NCP(非導電性ペースト)201の温度の上昇による変質を抑制することができる。
 第一の実装工程が終了したら、図16に示す基板搬送ロボット7032は、実装ステージ7045の上から基板200をピックアップし、基板200を水平面内(XY面内)で下流側端(X方向+側端)が上流側端(X方向-側端)となるように、180度回転させる。この結果、第一の実装工程で基板200の上に実装した半導体チップ400は、搬送方向上流側に位置することになる。そして、基板搬送ロボット7032は、図19(e)の矢印dに示すように、プレヒーティングステージ7035に向かって基板200を逆方向に搬送し、その上に、半導体チップ400が実装されている部分が搬送方向上流側(X方向-側)で、半導体チップ400が実装されていない部分を搬送方向下流側(X方向+側)となるように基板200を載置する。プレヒーティングステージ7035は、載置された基板200を吸着固定する(第四の吸着(固定)工程)。
 プレヒーティングステージ7035は、先に説明したと同様、基板200の搬送方向の下流側に加熱領域70352が配置され、基板200の搬送方向の上流側に非加熱領域70356が配置された第一タイプ区分ステージであり、基板200の半導体チップ400が実装されていない部分(加熱領域70352に吸着固定されている部分)は、ヒータ70359によって70℃程度になるまで加熱される。これにより、図19(e)に示すように、基板200の半導体チップ400が実装されていない部分の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。一方、半導体チップ400が実装されている部分(非加熱領域70356に吸着固定されている部分)は、断熱層70354によってヒータ70359の熱が遮断されるので、加熱されず、常温あるいは常温より少し高い程度に保たれる。このため、基板200の半導体チップ400が実装されている部分はヒータ70359によって加熱されないので、しだいにその温度が低下してくる(第四の加熱工程)。
 そして、基板200の半導体チップ400が実装されていない部分(加熱領域70352に吸着固定されている部分)の温度が70℃程度まで上昇したら、基板200は、図16に示す基板搬送ロボット7032によってプレヒーティングステージ7035からピックアップされ、図19(e)、図19(f)の矢印eのように、再度、実装ステージ7045の上に搬送され、実装ステージ7045の上に載置される。この際、基板200に半導体チップ400が実装されている部分が搬送方向上流側(X方向-側)で、基板200に半導体チップ400が実装されていない部分が搬送方向下流側(X方向-側)となるように基板200を載置する。実装ステージ7045は、その表面に基板200を吸着固定する(第四の吸着(固定)工程)。
 実装ステージ7045は、先に説明したと同様、基板200の搬送方向の下流側に加熱領域70452が配置され、基板200の搬送方向の上流側に非加熱領域70456が配置された第一タイプ区分ステージであり、基板200の半導体チップ400が実装されていない部分(加熱領域70452に吸着固定されている部分)は、ヒータ70459によって70℃程度になるまで加熱される。これにより、図19(f)に示すように、基板200の半導体チップ400が実装されていない部分の基板200上に塗布されたNCP(非導電性ペースト)201の温度も70℃程度に上昇する。一方、半導体チップ400が実装されている部分(非加熱領域70456に吸着固定されている部分)は、断熱層70454によってヒータ70459の熱が遮断されるので、しだいにその温度が低下してくる(第四の加熱工程)。
 先に、図6(c)から図7(n)を参照して説明したように、半導体チップ400は、ピックアップステージ55からピックアップされ、反転され、図16に示す半導体チップ搬送ブロック110の搬送路111に沿って、実装ブロック7040に搬送される。
 そして、図20(g)の二点鎖線で示すように、実装ツール70441は搬送された半導体チップ400を吸着面70442に吸着すると、内部に配置されているヒータ(図示せず)によって半導体チップ400を300℃程度まで加熱し、図20(g)の矢印fのように、実装ステージ7045の加熱領域70452の上に吸着固定されている基板200の部分の所定の位置に半導体チップ400を実装する。加熱領域70452の上に吸着固定されている基板200及び、その領域の基板200に塗布されているNCP(非導電性ペースト)201の温度は70℃程度となっているので、300℃程度に加熱された半導体チップ400が実装されると、半導体チップ400の実装面に形成されているバンプ401が溶融して基板200の電極と接合されると共に、NCP(非導電性ペースト)201が加熱され、硬化し、半導体チップ400が基板200の上に固定、実装される(第四の実装工程)。
 この第四の実装工程においては、先に説明した第一の実装工程と同様、一つの列の半導体チップ400の実装が終了したら、図示しないXYテーブルによって実装ステージ7045を1チップ分X(+)方向に移動させ、次の列の半導体チップ400の実装を行う。そして、実装ステージ7045の加熱領域70452の上に吸着固定されている基板200の部分の全ての所定の位置に半導体チップ400を実装すると、実装ステージ7045での第四の実装工程を終了する。
