WO2014175351A1 - 有機半導体薄膜の製造方法 - Google Patents

有機半導体薄膜の製造方法 Download PDF

Info

Publication number
WO2014175351A1
WO2014175351A1 PCT/JP2014/061472 JP2014061472W WO2014175351A1 WO 2014175351 A1 WO2014175351 A1 WO 2014175351A1 JP 2014061472 W JP2014061472 W JP 2014061472W WO 2014175351 A1 WO2014175351 A1 WO 2014175351A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
thin film
substrate
raw material
semiconductor thin
Prior art date
Application number
PCT/JP2014/061472
Other languages
English (en)
French (fr)
Inventor
竹谷純一
添田淳史
Original Assignee
国立大学法人大阪大学
パイクリスタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, パイクリスタル株式会社 filed Critical 国立大学法人大阪大学
Priority to US14/786,835 priority Critical patent/US10205094B2/en
Priority to KR1020157027745A priority patent/KR102196923B1/ko
Priority to CN201480023139.6A priority patent/CN105144417B/zh
Priority to EP14787747.6A priority patent/EP2991129B1/en
Priority to JP2015513814A priority patent/JP6128665B2/ja
Publication of WO2014175351A1 publication Critical patent/WO2014175351A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/023Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface
    • B05C11/028Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface with a body having a large flat spreading or distributing surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/063Sliding boat system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to a method for producing an organic semiconductor thin film by a solvent evaporation method, and particularly to a production method suitable for producing an organic semiconductor single crystal thin film having a large area and high mobility.
  • the present invention also relates to an organic semiconductor device provided with such an organic semiconductor single crystal thin film.
  • organic semiconductor materials have superior electrical characteristics compared to inorganic semiconductor materials, and application development in various electronic device fields is being promoted.
  • An organic semiconductor device such as an organic TFT (thin film transistor) using an organic semiconductor thin film as a semiconductor channel is easier to process than a device using an inorganic semiconductor, and a simple and inexpensive manufacturing process can be applied. Further, since it can be manufactured near room temperature, it enables semiconductor technology using a plastic substrate and is expected as a post-silicon semiconductor.
  • a method for producing a crystalline organic semiconductor thin film used for an organic TFT various methods such as a vapor deposition method, a molecular beam epitaxial method, a solvent evaporation method, a melt method, and a Langmuir-Blodgett method have been conventionally used. It is being considered.
  • a high-performance organic semiconductor thin film can be obtained while being a simple method.
  • the solvent evaporation process based on coating methods using solutions such as droplet forming, spin coating, and printing is a highly anticipated method from the viewpoint of being simple, inexpensive, and capable of manufacturing near room temperature. is there.
  • the organic semiconductor material solution is applied or dropped onto the substrate surface, and the solvent contained in the solution is dried. Thereby, the solvent evaporates, the solution becomes saturated, crystals are precipitated, and an organic semiconductor thin film is formed.
  • Known techniques such as spin coating and droplet forming can be easily applied to the production of large-area organic semiconductor thin films.
  • the performance of a typical organic FET formed by the coating method shows a considerably high carrier mobility of about 0.1 cm 2 / Vs. However, such conventional mobility values have not been satisfactory. Insufficient mobility is attributed to the presence of grain boundaries and irregularities in molecular orientation hindering charge transport.
  • Patent Document 1 discloses a method for producing an organic semiconductor single crystal film having electrical characteristics desired for an application such as an organic TFT, in particular, high charge mobility, using a solvent evaporation method based on droplet forming. An improved method is disclosed.
  • FIG. 12 is a perspective view showing a basic process
  • FIG. 13 is a sectional view thereof.
  • the substrate 20 and the resin end face contact member 21 are used.
  • a raw material solution containing an organic semiconductor material and a solvent is supplied onto the substrate 20 so as to come into contact with the end face contact member 21 in order to form the droplets 22.
  • the organic semiconductor thin film 23 is formed on the substrate 20 by drying the droplets 22 in this state.
  • the end surface contact member 21 includes a planar contact surface 21 a as a part of an end surface that intersects the surface of the substrate 20.
  • the droplet 22 is supplied so as to come into contact with the contact surface 21a.
  • the end surface contact member 21 is placed on the substrate 20 so that the contact surface 21 a is orthogonal to a predetermined direction A of the substrate 20.
  • the raw material solution is supplied in this state, the raw material solution droplets 22 are held by the contact surface 21a, and a certain force is applied.
  • a drying process is performed to evaporate the solvent in the droplets 22.
  • the raw material solution is sequentially saturated at the portion of the far end edge from the contact surface 21a in the A direction, and crystals of the organic semiconductor material begin to precipitate.
  • the movement of the far end edge of the droplet 22 accompanying the evaporation of the solvent is indicated by alternate long and short dash lines e1 and e2.
  • crystal growth proceeds toward the contact surface 21a along the A direction of the substrate 20, and the organic semiconductor thin film 23 is gradually formed.
  • FIGS. an organic semiconductor thin film array is manufactured as shown in FIGS.
  • a contact member 26 having a configuration in which a plurality of contact protrusions 25 are arranged on the surface of the auxiliary substrate 24 is used.
  • Each of the contact protrusions 25 has a function similar to that of the end surface contact member 21 shown in FIG. That is, the contact surface 25 a is formed by a part of the end surface that intersects the surface of the auxiliary substrate 24 in the contact convex portion 25.
  • a contact member 26 is arranged above the substrate 20 with the contact convex portion 25 facing the substrate 20, and the contact convex portion 25 is placed on the substrate 20.
  • the raw material solution is supplied so as to come into contact with each of the contact surfaces 25 a to form the droplets 22.
  • Each of the droplets 22 of the raw material solution is held by the contact surface 25a.
  • the solvent in the droplets 22 is evaporated by performing a drying process, the crystal of the organic semiconductor material grows in each droplet 22 as the solvent is evaporated, as shown in FIG.
  • An organic semiconductor thin film 23a is formed at each position on the surface of the substrate 20 corresponding to the plurality of contact surfaces 25a, and an organic semiconductor thin film array can be manufactured.
  • the present invention is carried out by a simple process using a solvent evaporation method based on droplet formation, and manufacturing an organic semiconductor thin film capable of producing an organic semiconductor single crystal thin film having a large area and high charge mobility. It aims to provide a method.
  • Another object of the present invention is to provide an organic semiconductor device including such an organic semiconductor single crystal thin film.
  • the organic semiconductor thin film manufacturing method of the present invention supplies a raw material solution in which an organic semiconductor material is dissolved in a solvent onto a substrate, and evaporates the solvent to precipitate crystals of the organic semiconductor material. Is formed on the substrate.
  • the manufacturing method of the present invention uses an end surface molding member provided with a contact surface on one side surface, and the contact surface intersects the surface of the substrate at a certain angle.
  • the end surface forming members are arranged to face each other, the raw material solution is supplied onto the substrate to form droplets of the raw material solution in contact with the contact surface, and the direction is parallel to the surface of the substrate, and The substrate and the end surface forming member are relatively moved in a direction in which the end surface forming member is separated from the droplet, and the variation in the size of the droplet accompanying the relative movement is maintained within a predetermined range.
  • the organic semiconductor thin film is formed on the substrate after the contact surface is moved by evaporating the solvent in the droplet while supplying the raw material solution.
  • the organic semiconductor device of the present invention includes a substrate and an organic semiconductor thin film formed on the surface thereof, and the organic semiconductor thin film has a rectangular planar shape with a side of 1 cm or more in size, It is a single crystal thin film having a thickness of 100 nm or less.
  • the growth of crystals does not end due to evaporation of the solvent from the raw material solution. Accordingly, it is possible to form a desired large area by a continuous process.
  • the droplets Due to the control action on the droplets of the raw material solution through contact with the contact surface, the droplets have an asymmetric shape in the direction perpendicular to the contact surface, and the crystal growth direction is defined due to the asymmetric solvent evaporation.
  • the action works. Thereby, the direction of crystal growth is defined, the regularity of the arrangement of molecules of the organic semiconductor material is improved, and a continuous and uniform single crystal thin film is formed.
