WO2014174967A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2014174967A1
WO2014174967A1 PCT/JP2014/058334 JP2014058334W WO2014174967A1 WO 2014174967 A1 WO2014174967 A1 WO 2014174967A1 JP 2014058334 W JP2014058334 W JP 2014058334W WO 2014174967 A1 WO2014174967 A1 WO 2014174967A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor generator
engine
battery
drive shaft
ecu
Prior art date
Application number
PCT/JP2014/058334
Other languages
English (en)
French (fr)
Inventor
陽 宍戸
新也 原田
威士 東條
村上 芳弘
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201480023093.8A priority Critical patent/CN105143007A/zh
Priority to EP14788442.3A priority patent/EP2990286A4/en
Priority to US14/786,284 priority patent/US20160059842A1/en
Publication of WO2014174967A1 publication Critical patent/WO2014174967A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Embodiments of the present invention relate to a vehicle control device.
  • the motor generator in order to obtain a required target deceleration driving force when coasting on a downhill or downhill, the motor generator is regeneratively operated and the speed reduction control for controlling the gear ratio of the automatic transmission is performed. It has a controller to execute. The controller sets the gear ratio of the automatic transmission to a gear ratio at which an engine friction larger than the target deceleration driving force can be obtained when the battery charge amount exceeds a predetermined threshold during execution of the deceleration traveling control.
  • the motor generator In the hybrid travel mode, the motor generator is in a power running operation state, and a discharge process for discharging the battery is performed.
  • the shift ratio of the automatic transmission is set so that an engine friction larger than the target deceleration driving force can be obtained. Since the speed ratio of the gear ratio is higher than the gear ratio, the engine speed increases as a result. Sound vibration will occur.
  • the regenerative operation by the motor generator is performed again, so that the motor generator repeats power running and regeneration.
  • the charge amount of the battery depends on the control by the motor generator. It is difficult to maintain a constant charge amount. Further, by repeating power running and regeneration, the motor generator is heated, and it becomes difficult to execute the discharge control.
  • the vehicle control device is a vehicle control device that controls a vehicle that can run using a motor generator as a power source without using an engine and that can run using both the engine and the motor generator as a power source.
  • a regenerative control unit for performing regenerative control by the motor generator, and determining whether or not the regenerative control by the motor generator is being executed. If the regenerative control is being executed, the state quantity of the battery is predetermined.
  • a determination unit that determines whether or not the threshold value of the vehicle is exceeded, and when the regenerative control is being performed and the state quantity of the battery exceeds the threshold value, the drive shaft of the vehicle and the motor generator With the drive control unit to be shut off, the drive shaft and the motor generator disconnected, the motor generator is powered and the bar A discharge controller for discharging the terry, with a.
  • the determination unit further determines whether the state quantity has decreased below a predetermined target value after the state quantity exceeds the threshold, and the discharge control is performed.
  • the unit causes the motor generator to power and discharge the battery until the state quantity falls below a target value.
  • the motor generator and the engine have a common output shaft via a transmission unit, and each of the gears of the transmission unit is connected to and disconnected from the drive shaft independently.
  • the determination unit further determines whether or not the gear stage is in a state where the engine alone can transmit a driving force to the drive shaft, and the drive control unit determines whether the gear stage is When the engine alone is capable of transmitting a driving force to the drive shaft, the drive shaft of the vehicle and the motor generator are disconnected.
  • the regeneration control unit further performs regeneration control by the motor generator when the gear stage is in a state where the engine alone cannot transmit a driving force to the drive shaft. Ban. With this configuration, overcharging of the battery can be prevented.
  • the first transmission unit of the motor generator and the second transmission unit of the engine can be connected to and disconnected from the drive shaft independently of each other regardless of the gear stage. With this configuration, it is possible to make it unnecessary to determine whether or not the gear stage can transmit the driving force to the drive shaft by the engine alone.
  • the state quantity includes SOC (State of charge).
  • the discharge control unit sets, as the threshold value, a first threshold value indicating that the battery is nearly fully charged, and the target value is smaller than the first threshold value.
  • the discharge control unit sets, as the threshold value, a first threshold value indicating that the battery is nearly fully charged, and the target value is smaller than the first threshold value.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration of the integrated ECU according to the first embodiment.
  • FIG. 3 is a flowchart illustrating the procedure of the drive control process according to the first embodiment.
  • FIG. 4 is a skeleton diagram of the transmission unit.
  • FIG. 5 is a flowchart illustrating a procedure of battery discharge control according to the first embodiment.
  • FIG. 6 is a graph showing the relationship between the discharge target power and the basic target rotational speed of the motor generator.
  • FIG. 7 is a graph showing the correlation between the engine speed and the rotation limit value.
  • FIG. 8 is a graph showing the correlation between the target rotational speed of the motor generator and the required torque.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration of the integrated ECU according to the first embodiment.
  • FIG. 3 is a flowchart illustrating
  • FIG. 9 is a diagram illustrating a state in which the vehicle speed, the accelerator opening, the SOC, the motor torque, the battery power, and the gear stage change with time in a state where the gear stage can be driven by the engine alone.
  • FIG. 10 is a diagram showing a state of change over time of the vehicle speed, the accelerator opening, the SOC, the motor torque, the battery power, and the gear stage when the engine alone cannot be driven.
  • FIG. 11 is a configuration diagram of a drive system of the hybrid vehicle of the second embodiment.
  • FIG. 12 is a flowchart illustrating a procedure of drive control processing according to the second embodiment.
  • FIG. 1 is a configuration diagram of a hybrid vehicle 100 of the present embodiment.
  • the hybrid vehicle 100 according to the present embodiment includes an engine (ENG) 101 that outputs rotational torque by combustion energy of fuel as a power source, and a motor generator (MG) that outputs rotational torque by electric energy.
  • ENG engine
  • MG motor generator
  • 102 a front-wheel drive vehicle.
  • the hybrid vehicle 100 of this embodiment includes a drive system and a control device 300.
  • the hybrid vehicle 100 of the present embodiment includes a right front wheel FR and a left front wheel FL as drive wheels, drive shafts 121a and 121b and a differential gear 120 as drive shafts, an engine 101, a motor generator 102, as drive systems.
  • the engine 101 is an internal combustion engine that outputs torque from an engine output shaft by, for example, combustion of fuel (for example, hydrocarbons such as gasoline and light oil).
  • the engine 101 has various sensors (such as an engine rotation sensor) and actuators (such as an injector and an actuator that drives a throttle valve).
  • the engine 101 is communicably connected to an engine ECU (ENG-ECU) 111 and is controlled by the engine ECU 111.
  • ECU ENG-ECU
  • the clutch 103 is a device that is interposed between the engine 101, the transmission units 105, 106, and 108 and the motor generator 102 and is capable of connecting and disconnecting torque from the engine 101 to the transmission units 105, 106, and 108. Engagement and release of the clutch 103 are controlled by a clutch actuator 104 that is driven and controlled by a transmission ECU (T / M-ECU) 113.
  • T / M-ECU transmission ECU
  • the motor generator 102 is a synchronous generator motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and the motor generator 102 is driven as a motor and also as a generator.
  • Motor generator 102 exchanges power with high-voltage battery 130 via inverter 110.
  • the motor generator 102 operates as an electric motor that rotates by receiving power supplied from the high-voltage battery 130, and can output torque generated by the rotational driving to the T / M-MG transmission unit 105.
  • the state of the motor generator 102 is referred to as “power running”.
  • the motor generator 102 receives the torque output from the engine 101 to the engine output shaft or the torque from the T / M-MG transmission 105, generates electromotive force at both ends of the stator coil, and operates as a generator.
  • the high voltage battery 130 can be charged.
  • the state of the motor generator 102 is referred to as “regeneration”.
  • the transmission units 105, 106, 108 are mechanisms for transmitting torque output from the motor generator 102 and the engine 101 to the drive wheels FR, FL via the drive shafts (differential gear 120 and drive shafts 121a, 121b).
  • the transmission units 105, 106, and 108 include a T / M-MG transmission unit 105, a T / M-ENG transmission unit 106, and a common transmission unit 108.
  • the T / M-MG transmission unit 105 is a mechanism that accelerates or decelerates by switching the rotational torque output from the motor generator 102 to the forward or reverse rotational direction.
  • the T / M-ENG transmission unit 106 is a mechanism that accelerates or decelerates by switching the rotational torque output from the engine output shaft of the engine 101 to the forward or reverse rotational direction.
  • the common transmission unit 108 is a mechanism that collectively transmits the rotational torque transmitted from the motor generator 102 and the engine 101 to the drive wheels FR and FL via the drive shaft (the differential gear 120 and the drive shafts 121a and 121b). Each of these transmission units is configured to be switchable to a plurality of gear stages.
  • the shift actuator 107 controls the switching of the gear positions of the T / M-ENG transmission unit 106, the T / M-MG transmission unit 105, and the common transmission unit 108.
  • the differential gear 120 is a gear that generates a difference between the right front wheel FR and the left front wheel FL when the rotational torque transmitted from the common transmission unit 108 is transmitted to the drive wheels FR and FL.
  • the motor generator 102 and the engine 101 have a common output shaft via the transmission units 105, 106, and 108.
  • the gear stages of the transmission units 105, 106, 108 can be connected to and disconnected from the drive shaft (differential gear 120 and drive shafts 121a, 121b) independently.
  • the control device 300 of the hybrid vehicle 100 controls the entire hybrid vehicle 100.
  • the control device 300 includes an inverter 110, a brake hydraulic pressure control unit 109, an engine ECU (ENG-ECU) 111, an electronic control brake ECU (ECB-ECU) 112, a transmission ECU (T / T M-ECU) 113, motor generator ECU (MG-ECU) 114, integrated ECU 200, high-voltage battery 130, and battery ECU 131 are mainly provided.
  • the battery ECU 131 controls the high-voltage battery 130 and notifies the integrated ECU 200 of information related to the high-voltage battery 130 such as a charge amount SOC (State Of Charge), discharge allowable power, voltage, and the like.
  • SOC State Of Charge
  • the engine ECU (ENG-ECU) 111 includes various actuators (not shown) built in the engine 101 (for example, actuators for driving a throttle valve, injectors, etc.), various sensors (for example, an engine rotation sensor), and an integrated ECU 200. It is connected so that it can communicate.
  • Engine ECU (ENG-ECU) 111 receives an engine torque command (accelerator opening command) from integrated ECU 200 and controls the operation of engine 101.
  • the electronic control brake ECU (ECB-ECU) 112 is electrically connected to the brake hydraulic pressure control unit 109 and the integrated ECU 200.
  • the electronically controlled brake ECU 112 is a kind of brake-by-wire by receiving a brake command and regenerative torque from the integrated ECU 200 and issuing a command to the brake hydraulic pressure control unit 109 based on the brake command and regenerative torque.
