WO2014181385A1 - 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法 - Google Patents

耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法 Download PDF

Info

Publication number
WO2014181385A1
WO2014181385A1 PCT/JP2013/007027 JP2013007027W WO2014181385A1 WO 2014181385 A1 WO2014181385 A1 WO 2014181385A1 JP 2013007027 W JP2013007027 W JP 2013007027W WO 2014181385 A1 WO2014181385 A1 WO 2014181385A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion resistance
less
alloy
clad steel
rolling
Prior art date
Application number
PCT/JP2013/007027
Other languages
English (en)
French (fr)
Inventor
洋太 黒沼
矢沢 好弘
慶一郎 岸
俊一 橘
三田尾 眞司
横田 智之
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157030334A priority Critical patent/KR101786284B1/ko
Priority to EP13884148.1A priority patent/EP2977478B1/en
Priority to JP2015515661A priority patent/JP6032354B2/ja
Priority to CN201380076214.0A priority patent/CN105164290B/zh
Publication of WO2014181385A1 publication Critical patent/WO2014181385A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a nickel alloy clad steel (nickel-base alloy-clad steel plate) having excellent intergranular corrosion resistance and a method for producing the same.
  • High alloy clad steel is a steel material in which two alloys with different properties are bonded together with Ni alloy as the material and low-alloy steel as the base material. Clad steel is obtained by metallographically bonding dissimilar metals, and unlike plating, there is no fear of peeling, and it can have new characteristics that cannot be achieved by a single metal and alloy.
  • the clad steel can exhibit the same function as a solid material by selecting a laminated material having a function suitable for the purpose of each use environment. Furthermore, carbon steel and low alloy steel suitable for severe environments such as high toughness and high strength other than corrosion resistance can be applied to the base material of the clad steel.
  • clad steel uses less alloying elements than solid wood, can ensure the same rust prevention performance as solid wood, and can ensure the same strength and toughness as carbon steel and low alloy steel. Therefore, there is an advantage that both economy and functionality can be achieved.
  • Patent Documents 1 and 2 disclose a manufacturing method that simultaneously achieves corrosion resistance, strength of a base material, and low-temperature toughness without solution treatment.
  • Patent Document 3 and Patent Document 4 disclose a method of defining the chemical composition of the clad material and regulating the rolling and cooling conditions to ensure the corrosion resistance of the clad material and the toughness of the base material.
  • the present invention adjusts the precipitation state of precipitates in the Ni alloy, limits the amount of Cr existing as precipitates, and adjusts the precipitation amount of carbides to improve the intergranular corrosion resistance.
  • An object of the present invention is to improve the intergranular corrosion resistance by adjusting the aspect ratio of the crystal grains of the laminated material that becomes the carbide precipitation sites to finely disperse the carbides on the grain boundaries.
  • the clad steel has a problem because it is a composite material. Corrosion resistance of stainless steel and other corrosion resistant materials deteriorates when precipitation of intermetallic compounds, carbides, nitrides, and the like occurs. Therefore, in the case of a solid material, a solution treatment is usually performed after rolling to solidify the precipitate. However, in the case of clad steel, if it is heated and held at such a high temperature that precipitates dissolve, there is a problem that the crystal grains of the low alloy steel as a base material become coarse and the mechanical properties are remarkably deteriorated.
  • the inventors have found that when the clad steel is heated and held at such a high temperature that the precipitate is dissolved, the crystal grains of the low-alloy steel of the base material become coarse and the mechanical properties are significantly deteriorated.
  • the laminated material of Ni alloy clad steel sheets attention was paid to the fact that precipitates cause deterioration of corrosion resistance, and the relationship between Ni alloy precipitates and corrosion resistance was examined. As a result, it was found that precipitation of intermetallic compounds rarely occurred in the production of Ni alloy clad steel, and the deterioration of corrosion resistance was caused by precipitation of carbides.
  • the gist of the present invention is as follows.
  • a Ni alloy clad steel excellent in intergranular corrosion resistance characterized in that the Cr content existing as a carbide in the laminated material made of Ni alloy is 0.03% or less by mass%.
  • the rolling ratio at 1000 ° C. or more is set to 2 or more and control in a temperature range of 950 ° C. or less.
  • Ni alloy clad steel having excellent intergranular corrosion resistance can be obtained.
  • MC, M 6 C, M 23 C 6 (M represents a metal element) and the like are precipitated as carbides in the Ni alloy, and as an intermetallic compound, a Laves phase, a ⁇ phase, and a ⁇ ′′ phase There is.
  • MC is mainly NbC, and the precipitation of MC does not greatly affect the corrosion resistance.
  • the precipitation of intermetallic compounds is slower than the precipitation of carbides and is unlikely to cause corrosion resistance deterioration. Therefore, it is M 6 C and M 23 C 6 that cause the corrosion resistance deterioration of the Ni alloy.
  • these M 6 C and M 23 C 6 contain a large amount of Cr and precipitate along the grain boundary of the Ni alloy, which causes sensitization.
  • sensitization in Ni alloy arises when a carbide
  • the aspect ratio of the crystal grains is increased, the grain boundary length is increased and the carbide precipitation sites are dispersed, so that sensitization is less likely to occur. If the aspect ratio is 1.5 or more, sensitization is unlikely to occur, so the aspect ratio of the crystal grains of the Ni alloy is 1.5 or more.
  • the aspect ratio of the crystal grains is related to P, which segregates at the grain boundaries and deteriorates the corrosion resistance in addition to the sensitization in which the low Cr region is preferentially corroded.