  • the organic semiconductor device having the above structure has a large area having a rectangular planar shape with a side of 1 cm or more because the organic semiconductor thin film is a single crystal thin film having a thickness of 100 nm or less.
  • the thickness variation is easily controlled within a range of ⁇ 20%. Thereby, uniform and high mobility can be obtained over the entire region of the organic semiconductor thin film, and an organic semiconductor device having practically excellent characteristics can be obtained.
  • FIG. 1A is a cross-sectional view showing an apparatus used for carrying out a method for manufacturing an organic semiconductor thin film array in one embodiment of the present invention.
  • FIG. 1B is a sectional view showing a state of an initial step of the manufacturing method
  • FIG. 1C is a cross-sectional view showing the state of the process following FIG. 1B of the manufacturing method.
  • FIG. 1D is a cross-sectional view showing a state of the manufacturing method subsequent to FIG. 1C.
  • FIG. 1E is a plan view of the state shown in FIG. 1C.
  • FIG. 2 is a plan view showing another form of the solution supply nozzle used for carrying out the manufacturing method.
  • FIG. 3A is a cross-sectional view showing another embodiment of an end surface molded member used in the manufacturing method FIG.
  • FIG. 3B is a plan view showing the shape of the end surface forming member shown in FIG. 3A viewed from above.
  • FIG. 4A is a cross-sectional view showing still another embodiment of the end surface forming member used in the manufacturing method.
  • FIG. 4B is a cross-sectional view showing a state of a process using the end face molded member
  • FIG. 5A is a view showing an optical system for in-plane GIXD measurement of an organic semiconductor thin film manufactured by the manufacturing method.
  • FIG. 5B is a diagram showing a distribution of diffraction peaks obtained by the same measurement.
  • FIG. 6 is a plan view showing a thin film transistor array prepared using an organic semiconductor thin film manufactured by the manufacturing method.
  • FIG. 7 is a diagram showing transfer characteristics in a linear region of a thin film transistor of a typical example constituting the thin film transistor array.
  • FIG. 8 is a diagram showing transfer characteristics in the saturation region of the thin film transistor
  • FIG. 9 is a graph showing output characteristics of the thin film transistor
  • FIG. 10 is a diagram showing distribution of transfer characteristics of all thin film transistors constituting the thin film transistor array.
  • FIG. 11 is a diagram showing a mobility distribution in the thin film transistor array.
  • FIG. 12 is a perspective view showing the basic steps of a conventional method for producing an organic semiconductor thin film.
  • FIG. 13 is a sectional view showing the basic steps of the manufacturing method.
  • FIG. 14 is a sectional view showing a method for manufacturing an organic semiconductor thin film array using the basic steps of the manufacturing method.
  • FIG. 15 is a plan view of an organic semiconductor thin film array manufactured by the manufacturing method.
  • the method for producing an organic semiconductor thin film of the present invention can take the following aspects based on the above configuration.
  • the droplet can be formed in a shape in which the thickness from the substrate surface gradually decreases as the distance from the contact surface increases.
  • the surface of the substrate on which the droplets of the raw material solution are formed preferably has a contact angle of 30 ° or less.
  • the end surface forming member is opposed to the substrate with a certain gap, and the gap is formed from one or a plurality of raw material solution supply ports arranged adjacent to the gap on the opposite side of the contact surface.
  • the raw material solution may be supplied through In this case, by disposing a plurality of raw material solution supply ports and supplying different types of raw material solutions from each of the raw material solution supply ports, different types of organic semiconductor thin films are formed on the same substrate. It can be set as the aspect formed simultaneously.
  • the raw material solution may be supplied to the contact surface side through one or a plurality of lumens provided inside the end surface molding member.
  • the raw material is directly below the end surface forming member through one or a plurality of lumens provided in the end surface forming member with the end surface forming member facing the substrate with a certain gap. It can be set as the aspect which supplies a solution.
  • a plurality of lumens of the end surface molding member are provided, and different types of organic semiconductor thin films are provided on the same substrate by supplying different types of raw material solutions through the respective lumens. Can be formed simultaneously.
  • the organic semiconductor device of the present invention can take the following aspects based on the above configuration. That is, the organic semiconductor thin film preferably has a single crystal crystal axis distribution in the range of 8 °.
  • the surface of the substrate on which the organic semiconductor thin film is formed preferably has a contact angle of 30 ° or less.
  • FIG. 1A is a cross-sectional view showing an apparatus used in a process of a method for manufacturing an organic semiconductor thin film array.
  • FIG. 1B to 1D are cross-sectional views sequentially showing the steps of the manufacturing method, and
  • FIG. 1E is a plan view of the state shown in FIG. 1C.
  • dots attached to some elements are for easy identification of each element and do not indicate a cross section.
  • an end surface forming member 2 is disposed on a substrate 1 and is opposed to the substrate 1 with a certain gap g.
  • One side surface (right side surface in the figure) of the end surface molding member 2 forms a contact surface 2a for controlling the precipitation of crystals of the organic semiconductor thin film.
  • the end surface molding member 2 is disposed to face the surface of the substrate 1 so that the contact surface 2a intersects at a certain angle.
  • the contact surface 2 a is orthogonal to the surface of the substrate 1.
  • a surface modification layer 3 for adjusting the wettability to an appropriate range is formed.
  • a solution supply nozzle 4 is disposed at a position opposite to the contact surface 2a (left side) with respect to the end surface forming member 2, and a raw material solution supply port at the tip thereof is adjacent to the gap g.
  • a hot plate 5 is disposed on the lower surface of the substrate 1 to hold the substrate 1 at, for example, 80 ° C.
  • a raw material solution 6 in which an organic semiconductor material is dissolved in a solvent is poured out through an internal cavity of the solution supply nozzle 4.
  • the raw material solution 6 is supplied onto the surface modification layer 3 from the tip of the solution supply nozzle 4.
  • the substrate 1 is held at a predetermined temperature by the hot plate 5 and the raw material solution 6 is heated to the predetermined temperature.
  • the raw material solution 6 is supplied onto the substrate 1 (surface modification layer 3) from the opposite side of the contact surface 2a, the raw material solution 6 reaches the contact surface 2a side through the gap g and contacts the contact surface 2a.
  • a droplet 6a of the raw material solution 6 is formed.
  • the cross-sectional shape of the droplet 6a is formed so that the thickness from the surface of the substrate 1 decreases as the distance from the contact surface 2a increases, that is, as the distance from the contact surface 2a increases. This shape is formed by holding one side of the droplet 6a through contact with the contact surface 2a.
  • the shape of the droplet 6 a can be appropriately controlled by adjusting the contact angle of the surface modification layer 3. If the surface modification layer 3 adjusts the shape of the droplet 6a with the surface with improved wettability, the effect of defining the crystal growth direction as described later can be sufficiently obtained.
  • the solvent in the droplet 6a evaporates due to the heating from the hot plate 5.
  • the raw material solution 6 sequentially becomes saturated at the far end edge from the contact surface 2a, and the organic semiconductor material crystal 7a starts to precipitate.
  • the substrate 1 and the end surface molding member 2 are relatively moved in the direction indicated by the arrow X1 or X2 in accordance with the evaporation rate of the solvent. That is, at least one of the movement in the direction X1 of the substrate 1 and the movement in the direction X2 of the end surface forming member 2 is performed.
  • a case where the substrate 1 is moved will be described as an example.
  • a direction including the directions X1 and X2 is referred to as an X direction.
  • the X direction is parallel to the surface of the substrate 1, and the directions X1 and X2 are directions for separating the end surface forming member 2 from the droplet 6a. Changes in the relative positions of the substrate 1 and the end surface molding member 2 due to this relative movement are shown in FIGS. 1A to 1C.
  • the raw material solution 6 is supplied so that the fluctuation of the size of the droplet 6a accompanying the relative movement is maintained within a predetermined range. That is, by supplying the raw material solution 6 at a speed equivalent to the evaporation speed of the solvent, the rectangular droplets 6a are maintained at the same size.
  • the substrate 1 is moved in accordance with the supply of the raw material solution 6.
  • the speed of crystallization from the raw material solution 6 is about 1 mm / min to several cm / min according to a normal setting, and therefore the relative speed of the substrate 1 and the end face forming member 2 is adjusted to the same speed.
  • FIG. 1E shows a plan view of the state shown in FIG. 1C.
  • the planar shape of the droplet 6a is a rectangular shape with the width of the contact surface 2a as one side. More specifically, the contour line of the gas-liquid boundary of the droplet 6a measured from the horizontal plane of the substrate 1 is defined to be parallel to the contact surface 2a.