  • Brake control is performed by an electronically controlled brake system (ECB: Electronically Control Braking System).
  • the brake hydraulic pressure control unit 109 can receive a command from the ECB-ECU 112, perform brake hydraulic pressure control on the brakes 117 and 118, and automatically operate the brakes on the drive wheels according to the vehicle situation.
  • the transmission ECU (T / M-ECU) 113 is electrically connected to the clutch actuator 104, the shift actuator 107, and the integrated ECU 200.
  • the transmission ECU 113 receives a clutch request from the integrated ECU 200, controls the clutch actuator 104, and controls connection / disconnection of the clutch 103. Further, the transmission ECU 113 receives a shift request from the integrated ECU 200, controls the shift actuator 107, and controls the switching of the gear stages of the transmission units 105, 106, and 108.
  • Inverter 110 generates a three-phase alternating current in accordance with a control signal from motor generator ECU (MG-ECU) 114 and applies it to motor generator 102 to operate motor generator 102 (drive operation, power generation operation, regenerative operation). To control. Inverter 110 is electrically connected to high voltage battery 130 via a boost converter (not shown).
  • MG-ECU motor generator ECU
  • boost converter boost converter
  • the motor generator ECU (MG-ECU) 114 is communicably connected to the inverter 110, various sensors (not shown) (for example, a rotation sensor) and the integrated ECU 200.
  • Motor generator ECU 114 receives a motor torque command from integrated ECU 200 and controls the operation of motor generator 102 via inverter 110.
  • a CPU Central Processing Unit
  • a predetermined program database, map, etc.
  • the above-mentioned various control processes are performed by executing a program that is read from a storage medium such as a ROM (Read Only Memory) (not shown).
  • the integrated ECU 200 controls operations of the engine ECU 111, the electronic control brake ECU 112, the transmission ECU 113, and the motor generator ECU 114.
  • the integrated ECU 200 is communicably connected to an engine ECU 111, an electronic control brake ECU 112, a transmission ECU 113, a motor generator ECU 114, various sensors (for example, a rotation sensor), and various switches (for example, an ignition switch).
  • the integrated ECU 200 receives the accelerator opening from an accelerator opening sensor (not shown), and receives the vehicle speed of the hybrid vehicle 100 from a vehicle speed sensor (not shown).
  • Integrated ECU 200 receives the operating state of engine 101 from engine ECU 111. Further, integrated ECU 200 receives a brake stroke from a brake stroke sensor (not shown), a shift position from a shift lever (not shown), and a charge amount SOC from high voltage battery 130.
  • the integrated ECU 200 detects, for example, that the accelerator opening is 0 from an accelerator opening sensor (not shown), detects that it is in a coasting state, a downhill sensor (not shown), and the like. The downhill running state is detected. Then, the integrated ECU 200 applies a negative torque to the motor generator 102 and performs regenerative control during coasting on a downhill, thereby giving a deceleration to the hybrid vehicle 100 to maintain a constant vehicle speed. Travel control is performed.
  • FIG. 2 is a block diagram showing a functional configuration of the integrated ECU 200 of the present embodiment.
  • the integrated ECU 200 of the present embodiment mainly includes a travel mode determination unit 201, a determination unit 202, a driving force calculation unit 207, a target power calculation unit 203, and an operating point determination unit 204. I have.
  • a CPU reads a predetermined program (including a database, a map, etc.) from a storage medium such as a ROM (not shown) and executes the read program according to a predetermined situation of the hybrid vehicle 100. Accordingly, the functions of the respective units described below are performed, and the functions of the respective units shown below are executed to output various control signals to the engine ECU 111, the electronic control brake ECU 112, the transmission ECU 113, and the motor generator ECU 114.
  • Travel mode determination unit 201 inputs the operating state of engine 101 from engine ECU 111, and determines the traveling mode of hybrid vehicle 100 from the operating state of engine 101.
  • the travel modes of the present embodiment include a motor travel mode and a hybrid travel mode.
  • the motor travel mode (hereinafter referred to as “EV travel mode”) is a travel mode in which the hybrid vehicle 100 travels using only the motor generator 102 as a power source without using the engine 101 when the clutch 103 is disengaged.
  • the hybrid travel mode (hereinafter referred to as “HV travel mode”) is a travel mode in which the hybrid vehicle 100 travels using both the engine 101 and the motor generator 102 as power sources when the clutch 103 is engaged.
  • the travel mode determination unit 201 sends the determined travel mode to the determination unit 202.
  • the driving force calculation unit 207 is a driving force (requested driving force) requested by the driver by the driver's acceleration operation based on the accelerator opening input from the accelerator opening sensor (not shown) and the vehicle speed input from the vehicle speed sensor. Ask for.
  • the driving force calculation unit 207 sends the calculated requested driving force to the determination unit 202 and the operating point determination unit 204.
  • the determination unit 202 inputs the current motor torque from the motor generator ECU 114. Then, the determination unit 202 determines whether or not the regeneration control by the motor generator 102 is being executed based on whether or not the motor torque is negative.
  • the determining unit 202 determines whether or not the state quantity of the high voltage battery 130 exceeds a predetermined threshold.
  • the state quantity of the high-voltage battery 130 is information related to the state of the high-voltage battery 130, and corresponds to, for example, SOC.
  • the state quantity of the high voltage battery 130 is not limited to the SOC.
  • SOC is used as the state quantity of the high voltage battery 130. That is, when the determination unit 202 inputs the current SOC from the battery ECU 131 and determines that the regeneration control is being performed, whether or not the SOC as the state quantity of the high-voltage battery 130 has exceeded a predetermined first threshold value. Determine whether. Furthermore, after the SOC exceeds the first threshold, the determination unit 202 determines whether or not the SOC has decreased below a predetermined target SOC (target value) by discharge control of the high voltage battery 130 described later.
  • target value target value
  • the first threshold value is a value indicating that the high voltage battery 130 is in a state of being almost fully charged
  • the target SOC is a value smaller than the first threshold value (first target value).
  • the target value of the state quantity of the high voltage battery 130 can be arbitrarily determined.
  • the target SOC as the target value is changed as follows.
  • the SOC depends on the temperature of the high voltage battery 130.
  • the high voltage battery 130 has a high SOC and the high voltage battery 130 is in a high temperature state, so that the deterioration of the battery is promoted during long-term storage.
  • the target SOC is set to be lowered and the determination by the determination unit 202 is performed. Thereby, the performance of the high voltage battery 130 can be maintained.
  • the temperature of the high-voltage battery 130 is used to determine whether or not to lower the target SOC.
  • the present invention is not limited to this.
  • the determination unit 202 or the like may be configured to determine whether or not the target SOC is set to be lowered depending on whether the outside air temperature or the temperature in the vehicle interior is higher than a predetermined temperature.
  • the determination unit 202 determines from the shift position whether or not the gear stages of the transmission units 105, 106, and 108 are in a state where the driving force can be transmitted to the drive shaft by the engine 101 alone.
  • the target power calculation unit 203 receives the basic discharge target power and the discharge allowable power from the battery ECU 131, and calculates the discharge target power based on the basic discharge target power and the discharge allowable power.
  • the target power calculation unit 203 sends the calculated discharge target power to the operating point determination unit 204.
  • the basic target power is determined by the battery ECU 131.
  • the operating point determination unit 204 sets the target engine torque of the engine 101 or the target of the motor generator 102 as the target of reaching the operating point based on the accelerator opening, the required driving force, the discharge target power, the travel mode, and the like.
  • the motor torque, the target engagement capacity of the clutch 103, the target gear stage of the transmissions 105, 106, 108, the regenerative torque, and the like are obtained.
  • the operating point determination unit 204 mainly includes a drive control unit 206, a regeneration control unit 208, and a discharge control unit 209.
  • part relevant to this embodiment is shown.
  • the regeneration control unit 208 performs regeneration control by the motor generator 102. Specifically, the regenerative control unit 208 calculates a regenerative torque (negative torque) for regenerative braking by the motor generator 102, sends the regenerative torque to the ECB-ECU 112, and sends a motor torque command for the regenerative torque to the motor. This is sent to the generator ECU 114 to perform braking by regenerative torque (regenerative braking).
  • the regenerative control unit 208 is notified by the determination unit 202 that the gears of the transmission units 105, 106, and 108 are in a state where the engine 101 alone cannot transmit the driving force to the drive shaft. Prohibits regenerative control by the motor generator 102.
  • the drive control unit 206 controls connection and disconnection between the drive shaft of the hybrid vehicle 100 and the motor generator 102 by sending a drive shaft connection command and a drive shaft disconnection command to the transmission ECU 113. More specifically, the drive control unit 206 according to the present embodiment indicates that the determination result from the determination unit 202 is a state where the gear stage can transmit the driving force to the drive shaft by the engine 101 alone, and the regeneration control unit 208 When the regeneration control by the motor generator 102 is being executed and when it is notified that the SOC as the state quantity of the high voltage battery 130 has exceeded the first threshold value, by sending a drive shaft disconnection command to the transmission ECU 113, The drive shaft of the hybrid vehicle 100 and the motor generator 102 are disconnected, and the drive force transmission path to the motor generator 102 is cut off.
  • the discharge control unit 209 sends a positive motor torque command to the motor ECU 114 in a state where the SOC as the state quantity of the high voltage battery 130 exceeds the first threshold and the drive shaft and the motor generator 102 are shut off, and the motor The generator 102 is powered, thereby discharging the high voltage battery 130 whose SOC exceeds the first threshold.
  • the discharge control unit 209 causes the motor generator 102 to power run until the SOC drops below the target SOC, and discharges the battery. When the SOC drops below the target SOC, the discharge control unit 209 stops the power running of the motor generator 102 and the high voltage battery 130. Stop discharging.
  • FIG. 3 is a flowchart illustrating the procedure of the drive control process according to the first embodiment.
  • the hybrid vehicle 100 is traveling on a downhill coast.
  • determination unit 202 determines whether regenerative control by motor generator 102 is currently in progress, SOC of high-voltage battery 130 is greater than a first threshold value, and SOC of high-voltage battery 130 is greater than a target SOC (step). S11).
  • step S11: No When it is determined that the regeneration by the motor generator 102 is not being performed, or the SOC of the high voltage battery 130 is equal to or less than the first threshold value, or the SOC of the high voltage battery 130 is equal to or less than the target SOC (step S11: No). The process ends.
  • the determination is made.
  • the unit 202 further determines whether or not the gear stage is in a state where the driving force can be transmitted to the drive shaft by the engine 101 alone (step S12).
