WO2014178226A1 - 車両用内燃機関の制御装置および制御方法 - Google Patents

車両用内燃機関の制御装置および制御方法 Download PDF

Info

Publication number
WO2014178226A1
WO2014178226A1 PCT/JP2014/055728 JP2014055728W WO2014178226A1 WO 2014178226 A1 WO2014178226 A1 WO 2014178226A1 JP 2014055728 W JP2014055728 W JP 2014055728W WO 2014178226 A1 WO2014178226 A1 WO 2014178226A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
internal combustion
combustion engine
shift position
speed
Prior art date
Application number
PCT/JP2014/055728
Other languages
English (en)
French (fr)
Inventor
高橋 英二
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015514770A priority Critical patent/JP5930122B2/ja
Publication of WO2014178226A1 publication Critical patent/WO2014178226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine for a vehicle including a transmission having a plurality of shift positions, and in particular, to control a compression ratio of an internal combustion engine including a variable compression ratio mechanism that changes a mechanical compression ratio.
  • a control device and a control method for an internal combustion engine for a vehicle including a transmission having a plurality of shift positions and in particular, to control a compression ratio of an internal combustion engine including a variable compression ratio mechanism that changes a mechanical compression ratio.
  • variable compression ratio mechanisms that change the mechanical compression ratio of an internal combustion engine have been known.
  • the applicants have proposed a number of variable compression ratio mechanisms in which the piston top dead center position is displaced up and down by changing the link geometry of a multi-link piston crank mechanism.
  • a variable compression ratio mechanism is also known in which the mechanical compression ratio is similarly changed by displacing the cylinder position up and down with respect to the center position of the crankshaft.
  • Patent Document 1 discloses that the compression ratio of the variable compression ratio mechanism is controlled with reference to a compression ratio map in which an optimal target compression ratio is assigned in advance using the load and rotation speed (rotation speed) of the internal combustion engine as parameters.
  • the mechanical compression ratio is continuously variably controlled in the range of 10 to 16.
  • Patent Document 2 as a control of an internal combustion engine for a vehicle having a variable compression ratio mechanism, the compression ratio is changed in a direction to reduce a shock caused by the inertia torque while the transmission is being shifted. Is disclosed.
  • Patent Document 1 does not specifically disclose the relationship between the shift position of the transmission and the compression ratio control.
  • the driver When the compression ratio changes greatly in response to the accelerator pedal operation (in other words, the required load), the drivability deteriorates.
  • the actual compression ratio changes with a delay with respect to the required load that changes in small increments due to the inevitable response delay. There is a concern that torque will change and drivability will deteriorate.
  • Patent Document 2 does not solve the problem of drivability based on the shift position of the transmission.
  • the present invention relates to a control device for an internal combustion engine for a vehicle having a variable compression ratio mechanism for changing a mechanical compression ratio, comprising a transmission having a plurality of shift positions, and a compression set based on engine operating conditions The ratio control characteristic is switched according to the shift position of the transmission.
  • the compression ratio of the variable compression ratio mechanism is set based on the engine operating conditions such as the engine load and the rotational speed (the number of revolutions). Or a high-speed shift position, or a reverse position (reverse drive position).
  • the shift ratio of the compression ratio is large at the shift position where the reduction ratio is large, and the compression ratio is fixed when the shift position is the reverse position. Become.
  • the compression ratio control characteristic is switched according to the shift position of the transmission, it is possible to suppress a phenomenon in which a torque change occurs at an unintended timing of the driver, and to improve drivability.
  • FIG. 1 is a configuration explanatory view showing a system configuration of a vehicle internal combustion engine 1 provided with a control device according to the present invention.