  • the organic semiconductor thin film 7 formed continuously with the relative movement of the substrate 1 and the end face molding member 2 also has a rectangular shape.
  • the size of the organic semiconductor thin film 7 to be formed can be formed in a desired large area according to the width of the end surface molding member 2 (contact surface 2a) and the moving distance. It is. For example, a rectangular organic semiconductor single crystal of 5 cm ⁇ 5 cm or more could be easily produced by a continuous process.
  • the organic semiconductor thin film 7 becomes a single crystal having good crystallinity by the following action. That is, in the droplet 6a, the solvent evaporates asymmetrically in the X direction due to the cross-sectional shape of the droplet 6a as described above that is asymmetric in the X direction. Thereby, the effect
  • the heat capacity of the thin portion of the droplet 6a is smaller than that of the thick portion, the temperature drop due to heat (evaporation heat or latent heat) taken away when the solvent evaporates is large, and the organic semiconductor compound dissolved in the solution is This is because it precipitates first, and this defines the direction of crystal growth.
  • the formed organic semiconductor thin film 7 shows a highly crystallized form, and brings high mobility that has not been achieved in an organic transistor by solution formation.
  • the single crystal of the organic semiconductor thin film 7 is made to have a thickness of 100 nm or less when the size of one side is 1 cm or more. Thereby, the variation in thickness is controlled within a range of ⁇ 20%, and practically sufficiently uniform mobility characteristics can be obtained over the entire area of the organic semiconductor thin film 7 having a large area.
  • the material of the substrate 1 includes a resin substrate, a glass substrate, a substrate in which an SiO 2 layer is formed on an impurity-added Si layer, and a polymer insulating film such as parylene or polyvinylphenol on a conductive metal surface such as copper or aluminum.
  • a resin substrate a glass substrate
  • a substrate in which an SiO 2 layer is formed on an impurity-added Si layer a substrate in which an SiO 2 layer is formed on an impurity-added Si layer
  • a polymer insulating film such as parylene or polyvinylphenol on a conductive metal surface such as copper or aluminum.
  • Various substrates such as a coated substrate can be used.
  • the end surface forming member 2 is disposed so that the contact surface 2a is orthogonal to the surface of the substrate 1, but may be disposed with a certain angle. That is, the contact surface 2a is inclined on the substrate 1 at a predetermined angle in the X direction. In this state, when the raw material solution is supplied so as to come into contact with the contact surface 2a, it becomes easy to control the size of the wetted surface by the droplet 6a and obtain an organic semiconductor thin film having desired characteristics.
  • the end surface molding member 2 can be formed of, for example, a resin, a silicon wafer, or the like, but any other material may be used as long as it functions to appropriately form the droplet 6a as described above. Good.
  • the solution supply nozzle 4 can also be configured as shown in the plan view of FIG. In the configuration shown in FIG. 1E, one solution supply nozzle 4 is arranged, but in the configuration in FIG. 2, three solution supply nozzles 4a to 4c are arranged. Thus, if necessary, one or a plurality of solution supply nozzles 4 can be arranged to supply the raw material solution 6 from one or a plurality of raw material solution supply ports through the gap g. When a plurality of solution supply nozzles 4 are arranged, different types of raw material solutions may be supplied from each solution supply nozzle 4. Thereby, different types of organic semiconductor thin films can be simultaneously formed on the same substrate 1.
  • any known configuration may be used without being limited to the nozzle.
  • the shape of the nozzle can also be variously selected according to the purpose.
  • the solution supply nozzle 4 can be arranged as shown in FIGS. 3A and 3B instead of the structure shown in FIG. 1A.
  • FIG. 3A is a cross-sectional view showing an end surface molding member 8 having a form different from that described above
  • FIG. 3B is a plan view showing the shape of the end surface molding member 8 viewed from above.
  • the solution supply nozzle 4 is arranged through a lumen provided inside the end surface molding member 8, and the raw material solution 6 is supplied through an opening toward the contact surface 8 a side of the end surface molding member 8.
  • substrate 1 can be made very small.
  • the end surface forming member 8 shown in FIG. 3A can be deformed like the end surface forming member 9 shown in FIG. 4A.
  • the end surface forming member 9 is opposed to the substrate 1 with a certain gap g, and the tip of the solution supply nozzle 4 is opened directly below the end surface forming member 9.
  • the end surface forming member 9 and the substrate 1 are relatively moved while supplying the raw material solution 6 directly below the end surface forming member 9.
  • the organic semiconductor thin film 7 can be continuously formed while being controlled by the contact surface 9a as in the case shown in FIGS. 1B to 1D.
  • one or a plurality of solution supply nozzles 4 can be arranged.
  • a plurality of solution supply nozzles 4 are arranged, different types of raw material solutions are supplied from the solution supply nozzles 4 to simultaneously form different types of organic semiconductor thin films on the same substrate 1. be able to.
  • the organic semiconductor compound for forming the organic semiconductor thin film by the above method is desirably a material having a high self-aggregation function.
  • the self-aggregation function means a tendency to spontaneously aggregate and crystallize when molecules are precipitated from a solvent. Accordingly, examples of the organic semiconductor material suitable for the present embodiment include the following organic semiconductor compounds.
  • Didecyl dinaphthobenzodithiophene a newly developed material, was used as the organic semiconductor material. This material exhibits excellent mobility on the order of 16 cm 2 / Vs in the form of a single crystal transistor. Didecyl dinaphthobenzodithiophene powder was charged into a typical high boiling point solvent at a concentration of 0.025 wt% and completely dissolved by heating to 70 ° C. An organic semiconductor thin film was formed using this solution.
  • X-ray diffraction (XRD) measurement was performed.
  • XRD X-ray diffraction
  • low angle incident X-ray diffraction (GIXD) measurement using the optical system shown in FIG. 5A was performed. That is, the detector D detects the diffracted light obtained by diffracting the X-ray from the light source L by the organic thin film single crystal while rotating the thin film in the ⁇ direction. Thereby, the distribution of diffraction peaks when the thin film was rotated in the ⁇ direction was measured.
  • the 2 ⁇ x axis was set at 22.56 degrees.
  • the measurement results are shown in FIG. 5B. According to this, it can be seen that the distribution of the crystal axes of the organic thin film single crystal of several centimeters is extremely uniform and is in the range of only 8 °.
  • an array of 5 ⁇ 5 TFT elements 10 as shown in FIG. 6 is manufactured. did.
  • the substrate 1 a silicon wafer was used, and a 100 nm thick thermally oxidized SiO 2 film was formed as a gate insulating film.
  • an organic semiconductor thin film was formed as described above, and the surface was treated with ⁇ -PTS-SAM.
  • a p-type dopant layer having a thickness of 2 nm was formed thereon, and source and drain electrodes having a thickness of 30 nm were further formed, so that an array of TFT elements 10 was produced.
  • the channel was arranged in parallel with the X direction, that is, the crystal growth direction.
  • FIG. 7 shows the transfer characteristics in the linear region of the TFT element 10 of the typical example constituting the thin film transistor array manufactured as described above.
  • the horizontal axis represents the gate voltage (V)
  • the vertical axis represents the drain current ( ⁇ A).
  • the transfer characteristics in the saturation region of the TFT element 10 are shown in FIG.
  • the horizontal axis represents the gate voltage (V)
  • the left vertical axis represents the square root of the absolute value of the drain current
  • the right vertical axis represents the drain current (A) on a logarithmic scale.
  • the mobility calculated from the slope of the plot reaches 7.6 cm 2 / Vs or more in the saturation region and 6.5 cm 2 / Vs or more in the linear region. Such a difference in mobility corresponds to the nonlinearity in the output characteristics shown in FIG.
  • FIG. 10 shows the distribution of transfer characteristics of all TFT elements 10 in the thin film transistor array
  • FIG. 11 shows the distribution of mobility. It can be seen that all the TFT elements 10 are operating at a high mobility of 3 cm 2 / Vs or more.
  • the average mobility of 25 TFT element 10 reaches 6.0 cm 2 / Vs, the standard deviation of the mobility, at 1.5 cm 2 / Vs, is 20% of the average mobility, be very small I understand.
  • the organic semiconductor thin film manufactured according to this embodiment is a single crystal thin film having good crystallinity and can be easily formed in a large area. And the thin-film transistor array produced using this organic-semiconductor thin film shows high mobility over the whole area
  • the method for producing an organic semiconductor thin film of the present invention is carried out by a simple process using a solvent evaporation method based on droplet formation, and can produce an organic semiconductor single crystal thin film having a large area and high charge mobility. Therefore, it is useful for manufacturing an organic transistor.