  • FIG. 4 is a skeleton diagram of the transmission units 105, 106, and 108, showing a state where the drive shaft is disconnected.
  • the determination unit 202 determines from the shift position or the like that the sleeve 401 is connected to the gear 402 on the counter shaft 403 connected to the differential gear 120 side in the dotted line portion in FIG. It is determined that the engine 101 alone can transmit the driving force to the driving shaft.
  • step S12 When it is determined that the gear stage is in a state where the driving force can be transmitted to the drive shaft by the engine 101 alone (step S12: Yes), the drive control unit 206 causes the transmission ECU 113 to drive with the motor generator 102. A shaft disconnection command is sent (step S13). As a result, the drive shaft is disconnected from motor generator 102, and the drive force transmission path to motor generator 102 is interrupted.
  • the drive control unit 206 sends the drive shaft disconnection command of step S13 to the transmission ECU 113 until the interruption of the drive force transmission path to the motor generator 102 side is completed (step S14: No).
  • the drive shaft is disconnected by releasing the coupling of the sleeve 401 from the gear 402 on the counter shaft 403 connected to the differential gear 120 to the neutral position. .
  • step S15 the battery discharge control is executed (step S15).
  • the battery discharge control is executed (step S15).
  • step S ⁇ b> 12 when it is determined that the gear stage is in a state where the driving force cannot be transmitted to the drive shaft by the engine 101 alone (step S ⁇ b> 12: No), the regeneration control unit 208 performs the regeneration control by the motor generator 102. Is prohibited (step S16). That is, the regeneration control unit 208 stops the regeneration control being executed. Thereby, the overcharge of the high voltage battery 130 is prevented.
  • step S17 determines whether or not the gear stage is in a state where the driving force can be transmitted to the drive shaft by the engine 101 alone (step S17). If it is determined that the gear stage has become unable to transmit the driving force to the drive shaft by the engine 101 alone due to the downshift of the driver or the like (step S17: No), the process returns to step S16, and the regeneration control is performed. The unit 208 prohibits regenerative control (step S16).
  • step S17 when it is determined in step S17 that the gear stage is in a state where the driving force can be transmitted to the drive shaft by the engine 101 alone (step S17: Yes), the process proceeds to step S13, and the drive control unit 206 Then, a command for separating the motor generator 102 and the drive shaft is sent to the transmission ECU 113 (step S13), and the drive force transmission path to the motor generator 102 is cut off.
  • FIG. 5 is a flowchart illustrating a procedure of battery discharge control according to the first embodiment.
  • the target power calculation unit 203 receives the basic discharge target power and the discharge allowable power from the battery ECU 131, and calculates the discharge target power based on the basic discharge target power and the discharge allowable power (step S31).
  • the discharge control unit 209 calculates the basic target rotational speed of the motor generator 102 from the discharge target power (step S32).
  • This basic target rotational speed is an operating point at which the motor generator 102 is in steady rotation with the discharge target power.
  • FIG. 6 is a graph showing the relationship between the discharge target power and the basic target rotational speed of the motor generator 102. The horizontal axis is the discharge target power, and the vertical axis is the basic target rotational speed of the motor generator 102.
  • Discharge control unit 209 calculates the basic target rotational speed of motor generator 102 based on the graph shown in FIG.
  • the discharge control unit 209 inputs the engine speed from the engine ECU 111, and calculates a rotation limit value based on the engine speed from the correlation between the engine speed and the rotation limit value (step S33). As a result, the rotation speed of the motor generator 102 is limited in an area where the sound of the engine 101 is low.
  • FIG. 7 is a graph showing the correlation between the engine speed and the rotation limit value. In FIG. 7, the horizontal axis represents the engine speed, and the vertical axis represents the rotation limit value.
  • the discharge control unit 209 inputs a vehicle speed from a vehicle speed sensor (not shown), and calculates a rotation limit value of the motor generator 102 according to the vehicle speed (step S34). Specifically, the discharge control unit 209 calculates the rotation limit value by multiplying the vehicle speed by a predetermined motor rotation speed conversion coefficient so as not to exceed the rotation speed of the motor generator 102 in the EV mode. In addition, the rotation limit value is calculated.
  • discharge control unit 209 determines the minimum value among the basic target rotational speed calculated in step S32 and the rotational limit values calculated in steps S33 and S34 as the target rotational speed of motor generator 102 (step S35). ).
  • the discharge control unit 209 calculates a required torque capable of steady rotation at the target rotational speed from the target rotational speed of the motor generator 102 (step S36).
  • FIG. 8 is a graph showing the correlation between the target rotational speed of motor generator 102 and the required torque.
  • the horizontal axis represents the target rotational speed of the motor generator 102
  • the vertical axis represents the required torque.
  • the discharge control unit 209 calculates the required torque from this graph.
  • discharge control unit 209 inputs the rotational speed (measured value) of motor generator 102 from motor generator ECU 114, and performs PI control (proportional control) based on the deviation between the target rotational speed and the measured rotational speed value. Then, a torque correction value is calculated (step S37).
  • the discharge control unit 209 calculates the command motor torque for the motor generator 102 by correcting the required torque calculated in step S36 with the torque correction value calculated in step S37 (step S38). Discharge control unit 209 causes motor generator 102 to power-run according to the command motor torque by sending the command motor torque calculated in this way to motor generator ECU 114.
  • FIG. 9 is a diagram showing a state of change over time of the vehicle speed, the accelerator opening, the SOC, the motor torque, the battery power, and the gear stage in a state where the gear stage can be driven by the engine 101 alone.
  • FIG. 9A when the accelerator opening becomes 0 and coasting is started, deceleration traveling control is started, and regenerative control by the motor generator 102 is performed as shown in FIG. 9C.
  • the control according to the present embodiment is started. That is, as shown in FIG. 9E, the motor generator 102 and the drive shaft are disconnected. Then, power running is performed by the motor generator 102 as shown in FIG. 9C, and the high-voltage battery 130 is discharged as shown in FIG. 9D.
  • the SOC of the high voltage battery 130 decreases to the target SOC
  • the power running by the motor generator 102 is stopped as shown in FIG. 9C, and the discharge of the high voltage battery 130 is also stopped as shown in FIG. 9D. Then, the control of the present embodiment ends.
  • FIG. 10 is a diagram showing a state of change over time of the vehicle speed, the accelerator opening, the SOC, the motor torque, the battery power, and the gear stage when the engine 101 cannot be driven alone.
  • FIG. 10 (a) when the accelerator opening becomes 0 and coasting is started, deceleration traveling control is started, and regenerative control by the motor generator 102 is performed as shown in FIG. 10 (c).
  • the motor generator 102 and the drive shaft are disconnected, and the motor generator 102 is disconnected. Is controlled to discharge the high-voltage battery 130 to the target SOC. For this reason, according to the present embodiment, it is possible to prevent the driver from feeling uncomfortable and to generate sound vibration during coasting, to easily maintain the SOC of the high voltage battery 130 at a constant level, and to easily control the discharge, and to heat the motor generator 102. Can be prevented.
  • the motor generator 102 And the drive shaft are separated from each other to block the drive force transmission path to the motor generator 102 side.
  • a smooth transition from deceleration by regenerative control of the motor generator 102 to deceleration by engine brake can achieve a continuous deceleration, and overcharge of the high-voltage battery 130 can be achieved. Can be prevented.
  • the rotation speed of the engine 101 is uniquely determined by the vehicle speed and the gear stage, according to the present embodiment, the engine sound of a normal gasoline engine vehicle (combination vehicle) or the like is generated, and the driver feels uncomfortable. Sound vibration can be minimized.
  • the high-voltage battery 130 is discharged by the power running of the motor generator 102 in a state where the driving force transmission path of the motor generator 102 is cut off, a constant charge amount SOC can be maintained. Further, according to the present embodiment, since unnecessary switching between power running and regeneration does not occur, heating of the motor generator can be minimized, and thereby discharge control can be easily realized. Furthermore, according to this embodiment, since unnecessary switching between power running and regeneration does not occur, the regenerated energy is not wasted, and fuel consumption can be improved.
  • FIG. 11 is a configuration diagram of a drive system of the hybrid vehicle 100 according to the second embodiment.
  • the function and configuration of the control device of this embodiment are the same as those of the first embodiment.
  • the T / M-MG transmission 105 is a mechanism that accelerates or decelerates by switching the rotational torque output from the motor generator 102 to the forward or reverse rotational direction.
  • the T / M-ENG transmission unit 106 is a mechanism that accelerates or decelerates by switching the rotational torque output from the engine output shaft of the engine 101 to the forward or reverse rotational direction.
  • the clutch 103 is interposed between the engine 101 and the T / M-ENG transmission unit 106, and can connect and disconnect torque from the engine 101 to the T / M-ENG transmission unit 106.
  • the T / M-MG transmission unit 105 on the motor generator 102 side and the T / M-ENG transmission unit 106 on the engine 101 side are each independent of the gear stage.
  • the driving force can be transmitted to the drive shafts 121a and 121b and the differential gear 120 as drive shafts.
  • FIG. 12 is a flowchart illustrating a procedure of drive control processing according to the second embodiment.
  • the determination unit 202 determines whether the motor generator 102 is currently performing regenerative control, whether the SOC of the high voltage battery 130 is greater than the first threshold value, and whether the SOC of the high voltage battery 130 is greater than the target SOC. It is determined whether or not (step S51).
  • step S51: No When it is determined that the regeneration by the motor generator 102 is not being performed, or the SOC of the high voltage battery 130 is equal to or lower than the first threshold value, or the SOC of the high voltage battery 130 is equal to or lower than the target SOC (step S51: No). The process ends.
  • step S51: Yes the drive is performed.
  • the control unit 206 sends a command for separating the motor generator 102 and the drive shaft to the transmission ECU 113 (step S52). As a result, the drive shaft is disconnected from motor generator 102, and the drive force transmission path to motor generator 102 is interrupted.
  • the drive control unit 206 sends the drive shaft disconnection command in step S52 to the transmission ECU 113 until the interruption of the drive force transmission path to the motor generator 102 is completed (step S53: No).
  • step S54 battery discharge control is executed (step S54).
  • the battery discharge control is performed in the same manner as in the first embodiment.
  • the T / M-MG transmission unit 105 on the motor generator 102 side and the T / M-ENG transmission unit 106 on the engine 101 side are each driven independently, regardless of the gear stage. Since the driving force can be transmitted to the drive shafts 121a and 121b as the shaft and the differential gear 120, it is determined whether or not the gear stage is in a state where the driving force can be transmitted to the driving shaft by the engine 101 alone. The processing is unnecessary, and the same effect as in the first embodiment is obtained.

