WO2020171131A1 - 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法 - Google Patents

有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2020171131A1
WO2020171131A1 PCT/JP2020/006597 JP2020006597W WO2020171131A1 WO 2020171131 A1 WO2020171131 A1 WO 2020171131A1 JP 2020006597 W JP2020006597 W JP 2020006597W WO 2020171131 A1 WO2020171131 A1 WO 2020171131A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
single crystal
substrate
crystal film
semiconductor single
Prior art date
Application number
PCT/JP2020/006597
Other languages
English (en)
French (fr)
Inventor
純一 竹谷
峻一郎 渡邉
真理 佐々木
龍幸 牧田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2021502099A priority Critical patent/JP7399499B2/ja
Priority to CN202080015814.6A priority patent/CN113454800A/zh
Priority to US17/433,232 priority patent/US20220140265A1/en
Priority to EP20759235.3A priority patent/EP3930018A4/en
Priority to KR1020217026268A priority patent/KR20210126020A/ko
Publication of WO2020171131A1 publication Critical patent/WO2020171131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films

Definitions

  • the present disclosure relates to an organic semiconductor device, a method for manufacturing an organic semiconductor single crystal film, and a method for manufacturing an organic semiconductor device.
  • organic semiconductors In recent years, interest in organic semiconductors has increased.
  • the characteristics of organic semiconductors are that, unlike conventional inorganic semiconductors such as amorphous silicon and polycrystalline silicon, they have excellent flexibility and that the roll-to-roll process makes it possible to enlarge the area at low cost.
  • the application of organic semiconductors to next-generation electronic devices as post-silicon semiconductors is under consideration.
  • an organic semiconductor device with good characteristics can be manufactured by forming an organic semiconductor single crystal film on a hydrophobic substrate such as a fluorine-based polymer insulating film.
  • Patent Document 1 Non-Patent Document 1
  • PVT Physical Vapor Transport
  • the coating method uses an organic solvent, it was not possible to coat the organic semiconductor film on a solvent-soluble substrate. Therefore, for example, it was difficult to form a pn junction structure composed of an organic semiconductor film by a coating method.
  • the surface of the electrode film is covered with pentafluorobenzenethiol (PFBT) or Modification with a self-assembled monolayer (SAM: Self-Assembled Monolayer) such as 4-methylbenzenethiol (MBT) is performed, but the heat resistance of PFBT film or MBT film is low, and PFBT is 130 to 150°C.
  • PFBT pentafluorobenzenethiol
  • SAM Self-Assembled Monolayer
  • MBT has a low work function control effect at about 100° C.
  • Non-Patent Document 2 Since the coating method is often performed by heating the substrate to about 80 to 150° C., it may not be appropriate to form the organic semiconductor on the substrate having the electrode film such as Au by the coating method.
  • Organic semiconductor device (2) The organic semiconductor device according to (1), wherein the organic semiconductor single crystal film has an area of 2 mm 2 or more.
  • An organic semiconductor single crystal film having an average film thickness of 2 to 100 nm is formed on a hydrophilic and water-insoluble first substrate by using a coating method, and the first substrate and the organic film.
  • a method for producing an organic semiconductor single crystal film comprising applying water to an interface with the semiconductor single crystal film to separate the organic semiconductor single crystal film from the first substrate.
  • the method for producing an organic semiconductor single crystal film according to (3) wherein the area of the organic semiconductor single crystal film is 2 mm 2 or more.
  • the contact angle of the first substrate is smaller than the contact angle of the organic semiconductor single crystal film, and the difference in contact angle between the first substrate and the organic semiconductor single crystal film is 80 degrees or more.
  • Applying water to the interface between the first substrate and the organic semiconductor single crystal film includes immersing the first substrate on which the organic semiconductor single crystal film is formed in water.
  • (7) Disposing the organic semiconductor single crystal film produced by the method for producing an organic semiconductor single crystal film according to any one of the above (3) to (6) on a second substrate, At least a part of a surface of the second substrate which is in contact with the organic semiconductor single crystal film is hydrophobic, solvent-soluble, non-heat resistant, or a combination thereof. Manufacturing method of organic semiconductor device.
  • the method for manufacturing an organic semiconductor device according to (7) (9) The above (7) or (8), wherein at least one of a concave portion, a convex portion, a concave and convex portion, and an electrode is provided on at least a part of a surface of the second substrate which is in contact with the organic semiconductor single crystal film.
  • an organic semiconductor single crystal film that can be arranged on a desired substrate and has a thinner film thickness than before.
  • FIG. 1 is a schematic sectional view of an organic semiconductor single crystal film formed on a mica substrate.
  • FIG. 2 is a schematic diagram showing a state in which a hydrophilic substrate having an organic semiconductor single crystal film formed thereon is immersed in water and the organic semiconductor single crystal film floats on the water surface.
  • FIG. 3 is an electron diffraction pattern obtained by observing the obtained organic semiconductor single crystal film with a transmission electron microscope (TEM).
  • FIG. 4 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a CYTOP (registered trademark)/SiO 2 /Si substrate.
  • FIG. 5 is a polarization microscope image obtained by observing the organic semiconductor single crystal film arranged on CYTOP (registered trademark) from the surface.
  • FIG. 6 is a schematic sectional view of an organic semiconductor single crystal film and an Au electrode arranged on a CYTOP (registered trademark)/SiO 2 /Si substrate.
  • FIG. 7 is a polarization microscope image observed from the upper surface of the manufactured BGTC type OFET.
  • FIG. 8 is a graph of transfer characteristics showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 9 is a graph of transfer characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 10 is a graph of output characteristics showing the relationship between the drain voltage and the drain current depending on the gate voltage.
  • FIG. 10 is a graph of output characteristics showing the relationship between the drain voltage and the drain current depending on the gate voltage.
  • FIG. 11 is a schematic view showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a parylene/SiO 2 /Si substrate.
  • FIG. 12 is a polarization microscope image obtained by observing the organic semiconductor single crystal film arranged on parylene from the surface.
  • FIG. 13 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a PDMS/PET substrate provided with an Au electrode.
  • FIG. 14 is a polarization microscope image of the organic semiconductor single crystal film arranged on the Au and PDMS/PET substrates observed from the surface.
  • FIG. 15 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on an Eagle glass substrate is transferred onto a parylene/polyimide substrate provided with an Au electrode.
  • FIG. 16 is a schematic cross-sectional view of an organic semiconductor single crystal film arranged on a parylene (diX-SR (registered trademark))/polyimide (PI) substrate including an Au electrode modified with PFBT.
  • FIG. 17 is a schematic sectional view of a top gate bottom contact (TGBC) type organic field effect transistor (OFET).
  • FIG. 18 is a polarization microscope image observed from the upper surface of the manufactured TGBC type OFET.
  • FIG. 19 is a graph showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 20 is a graph showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 21 is a graph showing the relationship between the drain voltage and the drain current depending on the gate voltage.
  • FIG. 22 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on an Eagle glass substrate is transferred onto a CYTOP (registered trademark)/SiO 2 /Si substrate provided with an Au electrode modified with PFBT. ..
  • FIG. 23 is a schematic sectional view of an organic semiconductor single crystal film arranged on a CYTOP (registered trademark)/SiO 2 /Si substrate provided with a PFBT-modified Au electrode.
  • FIG. 24 is a schematic cross-sectional view of a top gate bottom contact (TGBC) type organic field effect transistor (OFET).
  • FIG. 25 is a polarization microscope image observed from the upper surface of the produced TGBC type OFET.
  • FIG. 26 is a graph showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 27 is a graph showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 28 is a graph showing the relationship between the drain voltage and the drain current depending on the gate voltage.
  • FIG. 29 is a confocal laser scanning microscope in which an organic semiconductor single crystal film formed on an Eagle glass substrate is transferred and the organic semiconductor single crystal film arranged on a CYTOP (registered trademark)/SiO 2 /Si substrate is observed from the surface. It is a statue.
  • FIG. 30 shows the results obtained by a single crystal X-ray diffraction experiment of the obtained organic semiconductor single crystal film.
  • the present disclosure includes a substrate and an organic semiconductor single crystal film on the substrate, wherein the organic semiconductor single crystal film has an average film thickness of 2 to 100 nm, and at least a surface of the substrate in contact with the organic semiconductor single crystal film.
  • Some are hydrophobic, solvent soluble, non-thermostable, or a combination thereof, Targets organic semiconductor devices.
  • the average film thickness of the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is 2 to 100 nm, preferably 4 to 20 nm. When the average thickness of the organic semiconductor single crystal film is within the above range, good device characteristics can be obtained.
  • the average film thickness of the organic semiconductor single crystal film can be measured using a stylus type surface profiler or an atomic force microscope.