Abstract

 有機半導体材料を溶媒に溶解させた原料溶液(6)を基板1上に供給し、溶媒を蒸発させることにより有機半導体材料の結晶を析出させて、有機半導体薄膜7を基板上に形成する。一側面に接触面(2a)が設けられた端面成形部材(2)を用い、基板の表面に対して接触面が一定の角度で交差するように端面成形部材を対向させて配置して、原料溶液を基板上に供給して接触面に接触する原料溶液の液滴(6a)を形成し、基板の表面に平行な方向であって液滴から端面成形部材が離間する向きに基板と端面成形部材とを相対移動させ、かつ、相対移動に伴う液滴の大きさの変動が所定の範囲に維持されるように原料溶液を供給しながら、液滴中の溶媒を蒸発させて接触面が移動した後の基板上に有機半導体薄膜を形成する。液滴形成に基づく溶媒蒸発法を用いた簡易な工程により、大面積で高い電荷移動度を有する有機半導体単結晶薄膜を作製できる。

Description

[規則37.2に基づきISAが決定した発明の名称] 有機半導体薄膜の製造方法
 本発明は、溶媒蒸発法により有機半導体薄膜を作製する方法、特に大面積で高移動度の有機半導体単結晶薄膜を作製するのに適した製造方法に関する。また、そのような有機半導体単結晶薄膜を備えた有機半導体装置に関する。
 近年、有機半導体材料は、無機半導体材料と比較しても優れた電気的特性を有することが明らかとなり、種々の電子デバイス分野への応用開発が進められている。有機半導体薄膜を半導体チャネルに用いた有機TFT(薄膜トランジスタ)等の有機半導体装置は、無機半導体を用いた装置に比べて加工が容易であり、簡易で安価な製造プロセスを適用可能である。また、室温近傍での製造が可能であるため、プラスチック基板を用いた半導体技術を可能にし、ポストシリコン半導体として期待されている。
 有機TFTに用いる結晶性の有機半導体薄膜を作製する方法としては、従来、蒸着法、分子線エピタキシャル法、溶媒蒸発法、融液法、ラングミュア-ブロジェット法など、材料の特性により種々の方法が検討されている。これらの方法のなかでも、溶媒蒸発法によれば、簡易な方法でありながら高性能の有機半導体薄膜が得られる。特に、液滴成形、スピンコーティング、印刷のような溶液を用いた塗布法に基づく溶媒蒸発法のプロセスは、簡易で安価、室温近傍での製造が可能という観点から、非常に期待される方法である。
 塗布法では、有機半導体材料溶液を基板面に塗布あるいは滴下して、溶液に含まれる溶媒を乾燥させる。それにより、溶媒が蒸発して溶液が飽和状態となり結晶を析出させ、有機半導体薄膜が形成される。スピンコーティングや液滴成形のような周知の技術は、大面積の有機半導体薄膜の製造に容易に適用可能である。塗布法により形成された典型的な有機FETの性能は、0.1cm2/Vs程度のかなり高いキャリア移動度を示す。しかし、このような従来の移動度の値は、満足できるものではなかった。不十分な移動度は、結晶粒界の存在および分子配向の不規則性が、電荷輸送の障害となっていることに起因する。
 そこで、分子配列における規則性を改善すべく、単結晶の有機半導体薄膜を成長させるための検討がなされた。例えば、特許文献1には、液滴成形に基づく溶媒蒸発法を用いて、有機TFT等の用途に望まれる電気的特性、特に、高い電荷移動度を有する有機半導体単結晶膜を作製するための、改良された方法が開示されている。
 特許文献1に開示された有機半導体薄膜の製造方法について、図12~図15を参照して説明する。図12は、基本工程を示す斜視図、図13はその断面図である。この製造方法では、基板20及び樹脂製の端面接触部材21を用いる。図に示すように液滴22を形成するために、有機半導体材料及び溶媒を含む原料溶液を、端面接触部材21に接触するように基板20上に供給する。この状態で液滴22を乾燥させることにより、基板20上に有機半導体薄膜23を形成する。端面接触部材21は、基板20の表面に交差する端面の一部として、平面形状の接触面21aを含む。液滴22は、この接触面21aに接触するように供給される。
 製造工程ではまず、端面接触部材21を、接触面21aが基板20の所定のA方向と直交するように基板20上に戴置する。この状態で、原料溶液を供給すると、原料溶液の液滴22は、接触面21aにより保持されて、一定の力が作用する状態になる。この状態で乾燥プロセスを行って、液滴22中の溶媒を蒸発させる。すると、液滴22中では図13に示すように、A方向における接触面21aからの遠端縁の部分で順次、原料溶液が飽和状態になり有機半導体材料の結晶が析出し始める。溶媒の蒸発に伴う液滴22の遠端縁の移動を、一点鎖線e1、e2で示す。溶媒の蒸発とともに、基板20のA方向に沿って接触面21aに向かって結晶の成長が進み、有機半導体薄膜23が漸次形成されてゆく。
 この乾燥プロセスにおいては、原料溶液の液滴22が接触面21aに付着した状態によって、接触面21aとの接触を介して結晶成長方向を規定する作用が働く。これにより、結晶性の制御効果が得られ、有機半導体材料の分子の配列の規則性が良好になり、電子伝導性(移動度)の向上に寄与するものとされている。
 但し、上述の基本工程では、溶媒の蒸発により結晶の成長が終了してしまうため、形成される有機半導体薄膜23の大きさは、最大でも1mmに満たないような小さなものである。そのため、上記方法を用いて実用的な有機TFTを作製するために、図14~図15に示すように、有機半導体薄膜アレイを製造する。この方法では、図14に示すように、補助基板24の面上に接触凸部25が複数個配置された構成の接触部材26を用いる。接触凸部25は各々、図12に示した端面接触部材21と同様の機能を有する。すなわち、接触凸部25における補助基板24の表面に交差する端面の一部により、接触面25aが各々形成される。
 まず液滴保持状態を形成するために、図14に示すように、基板20の上方に、接触凸部25を基板20と対向させて接触部材26を配置し、接触凸部25を基板20に当接させる。この状態で接触面25aの各々に対して接触するように原料溶液を供給して、液滴22を形成する。原料溶液の液滴22は各々、接触面25aにより保持された状態になる。乾燥プロセスを行って液滴22中の溶媒を蒸発させると、上述の場合と同様、各々の液滴22中では、溶媒の蒸発とともに有機半導体材料の結晶が成長し、図15に示すように、複数の接触面25aに対応する基板20面の各々の位置に、有機半導体薄膜23aが形成されて、有機半導体薄膜アレイを作製することができる。
国際公開第2011/040155号
 上述のとおり、特許文献1に開示された方法の場合、形成可能な有機半導体の単結晶膜のサイズに限界がある。また、実用的な有機TFTを作製するために、有機半導体薄膜アレイを作製する場合であっても、その電子デバイスとしての機能・特性、また製造工程の容易性に限界がある。
 従って、本発明は、液滴形成に基づく溶媒蒸発法を用いた簡易な工程により実施され、大面積で高い電荷移動度を有する有機半導体単結晶薄膜を作製することが可能な有機半導体薄膜の製造方法を提供することを目的とする。
 また、そのような有機半導体単結晶薄膜を備えた有機半導体装置を提供することを目的とする。
 本発明の有機半導体薄膜の製造方法は、有機半導体材料を溶媒に溶解させた原料溶液を基板上に供給し、前記溶媒を蒸発させることにより前記有機半導体材料の結晶を析出させて、有機半導体薄膜を前記基板上に形成する方法である。
 上記課題を解決するために、本発明の製造方法は、一側面に接触面が設けられた端面成形部材を用い、前記基板の表面に対して前記接触面が一定の角度で交差するように前記端面成形部材を対向させて配置して、前記原料溶液を前記基板上に供給して前記接触面に接触する前記原料溶液の液滴を形成し、前記基板の表面に平行な方向であって前記液滴から前記端面成形部材が離間する向きに前記基板と前記端面成形部材とを相対移動させ、かつ、前記相対移動に伴う前記液滴の大きさの変動が所定の範囲に維持されるように前記原料溶液を供給しながら、前記液滴中の前記溶媒を蒸発させて前記接触面が移動した後の前記基板上に前記有機半導体薄膜を形成することを特徴とする。
 本発明の有機半導体装置は、基板と、その表面上に形成された有機半導体薄膜とを備え、前記有機半導体薄膜は、一辺の大きさが1cm以上の大きさの矩形の平面形状を有し、厚さが100nm以下の単結晶薄膜であることを特徴とする。
 上記構成の有機半導体薄膜の製造方法によれば、原料溶液からの溶媒の蒸発により結晶の成長が終了することはないので、形成される有機半導体薄膜の大きさは、端面成形部材の移動距離に応じて、連続的な工程により所望の大面積に形成することが可能である。
 また、接触面との接触を介した原料溶液の液滴に対する制御作用により、液滴は、接触面に直交する方向において非対称な形状となり、非対称の溶媒蒸発に起因して結晶成長方向を規定する作用が働く。これにより結晶成長の方向が規定され、有機半導体材料の分子の配列の規則性が良好になり、連続して均一な単結晶薄膜が形成される。
 また、上記構成の有機半導体装置は、有機半導体薄膜が厚さが100nm以下の単結晶薄膜であることにより、一辺の大きさが1cm以上の大きさの矩形の平面形状を有する大面積であっても、厚さのバラツキが±20%の範囲内に容易に制御される。それにより、有機半導体薄膜の全領域に亘って均一で高い移動度を得ることができ、実用的に優れた特性を有する有機半導体装置が得られる。