Abstract

 実施形態の車両制御装置は、回生制御部と、判断部と、駆動制御部と、放電制御部とを備える。回生制御部は、モータジェネレータによる回生制御を行う。判断部は、モータジェネレータによる回生制御の実行中であるか否かを判断し、回生制御の実行中である場合に、バッテリの状態量が所定の閾値を超えたか否かを判断する。駆動制御部は、回生制御の実行中であって、かつバッテリの状態量が閾値を超えた場合に、車両の駆動軸とモータジェネレータとを遮断する。放電制御部は、駆動軸とモータジェネレータとを切り離した状態で、モータジェネレータを力行させ、バッテリを放電させる。

Description

車両制御装置
 本発明の実施形態は、車両制御装置に関する。
 従来から、モータのみで走行するモータ走行モードと、エンジンとモータとの双方で走行するハイブリッド走行モードとを切り替えて走行可能なハイブリッド車両が知られている。このようなハイブリッド車両では、下り坂の降坂におけるコースト走行時等に、必要な目標減速駆動力を得るために、モータジェネレータを回生動作させるとともに、自動変速機の変速比を制御する減速走行制御を実行するコントローラを備えている。このコントローラは、減速走行制御時の実行時に、バッテリ充電量が所定の閾値を越えた際に、自動変速機の変速比を目標減速駆動力よりも大きなエンジンフリクションが得られる変速比とするとともに、ハイブリッド走行モードでモータジェネレータを力行動作状態として、バッテリの放電を行なう放電処理を実行している。
特開2010-143511号公報
 しかしながら、このような従来技術では、バッテリが所定閾値を超えて満充電となった場合に、自動変速機の変速比を目標減速駆動力よりも大きなエンジンフリクションが得られるように通常のシフト段のギア比よりも高いギア比の変速比にしているため、この結果、エンジンの回転数が上昇してしまうため、降坂中の減速走行を行っているドライバに対して違和感を与えてしまうとともに、音振動が生じてしまう。
 また、バッテリの充電量が低下した場合には、再度モータジェネレータによる回生動作が行われるため、モータジェネレータは力行と回生を繰り返すことになり、この結果、バッテリの充電量がモータジェネレータによる制御に応じて変動してしまい、充電量を一定に維持することが困難である。また、力行と回生を繰り返すことにより、モータジェネレータが加熱されてしまい、放電制御を実行することが困難となる。
 実施形態の車両制御装置は、エンジンを用いずにモータジェネレータを動力源として走行可能であるとともに、前記エンジンと前記モータジェネレータとの双方を動力源として走行可能な車両を制御する車両制御装置であって、前記モータジェネレータによる回生制御を行う回生制御部と、前記モータジェネレータによる回生制御の実行中であるか否かを判断し、前記回生制御の実行中である場合に、バッテリの状態量が所定の閾値を超えたか否かを判断する判断部と、前記回生制御の実行中であって、かつ前記バッテリの状態量が前記閾値を超えた場合に、前記車両の駆動軸と前記モータジェネレータとを遮断する駆動制御部と、前記駆動軸と前記モータジェネレータとを切り離した状態で、前記モータジェネレータを力行させ、前記バッテリを放電させる放電制御部と、を備えた。当該構成により、ドライバーに対する違和感と音振動の発生を防止し、バッテリの充電量を一定に維持して放電制御を容易に行えるとともに、モータの加熱を抑制することができる。
 また、実施形態の車両制御装置において、前記判断部は、さらに、前記状態量が前記閾値を超えた後、前記状態量が所定の目標値以下に低下したか否かを判断し、前記放電制御部は、前記状態量が目標値以下に低下するまで、前記モータジェネレータを力行させて前記バッテリを放電させる。当該構成により、バッテリの充電量をより一定に維持して放電制御を容易に行うことができる。
 また、実施形態の車両制御装置において、前記モータジェネレータと前記エンジンとは、変速部を介して共通の出力軸を有し、前記変速部のギア段によってそれぞれ単独で前記駆動軸との接続および遮断が可能であり、前記判断部は、さらに、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達可能な状態であるか否かを判定し、前記駆動制御部は、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達可能な状態である場合に、前記車両の駆動軸と前記モータジェネレータとを遮断する。当該構成により、回生制御による減速からエンジンブレーキによる減速に滑らかに遷移し、途切れのない減速を実現することができるとともに、バッテリの過充電を防止することができる。
 また、実施形態の車両制御装置において、前記回生制御部は、さらに、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達不能な状態である場合には、前記モータジェネレータによる回生制御を禁止する。当該構成により、バッテリの過充電を防止することができる。
 また、実施形態の車両制御装置において、前記モータジェネレータの第1変速部と前記エンジンの第2変速部は、ギア段によらず、それぞれ単独で前記駆動軸との接続および遮断が可能である。当該構成により、ギア段がエンジン単独で駆動軸に駆動力を伝達可能か否かの判断を不要とすることができる。
 また、実施形態の車両制御装置において、前記状態量は、SOC(State of charge)を含む。当該構成により、SOCを用いて、容易にバッテリの状態を判定することができる。
 また、実施形態の車両制御装置において、前記放電制御部は、前記閾値として、前記バッテリが満充電に近い状態を示す第1閾値が設定され、前記目標値として、前記第1閾値よりも小さい第1目標値が設定されている場合に、前記状態量が前記第1目標値以下に低下するまで前記バッテリを放電させ、前記状態量が前記第1目標値以下に低下した場合に、前記バッテリの放電を停止する。当該構成により、バッテリの充電量を一定に維持するような放電制御を容易に行うことができる。
図1は、実施形態1のハイブリッド車両の構成図である。 図2は、実施形態1の統合ECUの機能的構成を示すブロック図である。 図3は、実施形態1にかかる駆動制御処理の手順を示すフローチャートである。 図4は、変速部のスケルトン図である。 図5は、実施形態1のバッテリ放電制御の手順を示すフローチャートである。 図6は、放電目標電力とモータジェネレータの基本目標回転数との関係を示すグラフである。 図7は、エンジン回転数と回転制限値との相関関係を示すグラフである。 図8は、モータジェネレータの目標回転数と要求トルクとの相関を示すグラフである。 図9は、ギア段がエンジン単体で駆動可能な状態における車速、アクセル開度、SOC、モータトルク、バッテリ電力、ギア段の経時的な変化の状態を示す図である。 図10は、エンジン単体で駆動不能な場合における車速、アクセル開度、SOC、モータトルク、バッテリ電力、ギア段の経時的な変化の状態を示す図である。 図11は、実施形態2のハイブリッド車両の駆動系の構成図である。 図12は、実施形態2にかかる駆動制御処理の手順を示すフローチャートである。
 以下に添付図面を参照して、車両制御装置の実施の形態を詳細に説明する。以下に示す実施形態では、車両制御装置を搭載したハイブリッド車両を例にあげて説明する。
(実施形態1)
 図1は、本実施形態のハイブリッド車両100の構成図である。本実施形態のハイブリッド車両100は、図1に示すように、動力源として、燃料の燃焼エネルギーにより回転トルクを出力するエンジン(ENG)101と、電気エネルギーにより回転トルクを出力するモータジェネレータ(MG)102とを備えた前輪駆動の車両である。本実施形態のハイブリッド車両100は、駆動系と制御装置300とを備えている。
 本実施形態のハイブリッド車両100は、駆動系として、駆動輪である右前輪FRおよび左前輪FLと、駆動軸としてのドライブシャフト121a,121bおよびディファレンシャルギア120と、エンジン101と、モータジェネレータ102と、クラッチ103と、クラッチアクチュエータ104と、変速部105,106,108(T/M-MG変速部105、T/M-ENG変速部106、共通変速部108)と、シフトアクチュエータ107と、を有している。
 エンジン101は、例えば、燃料(例えば、ガソリン、軽油などの炭化水素系)の燃焼により、エンジン出力軸からトルクを出力する内燃機関である。エンジン101は、各種センサ(エンジン回転センサ等)、アクチュエータ(インジェクタ、スロットルバルブを駆動するアクチュエータ等)を有している。エンジン101は、エンジンECU(ENG-ECU)111に通信可能に接続されており、エンジンECU111によって制御される。
 クラッチ103は、エンジン101および変速部105,106,108、モータジェネレータ102との間に介装され、エンジン101から変速部105,106,108へのトルクを断接可能な装置である。クラッチ103は、トランスミッションECU(T/M-ECU)113によって駆動制御されるクラッチアクチュエータ104によって、締結および開放が制御される。
 モータジェネレータ102は、ロータに永久磁石を埋設しステータにステータコイルが巻回され、電動機として駆動するとともに発電機としても駆動する同期発電電動機である。モータジェネレータ102は、インバータ110を介して高圧バッテリ130と電力のやりとりを行う。具体的には、モータジェネレータ102は、高圧バッテリ130からの電力供給を受けて回転駆動する電動機として動作し、回転駆動によるトルクをT/M-MG変速部105に出力することができる。なお、かかるモータジェネレータ102の状態を「力行」という。
 また、モータジェネレータ102は、エンジン101からエンジン出力軸に出力されたトルクやT/M-MG変速部105からのトルクを受けてステータコイルの両端に起電力を生じさせ、発電機として動作して高圧バッテリ130を充電することができる。なお、かかるモータジェネレータ102の状態を「回生」という。
