WO2014174916A1 - 電磁弁の制御装置及びそれを用いた内燃機関の制御装置 - Google Patents

電磁弁の制御装置及びそれを用いた内燃機関の制御装置 Download PDF

Info

Publication number
WO2014174916A1
WO2014174916A1 PCT/JP2014/055903 JP2014055903W WO2014174916A1 WO 2014174916 A1 WO2014174916 A1 WO 2014174916A1 JP 2014055903 W JP2014055903 W JP 2014055903W WO 2014174916 A1 WO2014174916 A1 WO 2014174916A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
time
fuel injection
control device
valve opening
Prior art date
Application number
PCT/JP2014/055903
Other languages
English (en)
French (fr)
Inventor
青野 俊宏
安部 元幸
亮 草壁
広津 鉄平
歩 畑中
坂本 英之
隆夫 福田
豊原 正裕
修 向原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/784,653 priority Critical patent/US10240551B2/en
Priority to EP14788534.7A priority patent/EP2990705B1/en
Priority to CN201480023033.6A priority patent/CN105143742B/zh
Publication of WO2014174916A1 publication Critical patent/WO2014174916A1/ja
Priority to US16/267,125 priority patent/US11300070B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto

Definitions

  • the present invention relates to a control device for a solenoid valve and a control device for an internal combustion engine using the same, for example, a control device for a solenoid valve used in an electromagnetic fuel injection valve disposed in the internal combustion engine, and an internal combustion using the same.
  • the present invention relates to an engine control device.
  • each fuel injection valve is driven by the same injection pulse (drive pulse for controlling the opening and closing of the fuel injection valve) as shown in the upper diagram of FIG. Even if it is driven, the movement of the valve body of each fuel injector changes based on the spring characteristics and solenoid characteristics of each fuel injector, and the valve opening start time, valve closing completion time, and valve opening start of each fuel injector It is known that the time width from when the valve is closed to when the valve is closed varies as shown in the lower diagram of FIG.
  • the fuel injection amount injected from the fuel injection valve into the combustion chamber of the internal combustion engine varies from one individual to another according to the injection characteristics based on the spring characteristics, solenoid characteristics, and the like of each fuel injection valve. Further, since the variation amount of the fuel injection amount is substantially constant regardless of the fuel injection amount injected from each fuel injection valve, for example, when the fuel injection amount per time is reduced by multistage injection as described above However, there is a problem that the ratio of the variation amount to the fuel injection amount per time becomes relatively large, and the fuel injection amount injected in one combustion stroke greatly deviates from the target fuel injection amount. Can occur.
  • Japanese Patent Application Laid-Open No. 2004-228867 changes the injection pulse of each fuel injection valve in accordance with the injection characteristic of each fuel injection valve, and controls the fuel injection amount injected from each fuel injection valve.
  • a technique for detecting a change in the operating state of an electromagnetic actuator constituting a fuel injection valve is disclosed.
  • Patent Document 1 detects a change in the operating state of an electromagnetic actuator from an inductance for a predetermined time in an electromagnetic actuator including an electromagnet having an inductance and a mover controlled by the electromagnet. For example, when the inductance increases or decreases, the slope of the current measurement value passing through the electromagnet changes, or when the current measurement pattern of the current passing through the electromagnet matches at least one of the current evaluation patterns prepared in advance This is a method for detecting that the operating state of the actuator has changed.
  • Patent Document 1 has a problem that it is difficult to directly measure a change in inductance.
  • the time-series data of the current / voltage value needs to be second-order differentiated, but the noise included in the time-series data for each first-order differentiation. Therefore, there is a problem that it is difficult to precisely detect the change in the slope of the current / voltage value.
  • the current measurement pattern (such as the magnitude or slope of the current value) changes according to the characteristics of the drive circuit of the electromagnetic actuator, the current measurement pattern of the current passing through the electromagnet is compared with at least one of the current evaluation patterns. In some cases, there is a problem that a large number of current evaluation patterns that can correspond to such a large number of current measurement patterns need to be prepared in advance.
  • the present invention has been made in view of the above problems, and the object of the present invention is to precisely change the operating state of the solenoid valve, that is, the opening time and closing time of the solenoid valve, with a simple configuration.
  • An electromagnetic valve control device and a fuel injection control device using the same can be detected by accurately correcting the drive voltage and drive current applied to the electromagnetic valve to appropriately control the opening and closing of the electromagnetic valve. There is.
  • a solenoid valve control device is a solenoid valve control device that controls opening and closing of a solenoid valve by a drive voltage and / or a drive current to be applied.
  • the drive voltage and / or drive current applied to the solenoid valve is corrected based on the time at which the inflection point is detected from the time series data of the drive voltage and / or drive current when the valve is opened and closed.
  • the opening of the solenoid valve is started based on the time when the inflection point is detected from the time series data of the drive voltage and drive current when the solenoid valve is opened and closed. Since the time, valve opening completion time, and valve closing completion time can be precisely detected, the valve opening start time, valve opening completion time, and valve closing completion time are applied to the solenoid valve. It is possible to appropriately control the opening and closing of the solenoid valve by correcting the driving voltage and the driving current.
  • FIG. 1 The figure which showed the example of the displacement amount of a valve body, a drive voltage, and a drive current in time series when a drive voltage is relatively large.
  • (A) is a diagram showing an example of the drive current and normalized valve body displacement in time series;
  • (b) is an example of the first-order differentiation of the drive current and normalized valve body displacement in time series.
  • (c) is the figure which showed the example of the 2nd-order differentiation of the drive current, and the normalized valve body displacement amount in time series.
  • (A) is a diagram showing an example of the drive voltage and normalized valve body displacement in time series
  • (b) is an example of the first derivative of the drive voltage and normalized valve body displacement in time series.
  • FIG. 6 is a diagram illustrating a first-order lag low-pass filter used when detecting an inflection point from a drive current or a drive voltage, where (a) illustrates the filter coefficient, and (b) illustrates the frequency-gain characteristic.
  • FIG. 4 is a diagram illustrating a Hanning window used when detecting an inflection point from a drive current or a drive voltage, where (a) illustrates a filter coefficient thereof, and (b) illustrates a frequency-gain characteristic thereof. .
  • the internal block diagram which showed typically an example of the internal structure of ECU shown in FIG.
  • FIG. 9 is a diagram illustrating a high-frequency extraction filter used when detecting an inflection point from drive current or drive voltage, where (a) is a second-order difference multiplied by the frequency-gain characteristics of the Hanning window shown in FIG. 8 (b).
  • FIG. 5A is a diagram illustrating fluctuations in the level of driving current and driving voltage
  • FIG. 5B is a fluctuation in slope of the driving current and driving voltage.
  • (A) is a diagram illustrating an example of a high-frequency extraction filter used when detecting an inflection point from a drive current or drive voltage
  • (b) is a diagram illustrating a high band used when detecting an inflection point from the drive current or drive voltage.
  • (c) is the figure explaining the other example of the high region extraction filter used when detecting an inflection point from drive current or drive voltage.
  • the schematic diagram which demonstrated typically the output at the time of inputting a signal into a filter The schematic diagram which demonstrated typically the output at the time of inputting a signal into a filter.
  • an electromagnetic fuel injection valve that injects fuel into the combustion chamber of the internal combustion engine is employed as the electromagnetic valve, and a mode in which the electromagnetic valve control device is used for the internal combustion engine control device will be described.
  • the electromagnetic valve an appropriate valve that is electromagnetically driven can be adopted.
  • FIG. 1 shows the overall configuration of a fuel injection device to which a control device for an internal combustion engine using the first embodiment of the control device for an electromagnetic valve according to the present invention is applied.
  • the illustrated fuel injection device 100 mainly includes an electromagnetic fuel injection valve (electromagnetic valve) 10, an engine drive unit (EDU) (drive circuit) 20, and an engine controller unit (ECU: engine control unit) (internal combustion).
  • ECU engine controller unit
  • Engine control device 30 Engine control device 30.
  • ECU 20 and the EDU 30 may be configured separately or may be configured integrally.
  • the electromagnetic fuel injection valve 10 mainly includes a cylindrical body 9, a cylindrical fixed core 1 fixedly disposed inside the cylindrical body 9, and a bobbin disposed outside the fixed core 1 via the cylindrical body 9.
  • the valve seat 6 has a valve body 6 that moves relatively in the direction of the axis L with respect to 9, and a valve hole (fuel injection hole) 7a that is disposed at the lower end of the cylindrical body 9 and that is opened and closed according to the movement of the valve body 6. 7.
  • An adjuster 2 is press-fitted inside the fixed core 1, and a set spring 4 that urges the mover 5 toward the valve seat 7 (downward) is disposed between the adjuster 2 and the mover 5.
  • the solenoid 3 is housed in a housing 3b disposed outside the cylindrical body 9.
  • a through hole is formed at the lower end of the mover 5 and the upper end of the valve element 6 is inserted into the through hole.
  • the valve body 6 is supported so as to move in the direction of the axis L by a mover guide 5 a configured from the peripheral edge portion of the through hole of the mover 5 and a guide member 8 disposed above the valve seat 7. Further, a protruding portion 6a having an outer shape that is relatively larger than the through hole of the movable element 5 is formed above the movable element guide 5a in the upper end of the valve body 6, and the movable element 5 is directed upward.
  • the ECU 30 calculates the time and time width for injecting fuel from the valve hole 7a of the fuel injection valve 10 into the combustion chamber of the internal combustion engine based on various information such as the engine speed, intake air amount, temperature, and the like.
  • the fuel injection valve 10 is turned on from the start of fuel injection to the end of fuel injection, and an injection pulse that defines the valve opening duration from the start of opening of the fuel injection valve 10 to the completion of closing is output to the EDU 20.
  • the EDU 20 boosts the battery voltage VB to several tens of volts to generate a boosted voltage Vboost, and switches SW1, SW2, SW3 between the battery voltage VB, the boosted voltage Vboost, the ground voltage VG, and the solenoid 3 of the fuel injection valve 10. Is switched based on the injection pulse output from the ECU 30 to control the drive voltage applied to the solenoid 3 of the fuel injection valve 10 to control the drive current supplied to the solenoid 3.
  • the fuel injection valve 10 is controlled to open and close the valve hole 7a of the fuel injection valve 10 as described above by changing the energization state of the solenoid 3 in accordance with the drive voltage applied by the EDU 20, and from the valve hole 7a. A desired amount of fuel is injected for a desired time.
  • FIG. 2 shows, in time series, examples of injection pulses, switch operating states, drive voltage, drive current, and valve body displacement when fuel is injected from the fuel injection valve 10 shown in FIG. .
  • the drive voltage may be measured as a voltage between two points across the solenoid 3 of the fuel injection valve 10, or between the voltage on the side to which the battery voltage VB or the boosted voltage Vboost is applied and the ground voltage VG. You may measure by a voltage and you may measure by the voltage between the ground side (LowSide terminal) of the solenoid 3, and the ground voltage VG. Further, the drive current is converted from the voltage applied to the shunt resistor SMD by inserting the shunt resistor SMD between the ground side of the solenoid 3 and the ground voltage VG (see FIG. 1).
  • the injection pulse output from the ECU 30 is in the OFF state, the switches SW1, SW2, and SW3 of the EDU 20 are all in the OFF state, and the drive current is supplied to the solenoid 3 of the fuel injection valve 10. It has not been. Therefore, the mover 5 and the valve body 6 of the fuel injection valve 10 are urged in the valve closing direction of the valve seat 7 by the urging force of the set spring 4, and the lower end 6 b of the valve body 6 is in close contact with the valve seat 7. The valve hole 7a is closed, and fuel is not injected from the valve hole 7a.
  • the injection pulse is turned on, the switches SW1 and SW2 are turned on, and the boosted voltage Vboost to solenoid 3 to ground voltage VG are conducted (the drive voltage of solenoid 3 is Vboost).
  • the drive current is supplied (the current flow indicated by the arrow X1 in FIG. 1)
  • the magnetic flux passes between the fixed core 1 and the mover 5, and a magnetic attractive force acts on the mover 5.
  • the drive current supplied to the solenoid 3 increases and the magnetic attractive force acting on the mover 5 exceeds the urging force of the set spring 4, the mover 5 is attracted toward the fixed core 1 and starts moving (time). T1-T2).
  • the movable element 5 moves by a predetermined length (the length in which the movable element guide 5a of the movable element 5 and the protruding portion 6a of the valve element 6 abut), the movable element 5 and the valve element 6 are integrated as an axis.
  • the movement starts in the L direction (time T2), the lower end 6b of the valve body 6 is separated from the valve seat 7, the valve hole 7a is opened, and fuel is injected from the valve hole 7a.
  • the mover 5 and the valve body 6 move together until the mover 6 collides with the fixed core 1, but when the mover 6 and the fixed core 1 collide vigorously, the mover 5 becomes the fixed core 1.
  • the flow rate of the fuel that rebounds and is injected from the valve hole 7a is disturbed. Therefore, at time T3 before the mover 5 collides with the fixed core 1, the switches SW1 and SW2 are turned off, the drive voltage applied to the solenoid 3 is reduced, and the drive current is reduced from the peak value Ipeak.
  • the momentum of the mover 5 and the valve body 6 is reduced.
  • the switch SW2 is maintained in the ON state.
  • the switch SW3 is intermittently turned on (switch SW3 is controlled by PMW)
  • the drive voltage applied to the solenoid 3 is intermittently set to the battery voltage VB
  • the drive current flowing through the solenoid 3 is within a predetermined range. Control (current flow indicated by arrow X2 in FIG. 1).
  • the movable element 5 and the fixed core 1 collide, and the valve body 6 is displaced to the target lift amount.
  • the injection pulse is turned off, the switches SW1, SW2 and SW3 are all turned off, the drive voltage of the solenoid 3 is reduced, and the drive current flowing through the solenoid 3 is reduced. 5 gradually disappears, the magnetic attractive force acting on the mover 5 disappears, and the valve body 6 has a predetermined time delay due to the urging force of the set spring 4 and the pressing force by the fuel pressure.
  • the valve seat 7 is pushed back in the valve closing direction.
  • the valve body 6 is returned to its original position, the lower end 6b of the valve body 6 is brought into close contact with the valve seat 7, the valve hole 7a is closed, and fuel is not injected from the valve hole 7a.
  • the ECU 30 accurately detects, for example, the valve opening start time T2 and the valve closing completion time T7 of the valve hole 7a of the fuel injection valve 10, and the target time is from the valve opening start time T2 to the valve closing completion time T7.
  • the ECU 30 accurately detects, for example, the valve opening start time T2 and the valve closing completion time T7 of the valve hole 7a of the fuel injection valve 10, and the target time is from the valve opening start time T2 to the valve closing completion time T7.
  • FIG. 3 shows an example of the displacement of the valve element, the drive voltage, and the drive current in time series when the drive voltage is relatively small
  • FIG. 4 shows the case where the drive voltage is relatively large
  • FIG. 5 shows an example of the displacement amount of the valve element, the driving voltage, and the driving current in time series.