図1Aは、本発明の一実施の形態における有機半導体薄膜アレイの製造方法の実施に用いる装置を示す断面図 図1Bは、同製造方法の初期の工程の状態を示す断面図 図1Cは、同製造方法の図1Bに続く工程の状態を示す断面図 図1Dは、同製造方法の図1Cに続く工程の状態を示す断面図 図1Eは、図1Cに示した状態の平面図 図2は、同製造方法の実施に用いる溶液供給ノズルの他の形態を示す平面図 図3Aは、同製造方法に用いる端面成形部材の他の形態を示す断面図 図3Bは、図3Aに示した端面成形部材の上方から見た形状を示す平面図 図4Aは、同製造方法に用いる端面成形部材の更に他の形態を示す断面図 図4Bは、同端面成形部材を用いた工程の状態を示す断面図 図5Aは、同製造方法により作製された有機半導体薄膜の面内GIXD測定のための光学系を示す図 図5Bは、同測定によって得られた回折ピークの分布を示す図 図6は、同製造方法により作製された有機半導体薄膜を用いて作成した薄膜トランジスタアレイを示す平面図 図7は、同薄膜トランジスタアレイを構成する代表例の薄膜トランジスタの線形領域の伝達特性を示す図 図8は、同薄膜トランジスタの飽和領域の伝達特性を示す図 図9は、同薄膜トランジスタの出力特性を示す図 図10は、同薄膜トランジスタアレイを構成する全ての薄膜トランジスタの伝達特性の分布を示す図 図11は、同薄膜トランジスタアレイにおける移動度の分布を示す図 図12は、従来例の有機半導体薄膜の製造方法の基本工程を示す斜視図 図13は、同製造方法の基本工程を示す断面図 図14は、同製造方法の基本工程を用いた有機半導体薄膜アレイの製造方法を示す断面図 図15は、同製造方法により作製された有機半導体薄膜アレイの平面図
 本発明の有機半導体薄膜の製造方法は、上記構成を基本として、以下のような態様をとることができる。
 すなわち、前記液滴を、前記接触面から遠ざかるに従って基板面からの厚さが漸減する形状に形成する態様とすることができる。
 また、前記原料溶液の液滴を形成する前記基板の表面は、接触角が30°以下であることが好ましい。
 また、前記端面成形部材を前記基板との間に一定の間隙を設けて対向させて、前記接触面の反対側に前記間隙に隣接させて配置した一個または複数個の原料溶液供給口から前記間隙を通して前記原料溶液を供給する態様とすることができる。この場合に、複数個の前記原料溶液供給口を配置し、各々の前記原料溶液供給口から互いに異なる種類の前記原料溶液を供給することにより、同一の前記基板上に異なる種類の有機半導体薄膜を同時に形成する態様とすることができる。
 あるいは、前記端面成形部材の内部に設けた一個または複数個の内腔を通して、前記接触面の側に前記原料溶液を供給する態様とすることができる。あるいは、前記端面成形部材を前記基板との間に一定の間隙を設けて対向させて、前記端面成形部材の内部に設けた一個または複数個の内腔を通して、前記端面形成部材の直下に前記原料溶液を供給する態様とすることができる。これらの場合に、前記端面成形部材の内腔が複数個設けられ、各々の前記内腔を通して、互いに異なる種類の前記原料溶液を供給することにより、同一の前記基板上に異なる種類の有機半導体薄膜を同時に形成する態様とすることができる。
 本発明の有機半導体装置は、上記構成を基本として、以下のような態様をとることができる。すなわち、前記有機半導体薄膜は、単結晶の結晶軸の分布が8°の範囲内にあることが好ましい。また、前記基板の前記有機半導体薄膜が形成された表面は、接触角が30°以下であることが好ましい。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 <実施の形態>
 本発明の一実施の形態における有機半導体薄膜の製造方法について、図1A~図1Cを参照して説明する。この製造方法によれば、有機半導体材料を溶媒に溶解させた原料溶液を基板1上に供給する。そして、溶媒を蒸発させることにより有機半導体材料の結晶を析出させて、有機半導体薄膜を基板上に形成する。図1Aは、有機半導体薄膜アレイの製造方法の工程に用いる装置を示す断面図である。図1B~図1Dは、同製造方法の工程の状態を順次示す断面図、図1Eは、図1Cに示した状態の平面図である。なお、図1Eにおいて、一部の要素に付したドットは、各要素を判別し易くするためであって、断面を示すものではない。
 図1Aに示す装置では、基板1上に端面成形部材2が配置され、基板1との間に一定の間隙gを設けて対向している。端面成形部材2の一方の側面(図では右側面)は、有機半導体薄膜の結晶の析出を制御するための接触面2aを形成している。端面成形部材2は、基板1の表面に対して、接触面2aが一定の角度で交差するように対向させて配置される。図1Bでは、接触面2aは基板1の表面に直交している。基板1の上面には、濡れ性を適切な範囲に調整するための表面改質層3が形成されている。端面成形部材2に対して接触面2aの反対側(左側)の位置に、溶液供給ノズル4が配置され、その先端の原料溶液供給口を間隙gに隣接させている。基板1の下面にはホットプレート5が配置されて、基板1を例えば80°Cに保持する。
 製造工程の実施に際しては、図1Bに示すように、有機半導体材料を溶媒に溶解させた原料溶液6を、溶液供給ノズル4の内部空洞を通して注出する。それにより、溶液供給ノズル4の先端から表面改質層3上に原料溶液6が供給される。同時に、ホットプレート5により基板1を所定温度に保持して、原料溶液6を所定の温度に加熱する。このようにして、接触面2aの反対側から原料溶液6を基板1(表面改質層3)上に供給すると、原料溶液6は、間隙gを通して接触面2a側に達し、接触面2aに接触して原料溶液6の液滴6aが形成される。
 液滴6aの断面形状は、接触面2aから離れる、すなわち、図では右方向に遠ざかるにつれて、基板1の表面からの厚さが小さくなるように形成される。この形状は、接触面2aとの接触を介して液滴6aの一方の側が保持されることにより形成される。液滴6aの形状は、表面改質層3の接触角を調整することにより、適切に制御可能である。表面改質層3が濡れ性を高めた表面により液滴6aの形状を調整すれば、後述するような結晶成長の方向を規定する作用を十分に得ることができる。
 以上のように設定して工程を実施すると、ホットプレート5からの加熱により液滴6a中の溶媒が蒸発する。蒸発に伴い、接触面2aからの遠端縁の部分で順次、原料溶液6が飽和状態になり有機半導体材料の結晶7aが析出し始める。
 本実施の形態では、工程の進行に伴い、図1Cに示すように、溶媒の蒸発速度に合わせて、基板1と端面成形部材2とを、矢印X1あるいはX2で示される向きに相対移動させる。すなわち、基板1の向きX1への移動、及び端面成形部材2の向きX2への移動の、少なくとも一方の移動を行う。ここでは、基板1を移動させる場合を例として説明する。なお、以下の記述では、向きX1、X2を含む方向を、X方向と称する。このX方向は、基板1の表面に平行であって、向きX1、X2は液滴6aから端面成形部材2を離間させる向きである。この相対移動による基板1と端面成形部材2の相対位置の変化が、図1A~図1Cに示される。
 この相対移動とともに、相対移動に伴う液滴6aの大きさの変動が所定の範囲に維持されるように原料溶液6を供給する。すなわち、原料溶液6を溶媒の蒸発速度と同等の速度で供給することにより、矩形状の液滴6aを同一寸法に維持する。同時に、原料溶液6の供給に合わせて基板1を移動させる。原料溶液6からの結晶化の速度は、通常の設定によれば1mm/分~数cm/分程度であるため、基板1と端面成形部材2の相対速度も同等の速度に調整する。これらの操作により、図1Bに示す状態から図1Cに示す状態に進行したとき、接触面2aが移動した後の基板1の表面に、有機半導体薄膜7が連続的に形成される。
 図1Cに示した状態の平面図を、図1Eに示す。液滴6aの平面形状は、図1Eに示すように、接触面2aの幅を一辺とする矩形状になる。より詳細には、基板1の水平面から測った液滴6aの気液境界の等高線が、接触面2aと平行になるように規定される。同様に、基板1と端面成形部材2の相対移動に伴って連続的に形成される有機半導体薄膜7も矩形状になる。
 本実施の形態の製造方法によれば、原料溶液6が連続的に供給されるので、原料溶液6からの溶媒の蒸発により結晶の成長が終了することはない。従って、形成される有機半導体薄膜7の大きさは、図1Dに示すように、端面成形部材2(接触面2a)の幅、および移動距離に応じて、所望の大面積に形成することが可能である。例えば、5cm×5cm以上の矩形状の有機半導体単結晶を、連続的な工程により容易に作製することができた。
 また、有機半導体薄膜7は、以下のような作用により、良好な結晶性を有する単結晶となる。つまり、液滴6aでは、X方向において非対称な上述のとおりの液滴6aの断面形状により、溶媒がX方向において非対称に蒸発する。これにより、結晶成長方向を規定する作用が働く。すなわち、接触面2aから遠い位置から接触面2aに近づく向きに結晶が成長する。液滴6aの厚みが薄い部分のほうが厚い部分よりも熱容量が小さいため、溶媒が蒸発する際に奪われる熱(蒸発熱または潜熱)による温度の低下が大きく、溶液に溶けていた有機半導体化合物が先に析出し、これが結晶成長の方向を規定するからである。
 このような結晶性の制御効果により、有機半導体材料の分子の配列の規則性が良好になり、連続して均一な結晶薄膜が形成される。実際、成形された有機半導体薄膜7は、後述するとおり、高度に結晶化された形態を示し、溶液形成による有機トランジスタに従来になかった高移動度をもたらす。このような特性を十分に活かすためには、有機半導体薄膜7の単結晶は、一辺の大きさを1cm以上としたとき、厚さを100nm以下に作製することが望ましい。それにより、厚さのバラツキが±20%の範囲内に制御され、大面積の有機半導体薄膜7の全域に亘って実用上、十分に均一な移動度特性を得ることができる。