 第四の実装工程が終了したら、図16に示す基板搬送ロボット82は、実装ステージ7045の上から基板200をピックアップし、搬送レール86の上に移動、載置する。すべての半導体チップ400の実装が終了して製品となった基板200は、図示しない搬送装置によって搬送レール86上を製品格納ブロック90に搬送される。製品格納ブロック90の棚に所定の数の基板200が格納されたら、製品格納ブロック90の基板200は、図示しないキュアリング装置に搬送され、例えば、200℃程度の温度で1時間程度キュアリングされる。これによってNCP(非導電性ペースト)201は完全に硬化する。
 以上説明したように、本実施形態では、第一タイプ区分ステージ(第一タイプの区分実装ステージ)であるプレヒーティングステージ、実装ステージを1つずつ備えるフリップチップ実装装置700において、基板200の向きを反転させることによって、図1から図9を参照して説明した実施形態と同様、従来技術のフリップチップ実装装置に比較して、基板200の上に塗布されたNCP(非導電性ペースト)201が熱によって変質する前に実装することが可能な半導体チップ400の数を多くすることができ、NCP(非導電性ペースト)201が熱によって変質することを抑制しながら、基板200に多数の半導体チップ400を実装することができるという効果を奏するものである。
 以上説明した各実施形態は、フリップチップ実装装置を例として説明したが、本発明は、フリップチップ実装装置に限らず、例えば、ダイボンディング装置のような半導体チップを基板に実装する他の形式の実装装置や、LED等の電子部品を基板に取り付けるような電子部品を基板に実装する様々な機器に適用することができる。
 本発明は以上説明した実施形態に限定されるものではなく、請求の範囲により規定されている本発明の技術的範囲ないし本質から逸脱することない全ての変更及び修正を包含するものである。
 10 基板供給ブロック、20 NCP塗布ブロック、21,31,41,51,61,71,81 フレーム、22,53,56 X方向ガイド、23,52 Y方向ガイド、24 ディスペンサヘッド、25 ディスペンサステージ、26,86 搬送レール、30 上流側プレヒーティングブロック、32,62,82 基板搬送ロボット、33,63,83 本体、34,64,84 アーム、35 上流側プレヒーティングステージ、40,140 上流側実装ブロック、42,72 X方向フレーム、43,73 Y方向フレーム、44 上流側実装ヘッド、45,145 上流側実装ステージ、50 半導体チップピックアップブロック、54 ピックアップヘッド、55 ピックアップステージ、57 移送ヘッド、60,120 下流側プレヒーティングブロック、65,125 下流側プレヒーティングステージ、70,130,150 下流側実装ブロック、74 下流側実装ヘッド、75,135,155 下流側実装ステージ、80 製品搬出ブロック、90 製品格納ブロック、100 基板バイパス搬送ブロック、101 上流側プレヒーティングブロックライン、102 下流側プレヒーティングブロックライン、103 製品搬出ブロックライン、104 X方向搬送ライン、110 半導体チップ搬送ブロック、111 搬送路、112 移送ステージ、113 表面、160,170,180 実装ブロック、165,175,185 区分実装ステージ、200 基板、201 NCP(非導電性ペースト)、241 ディスペンサ、300 ウェハ、351,451,651,751,1251,1351,70351,70451 基体部、352,452,652,752,1252,1352,1452,1552,1652,1752,1852,70352,70452 加熱領域、353,453,653,753,70353,70453 段部、354,454,654,754,70354,70454 断熱層、355,455,655,755,70355,70455 断熱スペーサ、356,456,656,756,1456,1556,1656,1756,1856,70356,70456 非加熱領域、357,457,657,757,70357,70457 凹部、358,458,658,758,1258,1358,70358,70458 ヒータベース,359,459,659,759,1259,1359,70359,70459 ヒータ、360,460,660,760,1260,1360,70360,70460 中心線、400 半導体チップ、401 バンプ、402 表面、441 上流側実装ツール、442,542,572,742,70442 吸着面,500,600,700 フリップチップ実装装置、541 ピックアップコレット、543 回転軸、551 上面、571 移送コレット、741 下流側実装ツール、7030 プレヒーティングブロック、7032 基板搬送ロボット、7035 プレヒーティングステージ、7040 実装ブロック、7045 実装ステージ、70441 実装ツール。