  • FIG. 5A is a diagram showing an example of the drive current and the normalized valve body displacement amount in time series
  • FIG. 5B is the first derivative of the drive current and the normalized valve body displacement amount
  • FIG. 5C is a diagram showing an example of the second-order differentiation of the drive current and a normalized valve body displacement amount in a time series
  • FIG. 6A is a diagram showing an example of the drive voltage and the normalized valve body displacement amount in time series
  • FIG. 6B is a first-order derivative of the drive voltage and the normalized valve body displacement amount.
  • FIG. 6C is a diagram showing an example of the second-order differentiation of the drive voltage and an example of the normalized valve body displacement amount in a time series.
  • the acceleration of the mover 5 changes, and thereby the inductance of the solenoid 3 changes.
  • the change in the inductance of the solenoid 3 is considered to appear in the change in the drive current flowing through the solenoid 3 or the voltage drive applied to the solenoid 3, when the valve hole 7a is opened (specifically, the valve is opened). Since the drive voltage is maintained substantially constant at the start time and the valve opening completion time, the valve opening start time and the valve opening completion time can be detected from changes in the drive current flowing through the solenoid 3.
  • valve closing completion time the driving current flowing through the solenoid 3 becomes 0. Therefore, the valve closing completion time is detected from a change in the driving voltage applied to the solenoid 3. can do.
  • the drive voltage applied to the solenoid 3 of the fuel injection valve 10 is relatively small, and the movable element guide 5a of the movable element 5 and the projecting portion 6a of the valve element 6 come into contact with each other.
  • the drive current flowing through the solenoid 3 is relatively stable when the 6 starts to move, the mover guide 5a of the mover 5 and the projecting portion 6a of the valve body 6 come into contact with each other and the valve hole 7a. Since the drive current flowing through the solenoid 3 slightly changes when the valve starts to open, the valve opening start time can be detected from the time when the inflection point is detected from the time series data of the drive current of the solenoid 3. .
  • valve closing completion time can be detected from the time at which the inflection point is detected from the voltage time-series data.
  • the drive voltage applied to the solenoid 3 of the fuel injection valve 10 is relatively large, and the mover guide 5a of the mover 5 and the projecting portion 6a of the valve body 6 come into contact with each other.
  • the movable element 5 and the fixed core 1 collide (the displacement amount of the valve body 6 is the target lift amount).
  • the drive current flowing through the solenoid 3 changes. Therefore, the valve opening is completed from the time when the inflection point is detected from the time series data of the drive current of the solenoid 3. Time can be detected.
  • the time series data of the drive current flowing through the solenoid 3 of the fuel injection valve 10 is second-order differentiated, and 2 of the time series data of the drive current is obtained.
  • the time closest to the valve opening completion time which is a preset reference (t11 in FIG. 5C) is the valve opening completion time (displacement of the valve body 6). It is possible to specify that the amount of time reaches the target lift amount and the valve opening of the valve hole 7a is completed).
  • the time when the maximum value is detected from the second-order differentiation of the time series data of the driving current is the time when the inflection point is detected from the time series data of the driving current.
  • the time series data of the drive voltage applied to the solenoid 3 of the fuel injection valve 10 is second-order differentiated, and the second-order derivative of the time series data of the drive voltage.
  • the time (t21 in FIG. 6C) that is closest to the valve closing completion time that is a preset reference is the valve closing completion time (the valve body 6 is in its original position). It is possible to specify that it is the time to complete the closing of the valve hole 7a.
  • the time when the maximum value is detected from the second-order differentiation of the time series data of the driving voltage is the time when the inflection point is detected from the time series data of the driving voltage.
  • the ECU 30 when the noise level is low, the ECU 30 has, for example, the relationship between the output Laplace transforms X (s) and Y (s) expressed by the following equation (1) and has the filter coefficient shown in FIG.
  • the second-order differentiation of the time-series data of the drive current and the drive voltage is performed by applying the first-order lag low-pass filter having the frequency-gain characteristic shown in FIG. 7B to the drive current and the drive voltage data and performing the second-order differentiation. It is conceivable to detect a desired extreme value from the result.
  • the first-order lag low-pass filter shown in FIG. 7A changes its frequency characteristics gently as shown in FIG. 7B, so that, for example, when the noise level is high, the drive current and drive voltage It is difficult to efficiently remove noise from data. Therefore, when the noise level is high or the A / D conversion resolution is low, the ECU 30 has, for example, the following filter coefficients shown in Expression (2) and FIG. 8A, and FIG.
  • a Hanning window with the frequency-gain characteristics shown to the signal of the drive current and drive voltage and performing second order differentiation, while effectively removing noise from the drive current and drive voltage data, A desired extreme value is detected from the result of the second order differentiation of the time series data of the drive voltage.
  • FIG. 9 schematically shows an example of the internal configuration of the ECU shown in FIG.
  • the drive voltage applied to the solenoid 3 of the fuel injection valve 10 is relatively small, and the movable element 5 and the valve body 6 come into contact with each other to cause the valve body 6 to
  • the valve opening start time from the time when the inflection point is detected from the time series data of the drive current and drive voltage of the solenoid 3 A case where the valve closing completion time can be detected will be described.
  • FIG. 9 shows only the solenoid 3 in the configuration of the fuel injection valve 10.
  • the ECU 30 mainly includes a valve opening start time detector 25 that detects a time corresponding to the valve opening start time, and a valve closing completion time detector 35 that detects a time corresponding to the valve closing completion time.
  • the injection pulse correction unit 45 corrects the injection pulse output to the EDU 20 using the valve opening start time detected by the valve opening start time detection unit 25 and the valve closing completion time detected by the valve closing completion time detection unit 35. And.
  • the valve opening start time detector 25 of the ECU 30 A / D converts the voltage applied to the shunt resistor SMD provided between the LowSide terminal of the solenoid 3 of the fuel injection valve 10 and the ground voltage VG, and is proportional to the drive current.
  • An A / D converter 21 for obtaining a signal, a Hanning22 window 22 for smoothing a digitized drive current signal, a second-order differentiator 23 for second-differing the signal smoothed by the Hanning Window 22, and a second-order differentiator And a peak detector 24 for detecting an extremum from the signal that is second-order-differed by 23 and emphasizes the inflection point.
  • the valve opening start time detection unit 25 of the ECU 30 specifies the time closest to the reference valve opening start time serving as a reference, among the times when the extreme value is detected by the peak detector 24, so that the solenoid 3 A time corresponding to the valve opening start time is detected from a signal proportional to the drive current flowing through the valve, and the detected valve opening start time is transmitted to the injection pulse correction unit 45.
  • the valve closing completion time detection unit 35 of the ECU 30 includes an A / D converter 31 that performs A / D conversion on the voltage (drive voltage) of the LowSide terminal of the solenoid 3 of the fuel injection valve 10, and a digitized current signal.
  • An extreme value is obtained from the Hanning Window 32 to be smoothed, the second-order differentiator 33 for second-order subtracting the signal smoothed by the Hanning Window 32, and the inflection point emphasized by the second-order difference by the second-order differentiator 33.
  • a peak detector 34 for detection.
  • the valve closing completion time detection unit 35 of the ECU 30 identifies the time closest to the reference valve closing completion time that is a preset reference among the times when the extreme value is detected by the peak detector 34, so that the solenoid 3 A time corresponding to the valve closing completion time is detected from the drive voltage applied to the valve, and the detected valve closing completion time is transmitted to the injection pulse correction unit 45.
  • the injection pulse correction unit 45 of the ECU 30 mainly performs reference injection based on the value obtained by dividing the target fuel injection amount Q by the static flow (flow rate in the full lift state of the fuel injection valve 10) Qst and the flow rate characteristics of the fuel injection valve 10.
  • Reference characteristic map M40 showing the relationship with pulse width Ti, reference valve opening start time memory 41 for storing reference valve opening start time, reference valve closing completion time memory 42 for storing reference valve closing completion time, opening
  • the valve opening start deviation between the valve opening start time transmitted from the valve start time detecting unit 25 and the reference valve opening start time output from the reference valve opening start time memory 41 is stored by smoothing the variation for each injection.
  • the deviation of the valve closing completion between the valve closing completion time transmitted from the start deviation memory 43 and the valve closing completion time detector 35 and the reference valve closing completion time output from the reference valve closing time memory 42 is varied for each injection. Smoothing And a valve-closing completion deviation memory 44 for storing.
  • valve opening start deviation memory 43 averages a plurality of valve opening start deviations and valve closing completion deviations detected when fuel is injected from the fuel injection valve 10 a plurality of times, and the averaged valve opening start deviation and The valve closing completion deviation is stored as a valve opening start deviation and a valve closing completion deviation.
  • the injection pulse correcting unit 45 is output from the valve opening start time and the reference valve opening start time memory 41 transmitted from the valve opening start time detecting unit 25 by the difference means 46.
  • the deviation from the reference valve opening start time is calculated, and the calculation result is stored in the valve opening start deviation memory 43 as the valve opening start deviation.
  • the difference means 47 calculates a deviation between the valve closing completion time transmitted from the valve closing completion time detector 35 and the reference valve closing completion time output from the reference valve closing completion time memory 42, and closes the calculation result.
  • the valve completion deviation is stored in the valve closing completion deviation memory 44 as a valve completion deviation.
  • the injection pulse correction unit 45 calculates the injection pulse width deviation between the valve opening start deviation output from the valve opening start deviation memory 43 and the valve closing completion deviation output from the valve closing completion deviation memory 44 by the difference means 48. Then, by calculating the deviation between the reference injection pulse width Ti and the injection pulse width deviation output from the standard characteristic map M40 by the difference means 49, a new valve opening continuation time from the start of the valve opening to the completion of the valve closing is specified. A proper injection pulse (injection pulse correction value) is generated.
  • the ECU 30 controls (feedback control) the operating states of the switches SW1, SW2, and SW3 of the EDU 20 based on the injection pulse correction value, and the drive voltage applied to the solenoid 3 of the fuel injection valve 10 and the drive that flows through the solenoid 3.
  • the current is controlled, the opening and closing of the valve hole 7a of the fuel injection valve 10 is appropriately controlled, and the fuel injection amount injected from the fuel injection valve 10 is controlled to the target fuel injection amount.
  • valve opening start time and the valve closing completion time are added to the reference valve opening start time and the reference valve closing completion time.
  • the valve opening start time and the valve closing completion time detected by the fuel injection valve arranged in a specific cylinder of the internal combustion engine match the valve opening start time and the valve closing completion time of the other cylinders. You may control.
  • FIG. 11 schematically shows another example of the internal configuration of the ECU shown in FIG.
  • the drive voltage applied to the solenoid 3 of the fuel injection valve 10 is relatively large, and the movable element 5 and the valve body 6 come into contact with each other to form the valve hole 7 a.
  • the valve opening completion time from the time when the inflection point is detected from the time series data of the drive current and drive voltage of the solenoid 3 A case where the valve closing completion time can be detected will be described.
  • FIG. 11 shows only the solenoid 3 in the configuration of the fuel injection valve 10.
  • the ECU 30 mainly includes a valve opening completion time detector 25a that detects a time corresponding to the valve opening completion time, and a valve closing completion time detector 35 that detects a time corresponding to the valve closing completion time.
  • the injection pulse correction unit 45 corrects the injection pulse output to the EDU 20 using the valve opening start time detected by the valve opening completion time detection unit 25a and the valve closing completion time detected by the valve closing completion time detection unit 35. And.
  • the valve opening completion time detection unit 25a of the ECU 30 A / D converts the voltage applied to the shunt resistor SMD provided between the LowSide terminal of the solenoid 3 of the fuel injection valve 10 and the ground voltage VG, and is proportional to the drive current.
  • a / D converter 21a for obtaining a signal Hanning Window 22a for smoothing a digitized drive current signal, second-order differentiator 23a for second-ordering the signal smoothed by Hanning Window 22a, and second-order differentiator
  • a peak detector 24a that detects an extreme value from the signal that is second-order-differed by 23a and emphasizes the inflection point.
  • the valve opening completion time detection unit 25a of the ECU 30 specifies the time closest to the reference valve opening completion time as a reference, among the times when the extreme value is detected by the peak detector 24, so that the solenoid 3 A time corresponding to the valve opening completion time is detected from a signal proportional to the drive current flowing through the valve, and the detected valve opening completion time is transmitted to the injection pulse correction unit 45.
  • the valve closing completion time detection unit 35 of the ECU 30 includes an A / D converter 31 that performs A / D conversion on the voltage (drive voltage) of the LowSide terminal of the solenoid 3 of the fuel injection valve 10, and a digitized current signal.
  • An extreme value is obtained from the Hanning Window 32 to be smoothed, the second-order differentiator 33 for second-order subtracting the signal smoothed by the Hanning Window 32, and the inflection point emphasized by the second-order difference by the second-order differentiator 33.
  • a peak detector 34 for detection.
  • the valve closing completion time detection unit 35 of the ECU 30 identifies the time closest to the reference valve closing completion time that is a preset reference among the times when the extreme value is detected by the peak detector 34, so that the solenoid 3 A time corresponding to the valve closing completion time is detected from the drive voltage applied to the valve, and the detected valve closing completion time is transmitted to the injection pulse correction unit 45.
  • the injection pulse correction unit 45 of the ECU 30 mainly includes a reference characteristic map showing a relationship between a value obtained by dividing the target fuel injection amount Q by the static flow Qst and a reference injection pulse width Ti based on the flow characteristic of the fuel injection valve 10.
  • M40 a reference valve opening completion time memory 41a for storing a reference valve opening completion time
  • a reference valve closing completion time memory 42 for storing a reference valve closing completion time
  • an opening transmitted from the valve opening completion time detector 25a mainly includes a reference characteristic map showing a relationship between a value obtained by dividing the target fuel injection amount Q by the static flow Qst and a reference injection pulse width Ti based on the flow characteristic of the fuel injection valve 10.