  • the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure has preferably 1 molecular layer to 50 molecular layers, more preferably 1 molecular layer to 10 molecular layers, still more preferably 1 molecular layer to 5 molecular layers in the thickness direction. ..
  • the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure most preferably has one molecular layer, but may have two or more molecular layers in the thickness direction.
  • the number of molecular layers of the organic semiconductor single crystal film can be measured by an atomic force microscope.
  • the thickness of one molecular layer of the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is preferably 2 to 6 nm, more preferably 2 to 4 nm.
  • the thickness of one molecular layer of the organic semiconductor single crystal film can be measured by combining single crystal X-ray structure analysis and atomic force microscope observation.
  • the area of the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is preferably 2 mm 2 or more, more preferably 10 mm 2 or more, even more preferably 100 mm 2 or more, even more preferably 1000 mm 2 or more, even more preferably 10000 mm 2. That is all.
  • the upper limit of the area of the organic semiconductor single crystal film is not particularly limited and is limited by the size of manufacturing equipment, and may be 10 m 2 , for example. Conventionally, when the vapor phase growth method was used, only an organic semiconductor single crystal film having an area of about 1 mm 2 at the maximum could be obtained, whereas the organic semiconductor device of the present disclosure has a large area as described above. You can
  • the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is composed of a single domain or multiple domains, preferably a single domain.
  • the domain of the organic semiconductor single crystal film can be measured by single crystal X-ray diffraction.
  • the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure has a single domain having a continuous area of preferably 0.005 mm 2 or more, more preferably 0.5 mm 2 or more, still more preferably 2.0 mm 2 or more.
  • the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is preferably 0.5 cm 2 /V ⁇ s or more, more preferably 3.0 cm 2 /V ⁇ s or more, further preferably 5.0 cm 2 /V ⁇ s.
  • the mobility is more preferably 7.5 cm 2 /V ⁇ s or more, and even more preferably 10 cm 2 /V ⁇ s or more.
  • the mobility of the organic semiconductor single crystal film can be calculated from the measurement result of the organic field effect transistor.
  • the organic semiconductor device of the present disclosure at least a part of the surface of the substrate that is in contact with the organic semiconductor single crystal film has a property of being hydrophobic, soluble in a solvent, non-heat resistant, or a combination thereof.
  • the entire surface of the substrate in contact with the organic semiconductor single crystal film has a property of being hydrophobic, solvent-soluble, non-heat-resistant, or a combination thereof, and more preferably the entire substrate is hydrophobic, solvent-soluble. , Non-heat resistant, or a combination thereof.
  • hydrophobic means preferably a contact angle of 80 degrees or more, more preferably 90 degrees or more, further preferably 100 degrees or more, still more preferably 110 degrees or more, still more preferably 150 degrees or more. It may have corners.
  • At least a part of the surface of the substrate in the organic semiconductor device of the present disclosure which is in contact with the organic semiconductor single crystal film preferably the entire surface of the substrate in contact with the organic semiconductor single crystal film, more preferably the entire substrate has hydrophobicity in the preferred range.
  • moisture adsorbed molecules
  • the substrate can be reduced or eliminated, and there is no influence of moisture. It is possible to manufacture a device having good characteristics.
  • hydrophobic substrate examples include parylene (contact angle of about 80 to 90 degrees), fluoropolymer CYTOP (registered trademark) (contact angle of 110 degrees), and the like.
  • solvent-soluble means substantially dissolved in an organic solvent, decomposed, or swelled, for example, toluene, dichlorobenzene, or the like, substantially dissolved in an organic solvent conventionally used in a coating method, Decomposition or swelling.
  • At least a part of the surface of the substrate in the organic semiconductor device of the present disclosure in contact with the organic semiconductor single crystal film may be solvent-soluble. Therefore, at least a part of the surface of the substrate in contact with the organic semiconductor single crystal film, preferably the entire surface of the substrate in contact with the organic semiconductor single crystal film, more preferably the entire substrate, is a p-type organic semiconductor film or an n-type organic semiconductor film. Or a laminated body including a p-type organic semiconductor film and an n-type organic semiconductor film. Therefore, the substrate in the electronic device of the present disclosure may include a pn junction structure, a pnp junction structure, or an npn junction structure formed of an organic semiconductor film.
  • non-heat resistance preferably means a glass transition point of 90° C. or lower, or sublimation, melting, or decomposition at 90° C. or lower, and more preferably a glass transition point of 120° C. or lower. Yes, or means sublimation, melting, or decomposition at 120°C or lower.
  • At least a part of the surface of the substrate in the organic semiconductor device of the present disclosure which is in contact with the organic semiconductor single crystal film, preferably the entire surface of the substrate in contact with the organic semiconductor single crystal film, more preferably the entire substrate is non-heat resistant.
  • at least a part of the surface of the substrate in contact with the organic semiconductor single crystal film, preferably the entire surface of the substrate in contact with the organic semiconductor single crystal film, more preferably the entire substrate is formed of, for example, pentafluorobenzenethiol (PFBT). It may be a substrate having an electrode film of Au or the like modified with an organized monolayer (SAM: self-assembled monolayer).
  • SAM organized monolayer
  • the organic semiconductor single crystal film can be arranged on the modifying material having low heat resistance such as PFBT.
  • the type of the organic semiconductor forming the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is not particularly limited, but, for example, a polycyclic aromatic compound having four or more rings, or one or more unsaturated five-membered members. It is possible to use a polycyclic compound having four or more rings consisting of a heterocyclic compound and a plurality of benzene rings.
  • the organic semiconductor forming the organic semiconductor single crystal film in the organic semiconductor device of the present disclosure is preferably a material having a high self-condensing function, for example, a p-type organic semiconductor of the following formula (1) showing high mobility.
  • a p-type organic semiconductor of the following formula (1) showing high mobility for example, Cn-DNBDT-NW and the like can be mentioned.
  • n may be 1-14.
  • the self-condensation function means a tendency for molecules to spontaneously aggregate and crystallize when precipitated from a solvent.
  • R1 and R2 are each independently a hydrogen atom or an alkyl group having 4 to 10 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom).
  • R1 and R2 can also be joined together to form a ring.
  • R1 and R2 are each independently a hydrogen atom or an alkyl group having 5 to 8 carbon atoms. More preferably, R1 and R2 are each independently a hydrogen atom or a hexyl group.
  • N represents an integer of 5 to 100.
  • n represents the average number of thiophene monomer units in the polythiophene semiconductor, that is, the length of the polythiophene chain. From the viewpoint of forming a single crystal film, n is preferably 50 or less.
  • R3, R4, R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R4 and R5 are preferably hydrogen atoms
  • R3 and R6 are each independently an alkyl group having 1 to 14 carbon atoms
  • R3 and R6 are hydrogen atoms
  • R4 And R5 are each independently an alkyl group having 1 to 14 carbon atoms.
  • R3 and R6 are hydrogen atoms
  • R4 and R5 are each independently an alkyl group having 1 to 14 carbon atoms. Due to the self-aggregating ability, the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • R7, R8, R9 and R10 are each independently a hydrogen atom or an alkyl group having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R7 and R9 are hydrogen atoms
  • R8 and R10 are each independently an alkyl group having 1 to 14 carbon atoms
  • R8 and R10 are hydrogen atoms
  • R7 And R9 are each independently an alkyl group having 1 to 14 carbon atoms.
  • R8 and R10 are hydrogen atoms
  • R7 and R9 are each independently an alkyl group having 1 to 14 carbon atoms. Due to the self-aggregating ability, the alkyl group preferably has 6 to 13 carbon atoms, and more preferably 8 to 10 carbon atoms.
  • R11, R12, R13 and R14 are each independently a hydrogen atom or an alkyl group having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R11 and R13 are hydrogen atoms
  • R12 and R14 are each independently an alkyl group having 1 to 14 carbon atoms
  • R12 and R14 are hydrogen atoms
  • R11 And R13 are each independently an alkyl group having 1 to 14 carbon atoms.
  • R12 and R14 are hydrogen atoms
  • R11 and R13 are each independently an alkyl group having 1 to 14 carbon atoms. Due to the self-aggregating ability, the alkyl group preferably has 5 to 12 carbon atoms, and more preferably 8 to 10 carbon atoms.
  • R15, R16, R17 and R18 are each independently a hydrogen atom or an alkyl group having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R16 and R18 are hydrogen atoms
  • R15 and R17 are each independently an alkyl group having 1 to 14 carbon atoms
  • R15 and R17 are hydrogen atoms
  • R16 And R18 are each independently an alkyl group having 1 to 14 carbon atoms.
  • R16 and R18 are hydrogen atoms
  • R15 and R17 are each independently an alkyl group having 1 to 14 carbon atoms. Due to the self-aggregating ability, the alkyl group preferably has 5 to 12 carbon atoms, and more preferably 8 to 10 carbon atoms.
  • R may be linear alkyl, branched alkyl, fluorinated linear/branched alkyl, triisopropylsilylethynyl, phenyl, or the like.
