WO2018181054A1 - 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー - Google Patents

有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー Download PDF

Info

Publication number
WO2018181054A1
WO2018181054A1 PCT/JP2018/011873 JP2018011873W WO2018181054A1 WO 2018181054 A1 WO2018181054 A1 WO 2018181054A1 JP 2018011873 W JP2018011873 W JP 2018011873W WO 2018181054 A1 WO2018181054 A1 WO 2018181054A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ring
formulas
group
represented
Prior art date
Application number
PCT/JP2018/011873
Other languages
English (en)
French (fr)
Inventor
研史 白兼
英治 福▲崎▼
征夫 谷
史子 玉國
宇佐美 由久
渡邉 哲也
岡本 敏宏
純一 竹谷
Original Assignee
富士フイルム株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東京大学 filed Critical 富士フイルム株式会社
Priority to EP18775969.1A priority Critical patent/EP3605629B1/en
Priority to JP2019509733A priority patent/JP6814448B2/ja
Publication of WO2018181054A1 publication Critical patent/WO2018181054A1/ja
Priority to US16/588,534 priority patent/US20200028096A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/22Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0677Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1066Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1081Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to an organic semiconductor element, an organic semiconductor composition, a method for producing an organic semiconductor film, an organic semiconductor film, and a compound and a polymer used therefor.
  • a semiconductor element is used for a display such as a liquid crystal display or an organic electroluminescence display, a device using a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory, a solar cell, or the like.
  • a display such as a liquid crystal display or an organic electroluminescence display
  • a device using a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory, a solar cell, or the like.
  • an organic semiconductor element having an organic semiconductor film is superior to an inorganic semiconductor element having an inorganic semiconductor film because it can be reduced in weight or cost and is excellent in flexibility.
  • a condensed polycyclic aromatic compound having a specific structure has been studied (for example, Patent Document 1).
  • an organic semiconductor element is required to have heat resistance because it is incorporated into an electronic device or the like. That is, it is required to continuously exhibit sufficient semiconductor characteristics even when used in a high temperature environment. It is an object of the present invention to provide an organic semiconductor element that exhibits desired semiconductor characteristics (for example, higher carrier mobility) and that does not easily deteriorate semiconductor characteristics even when exposed to a high temperature environment. Moreover, this invention makes it a subject to provide an organic-semiconductor film suitable as an organic-semiconductor layer in the said organic-semiconductor element, and its manufacturing method. Another object of the present invention is to provide a compound, polymer or composition suitable as a constituent material of the organic semiconductor film.
  • the above-described problems of the present invention have been solved by the following means.
  • the organic semiconductor layer contains a compound represented by the following formula (1) and / or a compound represented by the following formula (2), or a structure represented by any of the following formulas (9) and (10) An organic semiconductor element containing a polymer having at least one unit.
  • ring A and ring B represent a 5-membered or 6-membered aromatic ring or aromatic heterocycle.
  • X 1 represents a nitrogen atom or CR a
  • ring C and ring D are a 5-membered or 6-membered aromatic ring or aromatic heterocycle, or a 5-membered or 6-membered aromatic ring or aromatic ring A condensed ring including a heterocyclic ring is shown.
  • Y 1 represents an oxygen atom, a sulfur atom, CR b 2 or NR c .
  • R a , R b and R c represent a hydrogen atom or a substituent.
  • R 1 and R 2 represent a halogen atom or a group represented by the following formula (W).
  • n is 1 or 2.
  • T represents a hydrogen atom, a halogen atom, or a cyano group. * Indicates a binding site.
  • the wavy line represents the bonding site with the ring structure shown in the formula (1), (2), (9) or (10), or the formula (L -1) to (L-25) represents a binding site to the divalent group * represented by any one of (L-25). * Indicates a binding site with T or a binding site with a wavy line portion of a divalent group represented by any of formulas (L-1) to (L-25).
  • R A represents a hydrogen atom or a substituent.
  • M in the formula (L-13) is an integer of 1 to 4
  • m in the formulas (L-14) and (L-15) is an integer of 1 to 3
  • the formulas (L-16) to ( M in L-20) is 1 or 2
  • m in the formula (L-22) is an integer of 1 to 6.
  • RN represents a hydrogen atom or a substituent.
  • R si represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • R 3 to R 5 represent a halogen atom or a group represented by the above formula (W).
  • V represents NR d , an oxygen atom, a sulfur atom or a selenium atom.
  • R d represents a hydrogen atom or a substituent.
  • p, q and r are integers of 0-2. * Indicates a binding site.
  • ring E and ring F are 5-membered or 6-membered aromatic rings or aromatic heterocycles, or condensed rings containing 5-membered or 6-membered aromatic rings or aromatic heterocycles.
  • R 6 , R 7 and R 7a represent a hydrogen atom, a halogen atom, or a group represented by the above formula (W). * Indicates a binding site.
  • the condensed ring structure represented by the above formula (5) or (6) in the above formulas (9) and (10) has one binding site for the ring E and the ring F to be incorporated into the polymer chain.
  • [6] The organic semiconductor element according to [5], wherein the condensed ring structure represented by the formula (5) is a condensed ring structure represented by the following formula (7) or (8).
  • R 6a and R 6b represent a hydrogen atom, a halogen atom, or a group represented by the above formula (W).
  • R 8 and R 9 represent a halogen atom or a group represented by the above formula (W).
  • s is an integer from 0 to 4
  • t is an integer from 0 to 2.
  • Q represents a chalcogen atom. * Indicates a binding site.
  • one of the ring constituent atoms of the ring that may have R 8 or R 9 is a polymer. Has a binding site for incorporation into the chain.
  • L represents the above formula (L-1), (L-2), (L-3), (L-4), (L-13), (L-17) and (L- 18) or a divalent group selected from formulas (L-1), (L-2), (L-3), (L-4), (L-13), (L-17)
  • Ar 1 and Ar 2 are a single bond, a vinylene group, an ethynylene group, an arylene group, or a heteroarylene group, or a vinylene group, an ethynylene group, an arylene group, and a heteroarylene group.
  • R and Z represent a hydrogen atom, a halogen atom or an alkyl group.
  • R G represents an alkyl group.
  • R J represents a hydrogen atom, an alkyl group, a cyano group, or a halogen atom. * Indicates a binding site.
  • R W1 represents an alkyl group, and p1 is an integer of 0-2.
  • L W represents a chalcogen atom.
  • R W2 represents an alkyl group, and p2 is an integer of 0 to 4.
  • q1 and q2 are integers of 1 to 4. * Indicates a binding site.
  • ring A and ring B represent a 5-membered or 6-membered aromatic ring or aromatic heterocycle.
  • X 1 represents a nitrogen atom or CR a
  • ring C and ring D are a 5-membered or 6-membered aromatic ring or aromatic heterocycle, or a 5-membered or 6-membered aromatic ring or aromatic ring A condensed ring including a heterocyclic ring is shown.
  • Y 1 represents an oxygen atom, a sulfur atom, CR b 2 or NR c .
  • R a , R b and R c represent a hydrogen atom or a substituent.
  • R 1 and R 2 represent a halogen atom or a group represented by the following formula (W).
  • n is 1 or 2.
  • T represents a hydrogen atom, a halogen atom, or a cyano group. * Indicates a binding site.
  • the wavy line represents the bonding site with the ring structure shown in the formula (1), (2), (9) or (10), or the formula (L -1) to (L-25) represents a binding site to the divalent group * represented by any one of (L-25). * Indicates a binding site with T or a binding site with a wavy line portion of a divalent group represented by any of formulas (L-1) to (L-25).
  • R A represents a hydrogen atom or a substituent.
  • M in the formula (L-13) is an integer of 1 to 4
  • m in the formulas (L-14) and (L-15) is an integer of 1 to 3
  • the formulas (L-16) to ( M in L-20) is 1 or 2
  • m in the formula (L-22) is an integer of 1 to 6.
  • RN represents a hydrogen atom or a substituent.
  • R si represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • [18] [16] A method for producing an organic semiconductor film, comprising applying the organic semiconductor composition according to [17] onto a substrate to form a coating film, and drying the coating film to form an organic semiconductor film.
  • ring A and ring B represent a 5-membered or 6-membered aromatic ring or aromatic heterocycle.
  • X 1 represents a nitrogen atom or CR a
  • ring C and ring D are a 5-membered or 6-membered aromatic ring or aromatic heterocycle, or a 5-membered or 6-membered aromatic ring or aromatic ring A condensed ring including a heterocyclic ring is shown.
  • Y 1 represents an oxygen atom, a sulfur atom, CR b 2 or NR c .
  • R a , R b and R c represent a hydrogen atom or a substituent.
  • R 1 and R 2 represent a halogen atom or a group represented by the following formula (W).
  • n is 1 or 2.
  • T represents a hydrogen atom, a halogen atom, or a cyano group. * Indicates a binding site.
  • the wavy line represents the bonding site with the ring structure shown in the formula (1), (2), (9) or (10), or the formula (L -1) to (L-25) represents a binding site to the divalent group * represented by any one of (L-25). * Indicates a binding site with T or a binding site with a wavy line portion of a divalent group represented by any of formulas (L-1) to (L-25).
  • R A represents a hydrogen atom or a substituent.
  • M in the formula (L-13) is an integer of 1 to 4
  • m in the formulas (L-14) and (L-15) is an integer of 1 to 3
  • the formulas (L-16) to ( M in L-20) is 1 or 2
  • m in the formula (L-22) is an integer of 1 to 6.
  • RN represents a hydrogen atom or a substituent.
  • R si represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • ring A and ring B represent a 5-membered or 6-membered aromatic ring or aromatic heterocycle.
  • X 1 represents a nitrogen atom or CR a
  • ring C and ring D are a 5-membered or 6-membered aromatic ring or aromatic heterocycle, or a 5-membered or 6-membered aromatic ring or aromatic ring A condensed ring including a heterocyclic ring is shown.
  • Y 1 represents an oxygen atom, a sulfur atom, CR b 2 or NR c .
  • R a to R c represent a hydrogen atom or a substituent.
  • R 1 and R 2 represent a halogen atom or a group represented by the following formula (W).
  • n is 1 or 2.
  • L is a single bond, a divalent group represented by any of the following formulas (L-1) to (L-25), or the following formulas (L-1) to (L -25) represents a divalent group formed by bonding two or more divalent groups represented by any of the above.
  • T represents a hydrogen atom, a halogen atom, or a cyano group. * Indicates a binding site.
  • the wavy line represents the bonding site with the ring structure shown in the formula (1), (2), (9) or (10), or the formula (L -1) to (L-25) represents a binding site to the divalent group * represented by any one of (L-25). * Indicates a binding site with T or a binding site with a wavy line portion of a divalent group represented by any of formulas (L-1) to (L-25).
  • R A represents a hydrogen atom or a substituent.
  • M in the formula (L-13) is an integer of 1 to 4
  • m in the formulas (L-14) and (L-15) is an integer of 1 to 3
  • the formulas (L-16) to ( M in L-20) is 1 or 2
  • m in the formula (L-22) is an integer of 1 to 6.
  • RN represents a hydrogen atom or a substituent.
  • R si represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • the organic semiconductor element of the present invention exhibits desired semiconductor characteristics and does not easily deteriorate semiconductor characteristics even when exposed to a high temperature environment.
  • the organic semiconductor film of the present invention is used as an organic semiconductor layer in an organic semiconductor element, whereby the obtained organic semiconductor element exhibits desired semiconductor characteristics, and the semiconductor characteristics deteriorate even when exposed to a high temperature environment. It is possible to make the characteristics difficult to occur.
  • an organic semiconductor film having the above-described excellent characteristics can be obtained.
  • the compound, polymer or organic semiconductor composition of the present invention is suitable as a constituent material of the organic semiconductor film.
  • FIG. 1 is a schematic cross-sectional view showing a bottom gate-bottom contact type organic thin film transistor element as an example of the semiconductor element of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor element which is an example of the semiconductor element of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the indication of a compound includes its salt and its ion in addition to the compound itself. Moreover, what changed the structure in part within the range which does not impair the target effect is included. Moreover, about the compound which does not specify substituted or unsubstituted, the thing which has arbitrary substituents is included in the range which does not impair the target effect.
  • substituents, linking groups, ring structures and the like hereinafter referred to as substituents and the like).
  • each repeating unit present in the polymer may be the same or different. The same applies to each group forming a repeating unit.
  • the number of carbon atoms of the group when the number of carbon atoms of the group is limited, the number of carbon atoms of this group means the total number of carbon atoms including substituents unless otherwise specified.
  • this group when a group can form a non-cyclic skeleton and a cyclic skeleton, this group includes a non-cyclic skeleton group and a cyclic skeleton group unless otherwise specified.
  • the alkyl group includes a linear alkyl group, a branched alkyl group, and a cyclic (cyclo) alkyl group.
  • the lower limit of the number of atoms of the group forming the cyclic skeleton is 3 or more, and preferably 5 or more, regardless of the lower limit of the number of atoms specifically described for the group.
  • the organic semiconductor layer is formed using a compound having a specific structure or a polymer having a specific structure, which will be described later. Although it does not specifically limit as an organic-semiconductor element of this invention, It uses preferably as a nonluminous organic-semiconductor device.
  • the non-light-emitting organic semiconductor device may be any device that does not aim to emit light, such as an organic thin film transistor element that controls the amount of current or voltage, an organic photoelectric conversion element that converts light energy into electric power (light A solid imaging device for sensor use or a solar cell for energy conversion), an organic thermoelectric conversion device for converting thermal energy into electric power, a gas sensor, an organic rectifying device, an organic inverter or an information recording device.
  • an organic semiconductor film functions as an electronic element.
  • An organic thin film transistor element will be described as a typical example of the organic semiconductor element.
  • a compound having a specific structure or a polymer having a specific structure constitutes an organic semiconductor layer of an organic thin film transistor element.
  • the present invention is not limited to this embodiment. That is, any organic semiconductor element in which the organic semiconductor layer contains a compound having a specific structure or a polymer having a specific structure, which will be described later, is included in the organic semiconductor element of the present invention.
  • the organic-semiconductor layer of various elements can be formed according to the formation method of the organic-semiconductor layer in the following organic thin-film transistor element.
  • carrier mobility is a basic characteristic of an organic semiconductor.
  • An organic semiconductor having a high carrier mobility is not limited to an organic thin film transistor element, and can exhibit desired performance when applied to each organic semiconductor element described above.
  • the organic thin film transistor element (also referred to as an organic TFT element) of the present invention includes an organic semiconductor film (also referred to as an organic semiconductor layer or a semiconductor active layer), and further includes a source electrode, a drain electrode, and a gate electrode. it can.
  • the organic TFT element of the present invention is provided on a substrate in contact with an organic semiconductor layer, a gate electrode, an organic semiconductor layer, a gate insulating layer provided between the gate electrode and the organic semiconductor layer, and an organic semiconductor layer. And a source electrode and a drain electrode which are connected via each other.
  • an organic semiconductor layer and a gate insulating layer are provided adjacent to each other.
  • the organic thin-film transistor element of this invention is provided with said each layer, it will not specifically limit about the structure.
  • it has any structure such as bottom contact type (bottom gate-bottom contact type and top gate-bottom contact type) or top contact type (bottom gate-top contact type and top gate-top contact type). May be.
  • the organic thin film transistor element of the present invention is more preferably a bottom gate-bottom contact type or a bottom gate-top contact type (these are collectively referred to as a bottom gate type).
  • a bottom gate-bottom contact type or a bottom gate-top contact type these are collectively referred to as a bottom gate type.
  • FIG. 1 is a schematic cross-sectional view of a bottom gate-bottom contact type organic TFT element 100 which is an example of a semiconductor element of the present invention.
  • the organic TFT element 100 includes a substrate (base material) 10, a gate electrode 20, a gate insulating film 30, a source electrode 40 and a drain electrode 42, an organic semiconductor film 50, and a sealing. Layer 60 in this order.
  • the substrate (base material), the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the respective manufacturing methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • substrate is not specifically limited, For example, it is preferable that it is 10 mm or less, it is still more preferable that it is 2 mm or less, and it is especially preferable that it is 1.5 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • the gate electrode As the gate electrode, a normal electrode used as the gate electrode of the organic TFT element can be applied without particular limitation.
  • the material (electrode material) for forming the gate electrode is not particularly limited. For example, gold, silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, or other metals, InO 2 , conductive oxide such as SnO 2 or indium tin oxide (ITO), conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene or polydiacetylene, semiconductor such as silicon, germanium or gallium arsenide, or fullerene And carbon materials such as carbon nanotubes or graphite. Especially, the said metal is preferable and silver or aluminum is more preferable.
  • the thickness of the gate electrode is not particularly limited, but is preferably 20 to 200 nm.
  • the gate electrode may function as the substrate, and in this case, the substrate may not be provided.
  • a method for forming the gate electrode is not particularly limited.
  • coating or printing a thing is mentioned.
  • examples of the patterning method include printing methods such as inkjet printing, screen printing, offset printing or relief printing (flexographic printing), photolithography methods, mask vapor deposition methods, and the like.
  • the gate insulating layer is not particularly limited as long as it is an insulating layer, and may be a single layer or a multilayer.
  • the gate insulating layer is preferably formed of an insulating material, and examples of the insulating material include organic polymers and inorganic oxides.
  • the organic polymer and the inorganic oxide are not particularly limited as long as they have insulating properties, and those that can form a thin film, for example, a thin film having a thickness of 1 ⁇ m or less are preferable.
  • Each of the organic polymer and the inorganic oxide may be used alone or in combination of two or more, or the organic polymer and the inorganic oxide may be used in combination.
  • polyvinyl phenol polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroalkyl polymers represented by CYTOP (registered trademark), polycycloolefin, polyester, polyethersulfone, polyetherketone, polyimide, epoxy resin, polydimethylsiloxane ( Polyorganosiloxane represented by PDMS), polysilsesquioxane, butadiene rubber and the like.