 変速部105,106,108は、モータジェネレータ102やエンジン101から出力されるトルクを駆動軸(ディファレンシャルギア120およびドライブシャフト121a,121b)を介して駆動輪FR,FLに伝達する機構である。変速部105,106,108は、T/M-MG変速部105と、T/M-ENG変速部106と、共通変速部108とから構成される。T/M-MG変速部105は、モータジェネレータ102から出力された回転トルクを前進又は後進の回転方向に切り替えて加速または減速する機構である。T/M-ENG変速部106は、エンジン101のエンジン出力軸から出力された回転トルクを前進又は後進の回転方向に切り替えて加速または減速する機構である。共通変速部108は、モータジェネレータ102およびエンジン101から伝達された回転トルクをまとめて駆動軸(ディファレンシャルギア120およびドライブシャフト121a,121b)を介して駆動輪FR,FLに伝達する機構である。これらの変速部は、それぞれ複数のギア段に切替え可能に構成されている。また、シフトアクチュエータ107は、T/M-ENG変速部106、T/M-MG変速部105および共通変速部108のギア段の切替えを制御する。
 ディファレンシャルギア120は、共通変速部108から伝達された回転トルクを駆動輪FR,FLに伝達させる際に、右前輪FRと左前輪FLとの間で差動を生じさせるギアである。
 本実施形態のハイブリッド車両100の駆動系では、上述のような構成となっているため、モータジェネレータ102とエンジン101とは、変速部105,106,108を介して共通の出力軸を有し、変速部105,106,108のギア段によってそれぞれ単独で駆動軸(ディファレンシャルギア120およびドライブシャフト121a,121b)との接続および遮断が可能となっている。
 次に、ハイブリッド車両100の制御装置300について説明する。制御装置300は、ハイブリッド車両100全体を制御する。制御装置300は、図1に示すように、インバータ110と、ブレーキ油圧制御部109と、エンジンECU(ENG-ECU)111と、電子制御ブレーキECU(ECB-ECU)112と、トランスミッションECU(T/M-ECU)113と、モータジェネレータECU(MG-ECU)114と、統合ECU200と、高圧バッテリ130と、バッテリECU131とを主に備えている。
 バッテリECU131は、高圧バッテリ130を制御し、例えば、充電量SOC(State Of Charge)、放電許容電力、電圧等の高圧バッテリ130に関する情報を統合ECU200に通知する。
 エンジンECU(ENG-ECU)111は、エンジン101に内蔵された不図示の各種アクチュエータ(例えば、スロットルバルブ、インジェクタ等を駆動するアクチュエータ等)、各種センサ(例えば、エンジン回転センサ等)及び統合ECU200と通信可能に接続されている。エンジンECU(ENG-ECU)111は、統合ECU200からエンジントルク指令(アクセル開度指令)を受信して、エンジン101の動作を制御する。
 電子制御ブレーキECU(ECB-ECU)112は、ブレーキ油圧制御部109と統合ECU200と電気的に接続されている。電子制御ブレーキECU112は、統合ECU200からブレーキ指令や回生トルクを受信して、ブレーキ指令や回生トルクに基づいてブレーキ油圧制御部109に対して指令を行うことにより、ブレーキ・バイ・ワイヤーの一種である電子制御ブレーキシステム(ECB:Electronically Control Braking System)によるブレーキ制御を行う。
 ブレーキ油圧制御部109は、ECB-ECU112からの指令を受けて、ブレーキ117,118に対するブレーキ油圧制御を行って、駆動輪に対してブレーキを車両状況に応じて自動的に作動させることができる。
 トランスミッションECU(T/M-ECU)113は、クラッチアクチュエータ104、シフトアクチュエータ107および統合ECU200と電気的に接続されている。トランスミッションECU113は、統合ECU200からクラッチ要求を受信してクラッチアクチュエータ104を制御し、クラッチ103の断接の制御を行う。また、トランスミッションECU113は、統合ECU200から変速要求を受信して、シフトアクチュエータ107を制御して、変速部105,106,108のギア段の切替えを制御する。
 インバータ110は、モータジェネレータECU(MG-ECU)114からの制御信号に応じて、三相交流を生成してモータジェネレータ102に印加し、モータジェネレータ102の動作(駆動動作、発電動作、回生動作)を制御する。インバータ110は、昇圧コンバータ(不図示)を介して高圧バッテリ130と電気的に接続されている。
 モータジェネレータECU(MG-ECU)114は、インバータ110、不図示の各種センサ(例えば、回転センサ等)、および統合ECU200と通信可能に接続されている。モータジェネレータECU114は、統合ECU200からモータトルク指令を受信し、インバータ110を介してモータジェネレータ102の動作を制御する。
 ここで、エンジンECU111、電子制御ブレーキECU112、トランスミッションECU113、モータジェネレータECU114のそれぞれでは、統合ECU200からの制御信号に応じて、不図示のCPU(Central Processing Unit)が所定のプログラム(データベース、マップ等を含む)を不図示のROM(Read Only Memory)等の記憶媒体から読み出して読み出したプログラムを実行することにより、上述の各種制御処理を行う。
 統合ECU200は、エンジンECU111、電子制御ブレーキECU112、トランスミッションECU113、モータジェネレータECU114の動作を制御する。統合ECU200は、エンジンECU111、電子制御ブレーキECU112、トランスミッションECU113、モータジェネレータECU114、各種センサ(例えば、回転センサ等)、各種スイッチ(例えば、イグニッションスイッチ等)と通信可能に接続されている。本実施形態では、統合ECU200は、アクセル開度センサ(不図示)からアクセル開度を受信し、車速センサ(不図示)からハイブリッド車両100の車速を受信する。また、統合ECU200はエンジンECU111からエンジン101の運転状態を受信する。さらに統合ECU200は、ブレーキストロークセンサ(不図示)からブレーキストロークを、シフトレバー(不図示)からシフトポジションを、高圧バッテリ130から充電量SOCをそれぞれ受信する。
 本実施形態の統合ECU200は、例えば、アクセル開度センサ(不図示)からアクセル開度が0であることを検知して、コースト走行状態であることを検知し、下り坂センサ(不図示)等から下り坂走行状態を検知する。そして、統合ECU200は、下り坂でのコースト走行の際に、モータジェネレータ102に負のトルクを与えて回生制御を行うことにより、ハイブリッド車両100に減速度を与えて、一定の車速に維持する減速走行制御を行っている。
 以下、統合ECU200の詳細について説明する。図2は、本実施形態の統合ECU200の機能的構成を示すブロック図である。本実施形態の統合ECU200は、図2に示すように、走行モード判定部201と、判断部202と、駆動力算出部207と、目標電力算出部203と、動作点決定部204とを主に備えている。
 統合ECU200では、ハイブリッド車両100の所定の状況に応じて、不図示のCPUが所定のプログラム(データベース、マップ等を含む)を不図示のROM等の記憶媒体から読み出して読み出したプログラムを実行することにより、上記各部として機能し、以下に示す各部の機能を実行して、エンジンECU111、電子制御ブレーキECU112、トランスミッションECU113、モータジェネレータECU114に対して各種制御信号を出力する。
 走行モード判定部201は、エンジンECU111からエンジン101の運転状態を入力し、エンジン101の運転状態から、ハイブリッド車両100の走行モードを判定する。ここで、本実施形態の走行モードは、モータ走行モードとハイブリッド走行モードがある。モータ走行モード(以下、「EV走行モード」という。)は、クラッチ103の開放状態で、ハイブリッド車両100がエンジン101を用いずにモータジェネレータ102のみを動力源として走行する走行モードである。ハイブリッド走行モード(以下、「HV走行モード」という。)は、クラッチ103の締結状態で、ハイブリッド車両100が、エンジン101とモータジェネレータ102との双方を動力源として走行する走行モードである。走行モード判定部201は、判定した走行モードを、判断部202に送出する。
 駆動力算出部207は、アクセル開度センサ(不図示)から入力されたアクセル開度と、車速センサから入力された車速とから、ドライバーの加速操作によりドライバーが要求する駆動力(要求駆動力)を求める。駆動力算出部207は、算出した要求駆動力を、判断部202と動作点決定部204に送出する。
 判断部202は、モータジェネレータECU114から現在のモータトルクを入力する。そして、判断部202は、モータトルクが負であるか否かにより、モータジェネレータ102による回生制御の実行中であるか否かを判断する。
 また、判断部202は、回生制御の実行中であると判断した場合に、高圧バッテリ130の状態量が所定の閾値を超えたか否かを判断する。ここで、高圧バッテリ130の状態量とは、高圧バッテリ130の状態に関する情報であり、例えば、SOC等が該当する。但し、高圧バッテリ130の状態量としては、SOCに限定されるものではない。
 本実施の形態では、高圧バッテリ130の状態量として、SOCを用いている。すなわち、判断部202は、バッテリECU131から、現在のSOCを入力し、回生制御の実行中であると判断した場合に、高圧バッテリ130の状態量としてのSOCが所定の第1閾値を超えたか否かを判断する。さらに、判断部202は、SOCが第1閾値を超えた後、後述する高圧バッテリ130の放電制御により、SOCが所定の目標SOC(目標値)以下に低下したか否かを判断する。
 ここで、第1閾値は、高圧バッテリ130が満充電に近い状態であることを示す値であり、目標SOCは、第1閾値より小さい値(第1目標値)である。