  • the organic semiconductor single crystal film can be confirmed to be a single crystal by observing it with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the organic semiconductor device of the present disclosure can be an organic EL (electroluminescence) element, an organic solar cell element, an organic photoelectric conversion element, an organic transistor element, an organic field effect transistor element, or the like.
  • the present disclosure also provides that an organic semiconductor single crystal film having an average film thickness of 2 to 100 nm is formed on a hydrophilic and water-insoluble first substrate by using a coating method, and the first substrate and A method for producing an organic semiconductor single crystal film, which comprises applying water to an interface with the organic semiconductor single crystal film to separate the organic semiconductor single crystal film from the first substrate.
  • an organic semiconductor single crystal film of the present disclosure it is possible to provide an organic semiconductor single crystal film that can be arranged on a desired substrate and has a thinner film thickness than before.
  • an organic semiconductor single crystal film having an average film thickness of 2 to 100 nm is formed on a hydrophilic and water-insoluble first substrate by a coating method. ..
  • the coating method is a method in which an organic semiconductor is dissolved in an organic solvent to prepare an organic semiconductor solution, the organic semiconductor solution is applied onto a substrate, and the organic solvent is evaporated to form a film.
  • the organic solvent the organic solvent conventionally used in the coating method can be used, and for example, toluene, dichlorobenzene or the like can be used.
  • a conventionally used method can be used as a coating method, for example, an edge casting method, a continuous edge casting method, a drop casting method, a spin coating method, a printing method.
  • a method inkjet method or gravure printing method), a dispenser method, a spray method, a dip coating method, a die coater method, a roll coater method, a bar coater method, a blade coating method or the like can be used.
  • the first substrate is a hydrophilic substrate having a contact angle of water of preferably 20 degrees or less, more preferably 10 degrees or less.
  • the first substrate is water insoluble and can be, for example, mica or glass. Since the first substrate is water-insoluble, when water is applied to the interface between the first substrate and the organic semiconductor single crystal film, the components of the first substrate elute and adhere to the organic semiconductor single crystal film. A highly pure organic semiconductor single crystal film can be obtained without causing any reaction or reaction. Further, when water is applied to the interface between the first substrate and the organic semiconductor single crystal film, the shape of the organic semiconductor single crystal film is distorted in order to maintain the shape of the first substrate without breaking. Instead, the organic semiconductor single crystal film can be separated from the first substrate. Water-insoluble means that it does not substantially dissolve, decompose, or swell in water.
  • the glass is preferably one whose surface has been subjected to UV/ozone treatment or hydrophilic treatment by a hydrophilic coating material or the like.
  • Water is applied to the interface between the first substrate and the organic semiconductor single crystal film to separate the organic semiconductor single crystal film from the first substrate. Since the molecules of the organic semiconductor single crystal film coated on the first substrate are hydrophobic, water enters between the hydrophilic first substrate and the molecules of the hydrophobic organic semiconductor single crystal film, and the organic semiconductor The single crystal film can be separated from the first substrate.
  • the water contact angle of the hydrophilic first substrate is smaller than the water contact angle of the hydrophobic organic semiconductor single crystal film, and the difference between the water contact angles of the first substrate and the organic semiconductor single crystal film is , Preferably 80 degrees or more, more preferably 90 degrees or more.
  • the contact angle of the organic semiconductor single crystal film is preferably 100 to 120 degrees. When the difference in contact angle between the hydrophilic first substrate and the hydrophobic organic semiconductor single crystal film is within the preferable range, the organic semiconductor single crystal film can be more stably peeled off from the first substrate. You can
  • the method of applying water to the interface between the first substrate and the organic semiconductor single crystal film is not particularly limited, and the first substrate on which the organic semiconductor single crystal film is formed may be immersed in water.
  • a method such as dropping with a dropper at the interface with the semiconductor single crystal film can be used.
  • the method of applying water to the interface between the first substrate and the organic semiconductor single crystal film preferably includes immersing the first substrate on which the organic semiconductor single crystal film is formed in water.
  • the organic semiconductor single crystal film is separated from the first substrate in water, and the organic semiconductor single crystal is self-standing in water (in a self-standing state).
  • a crystalline film can be obtained.
  • the self-standing organic semiconductor single crystal film is a hydrophobic substrate, a solvent-soluble substrate, a non-heat-resistant substrate in the above-mentioned organic semiconductor device, or a substrate having recesses, protrusions, irregularities, or electrodes, or a mesh shape or a grid shape. It can be arranged on any substrate such as the above substrate.
  • the contents regarding the organic semiconductor single crystal film in the organic semiconductor device are described. Can be applied.
  • the present disclosure also includes disposing an organic semiconductor single crystal film manufactured by the method for manufacturing an organic semiconductor single crystal film described above on a second substrate, and a surface of the second substrate in contact with the organic semiconductor single crystal film. Is at least partially hydrophobic, solvent-soluble, non-heat-resistant, or a combination thereof, and an organic semiconductor device manufacturing method.
  • the organic semiconductor single crystal film separated from the first substrate by the method for manufacturing an organic semiconductor single crystal film described above is arranged on the second substrate.
  • At least a part of the surface of the second substrate on which the organic semiconductor single crystal film is arranged, which is in contact with the organic semiconductor single crystal film, has a property of being hydrophobic, solvent-soluble, non-heat resistant, or a combination thereof.
  • the entire surface of the second substrate in contact with the organic semiconductor single crystal film has a property of being hydrophobic, solvent-soluble, non-heat resistant, or a combination thereof, and more preferably the entire second substrate is , Hydrophobic, solvent soluble, non-thermostable, or a combination thereof.
  • the contents regarding the hydrophobicity, solvent solubility, and non-heat resistance of the second substrate As the contents regarding the hydrophobicity, solvent solubility, and non-heat resistance of the second substrate, the contents described above regarding the hydrophobicity, solvent solubility, and non-heat resistance of the substrate of the organic semiconductor device can be applied.
  • Disposing the organic semiconductor single crystal film on the second substrate is preferably the first substrate while disposing the second substrate so as to contact the organic semiconductor single crystal film formed on the first substrate. And applying water to the interface between the organic semiconductor single crystal film and the organic semiconductor single crystal film to separate the organic semiconductor single crystal film from the first substrate and dispose the organic semiconductor single crystal film on the second substrate.
  • the organic semiconductor can be directly transferred from the first substrate to the second substrate.
  • the single crystal film can be transferred.
  • disposing the organic semiconductor single crystal film on the second substrate is preferably performed by immersing the first substrate on which the organic semiconductor single crystal film is formed in water to form the organic semiconductor single crystal film in water. Obtaining a free-standing organic semiconductor single crystal film separated from the first substrate and disposing the organic semiconductor single crystal film on the second substrate in water. By arranging the free-standing organic semiconductor single crystal film on the second substrate in this way, the organic semiconductor single crystal film can be easily transferred from the first substrate to the second substrate.
  • disposing the organic semiconductor single crystal film on the second substrate is performed by disposing the first substrate while disposing the second substrate so as to contact the organic semiconductor single crystal film formed on the first substrate. Immersing the substrate, the organic semiconductor single crystal film, and the second substrate in water, and transferring the organic semiconductor single crystal film from the first substrate onto the second substrate.
  • the first substrate is changed to the second substrate. Further, the organic semiconductor single crystal film can be easily transferred.
  • the second substrate may have at least one of a concave portion, a convex portion, a concave-convex portion, and an electrode on at least a part of the surface of the second substrate that is in contact with the organic semiconductor single crystal film.
  • the electrode can be formed by bringing the organic semiconductor single crystal film peeling from the first substrate into contact with the second substrate.
  • the organic semiconductor single crystal film can be arranged with a uniform thickness over the second substrate which is provided.
  • the second substrate may have a concave portion, a convex portion, or a concave-convex portion that is caused by the electrode or not caused by the electrode.
  • the depressions, protrusions, or irregularities can be rectangular, curvilinear, or a combination thereof.