  • PS polyvinyl phenol, polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroal
  • thermosetting resins such as phenol resin, novolac resin, cinnamate resin, acrylic resin, and polyparaxylylene resin are also included.
  • the organic polymer can be used in combination with a compound having a reactive substituent such as an alkoxysilyl group, a vinyl group, an acryloyloxy group, an epoxy group, or a methylol group.
  • the organic polymer is preferably crosslinked and cured for the purpose of increasing the solvent resistance or the insulation resistance of the gate insulating layer.
  • Crosslinking is preferably performed by generating an acid or radical using light, heat or both.
  • radical generator that generates radicals by light or heat
  • thermal polymerization initiators (H1) and photopolymerization described in paragraphs [0182] to [0186] of JP2013-214649A Initiator (H2), photo radical generator described in paragraphs [0046] to [0051] of JP2011-186069A, or paragraphs [0042] to [0056] of JP2010-285518A These radical photopolymerization initiators can be suitably used, and their contents are preferably incorporated in the present specification.
  • number average molecular weight (Mn) is 140 to 5,000, described in paragraphs [0167] to [0177] of JP2013-214649A, has a crosslinkable functional group, and has a fluorine atom. It is also preferred to use “no compound (G)”, the contents of which are preferably incorporated herein.
  • a photoacid generator that generates an acid by light
  • a photocationic polymerization initiator described in paragraphs [0033] to [0034] of JP2010-285518A or JP2012
  • the acid generators particularly sulfonium salts or iodonium salts described in paragraphs [0120] to [0136] of JP-A No. 163946 can be preferably used, and the contents thereof are preferably incorporated herein.
  • thermal acid generator that generates an acid by heat
  • a thermal cationic polymerization initiator described in JP-A 2010-285518, paragraphs [0035] to [0038], in particular, an onium salt, or the like
  • the catalysts described in paragraphs [0034] to [0035] of JP-A-2005-354012, particularly sulfonic acids and sulfonic acid amine salts, can be preferably used, and the contents thereof are preferably incorporated herein.
  • crosslinking agents described in paragraphs [0032] to [0033] of JP-A-2005-354012 particularly bifunctional or higher epoxy compounds or oxetane compounds, paragraphs [0046] to [0062] of JP-A-2006-303465.
  • a compound having at least two crosslinking groups, wherein at least one of the crosslinking groups is a methylol group or an NH group or paragraphs of JP2012-163946A It is also preferable to use compounds having two or more hydroxymethyl groups or alkoxymethyl groups in the molecule, as described in [0137] to [0145], and the contents thereof are preferably incorporated herein.
  • the method for forming the gate insulating layer with an organic polymer is not particularly limited, and examples thereof include a method in which a coating solution containing an organic polymer is applied and, if necessary, cured.
  • the solvent used in the coating solution is not particularly limited as long as it can dissolve or disperse the organic polymer, and it is appropriately selected from among the commonly used solvents depending on the type of the organic polymer. Can do.
  • the coating method is not particularly limited, and examples thereof include the above printing methods. Among these, a wet coating method such as a micro gravure coating method, a dip coating method, a screen coating printing, a die coating method or a spin coating method is preferable.
  • the application conditions are not particularly limited, and can be set as appropriate.
  • the curing method and conditions are not particularly limited as long as the organic polymer can be crosslinked and the conditions.
  • the crosslinking method (radical or acid), and further, the photoacid generator or thermal acid generator to be used. It can be set as appropriate according to the type of agent and the like.
  • the inorganic oxide is not particularly limited.
  • oxides such as nickel, compounds having a perovskite structure, such as SrTiO 3 , CaTiO 3 , BaTiO 3 , MgTiO 3, or SrNb 2 O 6 , or composite oxides or mixtures thereof.
  • silicon oxide in addition to silicon oxide (SiO X ), BPSG (Boron Phosphorus Silicon Glass), PSG (Phosphorus Silicon Glass), BSG (Borosisilicate glass), AsSG (Arsenic Silicate Glass), PbSG (Lead Silicate Glass). Glass), silicon oxynitride (SiON), SOG (spin-on-glass), or low dielectric constant SiO 2 -based material (eg, polyaryl ether, cycloperfluorocarbon polymer, benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, Fluorinated aryl ether, fluorinated polyimide, amorphous carbon or organic SOG).
  • SiO 2 -based material eg, polyaryl ether, cycloperfluorocarbon polymer, benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, Fluorinated aryl ether, fluorinated polyimi
  • a method for forming the gate insulating layer with an inorganic oxide is not particularly limited, and for example, a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD (chemical vapor deposition) method can be used. .
  • plasma may be assisted using an arbitrary gas, an ion gun, a radical gun, or the like.
  • a precursor corresponding to each metal oxide specifically, a metal halide such as chloride or bromide, a metal alkoxide, or a metal hydroxide may be converted into an acid such as hydrochloric acid, sulfuric acid or nitric acid in alcohol or water.
  • the gate insulating layer can be formed by hydrolysis with a base such as sodium hydroxide or potassium hydroxide. When such a solution process is used, the above wet coating method can be used.
  • the gate insulating layer is formed of an inorganic oxide
  • any one of the lift-off method, the sol-gel method, the electrodeposition method and the shadow mask method is combined with the patterning method as necessary. It can also be used.
  • the gate insulating layer may be subjected to surface treatment such as corona treatment, plasma treatment, UV (ultraviolet ray) / ozone treatment. In this case, it is preferable not to roughen the surface roughness by each treatment.
  • the arithmetic average roughness Ra or the root mean square roughness R q (both JIS B0601: 2013) of the surface of the gate insulating layer after the treatment is preferably 0.5 nm or less.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1000 nm.
  • the source electrode is an electrode through which current flows from the outside through wiring.
  • the drain electrode is an electrode that sends current to the outside through wiring.
  • the material for forming the source electrode and the drain electrode can be the same as the electrode material for forming the gate electrode described above. Among these, metals are preferable, and silver is more preferable.
  • the thickness of a source electrode and a drain electrode is not specifically limited, 1 nm or more is preferable respectively and 10 nm or more is especially preferable. Moreover, 500 nm or less is preferable and 300 nm or less is especially preferable.
  • interval (gate length) between a source electrode and a drain electrode can be determined suitably, for example, 200 micrometers or less are preferable and 100 micrometers or less are especially preferable.
  • the gate width can be determined as appropriate, but is preferably 5000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • a method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode and a gate insulating film are formed, and applying an electrode forming composition. Or the method of printing etc. are mentioned. In the case of patterning, the patterning method is the same as the gate electrode method described above.
  • the organic semiconductor layer contains a compound represented by the following formula (1) and / or a compound represented by the following formula (2). To do.
  • the compound represented by Formula (1) is also called a cis form
  • the compound represented by Formula (2) is also called a trans form.
  • ring A and ring B represent a 5-membered or 6-membered aromatic ring or aromatic heterocycle
  • X 1 represents a nitrogen atom or CR a
  • ring C and ring D represents a 5-membered or 6-membered aromatic ring or aromatic heterocycle, or a condensed ring including a 5-membered or 6-membered aromatic ring or aromatic heterocycle.
  • the condensed ring is preferably a bicyclic structure or a tricyclic structure, and more preferably a bicyclic structure.
  • R a represents a hydrogen atom or a substituent.
  • X 1 is preferably a nitrogen atom.
  • Y 1 represents an oxygen atom, a sulfur atom, CR b 2 or NR c .
  • R b and R c represent a hydrogen atom or a substituent.
  • Y 1 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • R a , R b, and R c are not particularly limited.
  • a group represented by the formula (W) and a halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom are preferable
  • a fluorine atom or a chlorine atom is more preferable
  • a fluorine atom is particularly preferable.
  • substituents that can be taken as R a , R b and R c are alkyl groups (preferably alkyl groups having 1 to 35 carbon atoms, more preferably alkyl groups having 1 to 25 carbon atoms), alkenyl groups (2 carbon atoms).
  • an alkynyl group preferably having 2 to 30 carbon atoms
  • an aromatic hydrocarbon group preferably having 6 to 30 carbon atoms
  • an aromatic heterocyclic group preferably a 5- to 7-membered ring.
  • the ring-constituting hetero atom is preferably one containing at least one of an oxygen atom, a nitrogen atom, a sulfur atom and a selenium atom), or a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom is preferred, and a fluorine atom) Or a chlorine atom is more preferable, and a fluorine atom is particularly preferable.
  • the alkyl group, alkenyl group, and alkynyl group that can be taken as R a , R b, and R c each include at least one of —O—, —S—, and —NR X1 — in the carbon chain or at the terminal of the carbon chain. May be included.
  • R X1 represents a hydrogen atom or a substituent.
  • the total number of —O—, —S—, and —NR X1 — that can be contained in the carbon chain or at the end of the carbon chain is preferably an integer of 1 to 5, more preferably 1 to 3, and even more preferably 1.
  • R X1 is not particularly limited, and examples thereof include an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), Alternatively, an aromatic hydrocarbon group (preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms) can be mentioned.
  • R X1 is preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group.
  • R 1 and R 2 represent a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or a group represented by the following formula (W).
  • the group represented by the formula (W) that can be adopted as R 1 and R 2 is a group having the following structure.
  • * -LT formula (W) In the formula (W), L is a single bond, a divalent group represented by any of the following formulas (L-1) to (L-25), or the following formulas (L-1) to (L -25) represents a divalent group formed by bonding two or more divalent groups represented by any of the above. Two or more divalent groups bonded to each other may be the same as or different from each other.
  • T represents a hydrogen atom, a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or a cyano group.
  • the wavy line represents the bonding site with the ring structure shown in formula (1) or (2), or formulas (L-1) to (L-25).
  • part with * of the bivalent group represented by either. * Indicates a binding site with T or a binding site with a wavy line portion of a divalent group represented by any of formulas (L-1) to (L-25).
  • R A represents a hydrogen atom or a substituent.
  • M in the formula (L-13) is an integer of 1 to 4
  • m in the formulas (L-14) and (L-15) is an integer of 1 to 3
  • the formulas (L-16) to ( M in L-20) is 1 or 2
  • m in the formula (L-22) is an integer of 1 to 6.
  • RN represents a hydrogen atom or a substituent.
  • R si represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent groups represented by the above formulas (L-17) to (L-21), (L-23) and (L-24) are represented by the following formulas (L-17A) to (L-21A), respectively. , (L-23A) and (L-24A) are preferable.
  • R A , R N , m and * in formulas (L-17A) to (L-21A), (L-23A) and (L-24A) are the same as those in formulas (L-17) to (L-21), respectively.
  • (L-23) and (L-24) have the same meanings as R A , R N , m and *.
  • L in the formula (W) represents the formulas (L-1), (L-2), (L-3), (L-4), (L-13), (L-17) and (L-18). Or a divalent group selected from formulas (L-1), (L-2), (L-3), (L-4), (L-13), (L-17) and A group formed by bonding two or more divalent groups selected from (L-18) is preferable.
  • -L- in the formula (W) preferably has a molecular weight of 1000 or less, more preferably 600 or less, and even more preferably 300 or less.
  • substituent that can be taken as R A and R N , and for example, a group selected from an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, and a halogen atom is preferable. Preferred forms of these groups are the same as those of the alkyl group, alkenyl group, alkynyl group, aromatic hydrocarbon group, aromatic heterocyclic group, and halogen atom that can be adopted as the above-mentioned R a to R c , respectively. is there.
  • alkyl group, alkenyl group, and alkynyl group that can be taken as R si are the same as the above-described forms of the alkyl group, alkenyl group, and alkynyl group that can be taken as R a to R d , respectively.
  • the group represented by the formula (W) is also preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • Preferred forms of the alkyl group, alkenyl group, and alkynyl group are the above-described R a to R c , respectively. It is the same as each form of the alkyl group, alkenyl group, and alkynyl group that can be taken as
  • n 1 or 2, and 1 is preferable.
  • the organic TFT element realizes both desired carrier mobility and heat resistance when the organic semiconductor layer contains the compound represented by the above formula (1) and / or the compound represented by the above formula (2). Can be.
  • the reason for this is not clear, but it is thought to be largely due to the action of the mother nucleus (the condensed polycyclic structure shown in each formula) of each compound. That is, the proper arrangement of N atoms in the mother nucleus and the asymmetric condensed ring structure in the minor axis direction increase the intermolecular interaction between adjacent mother nuclei due to the dipole moment, and
  • the carrier mobility is improved by increasing the overlap, etc.
  • the heat resistance is also improved by suppressing the crystal structure change rate during heating by increasing the intermolecular interaction between adjacent mother nuclei. Presumed.
  • the condensed ring structure composed of ring A and ring B is preferably a condensed ring structure represented by the following formula (3) or (4). It is more preferable that it is a condensed ring structure represented by these.
  • R 3 to R 5 represent a halogen atom or a group represented by the above formula (W).
  • V represents NR d , an oxygen atom, a sulfur atom or a selenium atom.
  • V is preferably a sulfur atom or a selenium atom, more preferably a sulfur atom.
  • R d represents a hydrogen atom or a substituent. Preferred examples of the substituent in R d include the embodiment of the substituent in R a to R c described above.
  • p, q and r are integers of 0 to 2, preferably 0 or 2, and more preferably 0.
  • ring C and ring D are preferably a condensed ring structure represented by the following formula (5) or (6), and a condensed ring structure represented by formula (5) It is more preferable that
  • ring E and ring F are 5-membered or 6-membered aromatic rings or aromatic heterocycles, or 5-membered or 6-membered aromatic rings or aromatic heterocycles.
  • a condensed ring containing a ring is shown.
  • the condensed ring containing a 5-membered or 6-membered aromatic ring or aromatic heterocyclic ring is preferably a bicyclic structure.
  • Ring E and ring F are preferably monocyclic structures.
  • R 6 , R 7 and R 7a represent a hydrogen atom, a halogen atom or a group represented by the above formula (W). * Indicates a binding site.
  • the condensed ring structure represented by the above formula (5) is preferably a condensed ring structure represented by the following formula (7) or (8), and more preferably a condensed ring structure represented by the following formula (8). Structure.
  • R 6a and R 6b represent a hydrogen atom, a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or a group represented by the above formula (W).
  • R 8 and R 9 represent a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or a group represented by the above formula (W).
  • s is an integer of 0 to 4, preferably 1 or 2, and more preferably 1.
  • t is an integer of 0 to 2, and 1 is preferable.
  • Q represents a chalcogen atom.
  • Q is preferably an oxygen atom or a sulfur atom, and more preferably a sulfur atom. * Indicates a binding site.
  • TMS represents trimethylsilyl
  • the organic semiconductor layer is a polymer having at least one structural unit represented by any of the following formulas (9) and (10) Containing.
  • “polymer” is used to mean an oligomer (for example, an oligomer having about 2 to 10 repeating units). That is, in this embodiment, “polymer” is meant to include all compounds having two or more structural units represented by any of the following formulas (9) and (10).
  • X 1, Y 1, rings A ⁇ Ring D, R 1, R 2 and n are each, X 1, Y 1 in the formula (1) and (2), ring A ⁇ Ring D, R 1, R 2 And n are synonymous, and the preferred form is also the same.
  • s and t in the above formulas (7) and (8) relating to ring C and ring D preferable s is an integer of 0 to 3, more preferable s is 0, and preferable t is 0. * Indicates a binding site for incorporation into the polymer.
  • the organic TFT element includes a polymer in which the organic semiconductor layer has at least one of the structural units represented by any one of the above formulas (9) and (10), thereby achieving both desired carrier mobility and heat resistance. Can be realized. The reason for this is not clear, but it is thought to be largely due to the action of the mother nucleus of each structural unit (the condensed polycyclic structure shown in each formula).
  • the proper arrangement of N atoms in the mother nucleus and the asymmetric condensed ring structure in the minor axis direction increase the intermolecular interaction between adjacent mother nuclei due to the dipole moment, and It is estimated that the carrier mobility is improved by increasing the overlap and the heat resistance is also improved by suppressing the crystal structure change rate during heating by increasing the intermolecular interaction between adjacent mother nuclei. Is done. This effect becomes more prominent when the mother nucleus has a structure in which the mother nucleus is conjugated and connected in the main chain direction.
  • the polymer having at least one of the structural units represented by any of the above formulas (9) and (10) preferably has a structure represented by the following formula (G).
  • Ar 1 and Ar 2 are a single bond, a vinylene group, an ethynylene group, an arylene group, or a heteroarylene group, or a vinylene group, an ethynylene group, an arylene group, and a heteroarylene group.
  • the arylene group that Ar 1 and Ar 2 may have has preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 15 carbon atoms.
  • Preferable specific examples of the arylene group include a phenylene group and a naphthylene group, and a phenylene group is preferable.
  • the heteroarylene group that Ar 1 and Ar 2 may have is a 5-membered aromatic heterocycle, a fused heterocycle containing a 5-membered aromatic heterocycle, a 6-membered aromatic heterocycle, or a 6-membered ring
  • a group consisting of a condensed heterocyclic ring containing an aromatic heterocyclic ring is preferred.
  • the heteroarylene group includes a form in which these aromatic heterocycles or condensed heterocycles have a substituent.
  • Examples of the condensed heterocyclic ring including the 5-membered aromatic heterocycle and the 5-membered aromatic heterocycle include, for example, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, an isoxazole ring, Examples include isothiazole ring, triazole ring, oxadiazole ring, thiodiazole ring, furan ring, thiophene ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, and indazole ring.
  • Examples of the condensed heterocycle including the 6-membered aromatic heterocycle and the 6-membered aromatic heterocycle include a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a quinoline ring, and an isoquinoline. Ring, quinoxaline ring, phthalazine ring, cinnoline ring, and quinazoline ring.
  • Ar 1 and Ar 2 are divalent groups formed by linking two or more groups selected from a vinylene group, an ethynylene group, an arylene group, and a heteroarylene group
  • the molecular weight of Ar 1 and Ar 2 is 48 to 1000 Is preferable, and 48 to 600 is more preferable.
  • Ar 1 and Ar 2 are more preferably a single bond or a divalent group represented by the following formula (Ar-1) or (Ar-2).
  • R W1 and R W2 represent an alkyl group.
  • p1 is an integer of 0 to 2, preferably 0 or 1.
  • p2 is an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably an integer of 0 to 2.