  • valve opening completion memory 43a for smoothing a variation for each injection and storing a valve opening completion deviation between the valve completion time and the reference valve opening completion time output from the reference valve opening completion time memory 41a, and a valve closing completion time
  • a valve closing completion error memory for smoothing and storing the valve closing completion deviation between the valve closing completion time transmitted from the detector 35 and the reference valve closing completion time output from the reference valve closing time memory 42 for each injection. 44 It has.
  • the valve opening completion deviation memory 43a and the valve closing completion deviation memory 44 average the plurality of valve opening completion deviations and valve closing completion deviations detected when the fuel is injected from the fuel injection valve 10 a plurality of times. The averaged valve opening completion deviation and valve closing completion deviation are stored as valve opening completion deviation and valve closing completion deviation.
  • the injection pulse correction unit 45 is output from the valve opening completion time and the reference valve opening completion time memory 41a transmitted from the valve opening completion time detection unit 25a by the difference means 46.
  • the deviation from the reference valve opening completion time is calculated, and the calculation result is stored in the valve opening completion deviation memory 43a as the valve opening completion deviation.
  • the difference means 47 calculates a deviation between the valve closing completion time transmitted from the valve closing completion time detector 35 and the reference valve closing completion time output from the reference valve closing completion time memory 42, and closes the calculation result.
  • the valve completion deviation is stored in the valve closing completion deviation memory 44 as a valve completion deviation.
  • valve opening completion deviation is substantially a constant of the valve opening start deviation regardless of the injection characteristics of each fuel injector. It is known that it is double (K times).
  • the injection pulse correction unit 45 calculates the valve opening start deviation by adding the gain 1 / K to the valve opening completion deviation output from the valve opening completion deviation memory 43 by the conversion means 43b, and the difference means 48 opens the opening opening deviation.
  • the injection pulse width deviation between the valve start deviation and the valve closing completion deviation output from the valve closing completion memory 44 is calculated, and the reference injection pulse width Ti and the injection pulse width deviation output from the reference characteristic map M40 by the difference means 49 are calculated. Is generated, a new injection pulse (injection pulse correction value) that defines the valve opening duration from the start of valve opening to the completion of valve closing is generated.
  • the filter coefficients at both ends of Hanning Window may be considered to be 0. Therefore, as shown in the following equation (5), the first of the above equations (4) The term can be approximated to zero.
  • performing the second-order difference after multiplying the signal U t by the Hanning Window corrects the level so that the sum or average of the coefficients becomes zero by turning the Hanning Window upside down as shown in FIG. And convolution of the filtered filter and the signal U t .
  • the frequency-gain characteristic of this filter is the second-order difference shown in FIG. 14 (a) in the frequency-gain characteristic of HanningWindow shown in FIG. 8 (b).
  • the frequency-gain characteristic is multiplied as shown in FIG.
  • This filter has a low gain at low frequencies near zero, and the gain increases as the frequency increases and approaches the cutoff frequency. When the frequency exceeds the cutoff frequency, the gain becomes approximately zero.
  • this filter is called a high-frequency extraction filter because it has a characteristic of passing a frequency closer to the cutoff frequency than a low frequency.
  • FIG. 15 shows the overall configuration of a fuel injection device to which the control device for an internal combustion engine using the second embodiment of the control device for the electromagnetic valve according to the present invention is applied.
  • the control apparatus utilized is shown.
  • only the solenoid 3 is shown in the configuration of the fuel injection valve 10.
  • the control device of the second embodiment shown in FIG. 15 detects an inflection point from time series data of the drive current flowing through the solenoid 3 and the drive current applied to the solenoid 3 with respect to the control device of the first embodiment described above.
  • the method for detecting the valve opening start time, the valve opening completion time, and the valve closing completion time is different, and the other configuration is the same as that of the control device of the first embodiment. Accordingly, the same components as those in the control device of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ECU 30A mainly includes a valve opening start time detection unit (or valve opening completion time detection unit) 25A that detects a time corresponding to the valve opening start time (or valve opening completion time), and the valve closing completion.
  • the valve opening completion time detection unit 35A for detecting the time corresponding to the time and the valve opening start time (or valve opening completion time) detected by the valve opening start time detection unit (or valve opening completion time detection unit) 25A are closed.
  • An injection pulse correction unit 45A that corrects an injection pulse output to the EDU 20 using the valve closing completion time detected by the valve completion time detection unit 35A.
  • the valve opening start time detection unit (or valve opening completion time detection unit) 25A of the ECU 30A determines the voltage applied to the shunt resistor SMD provided between the LowSide terminal of the solenoid 3 of the fuel injection valve 10 and the ground voltage VG as A / An A / D converter 21A that obtains a signal proportional to the drive current by D conversion, a high-frequency extraction filter (see FIG. 13B) 22A that emphasizes the high-frequency component of the digitized drive current signal, And a peak detector 24A for detecting an extreme value from the output signal of the band extraction filter 22A (correlation between the digitized drive current signal and the high band extraction filter).
  • the valve opening start time detection unit (or valve opening completion time detection unit) 25A of the ECU 30A is a reference valve opening start time (or reference) that is a reference that is set in advance among the times when the extreme value is detected by the peak detector 24A.
  • the time closest to the valve opening completion time By specifying the time closest to the valve opening completion time, the time corresponding to the valve opening start time (or valve opening completion time) is detected from a signal proportional to the drive current flowing through the solenoid 3, and the detected opening is detected.
  • the valve start time (or valve opening completion time) is transmitted to the injection pulse correction unit 45A.
  • the valve closing completion time detection unit 35A of the ECU 30A includes an A / D converter 31A for A / D converting the voltage (drive voltage) of the LowSide terminal of the solenoid 3 of the fuel injection valve 10, and a digitized current signal.
  • a high-frequency extraction filter 32A that emphasizes high-frequency components, and a peak detector 34A that detects extreme values from the output signal of the high-frequency extraction filter 32A (correlation between a digitized current signal and the high-frequency extraction filter) Have.
  • the valve closing completion time detection unit 35A of the ECU 30A identifies the time closest to the reference valve closing completion time that is a preset reference from among the times when the extreme value is detected by the peak detector 34A, so that the solenoid 3 A time corresponding to the valve closing completion time is detected from the drive voltage applied to the valve, and the detected valve closing completion time is transmitted to the injection pulse correction unit 45A.
  • the injection pulse correction unit 45A of the ECU 30A includes a valve opening start time (or valve opening completion time) transmitted from the valve opening start time detection unit (or valve opening completion time detection unit) 25A, and a valve closing completion time detection unit 35A.
  • a new injection pulse (injection pulse correction value) that defines the valve opening duration from the start of valve opening to the completion of valve closing is generated based on the valve closing completion time transmitted from.
  • the ECU 30A controls the operating state of each switch SW1, SW2, SW3 of the EDU 20 based on the injection pulse correction value, and controls the drive voltage applied to the solenoid 3 of the fuel injection valve 10 and the drive current flowing through the solenoid 3. Then, the opening and closing of the valve hole 7a of the fuel injection valve 10 is appropriately controlled to control the fuel injection amount injected from the fuel injection valve 10 to the target fuel injection amount.
  • the valve opening start time, the valve opening completion time, and the valve closing completion time are detected from the time series data of the driving current flowing through the solenoid 3 and the driving current applied to the solenoid 3.
  • a high-frequency extraction filter whose coefficient sum or average is 0 and the coefficient moment is 0, by detecting the extreme value from the correlation between this high-frequency extraction filter and the time series data of the drive current and drive current.
  • the filter whose filter coefficient is KAcos (2 ⁇ i / I) (trigonometric function) has been described as a high-frequency extraction filter that emphasizes the high-frequency component of the digitized current signal.
  • the high-frequency extraction filter can detect an inflection point from time series data of the driving voltage and driving current regardless of fluctuations in the driving voltage and driving current levels as shown in FIG. 16A, and FIG. It is sufficient that the inflection point can be detected from the time series data of the drive voltage and drive current regardless of the fluctuation of the slope of the drive voltage and drive current as shown in FIG.
  • a high-frequency extraction filter may be any filter in which the sum or average of the filter coefficients is 0 and the moment of the filter coefficients is 0.
  • the high-frequency extraction filter for example, a filter whose filter coefficient is a downwardly convex arc shape and whose level is adjusted as shown in FIG. Or a filter in which the filter coefficient is expressed by an even order function such as a quadratic function and the level is adjusted as shown in FIG.
  • a filter whose filter coefficient is a V-shape projecting downward and whose level is adjusted as shown in FIG. 17C (represented by a linear function that is line-symmetric with respect to a predetermined symmetry axis) It may be a filter obtained by appropriately combining these filters.
  • detecting the peak (extreme value) from the correlation between the reference pattern and the input signal U means that the reference pattern is represented by t k ⁇ 2 , t k ⁇ 1 , t k , t k + 1 , t k + 2 .
  • the correlation with the input signal U is calculated at the position of each reference pattern, and the calculated correlation among the positions of the respective reference patterns is relatively high (in FIG. 20).
  • T k is specified.
  • FIG. 21 shows the overall configuration of a fuel injection device to which the control device for an internal combustion engine using the third embodiment of the control device for a solenoid valve according to the present invention is applied. A control device using a reference pattern having similar characteristics is shown. FIG. 21 shows only the solenoid 3 in the configuration of the fuel injection valve 10.
  • the control device of the third embodiment shown in FIG. 21 detects the inflection point from the control device of the first embodiment described above from the time series data of the drive current flowing through the solenoid 3 and the drive current applied to the solenoid 3.
  • the method for detecting the valve opening start time, the valve opening completion time, and the valve closing completion time is different, and the other configuration is the same as that of the control device of the first embodiment. Accordingly, the same components as those in the control device of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ECU 30B mainly includes a valve opening start time detection unit (or valve opening completion time detection unit) 25B that detects a time corresponding to the valve opening start time (or valve opening completion time), and the valve closing completion.
  • the valve opening completion time detection unit 35B that detects the time corresponding to the time and the valve opening start time (or valve opening completion time) detected by the valve opening start time detection unit (or valve opening completion time detection unit) 25B are closed.
  • an injection pulse correction unit 45B that corrects an injection pulse output to the EDU 20 using the valve closing completion time detected by the valve completion time detection unit 35.
  • the valve opening start time detection unit (or valve opening completion time detection unit) 25B of the ECU 30B outputs a voltage applied to a shunt resistor SMD provided between the LowSide terminal of the solenoid 3 of the fuel injection valve 10 and the ground voltage VG as A / An A / D converter 21B that obtains a signal proportional to the drive current by D conversion, a reference pattern for emphasizing the high frequency component of the signal (the sum of coefficients or the average and the moment of the coefficient is 0) 22B, A / D It has a correlator 23B that correlates the drive current signal digitized by the D converter 21B and the reference pattern 22B, and a peak detector 24B that detects an extreme value from the output result of the correlator 23B.
  • the valve opening start time detection unit (or valve opening completion time detection unit) 25B of the ECU 30B is a reference valve opening start time (or reference) that is a reference that is set in advance among the time when the extreme value is detected by the peak detector 24B.
  • the time closest to the valve opening completion time By specifying the time closest to the valve opening completion time, the time corresponding to the valve opening start time (or valve opening completion time) is detected from a signal proportional to the drive current flowing through the solenoid 3, and the detected opening is detected.
  • the valve start time (or valve opening completion time) is transmitted to the injection pulse correction unit 45B.
  • valve closing completion time detection unit 35B of the ECU 30B emphasizes the A / D converter 31B for A / D converting the voltage (drive voltage) of the LowSide terminal of the solenoid 3 of the fuel injection valve 10 and the high frequency component of the signal.
  • a correlator 33B for correlating the reference pattern (the sum or average of coefficients and the coefficient moment is 0) 32B, the current signal digitized by the A / D converter 31B and the reference pattern, and a correlator 33B And a peak detector 34B for detecting an extreme value from the output result.
  • the valve closing completion time detection unit 35B of the ECU 30B specifies the time closest to the reference valve closing completion time as a reference that is set in advance among the time when the extreme value is detected by the peak detector 34B. A time corresponding to the valve closing completion time is detected from the drive voltage applied to the valve, and the detected valve closing completion time is transmitted to the injection pulse correction unit 45B.
  • the injection pulse correction unit 45B of the ECU 30B includes a valve opening start time (or valve opening completion time) transmitted from the valve opening start time detection unit (or valve opening completion time detection unit) 25B, and a valve closing completion time detection unit 35B.
  • a new injection pulse (injection pulse correction value) that defines the valve opening duration from the start of valve opening to the completion of valve closing is generated based on the valve closing completion time transmitted from.
  • the ECU 30B controls the operation state of each switch SW1, SW2, SW3 of the EDU 20 based on the injection pulse correction value, and controls the drive voltage applied to the solenoid 3 of the fuel injection valve 10 and the drive current flowing through the solenoid 3. Then, the opening and closing of the valve hole 7a of the fuel injection valve 10 is appropriately controlled to control the fuel injection amount injected from the fuel injection valve 10 to the target fuel injection amount.
  • the valve opening start time, the valve opening completion time, and the valve closing completion time are detected from the time series data of the driving current flowing through the solenoid 3 and the driving current applied to the solenoid 3.
  • the present invention is not limited to the first to third embodiments described above, and includes various modifications.
  • the first to third embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 簡便な構成でもって、電磁弁の作動状態の変化、すなわち電磁弁の開弁時間や閉弁時間を精緻に検知し、電磁弁に印加される駆動電圧や駆動電流を精緻に補正して電磁弁の開閉を適正に制御することのできる電磁弁の制御装置及びそれを用いた燃料噴射制御装置を提供する。 電磁弁の開閉を印加される駆動電圧と駆動電流で制御する電磁弁の制御装置であって、電磁弁を開閉した際の駆動電圧と駆動電流の時系列データから変曲点が検出される時間に基づいて、電磁弁に印加される駆動電圧と駆動電流を補正する。