 基板1の材料としては、樹脂基板、ガラス基板、不純物添加Si層上にSiO2層が形成された基板、銅やアルミニウムなどの導電性金属表面に、パリレンやポリビニルフェノールなどの高分子絶縁膜をコートした基板等、種々の基板を用いることができる。
 上述の形態では、端面成形部材2は、接触面2aが基板1の表面に直交するように配置されているが、一定の角度を持って配置することもできる。すなわち、接触面2aをX方向に所定角度に傾斜させて基板1上に配置する。この状態で、接触面2aに接触するように、原料溶液を供給すると、液滴6aによる濡れ面の大きさを制御し、所望の特性の有機半導体薄膜を得ることが容易になる。
 端面成形部材2は、例えば樹脂、シリコンウェハー等により形成することができるが、上述のように液滴6aを適切に形成する機能を果たすものであれば、その他のどのような材質を用いてもよい。
 溶液供給ノズル4は、図2の平面図に示すように構成することもできる。図1Eに示した構成では、1個の溶液供給ノズル4が配置されているが、図2の構成では、3個の溶液供給ノズル4a~4cが配置される。このように、必要に応じて、一個または複数個の溶液供給ノズル4を配置して、一個または複数個の原料溶液供給口から間隙gを通して原料溶液6を供給することができる。なお、複数個の溶液供給ノズル4を配置した場合には、各々の溶液供給ノズル4から互いに異なる種類の原料溶液を供給してもよい。それにより、同一の基板1上に異なる種類の有機半導体薄膜を同時に形成することができる。
 また、原料溶液6の供給源としては、図示を省略するが、ノズルに限定されることなく周知のどのような構成を用いてもよい。ノズルの形状も、目的に応じて種々選択することができる。
 溶液供給ノズル4は、図1Aに示した構造に代えて、図3A、図3Bに示すように配置することもできる。図3Aは、上述とは異なる形態の端面成形部材8を示す断面図、図3Bは、端面成形部材8の上方から見た形状を示す平面図である。この構成では、端面成形部材8の内部に設けた内腔を通して溶液供給ノズル4を配置し、端面成形部材8の接触面8a側への開口を通して原料溶液6を供給する。これにより、端面成形部材8と基板1の間の間隙を極めて小さくすることができる。
 更に、図3Aに示した端面成形部材8は、図4Aに示す端面成形部材9のように変形することもできる。すなわち、端面成形部材9を基板1との間に一定の間隙gを設けて対向させて、溶液供給ノズル4の先端が、端面成形部材9の直下へ向けて開口する構成とする。図4Bに示すように、端面形成部材9の直下に原料溶液6を供給しながら端面成形部材9と基板1を相対移動させる。これにより、図1B~図1Dに示した場合と同様に、接触面9aによる制御を伴いながら、連続的に有機半導体薄膜7を形成することができる。
 図3A、図4Aの構成においても、溶液供給ノズル4は、一個または複数個配置することができる。また、複数個の溶液供給ノズル4を配置した場合には、各々の溶液供給ノズル4から互いに異なる種類の原料溶液を供給して、同一の基板1上に異なる種類の有機半導体薄膜を同時に形成することができる。
 上述の方法により有機半導体薄膜を形成するための有機半導体化合物は、自己凝集機能の高い材料であることが望ましい。自己凝集機能とは、分子が溶媒から析出する際に、自発的に凝集して、結晶化しやすい傾向を意味する。従って本実施の形態に適した有機半導体材料としては、以下のような有機半導体化合物を挙げることができる。
 [1]benzothieno[3,2-b]benzothiophene誘導体、2,9-Dialkyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene誘導体、dinaphth[2,3-b:2,3-f]thiopheno[3,2-b]thiophene誘導体、TIPS-ペンタセン、TES-ADT、及びその誘導体、ペリレン誘導体、TCNQ、F4-TCNQ、F4-TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、pDA2T-C16、ジナフトジチオフェン、ジナフトベンゾジチオフェン、ジナフトナフトジチオフェンや屈曲型カルコゲノフェン化合物及びその誘導体等。
 表面改質層3の形成により、結晶成長中の原料溶液6と基板1の接触角を30°以下に調整することが望ましい。それにより、液滴6aの形状に基づく結晶成長の方向を規定する作用を容易に、十分な程度に得ることができる。表面改質層3は、基板1の表面の濡れ性を高めるように、シラン系自己組織化単分子膜などによる処理によって形成することが有効である。
 以上のような、本実施の形態の方法により形成される有機半導体薄膜について、単結晶薄膜の結晶性を検討するために、X線回折測定を行った。
 有機半導体材料としては、新規に開発された材料であるジデシルジナフトベンゾジチオフェンを用いた。この材料は、単結晶トランジスタの形態において、16cm2/Vs程度の優れた移動度を示す。ジデシルジナフトベンゾジチオフェン粉末を、典型的な高沸点溶媒に0.025wt%の濃度で投入し、70°Cまで加熱することにより完全に溶解させた。この溶液を用いて、有機半導体薄膜を形成した。
 作成された薄膜を顕微鏡により観察したところ、非常に均一な結晶状態を観察することができた。また、交差偏光顕微鏡により、偏光板を回転させて偏光の方向と結晶軸の方向を変化させて観察すると、薄膜の光沢は、試料の回転に伴って薄膜全面に亘って同時に変化した。この観察結果により、薄膜全面に亘って結晶軸が略同一方向に揃っていることを確認でき、数cm平方に亘る全領域が、単結晶薄膜として形成されていることが判った。このような単結晶薄膜は、大面積の電子デバイスへの適用にとって有利である。
 薄膜の結晶構造及び結晶性を検査するために、X線回折(XRD)測定を行った。XRD測定を行うために、薄膜を厚さ20μmのガラス基板上に形成して、X線が基板を透過できるようにした。XRD測定の結果、有機半導体の分子が基板上で直立して(エッジオン配向して)に整列していることが判り、得られた薄膜が、良質な有機薄膜単結晶であることを確認できた。
 また、図5Aに示す光学系を用いた低角入射X線回折(GIXD)測定を行った。すなわち、薄膜をψ方向に回転させながら、光源LからのX線が有機薄膜単結晶により回折された回折光を検出器Dによる検出する。これにより、薄膜をψ方向に回転したときの回折ピークの分布を測定した。2θx軸は22.56度に設定した。測定の結果を図5Bに示す。これによれば、数cm角の有機薄膜単結晶の結晶軸の分布が極めて一様で、わずか8°の範囲に入っていることが判る。
 本実施の形態の方法によって得られた有機半導体単結晶薄膜を用いた薄膜トランジスタ(TFT素子)の特性を評価するために、図6に示すような5×5個のTFT素子10からなるアレイを作製した。基板1としては、シリコンウェハーを用い、100nm厚の熱酸化SiO2膜をゲート絶縁膜として形成した。その上に、上述のようにして有機半導体薄膜を形成し、表面をβ-PTS-SAMで処理した。その上に、2nm厚のpドーパント層を形成し、更に30nm厚のソース及びドレイン電極を形成して、TFT素子10のアレイを作製した。ソース及びドレイン電極は、チャネルがX方向すなわち結晶成長の方向に平行に配置した。
 このように作製した薄膜トランジスタアレイを構成する代表例のTFT素子10について、線形領域の伝達特性を図7に示す。図7において、横軸はゲート電圧(V)、縦軸はドレイン電流(μA)を示す。TFT素子10の飽和領域の伝達特性を図8に示す。図8において、横軸はゲート電圧(V)、左側の縦軸はドレイン電流の絶対値の平方根、右側の縦軸はドレイン電流(A)を対数スケールで示す。プロットの傾斜から計算された移動度は、飽和領域で7.6cm2/Vs以上、線形領域で6.5cm2/Vs以上に達している。このような移動度における相違は、図9に示す出力特性における非線形性に対応する。図9に示す出力特性は、ゲート電圧VG=0、-20、-30、-40、-50Vの各々の場合が示されている。
 上記薄膜トランジスタアレイの全てのTFT素子10の伝達特性の分布を図10に、移動度の分布を図11に示す。すべてのTFT素子10が3cm2/Vs以上の高移動度で動作していることが判る。25個のTFT素子10の移動度の平均は6.0cm2/Vsに達し、移動度の標準偏差は、1.5cm2/Vsで、移動度の平均の20%であり、極めて小さいことが判る。
 以上のとおり、本実施の形態によって作製された有機半導体薄膜は、良好な結晶性を有する単結晶薄膜であって、容易に大面積で形成することが可能である。そして、この有機半導体薄膜を用いて作製された薄膜トランジスタアレイは、全領域に亘って高い移動度を示す。
 本発明の有機半導体薄膜の製造方法は、液滴形成に基づく溶媒蒸発法を用いた簡易な工程により実施され、大面積で高い電荷移動度を有する有機半導体単結晶薄膜を作製することが可能であって、有機トランジスタの作製等に有用である。
1、20 基板
2、8、9 端面成形部材
2a、8a、9a、21a、25a 接触面
3 表面改質層
4、4a~4c 溶液供給ノズル
5 ホットプレート
6 原料溶液
6a、22 液滴
7a 結晶
7、23、23a 有機半導体薄膜
10 TFT素子
21 端面接触部材
24 補助基板
25 接触凸部
26 接触部材

Claims (11)

  1.  有機半導体材料を溶媒に溶解させた原料溶液を基板上に供給し、前記溶媒を蒸発させることにより前記有機半導体材料の結晶を析出させて、有機半導体薄膜を前記基板上に形成する有機半導体薄膜の製造方法において、
     一側面に接触面が設けられた端面成形部材を用い、
     前記基板の表面に対して前記接触面が一定の角度で交差するように前記端面成形部材を対向させて配置して、前記原料溶液を前記基板上に供給して前記接触面に接触する前記原料溶液の液滴を形成し、
     前記基板の表面に平行な方向であって前記液滴から前記端面成形部材が離間する向きに前記基板と前記端面成形部材とを相対移動させ、かつ、前記相対移動に伴う前記液滴の大きさの変動が所定の範囲に維持されるように前記原料溶液を供給しながら、前記液滴中の前記溶媒を蒸発させて前記接触面が移動した後の前記基板上に前記有機半導体薄膜を形成することを特徴とする有機半導体薄膜の製造方法。
  2.  前記液滴を、前記接触面から遠ざかるに従って基板面からの厚さが漸減する形状に形成する請求項1に記載の有機半導体薄膜の製造方法。
  3.  前記原料溶液の液滴を形成する前記基板の表面は、接触角が30°以下である請求項1または2に記載の有機薄膜半導体装置の製造方法。
  4.  前記端面成形部材を前記基板との間に一定の間隙を設けて対向させて、前記接触面の反対側に前記間隙に隣接させて配置した一個または複数個の原料溶液供給口から前記間隙を通して前記原料溶液を供給する請求項1~3のいずれか1項に記載の有機半導体薄膜の製造方法。
  5.  複数個の前記原料溶液供給口を配置し、各々の前記原料溶液供給口から互いに異なる種類の前記原料溶液を供給することにより、同一の前記基板上に異なる種類の有機半導体薄膜を同時に形成する、請求項4に記載の有機半導体薄膜製造方法。
  6.  前記端面成形部材の内部に設けた一個または複数個の内腔を通して、前記接触面の側に前記原料溶液を供給する請求項1~3のいずれか1項に記載の有機半導体薄膜の製造方法。
  7.  前記端面成形部材を前記基板との間に一定の間隙を設けて対向させて、前記端面成形部材の内部に設けた一個または複数個の内腔を通して、前記端面形成部材の直下に前記原料溶液を供給する請求項1~3のいずれか1項に記載の有機半導体薄膜の製造方法。
  8.  前記端面成形部材の内腔が複数個設けられ、各々の前記内腔を通して、互いに異なる種類の前記原料溶液を供給することにより、同一の前記基板上に異なる種類の有機半導体薄膜を同時に形成する、請求項7に記載の有機半導体薄膜製造方法。
  9.  基板と、その表面上に形成された有機半導体薄膜とを備えた有機半導体装置において、
     前記有機半導体薄膜は、一辺の大きさが1cm以上の大きさの矩形の平面形状を有し、厚さが100nm以下の単結晶薄膜であることを特徴とする有機半導体装置。
  10.  前記有機半導体薄膜は、単結晶の結晶軸の分布が8°の範囲内にある請求項9に記載の有機半導体装置。
  11.  前記基板の前記有機半導体薄膜が形成された表面は、接触角が30°以下である請求項9または10に記載の有機半導体装置。
PCT/JP2014/061472 2013-04-25 2014-04-23 有機半導体薄膜の製造方法 WO2014175351A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/786,835 US10205094B2 (en) 2013-04-25 2014-04-23 Organic semiconductor thin film production method
KR1020157027745A KR102196923B1 (ko) 2013-04-25 2014-04-23 유기 반도체 박막의 제조 방법
CN201480023139.6A CN105144417B (zh) 2013-04-25 2014-04-23 有机半导体薄膜的制造方法
EP14787747.6A EP2991129B1 (en) 2013-04-25 2014-04-23 Organic semiconductor thin film production method
JP2015513814A JP6128665B2 (ja) 2013-04-25 2014-04-23 有機半導体薄膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-092795 2013-04-25
JP2013092795 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175351A1 true WO2014175351A1 (ja) 2014-10-30

Family

ID=51791918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061472 WO2014175351A1 (ja) 2013-04-25 2014-04-23 有機半導体薄膜の製造方法

Country Status (6)

Country Link
US (1) US10205094B2 (ja)
EP (1) EP2991129B1 (ja)
JP (2) JP6128665B2 (ja)
KR (1) KR102196923B1 (ja)
CN (1) CN105144417B (ja)
WO (1) WO2014175351A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115728A (ja) * 2014-12-11 2016-06-23 富士フイルム株式会社 有機トランジスタの製造方法、有機トランジスタ
JP2016146435A (ja) * 2015-02-09 2016-08-12 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、並びに、有機半導体膜の製造方法
WO2017086320A1 (ja) 2015-11-20 2017-05-26 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
WO2017134990A1 (ja) 2016-02-03 2017-08-10 富士フイルム株式会社 有機半導体膜の製造方法
WO2017159703A1 (ja) 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
JP2017528915A (ja) * 2014-08-28 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 低分子半導体化合物及び非導電性ポリマーを含有する薄膜半導体
WO2017169398A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 膜の製造方法
WO2018061821A1 (ja) 2016-09-29 2018-04-05 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子
WO2018181055A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
WO2018181054A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
WO2018181056A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
US10131656B2 (en) 2015-08-04 2018-11-20 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic thin film transistor material, organic thin film transistor composition, organic semiconductor film, and compound
US10283719B2 (en) 2015-08-04 2019-05-07 Fujifilm Corporation Organic thin-film transistor and method for manufacturing the same, material for organic thin-film transistor, composition for organic thin-film transistor, compound, and organic semiconductor film
WO2019146368A1 (ja) 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
US10529927B2 (en) 2015-08-04 2020-01-07 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic thin film transistor material, organic thin film transistor composition, organic semiconductor film, and compound
WO2020171131A1 (ja) * 2019-02-22 2020-08-27 国立大学法人東京大学 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
US10971686B2 (en) 2016-04-01 2021-04-06 Fujifilm Corporation Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
US11038125B2 (en) 2016-04-01 2021-06-15 Fujifilm Corporation Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586641B (zh) * 2016-01-12 2018-02-09 山东大学 甲胺卤化铅酸盐化合物单晶微米薄片生长方法及生长装置
CN111394794A (zh) * 2019-01-02 2020-07-10 天津大学 大面积有机半导体单晶及其制备方法和应用
CN111416041A (zh) * 2019-01-04 2020-07-14 天津大学 自上而下制备大面积有机半导体阵列的方法
CN112736199B (zh) * 2019-10-28 2023-03-24 天津大学 C8-btbt单晶膜及其制备方法、基于c8-btbt单晶膜的有机场效应晶体管
CN113140676B (zh) * 2020-01-20 2022-11-11 复旦大学 基于液滴的有机分子薄膜及其微纳器件阵列的制备方法
US20230255038A1 (en) 2020-10-29 2023-08-10 The University Of Tokyo Semiconductor Device and Method of Manufacturing Same
KR102470299B1 (ko) * 2020-12-14 2022-11-28 (주)유니젯 박막 코팅을 위한 잉크젯 인쇄 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236566A (ja) * 1987-03-24 1988-10-03 Sharp Corp 成膜方法
JPH0992617A (ja) * 1995-09-20 1997-04-04 Res Dev Corp Of Japan ナノスケール微粒子の2次薄膜集積法
JP2007294721A (ja) * 2006-04-26 2007-11-08 Konica Minolta Holdings Inc 有機半導体薄膜および有機半導体デバイス
JP2009140969A (ja) * 2007-12-03 2009-06-25 Canon Inc 有機薄膜の製造方法
WO2011040155A1 (ja) 2009-10-02 2011-04-07 国立大学法人大阪大学 有機半導体膜の製造方法および有機半導体膜アレイ
WO2012026333A1 (ja) * 2010-08-23 2012-03-01 ソニー株式会社 有機薄膜の形成方法および形成装置、ならびに有機デバイスの製造方法
JP2013077799A (ja) * 2011-09-14 2013-04-25 Denso Corp 有機半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828386B2 (ja) * 1993-08-31 1998-11-25 科学技術振興事業団 微粒子薄膜の製造方法
JPH0864937A (ja) * 1994-08-24 1996-03-08 Ibiden Co Ltd ペースト状物質塗布装置
JP3998382B2 (ja) * 1999-12-15 2007-10-24 株式会社東芝 成膜方法及び成膜装置
TW594421B (en) * 2002-01-30 2004-06-21 Toshiba Corp Film forming method/device, image-forming method and semiconductor device manufacturing method
US20080138927A1 (en) * 2004-03-11 2008-06-12 The University Of Vermont And State Agricultural College Systems and Methods for Fabricating Crystalline Thin Structures Using Meniscal Growth Techniques
JP2006269599A (ja) * 2005-03-23 2006-10-05 Sony Corp パターン形成方法、有機電界効果型トランジスタの製造方法、及び、フレキシブルプリント回路板の製造方法
WO2007119703A1 (ja) * 2006-04-14 2007-10-25 Konica Minolta Holdings, Inc. 結晶性有機半導体薄膜の製造方法、有機半導体薄膜、電子デバイスおよび薄膜トランジスタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236566A (ja) * 1987-03-24 1988-10-03 Sharp Corp 成膜方法
JPH0992617A (ja) * 1995-09-20 1997-04-04 Res Dev Corp Of Japan ナノスケール微粒子の2次薄膜集積法
JP2007294721A (ja) * 2006-04-26 2007-11-08 Konica Minolta Holdings Inc 有機半導体薄膜および有機半導体デバイス
JP2009140969A (ja) * 2007-12-03 2009-06-25 Canon Inc 有機薄膜の製造方法
WO2011040155A1 (ja) 2009-10-02 2011-04-07 国立大学法人大阪大学 有機半導体膜の製造方法および有機半導体膜アレイ
WO2012026333A1 (ja) * 2010-08-23 2012-03-01 ソニー株式会社 有機薄膜の形成方法および形成装置、ならびに有機デバイスの製造方法
JP2013077799A (ja) * 2011-09-14 2013-04-25 Denso Corp 有機半導体装置の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADAM TRACZ ET AL.: "Uniaxial Alignment of the Columnar Super-Structure of a Hexa (Alkyl) Hexa-peri-hexabenzocoronene on Untreated Glass by Simple Solution Processing", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, 2003, pages 1682 - 1683, XP055288376 *
See also references of EP2991129A4
WOJCIECH PISULA ET AL.: "Uniaxial Alignment of Polycyclic Aromatic Hydrocarbons by Solution Processing", CHEMISTRY OF MATERIALS, vol. 17, 19 April 2005 (2005-04-19), pages 2641 - 2647, XP055288378 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528915A (ja) * 2014-08-28 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 低分子半導体化合物及び非導電性ポリマーを含有する薄膜半導体
JP2016115728A (ja) * 2014-12-11 2016-06-23 富士フイルム株式会社 有機トランジスタの製造方法、有機トランジスタ
US20170338425A1 (en) * 2015-02-09 2017-11-23 Fujifilm Corporation Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, and method of manufacturing organic semiconductor film
JP2016146435A (ja) * 2015-02-09 2016-08-12 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、並びに、有機半導体膜の製造方法
WO2016129478A1 (ja) * 2015-02-09 2016-08-18 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、並びに、有機半導体膜の製造方法
US10651400B2 (en) 2015-02-09 2020-05-12 Fujifilm Corporation Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, and method of manufacturing organic semiconductor film
TWI687503B (zh) * 2015-02-09 2020-03-11 日商富士軟片股份有限公司 有機半導體元件及其製造方法、有機半導體膜形成用組合物以及有機半導體膜的製造方法
CN107210365A (zh) * 2015-02-09 2017-09-26 富士胶片株式会社 有机半导体元件及其制造方法、有机半导体膜形成用组合物以及有机半导体膜的制造方法
US10131656B2 (en) 2015-08-04 2018-11-20 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic thin film transistor material, organic thin film transistor composition, organic semiconductor film, and compound
US10283719B2 (en) 2015-08-04 2019-05-07 Fujifilm Corporation Organic thin-film transistor and method for manufacturing the same, material for organic thin-film transistor, composition for organic thin-film transistor, compound, and organic semiconductor film
US10529927B2 (en) 2015-08-04 2020-01-07 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic thin film transistor material, organic thin film transistor composition, organic semiconductor film, and compound
US10902969B2 (en) 2015-11-20 2021-01-26 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor, and method of manufacturing organic thin film transistor
WO2017086320A1 (ja) 2015-11-20 2017-05-26 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
US10468597B2 (en) 2016-02-03 2019-11-05 Fujifilm Corporation Method of manufacturing organic semiconductor film
WO2017134990A1 (ja) 2016-02-03 2017-08-10 富士フイルム株式会社 有機半導体膜の製造方法
WO2017159703A1 (ja) 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
WO2017169398A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 膜の製造方法
JPWO2017169398A1 (ja) * 2016-03-30 2019-02-21 富士フイルム株式会社 膜の製造方法
US10608119B2 (en) 2016-03-30 2020-03-31 Fujifilm Corporation Method of manufacturing film using alignment material
US10971686B2 (en) 2016-04-01 2021-04-06 Fujifilm Corporation Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
US11038125B2 (en) 2016-04-01 2021-06-15 Fujifilm Corporation Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
WO2018061821A1 (ja) 2016-09-29 2018-04-05 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子
WO2018181055A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
WO2018181056A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
WO2018181054A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
WO2019146368A1 (ja) 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
WO2020171131A1 (ja) * 2019-02-22 2020-08-27 国立大学法人東京大学 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
CN113454800A (zh) * 2019-02-22 2021-09-28 国立大学法人东京大学 有机半导体器件、有机半导体单晶膜的制造方法、以及有机半导体器件的制造方法
JP7399499B2 (ja) 2019-02-22 2023-12-18 国立大学法人 東京大学 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法

Also Published As

Publication number Publication date
US10205094B2 (en) 2019-02-12
JPWO2014175351A1 (ja) 2017-02-23
US20160104842A1 (en) 2016-04-14
KR102196923B1 (ko) 2020-12-31
CN105144417B (zh) 2019-04-02
EP2991129A1 (en) 2016-03-02
EP2991129B1 (en) 2021-08-18
JP6128665B2 (ja) 2017-05-17
CN105144417A (zh) 2015-12-09
EP2991129A4 (en) 2016-12-14
KR20160002746A (ko) 2016-01-08
JP6346339B2 (ja) 2018-06-20
JP2017147456A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6346339B2 (ja) 有機半導体薄膜の製造装置
TWI433369B (zh) Method for manufacturing organic semiconductor film
Zhao et al. A Facile Method for the Growth of Organic Semiconductor Single Crystal Arrays on Polymer Dielectric toward Flexible Field‐Effect Transistors
JP6590361B2 (ja) 有機半導体膜及びその製造方法
EP2190007B1 (en) Single crystal thin film of organic semiconductor compound and method for producing the same
KR20100070652A (ko) 유기반도체/절연성 고분자 블렌드의 상분리를 이용한 다층 박막 제조방법 및 이를 이용한 유기박막 트랜지스터
Richard et al. Large-scale patterning of π-conjugated materials by meniscus guided coating methods
Sun et al. Unidirectional coating technology for organic field-effect transistors: materials and methods
He et al. Tailoring the molecular weight of polymer additives for organic semiconductors
WO2016031968A1 (ja) 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
US7855121B2 (en) Method of forming organic thin film and method of manufacturing semiconductor device using the same
US10600962B2 (en) Method of manufacturing organic semiconductor thin film using bar-coating process and method of fabricating flexible organic semiconductor transistor comprising the same
JP7399499B2 (ja) 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
TWI685993B (zh) 包含小分子半導體化合物及非導體聚合物之薄膜半導體與有機半導體溶液及該溶液之用途
TW201834292A (zh) 膜的製造方法
Chen et al. Single-crystal dielectrics for organic field-effect transistors
JP6229924B2 (ja) 大面積ドメイン有機半導体結晶膜の作成方法及び大面積ドメイン有機半導体結晶膜
US8288767B2 (en) Thin-film transistor and forming method thereof
JP6934130B2 (ja) チエノアセンの単結晶性有機半導体膜
Onojima et al. Preparation of wettability-controlled surface by electrostatic spray deposition to improve performance uniformity of small molecule/polymer blend organic field-effect transistors
JP2020167439A (ja) 有機半導体膜及びその製造方法
Zhang et al. High-performance organic field-effect transistors based on organic single crystal microribbons fabricated by an in situ annealing method
KR20200083399A (ko) 바코팅을 이용한 유기 반도체 박막 제조방법 및 그를 포함하는 유연 유기반도체 트랜지스터의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023139.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513814

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157027745

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014787747

Country of ref document: EP