  • the preferable form of the alkyl group that can be taken as R W1 and R W2 is the same as the form of the alkyl group that can be taken as R X1 described above.
  • L W represents a chalcogen atom.
  • L W is preferably an oxygen atom, a sulfur atom or a selenium atom, more preferably a sulfur atom.
  • Q1 and q2 are integers of 1 to 4, preferably 1 or 2, and more preferably 1.
  • Vr represents a divalent conjugated group having 2 to 40 carbon atoms.
  • Vr is preferably a structure selected from the following formulas (V D -1) to (V D -16) and (V A -1) to (V A -11).
  • p3 is an integer of 1 to 6, preferably 1 or 2, and more preferably 1.
  • R and Z represent a hydrogen atom, a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), or an alkyl group.
  • a halogen atom preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • the preferred form of the alkyl group that can be taken as R and Z is the same as the form of the alkyl group that can be taken as R a to R c described above.
  • R G represents an alkyl group.
  • the preferred form of this alkyl group is the same as the form of the alkyl group that can be taken as R a to R c described above.
  • R J represents a hydrogen atom, an alkyl group, a cyano group, or a halogen atom.
  • Preferred forms of the alkyl group and halogen atom that can be taken as R J are the same as the form of the alkyl group and halogen atom that can be taken as Z, respectively.
  • Vr is preferably a divalent group represented by any one of the formulas (V D -1) to (V D -16).
  • the polymer When the polymer has a structure represented by the formula (G), an electron density bias occurs in the main chain, and the bias increases the interaction between the main chains, thereby increasing the orbital overlap. It is possible to improve carrier mobility or heat resistance.
  • the polymer is preferably in a form having alternately the structural unit represented by any one of the above formulas (9) and (10) and the structure represented by the above formula (G). By adopting such a structure, it is preferable because the polymer can be conjugated in the main chain direction and the bias of the ionization potential in the main chain can be reduced.
  • the polymer having at least one structural unit represented by any one of the above formulas (9) and (10) preferably has a weight average molecular weight of 1,000 to 500,000, more preferably 1,000 to 300,000.
  • the weight average molecular weight and the number average molecular weight are measured by a gel permeation chromatography (GPC) method, and are determined by conversion with standard polystyrene.
  • GLC uses HLC-8121GPC (manufactured by Tosoh Corporation) and two columns of TSKgel GMH HR -H (20) HT (Tosoh Corporation, 7.8 mm ID ⁇ 30 cm) are used for elution. 1,2,4-Trichlorobenzene is used as the liquid.
  • the sample concentration is 0.02 mass%
  • the flow rate is 1.0 mL / min
  • the sample injection amount is 300 ⁇ L
  • the measurement temperature is 160 ° C.
  • an IR (infrared) detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-128”, “F-80”, “F-40”, “F-20”, “F-10”, “ It is prepared using 12 samples of “F-4”, “F-2”, “F-1”, “A-5000”, “A-2500”, “A-1000”, and “A-500”.
  • the content of the structural unit represented by any of the above formulas (9) and (10) in the polymer having at least one of the structural units represented by any of the above formulas (9) and (10) is The total amount is preferably 10 to 100% by mass, more preferably 30 to 90% by mass, and further preferably 50 to 80% by mass.
  • the terminal structure of the polymer having at least one of the structural units represented by any of the above formulas (9) and (10) is not particularly limited, the presence or absence of other repeating units, the type of substrate used during the synthesis, Or it is not uniquely determined by the kind of quenching agent (reaction terminator) at the time of synthesis.
  • the method for synthesizing the polymer having at least one of the structural units represented by any one of the above formulas (9) and (10) is not particularly limited, and can be synthesized with reference to ordinary methods.
  • a group derived from the formula (9) and each precursor compound capable of deriving each group represented by the formula (G) are synthesized, and each precursor is converted into a Suzuki coupling reaction or a Stille coupling reaction. It can synthesize
  • the polymer having at least one structural unit represented by any one of the formulas (9) and (10) are shown below, but the present invention is not limited to these forms.
  • the mixture of the cis isomer and the trans isomer is described using the structure of the trans isomer for convenience of description.
  • it when it is simply described as a mixture, it means a mixture of a cis isomer and a trans isomer.
  • any one of the above formulas (1) and (2) in the organic semiconductor layer is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the total content of the compounds represented by any of the above formulas (1) and (2) can be 100% by mass. This total content is preferably 90% by mass or less, and more preferably 80% by mass or less, for example, when the organic semiconductor film contains a binder described later.
  • the organic semiconductor layer in a form containing a polymer having at least one of the structural units represented by any of the above formulas (9) and (10), in the organic semiconductor layer, the above formula (9) and The total content of the polymer having at least one of the structural units represented by any one of (10) is preferably 10% by mass or more, more preferably 30% by mass or more, and 50% by mass or more. More preferably.
  • the sum total of content of the polymer which has at least 1 sort (s) of the structural unit represented by either of said Formula (9) and (10) in an organic-semiconductor layer can be 100 mass%. This total content is preferably 90% by mass or less, and more preferably 80% by mass or less, for example, when the organic semiconductor film contains a binder described later.
  • organic semiconductor used in the present invention In combination with the compound represented by any of the above formulas (1) and (2) and the polymer having at least one of the structural units represented by any of the above formulas (9) and (10), Also referred to as “organic semiconductor used in the present invention”.
  • the organic semiconductor layer may contain a binder or an additive in addition to the organic semiconductor used in the present invention.
  • a binder or an additive in addition to the organic semiconductor used in the present invention.
  • the additive those usually used for the organic semiconductor layer can be used without particular limitation.
  • the binder will be described below.
  • binder As a binder, the binder normally used for an organic-semiconductor layer can be used without a restriction
  • a binder examples include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-divinylbenzene), poly (4-vinylphenol), poly (4-methylstyrene), polycarbonate, poly Insulating polymers such as arylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene or polypropylene, and copolymers thereof, polysilane, polycarbazole, polyaryl Semiconductor polymers such as amine, polyfluorene, polythiophene, polypyrrole, polyaniline, polyparaphenylene vinylene, polyacene or polyheteroacene, and their copolymerization , Rubber
  • a polymer compound having a benzene ring (a polymer having a repeating unit having a benzene ring group) is preferable.
  • content in particular of the repeating unit which has a benzene ring group is not restrict
  • the upper limit is not particularly limited, but 100 mol% can be mentioned.
  • the weight average molecular weight of the polymer used as the binder is not particularly limited, but is preferably 1,000 to 10,000,000, more preferably 3,000 to 5,000,000, and still more preferably 5,000 to 3,000,000.
  • Each of the binder and the additive may contain one kind or two or more kinds.
  • Content of the binder in an organic-semiconductor layer is not specifically limited, It can set suitably. For example, it is preferably 90% by mass or less, more preferably 70% by mass or less, and further preferably 50% by mass or less.
  • the content of the binder in the organic semiconductor layer can be 0% by mass or more, for example, preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass or more. More preferably.
  • the content of the additive in the organic semiconductor layer is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less.
  • the film thickness of the organic semiconductor layer can be appropriately adjusted according to the applied organic semiconductor element, and is preferably 10 to 500 nm, and more preferably 20 to 200 nm, for example.
  • the organic semiconductor layer is prepared, for example, by preparing a composition obtained by dissolving the organic semiconductor used in the present invention in a solvent (hereinafter also referred to as “organic semiconductor composition of the present invention”), and placing the composition on the substrate. It can be formed by coating or vapor-depositing an organic semiconductor used in the present invention. More preferably, an organic semiconductor layer can be formed by applying the organic semiconductor composition of the present invention on a substrate to form a coating film and drying the coating film.
  • This organic semiconductor composition can contain the binder and / or additive mentioned above. What is necessary is just to adjust suitably content of the binder and additive in an organic-semiconductor composition according to the form of the organic-semiconductor layer to form.
  • the application of the organic semiconductor composition on the substrate means not only an embodiment in which the organic semiconductor composition is directly applied to the substrate, but also the organic semiconductor composition above the substrate via another layer provided on the substrate. A mode of applying the object is also included.
  • Another layer to which the organic semiconductor composition is applied (a layer that is in contact with the organic semiconductor layer and serves as a foundation of the organic semiconductor layer) is inevitably determined by the structure of the organic thin film transistor element.
  • the bottom gate type is a gate insulating film
  • the top gate type top gate-bottom contact type and top gate-top contact type
  • a coating method of the organic semiconductor composition of the present invention a usual method can be used, for example, bar coating method, spin coating method, knife coating method, doctor blade method, ink jet printing method, flexographic printing method, gravure printing. Method or screen printing method.
  • a coating method of the organic semiconductor composition a method for forming an organic semiconductor film (so-called gap casting method) described in JP2013-207085A, and a method for manufacturing an organic semiconductor thin film described in International Publication No. 2014/175351 A method (so-called edge casting method or continuous edge casting method) or the like can also be suitably applied.
  • Drying can select appropriate conditions depending on the type of each component contained in the organic semiconductor composition. Although natural drying may be used, heat treatment is preferable from the viewpoint of improving productivity. Although the heat treatment conditions cannot be uniquely determined, for example, the heating temperature is preferably 30 to 250 ° C., more preferably 40 to 200 ° C., further preferably 50 to 150 ° C., and the heating time is 10 to 300 minutes. Preferably, 20 to 180 minutes is more preferable.
  • the method for preparing the organic semiconductor composition of the present invention is not particularly limited, and a normal preparation method can be adopted.
  • the organic semiconductor composition of the present invention can be prepared by adding a predetermined amount of each component to a solvent and appropriately stirring.
  • a solvent will not be specifically limited if the above-mentioned polymer is dissolved or disperse
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the organic solvent is not particularly limited, but is a hydrocarbon solvent such as hexane, octane or decane, an aromatic hydrocarbon solvent such as toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, tetralin or anisole, acetone, methyl ethyl ketone.
  • a hydrocarbon solvent such as hexane, octane or decane
  • an aromatic hydrocarbon solvent such as toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, tetralin or anisole, acetone, methyl ethyl ketone.
  • Ketone solvents such as methyl isobutyl ketone or cyclohexanone, halogenated hydrocarbon solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene or chlorotoluene, ethyl acetate, butyl acetate, amyl acetate or Ester solvent such as ethyl lactate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cello Alcohol solvents such as rube, ethyl cellosolve or ethylene glycol, ether solvents such as butoxybenzene, dibutyl ether, tetrahydrofuran or dioxane, amide solvents such as N, N-dimethylformamide or N
  • the content of the solvent in the organic semiconductor composition is preferably 90 to 99.99% by mass, more preferably 95 to 99.99% by mass, and 96 to 99.95% by mass. Is more preferable.
  • the organic semiconductor layer contains the organic semiconductor used in the present invention and exhibits high heat resistance. Therefore, carrier mobility can be maintained at a desired level even if a heating step such as formation of a sealing layer or the like is performed after the organic semiconductor is provided. Therefore, the organic thin film transistor element of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability. Thereby, it is possible to sufficiently achieve both excellent carrier mobility and durability.
  • a sealing agent composition for forming a sealing layer
  • the sealant is preferably heat dried to form a layer.
  • the heating conditions at this time cannot be uniquely determined depending on the type of the sealant, but for example, the heating temperature is preferably 50 to 200 ° C., more preferably 100 to 175 ° C. Other conditions such as the heating time are appropriately determined according to the type of the sealant.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor element 200 which is an example of the semiconductor element of the present invention.
  • the organic thin film transistor element 200 includes a substrate 10, a gate electrode 20, a gate insulating film 30, a source electrode 40 and a drain electrode 42, an organic semiconductor film 50, and a sealing layer 60.
  • the organic thin film transistor element 200 is the same as the organic thin film transistor element 100 except that the layer configuration (lamination mode) is different. Therefore, the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor layer, and sealing layer are the same as those in the above-described bottom gate-bottom contact type organic thin film transistor element, and therefore the description thereof is omitted. Omitted.
  • Et represents ethyl
  • Me represents methyl
  • Ph represents phenyl
  • Bu represents butyl
  • Ac represents acetyl
  • TBDPS represents tert-butyldiphenylsilyl.
  • DMF is N, N-dimethylformamide
  • THF is tetrahydrofuran
  • DMSO is dimethyl sulfoxide
  • NBS is N-bromosuccinimide
  • TFA trifluoroacetic acid
  • NMP is N-methyl-2-pyrrolidone
  • DME is dimethyl ether
  • TMEDA is tetra Methylethylenediamine is shown.
  • UV (ultraviolet) -ozone cleaning was performed on the surface of the thermal oxide film side of a 10 mm ⁇ 10 mm substrate in which a thermal oxide film of SiO 2 of 500 nm was formed on the surface of an n-type silicon substrate (0.4 mm thickness). Thereafter, it was treated with ⁇ -phenethyltrimethoxysilane. On the surface of this substrate treated with ⁇ -phenethyltrimethoxysilane, the compounds shown in the table below were vapor-deposited to a film thickness of 40 nm at a vapor deposition rate of 0.05 nm / s.
  • organic semiconductor film is further attached with a mask, and F4-TCNQ 2 nm and a gold electrode 40 nm are deposited as charge injection acceptors, respectively, to thereby form organic thin film transistor elements 1-1 to 1-38 (hereinafter referred to as “element 1” for FET characteristics measurement).
  • element 1 organic thin film transistor elements 1-1 to 1-38
  • comparative organic thin film transistor elements 1-1 and 1-2 hereinafter also referred to as” comparative elements 1-1 and 1-2 ").
  • each organic thin film transistor element (elements 1-1 to 1-38 and comparative elements 1-1 and 1-2) are as follows.
  • a semiconductor parameter analyzer manufactured by Agilent, manufactured by Vector Semicon, AX-2000 is connected. 4156C was used to evaluate the carrier mobility under normal pressure and atmosphere.
  • each organic thin-film transistor element FET element
  • the gate voltage is varied in a range of 20V ⁇ -150 V
  • -Evaluation criteria for carrier mobility- AA 1.0 cm 2 / Vs or more A: 0.8 cm 2 / Vs or more and less than 1.0 cm 2 / Vs B: 0.6 cm 2 / Vs or more and less than 0.8 cm 2 / Vs C: 0.4 cm 2 / Vs or more Less than 0.6 cm 2 / Vs D: 0.2 cm 2 / Vs or more and less than 0.4 cm 2 / Vs E: 0.1 cm 2 / Vs or more and less than 0.2 cm 2 / Vs F: 0.05 cm 2 / Vs or more 1 cm 2 / Vs less than G: shows a 0.05 cm 2 / Vs less results in the table below.
  • Carrier mobility maintenance rate is 90% or more
  • organic semiconductor composition prepared above was cast (drop cast method) on the following FET (field effect transistor) characteristic measurement substrate heated to 40 ° C. in a nitrogen atmosphere, whereby organic thin film transistor elements 2-1 to 2-2 -38 (hereinafter also referred to as “elements 2-1 to 2-38”) and comparative organic thin film transistor elements 2-1 and 2-2 (hereinafter also referred to as “comparative elements 2-1 and 2-2”). It was.
  • a bottom-gate / bottom-contact silicon substrate was used. About each obtained element, carrier mobility and heat resistance were evaluated similarly to the above.
  • Polymer B-1 was obtained in the same manner as in Scheme 12 except that the reaction temperature was 80 ° C. and the reaction time was 30 minutes.
  • the Mw of this polymer B-1 (b) was 11900.
  • Polymer B-1 was obtained in the same manner as in Scheme 12 except that the reaction temperature was 100 ° C. and the reaction time was 3 hours.
  • the Mw of this polymer B-1 (c) was 48500.
  • Polymer B-1 was obtained in the same manner as in Scheme 12 except that the reaction temperature was 120 ° C. and the reaction time was 3 hours.
  • the Mw of this polymer B-1 (d) was 97100.
  • Polymer B-1 was obtained in the same manner as in Scheme 12 except that the reaction temperature was 120 ° C. and the reaction time was 6 hours.
  • the Mw of this polymer B-1 (e) was 143200.
  • the organic semiconductor polymer composition 1 was cast (drop cast method) on the following FET (field effect transistor) characteristic measurement substrate heated to 40 ° C. in a nitrogen atmosphere, whereby an organic thin film transistor element 3-1 (hereinafter referred to as “element”). Also referred to as “3-1”.
  • a bottom-gate / bottom-contact silicon substrate was used.
  • An organic thin film transistor element 3 was prepared in the same manner as in the production of the element 3-1, except that the organic semiconductor polymer compositions 2 to 31 and the comparative polymer compositions 1 and 2 were used in place of the organic semiconductor polymer composition 1.
  • -2 to 3-31 hereinafter also referred to as “elements 3-2 to 3-31”
  • comparative organic thin film transistor elements 3-1 and 3-2 hereinafter also referred to as “comparative elements 3-1 and 3-2”.
  • the obtained elements 3-1 to 3-31 and comparative elements 3-1 and 3-2 were respectively replaced with organic thin film transistor elements of Examples 3-1 to 3-31 and Comparative examples 3-1 and 3-2. It was.
  • a bottom gate-bottom contact type FET characteristic measurement substrate is prepared, and the organic semiconductor polymer composition 4-1 is printed thereon by a flexographic printing method. Formed. Thus, an organic thin film transistor element 4-1 (hereinafter also referred to as “element 4-1”) was obtained.
  • a specific method for forming the organic semiconductor layer by the flexographic printing method is as follows.
  • a flexo aptitude tester F1 manufactured by IG Testing Systems Co., Ltd.
  • AFP DSH 1.70% manufactured by Asahi Kasei Co., Ltd.
  • Solid image was used as the flexo resin plate. After printing at a pressure of 60 N and a conveyance speed of 0.4 m / sec, the plate and the substrate were dried at 60 ° C. for 2 hours to form an organic semiconductor layer (film thickness: 50 nm).
  • each of the organic semiconductor polymer compositions 4-2 to 4-31 and the comparative polymer compositions 4-1 and 4-2 was used instead of the organic semiconductor polymer composition 4-1.
  • organic thin film transistor elements 4-2 to 4-31 hereinafter also referred to as “elements 4-2 to 4-31”
  • comparative organic thin film transistor elements 4-1 and 4-2 hereinafter referred to as “elements”. Also referred to as comparative elements 4-1 and 4-2 ”).
  • the obtained elements 4-1 to 4-31 and comparative elements 4-1 and 4-2 were combined with the organic thin film transistor elements of Examples 4-1 to 4-31 and Comparative examples 4-1 and 4-2, respectively. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