  • the internal combustion engine 1 includes a known variable compression ratio mechanism (not shown) in which the piston top dead center position is displaced up and down by changing the link geometry of the multi-link type piston crank mechanism. That is, in order to change the mechanical compression ratio, a variable compression ratio actuator 2 made of, for example, an electric motor is provided.
  • a transmission 4 having a plurality of shift positions including a reverse position is connected to the internal combustion engine 1, and an output shaft 4a of the transmission 4 is connected to driving wheels via a differential gear (not shown). .
  • the transmission 4 is a manual transmission of, for example, five forward speeds and one reverse speed, in which the shift position is selected by the driver's operation of the shift lever 6, but the gear position can be selected by manual operation.
  • An automatic transmission may be used.
  • the shift position selected by the shift lever 6 is detected by a shift position sensor 5 provided in the transmission 4.
  • an accelerator pedal sensor 8 for detecting the opening degree of the accelerator pedal (required load tT) operated by the driver, and a rotational speed (rotational speed) Ne of the internal combustion engine 1 are detected.
  • a rotation speed sensor 3 is provided.
  • an air flow meter that measures the amount of intake air in the intake passage
  • a water temperature sensor that detects the cooling water temperature of the internal combustion engine 1
  • an exhaust purification catalyst upstream side of the exhaust passage Various sensors such as an air-fuel ratio sensor for measuring the exhaust air-fuel ratio are provided. The detection signals of these sensors are input to the engine control unit 7, and the variable compression ratio actuator 2 that controls the mechanical compression ratio is driven so as to achieve a target compression ratio based on these detection signals. .
  • FIG. 2 shows a control block diagram of compression ratio control realized by the engine control unit 7.
  • the target compression ratio calculation unit 11 includes a plurality of compression ratio maps in advance, and an accelerator pedal is referred to while referring to the compression ratio map selected according to the shift position PS detected by the shift position sensor 5.
  • a target value of the mechanical compression ratio that is, a target compression ratio tCR is calculated.
  • the variable compression ratio actuator 2 is driven along this.
  • FIG. 3 is a flowchart showing the flow of compression ratio control processing in the engine control unit 7.
  • step 1 the required load tT, the engine speed Ne, and the shift position PS are read.
  • step 2 it is determined whether or not the shift position PS is the reverse position (R). In the case of the reverse position, the process proceeds to Step 3 and the target compression ratio tCR is set to a predetermined fixed value for reverse travel (for example, the compression ratio “10”).
  • step 4 determines whether the shift position PS is the first speed position or the second speed position on the low speed side. If the shift position PS is the 1st speed position or the 2nd speed position, the process proceeds to Step 5; otherwise, the process proceeds to Step 6 if the 3rd speed position to the 5th speed position.
  • step 5 the target compression ratio tCR corresponding to the required load tT and the engine speed Ne at that time is obtained by referring to a predetermined first compression ratio map for the first and second speeds. Further, in step 6, a target compression ratio tCR corresponding to the required load tT and the engine speed Ne at that time is obtained by referring to a predetermined second compression ratio map for the third to fifth speeds.
  • FIG. 4A shows the characteristics of the first compression ratio map.
  • (B) show the characteristics of the second compression ratio map.
  • the target compression ratio changes continuously with respect to the load change, for the convenience of explanation, it is shown in a form divided into regions having typical compression ratio values.
  • each compression ratio map tends to have a high compression ratio on the low load side and a lower compression ratio as the load increases, and the high speed side selected at the 3rd to 5th positions.
  • the second compression ratio map for the shift position the compression ratio changes from “8” near the maximum load to “14” in the low load region.
  • the maximum compression ratio in the low load region is “12”, and the maximum load The characteristic changes from the compression ratio “8” in the vicinity to the compression ratio “12” in the low load region.
  • the change range of the compression ratio is “8 to 14”, whereas for the 1st and 2nd positions where the reduction ratio is large.
  • the change width of the compression ratio is limited to a relatively small value of “8 to 12”.