  • the depth of the concave portion, the height of the convex portion, and the depth of the concave portion (distance in the thickness direction of the substrate between the lowest portion of the concave portion and the last portion of the convex portion) on the second substrate are each preferably 0 nm. It is super to 30 nm or less.
  • Example 1 A natural mica substrate was prepared as a hydrophilic substrate.
  • organic semiconductor the following formula (16) showing high mobility: The powder of p-type organic semiconductor C 9 -DNBDT-NW was prepared. Using 3-chlorothiophene as a solvent, the organic semiconductor powder was dissolved in the solvent to prepare an organic semiconductor solution. The prepared organic semiconductor solution was applied onto a mica substrate heated to 100° C. by a continuous edge casting method to form an organic semiconductor single crystal film having an average thickness of 12 nm and an area of 200 mm 2 as shown in FIG. .. The contact angle of water on the surface of the organic semiconductor single crystal film was 108 degrees.
  • FIG. 1 is a schematic sectional view of an organic semiconductor single crystal film formed on a mica substrate.
  • FIG. 2 is a schematic diagram showing a state in which a hydrophilic substrate having an organic semiconductor single crystal film formed thereon is immersed in water.
  • FIG. 3 shows an electron diffraction pattern obtained by observing the obtained organic semiconductor single crystal film with a transmission electron microscope (TEM). It was confirmed that the organic semiconductor single crystal film maintained single crystallinity even after peeling from the hydrophilic substrate.
  • TEM transmission electron microscope
  • Example 2 Similarly to Example 1, an organic semiconductor single crystal film of p-type organic semiconductor C 9 -DNBDT-NW of the formula (16) was formed on a mica substrate.
  • a CYTOP (registered trademark)-SiO 2 /Si substrate on which CYTOP (registered trademark)-809M was formed was prepared.
  • FIG. 4 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a CYTOP (registered trademark)/SiO 2 /Si substrate.
  • FIG. 5 shows a polarization microscope image obtained by observing the organic semiconductor single crystal film arranged on CYTOP (registered trademark) from the surface.
  • the S/D electrode (source/drain) was formed on the organic semiconductor single crystal film of C 9 -DNBDT-NW arranged on the CYTOP (registered trademark)/SiO 2 /Si substrate by using a metal mask.
  • an Au electrode having a length of 0.4 mm, a width of 2 mm, and a height of 40 nm was formed by vacuum vapor deposition to manufacture a bottom gate top contact (BGTC) type organic field effect transistor (OFET).
  • FIG. 6 is a schematic sectional view of an organic semiconductor single crystal film and an Au electrode arranged on a CYTOP (registered trademark)/SiO 2 /Si substrate.
  • FIG. 7 shows a polarization microscope image observed from the upper surface of the manufactured BGTC type OFET.
  • FIG. 8 is a graph of the transfer characteristic showing the relationship between the gate voltage and the drain current in the saturation region
  • FIG. 9 is a graph of the transfer characteristic showing the relationship between the gate voltage and the drain current in the linear region
  • FIG. 7 is a graph of output characteristics showing the relationship between the drain voltage and the drain current according to the above.
  • the mobility in the saturation region was 13 cm 2 /V ⁇ s
  • the mobility in the linear region was 10 cm 2 /V ⁇ s, which was a very large mobility.
  • Example 3 Similarly to Example 1, an organic semiconductor single crystal film of p-type organic semiconductor C 9 -DNBDT-NW of the formula (16) was formed on a mica substrate.
  • parylene/SiO 2 /Si substrate on which parylene (diX-SR (registered trademark)) was formed was prepared.
  • FIG. 11 is a schematic view showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a parylene/SiO 2 /Si substrate.
  • FIG. 12 shows a polarization microscope image obtained by observing the organic semiconductor single crystal film arranged on parylene from the surface.
  • Example 4 Similarly to Example 1, an organic semiconductor single crystal film of p-type organic semiconductor C 9 -DNBDT-NW of the formula (16) was formed on a mica substrate.
  • FIG. 13 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on a mica substrate is transferred onto a PDMS/PET substrate provided with an Au electrode.
  • FIG. 14 shows a polarization microscope image obtained by observing the organic semiconductor single crystal film arranged on the Au and PDMS/PET substrates from the surface.
  • Example 5 The p-type organic semiconductor C 9 -DNBDT of the formula (16) was used in the same manner as in Example 1 except that UV/ozone-treated Eagle glass (manufactured by Corning Incorporated) was used as the hydrophilic substrate instead of the mica substrate. -NW organic semiconductor single crystal film was formed.
  • FIG. 15 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on an Eagle glass substrate is transferred onto a parylene/polyimide substrate provided with an Au electrode.
  • FIG. 16 is a schematic cross-sectional view of an organic semiconductor single crystal film arranged on a parylene (diX-SR (registered trademark))/polyimide (PI) substrate provided with an Au electrode modified with PFBT.
  • FIG. 17 is a schematic sectional view of a TGBC type OFET.
  • FIG. 18 shows a polarization microscope image observed from the upper surface of the produced TGBC type OFET.
  • FIG. 19 is a graph of the transfer characteristic showing the relationship between the gate voltage and the drain current in the saturation region
  • FIG. 20 is a graph of the transfer characteristic showing the relationship between the gate voltage and the drain current in the linear region
  • FIG. 21 is the gate voltage.
  • 7 is a graph of output characteristics showing the relationship between the drain voltage and the drain current according to the above. Mobility in the saturated region 3.2cm 2 / V ⁇ s, the mobility in the linear region indicates 4.1cm 2 / V ⁇ s, small hysteresis and a relatively large mobility is shown.
  • Example 6 The p-type organic semiconductor C 9 -DNBDT of the formula (16) was used in the same manner as in Example 1 except that UV/ozone-treated Eagle glass (manufactured by Corning Incorporated) was used as the hydrophilic substrate instead of the mica substrate. -NW organic semiconductor single crystal film was formed.
  • FIG. 22 is a schematic diagram showing a state in which an organic semiconductor single crystal film formed on an Eagle glass substrate is transferred onto a CYTOP (registered trademark)/SiO 2 /Si substrate having an Au electrode modified with PFBT. ..
  • FIG. 23 is a schematic sectional view of an organic semiconductor single crystal film arranged on a CYTOP (registered trademark)/SiO 2 /Si substrate provided with a PFBT-modified Au electrode.
  • FIG. 24 is a schematic sectional view of a TGBC type OFET.
  • FIG. 25 shows a polarization microscope image observed from the upper surface of the produced TGBC type OFET.
  • FIG. 26 is a graph of a transfer characteristic showing the relationship between the gate voltage and the drain current in the saturation region
  • FIG. 27 is a graph of the transfer characteristic showing the relationship between the gate voltage and the drain current in the linear region
  • FIG. 28 is a graph showing the gate voltage.
  • 7 is a graph of output characteristics showing the relationship between the drain voltage and the drain current according to the above.
  • the mobility in the saturated region was 0.9 cm 2 /V ⁇ s
  • the mobility in the linear region was 1.9 cm 2 /V ⁇ s, which showed small hysteresis and steep subthreshold characteristics.
  • Example 7 The p-type organic semiconductor C 9 -DNBDT of the formula (16) was used in the same manner as in Example 1 except that UV/ozone-treated Eagle glass (manufactured by Corning Incorporated) was used as the hydrophilic substrate instead of the mica substrate. -NW organic semiconductor single crystal film was formed.
  • a CYTOP (registered trademark)-SiO 2 /Si substrate on which CYTOP (registered trademark)-809M was formed was prepared.
  • the CYTOP (registered trademark)/SiO 2 /Si substrate is arranged so that the CYTOP (registered trademark) is in contact with the organic semiconductor single crystal film formed on the Eagle glass that has been subjected to UV/ozone treatment. Water was added dropwise to the interface with the crystal film, and the 1.7 cm 2 organic semiconductor single crystal film was peeled from the Eagle glass substrate and transferred onto CYTOP (registered trademark).
  • FIG. 29 shows a confocal laser scanning microscope image of the organic semiconductor single crystal film arranged on the CYTOP (registered trademark)/SiO 2 /Si substrate from the Eagle glass substrate as observed from the surface.
  • the obtained organic semiconductor single crystal film had a single domain with a continuous area of 20 mm 2 .
  • Example 8 The p-type organic semiconductor C 9 -DNBDT of the formula (16) was used in the same manner as in Example 1 except that UV/ozone-treated Eagle glass (manufactured by Corning Incorporated) was used as the hydrophilic substrate instead of the mica substrate. -NW organic semiconductor single crystal film was formed.
  • a 30 ⁇ m thick glass substrate was prepared for single crystal X-ray diffraction measurement.
  • a glass substrate prepared so as to be in contact with the organic semiconductor single crystal film formed on the Eagle glass that has been subjected to UV/ozone treatment is placed, and water is dropped at the interface between the organic semiconductor single crystal film and the glass substrate to form an organic film.
  • the semiconductor single crystal film was peeled off from the Eagle glass substrate and transferred onto the glass substrate.
  • FIG. 30 shows the single crystal X-ray diffraction measurement results of the organic semiconductor single crystal film transferred onto the glass substrate.
  • c * corresponds to the crystal growth direction, and a portion surrounded by a white circle shows a diffraction peak derived from the organic semiconductor single crystal film.
  • a single spot was obtained by single crystal X-ray diffraction, and it was found that the obtained organic semiconductor single crystal film was composed of a single domain in the range of 0.00795 mm 2 irradiated with X rays. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本開示は、所望の基板上に配置可能な、従来よりも薄い膜厚を有する有機半導体単結晶膜を提供する。本開示は、基板、及び前記基板上の有機半導体単結晶膜を含み、前記有機半導体単結晶膜の平均膜厚が2~100nmであり、前記基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、接触角80度以上の疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、有機半導体デバイスに関する。