有機半導体層が式(1)の化合物及び/又は式(2)の化合物を含有し、又は式(9)及び(10)のいずれかの構造を有するポリマーを含有する有機半導体素子、この素子における有機半導体層に用いる有機半導体膜及びその製造方法、上記有機半導体膜に用いる化合物、ポリマー及び組成物。 X1は窒素原子又はCRaを示し、環A~環Dは特定の芳香族環又は芳香族複素環を示す。 Y1は酸素原子、硫黄原子、CRb 2、又はNRcを示す。 Ra~Rcは水素原子又は置換基を示す。 R1及びR2は特定の置換基を示す。 nは1又は2である。 *は結合部位を示す。

Description

有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
 本発明は、有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマーに関する。
 液晶ディスプレイ若しくは有機エレクトロルミネッセンスディスプレイ等のディスプレイ、RFID(radio frequency identifier:RFタグ)若しくはメモリ等の論理回路を用いる装置、又は、太陽電池等には、半導体素子が利用されている。なかでも、有機半導体膜を有する有機半導体素子は、軽量化ないし低コスト化が可能で柔軟性にも優れることから、無機半導体膜を有する無機半導体素子に対して優位性を備えている。
 上述の有機半導体膜を形成する有機化合物として、特定構造の縮合多環芳香族化合物が検討されている(例えば特許文献1)。
特開2005-45266号公報
 有機半導体素子は一般に、電子機器等に組み込まれて使用されるために耐熱性が求められる。すなわち、高温環境下における使用においても十分な半導体特性を持続的に発現することが求められる。
 本発明は、所望の半導体特性(例えば、より高いキャリア移動度)を発現し、さらに高温環境に曝されても半導体特性の低下を生じにくい有機半導体素子を提供することを課題とする。また本発明は、上記有機半導体素子における有機半導体層として好適な有機半導体膜及びその製造方法を提供することを課題とする。また本発明は、上記有機半導体膜の構成材料として好適な化合物、ポリマーないし組成物を提供することを課題とする。
 本発明の上記課題は下記の手段により解決された。
〔1〕
 有機半導体層が下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物を含有し、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する、有機半導体素子。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
 Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
 Yは酸素原子、硫黄原子、CR 又はNRを示す。
 R、R及びRは水素原子又は置換基を示す。
 R及びRはハロゲン原子又は下記式(W)で表される基を示す。
 nは1又は2である。
 *は結合部位を示す。
 
  *-L-T  式(W)
 
 式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
 Tは水素原子、ハロゲン原子、又はシアノ基を示す。
 *は結合部位を示す。
Figure JPOXMLDOC01-appb-C000021
 式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
 *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
 式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
 式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
 式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
 式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
〔2〕
 上記環A及び環Bから構成される縮合環構造が下記式(3)又は(4)で表される縮合環構造である、〔1〕に記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000022
 各式中、R~Rはハロゲン原子又は上記式(W)で表される基を示す。
 VはNR、酸素原子、硫黄原子又はセレン原子を示す。
 Rは水素原子又は置換基を示す。
 p、q及びrは0~2の整数である。
 *は結合部位を示す。
〔3〕
 上記環A及び環Bから構成される縮合環構造が上記式(4)で表される縮合環構造である、〔2〕に記載の有機半導体素子。
〔4〕
 Yが酸素原子又は硫黄原子である、〔1〕~〔3〕のいずれか1つに記載の有機半導体素子。
〔5〕
 上記環C及び環Dが下記式(5)又は(6)で表される縮合環構造である、〔1〕~〔4〕のいずれか1つに記載の有機半導体素子。
 各式中、環E及び環Fは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
 R、R及びR7aは水素原子、ハロゲン原子、又は上記式(W)で表される基を示す。
 *は結合部位を示す。
 但し、上記式(9)及び(10)における上記式(5)又は(6)で表される縮合環構造は、環E及び環Fが、ポリマー鎖中に組み込まれるための結合部位を1つ有する。
〔6〕
 上記式(5)で表される縮合環構造が下記式(7)又は(8)で表される縮合環構造である、〔5〕に記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000024
 各式中、R6a及びR6bは水素原子、ハロゲン原子又は上記式(W)で表される基を示す。
 R及びRはハロゲン原子又は上記式(W)で表される基を示す。
 sは0~4の整数であり、tは0~2の整数である。
 Qはカルコゲン原子を示す。
 *は結合部位を示す。
 但し、上記式(9)及び(10)における上記式(7)又は(8)で表される縮合環構造は、R又はRを有し得る環の環構成原子のうち1つが、ポリマー鎖中に組み込まれるための結合部位を有する。
〔7〕
 上記環C及び環Dが上記式(8)で表される縮合環構造である、〔6〕に記載の有機半導体素子。
 但し、上記式(9)及び(10)における上記式(8)で表される縮合環構造は、Rを有し得る環の環構成原子のうち1つが、ポリマー鎖中に組み込まれるための結合部位を有する。
〔8〕
 上記式(W)中、Lが上記式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基であるか、又は式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基が2つ以上結合してなる基である、〔1〕~〔7〕のいずれか1つに記載の有機半導体素子。
〔9〕
 上記ポリマーが下記式(G)で表される構造を有する、〔1〕~〔8〕のいずれか1つに記載の有機半導体素子。
 
  *-Ar-(Vr)p3-Ar-*  式(G)
 
 式(G)中、Ar及びArは単結合であるか、又は、ビニレン基、エチニレン基、アリーレン基もしくはヘテロアリーレン基であるか、又は、ビニレン基、エチニレン基、アリーレン基及びヘテロアリーレン基から選ばれる基を2つ以上連結してなる2価の基を示す。Vrは炭素数2~40の2価の共役基を示し、p3は1~6の整数である。
〔10〕
 上記ポリマーが、上記式(9)及び(10)のいずれかで表される構造単位と、上記式(G)で表される構造とを交互に有する、〔9〕に記載の有機半導体素子。
〔11〕
 上記式(G)において、Vrが下記式(V-1)~(V-16)及び(V-1)~(V-11)から選ばれる構造である、〔9〕又は〔10〕に記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 各式中、R及びZは水素原子、ハロゲン原子又はアルキル基を示す。
 Rはアルキル基を示す。
 Rは水素原子、アルキル基、シアノ基、又はハロゲン原子を示す。
 *は結合部位を示す。
〔12〕
 上記式(G)中のp3が1である、〔9〕~〔11〕のいずれか1つに記載の有機半導体素子。
〔13〕
 上記Ar及びArが単結合であるか、又は下記式(Ar-1)又は(Ar-2)で表される2価の基を示す、〔9〕~〔12〕のいずれか1つに記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000027
 各式中、RW1はアルキル基を示し、p1は0~2の整数である。
 Lはカルコゲン原子を示す。
 RW2はアルキル基を示し、p2は0~4の整数である。
 q1及びq2は1~4の整数である。
 *は結合部位を示す。
〔14〕
 上記式(G)中のVrが、上記式(V-1)~(V-16)のいずれかで表される2価の基を示す、〔9〕~〔13〕のいずれか1つに記載の有機半導体素子。
 
〔15〕
 上記有機半導体素子が有機薄膜トランジスタ素子である、〔1〕~〔14〕のいずれか1つに記載の有機半導体素子。
〔16〕
 下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物と、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーと、溶媒とを含有する有機半導体組成物。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
 Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
 Yは酸素原子、硫黄原子、CR 又はNRを示す。
 R、R及びRは水素原子又は置換基を示す。
 R及びRはハロゲン原子又は下記式(W)で表される基を示す。
 nは1又は2である。
 *は結合部位を示す。
 
  *-L-T  式(W)
 
 式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
 Tは水素原子、ハロゲン原子、又はシアノ基を示す。
 *は結合部位を示す。
Figure JPOXMLDOC01-appb-C000030
 式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
 *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
 式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
 式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
 式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
 式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
〔17〕
 バインダーを含有する、〔16〕に記載の有機半導体組成物。
〔18〕
 〔16〕又は〔17〕に記載の有機半導体組成物を基板上に塗布して塗布膜を形成し、この塗布膜を乾燥して有機半導体膜とすることを含む、有機半導体膜の製造方法。
〔19〕
 下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物を含有し、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する有機半導体膜。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
 Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
 Yは酸素原子、硫黄原子、CR 又はNRを示す。
 R、R及びRは水素原子又は置換基を示す。
 R及びRはハロゲン原子又は下記式(W)で表される基を示す。
 nは1又は2である。
 *は結合部位を示す。
 
  *-L-T  式(W)
 
 式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
 Tは水素原子、ハロゲン原子、又はシアノ基を示す。
 *は結合部位を示す。
Figure JPOXMLDOC01-appb-C000033
 式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
 *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
 式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
 式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
 式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
 式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
〔20〕
 下記式(1)及び(2)のいずれかで表される化合物、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマー。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
 Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
 Yは酸素原子、硫黄原子、CR 又はNRを示す。
 R~Rは水素原子又は置換基を示す。
 R及びRはハロゲン原子又は下記式(W)で表される基を示す。
 nは1又は2である。
 *は結合部位を示す。
 
  *-L-T  式(W)
 
 式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
 Tは水素原子、ハロゲン原子、又はシアノ基を示す。
 *は結合部位を示す。
Figure JPOXMLDOC01-appb-C000036
 式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
 *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
 式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
 式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
 式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
 式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
 本発明の有機半導体素子は、所望の半導体特性を発現し、また、高温環境に曝されても半導体特性の低下を生じにくい。また本発明の有機半導体膜は、有機半導体素子における有機半導体層として用いることにより、得られる有機半導体素子を、所望の半導体特性を発現し、また、高温環境に曝されても半導体特性の低下を生じにくい特性とすることができる。また本発明の有機半導体膜の製造方法によれば、上記の優れた特性を有する有機半導体膜を得ることができる。また本発明の化合物、ポリマーないし有機半導体組成物は、上記有機半導体膜の構成材料として好適である。
図1は、本発明の半導体素子の一例であるボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ素子を示す断面模式図である。 図2は、本発明の半導体素子の一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタ素子を示す断面模式図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、化合物の表示については、化合物そのものの他、その塩、そのイオンを含む。また、目的とする効果を損なわない範囲で、構造の一部を変化させたものを含む。
 また、置換又は無置換を明記していない化合物については、目的とする効果を損なわない範囲で、任意の置換基を有するものを含む。このことは、置換基、連結基、環構造等(以下、置換基等という)についても同様である。
 本明細書おいて、特定の符号で表示された置換基等が複数あるとき、又は、複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接(特に隣接)するとき、特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 本発明において、ポリマー中に同一の化学構造で表された複数の繰り返し単位が存在する場合、ポリマー中に存在する各繰り返し単位は同一でも異なっていてもよい。このことは、繰り返し単位を形成する各基についても同様である。
 また、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。
 本発明において、基が非環状骨格及び環状骨格を形成しうる場合、特段の断りがない限り、この基は、非環状骨格の基と環状骨格の基を含む。例えば、アルキル基は、直鎖アルキル基、分岐アルキル基及び環状(シクロ)アルキル基を含む。基が環状骨格を形成しうる場合、環状骨格を形成する基の原子数の下限は、この基について具体的に記載した原子数の下限にかかわらず、3以上であり、5以上が好ましい。
 本発明の好ましい実施形態について以下に説明する。
[有機半導体素子]
 本発明の有機半導体素子は、その有機半導体層が後述する特定構造の化合物ないし特定構造のポリマーを用いて形成されている。
 本発明の有機半導体素子としては、特に限定されないが、非発光性の有機半導体デバイスとして好ましく用いられる。非発光性の有機半導体デバイスとしては、発光することを目的としないデバイスであればよく、例えば、電流量若しくは電圧量を制御する有機薄膜トランジスタ素子、光エネルギーを電力に変換する有機光電変換素子(光センサ用途の個体撮像素子又はエネルギー変換用途の太陽電池等)、熱エネルギーを電力に変換する有機熱電変換素子、ガスセンサ、有機整流素子、有機インバーター又は情報記録素子等が挙げられる。非発光性の有機半導体デバイスは、有機半導体膜をエレクトロニクス要素として機能させることが好ましい。
 有機半導体素子の代表的な例として、有機薄膜トランジスタ素子について説明する。下記の形態では、特定構造の化合物ないし特定構造のポリマーが有機薄膜トランジスタ素子の有機半導体層を構成する形態について説明しているが、本発明はこの形態に限定されるものではない。すなわち、有機半導体層が後述する特定構造の化合物ないし特定構造のポリマーを含有する形態の有機半導体素子はいずれも、本発明の有機半導体素子に包含されるものである。また、各種素子の有機半導体層は、下記の有機薄膜トランジスタ素子における有機半導体層の形成方法に準じて形成することができる。
 また、下記の有機薄膜トランジスタ素子の説明ではキャリア移動度の向上について言及しているが、キャリア移動度は有機半導体の基本特性である。キャリア移動度が高い有機半導体は、有機薄膜トランジスタ素子に限らず、上述した各有機半導体素子に適用した際にも所望の性能を発現し得るものである。
 <有機薄膜トランジスタ素子>
 本発明の有機薄膜トランジスタ素子(有機TFT素子ともいう)は、有機半導体膜(有機半導体層又は半導体活性層ともいう)を有し、更に、ソース電極と、ドレイン電極と、ゲート電極とを有することができる。
 本発明の有機TFT素子は、基板上に、ゲート電極と、有機半導体層と、ゲート電極及び有機半導体層の間に設けられたゲート絶縁層と、有機半導体層に接して設けられ、有機半導体層を介して連結されたソース電極及びドレイン電極とを有する。この有機TFT素子においては、有機半導体層とゲート絶縁層が隣接して設けられる。
 本発明の有機薄膜トランジスタ素子は、上記各層を備えていればその構造については特に限定されない。例えば、ボトムコンタクト型(ボトムゲート-ボトムコンタクト型及びトップゲート-ボトムコンタクト型)、又は、トップコンタクト型(ボトムゲート-トップコンタクト型及びトップゲート-トップコンタクト型)などのいずれの構造を有していてもよい。本発明の有機薄膜トランジスタ素子は、より好ましくは、ボトムゲート-ボトムコンタクト型又はボトムゲート-トップコンタクト型(これらを総称してボトムゲート型という)である。
 以下、本発明の有機TFT素子の一例について、図面を参照して説明する。
 - ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ素子 -
 図1は、本発明の半導体素子の一例であるボトムゲート-ボトムコンタクト型の有機TFT素子100の断面模式図である。
 有機TFT素子100は、図1に示されるように、基板(基材)10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40及びドレイン電極42と、有機半導体膜50と、封止層60とを、この順で、有する。
 以下、基板(基材)、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層、並びに、それぞれの作製方法について詳述する。
 (基板)
 基板は、後述するゲート電極、ソース電極及びドレイン電極等を支持する役割を果たす。
 基板の種類は、特に制限されず、例えば、プラスチック基板、シリコン基板、ガラス基板又はセラミック基板等が挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 基板の厚みは、特に限定されないが、例えば、10mm以下であるのが好ましく、2mm以下であるのが更に好ましく、1.5mm以下であるのが特に好ましい。一方、0.01mm以上であるのが好ましく、0.05mm以上であるのが更に好ましい。
 (ゲート電極)
 ゲート電極は、有機TFT素子のゲート電極として用いられている通常の電極を特に制限されることなく適用できる。
 ゲート電極を形成する材料(電極材料)としては、特に限定されず、例えば、金、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム若しくはナトリウム等の金属、InO、SnO若しくはインジウム錫酸化物(ITO)等の導電性の酸化物、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン若しくはポリジアセチレン等の導電性高分子、シリコン、ゲルマニウム若しくはガリウム砒素等の半導体、又は、フラーレン、カーボンナノチューブ若しくはグラファイト等の炭素材料等が挙げられる。中でも、上記金属が好ましく、銀又はアルミニウムがより好ましい。
 ゲート電極の厚みは、特に限定されないが、20~200nmであることが好ましい。
 ゲート電極は、上記基板として機能するものでもよく、この場合、上記基板はなくてもよい。
 ゲート電極を形成する方法は、特に限定されないが、例えば、基板上に、上述の電極材料を真空蒸着(以下単に、蒸着ともいう)又はスパッタする方法、上述の電極材料を含有する電極形成用組成物を塗布又は印刷する方法等が挙げられる。また、電極をパターニングする場合、パターニング方法としては、例えば、インクジェット印刷、スクリーン印刷、オフセット印刷若しくは凸版印刷(フレキソ印刷)等の印刷法、フォトリソグラフィー法又はマスク蒸着法等が挙げられる。
 (ゲート絶縁層)
 ゲート絶縁層は、絶縁性を有する層であれば特に限定されず、単層であってもよいし、多層であってもよい。
 ゲート絶縁層は、絶縁性の材料で形成されるのが好ましく、絶縁性の材料として、例えば、有機高分子又は無機酸化物等が好ましく挙げられる。
 有機高分子及び無機酸化物等は、絶縁性を有するものであれば特に限定されず、薄膜、例えば厚み1μm以下の薄膜を形成できるものが好ましい。
 有機高分子及び無機酸化物は、ぞれぞれ、1種を用いても、2種以上を併用してもよく、また、有機高分子と無機酸化物を併用してもよい。
 有機高分子としては、特に限定されるものではないが、例えば、ポリビニルフェノール、ポリスチレン(PS)、ポリメチルメタクリレートに代表されるポリ(メタ)アクリレート、ポリビニルアルコール、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、CYTOP(登録商標)に代表される環状フルオロアルキルポリマー、ポリシクロオレフィン、ポリエステル、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、エポキシ樹脂、ポリジメチルシロキサン(PDMS)に代表されるポリオルガノシロキサン、ポリシルセスキオキサン又はブタジエンゴム等が挙げられる。また、上記の他にも、フェノール樹脂、ノボラック樹脂、シンナメート樹脂、アクリル樹脂又はポリパラキシリレン樹脂等の熱硬化性樹脂も挙げられる。
 有機高分子は、アルコキシシリル基、ビニル基、アクリロイルオキシ基、エポキシ基又はメチロール基等の反応性置換基を有する化合物と併用することもできる。
 有機高分子でゲート絶縁層を形成する場合、ゲート絶縁層の耐溶媒性又は絶縁耐性を増す目的等で、有機高分子を架橋し、硬化させることも好ましい。架橋は、光、熱又はこれら双方を用いて、酸又はラジカルを発生させることにより、行うのが好ましい。
 ラジカルにより架橋する場合、光又は熱によりラジカルを発生させるラジカル発生剤として、例えば、特開2013-214649号公報の段落[0182]~[0186]に記載の熱重合開始剤(H1)及び光重合開始剤(H2)、特開2011-186069号公報の段落[0046]~[0051]に記載の光ラジカル発生剤、又は、特開2010-285518号公報の段落[0042]~[0056]に記載の光ラジカル重合開始剤等を好適に用いることができ、これらの内容は好ましくは本明細書に組み込まれる。
 また、特開2013-214649号公報の段落[0167]~[0177]に記載の「数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有さない化合物(G)」を用いることも好ましく、これらの内容は好ましくは本明細書に組み込まれる。
 酸により架橋する場合、光により酸を発生させる光酸発生剤として、例えば、特開2010-285518号公報の段落[0033]~[0034]に記載の光カチオン重合開始剤、又は、特開2012-163946号公報の段落[0120]~[0136]に記載の、酸発生剤、特にスルホニウム塩若しくはヨードニウム塩等を好ましく使用することができ、これらの内容は好ましくは本明細書に組み込まれる。
 熱により酸を発生させる熱酸発生剤(触媒)として、例えば、特開2010-285518号公報の段落[0035]~[0038]に記載の熱カチオン重合開始剤、特にオニウム塩等、又は、特開2005-354012号公報の段落[0034]~[0035]に記載の触媒、特にスルホン酸類及びスルホン酸アミン塩等を好ましく使用することができ、これらの内容は好ましくは本願明細書に組み込まれる。
 また、特開2005-354012号公報の段落[0032]~[0033]に記載の架橋剤、特に二官能以上のエポキシ化合物若しくはオキセタン化合物、特開2006-303465号公報の段落[0046]~[0062]に記載の架橋剤、特に2個以上の架橋基を有し、この架橋基の少なくとも一つがメチロール基若しくはNH基であることを特徴とする化合物、又は、特開2012-163946号公報の段落[0137]~[0145]に記載の、ヒドロキシメチル基若しくはアルコキシメチル基を分子内に2個以上有する化合物を用いることも好ましく、これらの内容は好ましくは本明細書に組み込まれる。
 ゲート絶縁層を有機高分子で形成する方法としては、特に限定されないが、例えば、有機高分子を含有する塗布液を塗布し、必要により硬化する方法が挙げられる。
 上記塗布液に用いられる溶媒としては、上記有機高分子を溶解ないしは分散できるものであれば特に限定されず、有機高分子の種類等に応じて通常用いる溶媒の中から適宜に選択して用いることができる。
 塗布方法は、特に限定されず、上記の各印刷法が挙げられる。中でも、マイクログラビアコート法、ディップコート法、スクリーンコート印刷、ダイコート法又はスピンコート法等のウエットコーティング法が好ましい。
 塗布条件も、特に限定されず、適宜に設定できる。
 硬化する方法及び条件は、有機高分子を架橋することができる方法及び条件であれば特に限定されず、例えば、上記架橋方法(ラジカル又は酸)、更には、用いる光酸発生剤又は熱酸発生剤等の種類等に応じて、適宜に設定できる。
 上記無機酸化物としては、特に限定されるものではないが、例えば、酸化ケイ素、窒化ケイ素(SiN)、酸化ハフニウム、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ニオブ、酸化ジルコニウム、酸化銅若しくは酸化ニッケル等の酸化物、また、SrTiO、CaTiO、BaTiO、MgTiO若しくはSrNbのような、ペロブスカイト構造を持つ化合物、又は、これらの複合酸化物若しくは混合物等が挙げられる。
 ここで、酸化ケイ素としては、酸化シリコン(SiO)の他に、BPSG(Boron Phosphorus Silicon Glass)、PSG(Phosphorus Silicon Glass)、BSG(Borosilicate glass)、AsSG(砒素シリケートガラス)、PbSG(鉛シリケートガラス)、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、又は、低誘電率SiO系材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー、ベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン又は有機SOG)を含む。
 ゲート絶縁層を無機酸化物で形成する方法としては、特に限定されないが、例えば、真空蒸着法、スパッタリング法、イオンプレーティング又はCVD(chemical vapor deposition)法等の真空成膜法を用いることができる。また、成膜中に、任意のガスを用いたプラズマ、イオン銃若しくはラジカル銃等でアシストしてもよい。
 また、それぞれの金属酸化物に対応する前駆体、具体的には塩化物若しくは臭化物等の金属ハロゲン化物、金属アルコキシド又は金属水酸化物等を、アルコール又は水中で、塩酸、硫酸若しくは硝酸等の酸、又は水酸化ナトリウム若しくは水酸化カリウム等の塩基と反応させて加水分解することにより、ゲート絶縁層を形成することもできる。このような溶液系のプロセスを用いる場合、上記ウエットコーティング法を用いることができる。
 ゲート絶縁層を無機酸化物で形成する場合、上記の方法以外にも、リフトオフ法、ゾル-ゲル法、電着法及びシャドウマスク法のいずれかと、必要に応じてパターニング法とを組み合わせた方法を用いることもできる。
 ゲート絶縁層は、コロナ処理、プラズマ処理、UV(紫外線)/オゾン処理等の表面処理を施してもよい。この場合、各処理によって表面粗さを粗くしないことが好ましい。例えば、処理後のゲート絶縁層表面の算術平均粗さRa又は二乗平均平方根粗さR(いずれも、JIS B0601:2013)が0.5nm以下であることが好ましい。
 ゲート絶縁膜の膜厚は、特に限定されないが、100~1000nmであることが好ましい。
 (ソース電極及びドレイン電極)
 本発明の有機TFT素子において、ソース電極は、配線を通じて外部から電流が流入する電極である。また、ドレイン電極は、配線を通じて外部に電流を送り出す電極である。
 ソース電極及びドレイン電極を形成する材料は、上述したゲート電極を形成する電極材料と同じものを用いることができる。中でも、金属が好ましく、銀がより好ましい。
 ソース電極及びドレイン電極の厚みは、特に限定されないが、それぞれ、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、300nm以下が特に好ましい。
 ソース電極とドレイン電極との間の間隔(ゲート長)は、適宜に決定できるが、例えば、200μm以下が好ましく、100μm以下が特に好ましい。また、ゲート幅は、適宜に決定できるが、例えば、5000μm以下が好ましく、1000μm以下が特に好ましい。
 ソース電極及びドレイン電極を形成する方法は、特に限定されないが、例えば、ゲート電極とゲート絶縁膜とが形成された基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法等が挙げられる。パターニングする場合、パターニングする方法は上述したゲート電極の方法と同じである。
 (有機半導体層(膜))
 有機TFT素子の一実施形態(「第1実施形態」とも称す。)において、有機半導体層は下記式(1)で表される化合物、及び/又は下記式(2)で表される化合物を含有する。なお、式(1)で表される化合物をシス体、式(2)で表される化合物をトランス体とも称す。
Figure JPOXMLDOC01-appb-C000037
 式(1)及び(2)において、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示し、Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。この縮合環は2環構造又は3環構造が好ましく、2環構造がより好ましい。Rは水素原子又は置換基を示す。Xは好ましくは窒素原子である。
 Yは酸素原子、硫黄原子、CR 又はNRを示す。R及びRは水素原子又は置換基を示す。Yは酸素原子又は硫黄原子が好ましく、酸素原子がより好ましい。
 上記R、R及びRとして採り得る置換基は特に制限されず、例えば、後述する式(W)で表される基及びハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子が好ましく、フッ素原子若しくは塩素原子がより好ましく、フッ素原子が特に好ましい。)が挙げられる。なかでもR、R及びRとして採り得る置換基は、アルキル基(炭素数1~35のアルキル基が好ましく、炭素数1~25のアルキル基がより好ましい)、アルケニル基(炭素数2~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。環構成ヘテロ原子として、酸素原子、窒素原子、硫黄原子及びセレン原子のうち少なくとも1つを含むものが好ましい。)、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子が好ましく、フッ素原子若しくは塩素原子がより好ましく、フッ素原子が特に好ましい。)が好ましい。
 R、R及びRとして採り得る上記アルキル基、アルケニル基、及びアルキニル基は、炭素鎖中又は炭素鎖の末端に-O-、-S-及び-NRX1-のうち少なくとも1つを含んでいてもよい。RX1は水素原子又は置換基を示す。炭素鎖中又は炭素鎖の末端に含まれうる-O-、-S-及び-NRX1-の数は、合計で1~5の整数が好ましく、1~3がより好ましく、1がさらに好ましい。
 RX1として採り得る置換基は特に制限されず、例えば、アルキル基(好ましくは、炭素数1~10のアルキル基)、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)、又は、芳香族炭化水素基(好ましくは炭素数6~20の芳香族炭化水素基)が挙げられる。RX1は、水素原子又はアルキル基であることが好ましく、アルキル基であることがより好ましい。
 R及びRはハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)又は下記式(W)で表される基を示す。
 R及びRとして採り得る式(W)で表される基は次に示す構造の基である。
 