  • the region of the compression ratio “12” is expanded in the first compression ratio map as compared to the second compression ratio map, and the region in which the compression ratio is “14” at the 3rd to 5th speed positions. Is limited to a compression ratio of “12”. It should be noted that the present invention is not necessarily limited to such a mode, and it is possible to set different control characteristics including a region on the low compression ratio side such as the compression ratio “8” and the compression ratio “10”.
  • the drivability at the 1st and 2nd speed positions is improved by restricting the width of change in the compression ratio at the 1st and 2nd speed positions with a large reduction ratio as described above.
  • the second compression ratio map is used for both the first speed and the second speed when the vehicle is traveling while finely adjusting the vehicle speed at a low vehicle speed, it is between the compression ratio “14” and the compression ratio “12”.
  • the compression ratio is frequently changed and the drivability deteriorates, according to the first compression ratio map in which the region of the compression ratio “12” is expanded to the low load region, such an unnecessary compression ratio change is caused. Does not occur.
  • the compression ratio is fixed to a constant value (for example, the compression ratio “10”), so that no unintended torque change occurs due to the change of the compression ratio.
  • FIG. 5 is a timing chart showing, for example, a change in compression ratio when the vehicle travels at the second speed and then shifts to the third speed.
  • the required load tT in other words, the amount of depression of the accelerator pedal
  • the target compression ratio tCR is set based on the first compression ratio map shown in FIG. 4A. As a result, the compression ratio is “12”. Nearly constant in the vicinity.
  • the change in the actual compression ratio when the same second compression ratio map as the third speed is used is indicated by a dotted line.
  • the operation is performed between, for example, the vicinity of the compression ratio “12” and the vicinity of the compression ratio “14” in the second compression ratio map corresponding to the required load tT that changes in small increments. Since the conditions change repeatedly, the compression ratio changes repeatedly relatively large.
  • the actual compression ratio responds with a delay to the change in the required load tT.
  • FIG. 6 shows a timing chart when the vehicle of the above embodiment travels backward with the transmission 4 in the reverse position.
  • the vehicle travels backward at an extremely low vehicle speed, such as when parked, and the waveform of the mountain shape shown as the required load corresponds to an operation in which the driver depresses the accelerator pedal lightly and immediately releases it.
  • the operation is performed with the compression ratio fixed at a constant value (for example, the compression ratio “10”).
  • the comparative example indicated by the dotted line shows the change in the actual compression ratio when the same second compression ratio map as in the case of the third speed is used even in the reverse position.
  • the compression ratio changes according to the required load tT (accelerator pedal depression amount), and the compression ratio changes in a form including an inevitable response delay.
  • the time t1 is the timing when the driver has finished returning the accelerator pedal, but the actual compression ratio increases with a delay from the time t1 to the time t2, and as a result, a torque increase unintended by the driver occurs. . Therefore, drivability is deteriorated.
  • variable compression ratio mechanism using a multi-link type piston crank mechanism
  • present invention is not limited to this type of variable compression ratio mechanism, but various types of variable compression ratio mechanisms.
  • the present invention can be applied to an internal combustion engine having a mechanism.
  • first compression ratio map for the low speed shift position and the second compression ratio map for the high speed shift position are provided, but a compression ratio map is provided for each shift position.
  • the reverse position may be variably controlled by using a compression ratio map in which the compression ratio change width is limited to the minimum without making the compression ratio completely fixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 車両用の内燃機関(1)は、手動変速機(4)を具備するとともに、可変圧縮比機構を有し、その目標圧縮比tCRは、要求負荷tTと機関回転数Neとをパラメータとして予め目標圧縮比を割り付けた圧縮比マップを参照して求められる。圧縮比マップとして、変速機のシフト位置が1速,2速のときに用いられる第1の圧縮比マップ(A)と、3速~5速用の第2の圧縮比マップ(B)と、を有し、第1の圧縮比マップは、第2の圧縮比マップに比べて、圧縮比変化幅が小さい。また変速機のリバース位置では、一定の圧縮比に固定される。1速,2速やリバース位置での走行中における圧縮比変化による意図しないトルク変化が抑制される。

Description

車両用内燃機関の制御装置および制御方法
 この発明は、複数のシフト位置を有する変速機を備えた車両用内燃機関の制御装置および制御方法に関し、特に、機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関の圧縮比の制御に関する。
 内燃機関の機械的圧縮比を変更する可変圧縮比機構は、従来から種々の形式のものが知られている。例えば、複リンク式ピストンクランク機構のリンクジオメトリの変更によってピストン上死点位置を上下に変位させるようにした可変圧縮比機構が本出願人らによって多数提案されている。また、クランクシャフトの中心位置に対しシリンダの位置を上下に変位させることで同様に機械的圧縮比を変化させるようにした可変圧縮比機構も公知である。
 このような可変圧縮比機構においては、基本的には、ノッキング等の異常燃焼を生じない範囲でできるだけ高い圧縮比とすることが望ましく、従って、目標圧縮比の一般的な傾向としては、負荷が低いほど高い圧縮比となる。例えば特許文献1には、内燃機関の負荷と回転速度(回転数)をパラメータとして予め最適な目標圧縮比を割り付けた圧縮比マップを参照して可変圧縮比機構の圧縮比を制御することが開示されており、ここでは、機械的圧縮比を10~16の範囲で連続的に可変制御することが例示されている。
 また特許文献2には、可変圧縮比機構を備えた車両用内燃機関の制御として、変速機の変速が実行されている最中に、イナーシャトルクに起因するショックを軽減する方向に圧縮比を変更することが開示されている。
 特許文献1には、変速機のシフト位置と圧縮比制御との関係については特に開示がないが、例えば減速比が大きい1速などで車速を微調整しながら走行するような場合に、運転者のアクセルペダル操作(換言すれば要求負荷)に応答して圧縮比が大きく変化すると、運転性の悪化を生じる。特に、機械的な機構を用いた可変圧縮比機構では、その不可避的な応答遅れにより、小刻みに変化する要求負荷に対し実際の圧縮比が遅れて変化するため、運転者の意図せぬタイミングでトルク変化が生じ、運転性が悪化する懸念がある。
 なお、特許文献2は、このような変速機のシフト位置に基づく運転性の問題を何ら解決するものではない。
特開2004-92639号公報 特開2011-144784号公報
 この発明は、機械的圧縮比を変更する可変圧縮比機構を備えた車両用内燃機関の制御装置であって、複数のシフト位置を有する変速機を備え、機関運転条件に基づいて設定される圧縮比の制御特性を、上記変速機のシフト位置に応じて切り換える。
 すなわち、本発明では、機関の負荷および回転速度(回転数)といった機関運転条件に基づいて可変圧縮比機構の圧縮比が設定されるが、この圧縮比の制御特性が、例えば低速側のシフト位置であるか高速側のシフト位置であるか、あるいはリバース位置(後進位置)であるか、といったシフト位置に応じて異なる特性となる。
 一つの好ましい態様では、減速比が大きいシフト位置では、圧縮比の変化幅が相対的に小さく制限されたものとなり、また、シフト位置がリバース位置であるときに、圧縮比が固定された値となる。
 このようにシフト位置に応じた圧縮比の制御特性とすることで、運転性の悪化が抑制される。
 この発明によれば、変速機のシフト位置に応じて圧縮比の制御特性が切り換えられるので、運転者の意図せぬタイミングでトルク変化が生じるような現象を抑制でき、運転性の改善が図れる。
この発明の一実施例を示す構成説明図。 この実施例の圧縮比制御についてのブロック図。 この実施例の圧縮比制御を示すフローチャート。 (A)1速および2速用の第1の圧縮比マップと(B)3速~5速用の第2の圧縮比マップの特性を示す説明図。 この実施例の作用を説明するためのタイミングチャートであり、2速および3速で走行したときのタイミングチャート。 同じくリバース位置で後進走行したときのタイミングチャート。
 図1は、この発明に係る制御装置を備えた車両用内燃機関1のシステム構成を示す構成説明図である。
 内燃機関1は、複リンク式ピストンクランク機構のリンクジオメトリの変更によってピストン上死点位置を上下に変位させるようにした公知の可変圧縮比機構(図示せず)を備えており、リンクジオメトリの変更つまり機械的圧縮比の変更のために、例えば電動モータなどからなる可変圧縮比アクチュエータ2を備えている。内燃機関1には、リバース位置を含めて複数のシフト位置を有する変速機4が接続されており、この変速機4の出力軸4aが図外のデファレンシャルギアを介して駆動輪に接続されている。
 上記変速機4は、本実施例では、運転者のシフトレバー6の操作によってシフト位置が選択される例えば前進5段後進1段の手動変速機であるが、手動操作によって変速段の選択が可能な自動変速機であってもよい。上記シフトレバー6によって選択されたシフト位置は、変速機4に設けられたシフトポジションセンサ5によって検出される。
 また、内燃機関1の運転条件として、運転者によって操作されるアクセルペダルの開度(要求負荷tT)を検出するアクセルペダルセンサ8、および、内燃機関1の回転数(回転速度)Neを検出する回転数センサ3、を備えている。なお、本発明とは特に関係しないため図示しないが、このほか、吸気通路において吸入空気量を計測するエアフローメータ、内燃機関1の冷却水温を検出する水温センサ、排気通路の排気浄化触媒上流側において排気空燃比を計測する空燃比センサ、などの種々のセンサ類を備えている。これらのセンサ類の検出信号は、エンジンコントロールユニット7に入力され、機械的圧縮比を制御する可変圧縮比アクチュエータ2は、これらの検出信号に基づいて目標とする圧縮比となるように駆動される。
 図2は、上記エンジンコントロールユニット7によって実現される圧縮比制御の制御ブロック図を示している。目標圧縮比演算部11は、後述するように、予め複数の圧縮比マップを備えており、シフトポジションセンサ5が検出したシフトポジションPSに応じて選択された圧縮比マップを参照しつつ、アクセルペダルセンサ8により検出される要求負荷tTと、回転数センサ3により検出される機関回転数Neと、に基づいて、機械的圧縮比の目標値つまり目標圧縮比tCRを算出する。そして、これに沿って可変圧縮比アクチュエータ2を駆動する。
 図3は、上記エンジンコントロールユニット7における圧縮比制御の処理の流れを示すフローチャートである。ステップ1では、要求負荷tT、機関回転数Ne、シフトポジションPS、をそれぞれ読み込む。
 ステップ2では、シフトポジションPSがリバース位置(R)であるか否かを判定する。リバース位置の場合はステップ3へ進み、目標圧縮比tCRを後進走行用の所定の固定値(例えば圧縮比「10」)とする。
 リバース位置でなければ、ステップ4へ進み、さらにシフトポジションPSが、低速側の1速位置または2速位置であるか否かを判定する。シフトポジションPSが1速位置または2速位置である場合はステップ5へ進み、それ以外つまり3速位置~5速位置であればステップ6へ進む。
 ステップ5では、1速および2速用の所定の第1の圧縮比マップを参照して、そのときの要求負荷tTと機関回転数Neとに対応する目標圧縮比tCRを求める。またステップ6では、3速~5速用の所定の第2の圧縮比マップを参照して、そのときの要求負荷tTと機関回転数Neとに対応する目標圧縮比tCRを求める。
 これらの圧縮比マップは、要求負荷と機関回転数とをパラメータとして予め最適な機械的圧縮比の値を割り付けたものであり、図4の(A)は第1の圧縮比マップの特性を示し、(B)は第2の圧縮比マップの特性を示している。なお、例えば負荷変化に対し目標圧縮比は連続的に変化するが、説明の都合上、図には代表的な圧縮比の値を有する領域に区分した形で示してある。図示するように、いずれの圧縮比マップも低負荷側では高い圧縮比でかつ高負荷となるほど低い圧縮比となる傾向を有しており、3速~5速位置のときに選択される高速側シフト位置用の第2の圧縮比マップでは、最大負荷付近の圧縮比「8」から低負荷域の圧縮比「14」まで変化する。これに対し、1速位置および2速位置のときに選択される低速側シフト位置用の第1の圧縮比マップでは、低負荷域での最大圧縮比が「12」となっており、最大負荷付近の圧縮比「8」から低負荷域の圧縮比「12」まで変化する特性となっている。つまり、3速~5速位置用の第2の圧縮比マップでは、圧縮比の変化幅が「8~14」であるのに対し、減速比が大きいシフト位置である1速,2速位置用の第1の圧縮比マップでは、圧縮比の変化幅が「8~12」と、相対的に小さく制限されている。特に、図示例では、第2の圧縮比マップに比較して第1の圧縮比マップでは圧縮比「12」の領域が拡がっており、3速~5速位置では圧縮比「14」となる領域が圧縮比「12」に制限された形となっている。なお、本発明はこのような態様に必ずしも限定されず、圧縮比「8」や圧縮比「10」等の低圧縮比側の領域をも含めて異なる制御特性に設定することが可能である。
 上記のように減速比が大きい1速,2速位置での圧縮比変化幅を相対的に小さく制限することで、1速,2速位置での運転性が向上する。例えば低車速の状態で車速を微調整しながら走行する際に、仮に1速,2速でも第2の圧縮比マップを用いるとすると、圧縮比「14」と圧縮比「12」との間で頻繁に圧縮比の変更がなされ、運転性の悪化が生じるが、圧縮比「12」の領域を低負荷域に拡大した第1の圧縮比マップによれば、このような無用な圧縮比変化が生じない。また、いわゆる車庫入れなどで多用されるリバース位置では、圧縮比が一定値(例えば圧縮比「10」)に固定されるので、圧縮比の変更による意図しないトルク変化が一切生じない。
 図5は、一例として、2速で走行し、かつその後3速に変速して走行した場合の圧縮比変化等を示したタイミングチャートである。
 図の時刻t0から時刻t1の間は、変速機4のシフト位置が2速位置であり、かつ、低車速域で運転者が車速を微調整しながら緩やかに加速している状態に相当する。この間、要求負荷tT(換言すればアクセルペダルの踏込量)は、車速調整のために比較的負荷の低い領域で上下の変化を繰り返している。シフト位置が2速であるため、本実施例では、図4(A)に示す第1の圧縮比マップに基づいて目標圧縮比tCRが設定されることとなり、その結果、圧縮比は「12」付近にほぼ一定に維持される。
 時刻t1から時刻t2の間は、運転者がアクセルペダルを踏み込んだ加速状態であり、高い要求負荷tTに対応して圧縮比が低くなる。時刻t2において変速が行われてシフト位置が3速となり、変速終了後は、比較的小さなアクセルペダル踏込量でもって車速をほぼ一定に保った定常走行状態となる。この段階では、変速機4の3速位置に対応して図4(B)に示す第2の圧縮比マップに基づいて目標圧縮比tCRが設定されるため、低い要求負荷tTに対応して、圧縮比は「14」となる。
 ここで、比較例として、シフト位置が2速のときに3速の場合と同じ第2の圧縮比マップを使った場合の実際の圧縮比の変化を点線で示す。この場合、時刻t0から時刻t1の間において、小刻みに変化する要求負荷tTに対応して、例えば第2の圧縮比マップの圧縮比「12」付近と圧縮比「14」付近との間で運転条件が繰り返し変化することから、圧縮比が比較的大きく繰り返し変化する。しかも、機械的な機構を含む可変圧縮比機構の不可避的な応答遅れによって、要求負荷tTの変化に対して実際の圧縮比が遅れて応答するため、例えば、比較的高い負荷のときに圧縮比が高いままとなって、ノッキング回避のための強制的な点火時期の遅角が実行され、結果として、運転者が意図したものよりも内燃機関1の実際のトルクが小さくなってしまう状況が生じる。あるいは、逆に、要求負荷が低くなった後に遅れて圧縮比が高くなり、運転者の意図しないトルク上昇が生じたりする。特に、2速のような減速比が大きいシフト位置では、内燃機関1の圧縮比変化に伴うトルク変化が車両の挙動ないし乗り心地により大きな影響を与える。
 上記実施例では、上記比較例のような低速側シフト位置における運転性の悪化を回避ないし抑制することができる。
 図6は、上記実施例の車両が変速機4をリバース位置とした状態で後進走行した場合のタイミングチャートを示している。特に、駐車時等の極低車速での後進走行を想定しており、要求負荷として示すグラフの山形の波形は、運転者がアクセルペダルを軽く踏み込み、かつ直ちに解放する動作に対応している。本実施例では、シフト位置がリバース位置であれば、圧縮比が一定値(例えば圧縮比「10」)に固定されて運転される。
 これに対して、点線で示す比較例は、リバース位置においても3速の場合と同じ第2の圧縮比マップを用いた場合の実際の圧縮比の変化を示している。この場合は、要求負荷tT(アクセルペダル踏込量)に応じて圧縮比が変化し、しかも、不可避的な応答遅れを含んだ形で圧縮比が変化する。例えば、時刻t1は、運転者がアクセルペダルを戻し終わったタイミングであるが、実際の圧縮比は時刻t1から時刻t2にかけて遅れて上昇し、その結果、運転者の意図しないトルク上昇が生じてしまう。従って、運転性が悪化する。
 以上、この発明の一実施例を説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、上記実施例では、複リンク式ピストンクランク機構を利用した可変圧縮比機構を用いているが、本発明は、このような形式の可変圧縮比機構のみならず、種々の形式の可変圧縮比機構を具備した内燃機関に適用が可能である。また、上記実施例では、低速側シフト位置用の第1の圧縮比マップと高速側シフト位置用の第2の圧縮比マップのみを具備しているが、各変速位置毎に圧縮比マップを設けることもできる。さらに、リバース位置について、圧縮比を完全な固定とせずに、圧縮比変化幅を最も小さく制限した圧縮比マップを用いて可変制御するようにしてもよい。

