WO2014163135A1 - 光学フィルム及び面発光体 - Google Patents

光学フィルム及び面発光体 Download PDF

Info

Publication number
WO2014163135A1
WO2014163135A1 PCT/JP2014/059826 JP2014059826W WO2014163135A1 WO 2014163135 A1 WO2014163135 A1 WO 2014163135A1 JP 2014059826 W JP2014059826 W JP 2014059826W WO 2014163135 A1 WO2014163135 A1 WO 2014163135A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
optical film
adhesive layer
mass
layer
Prior art date
Application number
PCT/JP2014/059826
Other languages
English (en)
French (fr)
Inventor
剛 森中
俊明 服部
大地 奥野
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2014517287A priority Critical patent/JPWO2014163135A1/ja
Priority to US14/781,341 priority patent/US20160041312A1/en
Priority to KR1020157030273A priority patent/KR20150140696A/ko
Priority to CN201480026271.2A priority patent/CN105190370A/zh
Priority to EP14778775.8A priority patent/EP2983018A4/en
Publication of WO2014163135A1 publication Critical patent/WO2014163135A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an optical film and a surface light emitter. This application claims priority based on Japanese Patent Application No. 2013-079071 for which it applied to Japan on April 5, 2013, and uses the content here.
  • organic EL (electroluminescence) light-emitting elements are expected to be used for next-generation illumination that can replace flat panel displays and fluorescent lamps.
  • the structure of the organic EL light emitting device is diversified from a simple structure in which an organic thin film serving as a light emitting layer is sandwiched between two electrodes to a structure including a light emitting layer and a multilayered organic thin film.
  • Examples of the latter multilayered structure include a structure in which a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are laminated on an anode provided on a glass substrate.
  • the layers sandwiched between the anode and the cathode are all composed of organic thin films, and the thickness of each organic thin film is very thin, such as several tens of nm.
  • the organic EL light-emitting element is a laminate of thin films, and the total reflection angle of light between the thin films is determined by the difference in refractive index between the materials of the thin films. At present, about 80% of the light generated in the light emitting layer is confined inside the organic EL light emitting element and cannot be extracted outside. Specifically, when the refractive index of the glass substrate is 1.5 and the refractive index of the air layer is 1.0, the critical angle ⁇ c is 41.8 °, and the incident angle is smaller than the critical angle ⁇ c. the light is emitted from the glass substrate to the air layer, the light of the larger incident angle than the critical angle theta c is confined within the glass substrate by total internal reflection. Therefore, there is a demand for extracting light confined inside the glass substrate on the surface of the organic EL light emitting device to the outside of the glass substrate, that is, improving light extraction efficiency and normal luminance.
  • organic EL light emitting devices that emit isotropic light
  • it is required to improve the light extraction efficiency and normal luminance, and to suppress the emission angle dependence of the wavelength of light emitted from the organic EL light emitting devices. Yes. That is, when the light emitted from the light emitting layer passes through the glass substrate and is emitted from the glass substrate, the difference in the emission angle depending on the wavelength is small, in other words, the distribution of the light emitted from the glass substrate has wavelength dependency. It is required to be suppressed as much as possible.
  • Patent Document 1 proposes a surface light emitter in which an optical film containing fine particles in an uneven structure is bonded to an organic EL light emitting element.
  • Patent Document 2 proposes a surface light emitter in which an optical film having a concavo-convex structure is bonded to an organic EL light emitting element with a fine particle-containing adhesive.
  • the surface light emitter proposed in Patent Document 1 has a problem that the optical film warps when the content rate of the fine particles is high, and the output angle dependency of the emitted light wavelength is not sufficiently suppressed when the content rate of the fine particles is low. .
  • the surface light emitter proposed in Patent Document 2 has a problem that it is inferior in light extraction efficiency and normal luminance. In particular, when the amount of warping of the optical film is large, in the process of bonding the optical film to the organic EL light emitting element, it becomes a factor that greatly reduces productivity.
  • an object of the present invention is to provide an optical film that achieves suppression of warpage, improvement of light extraction efficiency and normal luminance of a surface light emitter, and suppression of emission angle dependency of the emission light wavelength of the surface light emitter. is there.
  • An optical film having a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, wherein the concavo-convex structure layer includes the first light-diffusing fine particles with respect to the total mass of the concavo-convex structure layer.
  • An optical film comprising 1% by mass to 28% by mass, wherein the adhesive layer comprises 2% by mass to 40% by mass of second light diffusing fine particles with respect to the total mass of the adhesive layer.
  • the difference between the refractive index of the material constituting the adhesive layer and the refractive index of the second light diffusing fine particles contained in the adhesive layer is 0.02 to 0.30.
  • [1] to [5 ] The optical film in any one of. [7] Ratio of the content ratio of the second light diffusing fine particles contained in the adhesive layer to the total mass of the adhesive layer with respect to the content ratio of the first light diffusing fine particles contained in the uneven structure layer with respect to the total mass of the uneven structure layer.
  • the ratio of the volume average particle diameter of the second light diffusing fine particles contained in the adhesive layer to the volume average particle diameter of the first light diffusing fine particles contained in the concavo-convex structure layer is 0.125 to 1.25.
  • the ratio of the refractive index of the second light diffusing fine particles contained in the adhesive layer to the refractive index of the first light diffusing fine particles contained in the concavo-convex structure layer is 0.80 to 1.05.
  • the optical device according to any one of [1] to [9], further including a base layer in contact with the concavo-convex structure layer, wherein a total thickness of the concavo-convex structure layer and the base layer is 20 ⁇ m to 80 ⁇ m. the film.
  • the ratio of the volume average particle diameter of the second light diffusing fine particles contained in the adhesive layer to the thickness of the adhesive layer is 0.05 to 0.5, any of [1] to [11]
  • An optical film according to any one of the above.
  • the material constituting the concavo-convex structure layer is at least one material selected from the group consisting of acrylic resin, styrene resin, olefin resin, polycarbonate resin, silicone resin, epoxy resin, and polyester resin.
  • the material of the first light diffusing fine particles contained in the concavo-convex structure layer is at least one material selected from the group consisting of silicone resin, acrylic resin, styrene resin, urethane resin, melamine resin, and epoxy resin. [1] to [14].
  • the material of the second light diffusing fine particles contained in the adhesive layer is at least one material selected from the group consisting of a silicone resin, an acrylic resin, a styrene resin, a urethane resin, a melamine resin, and an epoxy resin.
  • a silicone resin an acrylic resin, a styrene resin, a urethane resin, a melamine resin, and an epoxy resin.
  • a surface light emitter comprising the optical film according to any one of [1] to [17] and an EL light emitting device.
  • An adhesive layer containing 1% by mass to 40% by mass of the second light diffusing fine particles is provided on one surface of the base material with respect to the total mass of the adhesive layer, and the total mass of the uneven structure layer is provided on the other surface of the base material.
  • a method for producing an optical film, wherein the concavo-convex structure layer containing 1% by mass to 28% by mass of the first light diffusing fine particles is provided.
  • the present invention also relates to a surface light emitter including the optical film.
  • the optical film of the present invention suppresses warpage, improves the light extraction efficiency and normal luminance of the surface light emitter, and suppresses the emission angle dependency of the emission light wavelength. Moreover, the surface light emitter of the present invention is excellent in productivity, improves light extraction efficiency and normal luminance, and suppresses the emission angle dependency of the emission light wavelength.
  • the optical film 10 of the present invention is excellent in handleability and productivity, it is preferable to provide the uneven structure layer 11 on one surface of the substrate 15 and the adhesive layer 12 on the other surface of the substrate 15. .
  • the optical film 10 of the present invention is particularly preferably a film in which the adhesive layer 12, the substrate 15, the base layer 14, and the concavo-convex structure layer 11 are sequentially laminated.
  • a spherical notch shape, a spherical notch shape, an ellipsoidal spherical shape (a shape obtained by cutting a spheroid on one plane), an ellipsoidal spherical notch shape (a spheroid is mutually connected) Shape cut by two parallel planes), pyramid shape, truncated pyramid shape, cone shape, truncated cone shape, and related roof shape (spherical shape, spherical truncated shape, ellipsoidal spherical shape, elliptical shape) And a truncated cone shape, a pyramid shape, a truncated pyramid shape, a cone shape, or a shape in which a truncated cone shape extends along the bottom surface portion).
  • These concavo-convex structures 13 may be used singly or in combination of two or more.
  • a spherical shape such as a spherical notch shape, a spherical notch shape, an ellipsoidal spherical notch shape, an ellipsoidal spherical notch shape, etc. Is preferable, and a spherical notch shape and an ellipsoidal spherical notch shape are more preferable.
  • the spherical shape does not have to be a true spherical shape, but may be a substantially spherical shape.
  • the substantially spherical shape is a shape in which a spherical surface is deviated from the surface of a virtual true sphere circumscribing the spherical shape with respect to the normal direction from the center of the virtual true sphere. It may be 0 to 20% with respect to the radius of the sphere.
  • the shape in the case where the shape is expressed as “ellipse”, a circular shape obtained by extending a perfect circle in one direction or in multiple directions is also included.
  • FIGS. 2A to 2F Examples of the arrangement of the uneven structure 13 are shown in FIGS. 2A to 2F.
  • the arrangement of the concavo-convex structure 13 for example, a hexagonal arrangement (FIG. 2A), a rectangular arrangement (FIG. 2B), a rhombus arrangement (FIG. 2C), a linear arrangement (FIG. 2D), a circular arrangement (FIG. 2E), a random arrangement ( FIG. 2F) and the like.
  • the hexagonal arrangement means that the concavo-convex structure 13 is arranged at each vertex and middle point of the hexagon, and the arrangement of the hexagon is continuously arranged.
  • the rectangular arrangement means that the uneven structure 13 is arranged at each vertex of the rectangle, and the arrangement of the rectangle is continuously arranged.
  • the rhombus arrangement indicates that the concavo-convex structure 13 is arranged at each apex of the rhombus, and the arrangement of the rhombus is continuously arranged.
  • the linear arrangement indicates that the uneven structure 13 is arranged in a straight line.
  • the circular arrangement indicates that the concavo-convex structure 13 is arranged along a circle.
  • a hexagonal arrangement, a rectangular arrangement, and a rhombus arrangement are preferable, and a hexagonal arrangement and a rectangular arrangement are more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the bottom surface portion 16 of the concavo-convex structure 13 refers to a virtual planar portion surrounded by the outer peripheral edge of the bottom portion of the concavo-convex structure 13 (if the base layer 14 is provided, the contact surface with the base layer 14).
  • the longest diameter A of the bottom surface portion 16 of the concavo-convex structure 13 means the length of the longest portion of the bottom surface portion 16 of the concavo-convex structure 13, and the average longest diameter A of the bottom surface portion 16 of the concavo-convex structure 13.
  • the surface of the optical film 10 having the concavo-convex structure 13 is photographed with an electron microscope, the longest diameter A of the bottom surface portion 16 of the arbitrary concavo-convex structure 13 is measured at five locations, and the average value is obtained.
  • the height B of the concavo-convex structure 13 means the height from the bottom surface portion 16 of the concavo-convex structure 13 to the highest portion in the case of the protrusion structure, and the bottom surface of the concavo-convex structure 13 in the case of the recess structure.
  • the average height B ave of the concavo-convex structure 13 is obtained by photographing a cross section of the optical film 10 with an electron microscope and measuring the height B of an arbitrary concavo-convex structure 13 at five locations. And the average value.
  • the average longest diameter A ave of the bottom surface portion 16 of the concavo-convex structure 13 is preferably 0.5 ⁇ m to 150 ⁇ m, more preferably 1 ⁇ m to 130 ⁇ m, and more preferably 2 ⁇ m to 100 ⁇ m, because the light extraction efficiency and normal luminance of the surface light emitter are excellent. Further preferred.
  • the average height B ave of the concavo-convex structure 13 is preferably 0.25 ⁇ m to 75 ⁇ m, more preferably 0.5 ⁇ m to 65 ⁇ m, and even more preferably 1 ⁇ m to 50 ⁇ m, because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the thickness of the surface layer 19 including the concavo-convex structure layer 11 and the base layer 14 is preferably 5 ⁇ m to 120 ⁇ m because it can contain the first fine particles 112 and is excellent in light diffusibility, and is preferably 10 ⁇ m to 110 ⁇ m. Is more preferably 15 ⁇ m to 100 ⁇ m, and particularly preferably 20 ⁇ m to 80 ⁇ m.
  • the thickness of the surface layer 19 is calculated as follows.
  • the cross section of the optical film 10 is photographed with an electron microscope, and when the concavo-convex structure 13 is a projection structure, the dimensions from the bottom surface of the base layer 14 to the highest part of the concavo-convex structure 13 are measured at arbitrary five points, and the average value thereof Ask for.
  • the aspect ratio of the concavo-convex structure 13 is preferably 0.3 to 1.4, more preferably 0.35 to 1.3, and more preferably 0.4 to 1 because of excellent light extraction efficiency and normal luminance of the surface light emitter. 0.0 is more preferable.
  • the aspect ratio of the concavo-convex structure 13 is calculated from the average height B ave of the concavo-convex structure 13 / the average longest diameter A ave of the bottom surface portion 16 of the concavo-convex structure 13.
  • Examples of the shape of the bottom surface portion 16 of the concavo-convex structure 13 include a circle and an ellipse. As the shape of the bottom surface portion 16 of these uneven structures 13, one type may be used alone, or two or more types may be used in combination. Among these shapes of the bottom surface portion 16 of the concavo-convex structure 13, a circular or elliptical shape is preferable, and a circular shape is more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the circle does not have to be a perfect circle, but may be a substantially circular shape.
  • the substantially circular shape is a shape in which a circular surface is deviated from the circumference of a virtual perfect circle circumscribing the circle with respect to the normal direction of the virtual perfect circle, and the amount of deviation is the virtual true circle. It may be 0 to 20% with respect to the radius of the circle.
  • the shape in the case where the shape is expressed as “ellipse”, a circular shape obtained by extending a perfect circle in one direction or in multiple directions is also included.
  • the ratio of the area of the bottom surface portion 16 of the concavo-convex structure 13 (the area surrounded by the dotted line in FIG. 4) to the area of the optical film 10 (the area surrounded by the solid line in FIG. 4) is the light extraction efficiency of the surface light emitter. From the viewpoint of excellent normal luminance, it is preferably 20 to 99%, more preferably 25 to 95%, still more preferably 30 to 93%. In addition, when all the bottom face parts 16 of the concavo-convex structure 13 are circular with the same size, the maximum value of the ratio of the area of the bottom face part 16 of the concavo-convex structure 13 to the area of the optical film 10 is about 91%.
  • the concavo-convex structure layer 11 includes first fine particles (first light diffusion fine particles) 112 and a material 111.
  • the material 111 constituting the concavo-convex structure layer is not particularly limited as long as it is a resin having a high light transmittance in the visible light wavelength region (approximately 400 nm to 700 nm), and examples thereof include a resin and glass. Among these materials 111 constituting the concavo-convex structure layer, a resin is preferable because of excellent handleability and optical film productivity. In the present specification, the “material constituting the concavo-convex structure layer” does not include the first fine particles.
  • the transmittance of the material 111 constituting the concavo-convex structure layer is preferably 50% or more as measured in accordance with JIS K7361.
  • the resin is not particularly limited as long as it has a high light transmittance in the visible light wavelength range (approximately 400 nm to 700 nm).
  • acrylic resin polycarbonate resin; polyester such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate Resin; Styrene resin such as polystyrene and ABS resin; Vinyl chloride resin and the like.
  • an acrylic resin is preferable because it has a high light transmittance in the visible light wavelength region and is excellent in heat resistance, mechanical properties, and molding processability.
  • the cured resin which hardened the active energy ray-curable composition by irradiating the active energy ray is preferable.
  • the active energy ray include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because the active energy ray-curable composition is excellent in curability and can suppress deterioration of the optical film 10.
  • the active energy ray-curable composition is not particularly limited as long as it can be cured by active energy rays. However, the active energy ray-curable composition is excellent in handleability and curability, and the optical film 10 has flexibility, heat resistance, and scratch resistance. , An active energy ray-curable composition containing a polymerizable monomer (A), a crosslinkable monomer (B) and a polymerization initiator (C) because of excellent physical properties such as solvent resistance and light transmittance. Is preferred.
  • Examples of the polymerizable monomer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso -Butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, alkyl (meth) acrylate, phenyl (me
  • polymerizable monomers (A) may be used individually by 1 type, and may use 2 or more types together.
  • the handleability and curability of the active energy ray-curable composition are excellent, and the flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance of the optical film 10 are excellent.
  • (Meth) acrylates, epoxy (meth) acrylates, aromatic vinyls, and olefins are preferable, and (meth) acrylates and epoxy (meth) acrylates are more preferable.
  • (meth) acrylate refers to acrylate or methacrylate.
  • the content of the polymerizable monomer (A) in the active energy ray-curable composition is preferably 0.5% by mass to 60% by mass, preferably 1% by mass to the total mass of the active energy ray-curable composition. 57 mass% is more preferable, and 2 mass% to 55 mass% is still more preferable.
  • the content of the polymerizable monomer (A) is 0.5% by mass or more, the handleability of the active energy ray-curable composition is excellent.
  • the content of the polymerizable monomer (A) is 60% by mass or less, the active energy ray-curable composition is excellent in crosslinkability and curability, and the optical film 10 is excellent in solvent resistance.
  • Tora (meth) acrylates trimethylolpropane tri (meth) acrylate, trisethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, tris ( Tri (meth) acrylates such as 2- (meth) acryloyloxyethyl) isocyanurate, aliphatic hydrocarbon-modified trimethylolpropane tri (meth) acrylate having 2 to 5 carbon atoms, and isocyanuric acid ethylene oxide-modified tri (meth) acrylate Triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,5-pentanediol di
  • Polyurethane polyfunctional (meth) acrylates such as compounds obtained by reacting an isocyanate group with a hydroxyl group-containing (meth) acrylate; divinyl ethers such as diethylene glycol divinyl ether and triethylene glycol divinyl ether Butadiene, isoprene, dienes such as dimethyl butadiene and the like.
  • These crosslinkable monomers (B) may be used individually by 1 type, and may use 2 or more types together.
  • crosslinkable monomers (B) since the optical film 10 has excellent physical properties such as flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance, hexa (meth) acrylates, Penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl (meth) acrylates, polyester di (meth) acrylates, urethane polyfunctional (meta ) Acrylates, hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, polyester di (meth) acrylates, urethane Polyfunctional (meth) acrylates are more preferred.
  • the content of the crosslinkable monomer (B) in the active energy ray-curable composition is preferably 30% by mass to 98% by mass, and 35% by mass to 97% by mass with respect to the total mass of the active energy ray curable composition. % Is more preferable, and 40% by mass to 96% by mass is still more preferable.
  • the content of the crosslinkable monomer (B) is 30% by mass or more, the active energy ray-curable composition is excellent in crosslinkability and curability, and the optical film 10 is excellent in solvent resistance. Moreover, it is excellent in the softness
  • Examples of the polymerization initiator (C) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, acetoin, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone, ⁇ , ⁇ -Dimethoxy- ⁇ -phenylacetophenone, benzyldimethyl ketal, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2- Carbonyl compounds such as methyl-1-phenylpropan-1-one and 2-ethylanthraquinone; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, etc.
  • Sulfur compounds 2,4,6-trimethylbenzoyl diphenylphosphine oxide, acylphosphine oxide such as benzo dichloride ethoxy phosphine oxide, and the like.
  • These polymerization initiators (C) may be used individually by 1 type, and may use 2 or more types together.
  • carbonyl compounds and acyl phosphine oxides are preferred because they are excellent in handleability and curability of the active energy ray-curable composition and light transmittance of the optical film 10, and carbonyl compounds are preferred. Is more preferable.
  • the content of the polymerization initiator (C) in the active energy ray-curable composition is preferably 0.1% by mass to 10% by mass, and preferably 0.5% by mass to the total mass of the active energy ray curable composition. 8 mass% is more preferable, and 1 mass% to 5 mass% is still more preferable.
  • the handleability and curability of the active energy ray-curable composition are excellent.
  • the refractive index of the material 111 constituting the concavo-convex structure layer 11 is preferably 1.40 to 2.00, more preferably 1.43 to 1.95, and preferably 1.46 because the optical film 10 is excellent in light transmittance. ⁇ 1.90 is more preferred.
  • the refractive index of the material 111 constituting the concavo-convex structure layer 11 is a value measured at 20 ° C. using a sodium D line.
  • the optical film 10 has excellent light diffusibility, and the emission angle of the emission light wavelength of the surface light emitter. Dependency can be suppressed.
  • the first fine particles 112 included in the concavo-convex structure layer 11 are not particularly limited as long as they are fine particles having a light diffusion effect in the visible light wavelength region (approximately 400 nm to 700 nm), and known fine particles can be used.
  • the first fine particles 112 included in the concavo-convex structure layer 11 may be used alone or in combination of two or more.
  • Examples of the material of the first fine particles 112 include metals such as gold, silver, silicon, aluminum, magnesium, zirconium, titanium, zinc, germanium, indium, tin, antimony, and cerium; silicon oxide, aluminum oxide, magnesium oxide, and oxide.
  • Metal oxides such as zirconium, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide and cerium oxide; metal hydroxides such as aluminum hydroxide; metal carbonates such as magnesium carbonate Metal nitrides such as silicon nitride; resins such as acrylic resins, styrene resins, silicone resins, urethane resins, melamine resins, and epoxy resins.
  • These fine particle materials may be used alone or in combination of two or more.
  • silicon, aluminum, magnesium, silicon oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, Silicone resin, urethane resin, melamine resin, and epoxy resin are preferable, and particles of silicon oxide, aluminum oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, and epoxy resin are preferable.
  • the refractive index of the first fine particles 112 contained in the concavo-convex structure layer 11 is preferably 1.30 to 2.00, more preferably 1.35 to 1.95, because the optical film 10 is excellent in light transmittance. 40 to 1.90 is more preferable.
  • the refractive index of the first fine particles 112 is a value measured at 20 ° C. using a sodium D line.
  • the volume average particle diameter of the first fine particles 112 contained in the concavo-convex structure layer 11 is preferably 0.5 to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and even more preferably 1.5 ⁇ m to 10 ⁇ m.
  • the volume average particle diameter of the first fine particles 112 included in the concavo-convex structure layer 11 is 0.5 ⁇ m or more, light in the visible wavelength region can be effectively scattered.
  • the volume average particle diameter of the first fine particles 112 included in the concavo-convex structure layer 11 is 20 ⁇ m or less, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed.
  • the volume average particle diameter is measured by a Coulter counter.
  • Examples of the shape of the first fine particles 112 included in the concavo-convex structure layer 11 include a spherical shape, a cylindrical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, a conical shape, a star shape, and an indefinite shape.
  • a shape of the first fine particles 112 contained in these concavo-convex structure layers 11 one type may be used alone, or two or more types may be used in combination.
  • spherical, cubic, rectangular parallelepiped, pyramid, and star shapes are preferable because light in the visible wavelength range can be effectively scattered. Spherical shape is more preferable.
  • the content of the first fine particles 112 contained in the concavo-convex structure layer 11 with respect to the total mass of the concavo-convex structure layer 11 is 1% by mass to 28% by mass, preferably 2% by mass to 25% by mass, and 3% by mass to 23% by mass. Is more preferable, and 4 mass% to 21 mass% is still more preferable.
  • the optical film 10 has excellent light diffusibility, and the emission angle of the emission light wavelength of the surface light emitter. Dependency can be suppressed.
  • the curvature of the optical film 10 is suppressed as the content rate of the 1st microparticles
  • the content of the first fine particles 112 included in the uneven structure layer 11 with respect to the total mass of the uneven structure layer 11 is substantially the same as the content of the first fine particles 112 included in the surface layer 19 with respect to the total mass of the surface layer 19. May be different or different.
  • the refractive index difference between the material 111 and the first fine particles 112 is preferably 0.02 to 0.30, and preferably 0.03 to 0.25, because the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed. Is more preferable, and 0.04 to 0.20 is still more preferable.
  • the material 111 is an acrylic resin
  • the first fine particles 112 are silicon fine particles
  • the material 111 is an acrylic resin
  • the first fine particles 112 are aluminum fine particles
  • the material 111 is an acrylic resin.
  • the fine particles 112 are magnesium fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are silicon oxide fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are aluminum oxide fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are magnesium oxide fine particles.
  • the material 111 is an acrylic resin, the first fine particles 112 are aluminum hydroxide fine particles, the material 111 is an acrylic resin, the first fine particles 112 are magnesium carbonate fine particles, the material 111 is an acrylic resin, the first fine particles 112 are acrylic resin fine particles, and the material 111 is acrylic resin
  • the first fine particles 112 are styrene resin fine particles, the material 111 is acrylic resin, the first fine particles 112 are silicone resin fine particles, the material 111 is acrylic resin, the first fine particles 112 are urethane resin fine particles, the material 111 is acrylic resin, and the first fine particles 112 are Melamine resin particles, material 111 is acrylic resin, first particle 112 is epoxy resin particle, material 111 is polycarbonate resin, first particle 112 is silicon particle, material 111 is polycarbonate resin, first particle 112 is aluminum particle, material 111 is The first fine particles 112 are made of polycarbonate resin, the magnesium fine particles 112, the material 111 is polycarbonate resin, the first fine particles 112 are silicon oxide fine particles, the
  • the first fine particles 112 are acrylic resin fine particles, the material 111 is polycarbonate resin and the first fine particles 112 are styrene resin fine particles, the material 111 is polycarbonate resin and the first fine particles 112 are silicone resin fine particles, the material 111 is polycarbonate resin and the first fine particles 112 are Urethane resin particles, material 111 is polycarbonate resin, first particle 112 is melamine resin particle, material 111 is polycarbonate resin, first particle 112 is epoxy resin particle, material 111 is poly The first fine particles 112 of ethylene terephthalate are silicon fine particles, the material 111 is polyethylene terephthalate and the first fine particles 112 are aluminum fine particles, the material 111 is polyethylene terephthalate and the first fine particles 112 are magnesium fine particles, the material 111 is polyethylene terephthalate and the first fine particles 112 are Silicon oxide fine particles, material 111 is polyethylene terephthalate and first fine particles 112 are aluminum oxide fine particles, material 111 is polyethylene terephthalate
  • the material 111 is polyethylene terephthalate, the first fine particles 112 are melamine resin fine particles, the material 111 is polyethylene terephthalate, and the first fine particles 112 are epoxy resin fine particles.
  • the optical film 10 is excellent in heat resistance, mechanical properties, molding processability, the refractive index difference is in the above preferred range, and the light extraction efficiency of the surface light emitter is excellent. Therefore, the material 111 is an acrylic resin, the first fine particles 112 are silicon fine particles, the material 111 is an acrylic resin, the first fine particles 112 are aluminum fine particles, the material 111 is an acrylic resin, the first fine particles 112 are magnesium fine particles, and the material 111 is an acrylic resin.
  • the first fine particles 112 are silicon oxide fine particles, the material 111 is an acrylic resin, the first fine particles 112 are aluminum oxide fine particles, the material 111 is an acrylic resin, the first fine particles 112 are magnesium oxide fine particles, the material 111 is an acrylic resin, and the first fine particles 112 are Aluminum hydroxide fine particles, material 111 is acrylic resin
  • the fine particles 112 are magnesium carbonate fine particles, the material 111 is acrylic resin, the first fine particles 112 are acrylic resin fine particles, the material 111 is acrylic resin, the first fine particles 112 are styrene resin fine particles, the material 111 is acrylic resin, and the first fine particles 112 are silicone resin.
  • material 111 is acrylic resin
  • first fine particles 112 are urethane resin fine particles
  • material 111 is acrylic resin
  • first fine particles 112 are melamine resin fine particles
  • material 111 is acrylic resin
  • first fine particles 112 are preferably epoxy resin fine particles.
  • 111 is an acrylic resin
  • the first fine particles 112 are silicon oxide fine particles
  • the material 111 is an acrylic resin
  • the first fine particles 112 are aluminum oxide fine particles
  • the material 111 is an acrylic resin
  • the first fine particles 112 are aluminum hydroxide fine particles
  • the material 111 is an acrylic resin.
  • the particles 112 are magnesium carbonate fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are acrylic resin fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are styrene resin fine particles
  • the material 111 is acrylic resin
  • the first fine particles 112 are silicone resin. More preferably, the fine particles, the material 111 is an acrylic resin, the first fine particles 112 are urethane resin fine particles, the material 111 is an acrylic resin, the first fine particles 112 are melamine resin fine particles, the material 111 is an acrylic resin, and the first fine particles 112 are epoxy resin fine particles.
  • the uneven structure layer 11 may contain other components in addition to the material 111 and the first fine particles 112 as long as the performance is not impaired.
  • Other components include, for example, mold release agents, flame retardants, antistatic agents, leveling agents, antifouling improvers, dispersion stabilizers, viscosity modifiers, light stabilizers, antioxidants, dyes / pigments, etc. And various additives such as colorants.
  • the content of other components with respect to the total mass of the uneven structure layer 11 is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the content ratio of the other components in the concavo-convex structure layer 11 is 3% by mass or less with respect to the total mass of the material constituting the concavo-convex structure layer 11, a decrease in performance of the optical film 10 can be suppressed.
  • the optical film 10 of the present invention may protect the uneven structure 13 and provide a protective film on the surface having the uneven structure 13 in order to improve the handleability of the optical film 10.
  • the protective film may be peeled off from the optical film 10 when the optical film 10 is used.
  • a protective film a well-known protective film etc. are mentioned, for example.
  • Base layer 14 In order to maintain the shape of the uneven structure 13 of the uneven structure layer 11, a base layer 14 may be provided between the uneven structure layer 11 and the substrate 15.
  • the material of the base layer 14 is preferably the same composition as the concavo-convex structure layer 11 because it is excellent in productivity of the optical film 10.
  • the thickness of the base layer 14 is preferably 3 ⁇ m to 70 ⁇ m, more preferably 5 ⁇ m to 60 ⁇ m, and even more preferably 10 ⁇ m to 50 ⁇ m.
  • the thickness of the base layer 14 is 3 ⁇ m or more, it has the same composition as the concavo-convex structure layer 11 (including the first fine particles), so that the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed. .
  • the curvature of the optical film 10 is suppressed as the thickness of the base layer 14 is 40 micrometers or less, and it is excellent in the light extraction efficiency and normal brightness
  • the thickness of the base layer 14 in the present embodiment is an average value of the thicknesses of arbitrary five points in the base layer 14.
  • a base material 15 may be provided between the concavo-convex structure layer 11 (the base layer 14 when the base layer 14 is provided) and the adhesive layer 12.
  • the base material 15 is preferably a base material that transmits active energy rays because the active energy ray-curable composition is excellent in curability. Moreover, in order to transmit light to the surface uneven
  • Examples of the material of the base material 15 include acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; styrene resin such as polystyrene and ABS resin; vinyl chloride resin; diacetyl cellulose, triacetyl cellulose. Cellulose resin such as polyimide; imide resin such as polyimide and polyimide amide; and glass.
  • acrylic resin, polycarbonate resin, polyester resin, styrene resin, cellulose resin, and imide resin are preferable because of excellent flexibility and active energy ray permeability. Acrylic resin, polycarbonate Resins, polyester resins, and imide resins are more preferable.
  • the thickness of the substrate 15 is preferably 10 ⁇ m to 1,000 ⁇ m, more preferably 20 ⁇ m to 500 ⁇ m, and even more preferably 25 ⁇ m to 300 ⁇ m, because the curability of the active energy ray curable composition is excellent.
  • the base material 15 is subjected to an easy adhesion treatment on the surface of the base material 15 as necessary in order to improve the adhesion between the concavo-convex structure layer 11 (or the base layer 14 when the base layer 14 is provided) and the base material 15. May be.
  • Examples of the easy adhesion treatment method include a method of forming an easy adhesion layer made of a polyester resin, an acrylic resin, a urethane resin, or the like on the surface of the base material 15, a method of roughening the surface of the base material 15, or the like. It is done.
  • the base material 15 may be subjected to surface treatments such as antistatic, antireflection, and adhesion prevention between the substrates as necessary.
  • the adhesive layer 12 is composed of second fine particles (second light diffusing fine particles) 122 and a material 121.
  • the material 121 constituting the adhesive layer 12 is not particularly limited as long as it can be bonded to the EL light emitting element 30 or the like.
  • acrylic adhesive, natural rubber adhesive, synthetic rubber adhesive, silicone adhesive , Polyurethane adhesives, epoxy adhesives, and the like may be used alone or in combination of two or more.
  • an acrylic pressure-sensitive adhesive is preferable because of high adhesive strength and excellent weather resistance, flexibility, and heat resistance of the optical film 10.
  • the “material constituting the adhesive layer” does not include the second fine particles.
  • acrylic pressure-sensitive adhesive examples include a copolymer obtained by copolymerizing an alkyl (meth) acrylate as a main component, a polar monomer, and, if necessary, a monomer composition containing a crosslinking agent.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl ( (Meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Examples include isononyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, and stearyl (meth) acrylate.
  • alkyl (meth) acrylates may be used individually by 1 type, and may use 2 or more types together.
  • n-butyl acrylate and 2-ethylhexyl acrylate are preferred because of their low glass transition temperature and high adhesive strength even at low temperatures.
  • polar monomers examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( Hydroxyl group-containing monomers such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, fumaric acid and itaconic acid; N-vinylpyrrolidone, Examples thereof include nitrogen-containing monomers such as N-vinylcaprolactam, acryloylmorpholine and (meth) acrylamide; and epoxy group-containing monomers such as glycidyl (meth) acrylate. These polar monomers may be used alone or in combination of two or more. These polar monomers act as crosslinking points when copolymerized using a crosslinking agent.
  • crosslinking agent examples include isocyanate crosslinking agents such as tolylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tolylene diisocyanate, diphenylmethane triisocyanate; bisphenol A, epichlorohydrin type epoxy resin, ethylene glycol glycidyl ether, polyethylene glycol diglycidyl ether Epoxy crosslinkers such as glycerin diglycidyl ether; amine crosslinkers such as hexamethylenediamine, triethyldiamine, and polyethyleneimine; polyvalent metals such as aluminum, iron, zinc, tin, titanium, and nickel are distributed to acetylacetone and ethyl acetoacetate Coordinated metal chelate crosslinkers; N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxide), N, N ′ And aziridine crosslinking agents such as toluene
  • the content of the crosslinking agent with respect to the total mass of the monomer composition is preferably 0.01% by mass to 20% by mass, and more preferably 0.05% by mass to 15% by mass.
  • the content of the crosslinking agent with respect to the total mass of the monomer composition is 0.01% by mass or more, the material 121 constituting the adhesive layer 12 is not too soft, and the adhesive layer 12 is bonded to the EL light emitting element 30 or the like. Can be prevented from protruding.
  • Adhesive force is high in the content rate of a crosslinking agent with respect to the monomer composition total mass being 20 mass% or less.
  • the mass average molecular weight of the copolymer is preferably 300,000 to 2,000,000, and more preferably 500,000 to 1,500,000 because of its high adhesive force and high shearing force.
  • Examples of the monomer composition polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a polymerization initiator When polymerizing the monomer composition, a polymerization initiator may be used as necessary.
  • the polymerization initiator include azo polymerization initiators such as azobisisobutyronitrile; peroxide polymerization initiators such as lauroyl peroxide and benzoyl peroxide; benzophenone polymerization initiators such as benzophenone; 2-methylthioxanthone and the like. And benzoin ether polymerization initiators such as benzoin ethyl ether. These polymerization initiators may be used alone or in combination of two or more. Among these polymerization initiators, an azo polymerization initiator such as azobisisobutyronitrile is preferable because of excellent polymerizability.
  • the material 121 constituting the adhesive layer 12 is dissolved in a solvent, the second fine particles 122 contained in the adhesive layer are dispersed in the obtained solution, and applied to the substrate 15.
  • the method of drying a solvent is mentioned.
  • Examples of the solvent for dissolving the material 121 constituting the adhesive layer 12 include toluene, ethyl acetate, methyl ethyl ketone, and the like. These solvents may be used alone or in combination of two or more.
  • the solution in which the material 121 constituting the adhesive layer 12 is dissolved in a solvent may contain other components as long as the performance is not impaired.
  • other components include various additives such as viscosity modifiers, plasticizers, fillers, ultraviolet absorbers, flame retardants, antistatic agents, light stabilizers, antioxidants, and coloring agents such as dyes and pigments. .
  • the viscosity of the solution obtained by dissolving the material 121 constituting the adhesive layer 12 in a solvent is preferably 500 mPa ⁇ s to 6,000 mPa ⁇ s, more preferably 1,000 mPa ⁇ s to 5,000 mPa ⁇ s at 23 ° C.
  • the viscosity of the solution in which the material 121 constituting the adhesive layer 12 is dissolved in a solvent is 500 mPa ⁇ s or more, the dispersion stability of the second fine particles 122 contained in the adhesive layer is excellent.
  • stacking of the adhesion layer 21 is easy in the viscosity of the solution which dissolved the material 121 which comprises the adhesion layer 12 in a solvent is 6,000 mPa * s or less.
  • the thickness of the adhesive layer 12 is preferably 5 ⁇ m to 50 ⁇ m, more preferably 7 to 40 ⁇ m, and even more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the adhesive layer 12 is 5 ⁇ m or more, the adhesiveness with the material to be bonded is excellent.
  • the thickness of the adhesive layer 12 is 50 ⁇ m or less, the adhesive layer 21 can be easily stacked.
  • the thickness of the adhesion layer 12 in this embodiment is an average value of the thickness of arbitrary five points in the adhesion layer 12.
  • the refractive index of the material 121 constituting the adhesive layer 12 is preferably a refractive index close to that of the glass substrate because it is bonded to the surface of the EL light emitting element 30 or the like. 2.00 is preferable, 1.43 to 1.95 is more preferable, and 1.46 to 1.90 is still more preferable.
  • the content of the material 121 constituting the adhesive layer 12 with respect to the total mass of the adhesive layer 12 is 60% by mass to 99% by mass, preferably 62% by mass to 98% by mass, and more preferably 65% by mass to 97% by mass. 68 mass% to 96 mass% is more preferable.
  • the optical film 10 is excellent in light transmittance, and is excellent in light extraction efficiency and normal luminance of the surface light emitter.
  • the content rate of the material 121 which comprises the adhesion layer 12 in the adhesion layer 12 is 99 mass% or less, it is excellent in the light diffusibility of the optical film 10, and the output angle dependence of the emitted light wavelength of a surface light emitter is shown. Can be suppressed.
  • the material, volume average particle diameter, and shape of the second fine particles 122 included in the adhesive layer 12 can be the same as those of the first fine particles 112 included in the concavo-convex structure layer 11 described above. A range is preferred.
  • the volume average particle diameter and shape of the material of the first fine particles 112 and the second fine particles 122 may be the same or different from each other.
  • the ratio of the refractive index of the second fine particles 122 contained in the adhesive layer 12 to the refractive index of the first fine particles 112 contained in the concavo-convex structure layer 11 is preferably 0.80 to 1.05. Further, the ratio of the volume average particle diameter of the second fine particles 122 contained in the adhesive layer 12 to the thickness of the adhesive layer 12 is preferably 0.05 to 0.5.
  • the refractive index of the second fine particles 122 contained in the adhesive layer 12 is preferably 1.30 to 2.00, more preferably 1.35 to 1.95, because the optical film 10 is excellent in light transmittance. 40 to 1.90 is more preferable.
  • the ratio of the refractive index of the second fine particles 122 included in the adhesive layer 12 to the refractive index of the first fine particles 112 included in the concavo-convex structure layer 11 is preferably 0.80 to 1.05.
  • the content of the second fine particles 122 contained in the adhesive layer 12 with respect to the total mass of the adhesive layer 12 is 1% by mass to 40% by mass, preferably 2% by mass to 38% by mass, and 3% by mass to 35% by mass. More preferably, 4% by mass to 32% by mass is even more preferable.
  • the optical film 10 has excellent light diffusibility, and the emission angle dependence of the emission light wavelength of the surface light emitter. Sex can be suppressed.
  • the optical film 10 is excellent in light transmittance, and the light extraction efficiency and method of the surface light emitter are improved. Excellent line brightness.
  • the difference in refractive index between the material 121 and the second fine particles 122 is preferably 0.02 to 0.30, and preferably 0.03 to 0.25, because the emission angle dependence of the emission light wavelength of the surface light emitter can be suppressed. Is more preferable, and 0.04 to 0.20 is still more preferable.
  • Examples of the combination of the material 121 and the second fine particles 122 include the combination of the material 111 and the first fine particles 112 described above, and the same range is preferable for the same reason.
  • the ratio of the content of the second fine particles 122 contained in the adhesive layer 12 to the total mass of the adhesive layer 12 relative to the total content of the first fine particles 112 contained in the uneven structure layer 11 is 0. .05 to 10 is preferable.
  • the adhesive layer 12 may have a two-layer structure.
  • the pressure-sensitive adhesive layer 12 may include a first layer and a second layer in which the contents of the material 121 and the second fine particles 122 constituting the pressure-sensitive adhesive layer 12 are different from each other.
  • the content of the second fine particles 122 included in the first layer with respect to the total mass of the first layer Is preferably 0% by mass to 50% by mass.
  • the second layer is a layer disposed on the first layer, the content of the second fine particles 122 contained in the second layer is 0% by mass to 50% by mass with respect to the total mass of the second layer. % Is preferred.
  • the content of the second fine particles 122 contained in the first layer is 0% by mass to 20% by mass with respect to the total mass of the first layer, and the content of the second fine particles 122 contained in the second layer Is 0% by mass to 20% by mass, the adhesive strength between the base material 15 and the first layer is the adhesive strength between the first layer and the second layer, and the second layer and the second layer. Tends to be smaller than the adhesive strength between the EL light emitting element and the EL light emitting element.
  • the content of the second fine particles 122 contained in the first layer is 0% by mass to 20% by mass with respect to the total mass of the first layer, and the content of the second fine particles 122 contained in the second layer Is 20% by mass to 50% by mass
  • the adhesive strength between the EL light emitting element to be bonded to the second layer is the adhesive strength between the substrate 15 and the first layer, and the first layer and the second layer. There is a tendency to become smaller than the adhesive strength with the layer.
  • the content of the second fine particles 122 contained in the first layer is 20% by mass to 50% by mass with respect to the total mass of the first layer, and the content of the second fine particles 122 contained in the second layer Is 0 mass% to 5 mass%
  • the adhesive strength between the first layer and the second layer is the adhesive strength between the substrate 15 and the first layer, and the second layer and the second layer. Tends to be smaller than the adhesive strength between the EL light emitting element and the EL light emitting element.
  • the magnitude of the adhesive force can be set as appropriate.
  • the adhesive force between the substrate 15 and the first layer is small or when the adhesive force between the first layer and the second layer is small, the adhesive force between the EL light-emitting element that adheres to the second layer is large, A surface light emitter having a strong adhesion surface to the glass substrate of the EL light emitting element can be formed.
  • the adhesive strength between the EL light emitting element and the EL light emitting element to be bonded is small, the optical film is not destroyed even when it is necessary to reattach the optical film to the glass substrate of the EL light emitting element. It is possible to improve productivity when manufacturing a body.
  • the optical film 10 of the present invention may be provided with a protective film 17 on the surface having the adhesive layer 12 in order to protect the adhesive layer 12 and improve the handleability of the optical film 10. That is, the optical film of the present invention includes a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, and the concavo-convex structure layer has a first light diffusion with respect to the total mass of the concavo-convex structure layer.
  • the adhesive layer contains 1% to 40% by mass of second light diffusing fine particles with respect to the total mass of the adhesive layer, and further a protective film located on the adhesive layer It may be an optical film having The protective film 22 may be peeled off from the optical film 10 when the optical film 10 is bonded to the surface of the EL light emitting element 30.
  • Examples of the protective film 22 include known protective films.
  • Method for producing optical film 10 examples include a method using an apparatus 50 as shown in FIG.
  • the manufacturing method of the optical film 10 of this invention using the apparatus 50 shown in FIG. 5 is demonstrated, it is not limited to the manufacturing method using the apparatus 50 shown in FIG.
  • An active energy ray resin composition that is a raw material of the material 111 constituting the concavo-convex structure layer 11, the first fine particles 112 contained in the concavo-convex structure layer 11, and other components as necessary are mixed in a desired blending amount to obtain
  • the obtained mixture 51 is put in the storage tank 55 in advance.
  • a base material 15 having an adhesive layer 12 laminated thereon is introduced between a cylindrical roll mold 52 for forming the concavo-convex structure 13 and a rubber nip roll 53.
  • the mixture 51 is supplied between the rotating roll mold 52 and the base material 15 on which the adhesive layer 12 is laminated, through a pipe 56 having a nozzle attached to the tip from the tank 55.
  • the mixture 51 sandwiched between the rotating roll mold 52 and the base material 15 on which the adhesive layer 12 is laminated is cured by active energy rays in the vicinity of the active energy ray irradiation device 54.
  • the optical film 10 is obtained by releasing the obtained cured product from the roll mold 52.
  • the viscosity of the mixture 51 is preferably 10 mPa ⁇ s to 3000 mPa ⁇ s, more preferably 20 mPa ⁇ s to 2500 mPa ⁇ s, and even more preferably 30 mPa ⁇ s to 2000 mPa ⁇ s, since it is excellent in handling at the time of manufacturing the optical film 10. preferable.
  • Examples of the roll mold 52 include molds such as aluminum, brass, and steel; resin molds such as silicone resin, urethane resin, epoxy resin, ABS resin, fluororesin, and polymethylpentene resin; molds obtained by plating the resin; Examples include a mold made of a material obtained by mixing various metal powders with a resin.
  • a mold is preferable because of excellent heat resistance and mechanical strength and suitable for continuous production.
  • the mold is preferable in many respects such as being resistant to polymerization heat generation, hardly deforming, hardly scratched, temperature controllable, and suitable for precision molding.
  • the roll mold 52 needs to form a transfer surface having protrusions or depressions for forming the uneven structure 13 of the optical film 10.
  • Examples of the method for producing the transfer surface include cutting with a diamond tool, etching as described in International Publication No. 2008/069324 pamphlet, and the like. Among these methods for producing a transfer surface, etching as described in International Publication No. 2008/069324 is preferable because it is easy to form a curved protrusion or depression.
  • a metal thin film produced by using an electroforming method is wound around a roll core member from a master mold having a protrusion or a depression inverted from the protrusion or depression of the transfer surface, and a cylindrical shape is obtained.
  • a method of manufacturing the roll mold 52 can be used. In order to maintain the surface temperature, heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the roll mold 52 as necessary.
  • Examples of the active energy ray generated from the active energy ray irradiation device 54 include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because the active energy ray-curable composition is excellent in curability and can suppress deterioration of the optical film 10.
  • Examples of the active energy ray light source of the active energy ray irradiation device 54 include a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an electrodeless ultraviolet lamp, a visible light halogen lamp, and a xenon lamp.
  • the integrated light quantity of the active energy ray of the active energy ray irradiation apparatus 54 is not particularly limited, it is excellent in curability of the active energy ray curable composition and suppresses deterioration of the optical film 10, so that 0.01 J / cm 2. -10 J / cm 2 is preferable, and 0.5 J / cm 2 to 8 J / cm 2 is more preferable.
  • heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the tank 55 as necessary.
  • an adhesive layer containing 1% by mass to 40% by mass of the second light diffusing fine particles with respect to the total mass of the adhesive layer is provided on one surface of the substrate, Including providing the concavo-convex structure layer containing 1% by mass to 28% by mass of the first light diffusing fine particles with respect to the total mass of the concavo-convex structure layer on the other surface of the substrate.
  • an adhesive layer containing 1% by mass to 40% by mass of the second light diffusing fine particles is laminated on one surface of the substrate with respect to the total mass of the adhesive layer.
  • the optical film 10 described above can be provided on the light emission side of a surface light emitter described later. Specifically, it can be provided on the light emitting side of the EL light emitting element and used as a flat panel display or used as a lighting fixture.
  • the surface light emitter of the present invention includes the optical film 10 of the present invention.
  • Examples of the surface light emitter of the present invention include a surface light emitter as shown in FIG.
  • the surface light emitter of the present invention shown in FIG. 6 will be described, but the present invention is not limited to the surface light emitter shown in FIG.
  • the surface light emitter shown in FIG. 6 includes an EL light emitting element 30 in which a glass substrate 31, an anode 32, a light emitting layer 33, and a cathode 34 are sequentially laminated, an adhesive layer 21, and the optical film 10.
  • the optical film 10 is provided on the surface of the glass substrate 31 opposite to the surface on which the EL light emitting element 30 is formed via the adhesive layer 21.
  • a surface light emitter in which the optical film 10 of the present invention is provided on the EL light emitting element 30 is excellent in productivity, improves light extraction efficiency and normal luminance, and suppresses the emission angle dependency of the emission light wavelength.
  • the other side surface of the optical film of the present invention is an optical film having an uneven structure layer forming one surface and an adhesive layer forming the other surface, wherein the uneven structure layer is the uneven structure layer.
  • the first light diffusing fine particles are contained in an amount of 1% by mass to 28% by mass with respect to the total mass, and the adhesive layer contains 1% by mass to 40% by mass of the second light diffusing fine particles with respect to the total mass of the adhesive layer.
  • the constituent material may be an acrylic resin, and the constituent material of the adhesive layer may be an acrylic adhesive.
  • Another aspect of the optical film of the present invention is an optical film having a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, wherein the concavo-convex structure layer is a total mass of the concavo-convex structure layer.
  • the first light diffusing fine particles are contained in an amount of 1% by mass to 28% by mass
  • the adhesive layer contains the second light diffusing fine particles in an amount of 1% by mass to 40% by mass with respect to the total mass of the adhesive layer.
  • the material may be an acrylic resin
  • the material constituting the adhesive layer may be an acrylic adhesive
  • the first light diffusing fine particles and the second light diffusing fine particles may be silicone resins.
  • Another aspect of the optical film of the present invention is an optical film having a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, wherein the concavo-convex structure layer is a total mass of the concavo-convex structure layer.
  • the first light diffusing fine particles are contained in an amount of 5% by mass to 20% by mass
  • the adhesive layer contains the second light diffusing fine particles in an amount of 1% by mass to 40% by mass with respect to the total mass of the adhesive layer.
  • the material may be an acrylic resin
  • the material constituting the adhesive layer may be an acrylic adhesive.
  • the other side surface of the optical film of the present invention is an optical film having a concavo-convex structure layer forming one surface and an adhesive layer forming the other surface, wherein the concavo-convex structure layer is a total mass of the concavo-convex structure layer.
  • the first light diffusing fine particles are included in an amount of 1% to 28% by mass
  • the adhesive layer includes the second light diffusing fine particles in an amount of 2% to 30% by mass with respect to the total mass of the adhesive layer.
  • the material may be an acrylic resin, and the material constituting the adhesive layer may be an acrylic adhesive.
  • Another aspect of the optical film of the present invention is an optical film having a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, wherein the concavo-convex structure layer is a total mass of the concavo-convex structure layer.
  • the first light diffusing fine particles are contained in an amount of 5% by mass to 20% by mass, and the adhesive layer contains 2% by mass to 30% by mass of the second light diffusing fine particles with respect to the total mass of the adhesive layer.
  • the material may be an acrylic resin, and the material constituting the adhesive layer may be an acrylic adhesive.
  • optical film of the present invention is an optical film having a concavo-convex structure layer that forms one surface and an adhesive layer that forms the other surface, wherein the concavo-convex structure layer is a total mass of the concavo-convex structure layer.
  • the first light diffusing fine particles are contained in an amount of 1% by mass to 28% by mass
  • the adhesive layer contains the second light diffusing fine particles in an amount of 1% by mass to 40% by mass with respect to the total mass of the adhesive layer.
  • the material is an acrylic resin
  • the material constituting the adhesive layer is an acrylic adhesive
  • the adhesive layer with respect to the content of the first light diffusing fine particles contained in the uneven structure layer with respect to the total mass of the uneven structure layer is The ratio of the content ratio of the second light diffusing fine particles contained to the total mass of the adhesive layer may be 0.18 to 10.
  • the optical films obtained in the examples and comparative examples were cut into a 13 cm square size and allowed to stand so that the surface having the concavo-convex structure was on the flat surface. In this state, the distance from the flat surface at each of the four corners of the optical film was measured with a ruler, and the average value of the distances was taken as the amount of warpage of the optical film.
  • a light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples.
  • the organic EL light emitting element is turned on by supplying a current of 10 mA
  • the light emitted from the hole with a diameter of 10 mm of the light shielding sheet is emitted by a luminance meter (model name “BM-7”, manufactured by Topcon Corporation).
  • the brightness value of the surface light emitter was obtained by measuring from the normal direction of the surface light emitter.
  • the ratio of the luminance values of the surface light emitters obtained in Examples and Comparative Examples when the luminance value of the surface light emitter obtained in the reference example was 100% was defined as normal luminance.
  • a light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples.
  • the organic EL light emitting element is turned on by supplying a current of 10 mA
  • the light emitted from the hole with a diameter of 10 mm of the light shielding sheet is emitted by a luminance meter (model name “BM-7”, manufactured by Topcon Corporation).
  • the normal direction of the surface light emitter (0 °), the direction inclined by 10 ° from the normal direction of the surface light emitter, the direction inclined by 20 ° from the normal direction of the surface light emitter, and 30 from the normal direction of the surface light emitter.
  • the chromaticities u ′ and v ′ were measured.
  • the value when the distance is the longest is taken as the amount of chromaticity change. The smaller the chromaticity change amount, the more the emission angle dependency of the emission light wavelength of the surface light emitter is suppressed.
  • the polyethylene terephthalate substrate (protective film) coated with the release agent for the adhesive layer laminated substrate obtained in the examples was peeled off, and the adhesive layer laminated substrate was bonded to an alcohol wipe with a 2 kg roller, and 23 ⁇ 5 It was left in a room at 60 ° C. and 60 ⁇ 20% RH for 24 hours.
  • a 180 degree peel strength tester IPT200-50N (manufactured by Imada Co., Ltd.)
  • the adhesive layer laminated substrate was peeled in the 180 ° direction at a tensile speed of 300 mm / min while holding the polyethylene terephthalate base material.
  • the sample collection part was made into the center part of the edge part of the width direction of the adhesion layer lamination base material.
  • the value of the peel force was the average value of the two peel force measurements.
  • Adhesive solution A Adhesive solution produced in Example 1 to be described later (refractive index after drying 1.47) Active energy ray-curable composition A: Active energy ray-curable composition produced in Example 1 described later (refractive index of cured product 1.52)
  • Fine particles A Silicone resin spherical fine particles (trade name “Tospearl 120”, manufactured by Momentive Performance Materials, refractive index 1.42, volume average particle diameter 2 ⁇ m)
  • Fine particles B Cross-linked polymethyl methacrylate fine particles (trade name “MBX-8”, manufactured by Sekisui Plastics Co., Ltd., refractive index 1.49, volume average particle diameter 8 ⁇ m)
  • Fine particles C crosslinked polystyrene fine particles (trade name “SBX-8”, manufactured by Sekisui Plastics Co., Ltd., refractive index 1.59, volume average particle diameter 8 ⁇ m)
  • Organic EL light-emitting element A Organic EL light-emitting element surface released from Symfos OLED
  • Example 1 (Production of adhesive solution A) 99 parts of n-butyl acrylate, 1 part of 2-hydroxyethyl acrylate and 0.2 part of azobisisobutyronitrile are dissolved in ethyl acetate and reacted at 70 ° C. for 5 hours to obtain an acrylic resin solution having a solid content of 30%. Got. 0.5 parts of trimethylol polopantolylene diisocyanate was added to 100 parts of the solid content of the obtained acrylic resin solution to obtain an adhesive solution A.
  • a mixture A was obtained by mixing 98% of the adhesive solution A and 2% of the fine particles A.
  • the obtained mixture B is applied to the obtained roll mold, and is arranged so that the mixture B exists on the surface opposite to the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive layer laminated base material, and the thickness of the base layer is The film was uniformly stretched with a nip roll so as to be 20 ⁇ m. Then, the ultraviolet-ray was irradiated from the base material, the mixture B pinched
  • the size of the concavo-convex structure of the optical film calculated from an image taken with an electron microscope is such that the average longest diameter A ave is 49.5 ⁇ m and the average height B ave is 25.9 ⁇ m. Corresponding sphere-shaped projections were obtained. Also, from the image taken with an electron microscope, the uneven structure of the obtained optical film corresponds to the roll type and is arranged in a hexagonal array with a minimum interval of 10 ⁇ m, and the ratio of the area of the bottom surface of the spherical protrusion to the area of the optical film is 76%.
  • the polyethylene terephthalate base material (protective film) to which the release agent for the obtained optical film was applied was peeled off, and the surface of the adhesive layer was optically adhered to the light emitting surface side of the organic EL light emitting device A to obtain a surface light emitter.
  • Table 1 shows the warpage amount of the obtained optical film, the light extraction efficiency, the normal luminance, and the chromaticity change amount of the obtained surface light emitter.
  • Examples 2 to 6, Comparative Examples 1 to 5 An optical film and a surface light emitter were obtained in the same manner as in Example 1 except that the composition of the uneven structure layer and the adhesive layer was changed as shown in Table 1.
  • Table 1 shows the warpage amount of the obtained optical film, the light extraction efficiency, the normal luminance, and the chromaticity change amount of the obtained surface light emitter.
  • Examples 7 to 12, Comparative Examples 6 to 10 In the production of the mixture B, the operation was performed in the same manner as in Example 1 except that the fine particles B were used instead of the fine particles A, and the composition of the concavo-convex structure layer and the adhesive layer was changed as shown in Table 2.
  • Table 2 shows the warpage amount of the obtained optical film, the light extraction efficiency, the normal luminance, and the chromaticity change amount of the obtained surface light emitter.
  • Examples 13 to 18, Comparative Examples 11 to 15 In the production of the mixture B, the same operation as in Example 1 was performed except that the fine particles C were used instead of the fine particles A, and the composition of the concavo-convex structure layer and the adhesive layer was changed as shown in Table 3. Got the body. Table 3 shows the warpage amount of the obtained optical film, the light extraction efficiency, the normal luminance, and the chromaticity change amount of the obtained surface light emitter.
  • Example 19 Manufacture of adhesive layer laminated substrate
  • a release film made of a 38 ⁇ m polyethylene terephthalate substrate (protective film) coated with a silicone release agent on one side the mixture A of Example 1 was dried using a comma coater.
  • the adhesive solution A of Example 1 was applied onto the adhesive layer 2 using a comma coater so that the thickness of the adhesive layer after drying was 25 ⁇ m, and dried at 100 ° C. for 1 minute. 1 was formed.
  • the adhesive layer 1 indicates that the adhesive layer 1 has been peeled off at the interface with the adhesive layer 2. That is, among the interfaces of “polyethylene terephthalate base material—adhesive layer 1”, “adhesive layer 1—adhesive layer 2”, and “adhesive layer 2—glass substrate”, the adhesive layer 1—adhesive layer that has the smallest peel force It shows that peeling occurred at the interface with 2, and the value was measured.
  • the adhesive layer 2 -glass substrate has a numerical value, it indicates that the adhesive layer 2 was peeled off at the interface with the glass substrate.
  • Example 20 to 42 Except that the content of the fine particles A contained in the adhesive layer 1 and the content of the fine particles A contained in the adhesive layer 2 were changed as shown in Table 4, the same operation as in Example 19 was carried out, Obtained. Table 4 shows the peeling force of the obtained adhesive layer laminated substrate.
  • the optical films of the present invention obtained in Examples 1 to 6 have a small amount of warpage, excellent light extraction efficiency and normal luminance of the surface light emitter, and the emission light wavelength of the surface light emitter. The output angle dependency was suppressed.
  • the optical films obtained in Comparative Examples 1 to 3 have a large amount of warpage, and the surface light emitter obtained in Comparative Example 4 is inferior in normal luminance.
  • the surface light emitter obtained in Comparative Example 5 is The suppression of the emission angle dependence of the emission light wavelength was insufficient.
  • the optical films of the present invention obtained in Examples 7 to 12 have a small amount of warpage, excellent light extraction efficiency and normal luminance of the surface light emitter, and the emission wavelength of the surface light emitter. The output angle dependency was suppressed.
  • the optical films obtained in Comparative Examples 6 to 8 have a large amount of warpage, the surface light emitter obtained in Comparative Example 9 is inferior in normal luminance, and the surface light emitter obtained in Comparative Example 10 is The amount of change in chromaticity was inferior.
  • the optical films of the present invention obtained in Examples 13 to 18 have a small amount of warpage, excellent light extraction efficiency and normal luminance of the surface light emitter, and the emission light wavelength of the surface light emitter. The output angle dependency was suppressed.
  • the optical films obtained in Comparative Examples 11 to 13 have a large amount of warpage, and the surface light emitter obtained in Comparative Example 14 is inferior in normal luminance.
  • the surface light emitter obtained in Comparative Example 15 is The suppression of the emission angle dependence of the emission light wavelength was insufficient.
  • the adhesive layer laminated substrates obtained in Examples 19 to 21, 23 to 26, 28 to 31, 33 to 36, and 38 to 40 are the interfaces between the polyethylene terephthalate substrate and the adhesive layer 1 or Since peeling occurs at the interface between the adhesive layer 1 and the adhesive layer 2, it can be said that the adhesive force at the interface between the adhesive layer 2 and the glass substrate is relatively large. That is, the optical film of the present invention including the adhesive layer laminated substrate obtained in Examples 19 to 21, 23 to 26, 28 to 31, 33 to 36, and 38 to 40 is bonded to a glass substrate of an EL light emitting device. It is possible to create a surface light emitter with a strong surface.
  • the optical film of the present invention it is possible to obtain a surface light emitter that is excellent in light extraction efficiency and normal luminance and suppresses the output angle dependency of the emitted light wavelength. It can use suitably for etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Planar Illumination Modules (AREA)

Abstract

光学フィルムは、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、凹凸構造層は、凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、粘着層は、粘着層全質量に対し第2光拡散微粒子を1~40質量%含む。面発光体は、前記光学フィルムを含む。

Description

光学フィルム及び面発光体
 本発明は、光学フィルム及び面発光体に関する。
 本願は、2013年4月5日に、日本に出願された特願2013-079071号に基づき優先権を主張し、その内容をここに援用する。
 面発光体の中でも、有機EL(エレクトロルミネッセンス)発光素子は、フラットパネルディスプレイや蛍光灯等の代わりとなる次世代照明に用いられることが期待されている。
 有機EL発光素子の構造は、発光層となる有機薄膜を2つの電極で挟んだだけの単純な構造のものから、発光層を含み、有機薄膜を多層化した構造のものまで、多様化されている。後者の多層化した構造としては、例えば、ガラス基板上に設けられた陽極に、正孔輸送層、発光層、電子輸送層、陰極が積層されたものが挙げられる。陽極と陰極に挟まれた層は、すべて有機薄膜で構成され、各有機薄膜の厚さは、数十nmと非常に薄い。
 有機EL発光素子は、薄膜の積層体であり、各薄膜の材料の屈折率の差により、薄膜間での光の全反射角が決まる。現状では、発光層で発生した光の約80%が、有機EL発光素子内部に閉じ込められ、外部に取り出すことができていない。具体的には、ガラス基板の屈折率を1.5とし、空気層の屈折率を1.0とすると、臨界角θは41.8°であり、この臨界角θよりも小さい入射角の光はガラス基板から空気層へ出射するが、この臨界角θよりも大きい入射角の光は全反射してガラス基板内部に閉じ込められる。そのため、有機EL発光素子表面のガラス基板内部に閉じ込められた光をガラス基板外部に取り出す、即ち、光取り出し効率や法線輝度を向上することが要請されている。
 また、等方的発光を行うような有機EL発光素子に関しては、光取り出し効率や法線輝度の向上とともに、有機EL発光素子からの出射光波長の出射角度依存性を抑制することが要請されている。即ち、発光層からの出射光がガラス基板を通過してガラス基板から光が出射される際、波長による出射角度の違いが小さいこと、言い換えれば、ガラス基板からの出射光分布に波長依存性ができるだけ抑制されることが要請されている。
 前記課題を解決するために、特許文献1には凹凸構造に微粒子を含む光学フィルムを有機EL発光素子に貼り合わせた面発光体が提案されている。また、特許文献2には凹凸構造を有する光学フィルムを微粒子含有粘着剤で有機EL発光素子に貼り合わせた面発光体が提案されている。
特開2010-212204号公報 特開2012-18873号公報
 しかしながら、特許文献1に提案されている面発光体は、微粒子の含有率が高いと光学フィルムが反り、微粒子の含有率が低いと出射光波長の出射角度依存性が十分抑制されないという課題を有する。また、特許文献2に提案されている面発光体は、光取り出し効率や法線輝度に劣るという課題を有する。
 特に、光学フィルムの反り量が大きいと、光学フィルムを有機EL発光素子に貼り合わせるプロセスにおいて、生産性を大きく低下させる要因となる。
 そこで、本発明の目的は、反りの抑制、面発光体の光取り出し効率や法線輝度の向上及び面発光体の出射光波長の出射角度依存性の抑制を達成する光学フィルムを提供することにある。
 [1]一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む、光学フィルム。
 [2]前記粘着層全質量に対する前記第2光拡散微粒子の含有率が、20質量%~40質量%である、[1]に記載の光学フィルム。
 [3]前記凹凸構造層に含まれる前記第1光拡散微粒子の体積平均粒子径が、0.5μm~20μmである、[1]又は[2]に記載の光学フィルム。
 [4]前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径が、0.5μm~20μmである、[1]~[3]のいずれかに記載の光学フィルム。
 [5]前記凹凸構造層を構成する材料の屈折率と前記凹凸構造層に含まれる前記第1光拡散微粒子の屈折率との差が、0.02~0.30である、[1]~[4]のいずれかに記載の光学フィルム。
 [6]前記粘着層を構成する材料の屈折率と前記粘着層に含まれる前記第2光拡散微粒子の屈折率との差が、0.02~0.30である、[1]~[5]のいずれかに記載の光学フィルム。
 [7]前記凹凸構造層に含まれる前記第1光拡散微粒子の前記凹凸構造層全質量に対する含有率に対する前記粘着層に含まれる前記第2光拡散微粒子の前記粘着層全質量に対する含有率の比が、0.05~10である、[1]~[6]のいずれかに記載の光学フィルム。
 [8]前記凹凸構造層に含まれる前記第1光拡散微粒子の体積平均粒子径に対する前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径の比が、0.125~1.25である、[1]~[7]のいずれかに記載の光学フィルム。
 [9]前記凹凸構造層に含まれる前記第1光拡散微粒子の屈折率に対する前記粘着層に含まれる前記第2光拡散微粒子の屈折率の比が、0.80~1.05である、[1]~[8]のいずれかに記載の光学フィルム。
 [10]さらに前記凹凸構造層と接するベース層を含み、前記凹凸構造層及び前記ベース層の合計の厚さが、20μm~80μmである、[1]~[9]のいずれかに記載の光学フィルム。
 [11]前記粘着層の厚さが、5μm~50μmである、[1]~[10]のいずれかに記載の光学フィルム。
 [12]前記粘着層の厚さに対する前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径の比が、0.05~0.5である、[1]~[11]のいずれかに記載の光学フィルム。
 [13]前記凹凸構造層を構成する材料が、アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、シリコーン樹脂、エポキシ樹脂及びポリエステル樹脂からなる群より選ばれる少なくとも1種の材料である、[1]~[12]のいずれかに記載の光学フィルム。
 [14]前記粘着層を構成する材料が、アクリル系粘着剤である、[1]~[13]のいずれかに記載の光学フィルム。
 [15]前記凹凸構造層に含まれる前記第1光拡散微粒子の材料が、シリコーン樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、メラミン樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種の材料である、[1]~[14]のいずれかに記載の光学フィルム。
 [16]前記粘着層に含まれる前記第2光拡散微粒子の材料が、シリコーン樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、メラミン樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種の材料である、[1]~[15]のいずれかに記載の光学フィルム。
 [17]さらに基材を有し、前記粘着層、前記基材及び前記凹凸構造層が順次積層される、[1]~[16]のいずれかに記載の光学フィルム。
 [18][1]~[17]のいずれかに記載の光学フィルム及びEL発光素子を含む面発光体。
 [19]基材の一方の表面に、粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む粘着層を設け、前記基材の他方の表面に、凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含む前記凹凸構造層を設ける、光学フィルムの製造方法。
 また、本発明は、前記光学フィルムを含む面発光体に関する。
 本発明の光学フィルムは、反りを抑制し、面発光体の光取り出し効率や法線輝度を向上させ、出射光波長の出射角度依存性を抑制させる。
 また、本発明の面発光体は、生産性に優れ、光取り出し効率や法線輝度が向上し、出射光波長の出射角度依存性を抑制する。
本発明の光学フィルムの断面の一例を示す模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の配置例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの凹凸構造の一例を示す模式図である。 本発明の光学フィルムの凹凸構造の一例を示す模式図である。 本発明の光学フィルムの一例を光学フィルムの上方から見た模式図である。 本発明の光学フィルムの製造装置の一例を示す図である。 本発明の面発光体の一例を示す模式図である。
 以下、本発明の実施の形態について図面を用いながら説明するが、本発明はこれらの図面に限定されるものではない。
 (光学フィルム10)
 本発明の光学フィルム10は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する。
 本発明の光学フィルム10は、例えば、図1に示すような光学フィルム10等が挙げられる。
図1に示す光学フィルム10は、基材15と、表面層19と、粘着層12と、保護フィルム17を含む。表面層19は、凹凸構造層11と、ベース層14を含む。詳細は後述するが、凹凸構造層11は、第1微粒子(第1光拡散微粒子)112と材料111とで構成される。
 本発明の光学フィルム10は、凹凸構造層11の凹凸構造13の形状の維持に優れることから、図1に示すようなベース層14を設けることが好ましい。また、本発明の光学フィルム10は、取り扱い性、生産性に優れることから、基材15の一方の面に凹凸構造層11を、基材15の他方の面に粘着層12を設けることが好ましい。これらを勘案し、本発明の光学フィルム10は、粘着層12、基材15、ベース層14及び凹凸構造層11が順次積層されるフィルムが特に好ましい。
 (凹凸構造層11)
 凹凸構造層11には、後述する凹凸構造13の突起(凸部)又は窪み(凹部)が配置されている。
 凹凸構造層11の突起又は窪みは、光学フィルム10の生産性に優れることから、突起が好ましい。本明細書では、凹凸構造13の突起又は窪みのいずれか一方が存在する場合、又はそれらの両方が混在する場合も、単に凹凸構造13と表現する。
 凹凸構造13の形状としては、例えば、球欠形状、球欠台形状、楕円体球欠形状(回転楕円体を1つの平面で切り取った形状)、楕円体球欠台形状(回転楕円体を互いに平行な2つの平面で切り取った形状)、角錐形状、角錐台形状、円錐形状、円錐台形状、これらに関連する屋根型形状(球欠形状、球欠台形状、楕円体球欠形状、楕円体球欠台形状、角錐形状、角錐台形状、円錐形状又は円錐台形状が底面部に沿って伸長したような形状)等が挙げられる。これらの凹凸構造13の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凹凸構造13の形状の中でも、面発光体の光取り出し効率や法線輝度に優れることから、球欠形状、球欠台形状、楕円体球欠形状、楕円体球欠台形状等の球状が好ましく、球欠形状、楕円体球欠形状がより好ましい。
 なお、前記球状は真球状でなくてもよく、略球状であればよい。略球状とは、球状の表面が当該球状に外接する仮想の真球の表面から前記仮想の真球の中心から法線方向に対してずれた形状であり、そのずれ量は、前記仮想の真球の半径に対し、0~20%であってもよい。
また、本明細書において形状を「楕円」と表現する場合においては、真円を一方向又は多方向に伸長させた円形も含む。
 凹凸構造13の配置例を、図2A~図2Fに示す。
 凹凸構造13の配置としては、例えば、六方配列(図2A)、矩形配列(図2B)、菱形配列(図2C)、直線状配列(図2D)、円状配列(図2E)、ランダム配置(図2F)等が挙げられる。六方配列とは、六角形の各頂点および中点に凹凸構造13が配置され、該六角形の配置が連続的に配列されることを示す。矩形配列とは、矩形の各頂点に凹凸構造13が配置され、該矩形の配置が連続的に配列されることを示す。菱形配列とは、菱形の各頂点に凹凸構造13が配置され、該菱形の配置が連続的に配列されることを示す。直線状配列とは、直線状に凹凸構造13が配置されることを示す。円状配列とは、円に沿って凹凸構造13が配置されることを示す。
これらの凹凸構造13の配置の中でも、面発光体の光取り出し効率や法線輝度に優れることから、六方配列、矩形配列、菱形配列が好ましく、六方配列、矩形配列がより好ましい。
 凹凸構造13の一例を、図3A及び図3Bに示す。
 本明細書において、凹凸構造13の底面部16とは、凹凸構造13の底部(ベース層14を有する場合は、ベース層14との接面)の外周縁により囲まれる仮想的な面状部分をいう。
 また、本明細書において、凹凸構造13の底面部16の最長径Aとは、凹凸構造13の底面部16における最も長い部分の長さをいい、凹凸構造13の底面部16の平均最長径Aaveは、光学フィルム10の凹凸構造13を有する表面を電子顕微鏡にて撮影し、任意の凹凸構造13の底面部16の最長径Aを5箇所測定し、その平均値とする。
 更に、本明細書において、凹凸構造13の高さBとは、突起構造の場合は凹凸構造13の底面部16から最も高い部位までの高さをいい、窪み構造の場合は凹凸構造13の底面部16から最も低い部位までの高さをいい、凹凸構造13の平均高さBaveは、光学フィルム10の断面を電子顕微鏡にて撮影し、任意の凹凸構造13の高さBを5箇所測定し、その平均値とする。
 凹凸構造13の底面部16の平均最長径Aaveは、面発光体の光取り出し効率や法線輝度に優れることから、0.5μm~150μmが好ましく、1μm~130μmがより好ましく、2μm~100μmが更に好ましい。
 凹凸構造13の平均高さBaveは、面発光体の光取り出し効率や法線輝度に優れることから、0.25μm~75μmが好ましく、0.5μm~65μmがより好ましく、1μm~50μmが更に好ましい。
なお、凹凸構造層11とベース層14とを合わせた表面層19の厚さは、第1微粒子112を含有することが可能で光拡散性に優れることから、5μm~120μmが好ましく、10μm~110μmがより好ましく、15μm~100μmがさらに好ましく、20μm~80μmであることが特に好ましい。ここで、表面層19の厚さは、以下のように算出する。光学フィルム10の断面を電子顕微鏡にて撮影し、凹凸構造13が突起構造の場合はベース層14の底面部から凹凸構造13の最も高い部位までの寸法を任意の5箇所測定し、その平均値を求める。
 凹凸構造13のアスペクト比は、面発光体の光取り出し効率や法線輝度に優れることから、0.3~1.4が好ましく、0.35~1.3がより好ましく、0.4~1.0が更に好ましい。
 尚、凹凸構造13のアスペクト比は、凹凸構造13の平均高さBave/凹凸構造13の底面部16の平均最長径Aaveから算出する。
 凹凸構造13の底面部16の形状としては、例えば、円形、楕円形等が挙げられる。これらの凹凸構造13の底面部16の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凹凸構造13の底面部16の形状の中でも、面発光体の光取り出し効率や法線輝度に優れることから、円形、楕円形が好ましく、円形がより好ましい。
なお、前記円形は真円でなくてもよく、略円形であればよい。略円形とは、円形の表面が当該円形に外接する仮想の真円の円周から、前記仮想の真円の法線方向に対してずれた形状であり、そのずれ量は、前記仮想の真円の半径に対し、0~20%であってもよい。
また、本明細書において形状を「楕円」と表現する場合においては、真円を一方向又は多方向に伸長させた円形も含む。
 上方から見た光学フィルムの一例を、図4に示す。
 光学フィルム10の面積(図4でいう実線で囲まれた面積)に対する凹凸構造13の底面部16の面積(図4でいう点線で囲まれた面積)の割合は、面発光体の光取り出し効率や法線輝度に優れることから、20~99%が好ましく、25~95%がより好ましく、30~93%が更に好ましい。
 尚、凹凸構造13の底面部16がすべて同一の大きさの円形である場合、光学フィルム10の面積に対する凹凸構造13の底面部16の面積の割合の最大値は、91%程度となる。
 凹凸構造層11は、第1微粒子(第1光拡散微粒子)112と材料111とで構成される。
 凹凸構造層を構成する材料111としては、可視光波長域(概ね400nm~700nm)の光透過率が高い樹脂であれば特に限定されないが、例えば、樹脂、ガラス等が挙げられる。これらの凹凸構造層を構成する材料111の材料の中でも、取り扱い性、光学フィルムの生産性に優れることから、樹脂が好ましい。なお、本明細書において、「凹凸構造層を構成する材料」は、第1微粒子を含まないものとする。凹凸構造層を構成する材料111の透過率は、JIS K7361に準拠して測定した値が、50%以上であることが好ましい。
 樹脂としては、可視光波長域(概ね400nm~700nm)の光透過率が高い樹脂であれば特に限定されないが、例えば、アクリル樹脂;ポリカーボネート樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン、ABS樹脂等のスチレン樹脂;塩化ビニル樹脂等が挙げられる。これらの樹脂の中でも、可視光波長域の光透過率が高く、耐熱性、力学特性、成形加工性に優れることから、アクリル樹脂が好ましい。
 樹脂は、光学フィルム10の生産性に優れることから、活性エネルギー線硬化性組成物を活性エネルギー線を照射して硬化させた硬化樹脂が好ましい。
 活性エネルギー線としては、例えば、紫外線、電子線、X線、赤外線、可視光線等が挙げられる。これらの活性エネルギー線の中でも、活性エネルギー線硬化性組成物の硬化性に優れ、光学フィルム10の劣化を抑制することができることから、紫外線、電子線が好ましく、紫外線がより好ましい。
 活性エネルギー線硬化性組成物としては、活性エネルギー線により硬化できれば特に限定されないが、活性エネルギー線硬化性組成物の取り扱い性、硬化性に優れ、光学フィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、重合性単量体(A)、架橋性単量体(B)及び重合開始剤(C)を含む活性エネルギー線硬化性組成物が好ましい。
 重合性単量体(A)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、アルキル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシメチル-2-メチルビシクロヘプタン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、トリメチロールプロパンホルマール(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、カプロラクトン変性リン酸(メタ)アクリレート等の(メタ)アクリレート類;(メタ)アクリル酸;(メタ)アクリロニトリル;(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド等の(メタ)アクリルアミド類;ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA等)とエピクロルヒドリンとの縮合反応で得られるビスフェノール型エポキシ樹脂に、(メタ)アクリル酸又はその誘導体を反応させた化合物等のエポキシ(メタ)アクリレート類;スチレン、α-メチルスチレン等の芳香族ビニル類;ビニルメチルエーテル、ビニルエチルエーテル、2-ヒドロキシエチルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル類;エチレン、プロピレン、ブテン、イソブテン等のオレフィン類等が挙げられる。これらの重合性単量体(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの重合性単量体(A)の中でも、活性エネルギー線硬化性組成物の取り扱い性、硬化性に優れ、光学フィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、(メタ)アクリレート類、エポキシ(メタ)アクリレート類、芳香族ビニル類、オレフィン類が好ましく、(メタ)アクリレート類、エポキシ(メタ)アクリレート類がより好ましい。
 本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートをいう。
 活性エネルギー線硬化性組成物中の重合性単量体(A)の含有率は、活性エネルギー線硬化性組成物全質量に対し、0.5質量%~60質量%が好ましく、1質量%~57質量%がより好ましく、2質量%~55質量%が更に好ましい。重合性単量体(A)の含有率が0.5質量%以上であると、活性エネルギー線硬化性組成物の取り扱い性に優れる。また、重合性単量体(A)の含有率が60質量%以下であると、活性エネルギー線硬化性組成物の架橋性、硬化性に優れ、光学フィルム10の耐溶剤性に優れる。
 架橋性単量体(B)としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート類;ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート等のペンタ(メタ)アクリレート類;ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシ変性テトラ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリスエトキシレーテッドトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシレーテッドペンタエリスリトールトリ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、炭素数2~5の脂肪族炭化水素変性トリメチロールプロパントリ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等のトリ(メタ)アクリレート類;トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、メチルペンタンジオールジ(メタ)アクリレート、ジエチルペンタンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ビス(2-(メタ)アクリロイルオキシエチル)-2-ヒドロキシエチルイソシアヌレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエトキシレーテッドシクロヘキサンジメタノールジ(メタ)アクリレート、ポリプロポキシレーテッドシクロヘキサンジメタノールジ(メタ)アクリレート、ポリエトキシレーテッドビスフェノールAジ(メタ)アクリレート、ポリプロポキシレーテッドビスフェノールAジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、ポリエトキシレーテッド水添ビスフェノールAジ(メタ)アクリレート、ポリプロポキシレーテッド水添ビスフェノールAジ(メタ)アクリレート、ビスフェノキシフルオレンエタノールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのγ-ブチロラクトン付加物のジ(メタ)アクリレート、ネオペンチルグリコールのカプロラクトン付加物のジ(メタ)アクリレート、ブチレングリコールのカプロラクトン付加物のジ(メタ)アクリレート、シクロヘキサンジメタノールのカプロラクトン付加物のジ(メタ)アクリレート、ジシクロペンタンジオールのカプロラクトン付加物のジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物のジ(メタ)アクリレート、ビスフェノールAのカプロラクトン付加物のジ(メタ)アクリレート、水添ビスフェノールAのカプロラクトン付加物のジ(メタ)アクリレート、ビスフェノールFのカプロラクトン付加物のジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート類;ジアリルフタレート、ジアリルテレフタレート、ジアリルイソフタレート、ジエチレングリコールジアリルカーボネート等のジアリル類;アリル(メタ)アクリレート;ジビニルベンゼン;メチレンビスアクリルアミド;多塩基酸(フタル酸、コハク酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、テレフタル酸、アゼライン酸、アジピン酸等)と、多価アルコール(エチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール等)及び(メタ)アクリル酸又はその誘導体との反応で得られる化合物等のポリエステルジ(メタ)アクリレート類;ジイソシアネート化合物(トリレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート等)と、水酸基含有(メタ)アクリレート(2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能(メタ)アクリレート等)とを反応させた化合物、アルコール類(アルカンジオール、ポリエーテルジオール、ポリエステルジオール、スピログリコール化合物等の1種又は2種以上)の水酸基にジイソシアネート化合物を付加し、残ったイソシアネート基に、水酸基含有(メタ)アクリレートを反応させた化合物等のウレタン多官能(メタ)アクリレート類;ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等のジビニルエーテル類;ブタジエン、イソプレン、ジメチルブタジエン等のジエン類等が挙げられる。これらの架橋性単量体(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの架橋性単量体(B)の中でも、光学フィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、ヘキサ(メタ)アクリレート類、ペンタ(メタ)アクリレート類、テトラ(メタ)アクリレート類、トリ(メタ)アクリレート類、ジ(メタ)アクリレート類、ジアリル類、アリル(メタ)アクリレート、ポリエステルジ(メタ)アクリレート類、ウレタン多官能(メタ)アクリレート類が好ましく、ヘキサ(メタ)アクリレート類、ペンタ(メタ)アクリレート類、テトラ(メタ)アクリレート類、トリ(メタ)アクリレート類、ジ(メタ)アクリレート類、ポリエステルジ(メタ)アクリレート類、ウレタン多官能(メタ)アクリレート類がより好ましい。
 活性エネルギー線硬化性組成物中の架橋性単量体(B)の含有率は、活性エネルギー線硬化性組成物全質量に対し、30質量%~98質量%が好ましく、35質量%~97質量%がより好ましく、40質量%~96質量%が更に好ましい。架橋性単量体(B)の含有率が30質量%以上であると、活性エネルギー線硬化性組成物の架橋性、硬化性に優れ、光学フィルム10の耐溶剤性に優れる。また、架橋性単量体(B)の含有率が98質量%以下であると、光学フィルム10の柔軟性に優れる。
 重合開始剤(C)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、アセトイン、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、2,2-ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、ベンジルジメチルケタール、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-エチルアントラキノン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物類;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等のアシルフォスフィンオキサイド類等が挙げられる。これらの重合開始剤(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの重合開始剤(C)の中でも、活性エネルギー線硬化性組成物の取り扱い性、硬化性、光学フィルム10の光透過性に優れることから、カルボニル化合物、アシルフォスフィンオキサイド類が好ましく、カルボニル化合物がより好ましい。
 活性エネルギー線硬化性組成物中の重合開始剤(C)の含有率は、活性エネルギー線硬化性組成物全質量に対し、0.1質量%~10質量%が好ましく、0.5質量%~8質量%がより好ましく、1質量%~5質量%が更に好ましい。重合開始剤(C)の含有率が0.1質量%以上であると、活性エネルギー線硬化性組成物の取り扱い性、硬化性に優れる。また、重合開始剤(C)の含有率が10質量%以下であると、光学フィルム10の光透過性に優れる。
 凹凸構造層11を構成する材料111の屈折率は、光学フィルム10の光透過性に優れることから、1.40~2.00が好ましく、1.43~1.95がより好ましく、1.46~1.90が更に好ましい。凹凸構造層11を構成する材料111の屈折率は、20℃でナトリウムD線を用いて測定した値である。
 凹凸構造層11全質量に対する凹凸構造層11を構成する材料111の含有率は、72質量%~99質量%であり、75質量%~98質量%が好ましく、77質量%~97質量%がより好ましく、79質量%~96質量%が更に好ましい。凹凸構造層11全質量に対する凹凸構造層11を構成する材料111の含有率が72質量%以上であると、光学フィルム10の反りを抑制し、面発光体の光取り出し効率や法線輝度に優れる。また、凹凸構造層11全質量に対する凹凸構造層11を構成する材料111の含有率が99質量%以下であると、光学フィルム10の光拡散性に優れ、面発光体の出射光波長の出射角度依存性を抑制することができる。
 凹凸構造層11に含まれる第1微粒子112は、可視光波長域(概ね400nm~700nm)の光拡散効果を有する微粒子であれば特に限定されることはなく、公知の微粒子を用いることができる。凹凸構造層11に含まれる第1微粒子112は、1種を単独で用いてもよく、2種以上を併用してもよい。
 第1微粒子112の材料としては、例えば、金、銀、ケイ素、アルミニウム、マグネシウム、ジルコニウム、チタン、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン、セリウム等の金属;酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物;水酸化アルミニウム等の金属水酸化物;炭酸マグネシウム等の金属炭酸化物;窒化ケイ素等の金属窒化物;アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂等の樹脂等が挙げられる。これらの微粒子の材料は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの微粒子の材料の中でも、光学フィルム10の製造時の取り扱い性に優れることから、ケイ素、アルミニウム、マグネシウム、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、炭酸マグネシウム、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂が好ましく、酸化ケイ素、酸化アルミニウム、水酸化アルミニウム、炭酸マグネシウム、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂の粒子が好ましい。
 凹凸構造層11に含まれる第1微粒子112の屈折率は、光学フィルム10の光透過性に優れることから、1.30~2.00が好ましく、1.35~1.95がより好ましく、1.40~1.90が更に好ましい。第1微粒子112の屈折率は、20℃でナトリウムD線を用いて測定した値である。
 凹凸構造層11に含まれる第1微粒子112の体積平均粒子径は、0.5~20μmが好ましく、1μm~15μmがより好ましく、1.5μm~10μmが更に好ましい。凹凸構造層11に含まれる第1微粒子112の体積平均粒子径が0.5μm以上であると、可視波長域の光を効果的に散乱させることができる。また、凹凸構造層11に含まれる第1微粒子112の体積平均粒子径が20μm以下であると、面発光体の出射光波長の出射角度依存性を抑制することができる。
 尚、本明細書において、体積平均粒子径は、コールターカウンターにより測定したものを用いる。
 凹凸構造層11に含まれる第1微粒子112の形状としては、例えば、球状、円柱状、立方体状、直方体状、角錐状、円錐状、星型状、不定形状が挙げられる。これらの凹凸構造層11に含まれる第1微粒子112の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凹凸構造層11に含まれる第1微粒子112の形状の中でも、可視波長域の光を効果的に散乱させることができることから、球状、立方体状、直方体状、角錐状、星型状が好ましく、球状がより好ましい。
 凹凸構造層11全質量に対する凹凸構造層11に含まれる第1微粒子112の含有率は、1質量%~28質量%であり、2質量%~25質量%が好ましく、3質量%~23質量%がより好ましく、4質量%~21質量%が更に好ましい。凹凸構造層11全質量に対する凹凸構造層11に含まれる第1微粒子112の含有率が1質量%以上であると、光学フィルム10の光拡散性に優れ、面発光体の出射光波長の出射角度依存性を抑制することができる。また、凹凸構造層11全質量に対する凹凸構造層11に含まれる第1微粒子112の含有率が28質量%以下であると、光学フィルム10の反りを抑制し、面発光体の光取り出し効率や法線輝度に優れる。
 なお、凹凸構造層11全質量に対する凹凸構造層11に含まれる第1微粒子112の含有率は、表面層19全質量に対する表面層19に含まれる第1微粒子112の含有率と実質的に同じであってもよく、異なってもよい。
 材料111と第1微粒子112の屈折率差を有することで、第1微粒子112の光拡散効果が生じる。材料111と第1微粒子112の屈折率差は、面発光体の出射光波長の出射角度依存性を抑制することができることから、0.02~0.30が好ましく、0.03~0.25がより好ましく、0.04~0.20が更に好ましい。
 材料111と第1微粒子112の組合せとしては、例えば、材料111がアクリル樹脂で第1微粒子112がケイ素微粒子、材料111がアクリル樹脂で第1微粒子112がアルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112がマグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112が酸化ケイ素微粒子、材料111がアクリル樹脂で第1微粒子112が酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が酸化マグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112が水酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が炭酸マグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112がアクリル樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がスチレン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がシリコーン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がウレタン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がメラミン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がエポキシ樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がケイ素微粒子、材料111がポリカーボネート樹脂で第1微粒子112がアルミニウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112がマグネシウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112が酸化ケイ素微粒子、材料111がポリカーボネート樹脂で第1微粒子112が酸化アルミニウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112が酸化マグネシウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112が水酸化アルミニウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112が炭酸マグネシウム微粒子、材料111がポリカーボネート樹脂で第1微粒子112がアクリル樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がスチレン樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がシリコーン樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がウレタン樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がメラミン樹脂微粒子、材料111がポリカーボネート樹脂で第1微粒子112がエポキシ樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がケイ素微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がアルミニウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がマグネシウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112が酸化ケイ素微粒子、材料111がポリエチレンテレフタレートで第1微粒子112が酸化アルミニウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112が酸化マグネシウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112が水酸化アルミニウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112が炭酸マグネシウム微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がアクリル樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がスチレン樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がシリコーン樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がウレタン樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がメラミン樹脂微粒子、材料111がポリエチレンテレフタレートで第1微粒子112がエポキシ樹脂微粒子等が挙げられる。これらの材料111と第1微粒子112の組合せの中でも、光学フィルム10の耐熱性、力学特性、成形加工性に優れ、屈折率差が前記好ましい範囲であり、面発光体の光取り出し効率に優れることから、材料111がアクリル樹脂で第1微粒子112がケイ素微粒子、材料111がアクリル樹脂で第1微粒子112がアルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112がマグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112が酸化ケイ素微粒子、材料111がアクリル樹脂で第1微粒子112が酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が酸化マグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112が水酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が炭酸マグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112がアクリル樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がスチレン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がシリコーン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がウレタン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がメラミン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がエポキシ樹脂微粒子が好ましく、材料111がアクリル樹脂で第1微粒子112が酸化ケイ素微粒子、材料111がアクリル樹脂で第1微粒子112が酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が水酸化アルミニウム微粒子、材料111がアクリル樹脂で第1微粒子112が炭酸マグネシウム微粒子、材料111がアクリル樹脂で第1微粒子112がアクリル樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がスチレン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がシリコーン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がウレタン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がメラミン樹脂微粒子、材料111がアクリル樹脂で第1微粒子112がエポキシ樹脂微粒子がより好ましい。
 凹凸構造層11は、性能を損なわない範囲で、材料111や第1微粒子112以外にも他の成分を含んでもよい。
 他の成分としては、例えば、離型剤、難燃剤、帯電防止剤、レべリング剤、防汚性向上剤、分散安定剤、粘度調整剤、光安定剤、酸化防止剤、染料・顔料等の着色剤等の各種添加剤が挙げられる。
 凹凸構造層11全質量に対する他の成分の含有率は、3質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。凹凸構造層11中の他の成分の含有率が凹凸構造層11を構成する材料の全質量に対して3質量%以下であると、光学フィルム10の性能の低下を抑制できる。
 本発明の光学フィルム10は、凹凸構造13を保護し、光学フィルム10の取り扱い性を高めるため、凹凸構造13を有する表面に保護フィルムを設けてもよい。前記保護フィルムは、光学フィルム10を使用する際に、光学フィルム10から剥がせばよい。
 保護フィルムとしては、例えば、公知の保護フィルム等が挙げられる。
 (ベース層14)
 凹凸構造層11の凹凸構造13の形状の維持のために、凹凸構造層11と基材15の間にベース層14を設けてもよい。
 ベース層14の材料は、光学フィルム10の生産性に優れることから、凹凸構造層11と同一の組成であることが好ましい。
 ベース層14の厚さは、3μm~70μmが好ましく、5μm~60μmがより好ましく、10μm~50μmが更に好ましい。ベース層14の厚さが3μm以上であると、凹凸構造層11と同一の組成である(第1微粒子を含む)ことで面発光体の出射光波長の出射角度依存性を抑制することができる。また、ベース層14の厚さが40μm以下であると、光学フィルム10の反りを抑制し、面発光体の光取り出し効率や法線輝度に優れる。なお、本実施形態におけるベース層14の厚さは、ベース層14における任意の5点の厚さの平均値である。
 (基材15)
 光学フィルム10の取り扱い性、生産性を高めるために、凹凸構造層11(ベース層14を有する場合はベース層14)と粘着層12の間に、基材15を設けてもよい。
 基材15としては、活性エネルギー線硬化組成物の硬化性に優れることから、活性エネルギー線を透過する基材が好ましい。また、表面凹凸構造層11へ光を透過するため、基材18は可視光を透過することが好ましい。具体的には、基材18へ入射する可視光に対する基材18を透過する可視光の透過率は、50%以上であることが好ましい。なお光透過率は、JIS K7361に準拠して測定した値である。
 基材15の材料としては、例えば、アクリル樹脂;ポリカーボネート樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン、ABS樹脂等のスチレン樹脂;塩化ビニル樹脂;ジアセチルセルロース、トリアセチルセルロース等のセルロース樹脂;ポリイミド、ポリイミドアミド等のイミド樹脂;ガラスが挙げられる。これらの基材15の材料の中でも、柔軟性に優れ、活性エネルギー線の透過性に優れることから、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、スチレン樹脂、セルロース樹脂、イミド樹脂が好ましく、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、イミド樹脂がより好ましい。
 基材15の厚さは、活性エネルギー線硬化組成物の硬化性に優れることから、10μm~1,000μmが好ましく、20μm~500μmがより好ましく、25μm~300μmが更に好ましい。
 基材15は、凹凸構造層11(ベース層14を有する場合はベース層14)と基材15との密着性を向上させるため、必要に応じて、基材15の表面に易接着処理を施してもよい。
 易接着処理の方法としては、例えば、基材15の表面にポリエステル樹脂、アクリル樹脂、ウレタン樹脂等からなる易接着層を形成する方法、基材15の表面を粗面化処理する方法等が挙げられる。
 基材15は、易接着処理以外にも、必要に応じて、帯電防止、反射防止、基材同士の密着防止等の表面処理を施してもよい。
 (粘着層12)
 粘着層12は、第2微粒子(第2光拡散微粒子)122と材料121とで構成される。
 粘着層12を構成する材料121としては、EL発光素子30等に貼り合わせることができれば特に限定されないが、例えば、アクリル系粘着剤、天然ゴム系粘着剤、合成ゴム系粘着剤、シリコーン系粘着剤、ポリウレタン系粘着剤、エポキシ系粘着剤等が挙げられる。これらの粘着層12を構成する材料121は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの粘着層12を構成する材料121の中でも、粘着力が高く、光学フィルム10の耐候性、柔軟性、耐熱性に優れることから、アクリル系粘着剤が好ましい。
なお、本明細書において、「粘着層を構成する材料」は、第2微粒子を含まないものとする。
 粘着層12をEL発光素子30等に貼り合わせる際、その界面は、光学密着していることが好ましい。
 アクリル系粘着剤としては、例えば、主成分となるアルキル(メタ)アクリレート、極性単量体、必要に応じて、架橋剤を含む単量体組成物を共重合した共重合体が挙げられる。
 アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレートが挙げられる。これらのアルキル(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのアルキル(メタ)アクリレートの中でも、ガラス転移温度が低く、低温でも粘着力が高いことから、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。
 極性単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有単量体類;(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸等のカルボキシル基含有単量体類;N-ビニルピロリドン、N-ビニルカプロラクタム、アクリロイルモルホルン、(メタ)アクリルアミド等の窒素含有単量体類;グリシジル(メタ)アクリレート等のエポキシ基含有単量体類等が挙げられる。これらの極性単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの極性単量体は、架橋剤を用いて共重合する場合には、架橋点として作用する。
 架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチロールプロパントリレンジイソシアネート、ジフェニルメタントリイソシアネート等のイソシアネート架橋剤;ビスフェノールA、エピクロルヒドリン型のエポキシ樹脂、エチレングリコールグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル等のエポキシ架橋剤;ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン等のアミン架橋剤;アルミニウム、鉄、亜鉛、スズ、チタン、ニッケル等の多価金属がアセチルアセトンやアセト酢酸エチルに配位した金属キレート架橋剤;N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキサイド)、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキサミド)、トリエチレンメラミン、ビスイソフタロイル-1-(2-メチルアジリジン)、トリ-1-アジリジニルホスフィンオキサイド等のアジリジン架橋剤等が挙げられる。これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単量体組成物全質量に対する架橋剤の含有率は、0.01質量%~20質量%が好ましく、0.05質量%~15質量%がより好ましい。単量体組成物全質量に対する架橋剤の含有率が0.01質量%以上であると、粘着層12を構成する材料121が軟らか過ぎず、EL発光素子30等に貼り合わせる際に粘着層12がはみ出ることを抑制することができる。単量体組成物全質量に対する架橋剤の含有率が20質量%以下であると、粘着力が高い。
 共重合体の質量平均分子量は、粘着力が高く、剪断力が高いことから、30万~200万が好ましく、50万~150万がより好ましい。
 単量体組成物の重合方法としては、例えば、バルク重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。
 単量体組成物を重合する際に、必要に応じて、重合開始剤を用いてもよい。
 重合開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ重合開始剤;過酸化ラウロイル、過酸化ベンゾイル等の過酸化物重合開始剤;ベンゾフェノン等のベンゾフェノン重合開始剤;2-メチルチオキサントン等のチオキサントン重合開始剤;ベンゾインエチルエーテル等のベンゾインエーテル重合開始剤等が挙げられる。これらの重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの重合開始剤の中でも、重合性に優れることから、アゾビスイソブチロニトリル等のアゾ重合開始剤が好ましい。
 粘着層12の積層方法としては、例えば、粘着層12を構成する材料121を溶媒に溶解し、得られた溶液に粘着層に含まれる第2微粒子122を分散させ、基材15に塗布し、溶媒を乾燥させる方法が挙げられる。
 粘着層12を構成する材料121を溶解させる溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン等が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 溶媒に粘着層12を構成する材料121を溶解させた溶液には、性能を損なわない範囲で、他の成分を含んでもよい。
 他の成分としては、粘度調整剤、可塑剤、充填剤、紫外線吸収剤、難燃剤、帯電防止剤、光安定剤、酸化防止剤、染料・顔料等の着色剤等の各種添加剤が挙げられる。
 溶媒に粘着層12を構成する材料121を溶解させた溶液の粘度は、23℃において、500mPa・s~6,000mPa・sが好ましく、1,000mPa・s~5,000mPa・sがより好ましい。溶媒に粘着層12を構成する材料121を溶解させた溶液の粘度が500mPa・s以上であると、粘着層に含まれる第2微粒子122の分散安定性に優れる。また、溶媒に粘着層12を構成する材料121を溶解させた溶液の粘度が6,000mPa・s以下であると、粘着層21の積層が容易である。
 粘着層12の厚さは、5μm~50μmが好ましく、7~40μmがより好ましく、10μm~30μmが更に好ましい。粘着層12の厚さが5μm以上であると、貼り合わせる材料との密着性に優れる。また、粘着層12の厚さが50μm以下であると、粘着層21の積層が容易である。なお、本実施形態における粘着層12の厚さは、粘着層12における任意の5点の厚さの平均値である。
 粘着層12を構成する材料121の屈折率は、EL発光素子30等の表面のガラス等の基板に貼り合わせるため、そのガラス等の基板に近い屈折率が好ましく、具体的には1.40~2.00が好ましく、1.43~1.95がより好ましく、1.46~1.90が更に好ましい。
 粘着層12全質量に対しする粘着層12を構成する材料121の含有率は、60質量%~99質量%であり、62質量%~98質量%が好ましく、65質量%~97質量%がより好ましく、68質量%~96質量%が更に好ましい。粘着層12中の粘着層12を構成する材料121の含有率が60質量%以上であると、光学フィルム10の光透過性に優れ、面発光体の光取り出し効率や法線輝度に優れる。また、粘着層12中の粘着層12を構成する材料121の含有率が99質量%以下であると、光学フィルム10の光拡散性に優れ、面発光体の出射光波長の出射角度依存性を抑制することができる。
 粘着層12に含まれる第2微粒子122の材料、体積平均粒子径、形状は、先述した凹凸構造層11に含まれる第1微粒子112と同様のものを用いることができ、同様の理由で同様の範囲が好ましい。
第1微粒子112と第2微粒子122の材料の体積平均粒子径、形状は、それぞれ同じであってもよいし、それぞれ異なっていてもよい。
なお、凹凸構造層11に含まれる第1微粒子112の屈折率に対する粘着層12に含まれる第2微粒子122の屈折率の比が、0.80~1.05であることが好ましい。
また、粘着層12の厚さに対する粘着層12に含まれる第2微粒子122の体積平均粒子径の比が、0.05~0.5であることが好ましい。
 粘着層12に含まれる第2微粒子122の屈折率は、光学フィルム10の光透過性に優れることから、1.30~2.00が好ましく、1.35~1.95がより好ましく、1.40~1.90が更に好ましい。
また、凹凸構造層11に含まれる第1微粒子112の屈折率に対する粘着層12に含まれる第2微粒子122の屈折率の比が、0.80~1.05であることが好ましい。
 粘着層12の全質量に対する粘着層12に含まれる第2微粒子122の含有率は、1質量%~40質量%であり、2質量%~38質量%が好ましく、3質量%~35質量%がより好ましく、4質量%~32質量%が更に好ましい。粘着層12の全質量に対する粘着層12に含まれる第2微粒子122の含有率が1質量%以上であると、光学フィルム10の光拡散性に優れ、面発光体の出射光波長の出射角度依存性を抑制することができる。また、粘着層12の全質量に対する粘着層12に含まれる第2微粒子122の含有率が40質量%以下であると、光学フィルム10の光透過性に優れ、面発光体の光取り出し効率や法線輝度に優れる。
 材料121と第2微粒子122の屈折率差を有することで、第2微粒子122の光拡散効果が生じる。材料121と第2微粒子122の屈折率差は、面発光体の出射光波長の出射角度依存性を抑制することができることから、0.02~0.30が好ましく、0.03~0.25がより好ましく、0.04~0.20が更に好ましい。
 材料121と第2微粒子122の組合せとしては、例えば、先述した材料111と第1微粒子112の組合せが挙げられ、同様の理由で同様の範囲が好ましい。
 また、凹凸構造層11に含まれる第1微粒子112の凹凸構造層11全質量に対する含有率に対し、粘着層12に含まれる第2微粒子122の粘着層12全質量に対する含有率の比が、0.05~10であることが好ましい。
 さらに、粘着層12は、2層構造であってもよい。具体的には、粘着層12は、粘着層12を構成する材料121と第2微粒子122の含有率がそれぞれ異なる第1の層及び第2の層を含んでいてもよい。
第1の層及び第2の層のうち、基材15と接する層を第1の層とすると、第1の層の全質量に対する、第1の層に含まれる第2の微粒子122の含有率は、0質量%~50質量%が好ましい。第1の層上に配置される層を第2の層とすると、第2の層の全質量に対する、第2の層に含まれる第2の微粒子122の含有率は、0質量%~50質量%が好ましい。
第1の層の全質量に対する、第1の層に含まれる第2の微粒子122の含有率が0質量%~20質量%であり、第2の層に含まれる第2の微粒子122の含有率が0質量%~20質量%である場合は、基材15と第1の層との接着力が、第1の層と第2の層との接着力及び第2の層と第2の層と接着するEL発光素子との接着力より小さくなる傾向がある。第1の層の全質量に対する、第1の層に含まれる第2の微粒子122の含有率が0質量%~20質量%であり、第2の層に含まれる第2の微粒子122の含有率が20質量%~50質量%である場合は、第2の層と接着するEL発光素子との接着力が、基材15と第1の層との接着力及び第1の層と第2の層との接着力より小さくなる傾向がある。
第1の層の全質量に対する、第1の層に含まれる第2の微粒子122の含有率が20質量%~50質量%であり、第2の層に含まれる第2の微粒子122の含有率が0質量%~5質量%である場合は、第1の層と第2の層との接着力が、基材15と第1の層との接着力及び第2の層と第2の層と接着するEL発光素子との接着力より小さくなる傾向がある。
 接着力の大小は、適宜設定することができる。接着力の大小を制御することで、面発光体やその製造において、以下のような利点がある。
 基材15と第1の層との接着力が小さい場合や第1の層と第2の層との接着力が小さい場合、第2の層と接着するEL発光素子との接着力が大きく、EL発光素子のガラス基板との接着面が強固な面発光体を作成することが可能である。
 第2の層と接着するEL発光素子との接着力が小さい場合、EL発光素子のガラス基板に光学フィルムを貼り直す必要が生じた場合にも、光学フィルムを破壊することがないため、面発光体を製造する際の生産性を向上することが可能である。
 本発明の光学フィルム10は、粘着層12を保護し、光学フィルム10の取り扱い性を高めるため、粘着層12を有する表面に保護フィルム17を設けてもよい。すなわち、本発明の光学フィルムは、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層とを含み、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含んでおり、さらに前記粘着層上に位置する保護フィルムを有する光学フィルムであってもよい。
保護フィルム22は、EL発光素子30の表面に光学フィルム10を貼り合わせる際に、光学フィルム10から剥がせばよい。
 保護フィルム22としては、例えば、公知の保護フィルム等が挙げられる。
 (光学フィルム10の製造方法)
 本発明の光学フィルム10の製造方法は、例えば、図5に示すような装置50を用いる方法が挙げられる。
 以下、図5に示す装置50を用いた本発明の光学フィルム10の製造方法について説明するが、図5に示す装置50を用いた製造方法に限定されるものではない。
 凹凸構造層11を構成する材料111の原料となる活性エネルギー線樹脂組成物、凹凸構造層11に含まれる第1微粒子112、必要に応じて他の成分を所望の配合量にて混合し、得られた混合物51を貯蔵タンク55に予め入れておく。
 凹凸構造13を形成するための円筒形のロール型52とゴム製のニップロール53との間に、粘着層12を積層した基材15を導入する。この状態で、回転するロール型52と粘着層12を積層した基材15との間に、タンク55から先端にノズルを取り付けた配管56を通して、混合物51を供給する。
 回転するロール型52と粘着層12を積層した基材15との間に挟まれた混合物51は、活性エネルギー線照射装置54付近で活性エネルギー線により硬化される。得られた硬化物をロール型52から離型することで、光学フィルム10が得られる。
 混合物51の粘度は、光学フィルム10の製造時の取り扱い性に優れることから、10mPa・s~3000mPa・sが好ましく、20mPa・s~2500mPa・sがより好ましく、30mPa・s~2000mPa・sが更に好ましい。
 ロール型52としては、例えば、アルミニウム、黄銅、鋼等の金型;シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ABS樹脂、フッ素樹脂、ポリメチルペンテン樹脂等の樹脂型;樹脂にめっきを施した型;樹脂に各種金属粉を混合した材料で作製した型等が挙げられる。これらのロール型52の中でも、耐熱性や機械強度に優れ、連続生産に適していることから、金型が好ましい。具体的には、金型は、重合発熱に強い、変形しにくい、傷が付きにくい、温度制御が可能である、精密成形に適している等の多くの点で好ましい。
 ロール型52は、光学フィルム10の凹凸構造13を形成するための突起又は窪みを有する転写面を形成する必要がある。
 転写面の製造方法としては、例えば、ダイヤモンドバイトによる切削、国際公開2008/069324号パンフレットに記載されるようなエッチング等が挙げられる。これらの転写面の製造方法の中でも、曲面を有する突起又は窪みを形成するのに容易であることから、国際公開2008/069324号パンフレットに記載されるようなエッチングが好ましい。
 また、転写面の製造方法としては、転写面の突起又は窪みと反転した突起又は窪みを有するマスター型から、電鋳法を用いて作製した金属薄膜をロール芯部材に巻きつけて、円筒形のロール型52を製造する方法を用いることができる。
 ロール型52の内部又は外部には、表面温度を維持するために、必要に応じて、シーズヒータや温水ジャケット等の熱源設備を設けてもよい。
 活性エネルギー線照射装置54から発生する活性エネルギー線としては、例えば、紫外線、電子線、X線、赤外線、可視光線等が挙げられる。これらの活性エネルギー線の中でも、活性エネルギー線硬化性組成物の硬化性に優れ、光学フィルム10の劣化を抑制することができることから、紫外線、電子線が好ましく、紫外線がより好ましい。
 活性エネルギー線照射装置54の活性エネルギー線の発光光源としては、例えば、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、無電極紫外線ランプ、可視光ハロゲンランプ、キセノンランプ等が挙げられる。
 活性エネルギー線照射装置54の活性エネルギー線の積算光量は、特に限定されないが、活性エネルギー線硬化性組成物の硬化性に優れ、光学フィルム10の劣化を抑制することから、0.01J/cm~10J/cmが好ましく、0.5J/cm~8J/cmがより好ましい。
 タンク55の内部又は外部には、混合物51の保管温度を維持するために、必要に応じて、シーズヒータや温水ジャケット等の熱源設備を設けてもよい。
 つまり、本発明の一側面として、光学フィルムの製造方法は、基材の一方の表面に、粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む粘着層を設け、前記基材の他方の表面に、凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含む前記凹凸構造層を設けることを含む。
 また、本発明の他の側面として、光学フィルムの製造方法は、基材の一方の表面に、粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む粘着層を積層し、前記基材の他方の表面に、凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含む前記凹凸構造層を塗布及び硬化することで形成することを含む。
 上述した光学フィルム10は、後述する面発光体の光射出側に設けることができる。具体的には、EL発光素子の光射出側に設け、フラットパネルディスプレイとして利用したり、照明器具として使用したりすることができる。
 (面発光体)
 本発明の面発光体は、本発明の光学フィルム10を含む。
 本発明の面発光体は、例えば、図6に示すような面発光体が挙げられる。
 以下、図6に示す本発明の面発光体について説明するが、図6に示す面発光体に限定されるものではない。
 図6に示す面発光体は、ガラス基板31、陽極32、発光層33、陰極34を順次積層しているEL発光素子30と、粘着層21と、光学フィルム10を含む。ガラス基板31のEL発光素子30が形成されている面と反対側の表面に、粘着層21を介して、光学フィルム10が設けられている。
 EL発光素子30に本発明の光学フィルム10を設けた面発光体は、生産性に優れ、光取り出し効率や法線輝度が向上し、出射光波長の出射角度依存性を抑制する。
 なお、本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であってもよい。
 本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であり、前記第1光拡散微粒子及び第2光拡散微粒子がシリコーン樹脂であってもよい。
 本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を5質量%~20質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であってもよい。
 本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を2質量%~30質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であってもよい。
 本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を5質量%~20質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を2質量%~30質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であってもよい。
 本発明の光学フィルムの他の側面は、一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含み、前記凹凸構造を構成する材料がアクリル樹脂であり、前記粘着層を構成する材料がアクリル系粘着剤であり、前記凹凸構造層に含まれる前記第1光拡散微粒子の前記凹凸構造層全質量に対する含有率に対する前記粘着層に含まれる前記第2光拡散微粒子の前記粘着層全質量に対する含有率の比が、0.18~10であってもよい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 尚、実施例中の「部」及び「%」は、「質量部」及び「質量%」を示す。
 (反りの評価)
 実施例・比較例で得られた光学フィルムを13cm角サイズにカットし、平らな面上に凹凸構造を有する面が上になるように静置した。この状態で、光学フィルムの4隅それぞれにおける平らな面からの距離をものさしで測定し、その距離の平均値をその光学フィルムの反り量とした。
 (光取り出し効率の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置し、これを、積分球(ラブスフェア社製、大きさ6インチ)のサンプル開口部に配置した。この状態で、有機EL発光素子に10mAの電流を通電して点灯した時の、遮光シートの直径10mmの穴から出射する光を、分光計測器(分光器:機種名「PMA-12」(浜松フォトニクス社製)、ソフトウェア:ソフト名「PMA用基本ソフトウェアU6039-01ver.3.3.1」)にて測定し、標準視感度曲線による補正を行って、面発光体の光子数を算出した。
 参考例で得られた面発光体の光子数を100%としたときの、実施例・比較例で得られた面発光体の光子数の割合を、光取り出し効率とした。
 (法線輝度の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置した。この状態で、有機EL発光素子に10mAの電流を通電した点灯した時の、遮光シートの直径10mmの穴から出射する光を、輝度計(機種名「BM-7」、トプコン社製)にて、面発光体の法線方向から測定し、面発光体の輝度値を得た。
 参考例で得られた面発光体の輝度値を100%としたときの、実施例・比較例で得られた面発光体の輝度値の割合を、法線輝度とした。
 (色度変化量の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置した。この状態で、有機EL発光素子に10mAの電流を通電した点灯した時の、遮光シートの直径10mmの穴から出射する光を、輝度計(機種名「BM-7」、トプコン社製)にて、面発光体の法線方向(0°)、面発光体の法線方向から10°傾けた方向、面発光体の法線方向から20°傾けた方向、面発光体の法線方向から30°傾けた方向、面発光体の法線方向から40°傾けた方向、面発光体の法線方向から50°傾けた方向、面発光体の法線方向から60°傾けた方向、面発光体の法線方向から70°傾けた方向、面発光体の法線方向から75°傾けた方向、面発光体の法線方向から80°傾けた方向から、それぞれL表色系の色度u’、v’を測定した。各角度のu’の値及びu’の平均値を横軸に、各角度のv’の値及びv’の平均値を縦軸にプロットし、u’及びv’の平均値をプロットした点から各角度のu’及びv’の値をプロットした点までの距離を算出し、その距離が最も長くなる時の値を色度変化量とした。
 尚、色度変化量が小さいほど、面発光体の出射光波長の出射角度依存性が抑制されたことを意味する。
 (剥離力の測定)
 実施例で得られた粘着層積層基材の剥離剤が塗布されたポリエチレンテレフタレート基材(保護フィルム)を剥がし、粘着層積層基材をアルコール拭きガラスに2kgのローラーにて貼り合わせ、23±5℃、60±20%RHの室内に24時間放置した。
 180度剥離強度試験機、IPT200-50N(株式会社イマダ製)を用い、ポリエチレンテレフタレート基材を保持しながら、引張スピード300mm/minで180°方向に粘着層積層基板を剥離した。サンプル採取部分は、粘着層積層基材の幅方向端部中央部とした。剥離力の値は、2回の剥離力測定値の平均値とした。
 (材料)
 粘着剤溶液A:後述する実施例1で製造した粘着剤溶液(乾燥後の屈折率1.47)
 活性エネルギー線硬化性組成物A:後述する実施例1で製造した活性エネルギー線硬化性組成物(硬化物の屈折率1.52)
 微粒子A:シリコーン樹脂球状微粒子(商品名「トスパール120」、モメンティブ・パフォーマンス・マテリアルズ社製、屈折率1.42、体積平均粒子径2μm)
 微粒子B:架橋ポリメタクリル酸メチル微粒子(商品名「MBX-8」、積水化成品工業株式会社製、屈折率1.49、体積平均粒子径8μm)
 微粒子C:架橋ポリスチレン微粒子(商品名「SBX-8」、積水化成品工業株式会社製、屈折率1.59、体積平均粒子径8μm)
 有機EL発光素子A:Symfos OLED-010K(コニカミノルタ社製、白色OLED素子)の光出射面側の表面の光学フィルムを剥離した有機EL発光素子)の光出射面側の表面の光学フィルムを剥離した有機EL発光素子
 [参考例1]
 有機EL発光素子Aを、そのまま面発光体とした。
 [実施例1]
 (粘着剤溶液Aの製造)
 酢酸エチルに、n-ブチルアクリレート99部、2-ヒドロキシエチルアクリレート1部、アゾビスイソブチロニトリル0.2部を溶解し、70℃で5時間反応させ、固形分30%のアクリル系樹脂溶液を得た。得られたアクリル系樹脂溶液の固形分100部に対し、トリメチロールポロパントリレンジイソシアネートを0.5部添加し、粘着剤溶液Aを得た。
 (混合物Aの製造)
 粘着剤溶液Aを98%、微粒子Aを2%混合し、混合物Aを得た。
 (粘着層積層基材の製造)
 片面にシリコーン系剥離剤が塗布された38μmのポリエチレンテレフタレート基材(保護フィルム)からなる剥離フィルムの剥離剤塗布面上に、コンマコーターを用いて得られた混合物Aを、乾燥後の粘着層の厚さが25μmとなるよう塗布し、100℃にて1分間乾燥した後、厚さ125μmのポリエチレンテレフタレート基材(商品名「ダイヤホイルT910E125」、三菱樹脂(株)製)に貼り合わせ、粘着層積層基材を得た。
 (活性エネルギー線硬化性組成物Aの製造)
 ガラス製のフラスコに、ジイソシアネート化合物としてヘキサメチレンジイソシアネート117.6g(0.7モル)及びイソシアヌレート型のヘキサメチレンジイソシアネート3量体151.2g(0.3モル)、水酸基含有(メタ)アクリレートとして2-ヒドロキシプロピルアクリレート128.7g(0.99モル)及びペンタエリスリトールトリアクリレート693g(1.54モル)、触媒としてジラウリル酸ジ-n-ブチルスズ22.1g、並びに重合禁止剤としてハイドロキノンモノメチルエーテル0.55gを仕込み、75℃に昇温し、75℃に保ったまま攪拌を続け、フラスコ内の残存イソシアネート化合物の濃度が0.1モル/L以下になるまで反応させ、室温に冷却し、ウレタン多官能アクリレートを得た。
 得られたウレタン多官能アクリレート35部、下記式(1)で表されるジメタクリレート(商品名「アクリエステルPBOM」、三菱レイヨン(株)製)20部、下記式(2)で表されるジメタクリレート(商品名「ニューフロンティアBPEM-10」、第一工業製薬(株)製)40部、下記式(3)で表されるアクリレート(商品名「ニューフロンティアPHE」、第一工業製薬(株)製)5部及び1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」、チバ・スペシャルティ・ケミカルズ(株)製)1.2部を混合し、活性エネルギー線硬化性樹脂組成物Aを得た。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
 (混合物Bの製造)
 活性エネルギー線硬化性樹脂組成物Aを80%、微粒子Aを20%混合し、混合物Bを得た。
 (ロール型の製造)
 外径200mm、軸方向の長さ320mmの鋼製のロールの外周面に、厚さ200μm、ビッカース硬度230Hvの銅めっきを施した。銅めっき層の表面に感光剤を塗布し、レーザ露光、現像及びエッチングを行い、銅めっき層に直径50μm、深さ25μmの半球状の窪みが最小間隔10μmで六方配列に並んでいる転写部が形成された型を得た。得られた型の表面に、防錆性及び耐久性を付与するため、クロムめっきを施し、ロール型を得た。
 (光学フィルムの製造)
 得られたロール型に、得られた混合物Bを塗布し、その上に得られた粘着層積層基材の粘着層面の反対面に混合物Bが存在するように配置し、ベース層の厚さが20μmになるようにニップロールで均一に伸ばした。その後、基材の上から紫外線を照射し、ロール型と基材に挟まれた混合物Bを硬化させ、ロール型と混合物Bの硬化物を剥離し、光学フィルムを得た。
 電子顕微鏡にて撮影した画像から算出した光学フィルムの凹凸構造の大きさは、平均最長径Aaveが49.5μm、平均高さBaveが25.9μmで、ほぼロール型の窪みの大きさに対応した球欠形状の突起が得られた。また、電子顕微鏡にて撮影した画像から、得られた光学フィルムの凹凸構造は、ロール型に対応し最小間隔10μmで六方配列に並び、光学フィルムの面積に対する球状突起の底面部の面積の割合は、76%であった。
 (面発光体の製造)
 得られた光学フィルムの剥離剤が塗布されたポリエチレンテレフタレート基材(保護フィルム)を剥がし、有機EL発光素子Aの光出射面側に粘着層の面を光学密着させ、面発光体を得た。得られた光学フィルムの反り量、得られた面発光体の光取り出し効率、法線輝度、色度変化量を表1に示す。
 [実施例2~6、比較例1~5]
 凹凸構造層や粘着層の組成を表1のように変更した以外は、実施例1と同様に操作を行い、光学フィルム及び面発光体を得た。得られた光学フィルムの反り量、得られた面発光体の光取り出し効率、法線輝度、色度変化量を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 [実施例7~12、比較例6~10]
 混合物Bの製造において、微粒子Aの代わりに微粒子Bを用い、凹凸構造層や粘着層の組成を表2のように変更した以外は、実施例1と同様に操作を行い、光学フィルム及び面発光体を得た。得られた光学フィルムの反り量、得られた面発光体の光取り出し効率、法線輝度、色度変化量を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 [実施例13~18、比較例11~15]
 混合物Bの製造において、微粒子Aの代わりに微粒子Cを用い、凹凸構造層や粘着層の組成を表3のように変更した以外は、実施例1と同様に操作を行い、光学フィルム及び面発光体を得た。得られた光学フィルムの反り量、得られた面発光体の光取り出し効率、法線輝度、色度変化量を表3に示す。
Figure JPOXMLDOC01-appb-T000006
  [実施例19]
  (粘着層積層基材の製造)
 片面にシリコーン系剥離剤が塗布された38μmのポリエチレンテレフタレート基材(保護フィルム)からなる剥離フィルムの剥離剤塗布面上に、コンマコーターを用いて実施例1の混合物Aを、乾燥後の粘着層の厚さが25μmとなるよう塗布し、100℃にて1分間乾燥し、粘着層2を形成した。その後、粘着層2上に、コンマコーターを用いて実施例1の接着材溶液Aを、乾燥後の粘着層の厚さが25μmとなるよう塗布し、100℃にて1分間乾燥し、粘着層1を形成した。その後、25mm×150mm、厚さ125μmのポリエチレンテレフタレート基材(商品名「ダイヤホイルT910E125」、三菱樹脂(株)製)に貼り合わせ、粘着層積層基材を得た。 得られた粘着層積層基材の剥離力を表4に示す。
 なお表4中、「剥離力」の「基材-粘着層1」に数値がある場合は、ポリエチレンテレフタレート基材と粘着層1との界面で剥離されたことを示す。すなわち、「ポリエチレンテレフタレート基材-粘着層1」、「粘着層1-粘着層2」、「粘着層2-ガラス基板」の界面のうち、最も剥離力の小さい界面であるポリエチレンテレフタレート基材と粘着層1との界面で剥離が起こり、その数値が測定されたことを示す。
「粘着層1-粘着層2」に数値がある場合は、粘着層1-粘着層2との界面で剥離されたことを示す。すなわち、「ポリエチレンテレフタレート基材-粘着層1」、「粘着層1-粘着層2」、「粘着層2-ガラス基板」の界面のうち、最も剥離力の小さい界面である粘着層1-粘着層2との界面で剥離が起こり、その数値が測定されたことを示す。
「粘着層2-ガラス基板」に数値がある場合は、粘着層2-ガラス基板との界面で剥離されたことを示す。すなわち、「ポリエチレンテレフタレート基材-粘着層1」、「粘着層1-粘着層2」、「粘着層2-ガラス基板」の界面のうち、最も剥離力の小さい界面である粘着層2-ガラス基板との界面で剥離が起こり、その数値が測定されたことを示す。
 [実施例20~42]
 粘着層1に含まれる微粒子Aの含有率および粘着層2に含まれる微粒子Aの含有率を表4のように変更した以外は、実施例19と同様に操作を行い、粘着層積層基材を得た。得られた粘着層積層基材の剥離力を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表1から分かるように、実施例1~6で得られた本発明の光学フィルムは、反り量が小さく、面発光体の光取り出し効率、法線輝度に優れ、面発光体の出射光波長の出射角度依存性が抑制された。一方、比較例1~3で得られた光学フィルムは、反り量が大きく、比較例4で得られた面発光体は、法線輝度に劣り、比較例5で得られた面発光体は、出射光波長の出射角度依存性の抑制が不十分であった。
 表2から分かるように、実施例7~12で得られた本発明の光学フィルムは、反り量が小さく、面発光体の光取り出し効率、法線輝度に優れ、面発光体の出射光波長の出射角度依存性が抑制された。一方、比較例6~8で得られた光学フィルムは、反り量が大きく、比較例9で得られた面発光体は、法線輝度に劣り、比較例10で得られた面発光体は、色度変化量に劣った。
 表3から分かるように、実施例13~18で得られた本発明の光学フィルムは、反り量が小さく、面発光体の光取り出し効率、法線輝度に優れ、面発光体の出射光波長の出射角度依存性が抑制された。一方、比較例11~13で得られた光学フィルムは、反り量が大きく、比較例14で得られた面発光体は、法線輝度に劣り、比較例15で得られた面発光体は、出射光波長の出射角度依存性の抑制が不十分であった。
 表4から分かるように、実施例19~21、23~26、28~31、33~36、38~40で得られた粘着層積層基材は、ポリエチレンテレフタレート基材と粘着層1の界面又は粘着層1と粘着層2の界面にて剥離が生じているため、粘着層2とガラス基板の界面の粘着力は、比較的大きいと言える。すなわち、実施例19~21、23~26、28~31、33~36、38~40で得られた粘着層積層基材を含む本発明の光学フィルムは、EL発光素子のガラス基板との接着面が強固な面発光体を作成することが可能である。
 表4から分かるように、実施例22、27、32、37、41,42で得られた粘着層積層基材は、粘着層2とガラス基板の界面にて剥離が生じている。よって、EL発光素子のガラス基板に光学フィルムを貼り直す必要が生じた場合にも、光学フィルムを破壊することがないため、面発光体を製造する際の生産性を向上することが可能である。
 本発明の光学フィルムにより、光取り出し効率や法線輝度に優れ、出射光波長の出射角度依存性を抑制する面発光体を得ることができ、この面発光体は、例えば、照明、ディスプレイ、スクリーン等に好適に用いることができる。
  10  光学フィルム
  11  凹凸構造層
  111 凹凸構造層を構成する材料
  112 凹凸構造層に含まれる微粒子
  12  粘着層
  121 粘着層を構成する材料
  122 粘着層に含まれる微粒子
  13  凹凸構造
  14  ベース層
  15  基材
  16  凹凸構造の底面部
  17  保護フィルム
  30  EL発光素子
  31  ガラス基板
  32  陽極
  33  発光層
  34  陰極
  50  装置
  51  混合物
  52  ロール型
  53  ニップロール
  54  活性エネルギー線照射装置
  55  タンク
  56  配管

Claims (19)

  1.  一方の表面を形成する凹凸構造層と、他方の表面を形成する粘着層を有する光学フィルムであって、
     前記凹凸構造層は、前記凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含み、
     前記粘着層は、前記粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む、光学フィルム。
  2.  前記粘着層全質量に対する前記第2光拡散微粒子の含有率が、20質量%~40質量%である、請求項1に記載の光学フィルム。
  3.  前記凹凸構造層に含まれる前記第1光拡散微粒子の体積平均粒子径が、0.5μm~20μmである、請求項1又は2に記載の光学フィルム。
  4.  前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径が、0.5μm~20μmである、請求項1~3のいずれかに記載の光学フィルム。
  5.  前記凹凸構造層を構成する材料の屈折率と前記凹凸構造層に含まれる前記第1光拡散微粒子の屈折率との差が、0.02~0.30である、請求項1~4のいずれかに記載の光学フィルム。
  6.  前記粘着層を構成する材料の屈折率と前記粘着層に含まれる前記第2光拡散微粒子の屈折率との差が、0.02~0.30である、請求項1~5のいずれかに記載の光学フィルム。
  7.  前記凹凸構造層に含まれる前記第1光拡散微粒子の前記凹凸構造層全質量に対する含有率に対する前記粘着層に含まれる前記第2光拡散微粒子の前記粘着層全質量に対する含有率の比が、0.05~10である、請求項1~6のいずれかに記載の光学フィルム。
  8.  前記凹凸構造層に含まれる前記第1光拡散微粒子の体積平均粒子径に対する前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径の比が、0.125~1.25である、請求項1~7のいずれかに記載の光学フィルム。
  9.  前記凹凸構造層に含まれる前記第1光拡散微粒子の屈折率に対する前記粘着層に含まれる前記第2光拡散微粒子の屈折率の比が、0.80~1.05である、請求項1~8のいずれかに記載の光学フィルム。
  10.  さらに前記凹凸構造層と接するベース層を含み、前記凹凸構造層及び前記ベース層の合計の厚さが、20μm~80μmである、請求項1~9のいずれかに記載の光学フィルム。
  11.  前記粘着層の厚さが、5μm~50μmである、請求項1~10のいずれかに記載の光学フィルム。
  12.  前記粘着層の厚さに対する前記粘着層に含まれる前記第2光拡散微粒子の体積平均粒子径の比が、0.05~0.5である、請求項1~11のいずれかに記載の光学フィルム。
  13.  前記凹凸構造層を構成する材料が、アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、シリコーン樹脂、エポキシ樹脂及びポリエステル樹脂からなる群より選ばれる少なくとも1種の材料である、請求項1~12のいずれかに記載の光学フィルム。
  14.  前記粘着層を構成する材料が、アクリル系粘着剤である、請求項1~13のいずれかに記載の光学フィルム。
  15.  前記凹凸構造層に含まれる前記第1光拡散微粒子の材料が、シリコーン樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、メラミン樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種の材料である、請求項1~14のいずれかに記載の光学フィルム。
  16.  前記粘着層に含まれる前記第2光拡散微粒子の材料が、シリコーン樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、メラミン樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1種の材料である、請求項1~15のいずれかに記載の光学フィルム。
  17.  さらに基材を有し、前記粘着層、前記基材及び前記凹凸構造層が順次積層される、請求項1~16のいずれかに記載の光学フィルム。
  18.  請求項1~17のいずれかに記載の光学フィルム及びEL発光素子を含む面発光体。
  19.  基材の一方の表面に、粘着層全質量に対し第2光拡散微粒子を1質量%~40質量%含む粘着層を設け、前記基材の他方の表面に、凹凸構造層全質量に対し第1光拡散微粒子を1質量%~28質量%含む前記凹凸構造層を設ける、光学フィルムの製造方法。
PCT/JP2014/059826 2013-04-05 2014-04-03 光学フィルム及び面発光体 WO2014163135A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014517287A JPWO2014163135A1 (ja) 2013-04-05 2014-04-03 光学フィルム及び面発光体
US14/781,341 US20160041312A1 (en) 2013-04-05 2014-04-03 Optical film and surface light emitting body
KR1020157030273A KR20150140696A (ko) 2013-04-05 2014-04-03 광학 필름 및 면발광체
CN201480026271.2A CN105190370A (zh) 2013-04-05 2014-04-03 光学膜和面发光体
EP14778775.8A EP2983018A4 (en) 2013-04-05 2014-04-03 OPTICAL FILM AND BODY WITH SURFACE DELIVERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013079071 2013-04-05
JP2013-079071 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163135A1 true WO2014163135A1 (ja) 2014-10-09

Family

ID=51658426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059826 WO2014163135A1 (ja) 2013-04-05 2014-04-03 光学フィルム及び面発光体

Country Status (6)

Country Link
US (1) US20160041312A1 (ja)
EP (1) EP2983018A4 (ja)
JP (1) JPWO2014163135A1 (ja)
KR (1) KR20150140696A (ja)
CN (1) CN105190370A (ja)
WO (1) WO2014163135A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157050A1 (en) * 2015-03-31 2016-10-06 Sabic Global Technologies B.V. Multi-functional substrate for oled lighting application
JP2017066329A (ja) * 2015-10-01 2017-04-06 リンテック株式会社 粘着シート
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530047B1 (ko) * 2013-12-06 2015-06-22 주식회사 창강화학 광학 부재 및 이를 구비하는 표시 장치
EP3258298A4 (en) * 2015-02-09 2018-09-19 Zeon Corporation Optical layered body and method for manufacturing same
CN109844975A (zh) * 2016-07-20 2019-06-04 华为技术有限公司 有机发光显示器以及用于制造有机发光显示器的方法
JP6773063B2 (ja) * 2018-02-22 2020-10-21 日亜化学工業株式会社 透光性部材の形成方法
KR102058865B1 (ko) * 2018-04-12 2019-12-24 (주)아이엠 초가속 열소재를 이용한 발열 디바이스 및 이의 제조방법
CN109581554B (zh) * 2019-01-23 2021-04-13 京东方科技集团股份有限公司 结构化光发生器
CN113406739B (zh) * 2021-07-15 2023-04-25 江西古川胶带有限公司 一种光学扩散膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069324A1 (ja) 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置
JP2009063905A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 光学シートとそれを用いるバックライトユニットおよびディスプレイ
JP2010212204A (ja) 2009-03-12 2010-09-24 Toppan Printing Co Ltd El素子、表示装置、ディスプレイ装置及び液晶ディスプレイ装置
JP2012018873A (ja) 2010-07-09 2012-01-26 Toppan Printing Co Ltd El素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247026B2 (en) * 2006-03-20 2012-08-21 Mitsui Chemicals, Inc. Optical film and method for producing same
JP5182092B2 (ja) * 2006-08-31 2013-04-10 コニカミノルタアドバンストレイヤー株式会社 光学フィルムとその製造方法、偏光板及び液晶表示装置
JP5520752B2 (ja) * 2010-09-01 2014-06-11 株式会社日立製作所 粘着シート,粘着シートを用いた光学部材,有機発光素子および照明装置並びにそれらの製造方法
US20140079913A1 (en) * 2011-03-28 2014-03-20 Tomoo Nishiyama Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2014017363A1 (ja) * 2012-07-27 2014-01-30 日本ゼオン株式会社 光学シート及び面光源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069324A1 (ja) 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., 光拡散性光学フィルム及びその製造方法、プリズムシート、並びに面光源装置
JP2009063905A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 光学シートとそれを用いるバックライトユニットおよびディスプレイ
JP2010212204A (ja) 2009-03-12 2010-09-24 Toppan Printing Co Ltd El素子、表示装置、ディスプレイ装置及び液晶ディスプレイ装置
JP2012018873A (ja) 2010-07-09 2012-01-26 Toppan Printing Co Ltd El素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2983018A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157050A1 (en) * 2015-03-31 2016-10-06 Sabic Global Technologies B.V. Multi-functional substrate for oled lighting application
CN107408629A (zh) * 2015-03-31 2017-11-28 沙特基础工业全球技术公司 用于oled照明应用的多功能衬底
JP2017066329A (ja) * 2015-10-01 2017-04-06 リンテック株式会社 粘着シート
TWI707023B (zh) * 2015-10-01 2020-10-11 日商琳得科股份有限公司 黏著片
CN107033795B (zh) * 2015-10-01 2021-02-23 琳得科株式会社 粘着片
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
US10797269B2 (en) 2017-05-05 2020-10-06 3M Innovative Properties Company Polymeric films and display devices containing such films
US11472909B2 (en) 2017-05-05 2022-10-18 3M Innovative Properties Company Polymeric films and display devices containing such films

Also Published As

Publication number Publication date
JPWO2014163135A1 (ja) 2017-02-16
EP2983018A4 (en) 2016-04-20
CN105190370A (zh) 2015-12-23
US20160041312A1 (en) 2016-02-11
EP2983018A1 (en) 2016-02-10
KR20150140696A (ko) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5474263B1 (ja) El素子用光取り出しフィルム、面発光体及びel素子用光取り出しフィルムの製造方法
WO2014163135A1 (ja) 光学フィルム及び面発光体
WO2014199921A1 (ja) El用光取り出しフィルム、el用光取り出しフィルムの製造方法及び面発光体
WO2014157379A1 (ja) 光学フィルム、光学フィルムの製造方法及び面発光体
WO2013080794A1 (ja) 光学フィルム、面発光体及び光学フィルムの製造方法
WO2014189037A1 (ja) 光取り出しフィルム及びその製造方法、並びに面発光体
TWI574033B (zh) 光提取膜、面發光體及光提取膜的製造方法
JP2015206957A (ja) 光学フィルム、積層体、照明及びディスプレイ
JP2017069208A (ja) エレクトロルミネッセンス素子用光取り出し構造体及び面発光体
JP6394309B2 (ja) 光学フィルムの製造方法、光学フィルム及び面発光体
JP2016143612A (ja) エレクトロルミネッセンス素子用光取り出しフィルム及び面発光体
JP2016081614A (ja) El素子用光取り出しフィルム及び面発光体
JP2015219332A (ja) 光学フィルム及び面発光体
JP2015176640A (ja) 拡散フィルム、拡散フィルムの製造方法、積層体、照明及びディスプレイ
JP2015159033A (ja) 光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法
JP2014102370A (ja) 光学フィルム及び面発光体
JP2016018024A (ja) 光学フィルム、面発光体及び光学フィルムの製造方法
JP2016045386A (ja) 光学フィルム、面発光体及び光学フィルムの製造方法
JP2017191694A (ja) 光取出し構造体
JP2016001207A (ja) 光学フィルム、面発光体及び光学フィルムの製造方法
JP2016018050A (ja) 光学フィルム、面発光体及び光学フィルムの製造方法
JP2016061813A (ja) 光学フィルム、面発光体、及び光学フィルムの製造方法
JP2017049533A (ja) エレクトロルミネッセンス素子用光取り出しフィルムおよび面発光体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026271.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014517287

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781341

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014778775

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030273

Country of ref document: KR

Kind code of ref document: A