  *-L-T    式(W)
 
 式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。結合された2以上の2価の基は、互いに同一でも異なっていてもよい。
 Tは水素原子、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)、又はシアノ基を示す。
 *は式(1)及び(2)中に示された環C又は環Dとの結合部位を示す。
Figure JPOXMLDOC01-appb-C000038
 式(L-1)~(L-25)中、波線部分は式(1)もしくは(2)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
 *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
 式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
 式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
 式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
 式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
 上記式(L-17)~(L-21)、(L-23)及び(L-24)で表される2価の基は、それぞれ、下記式(L-17A)~(L-21A)、(L-23A)及び(L-24A)で表される構造が好ましい。式(L-17A)~(L-21A)、(L-23A)及び(L-24A)中のR、R、m及び*は、それぞれ上記式(L-17)~(L-21)、(L-23)及び(L-24)中のR、R、m及び*と同義である。
Figure JPOXMLDOC01-appb-C000039
 式(W)中のLは、式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基であるか、又は式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基が2つ以上結合してなる基が好ましい。
 式(W)中の-L-は、分子量が1000以下が好ましく、600以下がより好ましく、300以下がさらに好ましい。
 上記R及びRとして採り得る置換基に特に制限はなく、例えば、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、及びハロゲン原子から選ばれる基が好ましく、これらの基の好ましい形態は、それぞれ、上述したR~Rとして採り得るアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、及びハロゲン原子の各形態と同じである。
 また、Rsiとして採り得るアルキル基、アルケニル基、及びアルキニル基の好ましい形態は、それぞれ、上述したR~Rとして採り得るアルキル基、アルケニル基、及びアルキニル基の各形態と同じである。
 式(W)で表される基は、アルキル基、アルケニル基、又はアルキニル基であることも好ましく、これらアルキル基、アルケニル基、及びアルキニル基の好ましい形態は、それぞれ、上述したR~Rとして採り得るアルキル基、アルケニル基、及びアルキニル基の各形態と同じである。
 上記式(1)及び(2)において、nは1又は2であり、1が好ましい。
 有機TFT素子は、有機半導体層が上記式(1)で表される化合物、及び/又は上記式(2)で表される化合物を含むことにより、所望のキャリア移動度と耐熱性の両立を実現したものとすることができる。この理由は定かではないが、上記各化合物の母核(各式中に示された縮合多環構造)の作用によるところが大きいと考えられる。すなわち、母核におけるN原子の適切な配置と短軸方向に非対称な縮環構造をとっていることにより、双極子モーメントに起因して隣接する母核同士の分子間相互作用が増大し軌道の重なりが大きくなる、などしてキャリア移動度が向上し、また隣接する母核同士の分子間相互作用の増大により加熱時の結晶構造変化率が抑制されるなどして耐熱性も向上するものと推定される。
 上記式(1)及び(2)において、環A及び環Bから構成される縮合環構造は下記式(3)又は(4)で表される縮合環構造であることが好ましく、式(4)で表される縮合環構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000040
 式(3)及び(4)中、R~Rはハロゲン原子又は上記式(W)で表される基を示す。
 VはNR、酸素原子、硫黄原子又はセレン原子を示す。Vは硫黄原子又はセレン原子が好ましく、硫黄原子がより好ましい。
 Rは水素原子又は置換基を示す。Rにおける置換基は、上記R~Rにおける置換基の態様が好ましく挙げられる。
 p、q及びrは0~2の整数であり、0又は2が好ましく、0がより好ましい。
 *は式(1)及び(2)中に示されたY及びXが結合する炭素原子と、XとRCが結合する炭素原子と、XとRCが結合する炭素原子との結合部位を示す。
 なお、上記式(3)及び(4)で表される縮合環構造において、紙面上、上側の環が環Aで下側の環が環Bであっても、またその逆の態様であってもよい。すなわち、環Aと環Bの位置の組合わせによって、上記式(1)で表される化合物はシス異性体を採り得る。
 上記式(1)及び(2)において、環C及び環Dは下記式(5)又は(6)で表される縮合環構造であることが好ましく、式(5)で表される縮合環構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(5)及び(6)中、環E及び環Fは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。この5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環の形態としては2環構造が好ましい。環E及び環Fは好ましくは単環構造である。
 R、R及びR7aは水素原子、ハロゲン原子又は上記式(W)で表される基を示す。
 *は結合部位を示す。
 上記式(5)で表される縮合環構造は、下記式(7)又は(8)で表される縮合環構造であることが好ましく、より好ましくは下記式(8)で表される縮合環構造である。
Figure JPOXMLDOC01-appb-C000042
 式(7)及び(8)中、R6a及びR6bは水素原子、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)又は上記式(W)で表される基を示す。
 R及びRはハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)又は上記式(W)で表される基を示す。
 sは0~4の整数であり、1又は2が好ましく、1がより好ましい。tは0~2の整数であり、1が好ましい。
 Qはカルコゲン原子を示す。Qは酸素原子又は硫黄原子が好ましく、硫黄原子がより好ましい。
 *は結合部位を示す。
 上記式(1)及び(2)のいずれかで表される化合物の好ましい具体例を以下に示すが、本発明はこれらの形態に限定されるものではない。なお、下記化合物中、TMSはトリメチルシリルを示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 有機TFT素子の別の実施形態(「第2実施形態」とも称す。)において、有機半導体層は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する。第2実施形態において「ポリマー」は、オリゴマー(例えば、繰り返し単位の数が2~10程度のオリゴマー)を含む意味に用いる。すなわち、本実施形態において「ポリマー」とは、下記式(9)及び(10)のいずれかで表される構造単位を2つ以上有する化合物をすべて包含する意味である。
Figure JPOXMLDOC01-appb-C000057
 X、Y、環A~環D、R、R及びnは、それぞれ、上記式(1)及び(2)におけるX、Y、環A~環D、R、R及びnと同義であり、好ましい形態も同じである。ただし、環C及び環Dに関する上記式(7)及び(8)中のs及びtについては、好ましいsは0~3の整数、より好ましいsは0、好ましいtは0と読み替える。*はポリマー中に組み込まれるための結合部位を示す。
 有機TFT素子は、有機半導体層が上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含むことにより、所望のキャリア移動度と耐熱性との両立を実現したものとすることができる。この理由は定かではないが、上記各構造単位の母核(各式中に示された縮合多環構造)の作用によるところが大きいと考えられる。すなわち、母核におけるN原子の適切な配置と短軸方向に非対称な縮環構造をとっていることにより、双極子モーメントに起因して隣接する母核同士の分子間相互作用が増大し軌道の重なりが大きくなるなどしてキャリア移動度が向上し、また隣接する母核同士の分子間相互作用の増大により加熱時の結晶構造変化率が抑制されるなどして耐熱性も向上するものと推定される。この効果は、上記母核が主鎖方向に共役して連結した構造をとる場合により顕著になる。
 上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーは、下記式(G)で表される構造を有することが好ましい。
 
  *-Ar-(Vr)p3-Ar-*  式(G)
 
 式(G)中、Ar及びArは単結合であるか、又は、ビニレン基、エチニレン基、アリーレン基もしくはヘテロアリーレン基であるか、又は、ビニレン基、エチニレン基、アリーレン基及びヘテロアリーレン基から選ばれる基を2つ以上連結してなる2価の基を示す。
 Ar及びArが有し得るアリーレン基は、炭素数6~30が好ましく、炭素数6~20がより好ましく、炭素数6~15がさらに好ましい。このアリーレン基の好ましい具体例としては、フェニレン基及びナフチレン基が挙げられ、フェニレン基が好ましい。
 Ar及びArが有し得るヘテロアリーレン基は、5員環の芳香族ヘテロ環、5員環の芳香族ヘテロ環を含む縮合ヘテロ環、6員環の芳香族ヘテロ環、又は6員環の芳香族ヘテロ環を含む縮合ヘテロ環からなる基が好ましい。また、上記ヘテロアリーレン基には、これらの芳香族ヘテロ環又は縮合ヘテロ環が置換基を有する形態も含む。
 上記の5員環の芳香族ヘテロ環、及び、5員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、オキサジアゾール環、チオジアゾール環、フラン環、チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、およびインダゾール環が挙げられる。
 上記の6員環の芳香族ヘテロ環、及び、6員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フタラジン環、シンノリン環、およびキナゾリン環が挙げられる。
 Ar及びArが、ビニレン基、エチニレン基、アリーレン基及びヘテロアリーレン基から選ばれる基を2つ以上連結してなる2価の基である場合、Ar及びArの分子量は48~1000が好ましく、48~600がより好ましい。
 上記Ar及びArは、より好ましくは、単結合であるか、又は下記式(Ar-1)又は(Ar-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000058
 式(Ar-1)中、RW1及びRW2はアルキル基を示す。p1は0~2の整数であり、好ましくは0又は1である。p2は0~4の整数であり、好ましくは0~3の整数であり、より好ましくは0~2の整数である。
 RW1及びRW2として採り得るアルキル基の好ましい形態は、上述したRX1として採り得るアルキル基の形態と同じである。
 Lはカルコゲン原子を示す。Lは好ましくは酸素原子、硫黄原子又はセレン原子であり、より好ましくは硫黄原子である。
 q1及びq2は1~4の整数であり、1又は2が好ましく、より好ましくは1である。
 式(G)中、Vrは炭素数2~40の2価の共役基を示す。Vrは下記式(V-1)~(V-16)及び(V-1)~(V-11)から選ばれる構造であることが好ましい。
 p3は1~6の整数であり、1又は2が好ましく、より好ましくは1である。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 上記各式中、*は結合部位を示す。
 R及びZは水素原子、ハロゲン原子(好ましくはフッ素原子、塩素原子、臭素原子又はヨウ素原子)、又はアルキル基を示す。R及びZとして採り得るアルキル基の好ましい形態は、上述したR~Rとして採り得るアルキル基の形態と同じである。
 Rはアルキル基を示す。このアルキル基の好ましい形態は、上述したR~Rとして採り得るアルキル基の形態と同じである。
 Rは水素原子、アルキル基、シアノ基、又はハロゲン原子を示す。Rとして採り得るアルキル基及びハロゲン原子の好ましい形態は、それぞれ、Zとして採り得るアルキル基及びハロゲン原子の形態と同じである。
 上記Vrは、上記式(V-1)~(V-16)のいずれかで表される2価の基が好ましい。
 上記ポリマーが上記式(G)で表される構造を有することにより、主鎖内に電子密度の偏りが生じ、その偏りが主鎖間の相互作用を増大させることで軌道の重なりが大きくなり、キャリア移動度の向上ないし耐熱性の向上を図ることが可能になる。
 上記ポリマーは、上記式(9)及び(10)のいずれかで表される構造単位と、上記式(G)で表される構造とを交互に有する形態であることが好ましい。このような構造をとることにより、ポリマーを主鎖方向に共役している形態とすることができ、主鎖内におけるイオン化ポテンシャルの偏りを減らせるため好ましい。
 上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーは、重量平均分子量が1000~500000が好ましく、1000~300000がより好ましい。
 本発明において、重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ法(GPC(Gel Permeation Chromatography))法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8121GPC(東ソー社製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー社製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0mL/min、サンプル注入量を300μL、測定温度を160℃とし、IR(infrared)検出器を用いて行う。また、検量線は、東ソー社製の「標準試料TSK standard,polystyrene」:「F-128」、「F-80」、「F-40」、「F-20」、「F-10」、「F-4」、「F-2」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「A-500」の12サンプルを用いて作製する。
 上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマー中の、上記式(9)及び(10)のいずれかで表される構造単位の含有量は合計で、10~100質量%が好ましく、30~90質量%がより好ましく、50~80質量%がさらに好ましい。
 上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーの末端構造は、特に制限はなく、他の繰り返し単位の有無、合成時に使用した基質の種類、又は、合成時のクエンチ剤(反応停止剤)の種類により、一義的に決定されない。末端の構造としては、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、アルキル基、芳香族複素環基(チオフェン環が好ましい。)又は芳香族炭化水素基(ベンゼン環が好ましい。)が挙げられる。
 上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーの合成方法は、特に限定されず、通常の方法を参照して、合成することができる。例えば、式(9)に由来する基、及び、式(G)で示される各基を導くことのできる各前駆体化合物を合成し、それぞれの前駆体を、鈴木カップリング反応又はStilleカップリング反応等のクロスカップリング反応させることにより、合成することができる。本発明の重合体の合成に際して、例えば、特表2010-527327号、特表2007-516315号、特表2014-515043号、特表2014-507488号、特表2011-501451号、特開2010-18790号、国際公開第2012/174561号、特表2011-514399号、及び、特表2011-514913号等の各公報を参考にすることができる。
 式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーの具体例を以下に示すが、本発明がこれらの形態に限定されるものではない。なお、下記ポリマーにおいて、シス体とトランス体の混合物については、記載の都合上、トランス体の構造を用いて記載する。また、単にmixtureと記載する場合にも、シス体とトランス体の混合物を意味する。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
 有機半導体層が上記式(1)及び(2)のいずれかで表される化合物の少なくとも1種を含有する形態である場合、有機半導体層中、上記式(1)及び(2)のいずれかで表される化合物の含有量は合計で10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。有機半導体層中、上記式(1)及び(2)のいずれかで表される化合物の含有量の合計は、100質量%とすることができる。この合計含有量は、有機半導体膜が後述するバインダー等を含有する場合、例えば、90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 また、有機半導体層が上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する形態である場合、有機半導体層中、上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーの含有量は合計で10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。有機半導体層中、上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーの含有量の合計は、100質量%とすることができる。この合計含有量は、有機半導体膜が後述するバインダー等を含有する場合、例えば、90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 上記式(1)及び(2)のいずれかで表される化合物と、上記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーとを併せて、以下「本発明に用いる有機半導体」とも称す。
 有機半導体層は、本発明に用いる有機半導体に加えて、バインダー又は添加剤を含有していてもよい。添加剤としては、有機半導体層に通常用いられるものを特に制限されることなく、用いることができる。バインダーについて以下に説明する。
 (バインダー)
 バインダーとしては、有機半導体層に通常用いられるバインダーを特に制限されることなく用いることができる。
 このようなバインダーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ジビニルベンゼン)、ポリ(4-ビニルフェノール)、ポリ(4-メチルスチレン)、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン若しくはポリプロピレンなどの絶縁性ポリマー、及び、これらの共重合体、ポリシラン、ポリカルバゾール、ポリアリールアミン、ポリフルオレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレン、ポリアセン若しくはポリヘテロアセンなどの半導体ポリマー、及び、これらの共重合体、ゴム、又は、熱可塑性エラストマーを挙げることができる。
 なかでも、ベンゼン環を有する高分子化合物(ベンゼン環基を有する繰り返し単位を有する高分子)が好ましい。ベンゼン環基を有する繰り返し単位の含有量は特に制限されないが、全繰り返し単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に制限されないが、100モル%が挙げられる。
 バインダーとして用いるポリマーの重量平均分子量は、特に限定されないが、1,000~1,000万が好ましく、3,000~500万がより好ましく、5,000~300万が更に好ましい。
 バインダー及び添加剤は、それぞれ、1種を含有していてもよく、2種以上を含有していてもよい。
 有機半導体層中のバインダーの含有量は、特に限定されず適宜に設定できる。例えば、90質量%以下が好ましく、70質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。有機半導体層中のバインダーの含有量は、0質量%以上とすることができ、例えば、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。
 有機半導体層中の添加剤の含有量は、10質量%以下が好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 有機半導体層の膜厚は、適用される有機半導体素子に応じて適宜に調整することができ、例えば、10~500nmとすることが好ましく、20~200nmがより好ましい。
(有機半導体層の形成方法)
 有機半導体層は、例えば、本発明に用いる有機半導体を溶媒中に溶解してなる組成物(以下、「本発明の有機半導体組成物」とも称す。)を調製し、この組成物を基板上に塗布したり、本発明に用いる有機半導体を蒸着したりして形成することができる。より好ましくは、本発明の有機半導体組成物を基板上に塗布して塗布膜を形成し、この塗布膜を乾燥させることにより、有機半導体層を形成することができる。この有機半導体組成物は、上述したバインダー及び/又は添加剤を含有することができる。有機半導体組成物中のバインダーと添加剤の含有量は、形成する有機半導体層の形態に応じて適宜に調整すればよい。
 本発明において、有機半導体組成物を基板上に塗布するとは、有機半導体組成物を基板に直接適用する態様のみならず、基板上に設けられた別の層を介して基板の上方に有機半導体組成物を適用する態様も含むものとする。有機半導体組成物が塗布される別の層(有機半導体層に接する、有機半導体層の土台となる層)は、有機薄膜トランジスタ素子の構造により必然的に定まる。例えば、ボトムゲート型の場合、ゲート絶縁膜であり、トップゲート型(トップゲート-ボトムコンタクト型及びトップゲート-トップコンタクト型)の場合、ソース電極又はドレイン電極である。
 本発明の有機半導体組成物の塗布方法としては、通常の方法を用いることができ、例えば、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット印刷法、フレキソ印刷法、グラビア印刷法又はスクリーン印刷法が挙げられる。更に、有機半導体組成物の塗布方法としては、特開2013-207085号公報に記載の有機半導体膜の形成方法(いわゆるギャップキャスト法)、国際公開第2014/175351号に記載の有機半導体薄膜の製造方法(いわゆるエッジキャスト法又は連続エッジキャスト法)等も好適に適用できる。
 乾燥(乾燥処理)は、有機半導体組成物に含まれる各成分の種類により適宜の条件を選定できる。自然乾燥であってもよいが、生産性を向上させる観点から、加熱処理が好ましい。加熱処理条件は、一義的に決定できないが、例えば、加熱温度としては30~250℃が好ましく、40~200℃がより好ましく、50~150℃が更に好ましく、加熱時間としては10~300分が好ましく、20~180分がより好ましい。
 本発明の有機半導体組成物の調製方法としては、特に制限されず、通常の調製方法を採用できる。例えば、溶媒に所定量の各成分を添加して、適宜攪拌処理することにより、本発明の有機半導体組成物を調製することができる。
 溶媒は、上述の重合体を溶解又は分散させるものであれば特に限定されず、無機溶媒又は有機溶媒が挙げられる。中でも、有機溶媒が好ましい。溶媒は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒としては、特に限定されないが、ヘキサン、オクタン若しくはデカン等の炭化水素溶媒、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレン、テトラリン若しくはアニソール等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン若しくはシクロヘキサノン等のケトン溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン若しくはクロロトルエン等のハロゲン化炭化水素溶媒、酢酸エチル、酢酸ブチル、酢酸アミル若しくは乳酸エチル等のエステル溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ若しくはエチレングリコール等のアルコール溶媒、ブトキシベンゼン、ジブチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル溶媒、N,N-ジメチルホルムアミド若しくはN,N-ジメチルアセトアミド等のアミド溶媒、1-メチル-2-ピロリドン若しくは1-メチル-2-イミダゾリジノン等のイミド溶媒、ジメチルスルホキサイド等のスルホキシド溶媒、又は、アセトニトリル等のニトリル溶媒等が挙げられる。
 有機半導体組成物中の、溶媒の含有率は、90~99.99質量%であることが好ましく、95~99.99質量%であることがより好ましく、96~99.95質量%であることが更に好ましい。
 (封止層)
 上記有機半導体層は、上述のように、本発明に用いる有機半導体を含有しており、高い耐熱性を示す。したがって、この有機半導体を設けた後に、封止層等の形成などの加熱工程を行っても、キャリア移動度を所望のレベルに維持することができる。
 したがって、本発明の有機薄膜トランジスタ素子は、耐久性の観点から、最外層に封止層を備えるのが好ましい。これにより、優れたキャリア移動度と耐久性とを十分に両立できる。
 封止層には、有機TFT素子に通常用いられる封止剤(封止層形成用組成物)を用いることができる。
 封止剤は、好ましくは、加熱乾燥されて、層に形成される。このときの加熱条件は、封止剤の種類等に応じて一義的に決定できないが、例えば、加熱温度としては50~200℃が好ましく、100~175℃がより好ましい。加熱時間等のその他の条件は、封止剤の種類等に応じて適宜に決定される。
 封止層の膜厚は、特に限定されないが、0.2~10μmであることが好ましい。
 - ボトムゲート-トップコンタクト型有機薄膜トランジスタ素子 -
 図2は、本発明の半導体素子の一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタ素子200を表す断面模式図である。
 有機薄膜トランジスタ素子200は、図2に示されるように、基板10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40及びドレイン電極42と、有機半導体膜50と、封止層60とを有する。
 有機薄膜トランジスタ素子200は、層構成(積層態様)が異なること以外は、有機薄膜トランジスタ素子100と同じである。したがって、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体層及び封止層については、上述の、ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ素子におけるものと同じであるので、その説明を省略する。
 本発明を実施例に基づき更に詳細に説明するが、本発明は下記実施例に限定されない。 本実施例において、Etはエチル、Meはメチル、Phはフェニル、Buはブチル、Acはアセチル、TBDPSはtert-ブチルジフェニルシリルを示す。また、DMFはN,N-ジメチルホルムアミド、THFはテトラヒドロフラン、DMSOはジメチルスルホキシド、NBSはN-ブロモスクシンイミド、TFAはトリフルオロ酢酸、NMPはN-メチル-2-ピロリドン、DMEはジメチルエーテル、TMEDAはテトラメチルエチレンジアミンを示す。
[中間体1の合成]
 J.Mater.Chem.,2012年,第22巻,p.23514、Org.Lett.2012年,第14巻,p.3100等を参照し、下記スキーム1に従い、化合物1-1(20g、115mmol)から中間体1(3.4g、12.4mmol)を得た。
 スキーム1
Figure JPOXMLDOC01-appb-C000068
[中間体2の合成]
 Tetrahedron Letters,2013年,第54巻,p.3171等を参照し、下記スキーム2に従い、化合物1-7(5.0g、9.68mmol)から中間体2(573mg、1.15mmol)を得た。
 下記スキーム2中、Phはフェニル、rtは25℃を示す。
 スキーム2
Figure JPOXMLDOC01-appb-C000069
[中間体3の合成]
 上記スキーム1において化合物1-1の代わりに下記化合物3-1を用いたこと以外同様にして中間体3を得た。
Figure JPOXMLDOC01-appb-C000070
[化合物4-5~4-7の合成]
 New J.Chem.2010年,第34巻,p.236等を参照し、下記スキーム3に従い、中間体3(2g,7.27mmol)から化合物4-5(159mg,0.371mmol)、4-6(191mg,0.445mmol)、4-7(143mg,0.334mmol)を合成した。化合物4-5、4-6及び4-7は、シリカゲルカラムクロマトグラフィーにより分離した。
 スキーム3
Figure JPOXMLDOC01-appb-C000071
[化合物A-1~A-3の合成]
 New J.Chem.2010年,第34巻,p.236等を参照し、下記スキーム4に従い、化合物A-1を合成した。化合物4-5に代えて、化合物4-6及び4-7をそれぞれ用いたこと以外は下記スキーム4と同様にして化合物A-2及びA-3を得た。
 スキーム4
Figure JPOXMLDOC01-appb-C000072
[化合物A-4~A-6の合成]
 中間体3に代えて中間体1を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-4~A-6を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
[化合物A-7の合成]
 中間体3に代えて中間体2を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-7を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
[化合物A-8の合成]
 Bull Acad Sci USSR,1981年,第30巻,p.619等を参照し、下記スキーム5に従い化合物6-3を合成した。
 スキーム5
Figure JPOXMLDOC01-appb-C000073
 化合物4-1に代えて化合物6-3を用い、中間体3に代えて中間体1を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-8を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
[化合物A-9の合成]
 Tetrahedron Letters,2013年,第54巻,p.7103等を参照し、下記スキーム6に従い、化合物A-4(100mg、0.131mmol)から化合物A-9(65.8mg、0.0825mmol)を得た。
 スキーム6
Figure JPOXMLDOC01-appb-C000074
[化合物A-10の合成]
 下記スキーム7に従い、A-4(100mg,0.131mmol)から化合物A-10(90.2mg,0.114mmol)を得た。
 スキーム7
Figure JPOXMLDOC01-appb-C000075
[化合物A-11の合成]
 Tetrahedron Letters,1995年,第36巻,p.2393等を参照し、下記スキーム8に従い、化合物A-4(100mg,0.131mmol)から化合物A-11(50.9mg,0.0668mmol)を合成した。
 スキーム8
Figure JPOXMLDOC01-appb-C000076
[化合物A-12~A-14の合成]
 化合物1-4に代えてTetrahedron Letters,1990年,第31巻,p.3155、Org.Lett.2003年,第5巻,p.2519、又はJ.Am.Chem.Soc.2009年,第131巻,p.6070に記載の下記化合物7-1、7-2、及び7-3をそれぞれ用いたこと以外は、上記スキームと同様にして化合物A-12~A-14を得た。異性体はシリカゲルカラムクロマトグラフィーにて分離した。
Figure JPOXMLDOC01-appb-C000077
[化合物A-15の合成]
 Chem.Lett.2014年,第43巻,p.293、Synthesis 2015年,第47巻,p.3049等を参照し、下記スキーム9に従い、化合物1-6(1g,2.30mmol)から化合物A-15(629mg,0.811mmol)を得た。
 スキーム9
Figure JPOXMLDOC01-appb-C000078
[化合物A-16の合成]
 化合物8-1に代えて下記化合物9-1を用いたこと以外は、上記スキーム9と同様にして化合物A-16を得た。
Figure JPOXMLDOC01-appb-C000079
[化合物A-17の合成]
 J.Am.Chem.Soc.2003年,第125巻,p.5274等を参照し、下記スキーム10に従い、化合物1-6(1g,2.30mmol)から化合物A-17(828mg,1.27mmol)を得た。
 スキーム10
Figure JPOXMLDOC01-appb-C000080
[化合物A-18の合成]
 化合物4-1に代えてAngew.Chem.Int.Ed.2014年,第53巻,p.9603等を参考に合成した下記化合物11-1を用い、中間体3に代えて中間体1を用いたこと以外は、上記スキーム3及び4と同様にして化合物A-18を得た。異性体はシリカゲルカラムクロマトグラフィーにて分離した。
Figure JPOXMLDOC01-appb-C000081
[化合物A-19及びA-20の合成]
 中間体3に代えて中間体1を用い、化合物4-1に代えて下記化合物12-1及び12-2をそれぞれ用いたこと以外は、上記スキーム3及び4と同様にして、化合物A-19及びA-20を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
Figure JPOXMLDOC01-appb-C000082
[化合物A-21~A-29の合成]
 中間体3に代えて中間体1を用い、化合物5-2に代えてそれぞれ対応する化合物を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-21~A-29を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
[化合物A-30の合成]
 化合物10-1に代えてBull.Chem.Soc.Jpn.1992年,第65巻,p.2992等を参考に合成した下記化合物13-1を用いたこと以外は上記スキーム10と同様にして、化合物A-30を得た。
Figure JPOXMLDOC01-appb-C000083
[化合物A-31及びA-32の合成]
 中間体3に代えて下記化合物14-1を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-31及びA-32を得た。異性体はシリカゲルカラムクロマトグラフィーにて分離した。
Figure JPOXMLDOC01-appb-C000084
[化合物A-33の合成]
 中間体3に代えて、Tetrahedron Letters 2013年,第54巻,p.3171に記載の下記化合物15-1を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-33を得た。異性体はシリカゲルカラムクロマトグラフィーにて分離した。
Figure JPOXMLDOC01-appb-C000085
[化合物A-34の合成]
 中間体3に代えて上記化合物14-1を用い、化合物4-1に代えて上記化合物6-3を用いたこと以外は上記スキーム3及び4と同様にして、化合物A-34を得た。異性体はシリカゲルカラムクロマトグラフィーにて分離した。
[比較合成例1]
 比較化合物1及び2を下記スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000086
 上記で得た化合物A-1~A-34及び比較化合物1及び2の構造を以下にまとめて示す。
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
 上記の各有機半導体化合物ないし比較化合物は、高速液体クロマトグラフィー(東ソーTSKgel ODS-100Z)により純度(254nmの吸収強度面積比)を調べたところ、純度99.0%以上であった。
[蒸着プロセスによるボトムゲート-トップコンタクト型素子の作製]
 n型シリコン基板(0.4mm厚さ)の表面に、SiOの熱酸化膜500nmを形成した10mm×10mm基板の熱酸化膜側の表面に対して、UV(紫外線)-オゾン洗浄を施した後、β-フェニチルトリメトキシシランで処理した。
 この基板のβ-フェニチルトリメトキシシラン処理面上に、下表に示す化合物を0.05nm/sの蒸着速度で膜厚40nmになるように蒸着成膜した。
 得られた有機半導体膜に、さらにマスクをつけて電荷注入アクセプターとしてF4-TCNQ2nmと金電極40nmをそれぞれ蒸着することによりFET特性測定用の有機薄膜トランジスタ素子1-1~1-38(以下「素子1-1~1-38」ともいう。)、並びに比較有機薄膜トランジスタ素子1-1及び1-2(以下「比較素子1-1及び1-2」ともいう。)を得た。
[キャリア移動度の評価]
 各有機薄膜トランジスタ素子(素子1-1~1-38並びに比較素子1-1及び1-2)のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧下、大気下におけるキャリア移動度を評価した。
 各有機薄膜トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-50Vの電圧を印加し、ゲート電圧を20V~-150Vの範囲で変化させ、ドレイン電流Iを表わす式I=(W/2L)μC(V-Vth(式中、Lはゲート長、Wはゲート幅、Cは絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧)を用いてキャリア移動度μを算出し、下記の評価基準により評価した。
-キャリア移動度の評価基準-
 AA:1.0cm/Vs以上
 A:0.8cm/Vs以上 1.0cm/Vs未満
 B:0.6cm/Vs以上 0.8cm/Vs未満
 C:0.4cm/Vs以上 0.6cm/Vs未満
 D:0.2cm/Vs以上 0.4cm/Vs未満
 E:0.1cm/Vs以上 0.2cm/Vs未満
 F:0.05cm/Vs以上 0.1cm/Vs未満
 G:0.05cm/Vs未満
 結果を下表に示す。
[耐熱性の評価]
 素子1-1~1-38、比較素子1-1及び1-2の各素子を、大気下、150℃で30分間加熱した後、上記と同様にしてキャリア移動度を評価した。加熱前後のキャリア移動度を下記式に当てはめ、キャリア移動度維持率(%)を算出した。
 