Description

有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
 本開示は、有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法に関する。
 近年、有機半導体ヘの関心が高まっている。有機半導体の特徴としては、従来のアモルファスシリコンや多結晶シリコンの無機半導体とは異なり、柔軟性に優れていることや、roll to roll プロセスで安価に大面積化が可能であること等が挙げられ、有機半導体はポストシリコン半導体として次世代型の電子デバイスへの応用が検討されている。
 特に、フッ素系高分子絶縁膜のような疎水性基板上に有機半導体単結晶膜を形成することで、特性の良い有機半導体デバイスを作製できることが知られている。
 また、有機半導体デバイスの製造方法として、従来、塗布法や気相成長法(PVT:Physical Vapor Transport)等の成膜方法が用いられており(特許文献1、非特許文献1)、特に、成膜方法に塗布法を用いることにより材料の使用効率向上や大幅なコストダウンが期待できる。
特開2015-185620号公報
Balthasar Blulle, et al., Approaching the trap-free limit in organic single-crystal field-effect transistors, Physical Review Applied 1, 034006 (2014) M. Kitamura et al., Work function of gold surfaces modified using substituted benzenethiols: Reaction time dependence and thermal stability, Appl. Phys. Express 7, 035701 (2014)
 しかしながら、従来、気相成長法を用いる場合は、2μm程度の大きな厚みの有機半導体単結晶膜しか得られず、それよりも薄い厚みの有機半導体単結晶膜を得ることが困難であった。
 また、塗布法を用いる場合、フッ素系高分子絶縁膜のような疎水性基板上に有機半導体膜を形成することができなかった。
 また、塗布法では有機溶媒を用いるので、溶剤可溶性の基板上に有機半導体膜を塗布することもできなかった。そのため、例えば、有機半導体膜で構成されるpn接合構造を塗布法で形成することは困難であった。
 さらには、基板上にAu等の電極膜を有する場合、電極の仕事関数を制御し、電極から有機半導体へのキャリア注入を改善するため、電極膜の表面を、ペンタフルオロベンゼンチオール(PFBT)あるいは4-メチルベンゼンチオール(MBT)等の自己組織化単分子層(SAM:Self-Assembled Monolayer)で修飾することが行われるが、PFBT膜あるいはMBT膜は耐熱性が低く、PFBTは130~150℃程度、MBTは100℃程度で仕事関数制御効果が低下してしまう(非特許文献2)。塗布法は、基板を80~150℃程度に加熱して行われることが多いため、Au等の電極膜を有する基板上に有機半導体を塗布法で形成することは適切でないことがあった。
 このように、気相成長法を用いる場合は、薄い膜厚を有する有機半導体単結晶膜を得ることができず、塗布法を用いる場合は、基板に制限があった。
 そのため、所望の基板上に配置可能な、従来よりも薄い膜厚を有する有機半導体単結晶膜が求められていた。
 (1)基板、及び
 前記基板上の有機半導体単結晶膜
 を含み、
 前記有機半導体単結晶膜の平均膜厚が2~100nmであり、
 前記基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、
 有機半導体デバイス。
 (2)前記有機半導体単結晶膜の面積が2mm2以上である、上記(1)に記載の有機半導体デバイス。
 (3)塗布法を用いて、親水性且つ非水溶性の第1の基板上に、平均膜厚が2~100nmの有機半導体単結晶膜を形成すること、及び
 前記第1の基板と前記有機半導体単結晶膜との界面に水を適用して、前記有機半導体単結晶膜を前記第1の基板から分離させること
 を含む、有機半導体単結晶膜の製造方法。
 (4)前記有機半導体単結晶膜の面積が2mm2以上である、上記(3)に記載の有機半導体単結晶膜の製造方法。
 (5)前記第1の基板の接触角は前記有機半導体単結晶膜の接触角よりも小さく、前記第1の基板と前記有機半導体単結晶膜との接触角の差が80度以上である、上記(3)または(4)に記載の有機半導体単結晶膜の製造方法。
 (6)前記第1の基板と前記有機半導体単結晶膜との界面に水を適用することが、前記有機半導体単結晶膜を形成した前記第1の基板を水中に浸漬することを含む、上記(3)~(5)のいずれかに記載の有機半導体単結晶膜の製造方法。
 (7)上記(3)~(6)のいずれかに記載の有機半導体単結晶膜の製造方法で製造する前記有機半導体単結晶膜を第2の基板上に配置することを含み、
 前記第2の基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、
 有機半導体デバイスの製造方法。
 (8)前記有機半導体単結晶膜を第2の基板上に配置することが、前記第1の基板上に形成した前記有機半導体単結晶膜に接するように前記第2の基板を配置しながら、前記第1の基板と前記有機半導体単結晶膜との界面に水を適用して前記有機半導体単結晶膜を前記第1の基板から分離させて第2の基板上に配置することを含む、上記(7)に記載の有機半導体デバイスの製造方法。
 (9)前記第2の基板の前記有機半導体単結晶膜と接する面の少なくとも一部に、凹部、凸部、凹凸部、及び電極のうち少なくとも1つを有する、上記(7)または(8)に記載の有機半導体デバイスの製造方法。
 本開示によれば、所望の基板上に配置可能な、従来よりも薄い膜厚を有する有機半導体単結晶膜を得ることができる。
図1は、マイカ基板上に製膜した有機半導体単結晶膜の断面模式図である。 図2は、有機半導体単結晶膜を形成した親水性基板を水に浸漬し、有機半導体単結晶膜が水面に浮かぶ状態を表す模式図である。 図3は、得られた有機半導体単結晶膜について、透過型電子顕微鏡(TEM)観察で得られた電子回折図形である。 図4は、CYTOP(登録商標)/SiO2/Si基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。 図5は、CYTOP(登録商標)上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像である。 図6は、CYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜及びAu電極の断面模式図である。 図7は、作製したBGTC型OFETの上面から観察した偏光顕微鏡像である。 図8は、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図9は、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図10は、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフである。 図11は、パリレン/SiO2/Si基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。 図12は、パリレン上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像である。 図13は、Au電極を備えたPDMS/PET基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。 図14は、Au及びPDMS/PET基板上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像である。 図15は、Au電極を備えたパリレン/ポリイミド基板上に、イーグルガラス基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。 図16は、PFBTで修飾したAu電極を備えるパリレン(diX-SR(登録商標))/ポリイミド(PI)基板上に配置した有機半導体単結晶膜の断面模式図である。 図17は、トップゲートボトムコンタクト(TGBC)型有機電界効果トランジスタ(OFET)の断面模式図である。 図18は、作製したTGBC型OFETの上面から観察した偏光顕微鏡像である。 図19は、飽和領域におけるゲート電圧とドレイン電流との関係を表すグラフである。 図20は、線形領域におけるゲート電圧とドレイン電流との関係を表すグラフである。 図21は、ゲート電圧によるドレイン電圧とドレイン電流との関係を表すグラフである。 図22は、PFBTで修飾したAu電極を備えたCYTOP(登録商標)/SiO2/Si基板上に、イーグルガラス基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。 図23は、PFBTで修飾したAu電極を備えるCYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜の断面模式図である。 図24は、トップゲートボトムコンタクト(TGBC)型有機電界効果トランジスタ(OFET)の断面模式図である。 図25は、作製したTGBC型OFETの上面から観察した偏光顕微鏡像である。 図26は、飽和領域におけるゲート電圧とドレイン電流との関係を表すグラフである。 図27は、線形領域におけるゲート電圧とドレイン電流との関係を表すグラフである。 図28は、ゲート電圧によるドレイン電圧とドレイン電流との関係を表すグラフである。 図29は、イーグルガラス基板上に成膜した有機半導体単結晶膜を転写し、CYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜を表面から観察した共焦点レーザー顕微鏡像である。 図30は、得られた有機半導体単結晶膜の単結晶X線回折実験で得られた結果である。
 本開示は、基板、及び前記基板上の有機半導体単結晶膜を含み、前記有機半導体単結晶膜の平均膜厚が2~100nmであり、前記基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、
 有機半導体デバイスを対象とする。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜の平均膜厚は、2~100nmであり、好ましくは4~20nmである。有機半導体単結晶膜の平均膜厚が前記範囲にあることにより、良好なデバイス特性を得ることができる。有機半導体単結晶膜の平均膜厚の測定は、触針式表面形状測定器または原子間力顕微鏡を用いて行うことができる。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜は厚み方向に、好ましくは1分子層~50分子層、より好ましくは1分子層~10分子層、さらに好ましくは1分子層~5分子層を有する。本開示の有機半導体デバイスにおける有機半導体単結晶膜は、1分子層を有することが最も好ましいが、厚み方向に2分子層以上を有してもよい。有機半導体単結晶膜の分子層数は原子間力顕微鏡で測定することができる。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜の1分子層の厚みは、好ましくは2~6nm、より好ましくは2~4nmである。有機半導体単結晶膜の1分子層の厚みは単結晶X線構造解析と原子間力顕微鏡観察と組み合わせることで測定することができる。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜の面積は、好ましくは2mm2以上、より好ましくは10mm2以上、さらに好ましくは100mm2以上、さらにより好ましくは1000mm2以上、さらにより好ましくは10000mm2以上である。有機半導体単結晶膜の面積の上限は、特に限定されず、製造設備の大きさによって制限され、例えば10m2としてもよい。従来、気相成長法を用いる場合は最大でも1mm2程度の面積を有する有機半導体単結晶膜しか得られなかったのに対して、本開示の有機半導体デバイスにおける上記のように大きな面積を有することができる。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜は、シングルドメインまたはマルチドメインからなり、好ましくはシングルドメインからなる。有機半導体単結晶膜のドメインは、単結晶X線回折で測定することができる。本開示の有機半導体デバイスにおける有機半導体単結晶膜は、好ましくは0.005mm以上、より好ましくは0.5mm以上、さらに好ましくは2.0mm以上の連続面積のシングルドメインを有する。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜は、好ましくは0.5cm2/V・s以上、より好ましくは3.0cm2/V・s以上、さらに好ましくは5.0cm2/V・s以上、さらにより好ましくは7.5cm2/V・s以上、さらにより好ましくは10cm2/V・s以上の移動度を示す。有機半導体単結晶膜の移動度は、有機電界効果トランジスタの測定結果から算出することができる。
 本開示の有機半導体デバイスにおいて、基板の有機半導体単結晶膜と接する面の少なくとも一部は、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有する。好ましくは、基板の有機半導体単結晶膜と接する面の全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有し、より好ましくは、基板全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有する。
 本願において疎水性とは、好ましくは80度以上の接触角、より好ましくは90度以上の接触角、さらに好ましくは100度以上、さらにより好ましくは110度以上、さらにより好ましくは150度以上の接触角を有し得る。
 本開示の有機半導体デバイスにおける基板の有機半導体単結晶膜と接する面の少なくとも一部、好ましくは基板の有機半導体単結晶膜と接する面の全体、より好ましくは基板全体が前記好ましい範囲の疎水性を示すことにより、疎水性基板上に配置した有機半導体単結晶膜を用いてデバイスを作製する場合に、基板上に付着し得る水分(吸着分子)を低減または無くすことができ、水分の影響がない良好な特性を有するデバイスを作製することができる。
 疎水性基板としては、例えば、パリレン(接触角80~90度程度)、フッ素系ポリマーのCYTOP(登録商標)(接触角110度)等が挙げられる。
 本願において溶剤可溶性とは、有機溶媒に実質的に溶解、分解、または膨潤することをいい、例えばトルエン、ジクロロベンゼン等の、塗布法で従来より用いられる有機溶媒に対して、実質的に溶解、分解、または膨潤することをいう。