Claims (6)

  1.  機械的圧縮比を変更する可変圧縮比機構を備えた車両用内燃機関の制御装置であって、
     複数のシフト位置を有する変速機を備え、
     機関運転条件に基づいて設定される圧縮比の制御特性を、上記変速機のシフト位置に応じて切り換える、車両用内燃機関の制御装置。
  2.  減速比が大きいシフト位置では、圧縮比の変化幅が相対的に小さく制限されたものとなる、請求項1に記載の車両用内燃機関の制御装置。
  3.  上記シフト位置がリバース位置であるときに、他のシフト位置に比較して圧縮比の変化幅が最も小さく制限されたものとなる、請求項1または2に記載の車両用内燃機関の制御装置。
  4.  上記シフト位置がリバース位置であるときに、圧縮比が固定される、請求項3に記載の車両用内燃機関の制御装置。
  5.  機関の負荷および回転速度をパラメータとして目標圧縮比を割り付けた圧縮比マップとして、少なくとも、低速側シフト位置用の第1の圧縮比マップと高速側シフト位置用の第2の圧縮比マップとを備え、かつ、リバース位置では圧縮比が固定される、請求項1に記載の車両用内燃機関の制御装置。
  6.  機械的圧縮比を変更する可変圧縮比機構を備えるとともに、複数のシフト位置を有する変速機を備えた車両用内燃機関において、
     上記変速機のシフト位置を判別し、機関運転条件に対し割り付けられる圧縮比の制御特性を、上記シフト位置に応じて切り換える、車両用内燃機関の制御方法。
PCT/JP2014/055728 2013-04-30 2014-03-06 車両用内燃機関の制御装置および制御方法 WO2014178226A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015514770A JP5930122B2 (ja) 2013-04-30 2014-03-06 車両用内燃機関の制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-094919 2013-04-30
JP2013094919 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178226A1 true WO2014178226A1 (ja) 2014-11-06

Family

ID=51843362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055728 WO2014178226A1 (ja) 2013-04-30 2014-03-06 車両用内燃機関の制御装置および制御方法

Country Status (2)

Country Link
JP (1) JP5930122B2 (ja)
WO (1) WO2014178226A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237043A (ja) * 1986-04-07 1987-10-17 Toyota Motor Corp 内燃機関の圧縮比可変機構を備えた自動変速機付車両
JPH0364632A (ja) * 1989-08-02 1991-03-20 Mazda Motor Corp エンジンの可変圧縮比制御装置
JPH0392552A (ja) * 1989-09-05 1991-04-17 Mazda Motor Corp エンジンの可変圧縮比制御装置
JPH09203367A (ja) * 1996-01-26 1997-08-05 Toyota Motor Corp 内燃機関の点火時期制御装置
JP2003307257A (ja) * 2002-04-16 2003-10-31 Fuji Heavy Ind Ltd 車両用自動変速機
JP2005147104A (ja) * 2003-11-20 2005-06-09 Nissan Motor Co Ltd 可変圧縮比内燃機関の制御装置
JP2012102713A (ja) * 2010-11-15 2012-05-31 Nissan Motor Co Ltd 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204140B2 (ja) * 1996-07-24 2001-09-04 トヨタ自動車株式会社 車両の出力制御装置
JP2000248955A (ja) * 1999-02-26 2000-09-12 Fuji Heavy Ind Ltd 過給機付きエンジンの制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237043A (ja) * 1986-04-07 1987-10-17 Toyota Motor Corp 内燃機関の圧縮比可変機構を備えた自動変速機付車両
JPH0364632A (ja) * 1989-08-02 1991-03-20 Mazda Motor Corp エンジンの可変圧縮比制御装置
JPH0392552A (ja) * 1989-09-05 1991-04-17 Mazda Motor Corp エンジンの可変圧縮比制御装置
JPH09203367A (ja) * 1996-01-26 1997-08-05 Toyota Motor Corp 内燃機関の点火時期制御装置
JP2003307257A (ja) * 2002-04-16 2003-10-31 Fuji Heavy Ind Ltd 車両用自動変速機
JP2005147104A (ja) * 2003-11-20 2005-06-09 Nissan Motor Co Ltd 可変圧縮比内燃機関の制御装置
JP2012102713A (ja) * 2010-11-15 2012-05-31 Nissan Motor Co Ltd 内燃機関の制御装置

Also Published As

Publication number Publication date
JP5930122B2 (ja) 2016-06-08
JPWO2014178226A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5904797B2 (ja) 車両用自動変速機の制御装置
JP4385955B2 (ja) 内燃機関の吸入空気量制御装置
JP2008239130A (ja) 車両の制御装置
JP2011207240A (ja) 車両制御システム
US8965647B2 (en) Control apparatus for continuously variable transmission
JP6669058B2 (ja) 車両用駆動装置
JP6090477B2 (ja) 車両用内燃機関の制御装置および制御方法
JP4470954B2 (ja) 車両の駆動力制御装置
JP5930122B2 (ja) 車両用内燃機関の制御装置および制御方法
JP2005240576A (ja) 車両の制御装置
JP6388078B2 (ja) 車両用内燃機関の制御装置
JP2010112502A (ja) 車両用変速制御装置
JP5974606B2 (ja) 変速制御装置
JP2011144784A (ja) 車両の制御装置
JP5679186B2 (ja) 制御装置
JP5322707B2 (ja) 車両の動力伝達制御装置
JP3358580B2 (ja) 車両の制御装置
JP2013241878A (ja) 車両駆動システムの制御装置
JP6354739B2 (ja) 遠心振子ダンパ付きパワートレインの制御装置
JP2010196773A (ja) 車両の制御装置
JP2013053726A (ja) 車両の動力伝達制御装置
JP4591400B2 (ja) エンジンのアイドル状態判定装置
JP5669596B2 (ja) 制御装置
JP2016223547A (ja) 車両の変速指示装置
JP2012153190A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791170

Country of ref document: EP

Kind code of ref document: A1