 キャリア移動度維持率(%)=100×{キャリア移動度(加熱後)/キャリア移動度(加熱前)}
 
 キャリア移動度維持率を下記評価基準にあてはめ耐熱性を評価した。
-キャリア移動度維持率(耐熱性)の評価基準-
 AA:キャリア移動度維持率が90%以上
 A:キャリア移動度維持率が80%以上 90%未満
 B:キャリア移動度維持率が70%以上 80%未満
 C:キャリア移動度維持率が60%以上 70%未満
 D:キャリア移動度維持率が50%以上 60%未満
 E:キャリア移動度維持率が40%以上 50%未満
 F:キャリア移動度維持率が30%以上 40%未満
 G:キャリア移動度維持率が30%未満
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000089
 表1に示される通り、有機半導体層が縮合多環構造の化合物を含む素子であっても、その化合物の構造が本発明で規定する範囲外のものである場合、キャリア移動度に劣り、耐熱性にも劣る結果となった(比較例1-1及び1-2)。
 これに対し、本発明で規定する構造を有する化合物を有機半導体層に用いた素子は、キャリア移動度に優れ、耐熱性にも優れ得ることがわかる(実施例1-1~1-38)。
[有機半導体組成物の調製]
 下表に示す各化合物と、ポリα-メチルスチレンを質量比1:1で混合した組成物と、溶媒としてのトルエンとを混合し、化合物を0.1質量%濃度で含有する溶液(有機半導体組成物)を調製した。この溶液を40℃に加熱し下記の素子の形成に用いた。
[ポリマーバインダーを用いたボトムゲート-ボトムコンタクト型素子の作製]
 上記で調製した有機半導体組成物を、窒素雰囲気下、40℃に加熱した下記FET(電界効果トランジスタ)特性測定用基板上にキャスト(ドロップキャスト法)することで、有機薄膜トランジスタ素子2-1~2-38(以下「素子2-1~2-38」ともいう。)、並びに比較有機薄膜トランジスタ素子2-1及び2-2(以下「比較素子2-1及び2-2」ともいう。)を得た。
 FET特性の測定用基板としては、ソース及びドレイン電極として、くし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO(膜厚500nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
 得られた各素子について、上記と同様にしてキャリア移動度及び耐熱性を評価した。
Figure JPOXMLDOC01-appb-T000090
 表2に示される通り、有機半導体層が縮合多環構造の化合物を含む素子であっても、その化合物の構造が本発明で規定する範囲外のものである場合、キャリア移動度に劣り、耐熱性にも劣る結果となった(比較例2-1及び2-2)。
 これに対し、本発明で規定する構造を有する化合物を有機半導体層に用いた素子は、キャリア移動度に優れ、耐熱性にも優れ得ることがわかる(実施例2-1~2-38)。
[化合物16-1の合成]
 下記スキーム11に従い、上記化合物A-4の合成における中間体である下記化合物16-1(2g,4.67mmol)から下記化合物16-2(848mg,1.45mmol)を得た。
 スキーム11
Figure JPOXMLDOC01-appb-C000091
[化合物17-1~17-7の合成]
 上記スキーム11と同様にして、上記化合物A-4の合成における中間体からそれぞれ下記化合物17-1及び17-2を得た。
Figure JPOXMLDOC01-appb-C000092
 上記スキーム11と同様にして、上記化合物A-31の合成における中間体からそれぞれ下記化合物17-3及び17-4を得た。
Figure JPOXMLDOC01-appb-C000093
 上記スキーム11と同様にして、上記化合物A-1の合成における中間体からそれぞれ下記化合物17-5~17-7を得た。
Figure JPOXMLDOC01-appb-C000094
[化合物18-2~18-4の合成]
 化合物4-1に代えてTetrahedron Letters 2002年,第43巻,p.1171等を参考に合成した下記化合物18-1を用いたこと以外は上記スキーム3及び4と同様にして、下記化合物18-2~18-4を得た。異性体はシリカゲルカラムクロマトグラフィーにより分離した。
Figure JPOXMLDOC01-appb-C000095
[化合物19-1~19-3の合成]
 上記スキーム11と同様にして、上記化合物A-7の合成における中間体からそれぞれ下記化合物19-1~19-3を得た。
Figure JPOXMLDOC01-appb-C000096
[ポリマーB-1の合成]
 米国特許第9293708号明細書等を参照し、下記スキーム12に従い、下記化合物16-2/20-1(合計1g)と下記化合物20-2からポリマーB-1(1.5g)を、反応温度80℃、反応時間2分として合成した。化合物20-1は上記化合物A-4の合成における中間体である。このポリマーB-1(a)の重量平均分子量(Mw)は3100であった。
 なお、化合物16-2と20-1の仕込み量は、質量比で等量である。以降のポリマー合成においても同様に、式(9)及び(10)のいずれかで表される構造単位を導く化合物として複数の化合物を用いた場合には、その仕込み量はいずれも質量比で等量とする。
 スキーム12
Figure JPOXMLDOC01-appb-C000097
 反応温度80℃、反応時間30分としたこと以外は、上記スキーム12と同様にしてポリマーB-1を得た。このポリマーB-1(b)のMwは11900であった。
 反応温度100℃、反応時間3時間としたこと以外は、上記スキーム12と同様にしてポリマーB-1を得た。このポリマーB-1(c)のMwは48500であった。
 反応温度120℃、反応時間3時間としたこと以外は、上記スキーム12と同様にしてポリマーB-1を得た。このポリマーB-1(d)のMwは97100であった。
 反応温度120℃、反応時間6時間としたこと以外は、上記スキーム12と同様にしてポリマーB-1を得た。このポリマーB-1(e)のMwは143200であった。
[ポリマーB-2の合成]
 化合物16-2と20-1に代えて、下記化合物17-2と21-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-2を得た。化合物21-1は上記化合物A-4の合成における中間体である。
Figure JPOXMLDOC01-appb-C000098
[ポリマーB-3の合成]
 化合物16-2と20-1に代えて、下記化合物17-1と22-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-3を得た。化合物22-1は上記化合物A-4の合成における中間体である。
Figure JPOXMLDOC01-appb-C000099
[ポリマーB-4の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物16-2、20-1、17-2、21-1、17-1及び22-1を用いてポリマーB-4を得た。
[ポリマーB-5の合成]
 化合物16-2と20-1に代えて、下記化合物18-2及び23-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-5を得た。化合物23-1は上記化合物A-18の合成における中間体である。
Figure JPOXMLDOC01-appb-C000100
[ポリマーB-6の合成]
 化合物16-2と20-1に代えて、下記化合物18-4及び24-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-6を得た。化合物24-1は上記化合物A-18の合成における中間体である。
Figure JPOXMLDOC01-appb-C000101
[ポリマーB-7の合成]
 化合物16-2と20-1に代えて、下記化合物18-3及び25-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-7を得た。化合物25-1は上記化合物A-18の合成における中間体である。
Figure JPOXMLDOC01-appb-C000102
[ポリマーB-8の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物18-2、23-1、18-4、24-1、18-3及び25-1を用いて、ポリマーB-8を得た。
[ポリマーB-9の合成]
 化合物16-2と20-1に代えて、下記化合物19-1と26-1を用い、化合物20-2に代えて、J.Polym.Sci.,A Polym.Chem.2013年,第51巻,p.1933等を参照して合成した下記化合物26-2を用いたこと以外は、上記スキーム12と同様にしてポリマーB-9を得た。化合物26-1は上記化合物A-7の合成における中間体である。
Figure JPOXMLDOC01-appb-C000103
[ポリマーB-10の合成]
 化合物16-2と20-1に代えて、下記化合物19-3と27-1を用い、化合物20-2に代えて、上記化合物26-2を用いたこと以外は、上記スキーム12と同様にしてポリマーB-10を得た。化合物27-1は上記化合物A-7の合成における中間体である。
Figure JPOXMLDOC01-appb-C000104
[ポリマーB-11の合成]
 化合物16-2と20-1に代えて、下記化合物19-2と28-1を用い、化合物20-2に代えて、上記化合物26-2を用いたこと以外は、上記スキーム12と同様にしてポリマーB-11を得た。化合物28-1は上記化合物A-7の合成における中間体である。
Figure JPOXMLDOC01-appb-C000105
[ポリマーB-12の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2の代わりに化合物26-2を用いたこと以外は、上記スキーム12と同様にしてポリマーB-12を得た。
[ポリマーB-13の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物16-2、20-1、17-2、21-1、17-1及び22-1を用い、化合物20-2に代えてJ. Am. Chem. Soc.2013年,第135巻,p.4656を参照して合成した下記化合物29-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-13を得た。
Figure JPOXMLDOC01-appb-C000106
[ポリマーB-14の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2に代えてMolecules 2012年,第17巻,p.12163を参照して合成した下記化合物30-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-14を得た。
Figure JPOXMLDOC01-appb-C000107
[ポリマーB-15の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2に代えて米国特許第8519150号明細書を参考に合成した下記化合物31-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-15を得た。
Figure JPOXMLDOC01-appb-C000108
[ポリマーB-16の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2に代えてJ.Org.Chem.2003年,第68巻,p.9813を参照して合成した下記化合物32-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-16を得た。
Figure JPOXMLDOC01-appb-C000109
[ポリマーB-17の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2に代えてMacromolecules 2013年,第46巻,p.1337を参照して合成した下記化合物33-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-17を得た。
Figure JPOXMLDOC01-appb-C000110
[ポリマーB-18の合成]
 下記スキーム13に従い、下記化合物19-1/26-1/19-3/27-1/19-2/28-1(合計1g)を用い、J.Ame.Chem.Soc.2011年,第133巻,p.11442を参照して合成した下記化合物33-2からポリマーB-18(742mg)を、反応温度を100℃、反応時間を3時間として合成した。
 スキーム13
Figure JPOXMLDOC01-appb-C000111
[ポリマーB-19の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて化合物19-1、26-1、19-3、27-1、19-2及び28-1を用い、化合物20-2に代えてTetrahedron Letters 2013年,第54巻,p.2795を参照して合成した下記化合物34-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-19を得た。
Figure JPOXMLDOC01-appb-C000112
[ポリマーB-20の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて下記化合物17-3及び35-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-20を得た。化合物35-1は上記化合物A-31の合成における中間体である。
Figure JPOXMLDOC01-appb-C000113
[ポリマーB-21の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて下記化合物17-4及び36-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-21を得た。化合物36-1は上記化合物A-32の合成における中間体である。
Figure JPOXMLDOC01-appb-C000114
[ポリマーB-22の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物17-3、35-1、17-4及び36-1を用いたこと以外は、上記スキーム12と同様にして、ポリマーB-22を得た。
[ポリマーB-23の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて下記化合物17-5及び37-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-23を得た。化合物37-1は上記化合物A-1の合成における中間体である。
Figure JPOXMLDOC01-appb-C000115
[ポリマーB-24の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて下記化合物17-7及び38-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-24を得た。化合物38-1は上記化合物A-3の合成における中間体である。
Figure JPOXMLDOC01-appb-C000116
[ポリマーB-25の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて下記化合物17-6及び39-1を用いたこと以外は、上記スキーム12と同様にしてポリマーB-25を得た。化合物39-1は上記化合物A-2の合成における中間体である。
Figure JPOXMLDOC01-appb-C000117
[ポリマーB-26の合成]
 上記スキーム12において、上記化合物16-2と20-1に代えて上記化合物17-5、37-1、17-7、38-1、17-6及び39-1を用いたこと以外は、上記スキーム12と同様にして、ポリマーB-26を得た。
[ポリマーB-27の合成]
 下記スキーム14に従い、化合物16-2/20-1/17-2/21-1/17-1/22-1(合計1g)からポリマーB-27(861mg)を、反応温度を100℃、反応時間を3時間として合成した。
 スキーム14
Figure JPOXMLDOC01-appb-C000118
[比較合成例2]
 比較ポリマー3及び4を下記スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000119
 上記で得たポリマーB-1~B-27及び比較ポリマー3及び4の構造を以下にまとめて示す。なお、シス体とトランス体の混合物については、記載の都合上、トランス体の構造を用いて記載する。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
[有機半導体組成物の調製]
 上記で合成したポリマーB-1(a)と溶媒としてのトルエンとを混合してポリマーB-1の0.1質量%溶液を調製し、40℃に加熱したものを、有機半導体ポリマー組成物1とした。
 また、ポリマーB-1(a)に代えてポリマーB-1(b)~(e)、B-2~B-27、並びに比較ポリマー3及び4の各ポリマーを用いた以外は同様にして、それぞれ有機半導体ポリマー組成物2~31、比較ポリマー組成物1及び2を調製した。
[塗布プロセスによるボトムゲート-ボトムコンタクト型素子の作製]
 有機半導体ポリマー組成物1を、窒素雰囲気下、40℃に加熱した下記FET(電界効果トランジスタ)特性測定用基板上にキャスト(ドロップキャスト法)することで、有機薄膜トランジスタ素子3-1(以下「素子3-1」ともいう。)を得た。
 FET特性の測定用基板としては、ソース及びドレイン電極として、くし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO(膜厚500nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
 有機半導体ポリマー組成物1に代えて有機半導体ポリマー組成物2~31、並びに比較ポリマー組成物1及び2の各々を用いた以外は上記素子3-1の作製と同様にして、それぞれ有機薄膜トランジスタ素子3-2~3-31(以下「素子3-2~3-31」ともいう。)及び比較有機薄膜トランジスタ素子3-1及び3-2(以下「比較素子3-1及び3-2」ともいう。)を作製した。得られた素子3-1~3-31、並びに比較素子3-1及び3-2を、それぞれ、実施例3-1~3-31、並びに比較例3-1及び3-2の有機薄膜トランジスタ素子とした。
[キャリア移動度、耐熱性の評価]
 各有機薄膜トランジスタ素子(素子3-1~3-31並びに比較素子3-1及び3-2)について、上述した素子1-1~1-38並びに比較素子1-1及び1-2の評価と同様にして、キャリア移動度と耐熱性を評価した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000122
 表3に示される通り、有機半導体層が縮合多環構造のポリマーを含む素子であっても、そのポリマーの構造が本発明で規定する範囲外のものである場合、キャリア移動度に劣り、耐熱性にも劣る結果となった(比較例3-1及び3-2)。
 これに対し、本発明で規定する構造を有するポリマーを有機半導体層に用いた素子は、キャリア移動度に優れ、耐熱性にも優れ得ることがわかる(実施例3-1~3-31)。
[フレキソ印刷によるボトムゲート-ボトムコンタクト型素子の作製]
 テトラリン中に、ポリマーB-1(a)を0.5質量%、ポリα-メチルスチレンを0.5質量%、界面活性剤としてBYK323(BYK社製)を0.05%溶解した塗布液を調製し、これを有機半導体ポリマー組成物4-1とした。また、ポリマーB-1(a)に代えてポリマーB-1(b)~(e)、B-2~B-27、並びに比較ポリマー3及び4の各ポリマーを用いた以外は同様にして、それぞれ有機半導体ポリマー組成物4-2~4-31、比較ポリマー組成物4-1及び4-2を調製した。
 素子3-1の作製と同様、ボトムゲート-ボトムコンタクト型のFET特性測定用基板を用意し、その上に、フレキソ印刷法により、上記有機半導体ポリマー組成物4-1を印刷し、有機半導体層を形成した。こうして有機薄膜トランジスタ素子4-1(以下「素子4-1」ともいう。)を得た。
 フレキソ印刷法による有機半導体層の具体的な形成方法は、下記の通りである。
 印刷装置として、フレキソ適性試験機F1(アイジーティ・テスティングシステムズ(株)製)を用い、フレキソ樹脂版として、AFP DSH1.70%(旭化成(株)製)/ベタ画像を用いた。版と基板間の圧は、60N、搬送速度0.4m/秒で印刷を行った後、そのまま、60℃下で2時間乾燥することにより、有機半導体層(膜厚:50nm)を形成した。
 有機半導体ポリマー組成物4-1に代えて有機半導体ポリマー組成物4-2~4-31、並びに比較ポリマー組成物4-1及び4-2の各ポリマー組成物を用いた以外は上記素子4-1の作製と同様にして、それぞれ有機薄膜トランジスタ素子4-2~4-31(以下「素子4-2~4-31」ともいう。)及び比較有機薄膜トランジスタ素子4-1及び4-2(以下「比較素子4-1及び4-2」ともいう。)を作製した。得られた素子4-1~4-31、並びに比較素子4-1及び4-2を、それぞれ実施例4-1~4-31、並びに比較例4-1及び4-2の有機薄膜トランジスタ素子とした。
[キャリア移動度、耐熱性の評価]
 各有機薄膜トランジスタ素子(素子4-1~4-31並びに比較素子4-1及び4-2)について、上述した素子1-1~1-38並びに比較素子1-1及び1-2の評価と同様にして、キャリア移動度と耐熱性を評価した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000123
 表4に示される通り、有機半導体層が縮合多環構造のポリマーを含む素子であっても、そのポリマーの構造が本発明で規定する範囲外のものである場合、キャリア移動度に劣り、耐熱性にも劣る結果となった(比較例4-1及び4-2)。
 これに対し、本発明で規定する構造を有するポリマーを有機半導体層に用いた素子は、キャリア移動度に優れ、耐熱性にも優れ得ることがわかる(実施例4-1~4-31)。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年3月31日に日本国で特許出願された特願2017-71817に基づく優先権を主張するものであり、これはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
 10 基板
 20 ゲート電極
 30 ゲート絶縁膜
 40 ソース電極
 42 ドレイン電極
 50 有機半導体膜
 60 封止層
 100、200 有機薄膜トランジスタ素子