  • the amount of segregation per unit grain boundary length of S may decrease as the aspect ratio increases.
  • C 0.030% or less
  • C is an element that should be avoided because it precipitates at the grain boundaries as carbides due to the thermal history of the rolling and heat treatment processes and inhibits corrosion resistance. If the content exceeds 0.030%, precipitation of carbides is promoted, and the corrosion resistance deteriorates due to an increase in the amount of precipitated Cr, so the C content is 0.030% or less. Preferably it is 0.010% or less.
  • Si 0.02 to 0.50% Since Si is an element effective for deoxidation during steel making, 0.02% or more is added. However, Si is an element that promotes the precipitation of M 6 C, and if it exceeds 0.50%, the amount of precipitated Cr is increased and sensitization is likely to occur. For this reason, the Si content is in the range of 0.02 to 0.50%. Preferably it is 0.02 to 0.20% of range.
  • Mn 0.02 to 0.50% Mn is also an element effective for deoxidation, and 0.02% or more is added. However, if the content exceeds 0.50%, non-metallic inclusions remain, corrosion resistance deteriorates, and hot workability also deteriorates, so the Mn content is in the range of 0.02 to 0.50%. . Preferably it is 0.02 to 0.15% of range.
  • P 0.015% or less
  • P is an impurity element, and is an element that segregates at grain boundaries and deteriorates corrosion resistance when rolled at 1000 ° C. or more in order to ensure the bonding property of the clad steel plate. Therefore, the P content is 0.015% or less. Preferably it is 0.005% or less.
  • S 0.015% or less
  • S is an impurity element similar to P, and is an element that segregates at grain boundaries and deteriorates corrosion resistance when rolled at 1000 ° C. or more in order to ensure the bonding property of the clad steel plate. Therefore, the S content is 0.015% or less. Preferably it is 0.001% or less.
  • Cr 20.0-23.0%
  • Cr is an element that forms a highly protective oxide film on the surface of metal and improves pitting corrosion resistance and intergranular corrosion resistance.
  • the Cr content is in the range of 20.0 to 23.0%.
  • it is in the range of 21.0 to 22.0%.
  • Mo 8.0 to 10.0% Mo improves pitting corrosion resistance and crevice corrosion resistance.
  • the combined addition with Ni improves the stress corrosion cracking susceptibility in sour gas environment, so the addition amount with Ni and other alloy elements is taken into account in the range of 8.0 to 10.0%. . Preferably, it is in the range of 9.0 to 10.0%.
  • Fe 5.0% or less Fe is an impurity inevitably mixed when ferrochrome, ferromolybdenum or the like is used as a raw material, and if it exceeds 5.0%, the amount of Ni decreases and corrosion resistance decreases.
  • the amount of Fe is 5.0% or less. Preferably it is 3.5% or less.
  • Al 0.02 to 0.40% Al is added in an amount of 0.02% or more as an element effective for deoxidation. However, if the content exceeds 0.40%, the stress corrosion cracking resistance deteriorates, so the Al content is in the range of 0.02 to 0.40%. Preferably it is 0.02 to 0.20% of range. More preferably, it is in the range of 0.02 to 0.15%.
  • Ti 0.10 to 0.40% Since Ti is effective as a C-fixing element, 0.10% or more is added. However, if it is contained in a large amount, it precipitates as an intermetallic compound at the joining interface of the clad steel plate and inhibits the joining property, so the Ti content is set in the range of 0.10 to 0.40%. Preferably it is 0.10 to 0.30% of range.
  • Nb + Ta 3.15 to 4.15%
  • Nb and Ta are also elements that contribute to the fixation of C. However, if it is contained in a large amount, it precipitates as an intermetallic compound at the joint interface of the clad steel and inhibits the bondability, so the amount of Nb + Ta is set in the range of 3.15 to 4.15%.
  • a preferable Nb + Ta amount is in the range of 3.50 to 4.00%.
  • Ni is an element that improves corrosion resistance, and remarkably improves stress corrosion cracking resistance in a sour environment.
  • the corrosion resistance is further improved by the combined effect of Cr and Mo.
  • Inevitable impurities include N, O, V, B, and W. N: 0.01% or less, O: 0.001% or less, V: 0.04% or less, B: 0.0. Even if it is contained within the range of 0005% or less and W: 0.3% or less, it does not affect the corrosion resistance.
  • the laminated material of clad steel of the present invention is adjusted to the above-described component range and can be melted by a conventional method or the like.
  • the base material of the clad steel is selected depending on the use of the clad steel, etc., but in an application used for pipelines such as carbon steel and natural gas, for example, as a base material, in mass%, C: 0.26% or less, A low alloy steel having Mn: 1.65% or less, P: 0.030% or less, S: 0.030% or less, and Nb + V + Ti: 0.15% or less can be used.
  • An assembly slab for clad rolling is prepared by combining these laminated material and base material, and a clad steel plate is obtained by clad rolling.
  • the material of the Ni alloy clad steel refers to an assembly slab for clad rolling in which a laminated material and a base material are combined.
  • Heating temperature 1050 ° C. or higher and 1200 ° C. or lower Heated to 1050 ° C. or higher in order to sufficiently melt the laminated material during heating.
  • heating temperature shall be the range of 1050 degreeC or more and 1200 degrees C or less.
  • it is the range of 1050 degreeC or more and 1150 degrees C or less.
  • the rolling ratio at 1000 ° C. or higher In order to obtain a sufficient bonding material / base metal interface bonding, the rolling ratio at 1000 ° C. or higher needs to be 2 or higher.
  • Ni alloy has a large deformation resistance as compared with low alloy steel, and there is a problem that it is difficult to obtain good jointability when a clad material is manufactured.
  • a preferable reduction ratio is 3 or more.
  • Control rolling Reduction ratio of 1.5 to 4 at 950 ° C. or less