Description

電磁弁の制御装置及びそれを用いた内燃機関の制御装置
 本発明は、電磁弁の制御装置及びそれを用いた内燃機関の制御装置に係り、例えば内燃機関に配設された電磁式燃料噴射弁に使用される電磁弁の制御装置及びそれを用いた内燃機関の制御装置に関する。
 従来から、例えば自動車産業においては、排気ガス中に含まれる未燃粒子状物質(PM:particulate matter)の数量(未燃粒子状物質数(PN:particulate number))を低減するための技術開発が進められている。そのような従来技術として、例えば内燃機関に配設された燃料噴射弁から噴射される燃料の噴霧特性を改善したり、燃料噴射の勢いを低減することによって、内燃機関の燃焼室内に噴射された燃料の壁面付着を抑制する技術が知られている。特に、燃料噴射の勢いを低減する技術としては、一回の燃焼行程に必要な燃料を複数回に分割して噴射(多段噴射)し、一回当たりの燃料噴射量を低減する技術が提案されている。
 ところで、燃料噴射弁から内燃機関の燃焼室等へ燃料を噴射する場合に、各燃料噴射弁を図22の上図のように同一の噴射パルス(燃料噴射弁の開閉を制御する駆動パルス)で駆動したとしても、各燃料噴射弁のスプリング特性やソレノイド特性等に基づいて各燃料噴射弁の弁体の動きが変化し、各燃料噴射弁の開弁開始時間や閉弁完了時間、開弁開始から閉弁完了までの時間幅が図22の下図のようにばらつくことが知られている。すなわち、燃料噴射弁から内燃機関の燃焼室等へ噴射される燃料噴射量は、各燃料噴射弁のスプリング特性やソレノイド特性等に基づく噴射特性に応じて各個体毎にばらつくと考えられている。また、この燃料噴射量のばらつき量は、各燃料噴射弁から噴射される燃料噴射量に関わらず略一定であるため、例えば上記したように多段噴射によって一回当たりの燃料噴射量を低減した場合には、一回当たりの燃料噴射量に対するばらつき量の割合が相対的に大きくなり、一回の燃焼行程で噴射される燃料噴射量が目標とする燃料噴射量から大きく乖離してしまうといった問題が生じ得る。
 このような問題に対し、特許文献1には、各燃料噴射弁の噴射特性に応じて各燃料噴射弁の噴射パルスを変更し、各燃料噴射弁から噴射される燃料噴射量を制御するために、燃料噴射弁を構成する電磁式アクチュエータの作動状態の変化を検知する技術が開示されている。
 特許文献1に開示されている検知方法は、インダクタンスを有する電磁石とその電磁石によって制御される可動子とを備えた電磁式アクチュエータにおいて、所定時間のインダクタンスから電磁式アクチュエータの作動状態の変化を検知する方法であり、例えば、インダクタンスが増減したときや電磁石を通る電流測定値の傾きが変化したとき、電磁石を通る電流の電流測定パターンと予め用意した電流評価パターンの少なくとも一つとが一致したときなどに、アクチュエータの作動状態が変化したことを検知する方法である。
米国特許出願公開第2011/0170224号明細書
 しかしながら、特許文献1に開示されている検知方法においては、インダクタンスの変化を直接測定することが難しいといった課題がある。また、電磁石を通る電流・電圧値の傾きの変化を検出する場合にはその電流・電圧値の時系列データを2階微分する必要があるものの、1階微分毎に時系列データに含まれるノイズが強調されるため、電流・電圧値の傾きの変化を精緻に検出することは難しいといった課題がある。さらに、電磁式アクチュエータの駆動回路の特性などに応じて電流測定パターン(電流値の大小や傾きなど)は変化するため、電磁石を通る電流の電流測定パターンと電流評価パターンの少なくとも一つとを比較する場合には、そのような多数の電流測定パターンに対応し得る多数の電流評価パターンを予め用意しておく必要があるといった課題もある。
 本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、簡便な構成でもって、電磁弁の作動状態の変化、すなわち電磁弁の開弁時間や閉弁時間を精緻に検知し、電磁弁に印加される駆動電圧や駆動電流を精緻に補正して電磁弁の開閉を適正に制御することのできる電磁弁の制御装置及びそれを用いた燃料噴射制御装置を提供することにある。
 上記する課題を解決するために、本発明に係る電磁弁の制御装置は、電磁弁の開閉を印加される駆動電圧及び/又は駆動電流で制御する電磁弁の制御装置であって、前記電磁弁を開閉した際の前記駆動電圧及び/又は駆動電流の時系列データから変曲点が検出される時間に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする。
 以上の説明から理解できるように、本発明によれば、電磁弁を開閉した際の駆動電圧や駆動電流の時系列データから変曲点が検出される時間に基づいて、電磁弁の開弁開始時間や開弁完了時間、電磁弁の閉弁完了時間を精緻に検知することができるため、その電磁弁の開弁開始時間や開弁完了時間、閉弁完了時間を用いて電磁弁に印加される駆動電圧や駆動電流を補正することによって、電磁弁の開閉を適正に制御することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
[規則91に基づく訂正 19.03.2014] 
本発明に係る電磁弁の制御装置の実施形態1を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示した全体構成図。 図1に示す燃料噴射弁から燃料を噴射する際の、噴射パルス、スイッチの作動状態、駆動電圧、駆動電流、弁体の変位量の一例を時系列で示した図。 駆動電圧が相対的に小さい場合の、弁体の変位量と駆動電圧と駆動電流の一例を時系列で示した図。 駆動電圧が相対的に大きい場合の、弁体の変位量と駆動電圧と駆動電流の一例を時系列で示した図。 (a)は駆動電流と正規化された弁体変位量の一例を時系列で示した図、(b)は駆動電流の1階微分と正規化された弁体変位量の一例を時系列で示した図、(c)は駆動電流の2階微分と正規化された弁体変位量の一例を時系列で示した図。 (a)は駆動電圧と正規化された弁体変位量の一例を時系列で示した図、(b)は駆動電圧の1階微分と正規化された弁体変位量の一例を時系列で示した図、(c)は駆動電圧の2階微分と正規化された弁体変位量の一例を時系列で示した図。 駆動電流や駆動電圧から変曲点を検出する際に用いる1次遅れローパスフィルタを説明した図であって、(a)はそのフィルタ係数を説明した図、(b)はその周波数-ゲイン特性を説明した図。 駆動電流や駆動電圧から変曲点を検出する際に用いるハニング窓を説明した図であって、(a)はそのフィルタ係数を説明した図、(b)はその周波数-ゲイン特性を説明した図。 図1に示すECUの内部構成の一例を模式的に示した内部構成図。 2つの燃料噴射弁の噴射パルス補正値と弁体の変位量の一例を時系列で示した図。 図1に示すECUの内部構成の他例を模式的に示した内部構成図。 開弁開始偏差と開弁完了偏差の関係を模式的に示した模式図。 (a)はハニング窓のフィルタ係数を説明した図、(b)はハニング窓の2階差分のフィルタ係数を説明した図。 駆動電流や駆動電圧から変曲点を検出する際に用いる高域抽出フィルタを説明した図であって、(a)は図8(b)に示すハニング窓の周波数-ゲイン特性に乗じる2階差分の周波数-ゲイン特性を説明した図、(b)はその周波数-ゲイン特性を説明した図。 本発明に係る電磁弁の制御装置の実施形態2を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示した全体構成図。 駆動電流や駆動電圧の変動を模式的に説明した模式図であって、(a)は駆動電流や駆動電圧のレベルの変動を説明した図、(b)は駆動電流や駆動電圧の傾きの変動を説明した図。 (a)は駆動電流や駆動電圧から変曲点を検出する際に用いる高域抽出フィルタの一例を説明した図、(b)は駆動電流や駆動電圧から変曲点を検出する際に用いる高域抽出フィルタの他例を説明した図、(c)は駆動電流や駆動電圧から変曲点を検出する際に用いる高域抽出フィルタの更に他例を説明した図。 フィルタに信号を入力した際の出力を模式的に説明した模式図。 フィルタに信号を入力した際の出力を模式的に説明した模式図。 参照パターンと信号との相関から極値を検出する方法を模式的に説明した模式図。 本発明に係る電磁弁の制御装置の実施形態3を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示した全体構成図。 従来の燃料噴射装置の燃料噴射弁から燃料を噴射する際の噴射パルスと弁体の変位量を時系列で示した図。
 以下、本発明に係る電磁弁の制御装置及びそれを用いた内燃機関の制御装置の実施形態について、図面を参照して説明する。なお、本実施形態では、電磁弁として内燃機関の燃焼室内に燃料を噴射する電磁式の燃料噴射弁を採用し、電磁弁の制御装置が内燃機関の制御装置に用いられる形態について説明するが、電磁弁としては電磁駆動される適宜の弁を採用することができる。
[実施形態1]
 図1は、本発明に係る電磁弁の制御装置の実施形態1を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示したものである。
 図示する燃料噴射装置100は、主として、電磁式燃料噴射弁(電磁弁)10と、エンジンドライブユニット(EDU:Engine Drive Unit)(駆動回路)20と、エンジンコントローラユニット(ECU:Engine Control Unit)(内燃機関の制御装置)30とから構成されている。なお、ECU20とEDU30とは別体として構成してもよいし、一体として構成してもよい。
 電磁式燃料噴射弁10は、主に、筒体9と、筒体9の内部に固定配置された筒状の固定コア1と、筒体9を介して固定コア1の外側に配置されたボビン3aに捲回されたソレノイド3と、固定コア1の下方且つ筒体9に対して軸線L方向へ相対的に移動自在に配置された可動子5と、可動子5の移動に応じて筒体9に対して軸線L方向へ相対的に移動する弁体6と、筒体9の下端に配置され且つ弁体6の移動に応じて開閉される弁孔(燃料噴射孔)7aを有する弁座7と、を備えている。また、固定コア1の内部には調整子2が圧入され、調整子2と可動子5の間には、可動子5を弁座7方向(下方)へ向かって付勢するセットスプリング4が配置されている。なお、ソレノイド3は、筒体9の外側に配設されたハウジング3b内に収容されている。
 可動子5の下端には貫通孔が形成され、弁体6の上端がその貫通孔に挿入されている。弁体6は、可動子5の貫通孔の周縁部から構成される可動子ガイド5aと弁座7の上側に配置されたガイド部材8とによって軸線L方向へ移動するように支持されている。また、弁体6の上端のうち可動子ガイド5aの上方には、可動子5の貫通孔よりも相対的に大きな外形の突設部6aが形成されており、可動子5が上方へ向かって移動した際に弁体6の突設部6aと可動子5の貫通孔を構成する可動子ガイド5aとが接触することによって、可動子5と弁体6とが一体で上方へ移動するようになっている。
 電磁式燃料噴射弁10のソレノイド3に通電していない状態では、セットスプリング4の付勢力によって可動子5が弁座7へ向かって付勢され、弁体6の下端6bが弁座7と当接して弁座7に形成された弁孔7aが閉止される。また、ソレノイド3へ通電した状態では、可動子5を固定コア1へ吸引する磁気吸引力が発生され、その磁気吸引力がセットスプリング4の付勢力に打ち勝つと、可動子5が固定コア1と衝突するまで固定コア1へ向かって吸引され、可動子5の移動に応じて弁体6の下端6bが弁座7と離間して弁座7の弁孔7aが開放される。なお、ソレノイド3への通電が遮断されると、可動子5を固定コア1へ吸引する磁気吸引力が消滅し、セットスプリング4の付勢力によって可動子5が弁座7へ向かって付勢され、弁体6の下端6bが弁座7へ押し戻されて弁孔7aが閉止されるようになっている。
 ECU30は、例えばエンジンの回転数、吸入空気量、温度等の各種情報に基づいて、燃料噴射弁10の弁孔7aから内燃機関の燃焼室等に燃料を噴射する時間と時間幅を算出し、燃料噴射開始から燃料噴射終了までオン状態として燃料噴射弁10の開弁開始から閉弁完了までの開弁継続時間を規定する噴射パルスをEDU20へ出力する。
 EDU20は、バッテリ電圧VBを数十Vまで昇圧して昇圧電圧Vboostを生成し、バッテリ電圧VB、昇圧電圧Vboost、接地電圧VGと燃料噴射弁10のソレノイド3との間のスイッチSW1、SW2、SW3をECU30から出力される噴射パルスに基づいて切り替え、燃料噴射弁10のソレノイド3に印加される駆動電圧を制御してソレノイド3へ供給する駆動電流を制御する。
 燃料噴射弁10は、EDU20によって印加される駆動電圧に応じてソレノイド3の通電状態が変化することで、上記したように燃料噴射弁10の弁孔7aの開閉が制御され、当該弁孔7aから所望の量の燃料を所望の時間だけ噴射する。
 図2を参照して、ECU30から出力される噴射パルス、EDU20のスイッチSW1、SW2、SW3の作動状態、燃料噴射弁10のソレノイド3に印加される駆動電圧と駆動電流、弁体6の変位量について具体的に説明する。図2は、図1に示す燃料噴射弁10から燃料を噴射する際の、噴射パルス、スイッチの作動状態、駆動電圧、駆動電流、弁体の変位量の一例を時系列で示したものである。
 なお、駆動電圧は、燃料噴射弁10のソレノイド3を挟む2点間の電圧で計測してもよいし、バッテリ電圧VBあるいは昇圧電圧Vboostが印加される側の電圧と接地電圧VGとの間の電圧で計測してもよいし、ソレノイド3の接地側(LowSide端子)と接地電圧VGとの間の電圧で計測してもよい。また、駆動電流は、ソレノイド3の接地側と接地電圧VGとの間にシャント抵抗SMDを挟み、シャント抵抗SMDに加わる電圧から換算する(図1参照)。
 時間T0~T1では、ECU30から出力される噴射パルスがオフ状態となっており、EDU20のスイッチSW1、SW2、SW3が全てオフ状態となっていて、燃料噴射弁10のソレノイド3に駆動電流が供給されていない。したがって、燃料噴射弁10の可動子5及び弁体6はセットスプリング4の付勢力によって弁座7の閉弁方向へ付勢され、弁体6の下端6bが弁座7と密着しており、弁孔7aが閉弁されて当該弁孔7aから燃料が噴射されていない。
 次いで、時間T1で、噴射パルスがオン状態となり、スイッチSW1、SW2がオン状態となり、昇圧電圧Vboost~ソレノイド3~接地電圧VGの間が導通され(ソレノイド3の駆動電圧はVboost)、ソレノイド3に駆動電流が供給されると(図1中、矢印X1に示す電流の流れ)、固定コア1と可動子5との間に磁束が通過して可動子5に磁気吸引力が作用する。ソレノイド3に供給される駆動電流が増加し、可動子5に作用する磁気吸引力がセットスプリング4による付勢力を超過すると、可動子5が固定コア1の方向へ吸引されて移動し始める(時間T1~T2)。可動子5が所定長さ(可動子5の可動子ガイド5aと弁体6の突設部6aとが当接する長さ)だけ移動すると、可動子5と弁体6とが一体となって軸線L方向へ移動し始め(時間T2)、弁体6の下端6bが弁座7から離間し、弁孔7aが開弁されて当該弁孔7aから燃料が噴射される。
 可動子5と弁体6とは、可動子6が固定コア1に衝突するまで一体となって移動するものの、可動子6と固定コア1とが勢いよく衝突すると可動子5が固定コア1で跳ね返って弁孔7aから噴射される燃料の流量が乱れる。そこで、可動子5が固定コア1に衝突する前の時間T3で、スイッチSW1、SW2をオフ状態とし、ソレノイド3に印加される駆動電圧を減少させ、駆動電流をピーク値Ipeakから減少させて可動子5及び弁体6の勢いを低下させる。
 そして、時間T4から噴射パルスが立ち下がる時間T6までは、弁体6及び可動子5を固定コア1に引き寄せるのに十分な磁気吸引力のみを供給するため、スイッチSW2をオン状態に維持した状態でスイッチSW3を間欠的にオン状態とし(スイッチSW3をPMW制御)、ソレノイド3に印加される駆動電圧を間欠的にバッテリ電圧VBとし、ソレノイド3に流れる駆動電流が所定の範囲内に収まるように制御する(図1中、矢印X2に示す電流の流れ)。なお、時間T5では、可動子5と固定コア1とが衝突し、弁体6が目標リフト量まで変位している。
 時間T6で、噴射パルスがオフ状態となり、スイッチSW1、SW2、SW3が全てオフ状態とになり、ソレノイド3の駆動電圧が減少し、ソレノイド3に流れる駆動電流が減少すると、固定コア1と可動子5との間に発生した磁束が次第に消滅し、可動子5に作用する磁気吸引力が消滅し、弁体6は、セットスプリング4の付勢力と燃圧による押圧力により、所定の時間遅れを持って弁座7の閉弁方向へ押し戻される。そして、時間T7では、弁体6が元に位置まで戻され、弁体6の下端6bが弁座7に密着し、弁孔7aが閉弁されて当該弁孔7aから燃料が噴射されなくなる。
 ここで、ECU30は、例えば燃料噴射弁10の弁孔7aの開弁開始時間T2と閉弁完了時間T7を精緻に検知し、開弁開始時間T2から閉弁完了時間T7までの時間が目標とする時間幅に一致するように適正な噴射パルスを生成することによって、燃料噴射弁10のスプリング特性やソレノイド特性等に基づく噴射特性に応じた噴射量のばらつきを抑制し、燃料噴射弁10の弁孔7aから噴射される燃料噴射量を目標とする燃料噴射量に近づけることができる。
 図3~図6を参照して、ECU30の噴射パルスの生成に関わる燃料噴射弁10の弁孔7aの開弁開始時間や開弁完了時間と閉弁完了時間とを検知する方法について具体的に説明する。図3は、駆動電圧が相対的に小さい場合の、弁体の変位量と駆動電圧と駆動電流の一例を時系列で示したものであり、図4は、駆動電圧が相対的に大きい場合の、弁体の変位量と駆動電圧と駆動電流の一例を時系列で示したものである。なお、図3及び図4の駆動電圧では、ソレノイド3の接地側と接地電圧VGとの間の電圧(LowSide電圧)を実線、燃料噴射弁10のソレノイド3を挟む2点間の電圧(端子間電圧)を破線で示している。また、図5(a)は駆動電流と正規化された弁体変位量の一例を時系列で示した図、図5(b)は駆動電流の1階微分と正規化された弁体変位量の一例を時系列で示した図、図5(c)は駆動電流の2階微分と正規化された弁体変位量の一例を時系列で示した図である。また、図6(a)は駆動電圧と正規化された弁体変位量の一例を時系列で示した図、図6(b)は駆動電圧の1階微分と正規化された弁体変位量の一例を時系列で示した図、図6(c)は駆動電圧の2階微分と正規化された弁体変位量の一例を時系列で示した図である。
 燃料噴射弁10の弁孔7aの開弁開始時間や開弁完了時間と閉弁完了時間の検知方法を概説すると、燃料噴射弁10の弁孔7aを開弁する際には、上記したように、一旦ソレノイド3に相対的に大きな駆動電圧が印加され、ソレノイド3に相対的に大きな駆動電流が流されて、可動子5と弁体6とが加速される。次いで、ソレノイド3に印加される駆動電圧が遮断され、ソレノイド3に流れる駆動電流が所定値まで減少された後、ソレノイド3に相対的に小さい一定の駆動電圧が印加されると、ソレノイド3に流れる駆動電流が安定した状態で可動子5が固定コア1に衝突する。可動子5と固定コア1とが衝突すると、可動子5の加速度が変化し、それによりソレノイド3のインダクタンスが変化する。ここで、ソレノイド3のインダクタンスの変化は、ソレノイド3に流れる駆動電流あるいはソレノイド3に印加される電圧駆動の変化に表れると考えられるものの、弁孔7aを開弁する際(具体的には開弁開始時間や開弁完了時間)には駆動電圧が略一定に維持されるため、開弁開始時間や開弁完了時間は、ソレノイド3に流れる駆動電流の変化から検知することができる。
 一方で、燃料噴射弁10の弁孔7aを閉弁する際には、弁体6が弁座7と衝突して可動子5の加速度が変化し、それによりソレノイド3のインダクタンスが変化する。弁孔7aを閉弁する際(具体的には閉弁完了時間)にはソレノイド3に流れる駆動電流が0となるため、閉弁完了時間は、ソレノイド3に印加される駆動電圧の変化から検知することができる。
 図3に示すように、燃料噴射弁10のソレノイド3に印加される駆動電圧が相対的に小さく、可動子5の可動子ガイド5aと弁体6の突設部6aとが接触して弁体6が移動し始めた際にソレノイド3に流れる駆動電流が比較的安定している場合には、可動子5の可動子ガイド5aと弁体6の突設部6aとが接触して弁孔7aが開弁し始める時点で、ソレノイド3に流れる駆動電流が僅かに変化するため、ソレノイド3の駆動電流の時系列データから変曲点が検出される時間から開弁開始時間を検知することができる。
 また、可動子5と弁体6とが下方へ移動し、弁体6の下端6bが弁座7と当接して燃料噴射弁10の弁孔7aが閉弁される際には、ソレノイド3に流れる駆動電流が0であり、ソレノイド3に駆動電圧のみが印加されており、弁孔7aが閉弁された時点でソレノイド3に印加される駆動電圧のみが僅かに変化するため、ソレノイド3の駆動電圧の時系列データから変曲点が検出される時間から閉弁完了時間を検知することができる。
 また、図4に示すように、燃料噴射弁10のソレノイド3に印加される駆動電圧が相対的に大きく、可動子5の可動子ガイド5aと弁体6の突設部6aとが接触して弁孔7aが開弁する時点でソレノイド3に流れる駆動電流の変化を検知することが難しい場合には、可動子5と固定コア1とが衝突して(弁体6の変位量が目標リフト量に到達して)弁孔7aの開弁が完了する時点で、ソレノイド3に流れる駆動電流が変化するため、ソレノイド3の駆動電流の時系列データから変曲点が検出される時間から開弁完了時間を検知することができる。
 より具体的には、図5(a)~(c)に示すように、燃料噴射弁10のソレノイド3に流れる駆動電流の時系列データを2階微分し、その駆動電流の時系列データの2階微分から極大値が検出される時間のうち、予め設定された基準となる開弁完了時間に最も近い時間(図5(c)中、t11)が、開弁完了時間(弁体6の変位量が目標リフト量に到達して弁孔7aの開弁が完了する時間)であると特定することができる。なお、駆動電流の時系列データの2階微分から極大値が検出される時間とは、駆動電流の時系列データから変曲点が検出される時間である。
 また、図6(a)~(c)に示すように、燃料噴射弁10のソレノイド3に印加される駆動電圧の時系列データを2階微分し、その駆動電圧の時系列データの2階微分から極大値が検出される時間のうち、予め設定された基準となる閉弁完了時間に最も近い時間(図6(c)中、t21)が、閉弁完了時間(弁体6が元の位置まで戻って弁孔7aの閉弁が完了する時間)であると特定することができる。なお、駆動電圧の時系列データの2階微分から極大値が検出される時間とは、駆動電圧の時系列データから変曲点が検出される時間である。
 ところで、計測される駆動電流や駆動電圧のS/N比が低く、そのノイズレベルが大きい場合やA/D変換の分解能が低い場合には、駆動電流や駆動電圧の時系列データの2階微分の結果から所望の極値(極大値または極小値)を検知することが難しくなる。
 例えばノイズレベルが小さい場合には、ECU30は、例えば出力のラプラス変換X(s)、Y(s)の関係が以下の式(1)で表され、図7(a)に示すフィルタ係数を有し、図7(b)に示す周波数-ゲイン特性の1次遅れローパスフィルタを駆動電流や駆動電圧のデータに施して2階微分することで、駆動電流や駆動電圧の時系列データの2階微分の結果から所望の極値を検知することが考えられる。
Figure JPOXMLDOC01-appb-M000001
 一方で、図7(a)に示す1次遅れローパスフィルタは、図7(b)に示すように周波数特性が緩やかに変化するため、例えばノイズレベルが大きい場合には、駆動電流や駆動電圧のデータからノイズを効率的に除去することが難しい。そこで、ノイズレベルが大きい場合やA/D変換の分解能が低い場合には、ECU30は、例えば以下の式(2)及び図8(a)に示すフィルタ係数を有し、図8(b)に示す周波数-ゲイン特性のハニング窓(Hanning Window)を駆動電流や駆動電圧の信号に施して2階微分することで、駆動電流や駆動電圧のデータからノイズを効率的に除去しながら、駆動電流や駆動電圧の時系列データの2階微分の結果から所望の極値を検知する。
Figure JPOXMLDOC01-appb-M000002
 図9は、図1に示すECUの内部構成の一例を模式的に示したものである。なお、図9では、図3に基づき説明したように、燃料噴射弁10のソレノイド3に印加される駆動電圧が相対的に小さく、可動子5と弁体6とが接触して弁体6が移動し始めた際にソレノイド3に流れる駆動電流が比較的安定している場合であって、ソレノイド3の駆動電流や駆動電圧の時系列データから変曲点が検出される時間から開弁開始時間や閉弁完了時間を検知し得る場合について説明する。また、図9では、燃料噴射弁10の構成のうちソレノイド3のみを示している。
 図示するように、ECU30は、主に、開弁開始時間に対応する時間を検知する開弁開始時間検知部25と、閉弁完了時間に対応する時間を検知する閉弁完了時間検知部35と、開弁開始時間検知部25によって検出された開弁開始時間と閉弁完了時間検知部35によって検出された閉弁完了時間とを用いてEDU20へ出力する噴射パルスを補正する噴射パルス補正部45と、を備えている。
 ECU30の開弁開始時間検知部25は、燃料噴射弁10のソレノイド3のLowSide端子と接地電圧VGとの間に設けられたシャント抵抗SMDに加わる電圧をA/D変換して駆動電流に比例した信号を得るA/D変換器21と、デジタル化された駆動電流信号を平滑化するHanning Window22と、Hanning Window22によって平滑化された信号を2階差分する2階差分器23と、2階差分器23によって2階差分されて変曲点が強調された信号から極値を検出するピーク検出器24と、を有している。ECU30の開弁開始時間検知部25は、ピーク検出器24によって極値が検出される時間のうち、予め設定された基準となる基準開弁開始時間に最も近い時間を特定することによって、ソレノイド3に流れる駆動電流に比例した信号から開弁開始時間に対応する時間を検知し、検知されたその開弁開始時間を噴射パルス補正部45へ送信する。
 また、ECU30の閉弁完了時間検知部35は、燃料噴射弁10のソレノイド3のLowSide端子の電圧(駆動電圧)をA/D変換するA/D変換器31と、デジタル化された電流信号を平滑化するHanning Window32と、Hanning Window32によって平滑化された信号を2階差分する2階差分器33と、2階差分器33によって2階差分されて変曲点が強調された信号から極値を検出するピーク検出器34と、を有している。ECU30の閉弁完了時間検知部35は、ピーク検出器34によって極値が検出される時間のうち、予め設定された基準となる基準閉弁完了時間に最も近い時間を特定することによって、ソレノイド3に印加される駆動電圧から閉弁完了時間に対応する時間を検知し、検知されたその閉弁完了時間を噴射パルス補正部45へ送信する。
 また、ECU30の噴射パルス補正部45は、主に、目標燃料噴射量Qを静流(燃料噴射弁10のフルリフト状態の流量)Qstで除した値と燃料噴射弁10の流量特性に基づく基準噴射パルス幅Tiとの関係を示す基準特性マップM40、基準となる開弁開始時間を記憶する基準開弁開始時間メモリ41、基準となる閉弁完了時間を記憶する基準閉弁完了時間メモリ42、開弁開始時間検知部25から送信された開弁開始時間と基準開弁開始時間メモリ41から出力された基準開弁開始時間との開弁開始偏差を噴射毎のばらつきを平滑化して記憶する開弁開始偏差メモリ43、及び、閉弁完了時間検知部35から送信された閉弁完了時間と基準閉弁完了時間メモリ42から出力された基準閉弁完了時間との閉弁完了偏差を噴射毎のばらつきを平滑化して記憶する閉弁完了偏差メモリ44を有している。ここで、同じ運転条件で同じ燃料噴射弁10から燃料を噴射したとしても、燃料噴射弁10の弁孔7aの開閉時間は噴射毎に僅かにばらつく(ショットばらつき)ため、開弁開始偏差メモリ43及び閉弁完了偏差メモリ44は、燃料噴射弁10から燃料を複数回噴射した際に検知される複数の開弁開始偏差及び閉弁完了偏差を平均化し、その平均化された開弁開始偏差及び閉弁完了偏差を開弁開始偏差及び閉弁完了偏差として記憶するようになっている。
 噴射パルス補正部45は、開弁開始検知モードフラグが設定されると、差分手段46によって開弁開始時間検知部25から送信された開弁開始時間と基準開弁開始時間メモリ41から出力された基準開弁開始時間との偏差を算出し、その算出結果を開弁開始偏差として開弁開始偏差メモリ43に記憶する。また、差分手段47によって閉弁完了時間検知部35から送信された閉弁完了時間と基準閉弁完了時間メモリ42から出力された基準閉弁完了時間との偏差を算出し、その算出結果を閉弁完了偏差として閉弁完了偏差メモリ44に記憶する。
 次いで、噴射パルス補正部45は、差分手段48によって開弁開始偏差メモリ43から出力される開弁開始偏差と閉弁完了偏差メモリ44から出力される閉弁完了偏差との噴射パルス幅偏差を算出し、差分手段49によって標準特性マップM40から出力される基準噴射パルス幅Tiと噴射パルス幅偏差との偏差を算出することによって、開弁開始から閉弁完了までの開弁継続時間を規定する新たな噴射パルス(噴射パルス補正値)を生成する。
 ECU30は、その噴射パルス補正値に基づいてEDU20の各スイッチSW1、SW2、SW3の作動状態を制御(フィードバック制御)し、燃料噴射弁10のソレノイド3に印加される駆動電圧やソレノイド3に流れる駆動電流を制御し、燃料噴射弁10の弁孔7aの開閉を適正に制御して燃料噴射弁10から噴射される燃料噴射量を目標とする燃料噴射量へ制御する。
 このように、例えば内燃機関に複数の燃料噴射弁が配設され、各燃料噴射弁のスプリング特性やソレノイド特性等に基づいて各燃料噴射弁の噴射特性が変化する場合であっても、各燃料噴射弁のソレノイド3に流れる駆動電流や駆動電圧から開弁開始時間や閉弁完了時間を検知することにより、図10に示すように、各燃料噴射弁の噴射特性に応じた噴射パルスを生成することができ、各燃料噴射弁から噴射される燃料噴射量を目標とする燃料噴射量に近づけることができる。
 なお、内燃機関が複数の気筒を有し、各気筒に燃料噴射弁が配設されている場合には、基準開弁開始時間や基準閉弁完了時間に開弁開始時間や閉弁完了時間を合わせる代わりに、内燃機関の特定の気筒に配置された燃料噴射弁で検知された開弁開始時間や閉弁完了時間に、他の気筒の開弁開始時間や閉弁完了時間が一致するように制御してもよい。
 また、図11は、図1に示すECUの内部構成の他例を模式的に示したものである。なお、図11では、図4に基づき説明したように、燃料噴射弁10のソレノイド3に印加される駆動電圧が相対的に大きく、可動子5と弁体6とが接触して弁孔7aが開弁する時点でソレノイド3に流れる駆動電流の変化を検知することが難しい場合であって、ソレノイド3の駆動電流や駆動電圧の時系列データから変曲点が検出される時間から開弁完了時間や閉弁完了時間を検知し得る場合について説明する。また、図11では、燃料噴射弁10の構成のうちソレノイド3のみを示している。
 図示するように、ECU30は、主に、開弁完了時間に対応する時間を検知する開弁完了時間検知部25aと、閉弁完了時間に対応する時間を検知する閉弁完了時間検知部35と、開弁完了時間検知部25aによって検出された開弁開始時間と閉弁完了時間検知部35によって検出された閉弁完了時間とを用いてEDU20へ出力する噴射パルスを補正する噴射パルス補正部45と、を備えている。
 ECU30の開弁完了時間検知部25aは、燃料噴射弁10のソレノイド3のLowSide端子と接地電圧VGとの間に設けられたシャント抵抗SMDに加わる電圧をA/D変換して駆動電流に比例した信号を得るA/D変換器21aと、デジタル化された駆動電流信号を平滑化するHanning Window22aと、Hanning Window22aによって平滑化された信号を2階差分する2階差分器23aと、2階差分器23aによって2階差分されて変曲点が強調された信号から極値を検出するピーク検出器24aと、を有している。ECU30の開弁完了時間検知部25aは、ピーク検出器24によって極値が検出される時間のうち、予め設定された基準となる基準開弁完了時間に最も近い時間を特定することによって、ソレノイド3に流れる駆動電流に比例した信号から開弁完了時間に対応する時間を検知し、検知されたその開弁完了時間を噴射パルス補正部45へ送信する。
 また、ECU30の閉弁完了時間検知部35は、燃料噴射弁10のソレノイド3のLowSide端子の電圧(駆動電圧)をA/D変換するA/D変換器31と、デジタル化された電流信号を平滑化するHanning Window32と、Hanning Window32によって平滑化された信号を2階差分する2階差分器33と、2階差分器33によって2階差分されて変曲点が強調された信号から極値を検出するピーク検出器34と、を有している。ECU30の閉弁完了時間検知部35は、ピーク検出器34によって極値が検出される時間のうち、予め設定された基準となる基準閉弁完了時間に最も近い時間を特定することによって、ソレノイド3に印加される駆動電圧から閉弁完了時間に対応する時間を検知し、検知されたその閉弁完了時間を噴射パルス補正部45へ送信する。
 また、ECU30の噴射パルス補正部45は、主に、目標燃料噴射量Qを静流Qstで除した値と燃料噴射弁10の流量特性に基づく基準噴射パルス幅Tiとの関係を示す基準特性マップM40、基準となる開弁完了時間を記憶する基準開弁完了時間メモリ41a、基準となる閉弁完了時間を記憶する基準閉弁完了時間メモリ42、開弁完了時間検知部25aから送信された開弁完了時間と基準開弁完了時間メモリ41aから出力された基準開弁完了時間との開弁完了偏差を噴射毎のばらつきを平滑化して記憶する開弁完了偏差メモリ43a、及び、閉弁完了時間検知部35から送信された閉弁完了時間と基準閉弁完了時間メモリ42から出力された基準閉弁完了時間との閉弁完了偏差を噴射毎のばらつきを平滑化して記憶する閉弁完了偏差メモリ44を有している。ここで、開弁完了偏差メモリ43a及び閉弁完了偏差メモリ44は、燃料噴射弁10から燃料を複数回噴射した際に検知される複数の開弁完了偏差及び閉弁完了偏差を平均化し、その平均化された開弁完了偏差及び閉弁完了偏差を開弁完了偏差及び閉弁完了偏差として記憶するようになっている。
 噴射パルス補正部45は、開弁完了検知モードフラグが設定されると、差分手段46によって開弁完了時間検知部25aから送信された開弁完了時間と基準開弁完了時間メモリ41aから出力された基準開弁完了時間との偏差を算出し、その算出結果を開弁完了偏差として開弁完了偏差メモリ43aに記憶する。また、差分手段47によって閉弁完了時間検知部35から送信された閉弁完了時間と基準閉弁完了時間メモリ42から出力された基準閉弁完了時間との偏差を算出し、その算出結果を閉弁完了偏差として閉弁完了偏差メモリ44に記憶する。
 ここで、図12に示すように、開弁開始偏差と開弁完了偏差とは相関があり、一般に、開弁完了偏差は、各燃料噴射弁の噴射特性に関わらず開弁開始偏差の略定数倍(K倍)であることが知られている。
 そこで、噴射パルス補正部45は、変換手段43bによって開弁完了偏差メモリ43から出力される開弁完了偏差にゲイン1/Kを積算して開弁開始偏差を算出し、差分手段48によってその開弁開始偏差と閉弁完了偏差メモリ44から出力される閉弁完了偏差との噴射パルス幅偏差を算出し、差分手段49によって基準特性マップM40から出力される基準噴射パルス幅Tiと噴射パルス幅偏差との偏差を算出することによって、開弁開始から閉弁完了までの開弁継続時間を規定する新たな噴射パルス(噴射パルス補正値)を生成する。
 このように、例えば内燃機関に複数の燃料噴射弁が配設され、各燃料噴射弁のスプリング特性やソレノイド特性等に基づいて各燃料噴射弁の噴射特性が変化する場合であっても、各燃料噴射弁のソレノイド3に流れる駆動電流や駆動電圧から開弁完了時間や閉弁完了時間を検知することにより、各燃料噴射弁の噴射特性に応じた噴射パルスを生成することができ、各燃料噴射弁から噴射される燃料噴射量を目標とする燃料噴射量に近づけることができる。
[実施形態2]
 上記する実施形態1では、A/D変換器によってデジタル化された電流信号にHanning Windowを乗じた後に、その算出結果を2階差分する形態について説明した。
 ところで、信号UtにHanning Window(フィルタ係数Ft)を乗じて得られる以下の式(3)の出力信号を2階差分する場合、以下の式(4)で示す式変形を行うことができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、図8及び図13(a)に示すように、Hanning Windowの両端のフィルタ係数は0と考えてよいため、以下の式(5)で示すように、上記式(4)の第1項は0と近似できる。
Figure JPOXMLDOC01-appb-M000005
 一方、上記式(4)の第2項は、Ftの2階差分とUtの畳み込みであるため、信号UtにHanning Windowを乗じた後に2階差分を行うことは、信号UtにHanning Windowの2階差分を乗じることと等化である。Hanning Windowのフィルタ係数は、上記する式(2)に示すようにFi=1-cos(2πi/I)で表されるため、このHanning Windowのフィルタ係数の2階差分は、比例定数KAを用いて以下の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 したがって、信号UtにHanning Windowを乗じた後に2階差分を行うことは、図13(b)に示すような、Hanning Windowをひっくり返して係数の総和もしくは平均が0となるようにレベルを補正したフィルタと信号Utとの畳み込みをとることと等化である。
 上記フィルタは、Hanning Windowと2階差分の直列結合であるから、このフィルタの周波数―ゲイン特性は、図8(b)に示すHanningWindowの周波数―ゲイン特性に図14(a)に示す2階差分の周波数―ゲイン特性を乗じたものであって、図14(b)のようになる。このフィルタは、周波数が0近傍の低周波ではゲインが低く、周波数が増加してカットオフ周波数に近づくに従ってゲインが上昇し、カットオフ周波数を超えるとゲインは約0となる。
 すなわち、このフィルタは、低い周波数よりもカットオフ周波数に近い周波数をよく通す特性があるため、高域抽出フィルタと称される。
 図15は、本発明に係る電磁弁の制御装置の実施形態2を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示したものであり、特に上記する高域抽出フィルタを利用した制御装置を示したものである。なお、図15では、燃料噴射弁10の構成のうちソレノイド3のみを示している。
 図15に示す実施形態2の制御装置は、上記する実施形態1の制御装置に対して、ソレノイド3に流れる駆動電流やソレノイド3に印加される駆動電流の時系列データから変曲点を検知して開弁開始時間や開弁完了時間と閉弁完了時間とを検知する方法が相違しており、その他の構成は実施形態1の制御装置と同様である。したがって、実施形態1の制御装置と同様の構成には同様の符号を付してその詳細な説明は省略する。
 図示するように、ECU30Aは、主に、開弁開始時間(又は開弁完了時間)に対応する時間を検知する開弁開始時間検知部(又は開弁完了時間検知部)25Aと、閉弁完了時間に対応する時間を検知する閉弁完了時間検知部35Aと、開弁開始時間検知部(又は開弁完了時間検知部)25Aによって検出された開弁開始時間(又は開弁完了時間)と閉弁完了時間検知部35Aによって検出された閉弁完了時間とを用いてEDU20へ出力する噴射パルスを補正する噴射パルス補正部45Aと、を備えている。
 ECU30Aの開弁開始時間検知部(又は開弁完了時間検知部)25Aは、燃料噴射弁10のソレノイド3のLowSide端子と接地電圧VGとの間に設けられたシャント抵抗SMDに加わる電圧をA/D変換して駆動電流に比例した信号を得るA/D変換器21Aと、デジタル化された駆動電流信号の高域成分を強調する高域抽出フィルタ(図13(b)参照)22Aと、高域抽出フィルタ22Aの出力信号(デジタル化された駆動電流信号と高域抽出フィルタとの相関)から極値を検出するピーク検出器24Aと、を有している。ECU30Aの開弁開始時間検知部(又は開弁完了時間検知部)25Aは、ピーク検出器24Aによって極値が検出される時間のうち、予め設定された基準となる基準開弁開始時間(又は基準開弁完了時間)に最も近い時間を特定することによって、ソレノイド3に流れる駆動電流に比例した信号から開弁開始時間(又は開弁完了時間)に対応する時間を検知し、検知されたその開弁開始時間(又は開弁完了時間)を噴射パルス補正部45Aへ送信する。
 また、ECU30Aの閉弁完了時間検知部35Aは、燃料噴射弁10のソレノイド3のLowSide端子の電圧(駆動電圧)をA/D変換するA/D変換器31Aと、デジタル化された電流信号の高域成分を強調する高域抽出フィルタ32Aと、高域抽出フィルタ32Aの出力信号(デジタル化された電流信号と高域抽出フィルタとの相関)から極値を検出するピーク検出器34Aと、を有している。ECU30Aの閉弁完了時間検知部35Aは、ピーク検出器34Aによって極値が検出される時間のうち、予め設定された基準となる基準閉弁完了時間に最も近い時間を特定することによって、ソレノイド3に印加される駆動電圧から閉弁完了時間に対応する時間を検知し、検知されたその閉弁完了時間を噴射パルス補正部45Aへ送信する。
 また、ECU30Aの噴射パルス補正部45Aは、開弁開始時間検知部(又は開弁完了時間検知部)25Aから送信された開弁開始時間(又は開弁完了時間)、閉弁完了時間検知部35Aから送信された閉弁完了時間などに基づいて、開弁開始から閉弁完了までの開弁継続時間を規定する新たな噴射パルス(噴射パルス補正値)を生成する。ECU30Aは、その噴射パルス補正値に基づいて、EDU20の各スイッチSW1、SW2、SW3の作動状態を制御し、燃料噴射弁10のソレノイド3に印加される駆動電圧やソレノイド3に流れる駆動電流を制御し、燃料噴射弁10の弁孔7aの開閉を適正に制御して燃料噴射弁10から噴射される燃料噴射量を目標とする燃料噴射量へ制御する。
 このように、本実施形態2では、ソレノイド3に流れる駆動電流やソレノイド3に印加される駆動電流の時系列データから開弁開始時間や開弁完了時間と閉弁完了時間とを検知する際に、係数の総和もしくは平均が0且つ係数のモーメントが0である高域抽出フィルタを用い、この高域抽出フィルタと駆動電流や駆動電流の時系列データとの相関から極値を検出することにより、簡便な構成でもって、各燃料噴射弁の開弁開始時間や開弁完了時間と閉弁完了時間とを検知することができる。
 なお、上記する実施形態2では、デジタル化された電流信号の高域成分を強調する高域抽出フィルタとして、フィルタ係数がKAcos(2πi/I)(三角関数)であるフィルタについて説明したが、当該高域抽出フィルタは、図16(a)に示すような駆動電圧や駆動電流のレベルの変動に関わらず駆動電圧や駆動電流の時系列データから変曲点を検知でき、且つ、図16(b)に示すような駆動電圧や駆動電流の傾きの変動に関わらず駆動電圧や駆動電流の時系列データから変曲点を検知できればよい。そのための高域抽出フィルタとしては、フィルタ係数の総和もしくは平均が0且つフィルタ係数のモーメントが0であるフィルタであればよい。すなわち、当該高域抽出フィルタとしては、例えば、図17(a)に示すようなフィルタ係数が下に凸の円弧状であってレベルが調整されたフィルタ(所定の対称軸に対して線対称である偶数次数関数で表される)であってもよいし、図17(b)に示すようなフィルタ係数が2次関数などの偶数次数関数で表され且つレベルが調整されたフィルタであってもよいし、図17(c)に示すようなフィルタ係数が下に凸のV字状であってレベルが調整されたフィルタ(所定の対称軸に対して線対称である一次関数で表される)であってもよいし、それらのフィルタを適宜組み合わせたフィルタであってもよい。
[実施形態3]
 ところで、上記する図13や図17で示すようなフィルタ係数Fiを有するフィルタに信号Uを入力した際の出力Yは、上記する式(3)で表される。この式(3)は、視覚的に図18又は図19で示すように表すことができる。すなわち、図19で示すように、この式(3)は、上記フィルタと同様の特性を有する参照パターンと入力信号Uとの相関を取ることを表している。なお、図19のバツを丸で囲んだ記号は、入力Ut、…、Ut-lとF0、…、Flとの相関を取る演算を表している。
 そして、参照パターンと入力信号Uとの相関からピーク(極値)を検出することは、その参照パターンをtk-2、tk-1、tk、tk+1、tk+2のようにシフトし(図20参照)、それぞれの参照パターンの位置で入力信号Uとの相関を計算し、それぞれの参照パターンの位置のうち計算された相関が相対的に高くなる位置(図20中、tk)を特定することを意味している。
 図21は、本発明に係る電磁弁の制御装置の実施形態3を用いた内燃機関の制御装置が適用された燃料噴射装置の全体構成を示したものであり、特に上記する高域抽出フィルタと同様の特性を有する参照パターンを利用した制御装置を示したものである。なお、図21では、燃料噴射弁10の構成のうちソレノイド3のみを示している。
 図21に示す実施形態3の制御装置は、上記する実施形態1の制御装置に対して、ソレノイド3に流れる駆動電流やソレノイド3に印加される駆動電流の時系列データから変曲点を検知して開弁開始時間や開弁完了時間と閉弁完了時間とを検知する方法が相違しており、その他の構成は実施形態1の制御装置と同様である。したがって、実施形態1の制御装置と同様の構成には同様の符号を付してその詳細な説明は省略する。
 図示するように、ECU30Bは、主に、開弁開始時間(又は開弁完了時間)に対応する時間を検知する開弁開始時間検知部(又は開弁完了時間検知部)25Bと、閉弁完了時間に対応する時間を検知する閉弁完了時間検知部35Bと、開弁開始時間検知部(又は開弁完了時間検知部)25Bによって検出された開弁開始時間(又は開弁完了時間)と閉弁完了時間検知部35によって検出された閉弁完了時間とを用いてEDU20へ出力する噴射パルスを補正する噴射パルス補正部45Bと、を備えている。
 ECU30Bの開弁開始時間検知部(又は開弁完了時間検知部)25Bは、燃料噴射弁10のソレノイド3のLowSide端子と接地電圧VGとの間に設けられたシャント抵抗SMDに加わる電圧をA/D変換して駆動電流に比例した信号を得るA/D変換器21Bと、信号の高域成分を強調するための参照パターン(係数の総和もしくは平均と係数のモーメントが0)22Bと、A/D変換器21Bによってデジタル化された駆動電流信号と参照パターン22Bとの相関を取る相関器23Bと、相関器23Bの出力結果から極値を検出するピーク検出器24Bと、を有している。ECU30Bの開弁開始時間検知部(又は開弁完了時間検知部)25Bは、ピーク検出器24Bによって極値が検出される時間のうち、予め設定された基準となる基準開弁開始時間(又は基準開弁完了時間)に最も近い時間を特定することによって、ソレノイド3に流れる駆動電流に比例した信号から開弁開始時間(又は開弁完了時間)に対応する時間を検知し、検知されたその開弁開始時間(又は開弁完了時間)を噴射パルス補正部45Bへ送信する。
 また、ECU30Bの閉弁完了時間検知部35Bは、燃料噴射弁10のソレノイド3のLowSide端子の電圧(駆動電圧)をA/D変換するA/D変換器31Bと、信号の高域成分を強調するための参照パターン(係数の総和もしくは平均と係数のモーメントが0)32Bと、A/D変換器31Bによってデジタル化された電流信号と参照パターンとの相関を取る相関器33Bと、相関器33Bの出力結果から極値を検出するピーク検出器34Bと、を有している。ECU30Bの閉弁完了時間検知部35Bは、ピーク検出器34Bによって極値が検出される時間のうち、予め設定された基準となる基準閉弁完了時間に最も近い時間を特定することによって、ソレノイド3に印加される駆動電圧から閉弁完了時間に対応する時間を検知し、検知されたその閉弁完了時間を噴射パルス補正部45Bへ送信する。
 また、ECU30Bの噴射パルス補正部45Bは、開弁開始時間検知部(又は開弁完了時間検知部)25Bから送信された開弁開始時間(又は開弁完了時間)、閉弁完了時間検知部35Bから送信された閉弁完了時間などに基づいて、開弁開始から閉弁完了までの開弁継続時間を規定する新たな噴射パルス(噴射パルス補正値)を生成する。ECU30Bは、その噴射パルス補正値に基づいて、EDU20の各スイッチSW1、SW2、SW3の作動状態を制御し、燃料噴射弁10のソレノイド3に印加される駆動電圧やソレノイド3に流れる駆動電流を制御し、燃料噴射弁10の弁孔7aの開閉を適正に制御して燃料噴射弁10から噴射される燃料噴射量を目標とする燃料噴射量へ制御する。
 このように、本実施形態3では、ソレノイド3に流れる駆動電流やソレノイド3に印加される駆動電流の時系列データから開弁開始時間や開弁完了時間と閉弁完了時間とを検知する際に、係数の総和もしくは平均が0且つ係数のモーメントが0である高域抽出フィルタと同様の特性を有する参照パターンを用い、この参照パターンと駆動電流や駆動電圧の時系列データとの相関から極値を検出することにより、簡便な構成でもって、開弁開始時間や開弁完了時間と閉弁完了時間とを精緻に検知することができる。
 なお、本発明は上記した実施形態1~3に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態1~3は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1  固定コア
2  調整子
3  ソレノイド
3a ボビン
3b ハウジング
4  セットスプリング
5  可動子
5a 可動子ガイド
6  弁体
6a 突設部
6b 弁体の下端
7  弁座
7a 弁孔
8  ガイド部材
9  筒体
10 燃料噴射弁(電磁弁)
20 エンジンドライブユニット(EDU)(駆動回路)
21、31 A/D変換器
22、32 ハニング窓(Hanning Window)
23、33 2階差分器
24、34 ピーク検出器
25 開弁開始時間検知部
30 エンジンコントローラユニット(ECU)(内燃機関の制御装置)
35 閉弁完了時間検知部
41 基準開弁開始時間メモリ
42 基準閉弁完了時間メモリ
43 開弁開始偏差メモリ
44 閉弁完了偏差メモリ
45 噴射パルス補正部
46、47、48、49 差分手段
100 燃料噴射装置

Claims (15)

  1.  電磁弁の開閉を印加される駆動電圧及び/又は駆動電流で制御する電磁弁の制御装置であって、
     前記電磁弁を開閉した際の前記駆動電圧及び/又は駆動電流の時系列データから変曲点が検出される時間に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする電磁弁の制御装置。
  2.  前記制御装置は、前記駆動電圧の時系列データから変曲点が検出される時間に基づいて前記電磁弁の閉弁完了時間を検知し、及び/又は、前記駆動電流の時系列データから変曲点が検出される時間に基づいて前記電磁弁の開弁開始時間もしくは開弁完了時間を検知して、前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする、請求項1に記載の電磁弁の制御装置。
  3.  前記制御装置は、前記駆動電圧の時系列データから変曲点が検出される時間に基づいて前記電磁弁の閉弁完了時間を検知し、前記駆動電流の時系列データから変曲点が検出される時間に基づいて前記電磁弁の開弁開始時間を検知し、前記開弁開始時間から前記閉弁完了時間までの時間幅に基づいて前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする、請求項2に記載の電磁弁の制御装置。
  4.  前記制御装置は、前記駆動電圧及び/又は駆動電流の時系列データと、係数の総和及び係数のモーメントの双方が0である参照パターンと、の相関が極値となる時間に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする、請求項1に記載の電磁弁の制御装置。
  5.  前記参照パターンは、所定の対称軸に対して線対称である三角関数もしくは偶数次数関数であることを特徴とする、請求項4に記載の電磁弁の制御装置。
  6.  前記制御装置は、前記駆動電圧及び/又は駆動電流の時系列データとハニング窓との畳み込みの2階差分から極値が検出される時間に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする、請求項1に記載の電磁弁の制御装置。
  7.  前記制御装置は、前記開弁開始時間と予め設定された前記電磁弁の基準開弁開始時間との開弁開始偏差、及び、前記閉弁完了時間と予め設定された前記電磁弁の基準閉弁完了時間との閉弁完了偏差に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を制御することを特徴とする、請求項2に記載の電磁弁の制御装置。
  8.  前記制御装置は、前記開弁完了時間と予め設定された前記電磁弁の基準開弁完了時間との開弁完了偏差に所定値を乗じて得られる開弁開始偏差、及び、前記閉弁完了時間と予め設定された前記電磁弁の基準閉弁完了時間との閉弁完了偏差に基づいて、前記電磁弁に印加される駆動電圧及び/又は駆動電流を制御することを特徴とする、請求項2に記載の電磁弁の制御装置。
  9.  請求項7に記載の電磁弁の制御装置を用いた内燃機関の制御装置であって、
     前記電磁弁は、内燃機関の燃焼室内に目標燃料噴射量の燃料を噴射する電磁式燃料噴射弁であり、
     前記内燃機関の制御装置は、前記開弁開始偏差、前記閉弁完了偏差、及び、前記燃料噴射弁の目標燃料噴射量と前記燃料噴射弁の基準特性マップとから得られる基準噴射パルス幅に基づいて、前記燃料噴射弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする内燃機関の制御装置。
  10.  前記開弁開始偏差及び/又は前記閉弁完了偏差は、前記燃料噴射弁から燃料を複数回噴射した際に検知される複数の開弁開始偏差及び/又は閉弁完了偏差を平均化したものであることを特徴とする、請求項9に記載の内燃機関の制御装置。
  11.  前記内燃機関は複数の気筒を有しており、
     前記制御装置は、前記内燃機関の各気筒に配置された燃料噴射弁の基準開弁開始時間及び/又は基準閉弁完了時間を、前記内燃機関の所定の気筒に配置された燃料噴射弁の前記開弁開始時間及び/又は前記閉弁完了時間に設定することを特徴とする、請求項9に記載の内燃機関の制御装置。
  12.  請求項8に記載の電磁弁の制御装置を用いた内燃機関の制御装置であって、
     前記電磁弁は、内燃機関の燃焼室内に目標燃料噴射量の燃料を噴射する電磁式燃料噴射弁であり、
     前記内燃機関の制御装置は、前記開弁開始偏差、前記閉弁完了偏差、及び、前記燃料噴射弁の目標燃料噴射量と前記燃料噴射弁の基準特性マップとから得られる基準噴射パルス幅に基づいて、前記燃料噴射弁に印加される駆動電圧及び/又は駆動電流を補正することを特徴とする内燃機関の制御装置。
  13.  前記制御装置は、前記開弁完了偏差に所定値を乗じて前記開弁開始偏差を算出することを特徴とする、請求項12に記載の内燃機関の制御装置。
  14.  前記開弁完了偏差及び/又は前記閉弁完了偏差は、前記燃料噴射弁から燃料を複数回噴射した際に検知される複数の開弁完了偏差及び/又は閉弁完了偏差を平均化したものであることを特徴とする、請求項12に記載の内燃機関の制御装置。
  15.  前記内燃機関は複数の気筒を有しており、
     前記制御装置は、前記内燃機関の各気筒に配置された燃料噴射弁の基準開弁完了時間及び/又は基準閉弁完了時間を、前記内燃機関の所定の気筒に配置された燃料噴射弁の前記開弁開始時間及び/又は前記閉弁完了時間に設定することを特徴とする、請求項12に記載の電磁弁の制御装置。
PCT/JP2014/055903 2013-04-26 2014-03-07 電磁弁の制御装置及びそれを用いた内燃機関の制御装置 WO2014174916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/784,653 US10240551B2 (en) 2013-04-26 2014-03-07 Electromagnetic valve control unit and internal combustion engine control device using same
EP14788534.7A EP2990705B1 (en) 2013-04-26 2014-03-07 Electromagnetic valve control unit and internal combustion engine control device using same
CN201480023033.6A CN105143742B (zh) 2013-04-26 2014-03-07 电磁阀控制装置以及使用它的内燃机控制装置
US16/267,125 US11300070B2 (en) 2013-04-26 2019-02-04 Electromagnetic valve control unit and internal combustion engine control device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-094207 2013-04-26
JP2013094207A JP6169404B2 (ja) 2013-04-26 2013-04-26 電磁弁の制御装置及びそれを用いた内燃機関の制御装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/784,653 A-371-Of-International US10240551B2 (en) 2013-04-26 2014-03-07 Electromagnetic valve control unit and internal combustion engine control device using same
US16/267,125 Continuation US11300070B2 (en) 2013-04-26 2019-02-04 Electromagnetic valve control unit and internal combustion engine control device using same

Publications (1)

Publication Number Publication Date
WO2014174916A1 true WO2014174916A1 (ja) 2014-10-30

Family

ID=51791501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055903 WO2014174916A1 (ja) 2013-04-26 2014-03-07 電磁弁の制御装置及びそれを用いた内燃機関の制御装置

Country Status (5)

Country Link
US (2) US10240551B2 (ja)
EP (1) EP2990705B1 (ja)
JP (1) JP6169404B2 (ja)
CN (1) CN105143742B (ja)
WO (1) WO2014174916A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142109A1 (de) * 2015-03-11 2016-09-15 Continental Automotive Gmbh Verfahren zum ermitteln eines charakteristischen punktes der hubbewegung eines verschlusselementes eines injektors und einspritzsystem
WO2016170738A1 (ja) * 2015-04-24 2016-10-27 株式会社デンソー 内燃機関の燃料噴射制御装置
WO2016173844A1 (de) * 2015-04-29 2016-11-03 Continental Automotive Gmbh Ermittlung eines zeitpunkts eines vorbestimmten öffnungszustandes eines kraftstoffinjektors
WO2016208334A1 (ja) * 2015-06-24 2016-12-29 日立オートモティブシステムズ株式会社 燃料噴射制御装置
WO2017022479A1 (ja) * 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置
JP2017507276A (ja) * 2014-02-20 2017-03-16 マン・ディーゼル・アンド・ターボ・エスイー 内燃機関の制御ユニット
JP2020094570A (ja) * 2018-12-14 2020-06-18 株式会社ケーヒン 燃料噴射弁駆動装置
CN114320633A (zh) * 2020-09-30 2022-04-12 日立安斯泰莫株式会社 电磁阀驱动装置
US11346311B2 (en) * 2015-11-30 2022-05-31 Denso Corporation Fuel injection control device for internal combustion engine

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975899B2 (ja) * 2013-02-08 2016-08-23 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
US9926874B2 (en) 2013-07-29 2018-03-27 Hitachi Automotive Systems, Ltd. Drive device for fuel injection device, and fuel injection system
JP6260501B2 (ja) * 2013-10-11 2018-01-17 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6156307B2 (ja) * 2013-10-11 2017-07-05 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6277941B2 (ja) * 2014-11-05 2018-02-14 株式会社デンソー 燃料噴射装置
JP6511266B2 (ja) * 2014-12-25 2019-05-15 日立オートモティブシステムズ株式会社 燃料噴射弁制御装置
GB2534172A (en) * 2015-01-15 2016-07-20 Gm Global Tech Operations Llc Method of energizing a solenoidal fuel injector for an internal combustion engine
JP6416674B2 (ja) * 2015-03-24 2018-10-31 株式会社ケーヒン 燃料噴射弁の制御装置
JP6445927B2 (ja) * 2015-05-11 2018-12-26 本田技研工業株式会社 燃料噴射弁の制御装置
JP6493334B2 (ja) 2015-11-30 2019-04-03 株式会社デンソー 内燃機関の燃料噴射制御装置
KR101826691B1 (ko) * 2015-12-03 2018-02-07 현대오트론 주식회사 인젝터의 폐쇄 시점 보상 방법
JP2017106354A (ja) * 2015-12-08 2017-06-15 株式会社デンソー 制御装置
CN105351128B (zh) * 2015-12-11 2017-10-27 中国北方发动机研究所(天津) 一种具有升压功能的高速电磁阀的喷射驱动电路
WO2017110245A1 (ja) * 2015-12-22 2017-06-29 ボッシュ株式会社 燃料噴射弁駆動特性校正方法及び車両用制御装置
WO2017168935A1 (ja) * 2016-03-30 2017-10-05 日立オートモティブシステムズ株式会社 制御回路
KR101816390B1 (ko) * 2016-04-26 2018-01-08 현대자동차주식회사 인젝터의 미소 닫힘 시간 제어를 위한 인젝터 특성 보정 방법
JP6520815B2 (ja) * 2016-05-06 2019-05-29 株式会社デンソー 燃料噴射制御装置
JP6520816B2 (ja) * 2016-05-06 2019-05-29 株式会社デンソー 燃料噴射制御装置
JP2018035759A (ja) 2016-09-01 2018-03-08 ルネサスエレクトロニクス株式会社 半導体装置及び燃料噴射装置
JP6597535B2 (ja) * 2016-09-13 2019-10-30 株式会社デンソー 弁体作動推定装置
JP6737669B2 (ja) * 2016-09-14 2020-08-12 Ckd株式会社 真空圧力制御システム及び真空圧力制御用コントローラ
DE102016218278A1 (de) * 2016-09-22 2018-03-22 Robert Bosch Gmbh Funktionsüberwachung von Magnetventilen für Kraftstoffeinspritzsysteme
DE102016219890B3 (de) * 2016-10-12 2017-08-03 Continental Automotive Gmbh Verfahren und Steuereinrichtung zum Steuern eines Schaltventils
DE112018001413T5 (de) * 2017-04-14 2019-12-05 Hitachi Automotive Systems, Ltd. Steuervorrichtung für Kraftstoffeinspritzventil
JP2019007401A (ja) * 2017-06-23 2019-01-17 株式会社デンソー 制御装置
GB2567809B (en) * 2017-10-18 2020-04-01 Delphi Tech Ip Ltd Method to determine the needle opening delay of a fuel injector
JP7067233B2 (ja) * 2018-04-20 2022-05-16 株式会社デンソー 噴射制御装置
WO2020008815A1 (ja) * 2018-07-03 2020-01-09 日立オートモティブシステムズ株式会社 電磁弁駆動装置
CN110836289B (zh) * 2018-08-17 2022-03-15 联合汽车电子有限公司 一种电磁阀控制系统及方法
US11732667B2 (en) * 2019-05-24 2023-08-22 Hitachi Astemo, Ltd. Fuel injection control device and fuel injection control method
US11230990B2 (en) * 2019-11-11 2022-01-25 Caterpillar Inc. Method and system for valve movement detection
US11873775B2 (en) 2019-11-21 2024-01-16 Hitachi Astemo, Ltd. Fuel injection control device
US11674466B2 (en) * 2020-06-26 2023-06-13 Transportation Ip Holdings, Llc Methods and systems for fuel injector control
JP2022026130A (ja) * 2020-07-30 2022-02-10 日立Astemo株式会社 制御装置
CN115144683B (zh) * 2022-09-06 2022-11-08 万向钱潮股份公司 一种电磁阀故障检测方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569626A (en) * 1979-07-04 1981-01-31 Nippon Denso Co Ltd Fuel injection device
JPS6036739A (ja) * 1983-08-09 1985-02-25 Kawasaki Heavy Ind Ltd 内燃機関の制御装置
JPH05272392A (ja) * 1992-03-26 1993-10-19 Zexel Corp 燃料噴射装置
JPH06174139A (ja) * 1992-12-02 1994-06-24 Jatco Corp 電磁弁制御装置
JP2001221121A (ja) * 2000-02-08 2001-08-17 Hitachi Ltd 電磁式燃料噴射装置及びこれを搭載した内燃機関
JP2001280189A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd 電磁式燃料噴射弁の制御方法
JP2002004922A (ja) * 2000-06-27 2002-01-09 Mitsubishi Electric Corp インジェクタ駆動装置
JP2005061583A (ja) * 2003-08-19 2005-03-10 Natl Space Development Agency Of Japan 電磁弁の作動モニタリング方法及びその装置
US20110170224A1 (en) 2010-01-13 2011-07-14 Herbert Gietler Determining a Change in the Activation State of an Electromagnetic Actuator
JP2011179647A (ja) * 2010-03-03 2011-09-15 Smc Corp 電磁弁駆動回路、電磁弁及び電磁弁の駆動方法
JP2014031790A (ja) * 2012-07-09 2014-02-20 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125951A (ja) 1984-07-17 1986-02-05 Kyushu Denki Seizo Kk 着火時振動の包絡線波形の統計的特徴を利用するエンジンの異常診断方式
DE69320826T2 (de) 1992-03-26 1999-01-21 Zexel Corp., Tokio/Tokyo Kraftstoff-Einspritzvorrichtung
GB9225622D0 (en) * 1992-12-08 1993-01-27 Pi Research Ltd Electromagnetic valves
JP3790932B2 (ja) 1995-05-25 2006-06-28 株式会社キューキ 内燃機関の動作状態判定装置
JP3582268B2 (ja) 1996-11-29 2004-10-27 東陶機器株式会社 ソレノイド駆動装置とこれを用いた弁装置および自動給水装置
US5924403A (en) * 1997-06-06 1999-07-20 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
US6848626B2 (en) * 2001-03-15 2005-02-01 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
US6889121B1 (en) 2004-03-05 2005-05-03 Woodward Governor Company Method to adaptively control and derive the control voltage of solenoid operated valves based on the valve closure point
JP2007100641A (ja) * 2005-10-06 2007-04-19 Hitachi Ltd 燃料噴射弁
EP2060762A1 (en) * 2007-11-15 2009-05-20 Delphi Technologies, Inc. Glitch detector and method of detecting glitch events
JP4922906B2 (ja) * 2007-12-10 2012-04-25 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料供給装置および制御装置
US8306637B2 (en) * 2009-04-07 2012-11-06 Fisher Controls International, Llc Methods and apparatus to limit a change of a drive value in an electro-pneumatic controller
DE102009002483A1 (de) 2009-04-20 2010-10-21 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
JP2010255444A (ja) * 2009-04-21 2010-11-11 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置及び方法
JP2010258146A (ja) * 2009-04-23 2010-11-11 Fuji Electric Systems Co Ltd ソレノイド電流制御装置およびソレノイド電流制御方法
US8347866B2 (en) * 2009-09-29 2013-01-08 GM Global Technology Operations LLC Fuel control system and method for more accurate response to feedback from an exhaust system with an air/fuel equivalence ratio offset
DE102009054588A1 (de) * 2009-12-14 2011-06-16 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Ventils
JP5023172B2 (ja) * 2010-03-09 2012-09-12 日立オートモティブシステムズ株式会社 電磁弁駆動回路
JP5580716B2 (ja) * 2010-10-29 2014-08-27 東京瓦斯株式会社 失火検知方法及び失火検知システム
EP2455600A1 (en) * 2010-11-17 2012-05-23 Continental Automotive GmbH Method and apparatus for operating an injection valve
JP5871364B2 (ja) * 2011-09-14 2016-03-01 ダイヤモンド電機株式会社 内燃機関の燃焼制御装置
JP5727395B2 (ja) * 2012-01-16 2015-06-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102012205573B4 (de) * 2012-04-04 2019-06-06 Continental Automotive Gmbh Bestimmen des zeitlichen Bewegungsverhaltens eines Kraftstoffinjektors basierend auf einer Auswertung des zeitlichen Verlaufs von verschiedenen elektrischen Messgrößen
JP2014055571A (ja) 2012-09-13 2014-03-27 Denso Corp 燃料噴射制御装置
JP5975899B2 (ja) * 2013-02-08 2016-08-23 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP6010480B2 (ja) * 2013-02-27 2016-10-19 本田技研工業株式会社 電磁弁の駆動制御装置
JP5792227B2 (ja) * 2013-06-05 2015-10-07 本田技研工業株式会社 電磁弁の駆動制御装置
JP6260501B2 (ja) 2013-10-11 2018-01-17 株式会社デンソー 内燃機関の燃料噴射制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569626A (en) * 1979-07-04 1981-01-31 Nippon Denso Co Ltd Fuel injection device
JPS6036739A (ja) * 1983-08-09 1985-02-25 Kawasaki Heavy Ind Ltd 内燃機関の制御装置
JPH05272392A (ja) * 1992-03-26 1993-10-19 Zexel Corp 燃料噴射装置
JPH06174139A (ja) * 1992-12-02 1994-06-24 Jatco Corp 電磁弁制御装置
JP2001221121A (ja) * 2000-02-08 2001-08-17 Hitachi Ltd 電磁式燃料噴射装置及びこれを搭載した内燃機関
JP2001280189A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd 電磁式燃料噴射弁の制御方法
JP2002004922A (ja) * 2000-06-27 2002-01-09 Mitsubishi Electric Corp インジェクタ駆動装置
JP2005061583A (ja) * 2003-08-19 2005-03-10 Natl Space Development Agency Of Japan 電磁弁の作動モニタリング方法及びその装置
US20110170224A1 (en) 2010-01-13 2011-07-14 Herbert Gietler Determining a Change in the Activation State of an Electromagnetic Actuator
JP2011179647A (ja) * 2010-03-03 2011-09-15 Smc Corp 電磁弁駆動回路、電磁弁及び電磁弁の駆動方法
JP2014031790A (ja) * 2012-07-09 2014-02-20 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167807B2 (en) 2014-02-20 2019-01-01 Man Energy Solutions Se Control unit of an internal combustion engine
JP2017507276A (ja) * 2014-02-20 2017-03-16 マン・ディーゼル・アンド・ターボ・エスイー 内燃機関の制御ユニット
WO2016142109A1 (de) * 2015-03-11 2016-09-15 Continental Automotive Gmbh Verfahren zum ermitteln eines charakteristischen punktes der hubbewegung eines verschlusselementes eines injektors und einspritzsystem
CN107407220A (zh) * 2015-03-11 2017-11-28 大陆汽车有限公司 用于获取喷射器的闭锁元件的往复运动的特征点的方法和喷射系统
CN107407220B (zh) * 2015-03-11 2020-10-16 大陆汽车有限公司 用于获取喷射器的闭锁元件的往复运动的特征点的方法和喷射系统
JP2016205276A (ja) * 2015-04-24 2016-12-08 株式会社デンソー 内燃機関の燃料噴射制御装置
CN107849997A (zh) * 2015-04-24 2018-03-27 株式会社电装 内燃机的燃料喷射控制装置
WO2016170738A1 (ja) * 2015-04-24 2016-10-27 株式会社デンソー 内燃機関の燃料噴射制御装置
CN107532536B (zh) * 2015-04-29 2021-07-13 大陆汽车有限公司 确定燃料喷射器的预定打开状态的时间点
WO2016173844A1 (de) * 2015-04-29 2016-11-03 Continental Automotive Gmbh Ermittlung eines zeitpunkts eines vorbestimmten öffnungszustandes eines kraftstoffinjektors
CN107532536A (zh) * 2015-04-29 2018-01-02 大陆汽车有限公司 确定燃料喷射器的预定打开状态的时间点
WO2016208334A1 (ja) * 2015-06-24 2016-12-29 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JPWO2016208334A1 (ja) * 2015-06-24 2018-02-22 日立オートモティブシステムズ株式会社 燃料噴射制御装置
US10961944B2 (en) 2015-06-24 2021-03-30 Hitachi Automotive Systems, Ltd. Fuel injection control device
CN107949694A (zh) * 2015-06-24 2018-04-20 日立汽车系统株式会社 燃料喷射控制装置
JP2017031852A (ja) * 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置
EP3330522A4 (en) * 2015-07-31 2019-03-20 Hitachi Automotive Systems, Ltd. DEVICE FOR CONTROLLING A FUEL INJECTION DEVICE
CN107923333A (zh) * 2015-07-31 2018-04-17 日立汽车系统株式会社 燃料喷射装置的控制装置
WO2017022479A1 (ja) * 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置
CN107923333B (zh) * 2015-07-31 2021-07-27 日立汽车系统株式会社 燃料喷射装置的控制装置
US11346311B2 (en) * 2015-11-30 2022-05-31 Denso Corporation Fuel injection control device for internal combustion engine
JP2020094570A (ja) * 2018-12-14 2020-06-18 株式会社ケーヒン 燃料噴射弁駆動装置
JP7165044B2 (ja) 2018-12-14 2022-11-02 日立Astemo株式会社 燃料噴射弁駆動装置
CN114320633A (zh) * 2020-09-30 2022-04-12 日立安斯泰莫株式会社 电磁阀驱动装置
CN114320633B (zh) * 2020-09-30 2024-03-29 日立安斯泰莫株式会社 电磁阀驱动装置

Also Published As

Publication number Publication date
US10240551B2 (en) 2019-03-26
EP2990705A1 (en) 2016-03-02
CN105143742B (zh) 2017-12-15
US20160076498A1 (en) 2016-03-17
EP2990705B1 (en) 2021-02-24
JP6169404B2 (ja) 2017-07-26
JP2014214837A (ja) 2014-11-17
US11300070B2 (en) 2022-04-12
CN105143742A (zh) 2015-12-09
US20190218990A1 (en) 2019-07-18
EP2990705A4 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6169404B2 (ja) 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP6383760B2 (ja) 内燃機関の制御装置
JP6381970B2 (ja) 燃料噴射装置の駆動装置
JP5975899B2 (ja) 燃料噴射装置の駆動装置
US6571773B1 (en) Fuel injector and internal combustion engine
CN109328265B (zh) 燃料喷射控制装置
JP6597535B2 (ja) 弁体作動推定装置
WO2015015541A1 (ja) 燃料噴射装置の駆動装置および燃料噴射システム
JP6520814B2 (ja) 燃料噴射制御装置
CN109328262B (zh) 燃料喷射控制装置
CN109072808B (zh) 燃料喷射控制装置
JP2010249069A (ja) 燃料噴射制御装置
JP6538117B2 (ja) 電磁弁の制御装置及び電磁弁動作の検知方法
JP5924238B2 (ja) 噴射遅れ検出装置
JP5768800B2 (ja) 燃料噴射装置
JP6445155B2 (ja) 燃料噴射制御装置
JP7247135B2 (ja) 検知装置
JP2001012267A (ja) 電磁駆動バルブを有する動弁装置
JP2018184963A (ja) 燃料噴射装置の駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023033.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784653

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014788534

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE