WO2017110245A1 - 燃料噴射弁駆動特性校正方法及び車両用制御装置 - Google Patents

燃料噴射弁駆動特性校正方法及び車両用制御装置 Download PDF

Info

Publication number
WO2017110245A1
WO2017110245A1 PCT/JP2016/082034 JP2016082034W WO2017110245A1 WO 2017110245 A1 WO2017110245 A1 WO 2017110245A1 JP 2016082034 W JP2016082034 W JP 2016082034W WO 2017110245 A1 WO2017110245 A1 WO 2017110245A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
injection valve
boost voltage
vehicle control
control device
Prior art date
Application number
PCT/JP2016/082034
Other languages
English (en)
French (fr)
Inventor
侑樹 刑部
松岡 孝
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to CN201680075272.5A priority Critical patent/CN108368806B/zh
Priority to JP2017557762A priority patent/JP6580163B2/ja
Priority to DE112016005122.0T priority patent/DE112016005122B4/de
Publication of WO2017110245A1 publication Critical patent/WO2017110245A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the present invention relates to a fuel injection valve drive characteristic calibration method and a vehicle control device.
  • Automobiles are provided with a vehicle control device equipped with a control unit in order to realize various operation controls.
  • One important control executed in such a vehicle control device is fuel injection control, and various control methods have been proposed and put into practical use (see, for example, Patent Document 1).
  • the fuel injection control greatly affects the quality of engine operation.
  • the energization time directly affects the injection amount. If the vehicular control device that controls the drive of the fuel injection valve has the same configuration, the drive characteristics of the fuel injection valve are basically the same.
  • the present invention has been made in view of the above circumstances, eliminates variations in drive characteristics of fuel injection valves in a vehicle control device having the same configuration, and enables fuel injection control with higher reliability than in the past.
  • a vehicle control device is provided.
  • a fuel injection valve drive characteristic calibration method for a vehicle control apparatus is a fuel injection valve drive characteristic calibration method for calibrating a fuel injection valve drive characteristic in a vehicle control apparatus.
  • the boost voltages are corrected by correcting the boost voltage based on the rise time of the fuel injector current when the boost voltage is applied, so that the rise times coincide with each other.
  • 5B is a characteristic diagram showing an example of change in target boost voltage in two vehicle control devices. It is a characteristic diagram which shows the example of a change of the injection valve current in a conventional apparatus, and a target boost voltage, Comprising: (A) is a characteristic diagram which shows the example of a change of the injection valve current in two vehicle control apparatuses, (B) is 2 It is a characteristic diagram which shows the example of a change of the target boost voltage in one vehicle control apparatus.
  • the vehicle control apparatus 101 includes an engine control unit (ECU) 51 and is configured to execute an operation control process of an engine (not shown), a fuel injection valve drive characteristic calibration process in the present embodiment described later, and the like. Is done.
  • ECU engine control unit
  • the engine control unit 51 includes a microcomputer (CPU) 1, a DCDC controller (DCDC-CON) 2, and a DCDC boost voltage generator (DCDC) 3.
  • CPU microcomputer
  • DCDC-CON DCDC controller
  • DCDC DCDC boost voltage generator
  • the microcomputer 1 receives detection signals from various sensors (not shown) such as the engine speed, the accelerator opening, the outside air temperature, the atmospheric pressure, and the like.
  • the fuel injection valve drive characteristic calibration process is configured to be executable.
  • the DCDC boost voltage generation unit 3 is configured to generate and output a boost voltage required when energization for fuel injection by the fuel injection valve 4 is started.
  • the DCDC boost voltage generator 3 uses a so-called DC-DC converter circuit, and its basic circuit configuration is the same as the conventional one.
  • the DCDC boost voltage generation unit 3 is configured so that the voltage value of the boost voltage to be output can be changed according to the control from the microcomputer 1 via the DCDC control unit 2, and whether or not the boost voltage needs to be output. It is configured to be controllable.
  • the DCDC control unit 2 is configured to perform the above-described operation control on the DCDC boost voltage generation unit 3 in accordance with a control signal input from the microcomputer 1.
  • a vehicular control device having the same circuit configuration manufactured based on the same specifications flows to a fuel injection valve when a fuel injection valve having the same operation characteristics is driven under the same driving conditions.
  • the rise time of the current (hereinafter referred to as “injection valve current”) is substantially the same within an allowable range.
  • the rise time of the injection valve current may deviate from an allowable range.
  • each of two vehicle control devices A and B manufactured in the same specification and having the same circuit configuration (indicated as “ECU_A” and “ECU_B” in FIG. 5 respectively).
  • V BS-A and V BS-B applied to the fuel injection valve at the start of driving of the fuel injection valve having the same operating characteristics are the same (see FIG. 5B)
  • t B in the vehicle control device B, t B (FIG. 5 (A) two-dot chain line greater than the rise time of the vehicle control device A). (See the characteristic line)
  • the fuel injection valve drive characteristic calibration method uses a vehicle control device that is manufactured based on the same specifications and has the same circuit configuration to drive the fuel injection valve having the same operation characteristics to the same drive condition. In this case, the rise time of each injection valve current when driven by is calibrated to be the same.
  • the rise time of the injection valve current is measured, and when the value exceeds a preset reference time, the rise time of the injection valve current is a reference.
  • the boost voltage output from the DCDC boost voltage generation unit 3 is corrected so that the time becomes the following time, and the rise time of the injection valve current between the vehicle control devices having the same configuration is calibrated, and the subsequent fuel injection valve 4 is used for drive control.
  • FIG. 2 shows the procedure for measuring the rise time of the injection valve current
  • FIG. 3 shows the procedure for correcting the boost voltage.
  • the measurement process of the rise time of the injection valve current can be executed by the vehicle control device, and the vehicle control device is operated by an external device such as a test device that performs an operation test of the vehicle control device during manufacturing. Any one of them can be performed by controlling the operation.
  • the so-called software is used so that the measurement process of the rise time of the injection valve current shown in FIG. 2 and the boost voltage correction process shown in FIG. It is installed.
  • a relatively high voltage called a boost voltage is applied, the injection valve current is raised to a desired level in a short time, and the injection valve current may be maintained at a level lower than the initial target value. Therefore, a driving method is generally employed in which the voltage applied to the fuel injection valve 4 is switched to a voltage lower than the boost voltage. It is assumed that the driving of the fuel injection valve 4 in the present embodiment is also based on such a conventional driving method.
  • a predetermined boost voltage is applied to the fuel injection valve 4 at a predetermined fuel injection time (see step S102 in FIG. 2).
  • the predetermined fuel injection is, for example, pilot injection
  • a predetermined boost voltage (hereinafter referred to as “reference boost voltage” for convenience of explanation) is an operation of the fuel injection valve 4 connected to the vehicle control device 101.
  • the value is set in advance so as to obtain a desired pilot fuel injection amount (predetermined fuel injection) based on characteristics and the like.
  • the above-described reference boost voltage is expressed as “V BS-A ” as appropriate.
  • the measurement of the time (rise time) until the injection valve current reaches the target boost current I BS-T is started (see step S104 and step S106 in FIG. 2). .
  • the injection valve current reaches the target boost current I BS-T .
  • the measurement of the rise time is ended and the rise time is determined (see step S108 and step S110 in FIG. 2).
  • the rise time measured as described above is appropriately expressed as “t B ” in the following description.
  • the rise time t B acquired as described above is stored in an appropriate storage area of the vehicle control apparatus 101, for example, a storage area appropriately secured in the microcomputer 1.
  • the injection valve current is fed back to the DCDC control unit 2 via the DCDC boost voltage generation unit 3 as in the prior art, and the DCDC control unit 2 sets the injection valve current to the target boost current I BS-T .
  • the DCDC boost voltage generator 3 is instructed to stop boost voltage output.
  • the boost voltage output timing from the DCDC boost voltage generation unit 3 via the DCDC control unit 2 and the boost voltage output stop timing of the DCDC boost voltage generation unit 3 by the DCDC control unit 2 are determined. Since it can be recognized, the rise time is acquired by measuring the elapsed time during this period.
  • a time difference between the original rise time t A set in advance and the actually measured rise time t B read from the storage area is calculated (see step S204 in FIG. 3), and according to the time difference.
  • the target boost voltage which is the target value of the boost voltage to be output from the DCDC boost voltage generation unit 3, is corrected (see step S206 in FIG. 3).
  • the rise time t A is obtained when the fuel injection valve 4 is driven by the vehicle control device in which the reference boost voltage V BS-A is set. In the following description, “ This is referred to as “reference rise time”.
  • the correction of the target boost voltage is intended to shorten or extend the rise time of the injection valve current. Therefore, basically, the target boost voltage is increased or decreased according to the time difference from the reference rise time. Correction is applied. It should be noted that it is preferable to determine the specific correction based on the test results and simulation results in consideration of the input / output characteristics of the DCDC boost voltage generation unit 3 and the like.
  • the target boost voltage correction is performed as described above, and a new target boost voltage V BS-C is determined (see step S208 in FIG. 3).
  • This new target boost voltage V BS-C is stored and held in an appropriate storage area of the microcomputer 1, and thereafter, the DCDC boost voltage generation unit 3 outputs it at the time of fuel injection corresponding to this target boost voltage.
  • the target boost voltage is set and output.
  • the new target boost voltage V BS-C determined as described above is determined to be higher or lower than the reference boost voltage V BS-A according to the rise time t B.
  • the rise time t C of the injection valve current at the start of driving becomes the same as the reference rise time t A (FIG. 4 (A ) And FIG. 4 (B)).
  • ECU_A represents a vehicle control device in which the reference boost voltage is set to V BS-A
  • ECU_B represents boost voltage correction
  • V BS target boost voltage
  • the fuel injection valve drive characteristic calibration process is executed in the vehicle control device 101.
  • the vehicle control is performed in the manufacturing process of the vehicle control device 101.
  • the corrected target boost voltage (see S208 of FIG. 3) may be acquired by causing a test apparatus that performs an operation test of the apparatus 101 to store the acquired data when the vehicle control apparatus 101 is shipped.
  • the fuel injection valve drive characteristic calibration process described above may be executed using the fuel injection valve 4 and an electrical equivalent circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

車両用制御装置における燃料噴射弁の駆動特性のばらつきを無くし、従来に比してより信頼性の高い燃料噴射制御を提供する。 エンジン制御ユニット51により、所定の燃料噴射におけるブースト電圧を所定の基準ブースト電圧に変えて燃料噴射弁4を駆動し、燃料噴射弁4に流れる電流が所定の目標電流に達するまでの立ち上がり時間を計測し、計測された立ち上がり時間に基づいて、車両用制御装置101における所定の燃料噴射に対するブースト電圧を補正し、その補正後のブースト電圧を所定の燃料噴射に対するブースト電圧とすることで、車両用制御装置の燃料噴射弁駆動特性のばらつきを無くすことが可能となっている。

Description

燃料噴射弁駆動特性校正方法及び車両用制御装置
 本発明は、燃料噴射弁駆動特性校正方法及び車両用制御装置に関する。
 自動車両には様々な動作制御を実現するために制御ユニットを備えた車両用制御装置が設けられている。かかる車両用制御装置において実行される重要な制御の一つに燃料噴射制御があり、様々な制御方法等が提案、実用化されている(例えば、特許文献1等参照)。燃料噴射制御は、エンジンの動作の良否に大きな影響を与える。特に燃料噴射弁の駆動制御において、通電時間は噴射量に直接影響を及ぼす。このような燃料噴射弁の駆動制御等を行う車両用制御装置は、同一構成であれば燃料噴射弁の駆動特性は基本的に同一である。
特表2009-154214号公報
 しかしながら、同一構成の車両用制御装置であっても、実際には個々の電子部品にそれぞれ特性のばらつきが有り、通常、そのばらつきが許容される偏差の範囲内で同一特性の部品であるとしている。一方で燃料噴射のなかでも特に比較的噴射量の小さい場合、例えば、いわゆるパイロット噴射と称され、主噴射の前に行われる微小噴射においては、燃料噴射弁の駆動時における通電電流の立ち上がり時間の僅かな差が燃料噴射量に直接大きな影響を与える。よって同一の構成を有する車両制御装置の燃料噴射弁特性には極力ばらつきがなく均一であることが望ましい。
 本発明は、上記実状に鑑みてなされたもので、同一構成の車両用制御装置における燃料噴射弁の駆動特性のばらつきを無くし、従来に比してより信頼性の高い燃料噴射制御を可能とする車両用制御装置を提供するものである。
 上記本発明の目的を達成するため、本発明に係る車両用制御装置の燃料噴射弁駆動特性校正方法は、車両用制御装置における燃料噴射弁駆動特性を校正する燃料噴射弁駆動特性校正方法であって、校正対象の車両用制御装置における所定の燃料噴射時のブースト電圧を、所定の基準ブースト電圧に変えて前記車両用制御装置に燃料噴射弁を駆動せしめる第1のステップと、前記燃料噴射弁に流れる電流が所定の目標電流に達するまでの立ち上がり時間を計測する第2のステップと、前記計測された立ち上がり時間に基づいて、前記校正対象の車両用制御装置における前記所定の燃料噴射に対するブースト電圧を補正する第3のステップと、前記補正後のブースト電圧を前記所定の燃料噴射に対するブースト電圧とする第4のステップとを備えることを特徴とする。
 本発明によれば、ブースト電圧印加時の燃料噴射弁電流の立ち上がり時間に基づいてブースト電圧を補正することで立ち上がり時間が一致するようにしたので、同一構成の車両用制御装置における燃料噴射弁の駆動特性のばらつきを無くし、従来に比してより信頼性の高い燃料噴射制御が実現でき、信頼性、安定性の良好な車両用制御装置を提供することができるという効果を得ることができる。
本実施の形態における車両用制御装置の基本構成図である。 本実施の形態における燃料噴射弁駆動特性校正処理における燃料噴射弁電流の立ち上がり時間の取得手順を示すサブルーチンフローチャートである。 本実施の形態における燃料噴射弁駆動特性校正処理における目標ブースト電圧の補正手順を示すサブルーチンフローチャートである。 本実施の形態における燃料噴射弁駆動特性校正処理が実行された場合の噴射弁電流と目標ブースト電圧の変化例を示す特性線図であって、(A)は2つの車両用制御装置における噴射弁電流の変化例を示す特性線図、(B)は2つの車両用制御装置における目標ブースト電圧の変化例を示す特性線図である。 従来装置における噴射弁電流と目標ブースト電圧の変化例を示す特性線図であって、(A)は2つの車両用制御装置における噴射弁電流の変化例を示す特性線図、(B)は2つの車両用制御装置における目標ブースト電圧の変化例を示す特性線図である。
 以下、本実施の形態について、図1乃至図5を参照しつつ説明する。なお以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。最初に本実施の形態における車両用制御装置の基本構成について図1を参照しつつ説明する。
 車両用制御装置101は、エンジン制御ユニット(ECU)51を有し、エンジン(図示せず)の動作制御処理や後述する本実施の形態における燃料噴射弁駆動特性校正処理等を実行するように構成される。
 エンジン制御ユニット51は、マイクロコンピュータ(CPU)1と、DCDC制御部(DCDC-CON)2と、DCDCブースト電圧生成部(DCDC)3とを有して構成される。
 マイクロコンピュータ1は、エンジン回転数、アクセル開度、外気温度、大気圧などの各種の図示されないセンサによる検出信号が入力され、従来同様、エンジンの様々な動作制御処理や後述する本実施の形態における燃料噴射弁駆動特性校正処理等が実行可能に構成される。
 DCDCブースト電圧生成部3は、燃料噴射弁4による燃料噴射のための通電開始の際に必要なブースト電圧を発生、出力可能に構成される。DCDCブースト電圧生成部3は、いわゆるDC-DCコンバータ回路を用いたもので、その基本的な回路構成は従来と同様である。DCDCブースト電圧生成部3は、DCDC制御部2を介したマイクロコンピュータ1からの制御に応じて、出力されるブースト電圧の電圧値が可変可能に構成されると共に、ブースト電圧の出力の要否が制御可能に構成される。
 DCDC制御部2は、マイクロコンピュータ1から入力される制御信号に応じてDCDCブースト電圧生成部3へ対する上述のような動作制御を行うよう構成されたものとなっている。
 次に、図2及び図3を参照しつつ、本実施の形態における燃料噴射弁駆動特性校正方法について説明する。最初に本実施の形態における燃料噴射弁駆動特性校正方法について概括的に説明する。
 一般的に同一の仕様の基で製造された同一の回路構成を有する車両用制御装置は、本来、同一の動作特性を有する燃料噴射弁を同一の駆動条件で駆動した場合、燃料噴射弁に流れる電流(以下、「噴射弁電流」と称する)の立ち上がり時間は許容できる程度の範囲でほぼ同一となる。
 ところが、それぞれの車両用制御装置を構成する電子部品のばらつきの程度がある程度大きくなると、噴射弁電流の立ち上がり時間は許容できる範囲を逸脱する場合がある。
 例えば図5に示されたように、同一の仕様で製造され同一の回路構成を有する2つの車両用制御装置A,B(図5においては、それぞれ「ECU_A」、「ECU_B」と表記)のそれぞれにおいて、同一の動作特性を有する燃料噴射弁の駆動開始時に燃料噴射弁へ印加するそれぞれのブースト電圧VBS-A,VBS-Bを同一としても(図5(B)参照)、それぞれの装置に用いられている電子部品の電気的特性のばらつきがあるため、噴射弁電流が目標ブースト電流(目標電流)IBS-Tに達するまでの噴射弁電流の立ち上がり時間は、車両用制御装置AがtAであるのに対して(図5(A)実線の特性線参照)、車両用制御装置Bにおいては、車両用制御装置Aの立ち上がり時間より大きいtB(図5(A)二点鎖線の特性線参照)となる場合がある。
 このような立ち上がり時間の差は、特に、微小噴射であるいわゆるパイロット噴射などにおいて、噴射量の著しい差を招き所望のエンジン制御が実現困難となる等の問題を招く。
 本実施の形態における燃料噴射弁駆動特性校正方法は、同一の仕様の基で製造されて同一の回路構成を有する車両用制御装置を用いて同一の動作特性を有する燃料噴射弁を同一の駆動条件で駆動した場合の、それぞれの噴射弁電流の立ち上がり時間を同一に校正するものである。
 すなわち、車両用制御装置101の製造時、又は、使用開始時において、噴射弁電流の立ち上がり時間を計測し、その値が予め設定された基準の時間を上回る場合に噴射弁電流の立ち上がり時間が基準の時間となるようにDCDCブースト電圧生成部3から出力されるブースト電圧を補正し、同一構成の車両制御装置間での噴射弁電流の立ち上がり時間が同一となるよう校正し、以後の燃料噴射弁4の駆動制御に供するようにする。
 図2には、噴射弁電流の立ち上がり時間の計測処理の手順が、図3には、ブースト電圧の補正処理の手順が、それぞれ示されており、以下、これらの図を参照しつつ具体的に説明する。最初に、噴射弁電流の立ち上がり時間の計測処理について説明する。この噴射弁電流の立ち上がり時間の計測処理は、車両用制御装置において実行できるようにして、又、製造の際に車両用制御装置の動作試験を行う試験装置等の外部装置によって車両用制御装置を動作制御することで実行できるようにしていずれでも良いものである。
 以下の説明においては、図2に示された噴射弁電流の立ち上がり時間の計測処理、及び、図3に示されたブースト電圧の補正処理が車両用制御装置101において実行されるようにいわゆるソフトウェアとして搭載されている。
 ここで、前提となる本実施の形態における車両用制御装置101によって実行される燃料噴射弁4の駆動方法について説明する。燃料噴射弁4の駆動開始時においては、通常、燃料噴射弁4が有する電磁コイル(図示省略)のインダクタンスのために噴射弁電流が素早く所望のレベルまで立ち上がるまで比較的時間を要する。
 そのため駆動開始時には、ブースト電圧と称される比較的高い電圧を印加し、噴射弁電流を短時間で所望のレベルまで上昇させ、噴射弁電流も最初の目標値よりも低いレベルに維持すれば良いため、燃料噴射弁4に印加する電圧もブースト電圧よりも低い電圧に切り替える駆動方法が採られるのが一般的である。本実施の形態における燃料噴射弁4の駆動もそのような従来の駆動方法に基づくものであることを前提としている。
 しかして、マイクロコンピュータ1による処理が開始されると、最初に燃料噴射弁4に対して、所定の燃料噴射時における所定のブースト電圧の印加が行われる(図2のステップS102参照)。
 ここで所定の燃料噴射とは、例えばパイロット噴射であり、所定のブースト電圧(以下、説明の便宜上「基準ブースト電圧」と称する)は、車両用制御装置101に接続される燃料噴射弁4の動作特性等に基づいて、所望のパイロット燃料噴射量(所定の燃料噴射)が得られるよう予め設定された値である。なお以下の説明において、適宜、上述の基準ブースト電圧を「VBS-A」と表記することとする。
 基準ブースト電圧VBS-Aの印加と同時に噴射弁電流が目標ブースト電流IBS-Tに達するまでの時間(立ち上がり時間)の計測が開始される(図2のステップS104、及び、ステップS106参照)。
 そして噴射弁電流が目標ブースト電流IBS-Tに達すると立ち上がり時間の計測が終了され、立ち上がり時間が決定されることなる(図2のステップS108、及び、ステップS110参照)。ここで上述のように計測された立ち上がり時間を、以後の説明において、適宜、「tB」と表記する。
 上述のようにして取得された立ち上がり時間tBは、車両用制御装置101の適宜な記憶領域、例えばマイクロコンピュータ1において適宜確保された記憶領域に記憶されることとなる。
 なお噴射弁電流は、従来同様、DCDCブースト電圧生成部3を介してDCDC制御部2にフィードバックされるようになっており、DCDC制御部2は、噴射弁電流が目標ブースト電流IBS-Tに達した時点でDCDCブースト電圧生成部3に対してブースト電圧の出力停止を指示するようになっている。
 マイクロコンピュータ1においては、DCDC制御部2を介してのDCDCブースト電圧生成部3からのブースト電圧の出力のタイミングと、DCDC制御部2によるDCDCブースト電圧生成部3のブースト電圧出力停止のタイミングとが認識可能となっているため、この間の経過時間を計時することで立ち上がり時間が取得されるものとなっている。
 次に、上述のようにして取得された立ち上がり時間を基にして行われるブースト電圧補正処理について、図3を参照しつつ説明する。
 マイクロコンピュータ1による処理が開始されると、噴射弁電流の立ち上がり時間tBが記憶、保持されているマイクロコンピュータ1の記憶領域からの読み出しが行われる(図3のステップS202参照)。
 次いで、予め設定されている本来の立ち上がり時間tAと、記憶領域から読み出された実際に計測された立ち上がり時間tBとの時間差が算出され(図3のステップS204参照)、その時間差に応じてDCDCブースト電圧生成部3から出力すべきブースト電圧の目標値である目標ブースト電圧の補正が行われる(図3のステップS206参照)。
 なお、立ち上がり時間tAは、先の基準ブースト電圧VBS-Aが設定された車両用制御装置によって燃料噴射弁4を駆動した際に得られるものであり、以後の説明においては、適宜、「基準立ち上がり時間」と称する。
 目標ブースト電圧の補正は、噴射弁電流の立ち上がり時間を短縮、延長するためのものであるから、基本的には、基準立ち上がり時間との時間差に応じて目標ブースト電圧の増大、減少となるような補正が施される。なお具体的に如何なる補正を行うかは、DCDCブースト電圧生成部3の入出力特性等を考慮して、試験結果やシミュレーション結果に基づいて定めるのが好適である。
 上述のようにして目標ブースト電圧補正が行われ、新たな目標ブースト電圧VBS-Cが決定される(図3のステップS208参照)。この新たな目標ブースト電圧VBS-Cは、マイクロコンピュータ1の適宜な記憶領域に記憶、保持され、以後、この目標ブースト電圧に対応する燃料噴射の際に、DCDCブースト電圧生成部3が出力すべきブースト電圧の目標値とされ、出力される。
 上述のようにして決定された新たな目標ブースト電圧VBS-Cは、立ち上がり時間tBによって基準ブースト電圧VBS-Aを上回る、もしくは下回るかが決められる。かかる目標ブースト電圧VBS-Cを用いて燃料噴射弁4の駆動を行うことにより、駆動開始時における噴射弁電流の立ち上がり時間tCは、基準立ち上がり時間tAと同一となる(図4(A)及び図4(B)参照)。
 その結果、同一構成を有する車両用制御装置のいずれを用いても同一の噴射特性を有する燃料噴射弁を用いた燃料噴射においては、同一の燃料噴射量が確保され、信頼性、安定性の高い燃料噴射制御が実現されることとなる。なお、図5において、”ECU_A”の表記は、基準ブースト電圧がVBS-Aに設定された車両用制御装置を、”ECU_B”の表記は、ブースト電圧補正が行われ、目標ブースト電圧VBS-Cとされた車両用制御装置をそれぞれ示すものとする。
 上述した本実施の形態においては、車両用制御装置101において燃料噴射弁駆動特性校正処理が実行されるようにしたが、先に述べたように車両用制御装置101の製造行程において、車両用制御装置101の動作試験を行う試験装置に実行させ、補正された目標ブースト電圧(図3のS208参照)を取得し、その取得データを車両用制御装置101の出荷時に記憶させるようにしても良い。
 また燃料噴射弁4に代えて、燃料噴射弁4と電気的等価回路を用いて上述した燃料噴射弁駆動特性校正処理を実行するようにしても良い。
 同一構成の車両用制御装置における燃料噴射弁駆動特性のばらつき低減が所望される車両用制御装置に適用できる。

Claims (6)

  1.  燃料噴射弁の駆動特性を校正する方法であって、
     校正対象の車両用制御装置(101)における所定の燃料噴射時のブースト電圧を所定の基準ブースト電圧に変えて前記車両用制御装置(101)に燃料噴射弁(4)を駆動せしめる第1のステップと、
     前記燃料噴射弁(4)に流れる電流が所定の目標電流に達するまでの立ち上がり時間を計測する第2のステップと、
     前記計測された立ち上がり時間に基づいて、前記校正対象の車両用制御装置(101)における前記所定の燃料噴射に対するブースト電圧を補正する第3のステップと、
     前記補正後のブースト電圧を前記所定の燃料噴射に対するブースト電圧とする第4のステップとを備える
     ことを特徴とする燃料噴射弁駆動特性校正方法。
  2.  前記第3のステップにおいて、
     前記計測された立ち上がり時間と、所定の基準立ち上がり時間との時間差を算出し、前記時間差に応じてブースト電圧を補正する
     ことを特徴とする請求項1に記載の燃料噴射弁駆動特性校正方法。
  3.  前記基準ブースト電圧及び基準立ち上がり時間は、基準とされた車両用制御装置における所定の燃料噴射に対するブースト電圧と、当該ブースト電圧で燃料噴射弁を駆動した場合の電流の立ち上がり時間である
     ことを特徴とする請求項2記載の燃料噴射弁駆動特性校正方法。
  4.  前記校正対象の車両用制御装置(101)において実行される
     ことを特徴とする請求項3記載の燃料噴射弁駆動特性校正方法。
  5.  前記校正対象の車両用制御装置(101)の動作試験を行う試験装置によって実行される
     ことを特徴とする請求項3記載の燃料噴射弁駆動特性校正方法。
  6.  燃料噴射弁(4)の駆動制御可能に構成された制御ユニット(51)を備えた車両用制御装置(101)であって、
     前記制御ユニット(51)は、
     当該制御ユニット(51)における所定の燃料噴射時のブースト電圧を所定の基準ブースト電圧に変えて前記燃料噴射弁(4)を駆動し、
     前記燃料噴射弁(4)に流れる電流が所定の目標電流に達するまでの立ち上がり時間を計測し、
     前記計測された立ち上がり時間に基づいて、前記校正対象の車両用制御装置(101)における前記所定の燃料噴射に対するブースト電圧を補正し、
     前記補正後のブースト電圧を前記所定の燃料噴射に対するブースト電圧とする
     ことを特徴とする車両用制御装置。
PCT/JP2016/082034 2015-12-22 2016-10-28 燃料噴射弁駆動特性校正方法及び車両用制御装置 WO2017110245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680075272.5A CN108368806B (zh) 2015-12-22 2016-10-28 燃料喷射阀驱动特性校正方法及车辆用控制装置
JP2017557762A JP6580163B2 (ja) 2015-12-22 2016-10-28 燃料噴射弁駆動特性校正方法及び車両用制御装置
DE112016005122.0T DE112016005122B4 (de) 2015-12-22 2016-10-28 Korrekturverfahren für die Ansteuereigenschaften von Einspritzventilen und Steuervorrichtung für Fahrzeuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250567 2015-12-22
JP2015250567 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110245A1 true WO2017110245A1 (ja) 2017-06-29

Family

ID=59090333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082034 WO2017110245A1 (ja) 2015-12-22 2016-10-28 燃料噴射弁駆動特性校正方法及び車両用制御装置

Country Status (4)

Country Link
JP (1) JP6580163B2 (ja)
CN (1) CN108368806B (ja)
DE (1) DE112016005122B4 (ja)
WO (1) WO2017110245A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005740A (ja) * 2012-06-21 2014-01-16 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
WO2015004988A1 (ja) * 2013-07-10 2015-01-15 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855473B2 (ja) * 1998-07-08 2006-12-13 いすゞ自動車株式会社 コモンレール式燃料噴射装置
CN101725426B (zh) * 2006-04-11 2013-01-23 浙江福爱电子有限公司 一种电磁燃油泵喷嘴的驱动控制装置
JPWO2009154214A1 (ja) * 2008-06-19 2011-12-01 ボッシュ株式会社 燃料噴射弁の制御装置、制御方法、及び制御プログラム
JP2010096162A (ja) * 2008-10-20 2010-04-30 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JP5093191B2 (ja) * 2009-06-09 2012-12-05 株式会社デンソー 燃料噴射弁用検出装置
DE102010022109B3 (de) * 2010-05-31 2011-09-29 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Einspritzventils basierend auf einer Auswertung der Ansteuerspannung unter Verwendung eines adaptierten Referenzspannungssignals
JP6157889B2 (ja) * 2013-03-26 2017-07-05 日立オートモティブシステムズ株式会社 燃料噴射弁の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005740A (ja) * 2012-06-21 2014-01-16 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
WO2015004988A1 (ja) * 2013-07-10 2015-01-15 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JPWO2017110245A1 (ja) 2018-09-20
DE112016005122T5 (de) 2018-08-16
DE112016005122B4 (de) 2020-10-15
CN108368806A (zh) 2018-08-03
CN108368806B (zh) 2020-12-15
JP6580163B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6327195B2 (ja) 制御装置
JP5196657B2 (ja) 共振器の励起周波数の最適化
US20170226951A1 (en) Control device for internal combustion engine
WO2020008815A1 (ja) 電磁弁駆動装置
US20220018301A1 (en) Injection control device
JP2022010839A (ja) 噴射制御装置
JP5948485B2 (ja) ラムダセンサ予熱制御方法及びラムダセンサ駆動制御装置
JP6580163B2 (ja) 燃料噴射弁駆動特性校正方法及び車両用制御装置
US11128110B2 (en) Methods and apparatus for an ignition system
CN106988914B (zh) 用于调节磁阀喷射器的方法
KR101705104B1 (ko) 예열 플러그 가열 방법
CN104871027A (zh) 用于校准电流传感器的方法
US9347395B2 (en) Method for improving closely-spaced multiple-injection performance from solenoid actuated fuel injectors
JP5832635B2 (ja) 内燃機関における動作時に予熱プラグの温度を決定するための方法及び装置
JP6020259B2 (ja) 電磁弁駆動装置
KR101896719B1 (ko) 환경차량용 부스트 컨버터 전원 출력전압 속응화 장치 및 방법
CN112983660B (zh) 约束排气系统中的氧气传感器的斜坡速率的变化的闭环增益控制
JP2009002347A (ja) グローシステム、制御部およびグロープラグの出力制御方法
US9341156B2 (en) Glow plug, new glow plug determination method, and glow plug driving control device
EP2792878A1 (en) Ignition coil calibration and operation
KR20170067330A (ko) 인젝터 닫힘 시간 학습 방법
JP2017057755A (ja) 電磁弁駆動装置
JP6462995B2 (ja) 出力制御または電圧制御するための方法および装置
JP2019015672A (ja) センサ状態模擬装置
WO2014122956A1 (ja) ラムダセンサ予熱制御方法及びラムダセンサ駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557762

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005122

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878143

Country of ref document: EP

Kind code of ref document: A1