  • Control rolling is based on the premise that finish rolling is finished at 700 ° C. or more, and in order to secure the strength and toughness of the base material, the controlled rolling start temperature is 950 ° C. or less, and the rolling ratio is 1.5 or more and 4 or less.
  • the reduction ratio In order to set the crystal grain aspect ratio of the laminated material to 1.5 or more, it is necessary to set the reduction ratio of 950 ° C. or less to 1.5 or more. When the reduction ratio exceeds 4, sufficient reduction in the high temperature range is ensured. It cannot be done and the bondability deteriorates.
  • the preferable reduction ratio is 2 or more and 3.5 or less, and the more preferable reduction ratio is 2.5 or more and 3 or less.
  • Rolling finishing temperature 700 ° C. or higher
  • the rolling finishing temperature is set to 700 ° C. or higher.
  • Cooling rate 1 ° C./s or higher
  • cooling stop temperature 500 ° C. or lower
  • the reason for cooling to 500 ° C. or lower at the cooling rate of 1 ° C./s or higher after rolling is to ensure the strength and toughness of the base material. If the cooling rate in the temperature range from 700 ° C. or higher rolling temperature to 500 ° C. is less than 1 ° C./s, the base material crystal grains are remarkably coarsened and the toughness deteriorates. Further, when the cooling stop temperature is higher than 500 ° C., sufficient strength cannot be obtained. Therefore, cooling is performed to 500 ° C. or lower at a cooling rate of 1 ° C./s or higher after the end of rolling.
  • the test method is to immerse the test piece in a boiling 65% nitric acid solution for 48 hours, calculate the corrosion rate (g / m 2 ⁇ h) from the weight change before and after the test, and the same in a new boiling 65% nitric acid solution. Immerse the specimen again. This 48-hour immersion test was repeated five times, and the intergranular corrosion resistance was evaluated from the average value of the five corrosion rates. Evaluation criteria were determined to be good for intergranular corrosion resistance when the value was 0.75 g / m 2 ⁇ h or less.
  • the bondability evaluation of the laminated material and the base material was based on the JIS G0601 shear strength test.
  • the shear strength test is a method in which the laminated material is peeled from the base material in parallel with the joining surface, and the joining property is evaluated from the maximum shear strength required for the peeling. Evaluation criteria determined that the shearing stress was 300 MPa or more and the bondability was good.
  • the toughness of the base material was evaluated by a DWTT test (Drop Weight Tear Test) at -20 ° C.
  • a ductile fracture area ratio (Shear Area ratio) of 85% or more is considered to be excellent in the toughness of the base material.
  • a laminated material and a base material were prepared using 13 types of laminated material shown in Table 1 (10 types of invention steel, 3 types of comparative steel) and 2 types of base material. Clad steel was produced using this laminated material and base material, and the amount of precipitated Cr and intergranular corrosion resistance were investigated. After heating the clad steel slab using each laminated material at a heating temperature of 1100 ° C., rolling was started, the rolling ratio at 1000 ° C. or higher was 2.5, and the rolling ratio at 950 ° C. or lower was 2.5, and 750 Rolling was terminated at 0 ° C., and accelerated cooling was immediately started at a cooling rate of 5 ° C./s, and accelerated cooling was terminated at 350 ° C. The results are shown in Table 2.
  • the laminated material is a laminated material No. 1 shown in Table 1. 1 to 13 Ni alloys were used.
  • the chemical composition of the base material is the same as the base material No. Low carbon steel having a component system corresponding to API standard X65 grade shown in AA and BB was used.
  • the production methods A to D which are invention examples, all have the reduction ratio, rolling finish temperature, cooling rate, and cooling stop temperature within the scope of the invention.
  • the production methods E to H which are comparative examples, any production conditions such as a reduction ratio are out of the scope of the invention.
  • test results are shown in Tables 4-1 and 4-2.
  • levels 1 to 9 in which the components of the laminated material are within the scope of the invention showed a small amount of precipitated Cr and good intergranular corrosion resistance.
  • levels 1 to 5 in which the components of the laminated material and the manufacturing method were within the scope of the invention were all good in corrosion resistance, bondability and base material falling weight characteristics.
  • the amount of precipitated Cr exceeds 0.030% of the upper limit value and is inferior in intergranular corrosion resistance.
  • E (level 14) the shear strength is low and the bondability is poor.
  • F (levels 15 to 17) the production finishing temperature at which the finishing temperature at the rolling finish falls below the lower limit.
  • G level 18 and production method no.
  • H level 19
  • the ductile fracture surface ratio was less than 85% in the DWTT test (falling weight characteristic) at ⁇ 20 ° C., which was inferior to the base material falling weight characteristic.
  • Table 5 shows the test results of the aspect ratio.
  • the crystal grain aspect ratio was large and the intergranular corrosion resistance was excellent.
  • levels 26 to 28 having an aspect ratio of less than the lower limit had a corrosion rate exceeding 0.75 g / m 2 ⁇ hr and were inferior in intergranular corrosion resistance.
  • Table 6 shows the results of the amount of precipitated Cr and the aspect ratio. Levels 29 to 32 where the amount of precipitated Cr and the aspect ratio are within the range of the present invention were excellent in the intergranular corrosion resistance. On the other hand, in levels 33 to 35, the amount of precipitated Cr is larger than 0.030, the aspect ratio is less than 1.5, the corrosion rate exceeds 0.75 g / m 2 ⁇ hr, and the intergranular corrosion resistance is inferior. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法を提供する。 Ni合金からなる合せ材中に炭化物として存在するCr量が、質量%で、0.030%以下であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。