 本開示の有機半導体デバイスにおける基板の有機半導体単結晶膜と接する面の少なくとも一部、好ましくは基板の有機半導体単結晶膜と接する面の全体、より好ましくは基板全体は、溶剤可溶性でもよい。そのため、基板の有機半導体単結晶膜と接する面の少なくとも一部、好ましくは基板の有機半導体単結晶膜と接する面の全体、より好ましくは基板全体は、p型有機半導体膜若しくはn型有機半導体膜であってもよく、またはp型有機半導体膜と及びn型有機半導体膜を含む積層体であってもよい。したがって、本開示の電子デバイスにおける基板は、有機半導体膜によるpn接合構造、pnp接合構造、またはnpn接合構造を含むことができる。
 本願において非耐熱性とは、好ましくは、ガラス転移点が90℃以下であるか、または90℃以下で昇華、融解、若しくは分解することをいい、より好ましくは、ガラス転移点が120℃以下であるか、または120℃以下で昇華、融解、若しくは分解することをいう。
 本開示の有機半導体デバイスにおける基板の有機半導体単結晶膜と接する面の少なくとも一部、好ましくは基板の有機半導体単結晶膜と接する面の全体、より好ましくは基板全体は、非耐熱性であってもよい。そのため、基板の有機半導体単結晶膜と接する面の少なくとも一部、好ましくは基板の有機半導体単結晶膜と接する面の全体、より好ましくは基板全体は、例えばペンタフルオロベンゼンチオール(PFBT)等の自己組織化単分子層(SAM:self-assembled monolayer)で修飾したAu等の電極膜を有する基板であってもよい。このようなPFBT等の耐熱性が低い修飾材料の上に、有機半導体単結晶膜を配置することができる。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜を構成する有機半導体の種類については特に制限は無いが、例えば、4環以上の多環芳香族化合物や、1つまたは複数の不飽和の五員複素環式化合物と複数のベンゼン環とによる4環以上の多環化合物を用いることができる。
 また、本開示の有機半導体デバイスにおける有機半導体単結晶膜を構成する有機半導体は、自己凝縮機能の高い材料であることが好ましく、例えば、高移動度を示す次式(1)のp型有機半導体Cn-DNBDT-NW等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、nは1~14であることができる。自己凝縮機能とは、分子が溶媒から析出する際に、自発的に凝集して、結晶化しやすい傾向を意味する。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜を構成する有機半導体の他の例を、次式(2)~次式(6)に示す。
Figure JPOXMLDOC01-appb-C000002
 式(2)で示されるポリチオフェン半導体において、R1及びR2はそれぞれ独立に水素原子又は炭素数が4~10のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよい。また、R1及びR2は一緒になって環を形成することもできる。自己凝集能の理由により、好ましくは、R1及びR2はそれぞれ独立に水素原子又は炭素数が5~8のアルキル基である。より好ましくはR1及びR2はそれぞれ独立に水素原子又はヘキシル基である。
 nは5~100の整数を表す。nはポリチオフェン半導体中のチオフェンモノマー単位の平均数、すなわちポリチオフェン鎖の長さを示す。単結晶膜を形成する観点からは、nは50以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R3、R4、R5及びR6はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R4=R5であることが好ましく、R3=R6であることが好ましい。溶解性の観点から、好ましくは、R4及びR5が水素原子であり、R3及びR6がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R3及びR6が水素原子であり、R4及びR5がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R3及びR6が水素原子であり、R4及びR5がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は4~12であり、より好ましくは6~10である。
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R7、R8、R9及びR10はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R7=R9であることが好ましく、R8=R10であることが好ましい。溶解性の観点から、好ましくは、R7及びR9が水素原子であり、R8及びR10がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R8及びR10が水素原子であり、R7及びR9がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R8及びR10が水素原子であり、R7及びR9がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は6~13であり、より好ましくは8~10である。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R11、R12、R13及びR14はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R11=R13であることが好ましく、R12=R14であることが好ましい。溶解性の観点から、好ましくは、R11及びR13が水素原子であり、R12及びR14がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R12及びR14が水素原子であり、R11及びR13がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R12及びR14が水素原子であり、R11及びR13がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は5~12であり、より好ましくは8~10である。
Figure JPOXMLDOC01-appb-C000006
 式(6)中、R15、R16、R17及びR18はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R15=R17であることが好ましく、R16=R18であることが好ましい。溶解性の観点から、好ましくは、R16及びR18が水素原子であり、R15及びR17がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R15及びR17が水素原子であり、R16及びR18がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R16及びR18が水素原子であり、R15及びR17がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は5~12であり、より好ましくは8~10である。
 本開示の有機半導体デバイスにおける有機半導体単結晶膜を構成する有機半導体のさらに他の例を、次式(7)~次式(15)に示す。式(7)~式(15)中、Rは、直鎖アルキル、分岐アルキル、フッ素化直鎖・分岐アルキル、トリイソプロピルシリルエチニル、フェニルなどを用いることができる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 有機半導体単結晶膜は、透過型電子顕微鏡(TEM)で観察することにより、単結晶であるかどうかを確認することができる。
 本開示の有機半導体デバイスは、有機EL(エレクトロルミネッセンス)素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子、有機電界効果トランジスタ素子等であることができる。
 本開示はまた、塗布法を用いて、親水性且つ非水溶性の第1の基板上に、平均膜厚が2~100nmの有機半導体単結晶膜を形成すること、及び前記第1の基板と前記有機半導体単結晶膜との界面に水を適用して、前記有機半導体単結晶膜を前記第1の基板から分離させることを含む、有機半導体単結晶膜の製造方法を対象とする。
 本開示の有機半導体単結晶膜の製造方法によれば、所望の基板上に配置可能な、従来よりも薄い膜厚を有する有機半導体単結晶膜を提供することができる。
 本開示の有機半導体単結晶膜の製造方法においては、塗布法を用いて、親水性且つ非水溶性の第1の基板上に、平均膜厚が2~100nmの有機半導体単結晶膜を形成する。塗布法は、有機半導体を有機溶媒に溶解させて有機半導体溶液を調製し、基板上に有機半導体溶液を塗布し、有機溶媒を蒸発させて膜を形成する方法である。有機溶媒としては、従来より塗布法に用いられている有機溶媒を用いることができ、例えばトルエン、ジクロロベンゼン等を用いることができる。
 本開示の有機半導体単結晶膜の製造方法において、塗布法として、従来から用いられている方法を用いることができ、例えば、エッジキャスト法、連続エッジキャスト法、ドロップキャスト法、スピンコーティング法、印刷法(インクジェット法やグラビア印刷法)、ディスペンサー法、及びスプレー法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、ブレードコーティング法等を用いることができる。
 第1の基板は、水の接触角が好ましくは20度以下、より好ましくは10度以下の親水性基板である。第1の基板は非水溶性であり、例えば雲母またはガラスであることができる。第1の基板が非水溶性であるため、第1の基板と有機半導体単結晶膜との界面に水を適用する際に、第1の基板の成分が溶出して有機半導体単結晶膜に付着したり反応することがなく、高純度な有機半導体単結晶膜を得ることができる。また、第1の基板と有機半導体単結晶膜との界面に水を適用する際に、第1の基板の形状が崩れることなく維持されるために、有機半導体単結晶膜の形状を歪ませることなく第1の基板から有機半導体単結晶膜を分離させることができる。非水溶性とは、水に実質的に溶解、分解、または膨潤しないことをいう。ガラスは、好ましくは、表面にUV・オゾン処理または親水性コーティング材料等により親水化処理されたものである。
 第1の基板と有機半導体単結晶膜との界面に水を適用して、有機半導体単結晶膜を第1の基板から分離させる。第1の基板上に塗布する有機半導体単結晶膜の分子は疎水性であるため、親水性の第1の基板と疎水性の有機半導体単結晶膜の分子との間に水が入り、有機半導体単結晶膜を第1の基板から分離させることができる。
 親水性の第1の基板の水の接触角は、疎水性の有機半導体単結晶膜の水の接触角よりも小さく、第1の基板と有機半導体単結晶膜との水の接触角の差は、好ましくは80度以上、より好ましくは90度以上である。有機半導体単結晶膜の接触角は好ましくは100~120度である。親水性の第1の基板と疎水性の有機半導体単結晶膜との接触角の差が、前記好ましい範囲であることにより、より安定して第1の基板から有機半導体単結晶膜を剥離させることができる。
 第1の基板と有機半導体単結晶膜との界面に水を適用する方法は特に限定されず、有機半導体単結晶膜を形成した第1の基板を水中に浸漬すること、第1の基板と有機半導体単結晶膜との界面にスポイトで滴下する等の方法であることができる。
 第1の基板と有機半導体単結晶膜との界面に水を適用する方法は、好ましくは、有機半導体単結晶膜を形成した第1の基板を水中に浸漬することを含む。有機半導体単結晶膜を形成した第1の基板を水中に浸漬することによって、水中で有機半導体単結晶膜が第1の基板から分離し、水中で自立した(self-standing状態の)有機半導体単結晶膜を得ることができる。自立した有機半導体単結晶膜は、上述の有機半導体デバイスにおける疎水性基板、溶剤溶解性基板、非耐熱性基板、または凹部、凸部、凹凸部、若しくは電極を有する基板や、メッシュ状またはグリッド状の基板等の任意の基板上に配置することができる。
 本開示の有機半導体単結晶膜の製造方法によって得られる有機半導体単結晶膜の平均膜厚、分子層、面積、ドメイン、及び移動度については、上記有機半導体デバイスにおける有機半導体単結晶膜に関する内容を適用することができる。
 本開示はまた、上記記載の有機半導体単結晶膜の製造方法で製造する有機半導体単結晶膜を第2の基板上に配置することを含み、第2の基板の有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、有機半導体デバイスの製造方法を対象とする。
 本開示の有機半導体デバイスの製造方法においては、上記記載の有機半導体単結晶膜の製造方法で第1の基板から分離した有機半導体単結晶膜を、第2の基板上に配置する。
 有機半導体単結晶膜が配置される第2の基板の有機半導体単結晶膜と接する面の少なくとも一部は、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有する。好ましくは、第2の基板の有機半導体単結晶膜と接する面の全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有し、より好ましくは、第2の基板全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有する。
 第2の基板の疎水性、溶剤可溶性、及び非耐熱性に関する内容は、上述した有機半導体デバイスの基板の疎水性、溶剤可溶性、及び非耐熱性に関して説明した内容を適用することができる。
 有機半導体単結晶膜を第2の基板上に配置することは、好ましくは、第1の基板上に形成した有機半導体単結晶膜に接するように第2の基板を配置しながら、第1の基板と有機半導体単結晶膜との界面に水を適用して有機半導体単結晶膜を第1の基板から分離させて第2の基板上に配置することを含む。このように有機半導体単結晶膜に接するように第2の基板を配置しながら有機半導体単結晶膜を第1の基板から分離させることにより、第1の基板から第2の基板に直接、有機半導体単結晶膜を移し替えることができる。
 別法では、有機半導体単結晶膜を第2の基板上に配置することは、好ましくは、有機半導体単結晶膜を形成した第1の基板を水中に浸漬し、水中で有機半導体単結晶膜を第1の基板から分離して自立した有機半導体単結晶膜を得て、水中で第2の基板上に有機半導体単結晶膜を配置することを含む。このように、水中で、自立した有機半導体単結晶膜を第2の基板上に配置することによって、第1の基板から第2の基板に容易に有機半導体単結晶膜を移し替えることができる。
 さらに好ましくは、有機半導体単結晶膜を第2の基板上に配置することは、第1の基板上に形成した有機半導体単結晶膜に接するように第2の基板を配置しながら、第1の基板、有機半導体単結晶膜、及び第2の基板を水中に浸漬し、有機半導体単結晶膜を第1の基板から第2の基板上に移し替えることを含む。このように、水中で、有機半導体単結晶膜に接するように第2の基板を配置しながら有機半導体単結晶膜を第1の基板から分離させることにより、第1の基板から第2の基板にさらに容易に有機半導体単結晶膜を移し替えることができる。
 第2の基板は、第2の基板の有機半導体単結晶膜と接する面の少なくとも一部に、凹部、凸部、凹凸部、及び電極のうち少なくとも1つを有してもよい。
 従来、トップゲート構造のトランジスタを塗布法で作製する場合、電極が配置された基板上に有機半導体を塗布する必要があるが、電極と基板との表面エネルギー差及び電極の凸部と基板の凹部の段差により、有機半導体の結晶性及び厚みを均一に形成することができず、良好なトランジスタ特性を得ることが困難であった。
 本開示の有機半導体の製造方法によれば、第2の基板が電極を有していても、第1の基板から剥離する有機半導体単結晶膜を第2の基板に接触させることにより、電極を有する第2の基板上に均一な厚みで有機半導体単結晶膜を配置することができる。
 第2の基板は、電極に起因するまたは電極に起因しない凹部、凸部、または凹凸部を有してもよい。凹部、凸部、または凹凸部は、矩形形状、曲線形状、またはそれらの組み合わせの形状であることができる。第2の基板上の凹部の深さ、凸部の高さ、及び凹凸の深さ(凹部の最低部と凸部の最後部との間の基板の厚み方向の距離)はそれぞれ、好ましくは0nm超~30nm以下である。
 (実施例1)
 親水性基板として天然マイカ基板を用意した。有機半導体として、高移動度を示す下記式(16):
Figure JPOXMLDOC01-appb-C000016
 のp型有機半導体C9-DNBDT-NWの粉末を用意した。溶剤として3-クロロチオフェンを用い、溶剤中に有機半導体粉末を溶解させ、有機半導体溶液を調製した。100℃に加熱したマイカ基板上に、調製した有機半導体溶液を連続エッジキャスト法で塗布し、図1に示すような、平均厚みが12nm、面積が200mm2の有機半導体単結晶膜を製膜した。有機半導体単結晶膜表面の水の接触角は108度であった。図1は、マイカ基板上に製膜した有機半導体単結晶膜の断面模式図である。
 図2に示すように、有機半導体単結晶膜を形成した親水性基板を水に浸漬し、親水性基板から有機半導体単結晶膜を剥離した。有機半導体単結晶膜は、水面でフリースタンディング状態であった。水面でフリースタンディング状態とは、有機半導体単結晶膜が支持基板を伴わずに結晶構造を維持しながら水面に浮いている状態であることを意味する。図2は、有機半導体単結晶膜を形成した親水性基板を水に浸漬している状態を表す模式図である。
 図3に、得られた有機半導体単結晶膜について、透過型電子顕微鏡(TEM)観察で得られた電子回折図形を示す。親水性基板からの剥離後も、有機半導体単結晶膜が単結晶性を保っていることが確認された。
 (実施例2)
 実施例1と同様に、マイカ基板上に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 疎水性基板として、CYTOP(登録商標)-809Mを製膜したCYTOP(登録商標)/SiO2/Si基板を用意した。
 図4に示すように、マイカ基板上に成膜した有機半導体単結晶膜にCYTOP(登録商標)が接するようにCYTOP(登録商標)/SiO2/Si基板を配置し、マイカ基板と有機半導体単結晶膜との界面に水を滴下して、有機半導体単結晶膜をマイカ基板から剥離させ、CYTOP(登録商標)上に転写した。図4は、CYTOP(登録商標)/SiO2/Si基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。図5に、CYTOP(登録商標)上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像を示す。
 図6に示すように、CYTOP(登録商標)/SiO2/Si基板上に配置したC9-DNBDT-NWの有機半導体単結晶膜上に、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.4mm、横2mm、及び高さ40nmのAu電極を真空蒸着により形成し、ボトムゲートトップコンタクト(BGTC)型有機電界効果トランジスタ(OFET)を作製した。図6は、CYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜及びAu電極の断面模式図である。図7に、作製したBGTC型OFETの上面から観察した偏光顕微鏡像を示す。
 図8に、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図9に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図10に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は13cm2/V・s、線形領域における移動度は10cm2/V・sを示し、非常に大きな移動度を示した。
 (実施例3)
 実施例1と同様に、マイカ基板上に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 疎水性基板として、パリレン(diX-SR(登録商標))を製膜したパリレン/SiO2/Si基板を用意した。
 図11に示すように、マイカ基板上に成膜した有機半導体単結晶膜にパリレンが接するようにパリレン/SiO2/Si基板を配置し、マイカ基板と有機半導体単結晶膜との界面に水を滴下して、有機半導体単結晶膜をマイカ基板から剥離させ、パリレン上に転写した。図11は、パリレン/SiO2/Si基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。図12に、パリレン上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像を示す。
 (実施例4)
 実施例1と同様に、マイカ基板上に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 溶剤可溶性基板として、図13に示すように、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.5mm、横0.5mm、及び高さ30nmのAu電極を真空蒸着により形成したポリジメチルシロキサン(PDMS)/ポリエチレンテレフタレート(PET)基板を用意した。図13は、Au電極を備えたPDMS/PET基板上に、マイカ基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。
 図14に示すように、マイカ基板上に成膜した有機半導体単結晶膜にソース/ドレイン(S/D)電極となるAuが接するようにAuを真空蒸着したPDMS/PET基板を配置し、マイカ基板と有機半導体単結晶膜との界面に水を滴下して、有機半導体単結晶膜をマイカ基板から剥離させ、Au及びPDMS/PET基板上に転写した。図14に、Au及びPDMS/PET基板上に配置した有機半導体単結晶膜を表面から観察した偏光顕微鏡像を示す。
 (実施例5)
 マイカ基板に代えてUV・オゾン処理を施したイーグルガラス(コーニング社製)を親水性基板として用いたこと以外は、実施例1と同様に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 疎水性基板として、図15に示すように、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.4mm、横2mm、及び高さ12nmのAu電極を真空蒸着により形成し、ペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子層で修飾したAu電極を備えるパリレン(diX-SR(登録商標))/ポリイミド(PI)基板を用意した。図15は、Au電極を備えたパリレン/ポリイミド基板上に、イーグルガラス基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。
 イーグルガラス基板上に成膜した有機半導体単結晶膜に、PFBTで修飾したAu電極(S/D電極)が接するように、PFBTで修飾したAu電極(S/D電極)を備えるパリレン(diX-SR(登録商標))/ポリイミド(PI)基板を配置し、イーグルガラス基板と有機半導体単結晶膜との界面に水を滴下して、有機半導体単結晶膜をイーグルガラス基板から剥離させ、図16に示すように、PFBTで修飾したAu電極及びパリレン基板上に有機半導体単結晶膜を転写した。図16は、PFBTで修飾したAu電極を備えるパリレン(diX-SR(登録商標))/ポリイミド(PI)基板上に配置した有機半導体単結晶膜の断面模式図である。
 さらに、図17に示すように、有機半導体単結晶膜のC9-DNBDT-NW上に、CYTOP(登録商標)、パリレン(diX-SR(登録商標))、及びゲート電極を形成し、トップゲートボトムコンタクト(TGBC)型有機電界効果トランジスタ(OFET)を作製した。図17は、TGBC型OFETの断面模式図である。図18に、作製したTGBC型OFETの上面から観察した偏光顕微鏡像を示す。
 図19に、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図20に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図21に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は3.2cm2/V・s、線形領域における移動度は4.1cm2/V・sを示し、小さいヒステリシス及び比較的大きな移動度が示された。
 (実施例6)
 マイカ基板に代えてUV・オゾン処理を施したイーグルガラス(コーニング社製)を親水性基板として用いたこと以外は、実施例1と同様に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 疎水性基板として、図22に示すように、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.4mm、横2mm、及び高さ20nmのAu電極を真空蒸着により形成し、ペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子層で修飾したAu電極を備えるCYTOP(登録商標)/SiO2/Si基板を用意した。図22は、PFBTで修飾したAu電極を備えたCYTOP(登録商標)/SiO2/Si基板上に、イーグルガラス基板上に成膜した有機半導体単結晶膜を転写させる状態を表す模式図である。
 イーグルガラス基板上に成膜した有機半導体単結晶膜に、PFBTで修飾したAu電極(S/D電極)が接するように、PFBTで修飾したAu電極(S/D電極)を備えるイーグルガラスを配置し、イーグルガラス基板と有機半導体単結晶膜との界面に水を滴下して、有機半導体単結晶膜をイーグルガラス基板から剥離させ、図23に示すように、有機半導体単結晶膜を、PFBTで修飾したAu電極及びCYTOP(登録商標)基板上に転写した。図23は、PFBTで修飾したAu電極を備えるCYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜の断面模式図である。
 さらに、図24に示すように、有機半導体単結晶膜のC9-DNBDT-NW上に、CYTOP(登録商標)、パリレン(diX-SR(登録商標))、及びゲート電極を形成し、トップゲートボトムコンタクト(TGBC)型有機電界効果トランジスタ(OFET)を作製した。図24は、TGBC型OFETの断面模式図である。図25に、作製したTGBC型OFETの上面から観察した偏光顕微鏡像を示す。
 図26に、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図27に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図28に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は0.9cm2/V・s、線形領域における移動度は1.9cm2/V・sを示し、小さいヒステリシス及び急峻なサブスレショルド特性が示された。
 (実施例7)
 マイカ基板に代えてUV・オゾン処理を施したイーグルガラス(コーニング社製)を親水性基板として用いたこと以外は、実施例1と同様に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 疎水性基板として、CYTOP(登録商標)-809Mを製膜したCYTOP(登録商標)/SiO2/Si基板を用意した。
 UV・オゾン処理を施したイーグルガラス上に成膜した有機半導体単結晶膜にCYTOP(登録商標)が接するようにCYTOP(登録商標)/SiO2/Si基板を配置し、イーグルガラスと有機半導体単結晶膜との界面に水を滴下して、1.7cmの有機半導体単結晶膜をイーグルガラス基板から剥離させ、CYTOP(登録商標)上に転写した。
 図29に、イーグルガラス基板からCYTOP(登録商標)/SiO2/Si基板上に配置した有機半導体単結晶膜を表面から観察した共焦点レーザー顕微鏡像を示す。得られた有機半導体単結晶膜は、20mmの連続面積のシングルドメインを有していた。
 得られた有機半導体単結晶膜を用いて24個の有機電界効果トランジスタを作製し、飽和領域の移動度及び線形領域の移動度を測定したところ、飽和領域の平均移動度が10.8±1.8cm/V・sであり、線形領域の平均移動度が9.9±2.1cm/V・sであった。
 (実施例8)
 マイカ基板に代えてUV・オゾン処理を施したイーグルガラス(コーニング社製)を親水性基板として用いたこと以外は、実施例1と同様に、式(16)のp型有機半導体C9-DNBDT-NWの有機半導体単結晶膜を製膜した。
 単結晶X線回折測定用に、厚さ30μmのガラス基板を用意した。UV・オゾン処理を施したイーグルガラス上に成膜した有機半導体単結晶膜に接するように用意したガラス基板を配置し、有機半導体単結晶膜とガラス基板との界面に水を滴下して、有機半導体単結晶膜をイーグルガラス基板から剥離させ、ガラス基板上に転写した。
 図30に、ガラス基板上に転写した有機半導体単結晶膜の単結晶X線回折測定結果を示す。c*が結晶成長方向に対応し、白丸で囲った箇所が有機半導体単結晶膜由来の回折ピークを示す。単結晶X線回折で単一のスポットが得られており、得られた有機半導体単結晶膜は、X線が照射される0.00795mm2の範囲においてシングルドメインで構成されていることが分かった。