Claims (10)

  1.  電子部品実装装置であって、
     その表面に固定した基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域とに区分された少なくとも1つの区分実装ステージを有し、基板に電子部品の実装を行う電子部品実装装置。
  2.  請求項1に記載の電子部品実装装置であって、
     前記区分実装ステージは、
     平面状の段部を有する平板状の基体部と、その表面が前記基体部の表面と同一面となるよう前記段部に重ねあわされた断熱層と、を備え、前記基体部の表面と前記断熱層の表面とに前記基板を固定し、
     前記加熱領域は、前記基体部の表面であり、
     前記非加熱領域は、前記断熱層の表面であること、
     を特徴とする電子部品実装装置。
  3.  請求項1に記載の電子部品実装装置であって、
     その表面に固定した基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域とに区分された第一の区分実装ステージと、
     前記加熱領域と前記非加熱領域の配置を前記第一の区分実装ステージと反対にした第二の区分実装ステージと、
     を有することを特徴とする電子部品実装装置。
  4.  請求項2に記載の電子部品実装装置であって、
     その表面に固定した基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域とに区分された第一の区分実装ステージと、
     前記加熱領域と前記非加熱領域の配置を前記第一の区分実装ステージと反対にした第二の区分実装ステージと、
     を有することを特徴とする電子部品実装装置。
  5.  請求項1に記載の電子部品実装装置であって、
     更に、表面に固定した前記基板全体を加熱する少なくとも1つの全体加熱実装ステージを有すること、
     を特徴とする電子部品実装装置。
  6.  請求項2に記載の電子部品実装装置であって、
     更に、表面に固定した前記基板全体を加熱する少なくとも1つの全体加熱実装ステージを有すること、
     を特徴とする電子部品実装装置。
  7.  請求項3に記載の電子部品実装装置であって、
     更に、表面に固定した前記基板全体を加熱する少なくとも1つの全体加熱実装ステージを有すること、
     を特徴とする電子部品実装装置。
  8.  電子部品の製造方法であって、
     その表面に固定した基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域と、に区分された第一の区分実装ステージと、
     前記加熱領域と前記非加熱領域の配置を前記第一の区分実装ステージと反対にした第二の区分実装ステージと、を有する電子部品実装装置を準備する工程と、
     前記電子部品実装装置を用いて、前記基板の上の前記各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、
     前記基板を第一の区分実装ステージに固定する第一の固定工程と、
     前記基板の前記第一の区分実装ステージの加熱領域上に固定された部分のみを加熱する第一の加熱工程と、
     前記基板の加熱された部分の前記各位置に前記各電子部品を実装する第一の実装工程と、
     前記基板を第二の区分実装ステージに固定する第二の固定工程と、
     前記基板の前記第二の区分実装ステージの加熱領域上に固定された部分のみを加熱する第二の加熱工程と、
     前記基板の加熱された部分の前記各位置に前記各電子部品を実装する第二の実装工程と、
     を有し、基板に複数の電子部品の実装を行う電子部品の製造方法。
  9.  電子部品の製造方法であって、
     その表面に固定した前記基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域と、に区分された区分実装ステージと、
     その表面に固定した前記基板全体を加熱する全体加熱実装ステージと、を有する電子部品実装装置を準備する工程と、
     前記電子部品実装装置を用いて、前記基板の上の前記各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、
     前記基板を前記区分実装ステージに固定する第一の固定工程と、
     前記基板の前記区分実装ステージの前記加熱領域上に固定された部分のみを加熱する第一の加熱工程と、
     前記基板の加熱された部分の前記各位置に前記各電子部品を実装する第一の実装工程と、
     前記基板を全体加熱実装ステージに固定する第三の固定工程と、
     前記基板全体を加熱する第三の加熱工程と、
     前記第一の実装工程で前記電子部品を実装していない前記各位置に前記各電子部品を実装する第三の実装工程と、
     を有し、基板に複数の電子部品の実装を行う電子部品の製造方法。
  10.  電子部品の製造方法であって、
     その表面に固定した前記基板を加熱する加熱領域と、その表面に固定した前記基板を加熱しない非加熱領域と、に区分された区分実装ステージを有する電子部品実装装置を準備する工程と、
     前記電子部品実装装置を用いて、前記基板の上の前記各電子部品を実装する各位置に非導電性ペーストを塗布するペースト塗布工程と、
     前記基板を区分実装ステージに固定する第一の固定工程と、
     前記基板の前記区分実装ステージの加熱領域上に固定された部分のみを加熱する第一の加熱工程と、
     前記基板の加熱された部分の前記各位置に前記各電子部品を実装する第一の実装工程と、
     前記基板を水平面内で180度回転させ、前記第一の実装工程で電子部品が実装されていない領域を前記区分実装ステージの加熱領域に固定する第四の固定工程と、
     前記基板の前記区分実装ステージの加熱領域上に固定された部分のみを加熱する第四の加熱工程と、
     前記基板の加熱された部分の前記各位置に前記各電子部品を実装する第四の実装工程と、
     を有し、基板に複数の電子部品の実装を行う電子部品の製造方法。
PCT/JP2014/057293 2013-05-23 2014-03-18 電子部品実装装置および電子部品の製造方法 WO2014188768A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201509575WA SG11201509575WA (en) 2013-05-23 2014-03-18 Electronic-component mounting apparatus and electronic-component mounting method
JP2015518129A JP6142276B2 (ja) 2013-05-23 2014-03-18 電子部品実装装置および電子部品の製造方法
CN201480003595.4A CN104871300B (zh) 2013-05-23 2014-03-18 电子零件安装装置以及电子零件的制造方法
KR1020157006425A KR101994667B1 (ko) 2013-05-23 2014-03-18 전자 부품 실장 장치 및 전자 부품의 제조 방법
US14/948,385 US9968020B2 (en) 2013-05-23 2015-11-23 Electronic-component mounting apparatus
US15/680,207 US10568245B2 (en) 2013-05-23 2017-08-18 Electronic-component mounting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-108658 2013-05-23
JP2013108658 2013-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/948,385 Continuation US9968020B2 (en) 2013-05-23 2015-11-23 Electronic-component mounting apparatus