Description

耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法
 本発明は、耐粒界腐食(intergranular corrosion)特性に優れたNi合金クラッド鋼(nickel-base alloy-clad steel plate)およびその製造方法に関する。
 近年、エネルギー問題から従来採掘が困難であった難採掘環境においてもエネルギー資源開発が進んでいる。このような難採掘環境は特に腐食環境も厳しく、より耐食性に優れた高合金クラッド鋼(CRA (Corrosion Resistant Alloy) clad steel)のニーズが高まっている。さらに難採掘環境下で使用される産業設備や構造物では耐久性及び長寿命化並びにメンテナンスフリ-化が指向されており、Alloy625、825に代表されるNi合金はこれらニ-ズに適合した材料として注目を集めている。
 一方で、Ni合金の主原料であるNiやMo、Crに代表される合金元素の価格は、時に高騰したり、大きく変動することがある。そのため、無垢材(solid metal全厚が合わせ材(alloy-cladding metal)の金属組成のような場合を云う。)としての使用よりも、高合金鋼の優れた防錆性能をより経済的に利用できるクラッド鋼が、最近、注目されている。
 高合金クラッド鋼とは合せ材にNi合金、母材に普通鋼材(low-alloy steel)と、二種類の性質の異なる金属を張り合わせた鋼材である。クラッド鋼は、異種金属を金属学的に接合させたもので、めっきとは異なり剥離する心配がなく、単一金属及び合金では達し得ない新たな特性を持たせることができる。
 クラッド鋼は、使用環境毎の目的に合った機能を有する合せ材を選択することにより、無垢材と同等の機能を発揮させることができる。さらに、クラッド鋼の母材には、耐食性以外の高靭性、高強度といった厳しい環境に適した炭素鋼や低合金鋼を適用することができる。
 このように、クラッド鋼は、無垢材よりも合金元素の使用量が少なく、かつ、無垢材と同等の防錆性能を確保でき、さらに炭素鋼や低合金鋼と同等の強度や靭性を確保できるため、経済性と機能性が両立できるという利点を有する。
 以上から、高合金の合せ材を用いたクラッド鋼は非常に有益な機能性鋼材であると考えられており、近年そのニ-ズが各種産業分野で益々高まっている。
 しかし、クラッド鋼には複合材料であるが故の問題点が存在する。ステンレス鋼をはじめとする耐食性材料では、金属間化合物や炭化物、窒化物などの析出を生じると、析出物周辺部のCr濃度が低くなる。通常、これらの析出物は結晶粒界に優先的に析出するため、脱Cr領域が粒界に沿って連続的に形成される。この現象を鋭敏化という。鋭敏化の著しい材料は、腐食環境下に曝されると、脱Cr領域が優先腐食し結晶粒の脱落が生じるため、耐粒界腐食特性に劣る。
 そのため、通常、無垢材では圧延後に溶体化処理を施して析出物を固溶させる。しかし、クラッド鋼の場合には析出物が溶け込むような高温に加熱保持すると、母材の低合金鋼の結晶粒が粗大化し、機械的特性が著しく劣化するという問題がある。
このような背景から、溶体化処理が不要な耐食性に優れたクラッド鋼の製造方法が検討されている。
 特許文献1および特許文献2には溶体化処理なしで、耐食性と母材の強度、低温靭性を同時に達成する製造方法が開示されている。
 特許文献3および特許文献4ではクラッド材の化学成分を規定するとともに圧延、冷却条件を規制し、クラッド材の耐食性と母材の靭性を確保する方法が開示されている。
特公平8-25041号公報 特公平8-25040号公報 特開平5-154672号公報 特開平5-214499号公報
 しかし、析出物が耐食性劣化の原因であるにも関わらず、Ni合金クラッド鋼の耐食性の観点から合せ材の析出物に関する規定を行っている報告は存在しない。
 本発明は、Ni合金中の析出物の析出状態を調整するもので、析出物として存在するCr量を制限して、炭化物の析出量を調整することで耐粒界腐食特性の向上を図るとともに、炭化物の析出サイトとなる合せ材の結晶粒のアスペクト比を調整して粒界上に炭化物を微細分散して、耐粒界腐食特性の向上を図ることを目的とする。
 クラッド鋼には複合材料であるが故の問題点が存在する。ステンレス鋼をはじめとする耐食性材料では金属間化合物や炭化物、窒化物などの析出を生じると耐食性が劣化するため、通常、無垢材であれば圧延後に溶体化処理を施し析出物を固溶させる。しかし、クラッド鋼の場合には析出物が溶け込むような高温に加熱保持すると、母材の低合金鋼の結晶粒が粗大化し、機械的特性が著しく悪化するという問題がある。
 発明者らは、上述したように、クラッド鋼を析出物が固溶するような高温に加熱保持すると、母材の低合金鋼の結晶粒が粗大化し、機械的特性が著しく悪化するという事情に鑑み、Ni合金クラッド鋼板の合せ材において、析出物が耐食性劣化の原因である点に留意し、Ni合金の析出物と耐食性との関係を検討した。その結果、Ni合金クラッド鋼製造において金属間化合物の析出が生じることは稀であり、耐食性の劣化は炭化物の析出によって引き起こされていることを突き止めた。更に、析出物中に含まれる各耐食性元素の量と合せ材の耐食性の関係を明確化し、析出物として存在するCr量と耐粒界腐食特性に相関があることを明らかにした。また、粒界長が長いほど析出物は微細分散され、鋭敏化が生じにくくなることから合せ材の結晶粒アスペクト比と耐粒界腐食特性に相関があることも明らかにした。
本発明の要旨は、以下の通りである。
 [1]Ni合金からなる合せ材中に炭化物として存在するCr量が、質量%で、0.03%以下であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
 [2]Ni合金からなる合せ材の結晶粒のアスペクト比が1.5以上であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
 [3]Ni合金からなる合せ材中に炭化物として存在するCr量が、質量%で、0.030%以下であり、前記合せ材の結晶粒のアスペクト比が1.5以上であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
 [4]合せ材として、さらに、質量%で、C:0.030%以下、Si:0.02~0.50%、Mn:0.02~0.50%、P:0.015%以下、S:0.015%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Fe:5.0%以下、Al:0.02~0.40%、Ti:0.10~0.40%を含有し、さらに、Nb+Taを3.15~4.15%含有し、残部がNi及び不可避的不純物からなることを特徴とする前記[1]乃至[3]の何れかに記載の耐粒界腐食特性に優れたNi合金クラッド鋼。
 [5]前記[4]に記載のNi合金クラッド鋼の素材を用いて、1050℃以上1200℃以下に加熱後、1000℃以上での圧下比を2以上とし、950℃以下の温度域における制御圧延の圧下比を1.5以上4以下、圧延仕上温度を700℃以上とする熱間圧延を行った後、直ちに冷却速度1℃/s以上、冷却停止温度500℃以下とする加速冷却を行った後に放冷することを特徴とする母材靭性および耐粒界腐食特性に優れたNi合金クラッド鋼の製造方法。
 本発明によれば、優れた耐粒界腐食特性を有するNi合金クラッド鋼を得ることができる。
 1.析出Cr量について