Claims (20)

  1.  有機半導体層が下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物を含有し、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する、有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
     Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
     Yは酸素原子、硫黄原子、CR 又はNRを示す。
     R、R及びRは水素原子又は置換基を示す。
     R及びRはハロゲン原子又は下記式(W)で表される基を示す。
     nは1又は2である。
     *は結合部位を示す。
     
      *-L-T  式(W)
     
     式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
     Tは水素原子、ハロゲン原子、又はシアノ基を示す。
     *は結合部位を示す。
    Figure JPOXMLDOC01-appb-C000003
     式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
     *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
     式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
     式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
     式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
     式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
  2.  前記環A及び環Bから構成される縮合環構造が下記式(3)又は(4)で表される縮合環構造である、請求項1に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000004
     各式中、R~Rはハロゲン原子又は上記式(W)で表される基を示す。
     VはNR、酸素原子、硫黄原子又はセレン原子を示す。
     Rは水素原子又は置換基を示す。
     p、q及びrは0~2の整数である。
     *は結合部位を示す。
  3.  前記環A及び環Bから構成される縮合環構造が前記式(4)で表される縮合環構造である、請求項2に記載の有機半導体素子。
  4.  Yが酸素原子又は硫黄原子である、請求項1~3のいずれか1項に記載の有機半導体素子。
  5.  前記環C及び環Dが下記式(5)又は(6)で表される縮合環構造である、請求項1~4のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000005
     各式中、環E及び環Fは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
     R、R及びR7aは水素原子、ハロゲン原子、又は前記式(W)で表される基を示す。
     *は結合部位を示す。
     但し、前記式(9)及び(10)における前記式(5)又は(6)で表される縮合環構造は、環E及び環Fが、ポリマー鎖中に組み込まれるための結合部位を1つ有する。
  6.  前記式(5)で表される縮合環構造が下記式(7)又は(8)で表される縮合環構造である、請求項5に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000006
     各式中、R6a及びR6bは水素原子、ハロゲン原子又は前記式(W)で表される基を示す。
     R及びRはハロゲン原子又は前記式(W)で表される基を示す。
     sは0~4の整数であり、tは0~2の整数である。
     Qはカルコゲン原子を示す。
     *は結合部位を示す。
     但し、前記式(9)及び(10)における前記式(7)又は(8)で表される縮合環構造は、R又はRを有し得る環の環構成原子のうち1つが、ポリマー鎖中に組み込まれるための結合部位を有する。
  7.  前記環C及び環Dが前記式(8)で表される縮合環構造である、請求項6に記載の有機半導体素子。
     但し、前記式(9)及び(10)における前記式(8)で表される縮合環構造は、Rを有し得る環の環構成原子のうち1つが、ポリマー鎖中に組み込まれるための結合部位を有する。
  8.  前記式(W)中、Lが前記式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基であるか、又は式(L-1)、(L-2)、(L-3)、(L-4)、(L-13)、(L-17)及び(L-18)から選ばれる2価の基が2つ以上結合してなる基である、請求項1~7のいずれか1項に記載の有機半導体素子。
  9.  前記ポリマーが下記式(G)で表される構造を有する、請求項1~8のいずれか1項に記載の有機半導体素子。
     
      *-Ar-(Vr)p3-Ar-*  式(G)
     
     式(G)中、Ar及びArは単結合であるか、又は、ビニレン基、エチニレン基、アリーレン基もしくはヘテロアリーレン基であるか、又は、ビニレン基、エチニレン基、アリーレン基及びヘテロアリーレン基から選ばれる基を2つ以上連結してなる2価の基を示す。Vrは炭素数2~40の2価の共役基を示し、p3は1~6の整数である。
  10.  前記ポリマーが、前記式(9)及び(10)のいずれかで表される構造単位と、前記式(G)で表される構造とを交互に有する、請求項9に記載の有機半導体素子。
  11.  前記式(G)において、Vrが下記式(V-1)~(V-16)及び(V-1)~(V-11)から選ばれる構造である、請求項9又は10に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     各式中、R及びZは水素原子、ハロゲン原子又はアルキル基を示す。
     Rはアルキル基を示す。
     Rは水素原子、アルキル基、シアノ基、又はハロゲン原子を示す。
     *は結合部位を示す。
  12.  前記式(G)中のp3が1である、請求項9~11のいずれか1項に記載の有機半導体素子。
  13.  前記Ar及びArが単結合であるか、又は下記式(Ar-1)又は(Ar-2)で表される2価の基を示す、請求項9~12のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000009
     各式中、RW1はアルキル基を示し、p1は0~2の整数である。
     Lはカルコゲン原子を示す。
     RW2はアルキル基を示し、p2は0~4の整数である。
     q1及びq2は1~4の整数である。
     *は結合部位を示す。
  14.  前記式(G)中のVrが、前記式(V-1)~(V-16)のいずれかで表される2価の基を示す、請求項9~13のいずれか1項に記載の有機半導体素子。
  15.  前記有機半導体素子が有機薄膜トランジスタ素子である、請求項1~14のいずれか1項に記載の有機半導体素子。
  16.  下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物と、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーと、溶媒とを含有する有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
     各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
     Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
     Yは酸素原子、硫黄原子、CR 又はNRを示す。
     R、R及びRは水素原子又は置換基を示す。
     R及びRはハロゲン原子又は下記式(W)で表される基を示す。
     nは1又は2である。
     *は結合部位を示す。
     
      *-L-T  式(W)
     
     式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
     Tは水素原子、ハロゲン原子、又はシアノ基を示す。
     *は結合部位を示す。
    Figure JPOXMLDOC01-appb-C000012
     式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
     *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
     式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
     式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
     式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
     式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
  17.  バインダーを含有する、請求項16に記載の有機半導体組成物。
  18.  請求項16又は17に記載の有機半導体組成物を基板上に塗布して塗布膜を形成し、該塗布膜を乾燥して有機半導体膜とすることを含む、有機半導体膜の製造方法。
  19.  下記式(1)で表される化合物、及び/もしくは下記式(2)で表される化合物を含有し、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマーを含有する有機半導体膜。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
     各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
     Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
     Yは酸素原子、硫黄原子、CR 又はNRを示す。
     R、R及びRは水素原子又は置換基を示す。
     R及びRはハロゲン原子又は下記式(W)で表される基を示す。
     nは1又は2である。
     *は結合部位を示す。
     
      *-L-T  式(W)
     
     式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
     Tは水素原子、ハロゲン原子、又はシアノ基を示す。
     *は結合部位を示す。
    Figure JPOXMLDOC01-appb-C000015
     式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
     *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
     式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
     式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
     式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
     式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
  20.  下記式(1)及び(2)のいずれかで表される化合物、又は下記式(9)及び(10)のいずれかで表される構造単位の少なくとも1種を有するポリマー。
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
     各式中、環A及び環Bは5員環又は6員環の芳香族環又は芳香族複素環を示す。
     Xは窒素原子又はCRを示し、環C及び環Dは5員環もしくは6員環の芳香族環もしくは芳香族複素環、又は、5員環もしくは6員環の芳香族環もしくは芳香族複素環を含む縮合環を示す。
     Yは酸素原子、硫黄原子、CR 又はNRを示す。
     R~Rは水素原子又は置換基を示す。
     R及びRはハロゲン原子又は下記式(W)で表される基を示す。
     nは1又は2である。
     *は結合部位を示す。
     
      *-L-T  式(W)
     
     式(W)中、Lは単結合、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基、又は、下記式(L-1)~(L-25)のいずれかで表される2価の基を2つ以上結合してなる2価の基を示す。
     Tは水素原子、ハロゲン原子、又はシアノ基を示す。
     *は結合部位を示す。
    Figure JPOXMLDOC01-appb-C000018
     式(L-1)~(L-25)中、波線部分は式(1)、(2)、(9)または(10)中に示された環構造との結合部位、又は、式(L-1)~(L-25)のいずれかで表される2価の基の*との結合部位を示す。
     *はTとの結合部位、又は式(L-1)~(L-25)のいずれかで表される2価の基の波線部分との結合部位を示す。
     式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中、Rは水素原子又は置換基を示す。
     式(L-13)中のmは1~4の整数であり、式(L-14)及び(L-15)中のmは1~3の整数であり、式(L-16)~(L-20)中のmは1又は2であり、式(L-22)中のmは1~6の整数である。
     式(L-20)及び(L-24)中、Rは水素原子又は置換基を示す。
     式(L-25)中、Rsiは水素原子、アルキル基、アルケニル基又はアルキニル基を示す。
PCT/JP2018/011873 2017-03-31 2018-03-23 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー WO2018181054A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18775969.1A EP3605629B1 (en) 2017-03-31 2018-03-23 Organic semiconductor element, organic semiconductor composition, organic semiconductor film production method, organic semiconductor film, and compound and polymer used therefor
JP2019509733A JP6814448B2 (ja) 2017-03-31 2018-03-23 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
US16/588,534 US20200028096A1 (en) 2017-03-31 2019-09-30 Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071817 2017-03-31
JP2017071817 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/588,534 Continuation US20200028096A1 (en) 2017-03-31 2019-09-30 Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using the same

Publications (1)

Publication Number Publication Date
WO2018181054A1 true WO2018181054A1 (ja) 2018-10-04

Family

ID=63675700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011873 WO2018181054A1 (ja) 2017-03-31 2018-03-23 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー

Country Status (5)

Country Link
US (1) US20200028096A1 (ja)
EP (1) EP3605629B1 (ja)
JP (1) JP6814448B2 (ja)
TW (1) TWI761480B (ja)
WO (1) WO2018181054A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752466B2 (ja) * 2017-03-31 2020-09-09 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149984A (ja) * 1997-11-18 1999-06-02 Mitsui Chem Inc 有機電界発光素子
JP2005045266A (ja) 2003-07-25 2005-02-17 Xerox Corp n−型半導体を有する装置
JP2005354012A (ja) 2004-06-14 2005-12-22 Canon Inc 電界効果型トランジスタおよびその製造方法
JP2006303465A (ja) 2005-03-25 2006-11-02 Canon Inc 有機半導体素子、電界効果型トランジスタおよびそれらの製造方法
JP2007516315A (ja) 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
JP2010018790A (ja) 2008-06-13 2010-01-28 Sumitomo Chemical Co Ltd 共重合体及びそれを用いた高分子発光素子
JP2010527327A (ja) 2007-04-13 2010-08-12 エルジー・ケム・リミテッド ジオキソピロール環を含む複素環化合物およびそれを用いた有機電子素子
JP2010285518A (ja) 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2011501451A (ja) 2007-10-25 2011-01-06 ビーエーエスエフ ソシエタス・ヨーロピア 有機半導体としてのケトピロール類
JP2011514399A (ja) 2008-02-05 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア ナフタレン−イミド半導体ポリマー
JP2011186069A (ja) 2010-03-05 2011-09-22 Adeka Corp 感光性樹脂組成物
JP2012163946A (ja) 2011-01-18 2012-08-30 Fujifilm Corp 化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、レジストパターン形成方法、及び、フォトマスク、並びに、高分子化合物
WO2012174561A2 (en) 2011-06-17 2012-12-20 The Regents Of The University Of California REGIOREGULAR PYRIDAL[2,1,3]THIADIAZOLE π-CONJUGATED COPOLYMERS FOR ORGANIC SEMICONDUCTORS
US8519150B2 (en) 2008-10-17 2013-08-27 Kuraray Co., Ltd. π-electron conjugated compound, manufacturing method therefor, and π-electron conjugated polymer obtained using same
JP2013207085A (ja) 2012-03-28 2013-10-07 Teijin Ltd 有機半導体組成物、有機半導体膜の形成方法、有機半導体積層体、及び半導体デバイス
JP2013214649A (ja) 2012-04-03 2013-10-17 Asahi Glass Co Ltd 半導体装置およびその製造方法
JP2014507488A (ja) 2010-12-17 2014-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
JP2014515043A (ja) 2011-03-11 2014-06-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
KR20140091487A (ko) * 2013-01-11 2014-07-21 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2014156878A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 有機薄膜トランジスタ
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015192118A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 有機トランジスタの有機半導体膜形成用組成物、パターン形成方法
WO2017022735A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP2017071817A (ja) 2015-10-06 2017-04-13 新日鐵住金株式会社 低温用厚鋼板及びその製造方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149984A (ja) * 1997-11-18 1999-06-02 Mitsui Chem Inc 有機電界発光素子
JP2005045266A (ja) 2003-07-25 2005-02-17 Xerox Corp n−型半導体を有する装置
JP2007516315A (ja) 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
JP2005354012A (ja) 2004-06-14 2005-12-22 Canon Inc 電界効果型トランジスタおよびその製造方法
JP2006303465A (ja) 2005-03-25 2006-11-02 Canon Inc 有機半導体素子、電界効果型トランジスタおよびそれらの製造方法
JP2010527327A (ja) 2007-04-13 2010-08-12 エルジー・ケム・リミテッド ジオキソピロール環を含む複素環化合物およびそれを用いた有機電子素子
JP2011501451A (ja) 2007-10-25 2011-01-06 ビーエーエスエフ ソシエタス・ヨーロピア 有機半導体としてのケトピロール類
JP2011514399A (ja) 2008-02-05 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア ナフタレン−イミド半導体ポリマー
JP2011514913A (ja) 2008-02-05 2011-05-12 ビーエーエスエフ ソシエタス・ヨーロピア リレン−(π−受容体)コポリマーから製造される半導体材料
JP2010018790A (ja) 2008-06-13 2010-01-28 Sumitomo Chemical Co Ltd 共重合体及びそれを用いた高分子発光素子
US8519150B2 (en) 2008-10-17 2013-08-27 Kuraray Co., Ltd. π-electron conjugated compound, manufacturing method therefor, and π-electron conjugated polymer obtained using same
JP2010285518A (ja) 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2011186069A (ja) 2010-03-05 2011-09-22 Adeka Corp 感光性樹脂組成物
JP2014507488A (ja) 2010-12-17 2014-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
JP2012163946A (ja) 2011-01-18 2012-08-30 Fujifilm Corp 化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、レジストパターン形成方法、及び、フォトマスク、並びに、高分子化合物
JP2014515043A (ja) 2011-03-11 2014-06-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
WO2012174561A2 (en) 2011-06-17 2012-12-20 The Regents Of The University Of California REGIOREGULAR PYRIDAL[2,1,3]THIADIAZOLE π-CONJUGATED COPOLYMERS FOR ORGANIC SEMICONDUCTORS
US9293708B2 (en) 2011-06-17 2016-03-22 The Regents Of The University Of California Regioregular pyridal[2,1,3]thiadiazole π-conjugated copolymers for organic semiconductors
JP2013207085A (ja) 2012-03-28 2013-10-07 Teijin Ltd 有機半導体組成物、有機半導体膜の形成方法、有機半導体積層体、及び半導体デバイス
JP2013214649A (ja) 2012-04-03 2013-10-17 Asahi Glass Co Ltd 半導体装置およびその製造方法
KR20140091487A (ko) * 2013-01-11 2014-07-21 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2014156878A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 有機薄膜トランジスタ
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015192118A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 有機トランジスタの有機半導体膜形成用組成物、パターン形成方法
WO2017022735A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP2017071817A (ja) 2015-10-06 2017-04-13 新日鐵住金株式会社 低温用厚鋼板及びその製造方法

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., 2014, pages 9603
BULL ACAD SCI USSR, 1981, pages 619
BULL. CHEM. SOC. JPN., 1992, pages 2992
CHEM. LETT., 2014, pages 293
J. AM. CHEM. SOC., 2003, pages 5274
J. AM. CHEM. SOC., 2009, pages 6070
J. AM. CHEM. SOC., 2013, pages 4656
J. AME. CHEM. SOC., 2011, pages 11442
J. MATER. CHEM., 2012, pages 23514
J. ORG. CHEM., 2003, pages 9813
J. POLYM. SCI., A POLYM. CHEM., 2013, pages 1933
MACROMOLECULES, 2013, pages 1337
MOLECULES, 2012, pages 12163
NEW J. CHEM., 2010, pages 236
ORG. LETT., 2003, pages 2519
See also references of EP3605629A4
SYNTHESIS, 2015, pages 3049
TETRAHEDRON LETTERS, 1990, pages 3155
TETRAHEDRON LETTERS, 1995, pages 2393
TETRAHEDRON LETTERS, 2002, pages 1171
TETRAHEDRON LETTERS, 2013, pages 2795

Also Published As

Publication number Publication date
TW201841924A (zh) 2018-12-01
JPWO2018181054A1 (ja) 2019-11-07
TWI761480B (zh) 2022-04-21
EP3605629A1 (en) 2020-02-05
JP6814448B2 (ja) 2021-01-20
EP3605629B1 (en) 2022-05-18
EP3605629A4 (en) 2020-03-18
US20200028096A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
EP3258513B1 (en) Organic semiconductor element, manufacturing method thereof, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof
US10971686B2 (en) Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
JP6689393B2 (ja) 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子
JP6399989B2 (ja) 有機薄膜トランジスタ、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用材料セット、有機薄膜トランジスタの製造方法
US11133475B2 (en) Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using the same
WO2017022491A1 (ja) 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP6751364B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、及びこれらに用いるポリマー
WO2018181054A1 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
JP6752466B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
JP6709275B2 (ja) 有機半導体膜、有機半導体素子、重合体及び有機半導体組成物
WO2016194517A1 (ja) 有機薄膜トランジスタ、有機半導体層形成用組成物
JP6574052B2 (ja) 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜
WO2015008753A1 (ja) 有機膜トランジスタ、有機半導体膜、有機半導体材料およびそれらの応用
JP2015038955A (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775969

Country of ref document: EP

Effective date: 20191031