Publications (1)

Publication Number Publication Date
WO2014188768A1 true WO2014188768A1 (ja) 2014-11-27

Family

ID=51933334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057293 WO2014188768A1 (ja) 2013-05-23 2014-03-18 電子部品実装装置および電子部品の製造方法

Country Status (7)

Country Link
US (2) US9968020B2 (ja)
JP (1) JP6142276B2 (ja)
KR (1) KR101994667B1 (ja)
CN (1) CN104871300B (ja)
SG (1) SG11201509575WA (ja)
TW (1) TWI514489B (ja)
WO (1) WO2014188768A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923531B1 (ko) 2011-12-23 2018-11-30 삼성전자주식회사 반도체 칩 본딩 장치
TWI514489B (zh) * 2013-05-23 2015-12-21 Shinkawa Kk 電子零件安裝裝置以及電子零件的製造方法
US9929121B2 (en) * 2015-08-31 2018-03-27 Kulicke And Soffa Industries, Inc. Bonding machines for bonding semiconductor elements, methods of operating bonding machines, and techniques for improving UPH on such bonding machines
KR102196378B1 (ko) * 2020-04-13 2020-12-30 제엠제코(주) 반도체 부품 부착 장비

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618937A (ja) * 1984-06-25 1986-01-16 Shinkawa Ltd ボンダ−用加熱装置
JP2006324581A (ja) * 2005-05-20 2006-11-30 Athlete Fa Kk 電子部品の接合装置
JP2011159847A (ja) * 2010-02-02 2011-08-18 Apic Yamada Corp 半導体装置の接合装置及び接合方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552300A (en) * 1983-05-09 1985-11-12 Pace, Incorporated Method and apparatus for soldering and desoldering leadless semiconductor modules for printed wiring boards
US5609290A (en) * 1995-04-20 1997-03-11 The University Of North Carolina At Charlotte Fluxless soldering method
US5778638A (en) * 1996-03-06 1998-07-14 Mitsubishi Gas Chemical Company, Inc. Process for preserving solder paste
US6036084A (en) * 1997-02-06 2000-03-14 Tdk Corporation Screen printing method and apparatus therefor, and electronic component soldering method using screen printing and apparatus therefor
JP3207147B2 (ja) * 1997-12-19 2001-09-10 日本エー・エス・エム株式会社 半導体処理用の基板保持装置
US6246030B1 (en) * 1998-07-22 2001-06-12 Tokyo Electron Limited Heat processing method and apparatus
JP4390503B2 (ja) 2003-08-27 2009-12-24 パナソニック株式会社 部品実装装置及び部品実装方法
JP2005150446A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd 電子部品の製造方法
KR20070074118A (ko) * 2006-01-06 2007-07-12 삼성전자주식회사 표시패널 솔더링 설비 및 이를 이용한 표시패널의 솔더링방법
JP4720608B2 (ja) * 2006-05-10 2011-07-13 パナソニック株式会社 部品実装装置および部品実装方法
JP4788759B2 (ja) * 2008-11-20 2011-10-05 パナソニック株式会社 部品実装装置
JP2011199184A (ja) * 2010-03-23 2011-10-06 Fujifilm Corp 基板実装装置及び基板実装方法
JP5865639B2 (ja) * 2011-09-15 2016-02-17 ファスフォードテクノロジ株式会社 ダイボンダ及びボンディング方法
TWI514489B (zh) * 2013-05-23 2015-12-21 Shinkawa Kk 電子零件安裝裝置以及電子零件的製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618937A (ja) * 1984-06-25 1986-01-16 Shinkawa Ltd ボンダ−用加熱装置
JP2006324581A (ja) * 2005-05-20 2006-11-30 Athlete Fa Kk 電子部品の接合装置
JP2011159847A (ja) * 2010-02-02 2011-08-18 Apic Yamada Corp 半導体装置の接合装置及び接合方法

Also Published As

Publication number Publication date
TW201445652A (zh) 2014-12-01
CN104871300A (zh) 2015-08-26
KR20150042842A (ko) 2015-04-21
JP6142276B2 (ja) 2017-06-14
US10568245B2 (en) 2020-02-18
US9968020B2 (en) 2018-05-08
US20170347504A1 (en) 2017-11-30
US20160081241A1 (en) 2016-03-17
KR101994667B1 (ko) 2019-07-01
JPWO2014188768A1 (ja) 2017-02-23
CN104871300B (zh) 2017-11-21
TWI514489B (zh) 2015-12-21
SG11201509575WA (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US10568245B2 (en) Electronic-component mounting apparatus
JP4714026B2 (ja) 電子部品実装装置、電子部品実装方法及び電子部品装置
US9210836B2 (en) Electronic component mounting device
US11664344B2 (en) Mounting apparatus
TW201923963A (zh) 半導體製造裝置、半導體裝置之製造方法及夾頭
KR20160002405A (ko) 열압착 본더, 열압착 본더 작동 방법, 및 미세 피치의 플립 칩 조립체 상호 접속 방법
KR20140141436A (ko) 반도체 칩 접합 장치 및 이를 이용한 반도체 칩 접합 방법
JP6862015B2 (ja) 実装装置
TWI423359B (zh) 半導體安裝裝置及半導體安裝方法
JP2002368023A (ja) 半導体装置の製造方法
JP2021170634A (ja) 半導体部品取付け装備
CN109491111B (zh) 部件安装装置以及安装基板的制造方法
JP2005252072A (ja) 素子の実装方法及び搬送装置
JP7023700B2 (ja) 実装装置及び実装方法
TWI248652B (en) Chip bonding process
JP5851719B2 (ja) マスクを用いてワークに導電性ボールを搭載する方法
JP4052144B2 (ja) 半導体装置の製造方法
JP6461822B2 (ja) 半導体装置の実装方法および実装装置
JP4572348B2 (ja) 半導体装置の製造方法および回路基板の製造方法
JP2010278250A (ja) 半導体装置の製造方法
JP2003303838A (ja) 半導体パッケージ製造装置および製造方法
WO2016152661A1 (ja) ボンディングツール冷却装置およびこれを備えたボンディング装置ならびにボンディングツール冷却方法
JP2001028381A (ja) 実装方法及び実装装置
JP2002252237A (ja) 半導体装置の製造方法および製造装置
JP2013183131A (ja) 実装装置、および半導体素子実装基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006425

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015518129

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14801731

Country of ref document: EP

Kind code of ref document: A1