 

Claims (9)

  1.  基板、及び
     前記基板上の有機半導体単結晶膜
     を含み、
     前記有機半導体単結晶膜の平均膜厚が2~100nmであり、
     前記基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、
     有機半導体デバイス。
  2.  前記有機半導体単結晶膜の面積が2mm2以上である、請求項1に記載の有機半導体デバイス。
  3.  塗布法を用いて、親水性且つ非水溶性の第1の基板上に、平均膜厚が2~100nmの有機半導体単結晶膜を形成すること、及び
     前記第1の基板と前記有機半導体単結晶膜との界面に水を適用して、前記有機半導体単結晶膜を前記第1の基板から分離させること
     を含む、有機半導体単結晶膜の製造方法。
  4.  前記有機半導体単結晶膜の面積が2mm2以上である、請求項3に記載の有機半導体単結晶膜の製造方法。
  5.  前記第1の基板の接触角は前記有機半導体単結晶膜の接触角よりも小さく、前記第1の基板と前記有機半導体単結晶膜との接触角の差が80度以上である、請求項3または4に記載の有機半導体単結晶膜の製造方法。
  6.  前記第1の基板と前記有機半導体単結晶膜との界面に水を適用することが、前記有機半導体単結晶膜を形成した前記第1の基板を水中に浸漬することを含む、請求項3~5のいずれか一項に記載の有機半導体単結晶膜の製造方法。
  7.  請求項3~6のいずれか一項に記載の有機半導体単結晶膜の製造方法で製造する前記有機半導体単結晶膜を第2の基板上に配置することを含み、
     前記第2の基板の前記有機半導体単結晶膜と接する面の少なくとも一部が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせである、
     有機半導体デバイスの製造方法。
  8.  前記有機半導体単結晶膜を第2の基板上に配置することが、前記第1の基板上に形成した前記有機半導体単結晶膜に接するように前記第2の基板を配置しながら、前記第1の基板と前記有機半導体単結晶膜との界面に水を適用して前記有機半導体単結晶膜を前記第1の基板から分離させて第2の基板上に配置することを含む、請求項7に記載の有機半導体デバイスの製造方法。
  9.  前記第2の基板の前記有機半導体単結晶膜と接する面の少なくとも一部に、凹部、凸部、凹凸部、及び電極のうち少なくとも1つを有する、請求項7または8に記載の有機半導体デバイスの製造方法。

     
PCT/JP2020/006597 2019-02-22 2020-02-19 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法 WO2020171131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021502099A JP7399499B2 (ja) 2019-02-22 2020-02-19 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
CN202080015814.6A CN113454800A (zh) 2019-02-22 2020-02-19 有机半导体器件、有机半导体单晶膜的制造方法、以及有机半导体器件的制造方法
US17/433,232 US20220140265A1 (en) 2019-02-22 2020-02-19 Organic semiconductor device, method for manufacturing organic semiconductor single crystal film, and method for manufacturing organic semiconductor device
EP20759235.3A EP3930018A4 (en) 2019-02-22 2020-02-19 ORGANIC SEMICONDUCTOR DEVICE, METHOD FOR MANUFACTURING AN ORGANIC SEMICONDUCTOR SINGLE CRYSTAL FILM AND METHOD FOR MANUFACTURING AN ORGANIC SEMICONDUCTOR DEVICE
KR1020217026268A KR20210126020A (ko) 2019-02-22 2020-02-19 유기 반도체 디바이스, 유기 반도체 단결정막의 제조 방법, 및 유기 반도체 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-030776 2019-02-22
JP2019030776 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171131A1 true WO2020171131A1 (ja) 2020-08-27

Family

ID=72144044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006597 WO2020171131A1 (ja) 2019-02-22 2020-02-19 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法

Country Status (6)

Country Link
US (1) US20220140265A1 (ja)
EP (1) EP3930018A4 (ja)
JP (1) JP7399499B2 (ja)
KR (1) KR20210126020A (ja)
CN (1) CN113454800A (ja)
WO (1) WO2020171131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181707A1 (ja) * 2021-02-25 2022-09-01 国立大学法人 東京大学 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546824A (zh) * 2022-05-07 2023-08-04 浙江大学 一种有机场效应晶体管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053265A (ja) * 2006-08-22 2008-03-06 Postech Foundation 表面誘導自己集合による単結晶共役高分子ナノ構造体の製造方法
JP2013173082A (ja) * 2012-02-23 2013-09-05 Saitama Univ 有機薄膜の成膜方法とそれを用いて形成した太陽電池
JP2014049722A (ja) * 2012-09-04 2014-03-17 Nec Corp 有機半導体トランジスタおよびその製造方法
WO2014175351A1 (ja) * 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015185620A (ja) 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
WO2016121791A1 (ja) * 2015-01-29 2016-08-04 国立大学法人東京大学 有機半導体素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022221A (zh) * 2014-06-20 2014-09-03 国家纳米科学中心 一种超薄大尺寸有机小分子单晶片层及其高质量底栅顶接触场效应晶体管的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053265A (ja) * 2006-08-22 2008-03-06 Postech Foundation 表面誘導自己集合による単結晶共役高分子ナノ構造体の製造方法
JP2013173082A (ja) * 2012-02-23 2013-09-05 Saitama Univ 有機薄膜の成膜方法とそれを用いて形成した太陽電池
JP2014049722A (ja) * 2012-09-04 2014-03-17 Nec Corp 有機半導体トランジスタおよびその製造方法
WO2014175351A1 (ja) * 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015185620A (ja) 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
WO2016121791A1 (ja) * 2015-01-29 2016-08-04 国立大学法人東京大学 有機半導体素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BALTHASAR BLULLE ET AL.: "Approaching the trap-free limit in organic single-crystal field-effect transistors", PHYSICAL REVIEW APPLIED, vol. 1, 2014, pages 034006
M. KITAMURA ET AL.: "Work function of gold surfaces modified using substituted benzenethiols: Reaction time dependence and thermal stability", APPL. PHYS. EXPRESS, vol. 7, 2014, pages 035701
See also references of EP3930018A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181707A1 (ja) * 2021-02-25 2022-09-01 国立大学法人 東京大学 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法

Also Published As

Publication number Publication date
US20220140265A1 (en) 2022-05-05
EP3930018A1 (en) 2021-12-29
KR20210126020A (ko) 2021-10-19
JPWO2020171131A1 (ja) 2020-08-27
JP7399499B2 (ja) 2023-12-18
EP3930018A4 (en) 2022-11-09
CN113454800A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Liu et al. Self‐Assembled Monolayers of Phosphonic Acids with Enhanced Surface Energy for High‐Performance Solution‐Processed N‐Channel Organic Thin‐Film Transistors
US6734038B2 (en) Method of manufacturing high-mobility organic thin films using organic vapor phase deposition
Minari et al. Controlled Self‐Assembly of Organic Semiconductors for Solution‐Based Fabrication of Organic Field‐Effect Transistors
Fan et al. The effect of thickness on the optoelectronic properties of organic field-effect transistors: towards molecular crystals at monolayer limit
WO2020171131A1 (ja) 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
US20070178710A1 (en) Method for sealing thin film transistors
KR20140064965A (ko) 유기 반도체 조성물 및 유기 트랜지스터
JP2007535163A (ja) 溶融技術により有機半導体デバイスを形成する方法
TW201330342A (zh) 有機薄膜電晶體及其製造方法
JP2015029020A (ja) 有機半導体層形成用溶液、有機半導体層および有機薄膜トランジスタ
Watanabe et al. Microcrystallization of a Solution-Processable Organic Semiconductor in Capillaries for High-Performance Ambipolar Field-Effect Transistors
JP2005159367A (ja) 多結晶有機半導体のパターン形成された領域を有するデバイスおよびその製造方法
JP2010053094A (ja) ビスナフトチオフェン誘導体、及び電界効果トランジスタ
Yamao et al. Field-effect transistors based on organic single crystals grown by an improved vapor phase method
Huang et al. Heteroepitaxy growth high performance films of perylene diimide derivatives
Zhang et al. Fabrication and physical properties of self-assembled ultralong polymer/small molecule hybrid microstructures
WO2021182545A1 (ja) パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路
Kim et al. Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications
Kara et al. Rubrene single crystal solar cells and the effect of crystallinity on interfacial recombination
US20110139063A1 (en) Formation of a thin film of molecular organic semiconductor material
JP6578645B2 (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP5743848B2 (ja) 非平面フタロシアニンの弱エピタキシー成長用の固溶体誘起層
JP5403578B2 (ja) 有機半導体薄膜及びこれを用いた有機薄膜トランジスター
WO2021044705A1 (ja) 有機半導体デバイスのソース/ドレイン用電極、それを用いた有機半導体デバイス、及びそれらの製造方法
JP2016063025A (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759235

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021502099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759235

Country of ref document: EP

Effective date: 20210922