 また、高圧バッテリ130の状態量の目標値は任意に定めることができる。ここで、状態量としてSOCを用いる本実施の形態の場合、目標値としての目標SOCは、以下のように変化させる。SOCは、高圧バッテリ130の温度に依存する。すなわち、高圧バッテリ130は、SOCが高く、かつ高圧バッテリ130が高温の状態において、長期保管時にバッテリの劣化が促進する。このため、本実施の形態では、高圧バッテリ130が、保存劣化しやすい温度である所定の温度以上の高温時には、目標SOCを低下させて設定し、上記判断部202による判断を行う。これにより、高圧バッテリ130の性能を維持することが可能となる。
 なお、本実施の形態では、目標SOCを低下させるか否かの判断として、高圧バッテリ130の温度を用いているがこれに限定されるものではない。例えば、外気温や車両の室内の温度が所定温度より高いか否かにより、目標SOCを低下させて設定するか否かを決定するように判断部202等を構成してもよい。
 また、判断部202は、変速部105,106,108のギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であるか否かをシフトポジションにより判断する。
 目標電力算出部203は、バッテリECU131から基本放電目標電力と放電許容電力を入力し、基本放電目標電力と放電許容電力に基づいて放電目標電力を算出する。目標電力算出部203は、算出した放電目標電力を動作点決定部204に送出する。ここで、基本目標電力は、バッテリECU131によって決定される。
 動作点決定部204は、アクセル開度と、要求駆動力と、放電目標電力、走行モード等から、これらの動作点到達目標として、エンジン101の目標とするエンジントルクやモータジェネレータ102の目標とするモータトルク、クラッチ103の目標とする締結容量、変速部105,106,108の目標とするギア段、回生トルク等を求める。動作点決定部204は、図2に示すように、駆動制御部206と、回生制御部208と、放電制御部209とを主に備えている。なお、図2に示す動作点決定部204では、本実施形態に関係する部位のみを示している。
 回生制御部208は、モータジェネレータ102による回生制御を行う。具体的には、回生制御部208は、モータジェネレータ102による回生制動のための回生トルク(負のトルク)を算出し、ECB-ECU112に回生トルクを送出するとともに、回生トルクのモータトルク指令をモータジェネレータECU114に送出して、回生トルクによる制動(回生制動)を行わせる。
 また、回生制御部208は、判断部202から判断結果として、変速部105,106,108のギア段がエンジン101単独で駆動軸に駆動力を伝達不能な状態であることを通知された場合には、モータジェネレータ102による回生制御を禁止する。
 駆動制御部206は、駆動軸接続命令および駆動軸切り離し命令をトランスミッションECU113に送出することにより、ハイブリッド車両100の駆動軸とモータジェネレータ102の接続および遮断を制御する。より具体的には、本実施形態の駆動制御部206は、判断部202から判断結果として、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であって、回生制御部208でモータジェネレータ102による回生制御の実行中であり、かつ高圧バッテリ130の状態量としてのSOCが第1閾値を超えたことを通知された場合に、駆動軸切り離し命令をトランスミッションECU113に送出することにより、ハイブリッド車両100の駆動軸とモータジェネレータ102とを切り離し、モータジェネレータ102側への駆動力伝達経路の遮断を行う。
 放電制御部209は、高圧バッテリ130の状態量としてのSOCが第1閾値を超えて駆動軸とモータジェネレータ102とが遮断された状態で、モータECU114に正のモータトルク指令を送出して、モータジェネレータ102を力行させ、これにより、SOCが第1閾値を超えた高圧バッテリ130を放電させる。放電制御部209は、SOCが目標SOC以下に低下するまで、モータジェネレータ102を力行させてバッテリを放電させ、SOCが目標SOCまで以下に低下したら、モータジェネレータ102の力行を停止し、高圧バッテリ130の放電を停止する。
 次に、以上のように構成された本実施形態の駆動制御処理について説明する。図3は、実施形態1にかかる駆動制御処理の手順を示すフローチャートである。本実施形態では、ハイブリッド車両100は、下り坂をコースト走行しているものとする。
 まず、判断部202は、現在、モータジェネレータ102による回生制御中で、かつ高圧バッテリ130のSOCが第1閾値より大きく、かつ高圧バッテリ130のSOCが目標SOCより大きいか否かを判断する(ステップS11)。
 そして、モータジェネレータ102による回生制御中でなく、または高圧バッテリ130のSOCが第1閾値以下、あるいは高圧バッテリ130のSOCが目標SOC以下であると判断された場合には(ステップS11:No)、処理を終了する。
 一方、モータジェネレータ102による回生制御中で、かつ高圧バッテリ130のSOCが第1閾値より大きく、かつ高圧バッテリ130のSOCが目標SOCより大きいと判断された場合には(ステップS11:Yes)、判断部202は、さらに、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であるか否かを判断する(ステップS12)。
 図4は、変速部105,106,108のスケルトン図であり、駆動軸が切り離された状態を示している。判断部202は、図4の点線部分において、ディファレンシャルギア120側に接続されるカウンタシャフト403上のギア402にスリーブ401が連結されていることを、シフトポジション等から判断した場合に、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であると判断する。
 そして、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であると判断された場合には(ステップS12:Yes)、駆動制御部206は、トランスミッションECU113に、モータジェネレータ102と駆動軸の切り離し指令を送出する(ステップS13)。これにより、駆動軸がモータジェネレータ102と切り離され、モータジェネレータ102側への駆動力伝達経路が遮断される。
 駆動制御部206は、モータジェネレータ102側への駆動力伝達経路の遮断が完了するまで(ステップS14:No)、ステップS13の駆動軸切り離し指令をトランスミッションECU113に送出する。
 ここで、図4の点線部分に示すように、ディファレンシャルギア120側に接続されるカウンタシャフト403上のギア402からスリーブ401の連結を解除してニュートラルの位置とすることで、駆動軸が切り離される。
 そして、駆動軸がモータジェネレータ102と切り離され、モータジェネレータ102側への駆動力伝達経路の遮断が完了したら(ステップS14:Yes)、バッテリ放電制御が実行される(ステップS15)。ここで、バッテリ放電制御の詳細については後述する。
 ステップS12に戻り、ギア段がエンジン101単独で駆動軸に駆動力を伝達不能な状態であると判断された場合には(ステップS12:No)、回生制御部208は、モータジェネレータ102による回生制御を禁止する(ステップS16)。すなわち、回生制御部208は、実行中の回生制御を停止する。これにより高圧バッテリ130の過充電が防止される。
 そして、再度、判断部202は、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であるか否かを判断する(ステップS17)。そして、ドライバーがシフトダウンする等により、ギア段がエンジン101単独で駆動軸に駆動力を伝達不能な状態になったと判断された場合には(ステップS17:No)、ステップS16に戻り、回生制御部208が回生制御を禁止する(ステップS16)。
 一方、ステップS17で、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であると判断された場合には(ステップS17:Yes)、ステップS13へ移行し、駆動制御部206は、トランスミッションECU113に、モータジェネレータ102と駆動軸の切り離し指令を送出して(ステップS13)、モータジェネレータ102側への駆動力伝達経路の遮断を行う。
 次に、ステップS15のバッテリ放電制御について説明する。図5は、実施形態1のバッテリ放電制御の手順を示すフローチャートである。まず、目標電力算出部203は、バッテリECU131から基本放電目標電力と放電許容電力を入力し、基本放電目標電力と放電許容電力に基づいて放電目標電力を算出する(ステップS31)。
 次に、放電制御部209は、放電目標電力からモータジェネレータ102の基本目標回転数を算出する(ステップS32)。この基本目標回転数は、放電目標電力でモータジェネレータ102が定常回転となる動作点である。図6は、放電目標電力とモータジェネレータ102の基本目標回転数との関係を示すグラフである。横軸が放電目標電力であり、縦軸がモータジェネレータ102の基本目標回転数である。放電制御部209は、図6に示すグラフによりモータジェネレータ102の基本目標回転数を算出する。
 次に、放電制御部209は、エンジン回転数をエンジンECU111から入力し、エンジン回転数と回転制限値との相関関係から、エンジン回転数による回転制限値を算出する(ステップS33)。これにより、エンジン101の音が小さい領域では、モータジェネレータ102の回転数を制限している。図7は、エンジン回転数と回転制限値との相関関係を示すグラフである。図7において、横軸がエンジン回転数であり、縦軸が回転制限値である。