 析出Cr量とは析出物として存在するCr量である。Crは不動態皮膜を形成する元素として一般的に広く知られている。粒界に沿った析出物にNi合金マトリックス中のCrが集まると、析出物周辺部のCr濃度が低くなる。この現象を鋭敏化という。鋭敏化した材料が腐食環境下に置かれると、この低Cr領域が優先的に腐食される。析出Cr量が質量%で0.030%を超えると鋭敏化が進み、結晶粒の脱落が生じる。そのため、析出Cr量は0.030%以下とする。
 ここで、Ni合金に析出する炭化物としては、MC、MC、M23(Mは金属元素を表す)などがあり、金属間化合物としては、Laves相、δ相、γ’’相がある。このうち、MCは主としてNbCであり、MCの析出は耐食性に大きな影響を与えない。また、Ni合金中では金属間化合物の析出は炭化物の析出よりも遅く、耐食性劣化の原因となりにくい。従って、Ni合金の耐食性劣化を引き起こすのはMCおよびM23である。実際にこれらMC、M23は多量のCrを含有し、Ni合金の粒界に沿って析出するため、鋭敏化の原因となる。
 ここで、本願におけるNi合金とは、合金成分のうちでNiの含有量が最も多い合金をいう。
 2.結晶粒のアスペクト比について
 前述のように、Ni合金における鋭敏化は炭化物が粒界に沿って析出することにより生じる。結晶粒のアスペクト比が大きくなると、粒界長が長くなり、炭化物の析出サイトが分散されるので、鋭敏化が生じにくくなる。アスペクト比が1.5以上であれば鋭敏化が生じにくくなるため、Ni合金の結晶粒のアスペクト比を1.5以上とする。
 なお、Ni合金における腐食において、結晶粒のアスペクト比が関係するのは、上記した低Cr領域が優先的に腐食される鋭敏化の他に、結晶粒界に偏析して耐食性を劣化させるP、Sの単位粒界長さあたりの偏析量が、アスペクト比が大きいほど、低下することなどがある。
 3.合せ材の成分組成について
 以下、本発明における合せ材は、炭化物として存在するCr量が質量%で、0.030%以下のNi合金、および/または、合せ材の結晶粒のアスペクト比が1.5以上であるNi合金であれば良い。更に好適な成分組成として以下のように規定した。なお、成分%は、特に記載がない限り質量%を意味する。
 C:0.030%以下
 Cはクラッド鋼の製造において、圧延および熱処理工程の熱履歴で炭化物として粒界に析出し、耐食性を阻害するため多量の含有は避けるべき元素である。0.030%を超えて含有すると、炭化物の析出が促進され、析出Cr量が増大することで耐食性が劣化するため、C量は0.030%以下とする。好ましくは0.010%以下である。
 Si:0.02~0.50%
 Siは製鋼時の脱酸に有効な元素のため、0.02%以上添加する。しかし、SiはMCの析出を促進する元素であり、0.50%を超えて含有すると、析出Cr量の増大を引き起こし、鋭敏化が生じ易くなる。そのため、Si量は0.02~0.50%の範囲とする。好ましくは0.02~0.20%の範囲である。
 Mn:0.02~0.50%
 Mnも脱酸に有効な元素であり、0.02%以上添加する。しかし、0.50%を超えて含有すると、非金属介在物が残存し、耐食性が劣化し、また熱間加工性も劣化するため、Mn量は0.02~0.50%の範囲とする。好ましくは0.02~0.15%の範囲である。
 P:0.015%以下
 Pは不純物元素であり、クラッド鋼板の接合性確保のため、1000℃以上で圧延する際に、粒界に偏析し、耐食性を劣化させる元素である。したがって、P量は0.015%以下とする。好ましくは0.005%以下である。
 S:0.015%以下
 SはPと同様に不純物元素であり、クラッド鋼板の接合性確保のため、1000℃以上で圧延する際に、粒界に偏析し、耐食性を劣化させる元素である。したがって、S量は0.015%以下とする。好ましくは0.001%以下である。
 Cr:20.0~23.0%
 Crは、金属の表面に保護性の高い酸化物皮膜を形成し、耐孔食性や耐粒界腐食特性を向上させる元素である。しかし、Crを過剰に含有すると析出Cr量の増大を引き起こし、鋭敏化を生じ易くなる。従って、Niやその他の合金とのバランスも考え、Cr量は20.0~23.0%の範囲とする。好ましくは、21.0~22.0%の範囲である。
 Mo:8.0~10.0%
 Moは、耐孔食性、耐隙間腐食性を向上させる。また、Niとの複合添加によって、サワーガス環境中での耐応力腐食割れ感受性も改善するため、Niやその他の合金元素との添加量を考慮して8.0~10.0%の範囲とする。好ましくは、9.0~10.0%の範囲である。
 Fe:5.0%以下
 Feは、原料としてフェロクロム、フェロモリブデン等を用いた場合、不可避的に混入する不純物であり、5.0%を超えるとNi量が低下して耐食性が低下するため、Fe量は5.0%以下とする。好ましくは3.5%以下である。
 Al:0.02~0.40%
 Alは脱酸に有効な元素として0.02%以上添加する。しかし、0.40%を超えて含有すると耐応力腐食割れ性が劣化するため、Al量は0.02~0.40%の範囲とする。好ましくは0.02~0.20%の範囲である。より好ましくは、0.02~0.15%の範囲である。
 Ti:0.10~0.40%
 TiはCの固定化元素として有効であるため、0.10%以上添加する。しかし、多量に含有するとクラッド鋼板の接合界面で金属間化合物として析出し、接合性を阻害するため、Ti量は0.10~0.40%の範囲とする。好ましくは0.10~0.30%の範囲である。
 Nb+Ta:3.15~4.15%
 Nb、TaもCの固定化に寄与する元素である。しかし、多量に含有するとクラッド鋼の接合界面で金属間化合物として析出し、接合性を阻害するため、Nb+Ta量は3.15~4.15%の範囲とする。好ましいNb+Ta量は3.50~4.00%の範囲である。
 残部
 上記した合せ材の成分の残部はNiおよび不可避的不純物である。Niは耐食性を向上させる元素であり、特に、サワー環境での耐応力腐食割れ性を著しく改善する。前述したように、CrとMoとの複合添加効果でさらに耐食性は向上する。また、不可避的不純物としては、N、O、V、B、Wが挙げられ、それぞれN:0.01%以下、O:0.001%以下、V:0.04%以下、B:0.0005%以下、W:0.3%以下の範囲内で含有しても耐食性に何ら影響を与えるものではない。
 4.Ni合金クラッド鋼の製造方法について
 本発明のNi合金クラッド鋼の製造方法について以下に述べる。
 本発明のクラッド鋼の合せ材は、前記した成分範囲に調整され、常法等により溶製することができる。クラッド鋼の母材はクラッド鋼の用途などにより選定されるが、炭素鋼や天然ガス等のパイプラインに使用される用途では、例えば母材として、質量%で、C:0.26%以下、Mn:1.65%以下、P:0.030%以下、S:0.030%以下、Nb+V+Ti:0.15%以下の低合金鋼を用いることができる。これら合せ材と母材とを組み合わせてクラッド圧延用組立スラブを作成して、クラッド圧延によりクラッド鋼板とする。本願において、Ni合金クラッド鋼の素材とは合せ材と母材とを組み合わせたクラッド圧延用組立スラブのことをいう。
 加熱温度:1050℃以上、1200℃以下
 加熱時に合せ材を十分溶体化するために1050℃以上に加熱する。しかし、高温に加熱しすぎると合せ材の熱間加工性が劣化し、母材の結晶粒粗大化による靭性劣化を招く。そのため加熱温度は1050℃以上1200℃以下の範囲とする。好ましくは1050℃以上1150℃以下の範囲である。
 1000℃以上での圧下比:2以上
 十分な合せ材/母材界面接合を得るためには、1000℃以上での圧下比が2以上である必要がある。Ni合金は低合金鋼に比較して変形抵抗が大きく、クラッド材を製造する場合、良好な接合性が得られにくいという難点がある。しかし、1000℃以上の高温域ではNi合金と低合金鋼の変形抵抗差は小さくなる。そのため、1000℃以上での圧下比(=(圧延前の板厚)÷(圧延後の板厚))を2以上とすることで良好な合せ材/母材界面の接合強度が得られる。従って、1000℃以上の圧下比を2以上とする。好ましい圧下比は3以上である。
 制御圧延:950℃以下の圧下比1.5以上4以下
 制御圧延は700℃以上で仕上げ圧延を終了することを前提とし、さらに母材の強度、靭性を確保するために、制御圧延開始温度は950℃以下、圧下比は1.5以上4以下とする。合せ材の結晶粒アスペクト比を1.5以上とするには、950℃以下の圧下比を1.5以上とする必要があり、圧下比が4を超えると高温域での十分な圧下を確保出来ず、接合性が劣化する。
 なお、仕上げ板厚との関係にもよるが、好ましい圧下比は2以上3.5以下、さらに好ましい圧下比は2.5以上3以下である。
 圧延仕上げ温度:700℃以上
 圧延仕上げ温度が700℃未満となると、母材の靭性が劣化するため圧延仕上げ温度は700℃以上とする。
 冷却速度:1℃/s以上、冷却停止温度:500℃以下
 圧延終了後に冷却速度1℃/s以上で、500℃以下まで冷却するのは、母材の強度、靭性を担保するためである。700℃以上の圧延終了温度から500℃の温度範囲における冷却速度が1℃/s未満では母材の結晶粒粗大化が著しく、靭性が劣化する。また、冷却停止温度を500℃よりも高温にした場合、十分な強度が得られない。そのため、圧延終了後に冷却速度1℃/s以上で500℃以下まで冷却を行う。
 5.材質の評価方法について
 析出物の抽出には10vol.%アセチルアセトン(acetylacetone)-1mass%塩化テトラメチルアンモニウム(tetramethylammonium chloride)-メタノール混合液(methanol mixture 通称10%AA液と呼ぶ)中での電解抽出((Electrolytic extraction)通称SPEED法と呼ぶ)を適用した。ろ過によりフィルター上に捕集した抽出残渣(extraction residue)のXRD(X-ray diffraction)より、析出物の種類を特定した。また、抽出残渣を混酸溶解(混酸成分比 硫酸10ml:硝酸10ml:過塩素酸5ml:水10ml)し、ICP発光分光分析(inductively-coupled plasma emission spectrometry誘導結合プラズマ発光分光分析)することで析出Cr量を求めた。
 次に合せ材であるNi合金の耐粒界腐食特性の評価方法について説明する。
 耐粒界腐食特性はJIS G0573 ステンレス鋼の65%硝酸腐食試験(nitric acid test ヒューイ試験)により評価した。
 試験方法は沸騰させた65%硝酸溶液中に試験片を48時間浸漬させ、試験前後の重量変化から腐食速度(g/m・h)を算出し、新たな沸騰65%硝酸溶液中に同一試験片を再び浸漬させる。この48時間浸漬試験を5回繰り返し、5回の腐食速度の平均値から耐粒界腐食特性を評価した。評価基準は0.75g/m・h以下のものを耐粒界腐食特性が良好であると判断した。
 合せ材と母材の接合性評価はJIS G0601 剪断強さ試験によった。
 剪断強さ試験は合せ材を母材から接合面と平行に剥離し、その剥離に要した最大剪断強度から接合性を評価する方法である。評価基準は剪断応力が300MPa以上のものを接合性が良好であると判断した。
 また、母材の靭性は、-20℃におけるDWTT試験(Drop Weight Tear Test)で評価した。本発明では、-20℃におけるDWTT試験で、延性破面率(Shear Area ratio)85%以上を母材の靭性に優れているものとした。
 合せ材の結晶粒のアスペクト比について
 合せ材の結晶粒アスペクト比はエッチング処理を施した合せ材(L面、 1/4t位置)の組織写真を撮影した後、一定長さの線分を圧延方向と板厚方向にそれぞれ引き、結晶粒の圧延方向長さおよび板厚方向長さの平均値を求め、アスペクト比=(結晶粒の圧延方向長さ)/(結晶粒の板厚方向長さ)として算出した。
 以下に本発明の実施例を比較例と対比して説明する。
 表1に示す合せ材13鋼種(発明鋼10鋼種、比較鋼3鋼種)、母材2鋼種を用いて合せ材と母材を作製した。この合せ材と母材を使ってクラッド鋼を作製し、析出Cr量と耐粒界腐食特性を調査した。各合せ材を使ったクラッド鋼のスラブを加熱温度1100℃で加熱後、圧延を開始し、1000℃以上での圧下比を2.5、950℃以下での圧下比を2.5として、750℃で圧延を終了し、直ちに、冷却速度5℃/sで加速冷却を開始し、350℃で加速冷却を終了した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 発明鋼である合せ材No.1~10は析出Cr量が0.030%以下であり、良好な耐粒界腐食特性を示した。一方、本発明と比較してC量が上限値を超えている合せ材No.11、Si量が上限値を超えている合せ材No.12およびCr量が上限値を超えている合せ材No.13は多量の析出Cr量に起因して耐粒界腐食特性に劣っていた。
 次に製造条件によるNi合金クラッド鋼の特性変化を示す。
合せ材は表1に示す合せ材No.1~13のNi合金を使用した。母材の化学成分は、同じく表1の母材No.AA、BBに示すAPI規格X65グレード相当の成分系を有する低炭素鋼を使用した。
 クラッド鋼の製造条件を表3に、試験結果を表4-1、表4-2、表5、表6に示す。
 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 
 表3において、発明例である製造方法A~Dは圧下比、圧延仕上温度、冷却速度、冷却停止温度が全て発明の範囲内である。一方、比較例である製造方法E~Hは圧下比など、いずれかの製造条件が発明の範囲をはずれている。
 試験結果を表4-1、表4-2に示す。表4-1に示す、合せ材成分が発明の範囲内である水準1~9では析出Cr量が小さく、良好な耐粒界腐食特性を示した。特に、合せ材成分および製造方法が発明の範囲内である水準1~5は耐食性、接合性及び母材落重特性の全てが良好であった。
 一方、表4-2に示す、水準10~19は析出Cr量がいずれも上限値の0.030%を超えており、耐粒界腐食特性に劣る。1000℃以上での圧下比が下限値を下回る製造方法No.E(水準14)ではせん断強度が低く、接合性に劣っている。950℃以下での圧下比が下限値を下回っている製造方法No.F(水準15~17)、圧延仕上終了温度が下限値を下回る製造方法No.G(水準18)および冷却速度が下限値を下回る製造方法No.H(水準19)ではいずれも-20℃でのDWTT試験(落重特性)では延性破面率が85%未満となり母材落重特性に劣っていた。
 アスペクト比の試験結果を表5に示す。本発明例である水準21~25は結晶粒アスペクト比が大きく、耐粒界腐食特性に優れていた。一方、アスペクト比が下限値未満である水準26~28は腐食速度が0.75g/m・hrを超えており、耐粒界腐食特性に劣っていた。
 析出Cr量とアスペクト比の結果を表6に示す。析出Cr量およびアスペクト比が本発明の範囲内である水準29~32は耐粒界腐食特性に優れていた。一方、水準33~35は析出Cr量が0.030より大きく、アスペクト比が1.5未満であり、腐食速度は0.75g/m・hrを超えており、耐粒界腐食特性に劣っていた。

Claims (5)

  1.  Ni合金からなる合せ材中に炭化物として存在するCr量が、質量%で、0.030%以下であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
  2.  Ni合金からなる合せ材の結晶粒のアスペクト比が1.5以上であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
  3.  Ni合金からなる合せ材中に炭化物として存在するCr量が、質量%で、0.030%以下であり、前記合せ材の結晶粒のアスペクト比が1.5以上であることを特徴とする耐粒界腐食特性に優れたNi合金クラッド鋼。
  4.  合せ材として、さらに、質量%で、C:0.030%以下、Si:0.02~0.50%、Mn:0.02~0.50%、P:0.015%以下、S:0.015%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Fe:5.0%以下、Al:0.02~0.40%、Ti:0.10~0.40%を含有し、さらに、Nb+Taを3.15~4.15%含有し、残部がNi及び不可避的不純物からなることを特徴とする請求項1乃至3の何れかに記載の耐粒界腐食特性に優れたNi合金クラッド鋼。
  5.  請求項4に記載のNi合金クラッド鋼の素材を用いて、1050℃以上1200℃以下に加熱後、1000℃以上での圧下比を2以上とし、950℃以下の温度域における制御圧延の圧下比を1.5以上4以下、圧延仕上温度を700℃以上とする熱間圧延を行った後、直ちに冷却速度1℃/s以上、冷却停止温度500℃以下とする加速冷却を行った後に放冷することを特徴とする母材靭性および耐粒界腐食特性に優れたNi合金クラッド鋼の製造方法。
     
PCT/JP2013/007027 2013-05-09 2013-11-29 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法 WO2014181385A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157030334A KR101786284B1 (ko) 2013-05-09 2013-11-29 내입계 부식 특성이 우수한 Ni 합금 클래드강 및 그 제조 방법
EP13884148.1A EP2977478B1 (en) 2013-05-09 2013-11-29 Nickel alloy clad steel having excellent grain boundary corrosion resistance properties, and method for producing same
JP2015515661A JP6032354B2 (ja) 2013-05-09 2013-11-29 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法
CN201380076214.0A CN105164290B (zh) 2013-05-09 2013-11-29 耐晶间腐蚀特性优异的Ni合金包层钢及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-099057 2013-05-09
JP2013099057 2013-05-09
JP2013-228096 2013-11-01
JP2013228096 2013-11-01

Publications (1)

Publication Number Publication Date
WO2014181385A1 true WO2014181385A1 (ja) 2014-11-13

Family

ID=51866893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007027 WO2014181385A1 (ja) 2013-05-09 2013-11-29 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法

Country Status (6)

Country Link
EP (1) EP2977478B1 (ja)
JP (1) JP6032354B2 (ja)
KR (1) KR101786284B1 (ja)
CN (1) CN105164290B (ja)
MY (1) MY178493A (ja)
WO (1) WO2014181385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153140A (ja) * 2015-02-13 2016-08-25 Jfeスチール株式会社 クラッド鋼の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201807433RA (en) * 2016-03-31 2018-09-27 Nippon Steel & Sumitomo Metal Corp Ni-Fe-Cr ALLOY
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US10640854B2 (en) * 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
DE102016115026B4 (de) 2016-08-12 2018-03-08 Vdm Metals International Gmbh Verfahren zur Herstellung von walzplattierten Blechen sowie walzplattierte Bleche
RU2017134765A (ru) * 2016-11-29 2019-04-05 Зульцер Мэнэджмент Аг Литейный сплав на основе никеля, отливка и способ изготовления лопастного колеса ротационной машины
WO2018181381A1 (ja) * 2017-03-29 2018-10-04 Jfeスチール株式会社 クラッド鋼板およびその製造方法
JP6723210B2 (ja) * 2017-09-14 2020-07-15 日本冶金工業株式会社 ニッケル基合金
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213633A (ja) * 1987-02-28 1988-09-06 Sumitomo Metal Ind Ltd ラインパイプ用高耐食クラツド鋼管
JPH02296088A (ja) * 1989-05-08 1990-12-06 Kubota Corp 高温・高圧に耐える機械的性質とすぐれた耐食性を備えた複合管
JPH05154672A (ja) 1991-11-29 1993-06-22 Sumitomo Metal Ind Ltd 高強度および高靱性クラッド鋼板の製造法
JPH05214499A (ja) 1992-02-05 1993-08-24 Nippon Steel Corp 耐サワー性と低温靱性に優れた高Ni合金クラッド鋼板の製造方法
JPH06142950A (ja) * 1992-11-12 1994-05-24 Japan Steel Works Ltd:The 高耐食性Ni基合金クラッド鋼板の製造方法
JPH0790440A (ja) * 1993-09-20 1995-04-04 Sumitomo Special Metals Co Ltd 溶融炭酸塩型燃料電池用金属材料
JPH0825041B2 (ja) 1992-03-23 1996-03-13 新日本製鐵株式会社 クラッド鋼管の製造方法
JPH0825040B2 (ja) 1992-03-06 1996-03-13 新日本製鐵株式会社 優れた低温靭性を有するクラッド鋼板の製造方法
JP2004068134A (ja) * 2002-08-09 2004-03-04 Mitsubishi Materials Corp 無機酸含有超臨界水環境下での耐応力腐食割れ性に優れたNi基合金
JP2006274386A (ja) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd Ni基合金の製造方法
JP2010270400A (ja) * 2010-07-21 2010-12-02 Sumitomo Metal Ind Ltd 原子力プラント用蒸気発生器管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513552C2 (sv) * 1994-05-18 2000-10-02 Sandvik Ab Användning av en Cr-Ni-Mo-legering med god bearbetbarhet och strukturstabilitet som komponent i avfallsförbränningsanläggningar
SE509043C2 (sv) * 1996-09-05 1998-11-30 Sandvik Ab Användning av ett kompoundrör med ett yttre skikt av en Ni- legering för överhettare och avfallspannor
KR0180475B1 (ko) * 1996-11-13 1999-02-18 정주용 닉켈합금 클래드판 및 그 제조방법
CN100338247C (zh) * 2002-01-08 2007-09-19 三菱麻铁里亚尔株式会社 对含无机酸超临界水环境的耐腐蚀性优异的Ni基合金
JP6079165B2 (ja) * 2012-11-22 2017-02-15 Jfeスチール株式会社 溶接部靭性に優れた高靭性高耐食性Ni合金クラッド鋼板及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213633A (ja) * 1987-02-28 1988-09-06 Sumitomo Metal Ind Ltd ラインパイプ用高耐食クラツド鋼管
JPH02296088A (ja) * 1989-05-08 1990-12-06 Kubota Corp 高温・高圧に耐える機械的性質とすぐれた耐食性を備えた複合管
JPH05154672A (ja) 1991-11-29 1993-06-22 Sumitomo Metal Ind Ltd 高強度および高靱性クラッド鋼板の製造法
JPH05214499A (ja) 1992-02-05 1993-08-24 Nippon Steel Corp 耐サワー性と低温靱性に優れた高Ni合金クラッド鋼板の製造方法
JPH0825040B2 (ja) 1992-03-06 1996-03-13 新日本製鐵株式会社 優れた低温靭性を有するクラッド鋼板の製造方法
JPH0825041B2 (ja) 1992-03-23 1996-03-13 新日本製鐵株式会社 クラッド鋼管の製造方法
JPH06142950A (ja) * 1992-11-12 1994-05-24 Japan Steel Works Ltd:The 高耐食性Ni基合金クラッド鋼板の製造方法
JPH0790440A (ja) * 1993-09-20 1995-04-04 Sumitomo Special Metals Co Ltd 溶融炭酸塩型燃料電池用金属材料
JP2004068134A (ja) * 2002-08-09 2004-03-04 Mitsubishi Materials Corp 無機酸含有超臨界水環境下での耐応力腐食割れ性に優れたNi基合金
JP2006274386A (ja) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd Ni基合金の製造方法
JP2010270400A (ja) * 2010-07-21 2010-12-02 Sumitomo Metal Ind Ltd 原子力プラント用蒸気発生器管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977478A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153140A (ja) * 2015-02-13 2016-08-25 Jfeスチール株式会社 クラッド鋼の製造方法

Also Published As

Publication number Publication date
KR20150133808A (ko) 2015-11-30
JP6032354B2 (ja) 2016-11-24
EP2977478B1 (en) 2019-03-06
KR101786284B1 (ko) 2017-10-17
CN105164290A (zh) 2015-12-16
EP2977478A4 (en) 2016-05-25
MY178493A (en) 2020-10-14
CN105164290B (zh) 2018-07-31
EP2977478A1 (en) 2016-01-27
JPWO2014181385A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6032354B2 (ja) 耐粒界腐食特性に優れたNi合金クラッド鋼およびその製造方法
KR101967678B1 (ko) Ni 합금 클래드 강판 및 그의 제조 방법
JP6210114B2 (ja) オーステナイト系ステンレスクラッド鋼板およびその製造方法
CN110225989B (zh) 双相不锈钢包层钢及其制造方法
JP5418662B2 (ja) 溶接部靭性に優れた高靭性クラッド鋼板の母材及びそのクラッド鋼板の製造方法
TW201825694A (zh) 高錳鋼板及其製造方法
JP5527455B2 (ja) 高靭性クラッド鋼板の母材及びそのクラッド鋼板の製造方法
JP6079165B2 (ja) 溶接部靭性に優れた高靭性高耐食性Ni合金クラッド鋼板及びその製造方法
KR102389712B1 (ko) 2상 스테인리스 클래드 강판 및 그의 제조 방법
JP5454723B2 (ja) 耐海水腐食性に優れたステンレスクラッド鋼板の合せ材及びそれを用いたステンレスクラッド鋼板並びにその製造方法
JP6024643B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板の製造方法
JP6079611B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法
TW201823484A (zh) 高錳鋼板及其製造方法
JPWO2019189707A1 (ja) 二相ステンレスクラッド鋼板及びその製造方法
JP6760476B2 (ja) 鋼板およびその製造方法
JP5928175B2 (ja) 耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法
JP6172077B2 (ja) 耐粒界腐食特性に優れたNi合金クラッド鋼の製造方法
JP2008121048A (ja) 耐食性および耐摩耗性に優れたNi基合金およびそのNi基合金からなるコンダクターロール
WO2020036090A1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076214.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013884148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157030334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE