JP6773063B2 - 透光性部材の形成方法 - Google Patents

透光性部材の形成方法 Download PDF

Info

Publication number
JP6773063B2
JP6773063B2 JP2018029512A JP2018029512A JP6773063B2 JP 6773063 B2 JP6773063 B2 JP 6773063B2 JP 2018029512 A JP2018029512 A JP 2018029512A JP 2018029512 A JP2018029512 A JP 2018029512A JP 6773063 B2 JP6773063 B2 JP 6773063B2
Authority
JP
Japan
Prior art keywords
resin
light emitting
light
translucent
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018029512A
Other languages
English (en)
Other versions
JP2019142137A (ja
Inventor
直樹 武藏
直樹 武藏
若木 貴功
貴功 若木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2018029512A priority Critical patent/JP6773063B2/ja
Priority to US16/282,286 priority patent/US11088305B2/en
Publication of JP2019142137A publication Critical patent/JP2019142137A/ja
Application granted granted Critical
Publication of JP6773063B2 publication Critical patent/JP6773063B2/ja
Priority to US17/351,928 priority patent/US11923488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

本開示は、透光性部材の形成方法および発光装置の製造方法に関する。また、本開示は、発光装置にも関する。
微細な凹凸形状を形成する技術として、微細な凹凸を有する型の表面形状を樹脂材料の層に転写するインプリント法が知られている。インプリント法によって形状が転写される対象は、熱可塑性樹脂または紫外線硬化性樹脂である。前者では、型を熱可塑性樹脂に押し当て、加熱によって熱可塑性樹脂を硬化させた後、熱可塑性樹脂から型を分離する。後者では、紫外線を透過する型を紫外線硬化性樹脂に押し当て、型を介した紫外線の照射によって紫外線硬化性樹脂を硬化させた後、紫外線硬化性樹脂から型を分離する。
インプリント法は、下記の特許文献1に開示されるように、例えば、表示装置用の反射防止フィルムの形成に用いられる。あるいは、インプリント法は、偏光フィルム等の製造にも用いられ得る。また、インプリント法は、エッチングに用いるレジストパターンの形成に適用されることもある。下記の特許文献2は、n型半導体層およびp型半導体層を含む半導体積層部の表面に錐台形状または錐体形状のパターンを形成するためのマスクの形成に、インプリント法を適用可能であると説明している。このように、インプリント法は、発光ダイオード(LED)に代表される発光素子、有機EL発光装置等における光取り出し効率向上のための凹凸形状の付与への応用も期待されている。
特開2017−032806号公報 特開2016−001639号公報
インプリント法によれば、微細な凹凸形状を形成することが可能である。しかしながら、形状を付与可能な対象は、現状、未硬化の状態の熱可塑性樹脂または紫外線硬化性樹脂のいずれかであるという制約がある。
本開示のある実施形態による透光性部材の形成方法は、主面を有し、シリコーン樹脂を含む硬化後の樹脂体の前記主面に、複数の凸部を有する型の前記複数の凸部を対向させ、加熱された状態の前記樹脂体の前記主面に前記型を押し付けることにより、前記主面に複数の凹部を形成する工程(A)と、前記工程(A)の後に、前記樹脂体の前記主面を紫外線で照射する工程(B)とを含む。
本開示の他のある実施形態による発光装置の製造方法は、上面を有する発光素子と、前記発光素子の前記上面を少なくとも覆う透光性の樹脂体とを有する発光体を準備する工程(a)と、表面に凹凸のパターンを有し、前記発光素子の前記上面を少なくとも覆う透光性部材を形成する工程(b)とを含み、前記工程(b)は、複数の凸部を有する型の前記複数の凸部を前記樹脂体の表面に対向させ、加熱された状態の前記樹脂体の前記表面に前記型を押し付けることにより、前記表面に複数の凹部を形成する工程(b1)と、前記工程(b1)の後に、前記樹脂体の前記表面を紫外線で照射する工程(b2)とを含む。
本開示のさらに他のある実施形態による発光装置の製造方法は、上面を有し、前記上面とは反対側に正極および負極が設けられた発光素子を準備する工程(a)と、表面に凹凸のパターンを有し、前記発光素子の前記上面を少なくとも覆う透光性部材を形成する工程(b)とを含み、前記工程(b)は、未硬化のシリコーン樹脂原料を硬化させることによって形成された透光性の樹脂体の表面に、複数の凸部を有する型の前記複数の凸部を対向させ、加熱された状態の前記樹脂体の前記表面に前記型を押し付けることにより、前記表面に複数の凹部を形成する工程(b1)と、前記工程(b1)の後に、前記樹脂体の前記表面を紫外線で照射する工程(b2)とを含む。
本開示のさらに他のある実施形態による発光装置の製造方法は、上面を有し、前記上面とは反対側に正極および負極が設けられた発光素子を準備する工程(a)と、表面に凹凸のパターンを有し、前記発光素子の前記上面を少なくとも覆う透光性部材を形成する工程(b)とを含み、前記工程(b)は、未硬化のシリコーン樹脂原料を硬化させることによって形成された透光シートの主面に、複数の凸部を有する型の前記複数の凸部を対向させ、加熱された状態の前記透光シートの前記主面に前記型を押し付けることにより、前記主面に複数の凹部を形成する工程(b1)と、前記工程(b1)の後に、前記透光シートの前記主面を紫外線で照射する工程(b2)と、紫外線で照射された前記透光シートを前記発光素子の前記上面側に配置する工程(b3)とを含む。
本開示のさらに他のある実施形態による発光装置は、上面を有する発光素子と、前記発光素子の前記上面を少なくとも覆い、前記発光素子の前記上面の上方に位置する主面を含む透光性部材とを備え、前記透光性部材の前記主面は、複数の凹部を有しており、赤外分光によって得られる、前記透光性部材に関する吸収スペクトルの波数3700cm−1超3000cm−1未満の範囲に現れるSi−OH起因の吸収は、シリコーン樹脂に関する吸収スペクトルの前記範囲における吸収よりも大きく、前記透光性部材に関する吸収スペクトルの波数2960cm−1付近および800cm−1付近に現れるSi−CH起因の吸収ピークは、それぞれ、シリコーン樹脂に関する吸収スペクトルの波数2960cm−1付近および800cm−1付近の吸収ピークと比較して小さい。
本開示のさらに他のある実施形態による発光装置は、上面を有する発光素子と、前記発光素子の前記上面を少なくとも覆い、前記発光素子の前記上面の上方に位置する主面を含む透光性部材とを備え、前記透光性部材の前記主面は、複数の凹部を有しており、前記透光性部材の前記主面の瞬間接着力は、シリコーン樹脂の瞬間接着力よりも低い。
本開示のさらに他のある実施形態による発光装置は、上面を有する発光素子と、前記発光素子の前記上面を少なくとも覆い、前記発光素子の前記上面の上方に位置する主面を含む透光性部材とを備え、前記透光性部材の前記主面は、複数の凹部を有し、300℃の温度下で40分間加熱したとき、加熱の前後において、前記複数の凹部の深さの変化は、25%以下の範囲内である。
本開示のある実施形態によれば、微細な凹凸形状を付与する新規な方法が提供される。
本開示の第1の実施形態による透光性部材の製造方法の概要を示すフローチャートである。 本開示の第1の実施形態による透光性部材の例示的な製造方法を説明するための模式的な断面図である。 凸部210の配置の一例を示す模式的な平面図である。 本開示の第1の実施形態による透光性部材の例示的な製造方法を説明するための模式的な断面図である。 本開示の第1の実施形態による透光性部材の例示的な製造方法を説明するための模式的な断面図である。 透光性部材140の一例を示す斜視図である。 本開示の第2の実施形態による発光装置の製造方法によって得られる例示的な発光装置の構造を模式的に示す断面図である。 本開示の第2の実施形態による発光装置の製造方法の一例を示すフローチャートである。 図8に示すステップS22に含まれ得るステップを説明するための図である。 発光素子110Aおよび透光性の樹脂体140Uを有する発光体100Uの例示的な構成を示す模式的な断面図である。 図8に示すステップS21に含まれ得るステップを説明するための図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 発光体100Uの例示的な製造方法を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法を説明するための模式的な断面図である。 基板410Aと、基板410A上に設けられた第1導電部411Aおよび第2導電部412Aとを有する複合基板400Aの一例を示す模式的な上面図である。 発光装置100Bの外観の一例を示す斜視図である。 図21に示す発光装置100Bを発光装置100Bの中央付近の位置で図21中のYZ面に平行に切断したときの断面を模式的に示す図である。 本開示の第2の実施形態による発光装置の製造方法の他の一例を示すフローチャートである。 図23に示すステップS24に含まれ得るステップを説明するための図である。 本開示の第2の実施形態による発光装置の製造方法の他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法の他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法の他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法の他の一例を説明するための模式的な断面図である。 第2の実施形態による発光装置の製造方法によって得られる発光装置の他の一例を模式的に示す断面図である。 図23に示すステップS24に含まれ得るステップの他の例を説明するための図である。 本開示の第2の実施形態による発光装置の製造方法のさらに他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法のさらに他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法のさらに他の一例を説明するための模式的な断面図である。 本開示の第2の実施形態による発光装置の製造方法のさらに他の一例を説明するための模式的な断面図である。 本開示の第3の実施形態による発光装置の製造方法によって得られる例示的な発光装置の外観を模式的に示す上面図である。 本開示の第3の実施形態による発光装置の製造方法によって得られる例示的な発光装置の構造を模式的に示す断面図である。 図8に示すステップS21に含まれ得るステップの他の例を説明するための図である。 複合基板300Fの一例を示す模式的な上面図である。 本開示の第3の実施形態による発光装置の製造方法を説明するための模式的な上面図である。 本開示の第3の実施形態による発光装置の製造方法を説明するための模式的な断面図である。 本開示の第3の実施形態による発光装置の製造方法を説明するための模式的な断面図である。 本開示の第3の実施形態による発光装置の製造方法によって得られる他の例示的な発光装置の構造を模式的に示す断面図である。 本開示の第3の実施形態による発光装置の製造方法によって得られるさらに他の例示的な発光装置の構造を模式的に示す断面図である。 型の分離後に得られた透光シートの表面形状を示す図である。 型の分離後に得られた透光シートの断面プロファイルを示す図である。 紫外線の照射後の透光シートの表面形状を示す図である。 紫外線の照射後の透光シートの断面プロファイルを示す図である。 実施例2のサンプルに関する、紫外線の照射後の表面形状を示す図である。 実施例2のサンプルに関する、紫外線の照射後の断面プロファイルを示す図である。 型の分離後の樹脂シートの表面形状を示す図である。 実施例3のサンプルの表面形状を示す図である。 比較例1のサンプルの表面形状を示す図である。 フーリエ変換型赤外分光光度計によって得られた、参考例1のサンプルに関する透過光の赤外スペクトルを示す。 図53の一部を拡大して示す図であり、参考例1のサンプルに関する透過光の赤外スペクトルを示す。 図53の一部を拡大して示す図であり、参考例1のサンプルに関する透過光の赤外スペクトルを示す。 参考例2、参考例3および比較例2の各サンプルの表面のタック性に関する測定結果を示す図である。
以下、図面を参照しながら、本開示の実施形態を詳細に説明する。以下の実施形態は、例示であり、本開示による透光性部材の形成方法および発光装置の製造方法は、以下の実施形態に限られない。例えば、以下の実施形態で示される数値、形状、材料、ステップ、そのステップの順序などは、あくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。
図面が示す構成要素の寸法、形状等は、わかり易さのために誇張されている場合があり、実際の透光性部材、発光装置、および、製造装置における、寸法、形状および構成要素間の大小関係を反映していない場合がある。また、図面が過度に複雑になることを避けるために、一部の要素の図示を省略することがある。
以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。以下の説明では、特定の方向または位置を示す用語(例えば、「上」、「下」、「右」、「左」およびそれらの用語を含む別の用語)を用いる場合がある。しかしながら、それらの用語は、参照した図面における相対的な方向または位置をわかり易さのために用いているに過ぎない。参照した図面における「上」、「下」等の用語による相対的な方向または位置の関係が同一であれば、本開示以外の図面、実際の製品、製造装置等において、参照した図面と同一の配置でなくてもよい。本開示において「平行」とは、特に他の言及がない限り、2つの直線、辺、面等が0°から±5°程度の範囲にある場合を含む。また、本開示において「垂直」または「直交」とは、特に他の言及がない限り、2つの直線、辺、面等が90°から±5°程度の範囲にある場合を含む。
(第1の実施形態)
図1は、本開示の第1の実施形態による透光性部材の製造方法の概要を示すフローチャートである。図1に例示された透光性部材の製造方法は、概略的には、加熱された状態の樹脂体の主面に、複数の凸部を有する型を押し付けることにより、樹脂体の主面に複数の凹部を形成する工程(ステップS11)と、複数の凹部の形成後に、樹脂体の主面を紫外線で照射する工程(ステップS12)とを含む。
上述したように、微細な凹凸形状を形成するための手法の1つであるインプリント法では、型を押し付ける対象として、未硬化の状態の熱可塑性樹脂または紫外線硬化性樹脂を用いている。これに対し、本開示の実施形態では、熱硬化性樹脂であるシリコーン樹脂を含む樹脂体、特に、硬化後の状態の樹脂体に型を押し付ける。未硬化の状態ではなく硬化後の樹脂体に型を押し付ける点、および、熱硬化性樹脂にさらに紫外線を照射する点は、従来にない着想である。本開示のある実施形態によれば、シリコーン樹脂を含む樹脂体であって、しかも、硬化後の樹脂体でありながらも、型を用いて例えば複数の凹部を形成した後に樹脂体を紫外線で照射することにより、型の押し付けによって形成された形状を固定可能である。本開示の実施形態によれば、例えば、硬化後の熱硬化性樹脂の表面に微細な凹凸形状を付与することが可能になる。
以下、図面を参照しながら、透光性部材の製造方法の実施形態を詳細に説明する。
まず、図2に示すように、樹脂体140Xを準備する。図2に示す例において、樹脂体140Xは、全体として板状であり、平面状の主面140aを有する。ここでは、樹脂体140Xは、板状の部材であるが、樹脂体140Xの形状は、任意である。図2においては樹脂体140Xの上面に相当する、主面140aの形状も、平面に限定されず、曲面であってもかまわない。
樹脂体140Xは、透光性を有し、凹凸形状が付与された後、例えば、保護部材、光拡散部材等の光学部材として、発光素子、発光装置等の光出射側に配置され得る。なお、本明細書における「透光性」および「透光」の用語は、入射した光に対して拡散性を示すことをも包含するように解釈され、「透明」であることに限定されない。
樹脂体140Xは、シリコーン樹脂を含み、かつ、既に硬化した後の状態である。樹脂体140X中のシリコーン樹脂は、少なくとも1つのフェニル基を分子中に有する有機ポリシロキサンを含有する。あるいは、樹脂体140X中のシリコーン樹脂は、2つのメチル基がケイ素原子に結合したDユニットを有する有機ポリシロキサンを含有する。樹脂体140Xは、これら2種の有機ポリシロキサンの両方を含んでいてもよい。樹脂体140X中のシリコーン樹脂は、例えば、フェニル基を有し、かつ、Dユニットを有する有機ポリシロキサンを含有していてもよい。樹脂体140Xを構成するシリコーン樹脂組成物は、メチル基およびフェニル基以外の基が導入された変性シリコーンを含んでいてもよい。
樹脂体140Xは、実質的にシリコーン樹脂からなる部材に限定されず、シリコーン樹脂以外の材料を含む複合部材であり得る。例えば、樹脂体140Xは、シリコーン樹脂を含む樹脂材料を母材とし、光散乱性のフィラーが分散された部材等であってもよい。光反射性のフィラーとしては、母材よりも高い屈折率を有する無機材料もしくは有機材料の粒子を用いることができる。光反射性のフィラーの例は、二酸化チタン、二酸化ジルコニウム、チタン酸カリウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、ムライト、酸化ニオブ、硫酸バリウム、酸化ケイ素、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム)等の粒子である。なお、樹脂体140Xを構成する母材は、シリコーン樹脂以外の樹脂を含んでいてもかまわない。
樹脂体140Xは、樹脂中に分散された波長変換部材を含んでいてもよい。樹脂体140Xが波長変換部材を含むことにより、樹脂体140Xは、入射した光の少なくとも一部を吸収し、入射した光の波長とは異なる波長の光を発することができる。波長変換部材の典型例は、蛍光体等の粒子である。蛍光体には、公知の材料を適用することができる。蛍光体の例は、YAG系蛍光体、KSF系蛍光体等のフッ化物系蛍光体およびCASN等の窒化物系蛍光体、βサイアロン蛍光体等である。YAG系蛍光体は、青色光を黄色光に変換する波長変換物質の例であり、KSF系蛍光体およびCASNは、青色光を赤色光に変換する波長変換物質の例であり、βサイアロン蛍光体は、青色光を緑色光に変換する波長変換物質の例である。蛍光体は、量子ドット蛍光体であってもよい。
樹脂体140Xは、購入または作製によって準備することができる。例えば、シリコーン樹脂を含むシリコーン樹脂原料をスプレー法、キャスト法、ポッティング法等の塗布法あるいはスクリーン印刷法によって基板等の支持体上に付与した後、支持体上の樹脂原料を硬化させることにより樹脂体140Xを得てもよい。あるいは、樹脂体140Xの形成にトランスファー成形、圧縮成形法等を適用してもよい。
次に、表面に凹凸形状を有する型を準備する。ここでは、図2に示すように、複数の凸部210を有する型200を用いる。型200の材料は、特に限定されず、例えば、硬化鋼、アルミニウム、ベリリウム銅合金等の一般的な材料を用いることができる。
図2に例示する構成において、凸部210は、型200の下面200bから突出する三角錐状の突起である。図3は、凸部210の配置の一例を示す。この例では、三角格子の格子点上に各突起の頂部が位置するように複数の凸部210が型200の下面200bに二次元に配置されている。凸部210の配置ピッチ、つまり、互いに隣接する2つの凸部210の中心間距離は、例えば、0.1μm以上300μm以下の範囲であり、凸部210の高さ、つまり、下面200bから凸部210の頂部までの距離は、例えば、0.1μm以上200μm以下の範囲である。もちろん、凸部210の配置および凸部210の各々の形状は、図2および図3に示す例に限定されず、任意の配置および形状を採用し得る。
次に、図2に模式的に示すように、十分な剛性を有する支持体60上に樹脂体140Xを配置し、凸部210を樹脂体140Xの主面140aに向けて型200を樹脂体140Xに対向させる。さらに、図4に太い矢印PSで模式的に示すように、樹脂体140Xの主面140aに型200を押し付ける。このとき、70℃〜300℃程度に加熱された状態の樹脂体140Xに、50kPa〜50MPa程度の圧力で型200を押し付けることにより、樹脂体140Xの主面140aに、型200の複数の凸部210に対応した複数の凹部140qを形成することができる(図1のステップS11)。樹脂体140Xの加熱は、樹脂体140Xの周囲の温度を上昇させることによって実行されてもよいし、型200および/または支持体60の温度を上昇させることによって実行されてもよい。
次に、図5に模式的に示すように、紫外線照射装置500により、樹脂体140Xの主面140aを紫外線で照射する(図1のステップS12)。このときの紫外線の照射量は、例えば20J/cm以上である。照射される紫外線の波長に特に限定はなく、例えば、UVA(400〜315nm)〜UVC(280〜140nm)の波長範囲にわたるスペクトルを有する紫外線を発する紫外線照射装置を用いることができる。ここでは、発光の主ピーク波長が365nmの光源を用いる。なお、石英等の透光性の材料から形成された型を型200として用いた場合には、型200を介して紫外線を照射することが可能である。
以上の工程により、図6に示すように、主面140aに複数の凹部140dを有する透光性部材140が得られる。なお、図6では、説明の便宜のために凹部140dを誇張して大きく描いている。
この例では、型200の凸部210が、三角格子の格子点上にそれぞれの中心が位置する配置を有することに対応して、凹部140dも、三角格子の格子点上にそれぞれの中心が位置する配置を有する。主面140aの法線方向に沿った、凹部140dの開口から底までの距離、すなわち、凹部140dの深さは、0.9μm以上であり得る。なお、後に実施例により説明するように、紫外線の照射により、凹部140qと凹部140dとの間で形状の変化が生じることもある。
透光性部材140の主面140a側または主面140aの反対側の主面140b(この例では下面)に配置され得るLED等の発光素子または発光装置の発光ピーク波長の光に対する、透光性部材140の透過率は、典型的には、60%以上である。上述の発光ピーク波長の光に対する、透光性部材140の透過率が70%以上であると有益であり、80%以上であるとより有益である。透光性部材140は、50%以上のヘーズ値を有し得る。ヘーズ値は、JIS K7136:2000に準拠した測定方法によって測定することができる。
本開示の実施形態によれば、硬化後の樹脂体の表面にさらに形状を付与することが可能である。なお、図4を参照して説明したように、加熱された状態の樹脂体140Xの主面140aに型200の凸部210を押し付けることにより、主面140aに複数の凹部140qを形成することができる。換言すれば、紫外線の照射の工程を行うことなく、主面140aに複数の凹部140qを形成すること自体は可能である。つまり、一見すると、紫外線の照射の工程を省略しても、表面に複数の凹部を有する透光性部材を得られるように見える。しかしながら、後に実施例により説明するように、紫外線の照射の工程を省略した場合、型200の押し付けの後に樹脂体140Xを300℃前後の高温の環境下におくと、凹部140qの形状が崩れ、極端な場合には主面140aが平坦面に近い形状に戻ってしまう。換言すれば、紫外線の照射の工程を省略すると、所望の形状を得られないことがある。
これに対し、本開示の実施形態では、主面140aへの形状の付与後に、主面140aを紫外線で照射しているので、透光性部材140を300℃前後の高温の環境にさらした場合であっても、主面140aに形成された凹部140dの形状を維持させることが可能である。したがって、透光性部材140を得た後に、高温を伴うプロセスに透光性部材140を投入することが可能である。また、本開示の実施形態では、未硬化の樹脂材料を用いる一般的な熱インプリント法とは異なり、硬化後の樹脂体140Xに対して型200の押し付けが実行されるので、樹脂体140Xからの型200の分離が容易である。
(第2の実施形態)
図7は、本開示の第2の実施形態による発光装置の製造方法によって得られる例示的な発光装置の断面を模式的に示す。図7に示す発光装置100Aは、発光素子110Aと、波長変換部材120Aと、導光部材130Aと、透光性部材140Aと、光反射性部材150Aとを有する。
発光素子110Aは、例えばLEDであり、この例では、発光素子110Aは、素子本体111と、発光素子110Aの下面側に位置する正極112Aおよび負極114Aとを有する。図7に例示する構成では、発光素子110Aの上面は、素子本体111の上面111aに一致し、正極112Aおよび負極114Aは、発光素子110Aの上面とは反対側の、素子本体111の下面111b上に配置されている。
素子本体111は、例えば、サファイアまたは窒化ガリウム等の支持基板と、支持基板上の半導体積層構造とを含む。半導体積層構造は、活性層と、活性層を挟むn型半導体層およびp型半導体層とを含む。半導体積層構造は、紫外〜可視域の発光が可能な窒化物半導体(InxAlyGa1-x-yN、0≦x、0≦y、x+y≦1)を含んでいてもよい。上述の正極112Aおよび負極114Aは、半導体積層構造に所定の電流を供給する機能を有する。図7に示すように、正極112Aの下面および負極114Aの下面は、発光装置100Aの下面100bから露出されており、したがって、発光装置100Aは、フリップチップ接続による実装に適合した構成を有するといえる。
図7に例示する構成において、発光装置100Aは、素子本体111の上面111aの上方に、波長変換部材120Aおよび透光性部材140Aの積層構造を含む。波長変換部材120Aは、上面120aと下面120bとの間に位置する側面120cを有し、透光性部材140Aは、上面140aと下面140bとの間に位置する側面140cを有する。図示するように、この例では、波長変換部材120Aの側面120cおよび透光性部材140Aの側面140cは、光反射性部材150Aによって覆われている。導光部材130Aは、波長変換部材120Aの下面120bと素子本体111の上面111aとの間に位置する部分を有し、導光部材130Aの他の一部は、素子本体111の上面111aと下面111bとの間に位置する、素子本体111の側面111cの少なくとも一部を覆う。
ここでは、透光性部材140Aは、第1の実施形態の透光性部材140と同様の板状の構造であり、図7に模式的に示すように、例えば、発光素子110Aの上面の上方に位置する上面140aは、複数の凹部140dを有している。凹部140dの深さは、例えば0.9μm以上である。後述するように、複数の凹部140dは、第1の実施形態とほぼ同様の方法によって透光性部材140Aに形成され得る。後に実施例により説明するように、後述のプローブ法に基づいて得られる、透光性部材140の瞬間接着力は、意図的な紫外線の照射がなされていないシリコーン樹脂の表面の瞬間接着力の例えば50%以下の範囲内である。
発光素子110Aの発光ピーク波長の光に対する、透光性部材140Aの透過率は、典型的には、60%以上である。光を有効に利用する観点から、発光素子110Aの発光ピーク波長における透光性部材140Aの透過率が70%以上であると有益であり、80%以上であるとより有益である。
波長変換部材120Aは、ここでは、透光性部材140Aと同様に板状の形状を有する。波長変換部材120Aは、例えば、シリコーン樹脂等の母材と、蛍光体等の波長変換部材とを含有し、発光素子110Aからの光の少なくとも一部を吸収し、入射した光の波長とは異なる波長の光を発する。
光反射性部材150Aは、波長変換部材120A、透光性部材140Aおよび導光部材130Aを取り囲む形状を有し、素子本体111のうち、側面111cを少なくとも覆う。また、図示する例において、光反射性部材150Aの一部は、素子本体111の下面111bのうち、正極112Aおよび負極114Aを除く領域を覆う。なお、本明細書における「覆う」は、被覆される部材と、被覆する部材とが直接に接している態様だけでなく、例えばこれらの部材の間にさらに他の部材が介在することにより、これらが直接に接していない部分を含むような態様をも包含するように解釈される。本明細書において、「光反射性」とは、発光素子の発光ピーク波長における反射率が60%以上であることを指す。光反射性部材150Aの、発光素子110Aの発光ピーク波長における反射率が70%以上であるとより有益であり、80%以上であるとさらに有益である。また、光反射性部材150Aが白色を有すると有益である。
図8は、本開示の第2の実施形態による発光装置の製造方法の一例を示すフローチャートである。図8に例示された発光装置の製造方法は、概略的には、発光素子および透光性の樹脂体を有する発光体を準備する工程(ステップS21)と、表面に凹凸のパターンを有し、発光素子の上面を少なくとも覆う透光性部材を形成する工程(ステップS22)とを含む。ここで説明する例では、透光性部材を形成する工程は、図9に示すように、加熱された状態の樹脂体の表面に型を押し付けることにより、樹脂体の表面に複数の凹部を形成する工程(ステップS221)と、複数の凹部が形成された、樹脂体の表面を紫外線で照射する工程(ステップS222)とを含む。型の押し付けの対象となる樹脂体は、シリコーン樹脂原料を硬化させることによって形成された例えば樹脂シートである。以下、図面を参照しながら、図7に示す発光装置100Aの例示的な製造方法の詳細を説明する。
[発光体の準備の工程]
まず、発光素子および透光性の樹脂体を有する発光体を準備する(図8のステップS21)。ここでは、図10に例示するような、発光素子110Aの上面の上方に配置されたシート状の樹脂体140Uを含む発光体100Uを準備する。図10は、発光体100Uを発光体100Uの上面100Uaに垂直に切断したときの断面を模式的に示している。
図10に示す発光体100Uは、発光素子110Aおよび樹脂体140Uに加えて、波長変換部材120A、導光部材130Aおよび光反射性部材150Aをさらに有する。図10に示すように、発光体100Uは、波長変換部材120Aおよび樹脂体140Uの積層構造をその一部に含み、光反射性部材150Aは、樹脂体140Uの側面140cおよび波長変換部材120Aの側面120cを覆っている。発光体100Uは、購入によって準備されてもよいし、製作によって準備されてもよい。図10に示す発光体100Uは、例えば、以下のようにして得られる。
図11は、発光体100Uの例示的な製造方法を説明するためのフローチャートである。発光体100Uの準備の工程は、例えば、上面を有する発光素子を準備する工程(ステップS211)と、発光素子の上面に未硬化の透光性樹脂材料を付与する工程(ステップS212)と、透光性樹脂材料を硬化させることにより、発光素子の上面の上方に樹脂体を配置する工程(ステップS213)とを含む。
まず、上面を有し、上面とは反対側に位置する下面111b側に正極112Aおよび負極114Aを有する発光素子110Aを準備する(図11のステップS211)。発光素子110Aは、購入によって準備されてもよい。次に、耐熱性の粘着シートまたは基板等の支持体50を準備し、正極112Aおよび負極114Aを支持体50に向けて発光素子110Aを支持体50上に配置する。ここでは、図12に示すように、支持体50の上面50aに複数の発光素子110Aを一時的に固定する。簡単のために、図12では、紙面の左右方向に沿って配置された3つの発光素子110Aを示しているが、上面50a上に発光素子110Aが二次元に配置されてももちろんかまわない。
次に、図13に示すように、発光素子110Aの上面である上面111aにディスペンサ等によって透光性の第1樹脂材料130rを付与する(図11のステップS212)。第1樹脂材料130rは、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、トリメチルペンテン樹脂もしくはポリノルボルネン樹脂、または、これらの2種以上を含む材料を母材として含む。
次に、図14に模式的に示すように、波長変換部材120Aおよび樹脂体140Uを第1樹脂材料130r上に配置し、第1樹脂材料130rを硬化させる。ここでは、波長変換部材120Aおよび樹脂体140Uの積層シートLBを準備し、波長変換部材120Aおよび樹脂体140Uを一括して第1樹脂材料130r上に配置している。積層シートLBの配置後、第1樹脂材料130rを硬化させることにより、図15に示すように、導光部材130Aを形成して、発光素子110Aの上面の上方に樹脂体140Uを配置することができる(図11のステップS213)。第1樹脂材料130rの硬化後に、ダイシング装置等を利用して波長変換部材120Aの側面120cおよび樹脂体140Uの側面140cをトリミングしてもよい。これにより、それぞれが、発光素子110Aの上面を少なくとも覆う樹脂体140Uを有する複数の発光体が得られる。
なお、積層シートLBは、例えば、蛍光体の粒子が分散された樹脂材料中の樹脂をBステージの状態とした蛍光体シートと、透光性の樹脂シートとを準備し、これらを熱によって貼り合わせ、超音波カッタ等により所定の寸法の切断片を得ることによって準備することができる。蛍光体シートは、蛍光体、シリコーン樹脂等の樹脂材料、フィラー粒子および溶媒を含有する第2樹脂材料から形成することができる。蛍光体としては、上述のYAG系蛍光体、KSF系蛍光体、CASNおよびβサイアロン蛍光体等の公知の蛍光体を用い得る。透光性の樹脂シートは、例えば、未硬化のシリコーン樹脂原料を硬化させることによって得ることができる。シリコーン樹脂原料は、シリコーン樹脂を母材として含み、付加的に、光反射性のフィラー等を含んでいてもよい。母材としてのシリコーン樹脂は、典型的には、少なくとも1つのフェニル基を分子中に有する有機ポリシロキサン、および/または、Dユニットを有する有機ポリシロキサンを含有する。上述の第2樹脂材料をスプレー法、キャスト法、ポッティング法等の塗布法によって透光シートの主面上に付与し、第2樹脂材料を硬化させることによっても積層シートLBを得ることができる。あるいは、購入によって積層シートLBを準備してもよい。購入によって蛍光体シートおよび/または透光シートを準備してもよい。
典型的には、導光部材130Aの形成後に、発光素子110Aの側面に相当する素子本体111の側面111cを覆う光反射性部材を形成する。例えば、図16に示すように、支持体50上の構造を光反射性樹脂層150Tで覆う。光反射性樹脂層150Tは、例えば光反射性のフィラーが分散された第3樹脂材料を支持体50の上面50aに付与した後、第3樹脂材料を硬化させることによって形成することができる。第3樹脂材料としては、シリコーン樹脂、フェノール樹脂、エポキシ樹脂、BTレジン、ポリフタルアミド(PPA)等を母材として含む材料を用いることができる。光反射性のフィラーとしては、上述の光散乱粒子を用いることができる。光反射性樹脂層150Tの形成には、例えばトランスファー成形を適用できる。図16に示す状態では、樹脂体140Uの上面140aは、光反射性樹脂層150Tによって覆われている。
次に、研削加工等を適用して光反射性樹脂層150Tの上面側から光反射性樹脂層150Tの一部を除去することによって樹脂体140Uの上面140aを研削面から露出させる。さらに、ダイシング装置等によって支持体50上の構造を所望の形状に切り出す。例えば、互いに隣接する2つの発光素子110Aの位置で、研削後の光反射性樹脂層150Tを切断する。光反射性樹脂層150Tの研削および切断の工程により、図17に示すように、光反射性部材150Aを形成することができる。その後、支持体50上の構造を支持体50から分離することにより、図10に示す発光体100Uが得られる。
[透光性部材の形成の工程]
発光体100Uの準備後、加熱された状態の樹脂体の表面に型を押し付けることにより、樹脂体の表面、ここでは、樹脂体140Uの上面140aに複数の凹部を形成する(図9のステップS221)。樹脂体の表面への凹部形成の工程は、図2〜図4を参照して説明した、樹脂体140Xの主面140aへの複数の凹部140qの形成の例と同様にして実行することができる。
例えば、図18に模式的に示すように、図2に示す例と同様にして、支持体60上に発光体100Uを配置し、複数の凸部210を有する型200の凸部210を樹脂体140Uの上面140a(例えば樹脂体140Xの主面140aに相当)に対向させる。さらに、例えば周囲の温度を70℃〜300℃程度に上昇させ、図4に示す例と同様にして、加熱された状態の樹脂体140Uの上面140aに型200を押し付ける。樹脂体140Uの加熱は、発光体100Uの周囲の温度を上昇させることによって実行され得る。
樹脂体140Uの加熱および型200の押し付けにより、樹脂体140Uの上面140aに、型200の複数の凸部210に対応した複数の凹部(図4に示す凹部140qに相当)を形成することができる(図9のステップS221)。樹脂体140Uに対する型200の押し付けは、図18に示すように複数の発光体100Uに対して一括して実行されてもよいし、複数の発光体100Uのそれぞれに対して個別に実行されてもよい。凹部140qは、発光体100Uの上面100Uaのうち、樹脂体140Uの上面140aに選択的に形成されてもよいし、発光体100Uの上面100Uaの全体に形成されてもかまわない。
次に、複数の凹部が形成された、樹脂体の表面を紫外線で照射する(図9のステップS222)。この工程も、図5を参照して説明した、樹脂体140Xの主面140aへの紫外線の照射の例と同様にして実行することができる。例えば、図5に示す例と同様にして、紫外線照射装置500により、複数の凹部140qが形成された樹脂体140Uの上面140aを紫外線で照射する。紫外線の照射は、発光体100Uの上面100Uaのうち、樹脂体140Uの上面140aに対して選択的に実行されてもよい。紫外線の照射により、図19に示すように、複数の凹部140dを有し、発光素子110Aの上面を覆う透光性部材140Aが得られる。以上の工程により、図7に示す発光装置100Aが得られる。なお、図19では、図6と同様に、説明の便宜のために凹部140dを誇張して大きく描いている。本開示の他の図面においても、説明の便宜のために凹部140dまたは凹部140qを誇張して大きく描くことがある。
本開示の第2の実施形態によれば、発光素子を覆う透光性の部材の表面に微細な構造を付与して光の取り出し効率を向上させ得る。上述の発光装置100Aのように、発光素子110Aの光出射側に透光性の部材を配置する場合、発光素子110Aからの光による劣化を考慮して、透光性の部材の材料として熱硬化性樹脂を用いることが有益である。本開示の実施形態によれば、硬化後の熱硬化性樹脂の表面に凹凸のパターンを形成することが可能になるので、光の取り出し効率の向上に有利である。特許文献2には、発光素子を樹脂材料で覆い、さらに、硬化後の樹脂の表面に凹凸パターンを形成するという着眼点はない。
上述の例では、発光素子110Aの上面に付与された第1樹脂材料130r上に積層シートLBを配置後、第1樹脂材料130rを硬化させ、積層シートLBを発光素子110Aの上方に接合している。このとき、第1樹脂材料130rから導光部材130Aを形成することができる。導光部材130Aは、発光素子110Aの側面である素子本体111の側面111cから出射された光を発光装置100Aの上方に向けて反射させる機能を有する。したがって、導光部材130Aの形成により、光の利用効率を向上させることが可能になる。
さらに、上述の例では、導光部材130Aを取り囲み、かつ、素子本体111の下面111bのうち正極112Aおよび負極114Aを除く領域を覆う光反射性部材150Aを発光装置100Aに設けている。そのため、発光装置100Aの側面または下面からの光の漏れを抑制して、光の利用効率をより向上させ得る。
注目すべきは、光反射性樹脂層150Tの内部に一旦樹脂体140Uを埋設してから樹脂体140Uの上面140aを光反射性樹脂層150Tから露出させ、上面140aに凹凸パターンを形成している点である。従来、光反射性樹脂層150Tの内部に樹脂体140Uのような透光性の部材を埋設するような製造方法では、研削面に現れる、透光性の部材の表面に事後的に凹凸パターンを付与することは困難であった。これに対し、本開示の実施形態によれば、硬化後の樹脂体140Uの表面に形状を付与することが可能である。そのため、製品として使用可能な発光装置を得た後に、透光性の部材に事後的に形状を付与することが可能になり、発光装置からの光の取出し効率向上の効果が期待できる。
図7を参照して説明したように、ここでは、正極112Aおよび負極114Aが発光装置100Aの下面100bから露出されており、発光装置100Aは、例えばリフローによって配線基板等に実装され得る。本実施形態においても、第1の実施形態と同様に、透光性の樹脂体の表面への形状の付与後に、主面を紫外線で照射しているので、透光性部材140Aが高温の環境にさらされた場合であっても、凹部140dの形状を維持させることが可能である。つまり、本開示の実施形態は、リフロー等の高温を伴うプロセスの適用に有利である。例えば、発光装置100Aを300℃の温度下で40分間加熱したときの、加熱の前後における凹部140dの深さの変化は、25%以下の範囲内であり得る。ここで、凹部140dの深さの変化は、加熱を実行する前における任意の10箇所の凹部140dの深さの平均値をDp、加熱を実行した後における任意の10箇所の凹部140dの深さの平均値をDqとしたとき、|Dq−Dp|/Dpにより定義することができる。
なお、上述の支持体50に代えて、図20に例示するような、基板410Aと、基板410A上に設けられた第1導電部411Aおよび第2導電部412Aとを有する複合基板400Aを用いてもよい。図20は、複合基板400Aを上面400a側から見たときの外観の一例を示している。基板410Aは、図20に模式的に示すように、貫通孔414を有する。図20には表れていないが、第1導電部411Aの一部および第2導電部412Aの一部は、貫通孔414を介して上面400aとは反対側の下面まで延びている。
基板410Aを用いる場合、支持体50への複数の発光素子110Aの一時的な固定(図12参照)に代えて、例えば、フリップチップ接続により複数の発光素子110Aが複合基板400Aの上面400a側に固定される。このとき、はんだ等の接合部材により、各発光素子110Aの正極112Aおよび負極114Aが複合基板400Aの第1導電部411Aおよび第2導電部412Aにそれぞれ接続される。なお、図20中に細い破線で描かれた矩形は、発光素子110Aが配置される位置を示している。導光部材130Aの形成および透光性の樹脂体140Uの配置の後、図16を参照して説明した工程と同様に、複合基板400Aの上面400a上の構造を光反射性樹脂層150Tによって覆う。
研削等によって樹脂体140Uの上面140aを光反射性樹脂層150Tから露出させた後、図18および図19を参照して説明した例と同様にして上面140aに複数の凹部140dを形成する。その後、図20に太い破線CTで示す位置でダイシング装置等によって光反射性樹脂層150Tおよび複合基板400Aを一括して切断することにより、複数の発光装置100Bが得られる。
図21は、発光装置100Bの外観の一例を示す。図22は、発光装置100Bを発光装置100Bの中央付近の位置で図21中のYZ面に平行に切断したときの断面を模式的に示す。図21および図22に示すように、発光装置100Bは、透光性部材140Aの側面140cを覆う光反射性部材150Bと、複合基板400Bとを含む。複合基板400Bは、基板410Bと、第1導電部411Bと、第2導電部412Bとを含み、図22に示すように、第1導電部411Bおよび第2導電部412Bは、接合部材420によって発光素子110Aの正極112Aおよび負極114Aにそれぞれ電気的に接続されている。図22に例示する構成において、光反射性部材150Bは、複合基板400Bにまで達し、接合部材420をも覆っている。
ここで、基板410B、第1導電部411Bおよび第2導電部412Bは、それぞれ、図20に示す基板410A、第1導電部411Aおよび第2導電部412Aの一部である。図21および図22に例示する構成において、発光装置100Bは、図のX軸方向に対してY軸方向に長い形状を有し、いわゆるサイドビュータイプの発光装置として用いられる。
図7に示す発光装置100Aは、以下のようにして得ることもできる。図23は、本開示の第2の実施形態による発光装置の製造方法の他の一例を示すフローチャートである。図23に例示された発光装置の製造方法は、概略的には、発光素子を準備する工程(ステップS23)と、表面に凹凸のパターンを有し、発光素子の上面を少なくとも覆う透光性部材を形成する工程(ステップS24)とを含む。この例において、透光性部材を形成する工程(図23のステップS24)は、図24に例示されるように、加熱された状態の透光性の樹脂体の表面に型を押し付けることにより、樹脂体の表面に複数の凹部を形成する工程(ステップS241)と、複数の凹部が形成された、樹脂体の表面を紫外線で照射する工程(ステップS242)とを含む。型の押し付けの対象となる樹脂体は、シリコーン樹脂原料を硬化させることによって形成された透光性の部分をその一部に含む樹脂シートである。
まず、図25に示すように、透光部172を有する第1の樹脂層170を準備する。樹脂層170は、2以上の透光部172を有し得る。図25に例示する構成において、樹脂層170は、光反射性樹脂部174を有し、各透光部172は、光反射性樹脂部174によって互いに分離されている。なお、この例では、各透光部172は、透光層140Lおよび波長変換層120Lを含む。樹脂層170は、例えば以下のようにして得ることができる。
まず、光反射性の樹脂シートを準備する。光反射性の樹脂シートの材料としては、上述の第3樹脂材料を用いることができる。例えば、光反射性の樹脂シートは、シリコーン樹脂に二酸化チタンおよび酸化ケイ素の粒子が60重量%程度分散された樹脂シートであり得る。光反射性の樹脂シートの形成には、圧縮成形、トランスファー成形もしくは射出成形、または、印刷法もしくはスプレー法を適用した成形を用い得る。
次に、パンチング等によって樹脂シートに貫通孔を設ける。上面視における貫通孔の形状は、例えば矩形状である。貫通孔の形成後、ポッティング法、印刷法、スプレー法等により、シリコーン樹脂を母材として含む、例えば上述の第2樹脂材料で貫通孔の内部を充填する。このとき、貫通孔の内部に充填された第2樹脂材料において蛍光体の粒子を沈降させて第2樹脂材料を硬化させることにより、厚さ方向において蛍光体の濃度差を有する透光部を形成することが可能である。例えば、蛍光体の粒子が下面側に多く分布する透光部を形成することができる。あるいは、貫通孔の内部に透明な樹脂材料を配置して硬化させた後、透明な樹脂材料上に第2樹脂材料を付与して貫通孔をこれらの材料で充填してもよい。
蛍光体の粒子を沈降させ、第2樹脂材料の硬化後に上下を反転させれば、図25に示すような、光反射性樹脂部174および複数の透光部172を有する樹脂層170が得られる。図25に例示する構成において、透光層140Lは、透光部172中、蛍光体の粒子の濃度が相対的に低い層である。なお、図25では、波長変換層120Lと透光層140Lとの間に境界が存在するかのようにこれらの層を図示しているが、これらの層の間の境界を明確に認識できないこともある。
次に、樹脂層170のうち透光部172が配置された領域上にディスペンサ等によって透光性の第1樹脂材料130rを付与する。さらに、発光素子110Aを準備し(図23のステップS23)、図26に示すように、正極112Aおよび負極114Aを樹脂層170とは反対側に向けて、発光素子110Aを第1樹脂材料130r上に配置する。これにより、素子本体111の側面111cの少なくとも一部の上に第1樹脂材料130rを配置することができる。第1樹脂材料130rを硬化させることにより、第1樹脂材料130rから導光部材130Aを形成することができる。
次に、図27に示すように、樹脂層170上の構造を覆う第2の樹脂層としての光反射性樹脂層150Tを形成する。光反射性樹脂層の材料には、上述の光反射性の樹脂シートの材料、すなわち、樹脂層170の光反射性樹脂部174の材料と同様に上述の第3樹脂材料を用いることができる。光反射性樹脂層150Tの形成には、例えばトランスファー成形を適用できる。
次に、研削加工等を適用して光反射性樹脂層150Tの上面側から光反射性樹脂層150Tの一部を除去することによって各発光素子110Aの正極112Aおよび負極114Aを研削面から露出させる。さらに、ダイシング装置等によって樹脂層170および光反射性樹脂層150Tを互いに隣接する2つの発光素子110Aの位置で切断することにより、光反射性樹脂部174および光反射性樹脂層150Tから光反射性部材150Aを形成して、図28に示すように、各々が図10に示す発光体100Uと同様の構成を有する複数の発光体が得られる。この例において、樹脂層170の透光部172の透光層140Lおよび波長変換層120Lが、透光性の樹脂体140Uおよび波長変換部材120Aに対応する。
次に、樹脂体140Uから、発光素子110Aの上面を少なくとも覆う透光性部材140Aを形成する。透光性部材140Aの形成の工程は、図18および図19を参照して説明した例と同様にして実行することができる。
例えば、まず、図18に示すように、支持体60上に発光体100Uを配置し、複数の凸部210を有する型200の凸部210を樹脂体140Uの上面140aに対向させる。さらに、図4に示す例と同様にして、加熱された状態の樹脂体140Uの上面140aに型200を押し付ける。樹脂体140Uの加熱および型200の押し付けにより、樹脂体140Uの上面140aに複数の凹部を形成することができる(図24のステップS241)。
さらに、複数の凹部が形成された樹脂体の表面を紫外線で照射する(図24のステップS242)。この工程も、図5を参照して説明した、樹脂体140Xの主面140aへの紫外線の照射の例と同様にして実行することができる。例えば、図5に示す例と同様にして、紫外線照射装置500により、複数の凹部140qが形成された樹脂体140Uの上面140aを紫外線で照射する。紫外線の照射により、複数の凹部140dを有し、発光素子110Aの上面を覆う透光性部材140Aが得られる。なお、透光部172を有する樹脂層170の段階で、図2〜図5を参照した例と同様の方法により、透光部172の表面に複数の凹部140dを形成してもよい。
(第2の実施形態の変形例)
図29は、第2の実施形態による発光装置の製造方法によって得られる発光装置の他の一例を示す。図29に示す発光装置100Cは、図7を参照して説明した例と同様に、発光素子110A、波長変換部材120A、導光部材130A、透光性部材140Aおよび光反射性部材150Cを有する。光反射性部材150Cが、発光素子110Aの側面を取り囲み、かつ、素子本体111の下面111bのうち、正極112Aおよび負極114Aの配置された領域以外の領域を覆う点は、図7に示す発光装置100Aの光反射性部材150Aと同様である。ただし、この例では、光反射性部材150Cは、波長変換部材120Aの側面120cおよび透光性部材140Aの側面140cを覆っていない。
図29に示す発光装置100Cは、概略的には、図25〜図28を参照しながら説明した例と同様に、図23に示すフローと同様の工程に従って製造することができる。ただし、ここでは、透光性部材の形成の工程は、図30に示すように、加熱された状態の透光シートの主面に型を押し付けることにより、主面に複数の凹部を形成する工程(ステップS243)と、複数の凹部が形成された、透光シートの主面を紫外線で照射する工程(ステップS244)と、紫外線で照射された透光シートを発光素子の上面側に配置する工程(ステップS245)とを含む。型の押し付けの対象となる透光シートは、シリコーン樹脂原料を硬化させることによって形成されたシートである。以下、図面を参照しながら、発光装置100Cの例示的な製造方法の詳細を説明する。
まず、発光素子を準備する(図23のステップS23)。さらに、発光素子110Aの上面を少なくとも覆う透光性部材を形成する(図23のステップS24)。ここでは、透光性部材の形成に際し、まず、図31に示すような、波長変換層120Vおよび透光層140Vを有する積層シート170Vを準備する。この例では、透光層140Vは、主面140Vaおよび主面140Vbを有し、主面140Vbは、波長変換層120Vの一方の主面120Vaに対向している。図31に模式的に示すように、透光層140Vは、主面140Vaに複数の凹部140dを有している。積層シート170Vは、例えば、上述の積層シートLBと同様にして作製することができる。
まず、主面を有する透光性の樹脂シート(以下、簡単のために、単に「透光シート」と呼ぶことがある。)を準備する。透光シートは、例えば、未硬化のシリコーン樹脂原料を硬化させることによって得ることができる。透光シートの準備後、加熱された状態の透光シートの主面に型を押し付けることにより、透光シートの主面に複数の凹部を形成する(図30のステップS243)。上述の樹脂体140Xは、透光シートの一例である。透光シートの主面への凹部形成の工程は、図2〜図4を参照して説明した、樹脂体140Xの主面140aへの複数の凹部140qの形成の例と同様にして実行することができる。例えば、図2に示す例と同様にして、支持体60上に透光シートを配置し、図4に示す例と同様にして、加熱された状態の透光シートの主面に型200を押し付ける。
次に、型200の複数の凸部210に対応した複数の凹部が形成された、透光シートの主面を紫外線で照射する(図30のステップS244)。この工程も、図5を参照して説明した、樹脂体140Xの主面140aへの紫外線の照射の例と同様にして実行することができる。必要に応じて、紫外線の照射後の透光シートを所定の寸法に切断する。以上の工程により、図6に示す透光性部材140と同様の、主面140aに複数の凹部140dを有する透光シートが得られる。ここでは、透光シートは、上面視において例えば矩形状の外形を有する。さらに、透光シートの主面140aとは反対側の主面上に波長変換層120Vを形成する。波長変換層120Vの形成により、上述の透光シートを透光層140Vとして含む積層シートLBが得られる。
波長変換層120Vの形成には、上述の積層シートLBの形成の例と同様の手法を適用できる。例えば、蛍光体の粒子が分散された樹脂材料中の樹脂をBステージの状態とした蛍光体シートを透光シートの主面140aとは反対側の主面上に配置し、熱によってこれらのシートを貼り合わせることにより、積層シート170Vが得られる。あるいは、透光シートの主面140aとは反対側の主面上に上述の第2樹脂材料を付与した後、第2樹脂材料を硬化させることによって波長変換層120Vを形成してもよい。購入によって積層シート170Vを準備してもよい。なお、複数の凹部140dの形成は、透光層140Vの一方の主面上に波長変換層120Vを配置した後に実行されてもかまわない。例えば、透光層140Vの一方の主面上に波長変換層120Vを形成した後に、透光シートの波長変換層120Vとは反対側の主面に複数の凹部140dを形成してもかまわない。
その後、紫外線で照射された透光シートを発光素子の上面側に配置する(図30のステップS245)。ここでは、図31に模式的に示すように、波長変換層120V上に第1樹脂材料130rを付与し、第1樹脂材料130r上に発光素子110Aを配置する。このとき、素子本体111の上面111aを積層シート170Vに向けて第1樹脂材料130r上に発光素子110Aを配置する。これにより、素子本体111の側面111cの少なくとも一部の上に第1樹脂材料130rを配置することができる。第1樹脂材料130rを硬化させることにより、図32に示すように、導光部材130Aを形成して、上述の透光シートを透光層140Vの形で発光素子110Aの上面側に配置することができる。なお、図31では、1つの発光素子110Aを図示しているが、図26を参照して説明した、樹脂層170上に複数の発光素子110Aを配置する例のように、積層シート170V上に複数の発光素子110Aを配置してよいことはいうまでもない。
次に、積層シート170Vに例えば上述の第3樹脂材料を付与し、積層シート170V上の構造を第3樹脂材料によって覆い、第3樹脂材料を硬化させる。第3樹脂材料を硬化させることにより、図33に示すように、発光素子110Aおよび導光部材130Aを覆う光反射性樹脂層150Tを形成することができる。光反射性樹脂層150Tの形成には、例えばトランスファー成形を適用できる。
その後、研削加工等によって正極112Aおよび負極114Aを研削面から露出させ、図34に示すように、ダイシング装置等を用いて積層シート170Vおよび光反射性樹脂層150Tを所望の形状に切り出す。以上の工程により、積層シート170Vから透光性部材140Aおよび波長変換部材120Aを形成し、光反射性樹脂層150Tから光反射性部材150Cを形成して、図29に示す発光装置100Cが得られる。なお、ここでは、積層シート170Vの波長変換層120Vおよび透光層140Vのうちの透光層140Vに、複数の凹部140dが形成された透光シートを用いている。ただし、この例に限定されず、図2〜図5を参照して説明した手法と同様の手法を適用することによって複数の凹部が形成された蛍光体シートを波長変換層120Vとして用いてもよい。このとき、透光層140Vを省略して、発光素子110Aの上面の上方に位置する透光性部材を波長変換層120Vから形成してもよい。
本実施形態において、凹部140dを有する主面140aが発光装置の上面を構成することは、必須ではない。凹部140dが形成された主面140aを発光素子または発光体の上面に対向させてもよい。あるいは、主面140aおよび主面140bの両方に凹凸のパターンを形成してもよい。凹部140dの内部は、空気によって満たされていてもよいし、透光性部材140Aを構成する材料とは異なる屈折率を有する材料で充填されてもよい。いずれにせよ、透光性部材140Aの表面に凹凸のパターンが形成されている点は、上述の各例の間で共通している。
(第3の実施形態)
これまでの例では、透光性を有する、板状またはシート状の構造に対して型200を押し付け、さらに紫外線を照射することによって凹部140dを形成している。しかしながら、以下に説明するように、凹凸パターンを付与する対象が板状またはシート状の構造であることは、本開示の実施形態において必須ではない。
図35および図36は、第3の実施形態による発光装置の製造方法によって得られる発光装置の一例を示す。図35は、発光装置を上面側から見た例示的な外観を示し、図36は、図35のXXXVI−XXXVI断面を示す。
図35および図36に示す発光装置100Eは、概略的には、発光素子110Bと、発光素子110Bを取り囲む樹脂部350および一対の導電性リード361、362を有する樹脂パッケージ300とを含む。樹脂パッケージ300の樹脂部350の中央には、凹部350eが設けられており、発光素子110Bは、凹部350eの内側に配置されている。樹脂部350は、上述の光反射性部材150A〜150Cと同様に、例えば、光反射性のフィラーが分散された第3樹脂材料から形成され、発光素子110Bから出射された光線を反射させて発光装置100Eの上面100a側から外部に出射させる機能を有する。
図36に示すように、導電性リード361の上面361aの一部および導電性リード362の上面362aの一部は、凹部350eの底面350fの一部を構成し、導電性リード361の下面361bおよび導電性リード362の下面362bは、発光装置100Eの下面100bから露出されている。ここでは、発光素子110Bは、接合部材360によって導電性リード361上に固定されている。接合部材360を構成する材料は、エポキシ樹脂、シリコーン樹脂等の樹脂材料等の絶縁性の材料、または、Agペースト等の導電性の材料である。
図35および図36に例示する構成において、発光素子110Bは、下面110bとは反対側の上面110aに正極112Bおよび負極114Bを有する。正極112Bおよび負極114Bには、Au、Al、Cu等の導電性ワイヤ372および371がそれぞれ接続される。この例では、導電性ワイヤ372によって正極112Bが導電性リード362に電気的に接続され、導電性ワイヤ371によって負極114Bが導電性リード361に電気的に接続されている。
発光装置100Eは、凹部350eの内側に位置する透光性部材340をさらに含む。図36に模式的に示すように、透光性部材340は、発光素子110B、導電性ワイヤ371および372を覆っている。また、図36に模式的に示すように、透光性部材340は、発光素子110Bの上面110aの上方に位置する上面340aに、例えば二次元的に配置された複数の凹部340dを有する。なお、この例では、透光性部材340の上面340aは、樹脂部350の上面350aと整合しており、上面340aは、上面350aとともに発光装置100Eの上面100aを構成する。
以下、発光装置100Eの例示的な製造方法を説明する。図35および図36に示す発光装置100Eは、概略的には、図8に示すフローと同様の工程に従って製造することができる。ただし、ここでは、発光体の準備の工程は、図37に示すように、上面を有する発光素子を準備する工程(ステップS214)と、シリコーン樹脂原料で発光素子を覆い、シリコーン樹脂原料を硬化させることによって樹脂体を形成する工程(ステップS215)とを含む。透光性部材の形成の工程は、図9を参照して説明した例と同様であり得る。
発光体の準備(図8のステップS21)に際し、まず、発光素子110Bおよび樹脂パッケージ300を準備する(図37のステップS214)。ここで、樹脂パッケージ300は、各々が樹脂パッケージ300を構成する複数の単位を含む複合基板の形で準備することができる。図38は、複合基板の一例を示す。図38に例示する複合基板300Fは、導電性のリードフレーム360Fと、複数の凹部350eが設けられた樹脂部350Fとを含む。図38では、それぞれが凹部350eを含む複数の単位のうちの4つを取り出して示している。
図38に模式的に示すように、リードフレーム360Fは、第1導電部材である導電性リード361および第2導電部材である導電性リード362の複数の組と、互いに隣接する組の間に配置され、これらの組を互いに接続する複数の連結部363とを有する。導電性リード361および362は、例えば、Cuから形成された基材と、基材を被覆する金属層とを有し得る。基材を被覆する金属層は、Ag、Al、Ni、Pd、Rh、Au、Cu、または、これらの合金等を含む、例えばめっき層である。
導電性リード361の一部および導電性リード362の一部は、樹脂部350Fの凹部350eのそれぞれの底部において露出されている。凹部350e内において互いに対向する導電性リード361および362の組のそれぞれは、導電性リード361および362が互いに空間的に分離されることによって形成されたギャップGpを有する。ギャップGpは、樹脂部350Fを構成する材料によって埋められる。
複合基板300Fは、リードフレーム360Fに樹脂部350Fをトランスファー成形等によって一体的に形成することによって得ることが可能である。例えば、金型のキャビティ内にリードフレーム360Fを配置し、キャビティの内部を第3樹脂材料で充填して第3樹脂材料を硬化させることにより、リードフレーム360Fを得ることができる。
次に、図39に示すように、各凹部350e内に発光素子110Bを配置し、導電性ワイヤ371および372によって正極112Bおよび負極114Bを導電性リード361、362に電気的に接続する。この例では、正極112Bおよび負極114Bを導電性リード362および361にそれぞれ接続しているが、正極112Bが導電性リード361に接続され、負極114Bが導電性リード362に接続されることもあり得る。
さらに、各凹部350eを未硬化のシリコーン樹脂を含むシリコーン樹脂原料で充填し、シリコーン樹脂原料を硬化させることにより、発光素子110Bを覆う透光性の樹脂体340Zを形成する(図37のステップS215)。樹脂体340Zを形成するためのシリコーン樹脂原料は、上述の樹脂体140Xの材料と同様の材料であり得る。すなわち、樹脂体340Z中のシリコーン樹脂は、典型的には、少なくとも1つのフェニル基を分子中に有する有機ポリシロキサン、および/または、2つのメチル基がケイ素原子に結合したDユニットを有する有機ポリシロキサンを含有する。シリコーン樹脂原料は、光反射性のフィラー等がさらに分散された原料であってもよい。
以上の工程により、図39に示すように、各々が発光素子110Bおよび透光性の樹脂体340Zを有する複数の発光体100Yを単位とする繰り返し構造が得られる。ここでは、さらに、図18および図19を参照して説明した例と同様にして、樹脂体340Zの上面に凹凸パターンを形成する。
例えば、図40に模式的に示すように、支持体60上に発光体100Yを配置し、型200の凸部210を樹脂体340Zの上面340aに対向させる。さらに、例えば周囲の温度を上昇させ、樹脂体340Zが加熱された状態で上面340aに型200を押し付ける。型200の押し付けにより、樹脂体340Zの上面340aに複数の凹部340qが形成される(図9のステップS221)。なお、この例では、樹脂体340Zの上面340aに選択的に凹部340qを形成しているが、樹脂部350Fの上面350aにも凹部340qを形成してもかまわない。
次に、例えば、紫外線照射装置500により、複数の凹部340qが形成された樹脂体340Zの上面340aを紫外線で照射する(図9のステップS222)。紫外線の照射により、図41に模式的に示すように、樹脂体340Zから、発光素子110Bの上面110aを覆い、上面340aに複数の凹部340dを有する透光性部材340を形成することができる。その後、ダイシング装置等によって、互いに隣接する2つの発光体100Yの間の位置で樹脂部350Fとリードフレーム360Fの連結部363とを切断することにより、複数の発光装置100Eを得ることができる。
なお、樹脂体340Zの形成に先立ち、発光素子110Bを覆う波長変換部材を形成してもよい。例えば、発光素子110Bが覆われるように各凹部350eの内部に第2樹脂材料を付与し、第2樹脂材料を硬化させることにより、波長変換部材を形成する。さらに、波長変換部材上に樹脂体340Zを形成する。その後、図40および図41を参照して説明した工程を実行すれば、図42に例示する発光装置100Fが得られる。発光装置100Fは、発光素子110Bを覆う波長変換部材320Aと、波長変換部材320Aを覆う透光性部材340とを凹部350eの内側に有する。透光性部材340の上面340aには、複数の凹部340dが設けられている。
あるいは、シリコーン樹脂を含有する第2樹脂材料をシリコーン樹脂原料として用いて第2樹脂材料で各凹部350eを充填してもよい。凹部350e内の第2樹脂材料を硬化させて発光体を得た後、図40および図41を参照して説明した工程と同様の工程を実行すれば、図43に例示する発光装置100Gが得られる。発光装置100Gは、凹部350e内に、発光素子110Bを覆う波長変換部材320Bを有する。図43に模式的に示すように、波長変換部材320Bは、その上面320aに、複数の凹部340dを有する。このように、透光性部材としての波長変換部材320Bに、型の押し付けおよび紫外線の照射により、複数の凹部320dを形成してもよい。
上述の第2の実施形態と同様に、本開示の第3の実施形態によれば、発光素子を覆う透光性の樹脂体の表面に微細な構造を付与することが可能であり、光の取り出し効率向上の効果が期待できる。第3の実施形態によれば、発光素子を樹脂で封止した後に、発光素子を覆う透光性部材の表面に凹凸パターンを形成することが可能である。また、本実施形態においても、透光性の樹脂体の表面への形状の付与後に、樹脂体の表面を紫外線で照射しているので、リフロー等の高温を伴うプロセスを実行しても、透光性部材の表面の凹凸形状を維持させ得る。
(実施例1)
以下の手順に従って実施例1のサンプルを作製し、実施例1のサンプルの表面の形状を紫外線の照射の前後で比較した。
まず、フェニル基を分子中に有する有機ポリシロキサンを含有するシリコーン樹脂を硬化させることにより形成された透光シートを準備した。ここでは、透光シートとして、信越化学工業株式会社から販売されているシリコーン樹脂(型番:KE−1011)をスクリーン印刷法によってシート状に整形した後、150℃の温度下で4時間加熱することによりシリコーン樹脂を硬化させ、厚さ100μmの樹脂シートを得た。
また、複数の凸部を表面に有する型を準備した。凸部の各々の形状は、正三角錐状であり、型の表面からの凸部の高さは、1.3μmであった。また、これらの凸部は、それぞれの頂部が三角格子の格子点上に位置するように型の表面に二次元に配置されており、互いに隣接する2つの凸部の間の頂部の間隔は、3.5μmであった。
次に、透光シートの一方の主面と、複数の凸部が設けられた型の表面とを対向させ、周囲の温度を150℃に上昇させた状態で、ヒートプレス装置を用いて3MPaの圧力で透光シートの主面に型を押し付けた。その後、透光シートから型を分離した。型の分離後の透光シートの主面には、型の凸部に対応した位置に複数の凹部が形成されていた。図44および図45は、型の分離後に得られた透光シートの表面形状を示す、レーザー顕微鏡によって得られた画像である。図45は、透光シートの断面プロファイルを示している。透光シートの表面に形成された凹部の深さは、1.1〜1.5μm程度の範囲であった。
次に、最も強いピークの波長が365nmの位置にある紫外線光源を有する紫外線照射装置を用い、複数の凹部が形成された透光シートの主面を紫外線で照射した。なお、照射された紫外線は、UVA〜UVCの波長範囲にわたるスペクトルを有していた。このときの紫外線の照射量は、23J/cm、照射時間は、50秒程度であった。
図46および図47は、紫外線の照射後の透光シートの表面形状を示す。図45と同様に、図47は、透光シートの断面プロファイルを示している。紫外線照射後の透光シート表面の凹部の深さは、1.0〜1.4μm程度の範囲であり、紫外線の照射の前後で凹部の深さに大きな変化は見られなかった。ただし、図45と図47との比較から、紫外線の照射によって、凹部と凹部との間に位置する領域がわずかに尖鋭化することがわかった。
(実施例2)
複数の凸部の形状および配置が異なる型を用いたこと以外は実施例1のサンプルと同様にして、実施例2のサンプルを作製した。実施例2のサンプルの作製に用いた型の凸部の各々の形状は、円錐状であり、凸部の高さは、1.5μmであった。また、これらの凸部は、それぞれの頂部が三角格子の格子点上に位置するように型の表面に二次元に配置されており、互いに隣接する2つの凸部の間の頂部の間隔は、3μmであった。
図48および図49は、紫外線の照射後の透光シートの表面形状を示す。図45、図47と同様に、図49は、透光シートの断面プロファイルを示している。図49に示す範囲において、紫外線照射後の透光シート表面の凹部の深さの最大値は、およそ2.8μmであった。図49からわかるように、凹部および凹部間の領域は、0.5μm程度の微細な凸部を含む荒れた表面を有している。これは、硬化後のシリコーン樹脂の透光シートの表面に型を押し当て、透光シートの表面から型の凸部を引き抜いた影響が現れているためであると推測される。
(実施例3、比較例1)
次に、サンプルに付与された形状への熱の影響を検証するために、以下の手順により、実施例3のサンプルおよび比較例1のサンプルを作製した。
まず、信越化学工業株式会社から販売されているシリコーン樹脂(型番:LPS−3541)をスクリーン印刷法によってシート状に整形した後、150℃の温度下で4時間加熱することにより、厚さ150μmの樹脂シートを作製した。ここで、LPS−3541は、上述のKE−1011と同様に、フェニル基を分子中に有する有機ポリシロキサンを含有する。
次に、複数の凸部を表面に有する型を準備し、樹脂シートの一方の主面と、型の凸部とを対向させ、周囲の温度を300℃に上昇させた状態で、ヒートプレス装置を用いて5MPaの圧力で樹脂シートの主面に型を押し付けた。その後、樹脂シートから型を分離した。なお、ここでは、実施例2のサンプルの作製と同様の、円錐状の凸部が二次元に配置された表面を有する型を用いた。図50は、型の分離後の樹脂シートの表面形状を示す。樹脂シートの表面に形成された凹部の深さは、0.9〜1.1μm程度の範囲であった。
次に、樹脂シートを切断することにより、2枚のシートを得た。2枚のシートのうちの一方については、実施例1のサンプルの作製に用いた紫外線照射装置を用い、凹部が形成された表面を22.4J/cmの照射量、30秒程度の照射時間で紫外線で照射した。他方のシートについては、型の押し付けによる凹部の形成後に紫外線照射装置による紫外線の照射を行わなかった。
2枚のシートを電気炉内に配置し、300℃の温度下に40分間おいた後に電気炉から取り出して室温まで自然冷却させた。これらのシートのうち、紫外線照射装置による紫外線の照射が行われたシートを実施例3のサンプルとし、紫外線照射装置による紫外線の照射が行われなかった他方のシートを比較例1のサンプルとした。
図51は、実施例3のサンプルの表面形状を示す。図50と図51との比較から、型の押し付けによる凹部の形成後に紫外線を照射することにより、300℃程度の加熱によっても凹部の形状を維持可能であることがわかった。なお、実施例3のサンプルの表面に形成された凹部の深さは、0.9〜1.1μm程度の範囲であった。換言すれば、加熱の前後において、凹部の深さの変化は、おおよそ25%以下の範囲内であった。
図52は、比較例1のサンプルの表面形状を示す。図52から、紫外線の照射を行わない場合には、加熱により、型の押し付けによって表面に形成された凹形状がほぼ失われることがわかった。なお、比較例1のサンプルの表面に残った凹部の深さは、0.03μm程度に過ぎなかった。
(参考例1)
図51と図52との比較から明らかなように、型の押し付けによって凹部が形成された樹脂シートの表面を20J/cm程度以上の照射量で紫外線で照射することにより、高温(例えばガラス転移点以上の温度)にさらされた場合であっても凹部の形状を維持させることが可能になることがわかった。これは、紫外線で照射された表面およびその近傍に何らかの変化が生じたためであると推測される。ここでは、樹脂シートに部分的に紫外線の照射を行った参考例1のサンプルを作製し、赤外分光分析により、紫外線で照射された部分と、紫外線で照射されなかった部分との間でスペクトルの比較を行った。参考例1のサンプルは、上述のシリコーン樹脂LPS−3541を予備硬化させることにより形成された、厚さ150μmの透光シートの表面の一部を紫外線で照射することによって作製した。その後、透光シート中のシリコーン樹脂を本硬化させた。
図53〜図55は、フーリエ変換型赤外分光光度計によって得られた、参考例1のサンプルに関する透過光の赤外スペクトルを示す。図53〜図55中、曲線K1は、意図的に紫外線で照射されていない部分に関するスペクトルを示し、曲線K2は、意図的に紫外線で照射された部分に関するスペクトルを示している。ここでは、赤外スペクトルの取得に、サーモフィッシャーサイエンティフィック株式会社から販売されているNicolet iS50モジュールを用いた。
図54を参照する。図54は、図53のスペクトルのうち、波数が4000〜1300cm−1の範囲を拡大して示す。図54中には、波数が2000〜1400cm−1の範囲をさらに拡大した図も示されている。図54に示すスペクトルにおいて、Si−OHに由来する吸収に関係する、波数が3700〜3000cm−1の範囲に注目すると、紫外線の照射により、波数が3400cm−1付近に吸収のピークが出現し、3700〜3000cm−1の範囲の吸収が増加していることがわかった。
図55も参照する。図55は、図53のスペクトルのうち、波数が1400〜400cm−1の範囲を拡大して示している。図54および図55から、Si−CHに由来する吸収に関係する、波数が2960cm−1および800cm−1付近の吸収ピークに着目すると、紫外線の照射により、それぞれのピークの高さが低くなることがわかった。つまり、本開示の実施形態による発光装置の透光性部材の赤外吸収は、基本的に、20J/cm以上の照射量で意図的に紫外線が照射されていないシリコーン樹脂と比較して波数3700cm−1超3000cm−1未満の範囲で大きく、波数2960cm−1および800cm−1付近において小さい。このことから、紫外線の照射により、透光シートのうち、紫外線の照射された表面のごく浅い領域に変化が生じて透光シートの硬さが部分的に向上し、その結果として高温による凹部の形状の変化が抑制された可能性がある。
次に、紫外線の照射量が互いに異なる複数のサンプルを作製し、紫外線の照射がサンプルの表面の瞬間接着力に与える影響を検証した。なお、本明細書では、「タック性」の用語を「瞬間接着力」の用語とを区別せずに使用し、これらを同じ意味で用いる。本明細書における「瞬間接着力」または「タック性」は、以下に説明するプローブ法による測定によって得られる値を意味する。
まず、厚さ3mmの樹脂ブロックを作製し、同一の樹脂ブロックから、切断により、直径が16mmの複数の試験片を準備する。これらの試験片について、インストロンジャパン カンパニイリミテッドから販売されているデュアルコラム卓上型試験機5966を用いて、樹脂ブロックの表面にプローブを接触させた後、一定の速度でプローブを移動させ、樹脂ブロックの表面からのプローブの剥離に必要な力を測定する。測定においては、先端形状が平面状かつ先端面の面積が1800mmの、ステンレス製のプローブを用いる。樹脂シートの表面に対するプローブの接触時間およびプローブの引張速度は、それぞれ、1秒および9mm/分とする。同一のシートから切断によって得られる3枚の試験片に関する測定値の平均をタック性の測定値とする。
(参考例2)
以下の手順により、参考例2および参考例3のサンプルならびに比較例2のサンプルを作製した。上述の実施例3のサンプルと同様にして、信越化学工業株式会社製のシリコーン樹脂LPS−3541をスクリーン印刷法によってシート状に整形し、150℃の温度下で4時間加熱することにより、厚さ150μmの樹脂シートを作製した。ただし、ここでは、型の押し付けによる形状の付与は行わず、樹脂シートを切断することによって複数の樹脂シート片を得た。これらの樹脂シート片から無作為に3枚の樹脂シート片を抽出し、実施例3のサンプルと同様にして、一方の主面を240J/cmの照射量、30秒程度の照射時間で紫外線で照射した。紫外線の照射後の樹脂シート片を電気炉内に配置し、300℃の温度下に40分間おいた後に電気炉から取り出して室温まで自然冷却させ、参考例2のサンプルとした。
(参考例3)
紫外線の照射量を22.4J/cmに変更したこと以外は参考例2のサンプルと同様にして、参考例3のサンプルを作製した。
(比較例2)
紫外線の照射を実行しなかったことたこと以外は参考例2のサンプルと同様にして、比較例2のサンプルを作製した。
図56は、参考例2、参考例3および比較例2の各サンプルの表面のタック性に関する測定結果を示す。図56中、最も右側のプロットは、参考例2のサンプルに関する測定値を示し、中央のプロットは、参考例3のサンプルに関する測定値を示す。図56中、最も左側のプロットは、比較例2のサンプルに関する測定値を示す。
図56に示すように、比較例2のサンプルに関する表面のタック性の測定値は、おおよそ23〜32N・cm−2の範囲であった。一方、22.4J/cmの照射量で紫外線が照射された参考例3のサンプルは、おおよそ0.1〜8N・cm−2の範囲のタック性の値を示し、240J/cmの照射量で紫外線が照射された参考例2のサンプルは、0.3〜0.6N・cm−2の範囲のタック性の値を示した。このことから、意図的な紫外線の照射により、シリコーン樹脂から形成された樹脂シートの表面および/または表面近傍に何らかの変化が生じた可能性がある。その結果、意図的な紫外線の照射により、樹脂表面のタック性が低下したものと推測される。図56に示す結果から、例えば、シリコーン樹脂を含む樹脂体の表面を20J/cm程度以上の照射量で意図的に紫外線で照射することによって、樹脂体の表面の瞬間接着力を、意図的な紫外線の照射がなされていないシリコーン樹脂の表面の瞬間接着力の例えば50%以下に低下させ得ることがわかった。
本開示の実施形態は、例えば光源の前面に配置され、入射光線の少なくとも一部を透過させる光学要素の製造に適用できる。本開示の実施形態は、特に、LED等の発光素子を覆う透光性部材を有する発光装置の製造に有用である。
100A〜100C、100E〜100G 発光装置
100U、100Y 発光体
110、110A、110B 発光素子
110a 発光素子の上面
110b 発光素子の下面
112A、112B 発光素子の正極
114A、114B 発光素子の負極
120A 波長変換部材
120L、120V 波長変換層
130A 導光部材
140、140A 透光性部材
140L、140V 透光層
140U、140X、340Z 樹脂体
140a 上面
140b 下面
140d、140q 凹部
150A〜150C 光反射性部材
170 樹脂層
170V、LB 積層シート
172 透光部
174 光反射性樹脂部
200 型
210 型の凸部
300 樹脂パッケージ
300F 複合基板
320A、320B 波長変換部材
340 透光性部材
340Z 樹脂体
320d、340d、340q 凹部
350 樹脂部
361、362 導電性リード
371、372 導電性ワイヤ
400A、400B 複合基板
410A、410B 基板
411A、411B 第1導電部
412A、412B 第2導電部
500 紫外線照射装置

Claims (5)

  1. 主面を有し、シリコーン樹脂を含む硬化後の樹脂体の前記主面に、複数の凸部を有する型の前記複数の凸部を対向させ、加熱された状態の前記樹脂体の前記主面に前記型を押し付けることにより、前記主面に複数の凹部を形成する工程(A)と、
    前記工程(A)の後に、前記樹脂体の前記主面を紫外線で照射する工程(B)と
    を含む、透光性部材の形成方法。
  2. 前記工程(B)における紫外線の照射量は、20J/cm以上である、請求項1に記載の透光性部材の形成方法。
  3. 前記工程(B)の実行後の前記複数の凹部は、0.9μm以上の深さを有する、請求項1または2に記載の透光性部材の形成方法。
  4. 前記シリコーン樹脂は、少なくとも1つのフェニル基を分子中に有する有機ポリシロキサンを含有する、請求項1から3のいずれかに記載の透光性部材の形成方法。
  5. 前記シリコーン樹脂は、2つのメチル基がケイ素原子に結合したDユニットを有する有機ポリシロキサンを含有する、請求項1から4のいずれかに記載の透光性部材の形成方法。
JP2018029512A 2018-02-22 2018-02-22 透光性部材の形成方法 Active JP6773063B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018029512A JP6773063B2 (ja) 2018-02-22 2018-02-22 透光性部材の形成方法
US16/282,286 US11088305B2 (en) 2018-02-22 2019-02-21 Method for forming light-transmissive member including pressing die into resin body and irradiating resin body with ultraviolet rays
US17/351,928 US11923488B2 (en) 2018-02-22 2021-06-18 Light emitting device including light transmissive member with concave portions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029512A JP6773063B2 (ja) 2018-02-22 2018-02-22 透光性部材の形成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020076514A Division JP7089191B2 (ja) 2020-04-23 2020-04-23 発光装置の製造方法、および、発光装置

Publications (2)

Publication Number Publication Date
JP2019142137A JP2019142137A (ja) 2019-08-29
JP6773063B2 true JP6773063B2 (ja) 2020-10-21

Family

ID=67618142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029512A Active JP6773063B2 (ja) 2018-02-22 2018-02-22 透光性部材の形成方法

Country Status (2)

Country Link
US (2) US11088305B2 (ja)
JP (1) JP6773063B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113640A (ja) * 2019-01-11 2020-07-27 日亜化学工業株式会社 発光装置の製造方法および発光装置
JP2022075717A (ja) * 2019-01-11 2022-05-18 日亜化学工業株式会社 発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978690B2 (ja) * 2018-05-25 2021-12-08 日亜化学工業株式会社 透光性部材の形成方法および発光装置の製造方法、ならびに、発光装置
JP2022139204A (ja) * 2021-03-11 2022-09-26 富士電機株式会社 半導体モジュールおよび半導体モジュールの製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234509A (ja) 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
US7157745B2 (en) * 2004-04-09 2007-01-02 Blonder Greg E Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them
JP4093943B2 (ja) * 2003-09-30 2008-06-04 三洋電機株式会社 発光素子およびその製造方法
JP2007036030A (ja) 2005-07-28 2007-02-08 Nichia Chem Ind Ltd 発光装置及びその製造方法
US7955531B1 (en) * 2006-04-26 2011-06-07 Rohm And Haas Electronic Materials Llc Patterned light extraction sheet and method of making same
JP4997550B2 (ja) * 2007-02-27 2012-08-08 独立行政法人理化学研究所 微細パターン形成方法
KR100890741B1 (ko) * 2007-03-13 2009-03-26 삼성전기주식회사 고출력 led 패키지 및 그 제조방법
CN101552309A (zh) * 2008-04-03 2009-10-07 富准精密工业(深圳)有限公司 发光二极管出光面加工方法
US20100209670A1 (en) * 2009-02-17 2010-08-19 Nitto Denko Corporation Sheet for photosemiconductor encapsulation
JP5177693B2 (ja) 2009-05-20 2013-04-03 日東電工株式会社 光半導体封止用シート
US8586963B2 (en) * 2009-12-08 2013-11-19 Lehigh University Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
KR100974288B1 (ko) * 2010-01-13 2010-08-05 한국기계연구원 나노임프린트를 이용한 금속 산화박막 패턴 형성방법 및 이를 이용한 led 소자의 제조방법
US8563351B2 (en) * 2010-06-25 2013-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
JP5076017B2 (ja) * 2010-08-23 2012-11-21 株式会社東芝 発光装置
EP2623285A4 (en) * 2010-09-30 2016-11-02 Mitsubishi Rayon Co MOLD HAVING UNE FINE SURFACE IRREGULAR STRUCTURE, PRODUCTION METHOD OF PRODUCT HAVING FINE IRREGULAR SURFACE STRUCTURE, USE OF THE PRODUCT, HETEROCROMY EXPRESSING BATTERY, AND SURFACE EMITTING ELEMENT
US8569737B2 (en) * 2010-12-08 2013-10-29 Lehigh University Broadband light emitting diodes and method for producing same
WO2012087663A1 (en) * 2010-12-20 2012-06-28 3M Innovative Properties Company Glass-like polymeric antireflective films coated with silica nanoparticles, methods of making and light absorbing devices using same
JP2014005324A (ja) 2012-06-21 2014-01-16 Nitto Denko Corp シリコーン樹脂組成物、半硬化体シート、シリコーン硬化体の製造方法、発光ダイオード装置およびその製造方法
CN102866582B (zh) * 2012-09-29 2014-09-10 兰红波 一种用于高亮度led图形化的纳米压印装置和方法
JP6024525B2 (ja) 2013-03-07 2016-11-16 豊田合成株式会社 発光装置の製造方法
EP2983018A4 (en) * 2013-04-05 2016-04-20 Mitsubishi Rayon Co OPTICAL FILM AND BODY WITH SURFACE DELIVERY
JP6306443B2 (ja) 2014-06-11 2018-04-04 旭化成株式会社 発光ダイオード及び発光ダイオードの製造方法
JP6366467B2 (ja) 2014-10-31 2018-08-01 シチズン時計株式会社 発光装置の製造方法
JP2017032806A (ja) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 反射防止用微細突起の製造方法
JP2018536297A (ja) 2015-11-10 2018-12-06 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 発光ダイオードデバイスおよびその製造方法
US10199533B2 (en) 2015-12-21 2019-02-05 Nichia Corporation Method of manufacturing light emitting device
JP6384533B2 (ja) 2015-12-21 2018-09-05 日亜化学工業株式会社 発光装置の製造方法
JP6304297B2 (ja) 2016-04-06 2018-04-04 日亜化学工業株式会社 発光装置の製造方法
JP6715109B2 (ja) * 2016-06-30 2020-07-01 三井化学東セロ株式会社 半導体ウェハ加工用粘着性フィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113640A (ja) * 2019-01-11 2020-07-27 日亜化学工業株式会社 発光装置の製造方法および発光装置
JP7037070B2 (ja) 2019-01-11 2022-03-16 日亜化学工業株式会社 発光装置の製造方法
JP2022075717A (ja) * 2019-01-11 2022-05-18 日亜化学工業株式会社 発光装置
JP7260828B2 (ja) 2019-01-11 2023-04-19 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
US11088305B2 (en) 2021-08-10
JP2019142137A (ja) 2019-08-29
US20210313495A1 (en) 2021-10-07
US20190259926A1 (en) 2019-08-22
US11923488B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
JP6978690B2 (ja) 透光性部材の形成方法および発光装置の製造方法、ならびに、発光装置
JP6773063B2 (ja) 透光性部材の形成方法
US10522728B2 (en) Beveled chip reflector for chip-scale packaging light-emitting device and manufacturing method of the same
US9601670B2 (en) Method to form primary optic with variable shapes and/or geometries without a substrate
TWI321594B (en) Method for the production of a radiation-emitting optical component and radiation-emitting optical component
CN101971376B (zh) 半导体装置
JP2016115729A (ja) 発光装置の製造法
JP7089191B2 (ja) 発光装置の製造方法、および、発光装置
JP6387954B2 (ja) 波長変換部材を用いた発光装置の製造方法
JP2012529766A (ja) 遠隔の蛍燐光体の層及び反射性のサブマウントを備えたled
JP2017168819A (ja) 非対称放射パターンを有する発光素子およびその製造方法
JP2014168033A (ja) 反射層−蛍光体層被覆led、その製造方法、led装置およびその製造方法
JP5744697B2 (ja) 光電子部品及びその製造方法
JP2014168032A (ja) 蛍光体層被覆led、その製造方法およびled装置
JP2010232644A (ja) 光半導体装置の製造方法
JP2019186513A (ja) 発光装置の製造方法
JP2014168036A (ja) 封止層被覆半導体素子、その製造方法および半導体装置
JP2020053480A (ja) 発光装置の製造方法および発光装置
JP6928289B2 (ja) 発光モジュール
JP2019201089A (ja) チップスケールパッケージング発光素子の斜角チップ反射器およびその製造方法
JP7037070B2 (ja) 発光装置の製造方法
JP7260828B2 (ja) 発光装置
US20190198733A1 (en) Light emitting device and manufacturing method thereof
JP2019197885A (ja) チップスケール線状発光装置
JP2024080449A (ja) 光学部材及びその製造方法、光源モジュール及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250