 次に、放電制御部209は、車速を車速センサ(不図示)から入力し、車速に応じてモータジェネレータ102の回転制限値を算出する(ステップS34)。具体的には、放電制御部209は、車速に予め定められたモータ回転数換算係数を乗算することにより回転制限値を算出しており、EVモードでのモータジェネレータ102の回転数以上とならないように、回転制限値を算出している。
 そして、放電制御部209は、ステップS32で算出した基本目標回転数と、ステップS33およびS34で算出した各回転制限値のうち最小の値を、モータジェネレータ102の目標回転数として決定する(ステップS35)。
 次に、放電制御部209は、モータジェネレータ102の目標回転数から、目標回転数で定常回転が可能な要求トルクを算出する(ステップS36)。図8は、モータジェネレータ102の目標回転数と要求トルクとの相関を示すグラフである。図8において、横軸がモータジェネレータ102の目標回転数であり、縦軸が要求トルクである。放電制御部209は、このグラフにより要求トルクを算出している。
 次に、放電制御部209は、モータジェネレータECU114からモータジェネレータ102の回転数(測定値)を入力し、目標回転数と回転数測定値との偏差に基づいてPI制御(比例制御)を行って、トルク補正値を算出する(ステップS37)。
 そして、放電制御部209は、ステップS36で算出した要求トルクを、ステップS37で算出したトルク補正値で補正して、モータジェネレータ102に対する指令モータトルクを算出する(ステップS38)。放電制御部209は、このようにして算出した指令モータトルクをモータジェネレータECU114に送出することにより、モータジェネレータ102を指令モータトルクに応じて力行させる。
 図9は、ギア段がエンジン101単体で駆動可能な状態における車速、アクセル開度、SOC、モータトルク、バッテリ電力、ギア段の経時的な変化の状態を示す図である。図9(a)に示すように、アクセル開度が0となりコースト走行が開始されると、減速走行制御が開始され、図9(c)に示すようにモータジェネレータ102による回生制御が行われる。
 そして、図9(b)に示すように、高圧バッテリ130のSOCが第1閾値に達すると、本実施形態による制御が開始される。すなわち、図9(e)に示すように、モータジェネレータ102と駆動軸とは遮断される。そして、図9(c)に示すように、モータジェネレータ102による力行が行われ、図9(d)に示すように、高圧バッテリ130の放電が行われる。そして、高圧バッテリ130のSOCが目標SOCまで低下すると、図9(c)に示すように、モータジェネレータ102による力行が停止され、図9(d)に示すように、高圧バッテリ130の放電も停止し、本実施形態の制御は終了する。
 図10は、エンジン101単体で駆動不能な場合における車速、アクセル開度、SOC、モータトルク、バッテリ電力、ギア段の経時的な変化の状態を示す図である。図10(a)に示すように、アクセル開度が0となりコースト走行が開始されると、減速走行制御が開始され、図10(c)に示すようにモータジェネレータ102による回生制御が行われる。
 そして、図10(b)に示すように、高圧バッテリ130のSOCが第1閾値に達すると、本実施形態による制御が開始される。この時点では、図10(e)に示すように、ギア段はエンジン101単体で駆動不能な状態にあるため、図10(c)に示すように、モータジェネレータ102による回生制御は禁止される。
 そして、ドライバーがシフトダウンして、図10(e)に示すようにギア段がエンジン101単体で駆動可能な状態に変化すると、モータジェネレータ102と駆動軸とは遮断される。そして、図10(c)に示すように、モータジェネレータ102による力行が行われ、図10(d)に示すように、高圧バッテリ130の放電が行われる。そして、高圧バッテリ130のSOCが目標SOCまで低下すると、図10(c)に示すように、モータジェネレータ102による力行が停止され、図10(d)に示すように、高圧バッテリ130の放電も停止し、本実施形態の制御は終了する。
 このように本実施形態では、コースト走行状態で、回生制御中かつ高圧バッテリ130のSOCが満充電となる第1閾値になった場合に、モータジェネレータ102と駆動軸とを切り離して、モータジェネレータ102を力行し、高圧バッテリ130を目標SOCまで放電する制御を行う。このため、本実施形態によれば、コースト走行時におけるドライバーに対する違和感と音振動の発生を防止し、高圧バッテリ130のSOCを一定に維持して放電制御を容易に行えるとともに、モータジェネレータ102の加熱を防止することができる。
 すなわち、本実施形態では、エンジン101単体で駆動力を伝達可能な場合、すなわちエンジン101と駆動軸とが接続され、エンジン101への駆動力伝達経路が継合している場合に、モータジェネレータ102と駆動軸とを切り離してモータジェネレータ102側への駆動力伝達経路を遮断している。このため、本実施形態によれば、モータジェネレータ102の回生制御による減速からエンジンブレーキによる減速に滑らかに遷移することにより、途切れのない減速を実現することができるとともに、高圧バッテリ130の過充電を防止することができる。
 また、この場合、エンジン101の回転数は車速とギア段により一意的に定まるため、本実施形態によれば、通常のガソリンエンジン搭載車 (コンベ車)等のエンジン音となり、ドライバーへの違和感や音振動を最小限に抑えることができる。
 また、本実施形態では、モータジェネレータ102の駆動力伝達経路を遮断した状態でモータジェネレータ102の力行による高圧バッテリ130の放電を行うため、一定の充電量SOCを維持することができる。また、本実施形態によれば、力行と回生の不要な切替えが発生しないため、モータジェネレータの加熱を最小限に抑え、これにより放電制御を容易に実現することができる。さらに、本実施形態によれば、力行と回生の不要な切替えが発生しないため、回生したエネルギーが無駄にならず、燃費を良好にすることができる。
(実施形態2)
 実施形態2のハイブリッド車両100では、駆動系の構成が実施形態1と異なっている。図11は、実施形態2のハイブリッド車両100の駆動系の構成図である。なお、本実施形態の制御装置の機能および構成は実施形態1と同様である。
 図11において、T/M-MG変速部105は、モータジェネレータ102から出力された回転トルクを前進又は後進の回転方向に切り替えて加速または減速する機構である。また、T/M-ENG変速部106は、エンジン101のエンジン出力軸から出力された回転トルクを前進又は後進の回転方向に切り替えて加速または減速する機構である。
 クラッチ103は、エンジン101とT/M-ENG変速部106との間に介装され、エンジン101からT/M-ENG変速部106へのトルクを断接可能としている。
 本実施形態では、図11に示すように、モータジェネレータ102側のT/M-MG変速部105と、エンジン101側のT/M-ENG変速部106とがギア段によらず、それぞれ単体で、駆動軸としてのドライブシャフト121a,121bおよびディファレンシャルギア120への駆動力伝達が可能となっている。
 次に、以上のように構成された本実施形態の駆動制御処理について説明する。図12は、実施形態2にかかる駆動制御処理の手順を示すフローチャートである。
 まず、判断部202は、実施形態1と同様に、現在、モータジェネレータ102による回生制御中で、かつ高圧バッテリ130のSOCが第1閾値より大きく、かつ高圧バッテリ130のSOCが目標SOCより大きいか否かを判断する(ステップS51)。
 そして、モータジェネレータ102による回生制御中でなく、または高圧バッテリ130のSOCが第1閾値以下、あるいは高圧バッテリ130のSOCが目標SOC以下であると判断された場合には(ステップS51:No)、処理を終了する。
 一方、モータジェネレータ102による回生制御中で、かつ高圧バッテリ130のSOCが第1閾値より大きく、かつ高圧バッテリ130のSOCが目標SOCより大きいと判断された場合には(ステップS51:Yes)、駆動制御部206は、トランスミッションECU113に、モータジェネレータ102と駆動軸の切り離し指令を送出する(ステップS52)。これにより、駆動軸がモータジェネレータ102と切り離され、モータジェネレータ102側への駆動力伝達経路が遮断される。
 駆動制御部206は、モータジェネレータ102側への駆動力伝達経路の遮断が完了するまで(ステップS53:No)、ステップS52の駆動軸切り離し指令をトランスミッションECU113に送出する。
 そして、駆動軸がモータジェネレータ102と切り離され、モータジェネレータ102側への駆動力伝達経路の遮断が完了したら(ステップS53:Yes)、バッテリ放電制御が実行される(ステップS54)。ここで、バッテリ放電制御は実施形態1と同様に行われる。
 このように本実施形態によれば、モータジェネレータ102側のT/M-MG変速部105と、エンジン101側のT/M-ENG変速部106とがギア段によらず、それぞれ単体で、駆動軸としてのドライブシャフト121a,121bおよびディファレンシャルギア120への駆動力伝達が可能となっているため、ギア段がエンジン101単独で駆動軸に駆動力を伝達可能な状態であるか否かを判断する処理を不要として、実施形態1と同様の効果を奏する。
 本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
101 エンジン
102 モータジェネレータ
103 クラッチ
104 クラッチアクチュエータ
105 T/M-MG変速部
106 T/M-ENG変速部
107 シフトアクチュエータ
108 共通変速部
109 ブレーキ油圧制御部
110 インバータ
111 エンジンECU(ENG-ECU)
112 電子制御ブレーキECU(ECB-ECU)
113 トランスミッションECU(T/M-ECU)
114 モータジェネレータECU(MG-ECU)
120 ディファレンシャルギア
121a,121b ドライブシャフト
200 統合ECU
201 走行モード判定部
202 判断部
203 目標電力算出部
204 動作点決定部
206 駆動制御部
207 駆動力算出部
208 回生制御部
209 放電制御部

Claims (7)

  1.  エンジンを用いずにモータジェネレータを動力源として走行可能であるとともに、前記エンジンと前記モータジェネレータとの双方を動力源として走行可能な車両を制御する車両制御装置であって、
     前記モータジェネレータによる回生制御を行う回生制御部と、
     前記モータジェネレータによる回生制御の実行中であるか否かを判断し、前記回生制御の実行中である場合に、バッテリの状態量が所定の閾値を超えたか否かを判断する判断部と、
     前記回生制御の実行中であって、かつ前記バッテリの状態量が前記閾値を超えた場合に、前記車両の駆動軸と前記モータジェネレータとを遮断する駆動制御部と、
     前記駆動軸と前記モータジェネレータとを切り離した状態で、前記モータジェネレータを力行させ、前記バッテリを放電させる放電制御部と、
    を備えた車両制御装置。
  2.  前記判断部は、さらに、前記状態量が前記閾値を超えた後、前記状態量が所定の目標値以下に低下したか否かを判断し、
     前記放電制御部は、前記状態量が前記目標値以下に低下するまで、前記モータジェネレータを力行させて前記バッテリを放電させる、
    請求項1に記載の車両制御装置。
  3.  前記モータジェネレータと前記エンジンとは、変速部を介して共通の出力軸を有し、前記変速部のギア段によってそれぞれ単独で前記駆動軸との接続および遮断が可能であり、
     前記判断部は、さらに、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達可能な状態であるか否かを判定し、
     前記駆動制御部は、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達可能な状態である場合に、前記車両の駆動軸と前記モータジェネレータとを遮断する、
    請求項1に記載の車両制御装置。
  4.  前記回生制御部は、さらに、前記ギア段が前記エンジン単独で前記駆動軸に駆動力を伝達不能な状態である場合には、前記モータジェネレータによる回生制御を禁止する、
    請求項3に記載の車両制御装置。
  5.  前記モータジェネレータの第1変速部と前記エンジンの第2変速部は、ギア段によらず、それぞれ単独で前記駆動軸との接続および遮断が可能である、
    請求項1に記載の車両制御装置。
  6.  前記状態量は、SOC(State of charge)を含む、請求項1に記載の車両制御装置。
  7.  前記放電制御部は、前記閾値として、前記バッテリが満充電に近い状態であることを示す第1閾値が設定され、前記目標値として、前記第1閾値よりも小さい第1目標値が設定されている場合に、前記状態量が前記第1目標値以下に低下するまで前記バッテリを放電させ、前記状態量が前記第1目標値以下に低下した場合に、前記バッテリの放電を停止する、請求項2に記載の車両制御装置。
PCT/JP2014/058334 2013-04-25 2014-03-25 車両制御装置 WO2014174967A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480023093.8A CN105143007A (zh) 2013-04-25 2014-03-25 车辆控制装置
EP14788442.3A EP2990286A4 (en) 2013-04-25 2014-03-25 VEHICLE CONTROL DEVICE
US14/786,284 US20160059842A1 (en) 2013-04-25 2014-03-25 Vehicle control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-092977 2013-04-25
JP2013092977A JP2014213748A (ja) 2013-04-25 2013-04-25 車両制御装置

Publications (1)

Publication Number Publication Date
WO2014174967A1 true WO2014174967A1 (ja) 2014-10-30

Family

ID=51791550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058334 WO2014174967A1 (ja) 2013-04-25 2014-03-25 車両制御装置

Country Status (5)

Country Link
US (1) US20160059842A1 (ja)
EP (1) EP2990286A4 (ja)
JP (1) JP2014213748A (ja)
CN (1) CN105143007A (ja)
WO (1) WO2014174967A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314863B2 (ja) * 2015-02-03 2018-04-25 株式会社デンソー 電子制御装置
JP6958329B2 (ja) * 2017-12-20 2021-11-02 トヨタ自動車株式会社 ハイブリッド車両
JP7338194B2 (ja) * 2019-03-28 2023-09-05 三菱自動車工業株式会社 車両の加減速制御装置
JP7409905B2 (ja) * 2020-02-28 2024-01-09 株式会社シマノ 人力駆動車用制御装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152419A (ja) * 1998-11-17 2000-05-30 Toyota Motor Corp 電動車両用電源制御装置
JP2001157306A (ja) * 1999-11-26 2001-06-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2001213181A (ja) * 2000-02-04 2001-08-07 Hitachi Ltd ハイブリッド自動車の制御装置
JP2006158161A (ja) * 2004-12-01 2006-06-15 Honda Motor Co Ltd 電動機用バッテリの充放電制御装置
JP2007230409A (ja) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd ハイブリッド車両の排気浄化システム
JP2010143511A (ja) 2008-12-22 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013035404A (ja) * 2011-08-08 2013-02-21 Honda Motor Co Ltd ハイブリッド車両及びその制御方法
JP2013049359A (ja) * 2011-08-31 2013-03-14 Daimler Ag ハイブリッド車両の制御装置
JP2013123939A (ja) * 2011-12-13 2013-06-24 Denso Corp 車両駆動システムの制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705686B2 (en) * 2002-03-26 2004-03-16 Ford Motor Company Method and apparatus for braking a hybrid electric vehicle
JP3891146B2 (ja) * 2003-05-22 2007-03-14 トヨタ自動車株式会社 ハイブリッド車の駆動装置
JP2009001112A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp ハイブリッド駆動装置の制御装置
US7971666B2 (en) * 2007-06-20 2011-07-05 Ford Global Technologies, Llc System and method of extending regenerative braking in a hybrid electric vehicle
JP2009137365A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp ハイブリッド車両用動力伝達装置の制御装置
JP4743218B2 (ja) * 2008-03-03 2011-08-10 日産自動車株式会社 ハイブリッド車両のクラッチ制御装置
JP5170581B2 (ja) * 2010-03-31 2013-03-27 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152419A (ja) * 1998-11-17 2000-05-30 Toyota Motor Corp 電動車両用電源制御装置
JP2001157306A (ja) * 1999-11-26 2001-06-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2001213181A (ja) * 2000-02-04 2001-08-07 Hitachi Ltd ハイブリッド自動車の制御装置
JP2006158161A (ja) * 2004-12-01 2006-06-15 Honda Motor Co Ltd 電動機用バッテリの充放電制御装置
JP2007230409A (ja) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd ハイブリッド車両の排気浄化システム
JP2010143511A (ja) 2008-12-22 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013035404A (ja) * 2011-08-08 2013-02-21 Honda Motor Co Ltd ハイブリッド車両及びその制御方法
JP2013049359A (ja) * 2011-08-31 2013-03-14 Daimler Ag ハイブリッド車両の制御装置
JP2013123939A (ja) * 2011-12-13 2013-06-24 Denso Corp 車両駆動システムの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990286A4 *

Also Published As

Publication number Publication date
JP2014213748A (ja) 2014-11-17
EP2990286A4 (en) 2016-11-16
CN105143007A (zh) 2015-12-09
EP2990286A1 (en) 2016-03-02
US20160059842A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
US8825253B2 (en) Hybrid vehicle control device
US7874956B2 (en) Engine start controlling apparatus and method for hybrid vehicle
US9636989B2 (en) Device for controlling hybrid vehicle
JP6575235B2 (ja) ハイブリッド車両の発進制御方法および発進制御装置
JP5212199B2 (ja) ハイブリッド車両のクラッチ制御装置
CN104870284A (zh) 混合动力车辆的控制装置
JP2008001258A (ja) ハイブリッド車両の制御装置
JP2015081074A (ja) 車両の制御装置
KR20150052137A (ko) 뉴트럴 판정 장치 및 차량의 제어 장치
JP6015773B2 (ja) ハイブリッド車両の制御装置
JP2014177255A (ja) 車両制御装置
JP5918464B2 (ja) ハイブリッド車両の制御装置
JP5789997B2 (ja) ハイブリッド車輌の制御装置
WO2014174967A1 (ja) 車両制御装置
JP2007261415A (ja) ハイブリッド自動車の制御装置
JP6171431B2 (ja) 車両制御装置
JP5332697B2 (ja) ハイブリット車両の駆動制御装置
WO2013150966A1 (ja) ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
JP2010143296A (ja) ハイブリッド車両の制御装置
JP6554030B2 (ja) ハイブリッド車両の制御装置
JP5218161B2 (ja) ハイブリッド車両の制御装置
JP6098395B2 (ja) ハイブリッド車両の制御装置
JP7280902B2 (ja) 車両制御装置
JP2010228593A (ja) ハイブリッド車両のアクセル踏込反力制御装置
JP4253937B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023093.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788442

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014788442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014788442

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE