WO2014157601A1 - 金属基板、それを用いたサブストレート型薄膜太陽電池及びトップエミッション型有機el素子 - Google Patents

金属基板、それを用いたサブストレート型薄膜太陽電池及びトップエミッション型有機el素子 Download PDF

Info

Publication number
WO2014157601A1
WO2014157601A1 PCT/JP2014/059075 JP2014059075W WO2014157601A1 WO 2014157601 A1 WO2014157601 A1 WO 2014157601A1 JP 2014059075 W JP2014059075 W JP 2014059075W WO 2014157601 A1 WO2014157601 A1 WO 2014157601A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal substrate
layer
metal
metal plate
Prior art date
Application number
PCT/JP2014/059075
Other languages
English (en)
French (fr)
Inventor
平野 康雄
辰彦 岩
渡瀬 岳史
水野 雅夫
陽子 志田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480019017.XA priority Critical patent/CN105102218B/zh
Priority to KR1020157026524A priority patent/KR101821872B1/ko
Publication of WO2014157601A1 publication Critical patent/WO2014157601A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a metal substrate used for a substrate type thin film solar cell or a top emission type organic EL device, and relates to a metal substrate having a smooth surface and an insulating surface.
  • Thin-film solar cells 2 types of structures of a superstrate type thin film solar cell and a substrate type thin film solar cell It has been known.
  • a substrate, a transparent electrode, a photoelectric conversion layer, and a back electrode are usually laminated in this order, and light is incident from the substrate side.
  • a substrate-type thin film solar cell usually has a structure in which a substrate, a back electrode, a photoelectric conversion layer, and a transparent electrode are laminated in this order, and light is incident from the transparent electrode side.
  • the substrate of the substrate type thin film solar cell makes light incident from the transparent electrode side
  • the substrate of the substrate type thin film solar cell is not required to have translucency. Therefore, it is not possible to use a substrate such as glass or plastic but a substrate that does not have translucency such as a metal plate but has excellent workability.
  • the surface of the substrate in order to function as a thin film solar cell, the surface of the substrate must be smooth and the surface needs to have insulating properties, but the surface of the metal plate itself usually has irregularities of about 1 ⁇ m or more, Since it has conductivity, it cannot be used as it is as a substrate. Therefore, it is considered that if a film is formed on a metal plate so as to satisfy the above conditions, the metal plate can be used as a substrate.
  • Patent Documents 1 and 2 below propose such a substrate.
  • Patent Document 1 describes an insulating substrate for an organic EL element in which a metal plate is used as a base material and an insulating layer made of an organic resin and having a film thickness of 1 to 40 ⁇ m and a surface roughness of 0.5 ⁇ m or less is laminated on the base material surface.
  • Patent Document 1 only describes an insulating substrate having a surface roughness of 100 nm or more, which is insufficient in surface smoothness and surface insulation, and is a substrate for a substrate type thin film solar cell.
  • the back surface electrode and the transparent electrode may be electrically short-circuited due to the unevenness of the substrate surface, which may cause insulation failure.
  • Patent Document 2 describes a flexible device substrate in which a metal foil, a planarization layer containing polyimide, and an adhesion layer containing an inorganic compound are sequentially laminated.
  • the surface is smoothed by using an expensive polyimide, which causes a problem in terms of cost.
  • An object of the present invention is to provide a metal substrate that is used for a substrate type thin film solar cell or a top emission type organic EL element, and has excellent smoothness of the surface of the metal plate and also has excellent insulating properties. Raised.
  • the present inventors are a metal substrate used in a substrate type thin film solar cell or a top emission type organic EL device, and smoothes the surface of the film laminated on the metal plate and has an insulating property on the surface of the film.
  • the metal substrate was completed.
  • the present invention is a metal substrate used for a substrate-type thin film solar cell or a top emission type organic EL element, wherein a film laminated with one or more layers is formed on the surface of the metal plate, The surface roughness Ra of the film is 30 nm or less, and the film is obtained by baking a film-forming composition containing a thermosetting resin and having a solid pigment volume fraction of 20% or less.
  • the metal substrate is used for a substrate type thin film solar cell or a top emission type organic EL element.
  • the present inventors have completed the following three types of metal substrates.
  • the present inventors have completed the first metal substrate having an insulating property while smoothing the surface of the film by laminating a predetermined film on the metal plate.
  • this first metal substrate only one layer of a film having a film thickness of 10 ⁇ m or more and 40 ⁇ m or less is laminated on the surface of the metal plate, the surface roughness Ra of the film is 30 nm or less,
  • the present inventors smoothed the surface of the film on the outermost layer farthest from the metal plate by laminating a plurality of predetermined films on the metal plate, and provided a second metal substrate having insulation. Also came to be completed.
  • the second metal substrate In the second metal substrate, a plurality of layers having a film thickness of 0.1 ⁇ m or more and 40 ⁇ m or less are laminated on the surface of the metal plate, and the total film thickness of these layers is 3 ⁇ m or more.
  • the surface of the film farthest from the metal plate is a metal substrate having a surface roughness Ra of 30 nm or less, and the film of each layer is obtained by baking a film-forming composition containing a thermosetting resin.
  • the metal substrate is used for a substrate type thin film solar cell or a top emission type organic EL element.
  • the present inventors smooth the surface of the film on the outermost layer farthest from the metal plate and complete a third metal substrate having insulating properties even when the total film thickness exceeds 40 ⁇ m. It came to.
  • a film in which one or more layers are laminated is formed on the surface of the metal plate, the total film thickness is more than 40 ⁇ m and 120 ⁇ m or less, and the surface roughness Ra of the film is 30 nm or less.
  • the film forming composition further includes a curing agent, and the mass ratio of the curing agent to the thermosetting resin in the film forming composition is 0.6 or more and 1. 0.0 or less is preferable.
  • the film forming composition further includes a curing agent, and the mass ratio of the curing agent to the thermosetting resin in the film forming composition is 0.6 or more and 1. 0.0 or less, and the total film thickness of the plurality of layers is preferably 5 ⁇ m or more.
  • the film-forming composition that forms the film farthest from the metal plate is replaced with an inorganic polymer and / or an organic polymer and an inorganic polymer in place of the thermosetting resin and the curing agent.
  • numerator may be sufficient.
  • thermosetting resin is preferably a polyester resin.
  • the surface roughness Ra of the film having only one layer or the film farthest from the metal plate is preferably 10 nm or less.
  • the present invention also includes a substrate type thin film solar cell and a top emission type organic EL device provided with the above-mentioned film laminated metal plate.
  • the metal substrate according to the present invention smoothes the surface of the film by laminating a predetermined film on the metal plate, and the surface of the film has insulating properties.
  • a metal substrate having excellent workability a thin film solar cell and an organic EL element could be obtained at low cost.
  • the metal substrate of the present invention is obtained by laminating a film on at least one surface of a metal plate.
  • metal substrate when simply described as “metal substrate”, all metal substrates (first, second, and third metal substrates) of the present invention are indicated.
  • the metal plate used for the metal substrate of the present invention is a cold-rolled steel plate, a hot-dip galvanized steel plate (GI), an alloyed hot-dip Zn—Fe-plated steel plate (GA), an alloyed hot-dip Zn-5% Al-plated steel plate (GF). Electropure galvanized steel sheet (EG), electroplated Zn—Ni plated steel sheet, aluminum plate, titanium plate, galvalume steel plate and the like, preferably non-chromate, but can be chromated or untreated.
  • the thickness of the metal plate is not particularly limited, but a metal plate having a thickness of about 0.3 to 2.0 mm can be used as appropriate.
  • the metal plate may be subjected to a phosphoric acid-based chemical conversion treatment.
  • the chemical conversion treatment is performed with an acidic aqueous solution containing colloidal silica and an aluminum phosphate compound as disclosed in JP-A-2005-264212. It is preferable to apply.
  • an acidic aqueous solution containing colloidal silica and an aluminum phosphate salt compound is used as the chemical conversion treatment solution, the surface of the zinc-based plating layer is etched by the acidic aqueous solution, and the surface of the zinc-based plating layer is hardly soluble among aluminum phosphates.
  • a reaction layer mainly composed of AlPO 4 or Al 2 (HPO 4 ) 3 (which is hardly soluble in water or an alkaline aqueous solution) is formed.
  • the silica fine particles are deposited and taken into the reaction layer, the aluminum phosphate and the silica fine particles are combined and integrated.
  • a dense reaction layer is formed with the zinc-based plating layer roughened by etching, and the bond with the resin coating formed on the reaction layer is also dense and strong.
  • the acidic aqueous solution contains a water-soluble resin such as polyacrylic acid, the deposited state of the silica fine particles in the obtained reaction layer can be further strengthened.
  • a film is laminated on a metal plate using a film-forming composition containing a thermosetting resin.
  • the film-forming composition preferably contains a thermosetting resin and a curing agent.
  • the film forming composition may contain a pigment as described later.
  • thermosetting resin is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, a urea resin, a melamine resin, and a diallyl phthalate resin.
  • the polyester resin can also be referred to as a kind of thermosetting resin when used together with a curing agent described later. In the present invention, it is preferable to use the polyester resin.
  • the polyester resin is obtained by a condensation reaction between a polybasic acid such as a dibasic acid and a polyhydric alcohol.
  • polybasic acid used as a raw material for the polyester resin examples include ⁇ , ⁇ -unsaturated dibasic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride; phthalic acid, phthalic anhydride, Halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, cyclopentadiene-maleic anhydride adduct, succinic acid, malonic acid , Glutaric acid, adipic acid, sebacic acid, 1,10-decanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3
  • polyhydric alcohol used as a raw material for the polyester resin examples include ethylene glycols such as ethylene glycol, diethylene glycol, and polyethylene glycol, propylene glycols such as propylene glycol, dipropylene glycol, and polypropylene glycol, and 2-methyl-1,3.
  • amino alcohols such as ethanolamine may be used. Only one kind of these polyhydric alcohols may be used, or two or more kinds may be appropriately mixed. If necessary, modification with epoxy resin, diisocyanate, dicyclopentadiene or the like may be performed.
  • thermosetting resin in the present invention.
  • polyester resins for example, Byron (registered trademark) 23CS, Byron (registered trademark) 29CS, Byron (registered) (Trademark) 29XS, Byron (registered trademark) 20SS, Byron (registered trademark) 29SS (manufactured by Toyobo Co., Ltd.) and the like.
  • the curing agent is not particularly limited, but a curing agent that has good compatibility with the thermosetting resin, can crosslink the thermosetting resin, and has good liquid stability is preferable.
  • a curing agent for example, in the isocyanate system, Millionate (registered trademark) N, Coronate (registered trademark) T, Coronate (registered trademark) HL, Coronate (registered trademark) 2030, Suprasec (registered trademark) 3340, Daltsec 1350, Daltosec 2170, Daltosec 2280 (manufactured by Nippon Polyurethane Industry Co., Ltd.), etc.
  • the film-forming composition preferably contains 34.5 to 80.0% by mass of a thermosetting resin, more preferably 46.8% by mass to 57.6% by mass. .
  • the film-forming composition preferably contains 10.6-35.0% by mass of a curing agent, more preferably 14.4-35.0% by mass.
  • the mass% of the thermosetting resin and the curing agent in the above is the ratio of the content of the thermosetting resin and the curing agent to the total mass of the thermosetting resin, the curing agent, and the solid pigment in the film-forming composition. Point to.
  • the film forming composition is liquid because it is preferably laminated by a coating method in which the film forming composition is applied on the surface of the metal plate or on the already laminated film. Therefore, it is recommended that the film-forming composition also contains a solvent.
  • the solvent used in the film forming composition is not particularly limited as long as it can dissolve or disperse each component to be contained in the film forming composition.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ethylene glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; toluene, benzene, xylene, Solvesso (registered trademark) )
  • Aromatic hydrocarbons such as 100 (manufactured by ExxonMobil), Solvesso (registered trademark) 150 (manufactured by ExxonMobil); aliphatic hydrocarbons such as hexane, heptane and octane; esters such as ethyl acetate and butyl acetate And the like.
  • the film-forming composition can adjust the solid content using such a solvent, and is preferably 20% by mass or more and 80% by mass or less, more preferably 40% by mass or more and 70% by mass or less. It is.
  • the solid content is less than 20% by mass, that is, when there are too many organic solvents, a large amount of the organic solvent evaporates during baking, and as a result, convection due to the organic solvent vaporized in the vicinity of the surface of the metal plate is likely to occur. The smoothness of the surface may be impaired.
  • the range of film thicknesses that can be produced differs depending on whether a metal substrate in which only one layer of the film is laminated or a metal substrate in which a plurality of layers are laminated is produced. Moreover, the range of film thicknesses that can be produced differs depending on whether the film is produced by the pre-coating method described later or the post-coating method. (When producing a metal substrate with only one layer of film coated by the pre-coating method) The film thickness is 10 ⁇ m or more and 40 ⁇ m or less. When the film thickness is less than 10 ⁇ m, the withstand voltage of the metal substrate becomes less than 0.1 kV, and the withstand voltage (insulation resistance) may not be ensured. On the other hand, when the film thickness exceeds 40 ⁇ m, it is difficult to laminate the film on the metal plate so that the film becomes smooth, that is, the surface roughness Ra of the film may exceed 30 nm.
  • the film thickness may be 10 ⁇ m or more and 40 ⁇ m or less, or more than 40 ⁇ m and 120 ⁇ m or less.
  • the withstand voltage of the metal substrate becomes less than 0.1 kV, and the withstand voltage (insulation resistance) may not be ensured.
  • the film thickness exceeds 120 ⁇ m, it is difficult to laminate the film on the metal plate so that the film becomes smooth, that is, the surface roughness Ra of the film may exceed 30 nm.
  • the film thickness of each of the multiple-layer films is 0.1 ⁇ m or more and 40 ⁇ m or less, and the total film thickness of the multiple-layer films is 3 ⁇ m or more.
  • the film thickness of each of the multiple layers is preferably 1 ⁇ m or more. If the film thickness per layer is less than 0.1 ⁇ m, defects such as pinholes may occur in the film, and the withstand voltage (insulation resistance) may not be ensured. Further, if the total film thickness of the plurality of layers is less than 3 ⁇ m, the withstand voltage of the metal substrate becomes less than 0.1 kV, and it may be impossible to ensure the withstand voltage (insulation resistance).
  • the film thickness per layer exceeds 40 ⁇ m, it is difficult to laminate the film so that the film is smooth, that is, the surface roughness Ra of the film farthest from the metal plate may exceed 30 nm. .
  • it is preferably a laminate of 2 or more layers and 4 or less layers, more preferably a laminate of only 2 layers.
  • the film thickness of each of the multiple-layer films is 0.1 ⁇ m or more and 40 ⁇ m or less, and the total film thickness of the multiple-layer films may be 3 ⁇ m or more and 40 ⁇ m or less, or more than 40 ⁇ m and 120 ⁇ m or less.
  • the film thickness of each of the multiple layers is preferably 1 ⁇ m or more. If the film thickness per layer is less than 0.1 ⁇ m, defects such as pinholes may occur in the film, and the withstand voltage (insulation resistance) may not be ensured.
  • the withstand voltage of the metal substrate becomes less than 0.1 kV, and it may be impossible to ensure the withstand voltage (insulation resistance).
  • the film thickness per layer exceeds 40 ⁇ m, it is difficult to laminate the film on the metal plate so that the film is smooth, that is, the surface roughness Ra of the film may exceed 30 nm.
  • it is preferably a laminate of 2 or more layers and 4 or less layers, more preferably a laminate of only 2 layers.
  • the surface of the film needs to be smooth.
  • the most distant film from the metal plate in the case where a plurality of layers are laminated hereinafter referred to as either the film in which only one layer is laminated or the most distant film from the metal plate in the case where a plurality of layers are laminated).
  • the surface layer is also required to have a smooth surface. Specifically, the surface roughness Ra of the outermost layer is 30 nm or less, and preferably the surface roughness Ra of the outermost layer is 10 nm or less.
  • the surface roughness Ra of the outermost layer exceeds 30 nm, there is a risk of causing an insulation failure due to a short circuit between the electrodes due to irregularities on the surface of the outermost layer.
  • the surface roughness Ra of the outermost layer can be measured by the measurement method described later. Note that the irregularities on the surface caused by the attachment of particles such as dust and dust can be easily removed by smoothing such as polishing because the particles of dust and dust are much larger than about 30 nm. Therefore, the unevenness caused by particles such as dust and dust is very unlikely to lead to insulation failure.
  • the film forming composition In order to smooth the surface of the film, specifically, to make the surface roughness Ra of the outermost layer 30 nm or less, the film forming composition preferably does not contain a solid pigment. However, when it is necessary to color the film and the film must contain a pigment, the volume fraction of the solid pigment in the film-forming composition is preferably 20% or less. Since the particle size of the solid pigment is usually much larger than 30 nm, when the volume fraction of the solid pigment in the film-forming composition exceeds 20%, it is difficult to make the surface roughness Ra of the outermost layer 30 nm or less. Become.
  • pigment types for coloring each of the following colors include: white: inorganic pigments such as titanium oxide, calcium carbonate, zinc oxide, barium sulfate, lithopone, and lead white; black: organic such as aniline black and nigrosine Pigments, inorganic pigments such as carbon black, inorganic pigments such as iron black, red: organic pigments such as insoluble azo (naphthol and anilide) or soluble azo, bengara, cadmium red, red lead, etc.
  • white inorganic pigments such as titanium oxide, calcium carbonate, zinc oxide, barium sulfate, lithopone, and lead white
  • black organic such as aniline black and nigrosine Pigments
  • inorganic pigments such as carbon black
  • inorganic pigments such as iron black
  • red organic pigments such as insoluble azo (naphthol and anilide) or soluble azo, bengara, cadmium red, red lead, etc.
  • Inorganic pigments yellow: organic pigments such as insoluble azo (naphthol and anilide), soluble azo and quinacridone, and inorganic pigments such as chrome yellow, cadmium yellow, nickel titanium yellow, tan and strontium chromate , Green: organic phthalocyanine pigment, blue: organic phthalocyanine pigment, dioxazine pigment, amber , Ultramarine, cobalt blue, etc. emerald green inorganic pigments, orange: benzimidazolone, organic pigments such pyrazolone and the like.
  • color pigments those with the same color but different chemical structures, or by mixing two or more color pigments of different colors at an appropriate blending ratio, gray, brown, purple, red purple, blue purple, orange, golden color It can be colored to a desired color.
  • the average particle diameter is, for example, approximately 0.1 to 0.5 ⁇ m, preferably 0.2 ⁇ m or more, 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less when granular. Is done. When the average particle size exceeds 0.5 ⁇ m, it becomes difficult to make the surface roughness Ra of the outermost layer formed from the film forming composition containing titanium oxide 30 nm or less.
  • the average particle size of the titanium oxide is obtained by measuring the particle size distribution of the titanium oxide particles after classification with a general particle size distribution meter, and calculating an integrated value 50 from the small particle size side calculated based on the measurement result.
  • % Particle size (D50) Such a particle size distribution can be measured by a diffraction or scattering intensity pattern generated by applying light to the particles. Examples of such a particle size distribution meter include Microtrac 9220FRA and Microtrac HRA manufactured by Nikkiso Co., Ltd. Is exemplified.
  • titanium oxide satisfying the above-mentioned preferable average particle size commercially available products may be used.
  • TITANIX registered trademark
  • JR-301 average particle size 0.30 ⁇ m
  • JR-603 manufactured by Teika Co., Ltd.
  • JR-806 Average particle size 0.25 ⁇ m
  • JRNC average particle size 0.37 ⁇ m
  • a pigment dispersant may be added to the film forming composition.
  • a suitable pigment dispersant is at least one selected from the group consisting of a water-soluble acrylic resin, a water-soluble styrene acrylic resin, and a nonionic surfactant. When these are used, the pigment dispersant remains in the colored coating film.
  • the withstand voltage is measured by the method described later, and 0.1 kV or more is necessary. Preferably it is 0.3 kV or more, more preferably 1.0 kV or more. If the withstand voltage is less than 0.1 kV, there is a risk of causing an insulation failure due to a short circuit between the electrodes.
  • the method for applying and drying the film-forming composition is not particularly limited, and known methods can be appropriately employed.
  • Examples of the method for applying the composition for producing the first metal substrate and the second metal substrate include a precoat method such as a bar coater method, a roll coater method, a curtain flow coater method, a spray method, and a spray ringer method.
  • the bar coater method, the roll coater method, and the spray ringer method are preferable from the viewpoint of cost and the like.
  • a post-coating method such as an electrostatic coating method or a spin coating method can be used.
  • the post-coating method is used, the first metal substrate or the second metal substrate is used. Not only a metal substrate but also a third metal substrate can be manufactured.
  • the baking temperature is not particularly limited and may be adjusted according to the curing characteristics of the resin used for the film.
  • a polyester-based resin used for the precoat method it is preferably 190 ° C. or higher and 250 ° C. or lower. More preferably, it is 200 degreeC or more and 240 degrees C or less.
  • the drying temperature may be such that the film is not deteriorated by heat. For example, it is preferably about 190 to 250 ° C., more preferably about 200 to 240 ° C.
  • the baking / drying temperature is a peak metal temperature (PMT).
  • the total thickness of the second metal substrate is preferably 5 ⁇ m or more, and more preferably, the film-forming composition further includes a curing agent.
  • the mass ratio of the curing agent to the thermosetting resin in the film-forming composition is 0.6 or more and 1.0 or less.
  • the film-forming composition that forms the film farthest from the metal plate is replaced with a thermosetting resin and a curing agent, an inorganic polymer, and / or an organic polymer and an inorganic polymer. Hybrid polymers with molecules may also be included.
  • the mass ratio of the curing agent to the thermosetting resin in the film-forming composition is 0.6 or more and 1.0 or less, preferably 0.62 or more and 1. 0 or less, more preferably 0.65 or more and 1.0 or less.
  • the film does not dissolve in an organic solvent, but solvent molecules may enter the film and cause alteration such as swelling. In order to suppress this, it is effective to increase the degree of cure (crosslink density) of the film by adding a predetermined amount of curing agent to the thermosetting resin.
  • the criteria for judging the resistance (chemical resistance) to an organic solvent will be described later.
  • the film-forming composition preferably contains 26.5 to 62.5% by mass of the thermosetting resin, more preferably 36. It is 0 mass% or more and 56.3 mass% or less. And it is preferable that 27.0 mass% or more of hardening
  • outermost layer film In the second metal substrate, as the outermost layer forming composition, instead of the above-described film forming composition containing the thermosetting resin and the curing agent, an inorganic polymer, or an organic polymer and an inorganic polymer are used. And a composition containing a hybrid polymer can be used.
  • a certain amount of curing agent is added to the thermosetting resin, it is effective against solvents such as benzene and xylene, but it is strong as trifluoroacetic acid, nitromethane, dichlorobenzene, and chlorobenzene.
  • the outermost layer may be denatured.
  • thermosetting resin instead of the film-forming composition containing the thermosetting resin, it is preferable to use a composition containing an inorganic polymer and / or a hybrid polymer of an organic polymer and an inorganic polymer, and a composition containing a hybrid polymer of an organic polymer and an inorganic polymer. More preferably, it is used.
  • the inorganic polymer examples include polysilazane, polysiloxane, polysilane, polygermane, polyphosphazene, polystannane, polymetalloxane, polycarbosilane, and the like, and polysilazane is preferable from the viewpoint of heat resistance.
  • polysilazane an organic polysilazane containing an organic component such as a methyl group in the basic structural unit is also known, but an inorganic polysilazane containing no organic component such as a methyl group in the basic structural unit is preferable.
  • Inorganic polysilazane has — (SiH 2 NH) — as the basic structural unit, does not contain organic components such as methyl groups in the basic structural unit, and consists of a chain, a ring, or a composite structure of these.
  • Heating and solvent removal A material that is converted to —SiO 2 — (hereinafter simply referred to as SiO 2 ) by reaction with oxygen or moisture in the atmosphere (see Japanese Patent Application Laid-Open No. 60-145903).
  • the composition for forming the outermost layer containing the inorganic polysilazane is applied, and the solvent is removed by heating the composition in the air.
  • the inorganic polysilazane reacts with oxygen and moisture in the air, and the surface of the metal plate is SiO 2.
  • a hard film (SiO 2 layer) mainly composed of can be formed. That is, after applying the outermost layer-forming composition containing inorganic polysilazane, heating in the air causes removal of the solvent and reaction of the inorganic polysilazane with oxygen and moisture in the air. Convert to SiO2.
  • This SiO 2 can increase the surface hardness of the metal substrate. Further, by forming a SiO 2 layer with a solution containing an inorganic polysilazane, it is possible to improve the heat resistance of the metal substrate.
  • perhydropolysilazane can be suitably used as the inorganic polysilazane.
  • the inorganic polysilazane it is preferable to use one having a number average molecular weight of, for example, about 500 to 2500.
  • the inorganic polysilazane-containing solution a solution in which inorganic polysilazane is dissolved may be used.
  • the solvent for example, an organic solvent such as dibutyl ether, xylene, or toluene can be used. It is preferable that the density
  • the inorganic polysilazane-containing solution preferably further contains a catalyst for promoting the conversion of the inorganic polysilazane to SiO 2.
  • a catalyst for promoting the conversion of the inorganic polysilazane to SiO 2 For example, by adding a palladium catalyst, the SiO 2 layer is formed at a relatively low temperature. Therefore, the SiO 2 layer can be formed within the heat resistant temperature of the metal plate.
  • An inorganic polysilazane-containing solution can be obtained from, for example, AZ Electronic Materials. Moreover, you may use, after concentrating the obtained solution.
  • the heating after applying the inorganic polysilazane-containing solution may be performed in the air.
  • the inorganic polysilazane is reacted with oxygen and moisture in the atmosphere to form a film (SiO 2 layer) mainly composed of SiO 2.
  • the film mainly composed of SiO 2 is caused by Si—H bond and NH bond when the FT-IR (Fourier transform infrared spectrophotometer) spectrum of the film before and after heating is measured. It can be confirmed from the fact that the peak intensity decreases or disappears, and the peak due to the Si—O bond is generated or the peak intensity is increased.
  • the SiO 2 layer may contain, for example, some Si—N bonds and N—H bonds.
  • the air atmosphere may contain water vapor.
  • SiO 2 By heating in a steam coexisting atmosphere, the above-described formation of SiO 2 is promoted.
  • the conditions for heating in the atmosphere are not particularly limited as long as the solvent contained in the solution can be volatilized when the above-described catalyst is used in combination.
  • the heating temperature for promptly performing the silica conversion is preferably, for example, 200 ° C. or higher.
  • the heating time is preferably 30 minutes or more, more preferably 1 hour or more.
  • the surface of the SiO 2 layer may be polished under known conditions to smooth the surface.
  • a hybrid polymer of an organic polymer and an inorganic polymer (hereinafter referred to as a hybrid polymer) is not particularly limited and may be appropriately selected depending on the purpose.
  • the hybrid polymer is a polymer in which an organic polymer and an inorganic polymer are combined in a block manner, and the organic polymer and the inorganic polymer are uniformly dispersed at the nano level.
  • the hybrid polymer may be obtained by hydrolyzing and co-condensing alkoxysilane to an alkoxysilyl group-containing organic polymer.
  • an alkoxysilyl group-containing organic polymer represented by —Si (OR) 3 (wherein R represents a lower alkyl group having 10 or less carbon atoms) is added to R n Si (OR) 4-n (where R is A hybrid polymer obtained by hydrolysis and cocondensation of an alkoxysilane represented by the following formula is preferred: a lower alkyl group having 10 or less carbon atoms, and n represents an integer of 1 or 2.
  • the film thickness of each film is 0.1 ⁇ m or more and 40 ⁇ m or less, and the total film thickness of the plurality of films is 5 ⁇ m or more. If the film thickness per layer is less than 0.1 ⁇ m, defects such as pinholes may occur in the film, and the withstand voltage (insulation resistance) may not be ensured. Further, if the total film thickness of the plurality of layers is less than 5 ⁇ m, the withstand voltage of the metal substrate is less than 0.1 kV, and it may not be possible to ensure the withstand voltage (insulation resistance).
  • the substrate type solar cell may have any known structure as long as it is provided with the metal substrate according to the present invention.
  • the substrate type solar cell basically has a back electrode, photoelectric layer on the film of the metal substrate according to the present invention.
  • the conversion layer and the transparent electrode are stacked in this order.
  • the photoelectric conversion layer is a layer that generates current by absorbing light that has passed through the transparent electrode, and the back electrode and the transparent electrode are both for taking out the current generated in the photoelectric conversion layer, Both are made of a conductive material.
  • the transparent electrode on the light incident side needs to have translucency.
  • the material similar to a well-known substrate type thin film solar cell can be used.
  • the back electrode is not particularly limited, and for example, a metal such as Mo, Cr, W, or a combination of these metals can be used.
  • the back electrode may have a single layer structure or a laminated structure such as a two-layer structure.
  • the thickness of the back electrode is not particularly limited, but the thickness is preferably 0.1 ⁇ m or more, and more preferably 0.45 to 1.0 ⁇ m.
  • the configuration of the photoelectric conversion layer is not particularly limited, and is, for example, at least one compound semiconductor having a chalcopyrite structure.
  • the photoelectric conversion layer may be at least one compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element.
  • the photoelectric conversion layer is composed of at least one type Ib element selected from the group consisting of Cu and Ag, and a group consisting of Al, Ga, and In. It is preferably at least one compound semiconductor composed of at least one selected group IIIb element and at least one group VIb element selected from the group consisting of S, Se, and Te.
  • the transparent electrode is made of, for example, ZnO to which Al, B, Ga, Sb or the like is added, ITO (indium-tin oxide), SnO 2 or a combination thereof.
  • the transparent electrode may have a single layer structure or a laminated structure such as a two-layer structure.
  • the thickness of the transparent electrode is not particularly limited, but is preferably 0.3 to 1 ⁇ m.
  • the substrate type thin film solar cell can be produced by a known method, for example, the substrate type thin film solar cell can be produced by the following production method.
  • a back electrode is formed on a metal substrate according to the present invention by a conventionally known method such as sputtering, vacuum deposition, thermal CVD, or wet coating.
  • a photoelectric conversion layer is formed on the back electrode by a conventionally known method such as sputtering, vacuum deposition, thermal CVD, or wet coating.
  • a transparent electrode is formed on the photoelectric conversion layer by a conventionally known method such as a sputtering method, a vacuum deposition method, a thermal CVD method, or a wet coating method.
  • a buffer layer between a photoelectric converting layer and a transparent electrode in order to protect a photoelectric converting layer at the time of formation of a transparent electrode, you may provide a buffer layer between a photoelectric converting layer and a transparent electrode. Moreover, you may provide a sealing material on a transparent electrode.
  • the metal substrate according to the present invention is also applicable to a top emission type organic EL element.
  • a top emission type organic EL element may have any known structure as long as it is provided with the metal substrate according to the present invention.
  • the top emission type organic EL element is basically formed on the film of the metal substrate according to the present invention.
  • the electrode, the organic layer, and the transparent conductive film are laminated in this order.
  • the material similar to a well-known substrate type thin film solar cell can be used.
  • a non-transparent metal plate can be used as the substrate.
  • the electrode may be, for example, an indium-tin oxide (ITO), indium-zinc oxide (IZO), tin oxide, ultrathin metal such as Au, conductive polymer, conductive organic material, dopant (donor or An acceptor) -containing organic layer, a mixture of a conductor and a conductive organic material (including a polymer), or a laminate of these is used as the material.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • tin oxide ultrathin metal such as Au
  • conductive polymer conductive organic material
  • dopant (donor or An acceptor) -containing organic layer a mixture of a conductor and a conductive organic material (including a polymer), or a laminate of these is used as the material.
  • the electrodes can be formed using these materials by vapor phase growth methods such as sputtering and ion plating.
  • the organic light-emitting layer is, for example, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline Metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex , Tri- (p-terphenyl-4-yl) amine, pyran, quinacridone, rubrene, and derivatives thereof, or 1-aryl-2,5-di (2-thienyl) pyrrole derivatives, disty Rubenzen derivatives, styryl arylene
  • phosphorescent materials for example, luminescent materials such as Ir complexes, Os complexes, Pt complexes, and europium complexes, or compounds having these in the molecule or Molecules are also used.
  • the organic layer can be formed by a conventionally known method such as sputtering or vacuum deposition.
  • the organic layer may include a hole injection layer, a hole import layer, an electron transport layer, an electron injection layer, and the like in addition to the organic light emitting layer.
  • the transparent conductive film a material composed of a single layer of Al, silver, or the like, or a layered structure obtained by combining Al, silver, or the like with another electrode material is used.
  • electrode materials include alkali metal and Al laminates, alkali metal and silver laminates, alkali metal halides and Al laminates, alkali metal oxides and Al laminates, alkaline earth metals and rare earths.
  • a laminated body of metal and Al, alloys of these metal species and other metals, and the like can be given. Specifically, for example, sodium, sodium-potassium alloy, lithium, magnesium, etc.
  • the transparent conductive film can be formed by a conventionally known method such as sputtering or vacuum deposition.
  • a spherical electrode having an outer diameter of 20 mm is applied to one surface of the test material at a load of 500 g in accordance with JIS standard C2110-1.
  • a dielectric breakdown test apparatus was used to apply a DC voltage in the thickness direction at a constant speed at which dielectric breakdown occurred in about 20 to 40 seconds, and the voltage when dielectric breakdown occurred was measured. The voltage measurement was performed 5 times, and the average value was taken as the withstand voltage.
  • ⁇ Average surface roughness Ra> Using the atomic force microscope (AFM) (SPI3800N manufactured by Seiko Denshi Kogyo Co., Ltd.), the surface roughness at any three locations in an area of 10 ⁇ m ⁇ 10 ⁇ m was measured for the specimen obtained by the manufacturing method described later. The average value was measured as the average surface roughness Ra.
  • AFM atomic force microscope
  • Example 1-1 As a test material, an electrogalvanized steel plate (thickness 0.8 mm) was used as a metal plate, and paint 1-1 was applied to the surface of the metal plate with a bar coater to a thickness of 24.0 ⁇ m. Baking and drying were performed for 2 minutes so that the plate temperature (PMT) was 220 ° C., and a metal substrate on which one layer of the film was laminated was obtained.
  • PMT plate temperature
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-2 A metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 1-1, except that in Example 1-1, the coating was applied so that the film thickness was 14.1 ⁇ m.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-1 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 1-1 except that the coating was applied so that the film thickness was 11.3 ⁇ m.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-1 a single layer was formed in the same manner as in Example 1 except that the coating was applied so that the film thickness was 35.2 ⁇ m and that the coating 1-2 was used instead of the coating 1-1. A metal substrate laminated with a film was obtained.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-5 a metal substrate having a single layer film was obtained in the same manner as in Example 1-1 except that paint 1-3 was used instead of paint 1-1.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-1 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 1-1 except that the coating was applied so that the film thickness was 42.2 ⁇ m.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-1 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 1-1 except that the coating was applied so that the film thickness was 5.6 ⁇ m.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-1 a metal substrate having a single layer film was obtained in the same manner as in Example 1-1 except that paint 1-4 was used instead of paint 1-1.
  • Table 1 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-6 As a test material, an electrogalvanized metal plate (plate thickness 0.8 mm, galvanized coating amount 20 g / m 2 on each surface on both sides of the metal plate) as a metal plate, as an inner layer film, on the surface of the metal plate, The paint 1-1 was applied with a bar coater so as to have a film thickness of 28.2 ⁇ m, and baked and dried for 2 minutes so that the ultimate plate temperature (PMT) was 220 ° C.
  • PMT ultimate plate temperature
  • paint 1-1 was applied to the surface of the inner coating film (the surface of the inner coating film on the side not in contact with the metal plate) with a bar coater so as to have a film thickness of 28.2 ⁇ m. It was baked and dried for 2 minutes such that the temperature (Peak Metal Temperature: PMT) was 220 ° C. to obtain a metal substrate on which two layers of films were laminated.
  • PMT Peak Metal Temperature
  • Table 2 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1--7 a metal substrate on which two layers of films were laminated was obtained in the same manner as in Example 1-6, except that the inner layer film and the outer layer film were each applied to a film thickness of 1.9 ⁇ m. .
  • Table 2 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-6 a metal substrate on which two layers of films were laminated was obtained in the same manner as Example 1-6, except that the inner layer film and the outer layer film were each applied to a thickness of 1.4 ⁇ m. .
  • Table 2 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-8 As a test material, electrogalvanized steel plate (thickness 0.8 mm) was used as a metal plate, and paint 1-5 was formed on the surface of the metal plate using an electrostatic coating machine (Optiflex manufactured by Landsburg Industry). It was electrostatically coated to a thickness of 10 ⁇ m and baked and dried for 20 minutes so that the ultimate plate temperature (PMT) was 150 ° C., thereby obtaining a metal substrate on which one layer of film was laminated.
  • PMT ultimate plate temperature
  • Table 3 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-8 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 1-8, except that electrostatic coating was performed so that the film thickness was 30 ⁇ m.
  • Table 3 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-8 a metal substrate having a single layer of film was obtained in the same manner as in Example 1-8, except that electrostatic coating was performed so that the film thickness was 50 ⁇ m.
  • Table 3 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-11 As a test material, an electrogalvanized metal plate (plate thickness 0.8 mm, galvanized coating amount 20 g / m 2 on each surface on both sides of the metal plate) as a metal plate, as an inner layer film, on the surface of the metal plate, Using an electrostatic coating machine (Landsburg Industry Optiflex), paint 1-5 is electrostatically coated to a film thickness of 25 ⁇ m so that the ultimate plate temperature (PMT) is 150 ° C. Baking and drying for 20 minutes.
  • PMT ultimate plate temperature
  • paint 1-5 is coated on the surface of the inner layer film (the surface of the inner layer film that is not in contact with the metal plate) with an electrostatic coating machine (Optiflex manufactured by Landsburg Industries) as the outer layer coating film. It was electrostatically coated to 25 ⁇ m, and baked and dried for 20 minutes so that the ultimate plate temperature (PMT) was 150 ° C., to obtain a metal substrate on which two layers of films were laminated.
  • an electrostatic coating machine Optiflex manufactured by Landsburg Industries
  • Table 3 shows the physical properties and evaluation results of the obtained laminate.
  • Example 1-12 In Example 1-11, two layers of films were laminated in the same manner as in Example 1-11 except that electrostatic coating was performed so that the inner layer film thickness was 35 ⁇ m and the outer layer film thickness was 35 ⁇ m. A metal substrate was obtained.
  • Table 3 shows the physical properties and evaluation results of the obtained laminate.
  • paint 2-2 was prepared in the same manner as the paint 2-1, except that 62.5 parts by mass of the polyester resin in terms of solid content and 37.5 parts by mass of the melamine resin in terms of solid content were added. Obtained.
  • a paint 2-3 was obtained in the same manner as the paint 2-1, except that 75 parts by mass of the polyester resin in terms of solid content and 25 parts by mass of the melamine resin in terms of solid content were added.
  • paint 2-7 was prepared in the same manner as paint 2-6, except that 67 parts by mass of organic / inorganic hybrid coating material was added in terms of solids and 33 parts by mass of titanium oxide in terms of solids. Obtained.
  • Example 2-1 As a test material, an electrogalvanized steel plate (plate thickness 0.8 mm) was used as a metal plate, and paint 2-1 was applied to the surface of the metal plate with a bar coater to a film thickness of 24.0 ⁇ m. Baking and drying were performed for 2 minutes so that the plate temperature (PMT) was 220 ° C., and a metal substrate on which one layer of the film was laminated was obtained.
  • PMT plate temperature
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-2 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 2-1, except that the coating was applied so that the film thickness was 22.5 ⁇ m.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-3 a metal substrate having a single layer of film was obtained in the same manner as in Example 2-1, except that the coating was applied so that the film thickness was 14.1 ⁇ m.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-4 In Example 2-1, a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 2-1, except that the coating was applied so that the film thickness was 11.3 ⁇ m.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-5 a metal substrate having a single layer film was obtained in the same manner as in Example 2-1, except that paint 2-2 was used instead of paint 2-1.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-1 a metal substrate having a single layer of film was obtained in the same manner as in Example 2-1, except that the coating was applied so that the film thickness was 5.6 ⁇ m.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-1 a metal substrate on which one layer of the film was laminated was obtained in the same manner as in Example 2-1, except that the film thickness was 42.2 ⁇ m.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-3 a metal substrate having a single layer laminated film was obtained in the same manner as in Example 2-1, except that paint 2-3 was used instead of paint 2-1.
  • Table 4 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-6 As a test material, an electrogalvanized metal plate (plate thickness 0.8 mm, galvanized coating amount 20 g / m 2 on each surface on both sides of the metal plate) as a metal plate, as an inner layer film, on the surface of the metal plate,
  • the paint 2-1 was applied with a bar coater to a film thickness of 28.2 ⁇ m, and baked and dried for 2 minutes so that the ultimate plate temperature (PMT) was 220 ° C.
  • paint 2-1 was applied to the surface of the inner coating film (the surface of the inner coating film on the side not in contact with the metal plate) with a bar coater so as to have a film thickness of 28.2 ⁇ m. It was baked and dried for 2 minutes such that the temperature (Peak Metal Temperature: PMT) was 220 ° C. to obtain a metal substrate on which two layers of films were laminated.
  • PMT Peak Metal Temperature
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2--7 a metal substrate on which two layers of films were laminated was obtained in the same manner as in Example 2-6, except that the inner layer film and the outer layer film were each applied to a thickness of 5.6 ⁇ m. .
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-8 In Example 2-6, a metal substrate on which two layers of films were laminated was obtained in the same manner as Example 2-6, except that the inner layer film and the outer layer film were each applied to a thickness of 2.8 ⁇ m. .
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-9 As a test material, an electrogalvanized metal plate (plate thickness 0.8 mm, galvanized coating amount 20 g / m 2 on each surface on both sides of the metal plate) as a metal plate, as an inner layer film, on the surface of the metal plate,
  • the paint 2-1 was applied with a bar coater so as to have a film thickness of 11.3 ⁇ m, and baked and dried at 220 ° C. for 2 minutes at a final plate temperature (PMT).
  • paint 2-4 was applied to the surface of the inner coating film (the surface of the inner coating film on the side not in contact with the metal plate) with a bar coater so as to have a film thickness of 1.0 ⁇ m.
  • the temperature (Peak Metal Temperature: PMT) was baked and dried at 220 ° C. for 2 minutes to obtain a metal substrate on which two layers of films were laminated.
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-10 In Example 2-9, a metal substrate on which two layers of films were laminated in the same manner as in Example 2-9, except that paint 2-5 was used instead of paint 2-4 when preparing the outer layer paint film Got.
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-11 a metal substrate on which two layers of films were laminated in the same manner as in Example 2-9, except that paint 2-6 was used instead of paint 2-4 when the outer layer coat was prepared. Got.
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-4 A metal substrate on which two layers of films were laminated was obtained in the same manner as in Example 2-6, except that the inner layer film and the outer layer film were each applied to a thickness of 2.1 ⁇ m.
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • Example 2-9 a metal substrate on which two layers of films were laminated in the same manner as in Example 2-9, except that paint 2-7 was used instead of paint 2-4 when the outer layer coat was prepared. Got.
  • Table 5 shows the physical properties and evaluation results of the obtained laminate.
  • the surface of the film is smoothed and the film becomes an insulating metal substrate, which can be used for a substrate type thin film solar cell or a top emission type organic EL element. Become.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 金属板に所定の皮膜を積層することによって、皮膜の表面を平滑にすると共に、皮膜が絶縁性を有する金属基板を提供する。サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、金属板の表面に、1層又は複数層積層された皮膜が形成されており、上記皮膜の表面粗さRaが30nm以下であり、上記皮膜は、熱硬化性樹脂が含まれており、固体顔料の体積分率が20%以下である皮膜形成用組成物を焼き付けして得られる金属基板とする。

Description

金属基板、それを用いたサブストレート型薄膜太陽電池及びトップエミッション型有機EL素子
 本発明は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、皮膜の表面を平滑にすると共に、皮膜の表面が絶縁性を有する金属基板に関するものである。
 アモルファスシリコンや、CdS・CuInSe2等の化合物半導体を用いた、いわゆる薄膜半導体太陽電池(以下、薄膜太陽電池という。)として、スーパーストレート型薄膜太陽電池とサブストレート型薄膜太陽電池の2種類の構造が知られている。
 スーパーストレート型薄膜太陽電池では、通常、基板、透明電極、光電変換層、裏面電極の順に積層された構造であり、基板側から光を入射させている。一方、サブストレート型薄膜太陽電池では、通常、基板、裏面電極、光電変換層、透明電極の順に積層された構造であり、透明電極側から光を入射させている。
 従来、薄膜太陽電池の基板として、透光性のガラスやプラスチック等が用いられてきた。しかし、ガラスは、割れやすい上に加工性に乏しく、また、プラスチックは透湿性があるため、ガスバリア層を設ける必要があり、コストが割高になってしまう。
 ところで、サブストレート型薄膜太陽電池は透明電極側から光を入射させているため、サブストレート型薄膜太陽電池の基板には透光性が求められない。そのため、ガラスやプラスチックのような基板ではなく、金属板のような透光性を有さないが加工性に優れた基板を用いることができる。ただし、薄膜太陽電池として機能するためには、基板の表面が平滑であり、かつこの表面が絶縁性を有する必要があるが、金属板自身の表面は通常1μm程度以上の凹凸を有し、また導電性があるため、そのままでは基板として用いることができない。そこで、上記の条件を満たすように金属板上に皮膜を形成すれば、金属板を基板として用いることができるようになると考えられる。以下の特許文献1や2でこのような基板が提案されている。
 特許文献1には、金属板を基材とし、有機系樹脂からなる膜厚1~40μm、表面粗さが0.5μm以下の絶縁層を基材表面に積層した有機EL素子用絶縁基板が記載されている。しかし、特許文献1には、表面粗さが100nm以上である絶縁基板しか記載されておらず、これでは表面の平滑性及び表面の絶縁性は不十分であり、サブストレート型薄膜太陽電池の基板として用いた場合に、基板表面の凹凸が原因となって、裏面電極と透明電極との間が電気的にショートし、絶縁不良を招くおそれがある。
 特許文献2には、金属箔と、ポリイミドを含む平坦化層と、無機化合物を含む密着層とが順に積層されたフレキシブルデバイス用基板が記載されている。しかし、特許文献2では、高価なポリイミドを用いることによって表面を平滑にしており、コスト面での問題が生じてしまう。
特開2002-25763号公報 特開2011-97007号公報
 本発明は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、金属板の表面の平滑性に優れると共に、絶縁性にも優れた金属基板の提供を課題として掲げた。
 本発明者等は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、金属板に積層した皮膜の表面を平滑にすると共に、皮膜の表面が絶縁性を有する金属基板を完成するに至った。
 すなわち、本発明は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、金属板の表面に、1層又は複数層積層された皮膜が形成されており、上記皮膜の表面粗さRaが30nm以下であり、上記皮膜は、熱硬化性樹脂が含まれており、固体顔料の体積分率が20%以下である皮膜形成用組成物を焼き付けして得られることを特徴とした金属基板であり、上記金属基板は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる。
 具体的には、本発明者等は、以下の3つのタイプの金属基板を完成するに至った。
 本発明者等は、金属板に所定の皮膜を1層積層することによって、皮膜の表面を平滑にすると共に、絶縁性を有する第1の金属基板を完成するに至った。
 この第1の金属基板は、金属板の表面に、膜厚が10μm以上40μm以下である皮膜が1層のみ積層されており、上記皮膜の表面粗さRaが30nm以下であり、上記皮膜は、熱硬化性樹脂が含まれており、固体顔料の体積分率が20%以下である皮膜形成用組成物を焼き付けして得られることを特徴とした金属基板であり、上記金属基板は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる。
 また、本発明者等は、金属板に所定の皮膜を複数層積層することによって、金属板から最も離れた最表層における皮膜の表面を平滑にすると共に、絶縁性を有する第2の金属基板をも完成するに至った。
 この第2の金属基板は、金属板の表面に、膜厚が0.1μm以上40μm以下である皮膜が複数層積層されており、これらの複数層の皮膜の膜厚の合計は3μm以上であり、金属板から最も離れた皮膜の表面粗さRaが30nm以下である金属基板であって、各層の皮膜は、熱硬化性樹脂が含まれている皮膜形成用組成物を焼き付けして得られることを特徴とした金属基板であり、上記金属基板は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる。
 さらに、本発明者等は、合計膜厚が40μm超であっても、金属板から最も離れた最表層における皮膜の表面を平滑にすると共に、絶縁性を有する第3の金属基板をも完成するに至った。
 この第3の金属基板は、金属板の表面に、1層又は複数層積層された皮膜が形成されており、合計膜厚が40μm超120μm以下であり、上記皮膜の表面粗さRaが30nm以下である金属基板であって、上記皮膜は、熱硬化性樹脂が含まれており、固体顔料の体積分率が20%以下である皮膜形成用組成物を焼き付けして得られることを特徴とした金属基板であり、上記金属基板は、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる。
 第1の金属基板では、上記皮膜形成用組成物にはさらに硬化剤が含まれており、上記皮膜形成用組成物中における上記硬化剤の上記熱硬化性樹脂に対する質量比が0.6以上1.0以下であることが好ましい。
 第2の金属基板では、上記皮膜形成用組成物にはさらに硬化剤が含まれており、上記皮膜形成用組成物中における上記硬化剤の上記熱硬化性樹脂に対する質量比が0.6以上1.0以下であり、上記複数層の皮膜の合計膜厚は5μm以上であることが好ましい。また、第2の金属基板では、金属板から最も離れた皮膜を形成する皮膜形成用組成物は、熱硬化性樹脂及び硬化剤に代えて、無機高分子、および/または有機高分子と無機高分子とのハイブリッド高分子を含む態様であってもよい。
 熱硬化性樹脂は、ポリエステル樹脂であることが好ましい。
 上記1層のみの皮膜または上記金属板から最も離れた皮膜の表面粗さRaは10nm以下であることが好ましい。
 また、本発明には、上記皮膜積層金属板を備えたサブストレート型薄膜太陽電池及びトップエミッション型有機EL素子も包含される。
 本発明に係る金属基板は、金属板に所定の皮膜を積層することによって、皮膜の表面を平滑にすると共に、皮膜の表面が絶縁性を有するものとなった。この加工性に優れた金属基板とすることによって、低コストで薄膜太陽電池や有機EL素子を得ることができた。
<平滑性及び絶縁性に優れた金属基板>
 本発明の金属基板は、金属板の少なくとも一方の面に皮膜が積層されたものである。以下、単に「金属基板」と記載した場合、本発明の全ての金属基板(第1・第2・第3の金属基板)を指すものとする。
 [金属板]
 本発明の金属基板に用いる金属板は、冷延鋼板、溶融純亜鉛めっき鋼板(GI)、または合金化溶融Zn-Feめっき鋼板(GA)、合金化溶融Zn-5%Alめっき鋼板(GF)、電気純亜鉛めっき鋼板(EG)、電気Zn-Niめっき鋼板、アルミニウム板、チタン板、ガルバリウム鋼板等であり、ノンクロメートのものが好ましいが、クロメート処理あるいは無処理のものも使用可能である。金属板の厚みは特に限定されないが、0.3~2.0mm程度のものを適宜使用することができる。
 金属板には、リン酸系化成処理を施しておいてもよく、特に、特開2005-264312号公報に示されたような、コロイダルシリカとリン酸アルミニウム塩化合物を含む酸性水溶液によって化成処理を施しておくことが好ましい。コロイダルシリカとリン酸アルミニウム塩化合物を含む酸性水性液を化成処理液として使用すると、酸性水性液によって亜鉛系めっき層の表面がエッチングされながら、亜鉛系めっき層の表面にリン酸アルミニウムの中でも難溶性(水またはアルカリ性水溶液に溶けにくい)のAlPO4やAl2(HPO43主体の反応層が形成される。この反応層にシリカ微粒子が沈着して取り込まれることでリン酸アルミニウムとシリカ微粒子が複合一体化する。また、エッチングにより粗面化された亜鉛系めっき層との間で緻密な反応層が形成され、この反応層の上に形成される樹脂塗膜との結合も緻密で強固なものとなる。また、上記酸性水溶液にポリアクリル酸等の水溶性樹脂を含有させておくと、得られる反応層中のシリカ微粒子の沈着状態を一層強固なものとすることができる。
 [皮膜]
 本発明において、熱硬化性樹脂が含まれている皮膜形成用組成物を用いて、金属板に皮膜を積層する。皮膜形成組成物には、熱硬化性樹脂と硬化剤とが配合されているのが好ましい。なお、皮膜形成用組成物には、後述のとおり、顔料が含まれていてもよい。
 熱硬化性樹脂は、特に限定されるものではなく、例えば、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂等を挙げることができる。また、後述の硬化剤と共に用いることで、ポリエステル樹脂も一種の熱硬化性樹脂ということができ、本発明においてはポリエステル樹脂を用いるのが好ましい。
 ポリエステル樹脂は、二塩基酸等の多塩基酸と多価アルコール類との縮合反応によって得られるものである。
 ポリエステル樹脂の原料として用いられる多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等のα,β-不飽和二塩基酸;フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、シクロペンタジエン-無水マレイン酸付加物、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,10-デカンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4′-ビフェニルジカルボン酸、および、これらのジアルキルエステル等の飽和二塩基酸等が挙げられるが、特に限定されるものではない。多塩基酸は、一種類のみを用いてもよいし、適宜、二種類以上を混合して用いてもよい。
 ポリエステル樹脂の原料として用いられる多価アルコール類としては、例えばエチレングリコール、ジエチレングリコール、ポリエチレングリコール等のエチレングリコール類、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール等のプロピレングリコール類、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、グリセリン、トリメチロールプロパン、1,3-プロパンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4′-ジオール、2,6-デカリングリコール、トリス(2-ヒドロキシエチル)イソシアヌレート等が挙げられるが、特に限定されるものではない。また、エタノールアミン等のアミノアルコール類を用いてもよい。これら多価アルコール類は、一種類のみを用いてもよいし、適宜、二種類以上を混合してもよい。また、必要によりエポキシ樹脂、ジイソシアナート、ジシクロペンタジエン等による変性を行ってもよい。
 本発明における熱硬化性樹脂としては、種々の市販品を好適に用いることができ、特にポリエステル樹脂の市販品としては、例えば、バイロン(登録商標)23CS、バイロン(登録商標)29CS、バイロン(登録商標)29XS、バイロン(登録商標)20SS、バイロン(登録商標)29SS(以上、東洋紡社製)等を挙げることができる。
 また、硬化剤としては、特に限定されるものではないが、熱硬化性樹脂との相溶性がよく、熱硬化性樹脂を架橋させることができ、更に、液安定性のよいものが好ましい。このような硬化剤としては、例えば、イソシアネート系では、ミリオネート(登録商標)N、コロネート(登録商標)T、コロネート(登録商標)HL、コロネート(登録商標)2030、スプラセック(登録商標)3340、ダルトセック1350、ダルトセック2170、ダルトセック2280(以上、日本ポリウレタン工業社製)等、メラミン系では、ニカラック(登録商標)MS-11、ニカラック(登録商標)MS21(以上、三和ケミカル社製)、スーパーベッカミン(登録商標)L-105-60、スーパーベッカミン(登録商標)J-820-60(以上、DIC社製)、エポキシ系では、ハードナーHY951、ハードナーHY957(以上、BASF社製)、スミキュアーDTA、スミキュアーTTA(以上、住友化学社製)等を挙げることができる。
 また、皮膜形成用組成物には、熱硬化性樹脂が34.5~80.0質量%含まれているのが好ましく、より好ましくは46.8質量%以上、57.6質量%以下である。そして、皮膜形成用組成物には、硬化剤が10.6~35.0質量%含まれているのが好ましく、より好ましくは14.4~35.0質量%である。なお、上記における熱硬化性樹脂及び硬化剤の質量%は、皮膜形成用組成物中の熱硬化性樹脂、硬化剤、及び固体顔料の合計質量に対する熱硬化性樹脂及び硬化剤の含有量の比率を指す。
 皮膜を形成するに当たっては、金属板表面または既に積層された皮膜上に皮膜形成用組成物を塗布する塗布法により積層するのが好ましいため、皮膜形成用組成物は液状であることが望ましい。よって、皮膜形成用組成物は溶媒も含むことが推奨される。皮膜形成用組成物に用いる溶媒は、皮膜形成用組成物が含有すべき各成分を溶解または分散させ得るものであれば、特に制限はない。例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、ベンゼン、キシレン、ソルベッソ(登録商標)100(エクソンモービル社製)、ソルベッソ(登録商標)150(エクソンモービル社製)等の芳香族炭化水素類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;酢酸エチル、酢酸ブチル等のエステル類;等が挙げられる。皮膜形成用組成物は、こういった溶媒を用いて、固形分を調整することができ、好ましくは20質量%以上、80質量%以下であり、より好ましくは40質量%以上、70質量%以下である。固形分が20質量%未満、すなわち有機溶媒が多すぎる場合、焼付け時に有機溶媒が大量に蒸発し、その結果、金属板表面近傍において気化した有機溶媒による対流が発生しやすくなり、最表層における皮膜表面の平滑性が損なわれるおそれがある。
 [膜厚]
 皮膜を1層のみ積層した金属基板を作製する場合と複数層積層した金属基板を作製する場合で作製可能な膜厚の範囲は異なる。また、後述のプレコート法で作製した場合とポストコート法で作製した場合でも作製可能な膜厚の範囲は異なる。
(プレコート法で皮膜を1層のみ積層した金属基板を作製する場合)
 皮膜の膜厚は10μm以上40μm以下である。膜厚が10μm未満であると、金属基板の耐電圧が0.1kV未満となってしまい、耐電圧(絶縁耐性)を確保できないおそれがある。また、膜厚が40μmを超えると、皮膜が平滑になるように金属板上に積層することが困難となる、すなわち、皮膜の表面粗さRaが30nmを超えるおそれがある。
(ポストコート法で皮膜を1層のみ積層した金属基板を作製する場合)
 皮膜の膜厚は10μm以上40μm以下でもよく、40μm超120μm以下でもよい。膜厚が10μm未満であると、金属基板の耐電圧が0.1kV未満となってしまい、耐電圧(絶縁耐性)を確保できないおそれがある。また、膜厚が120μmを超えると、皮膜が平滑になるように金属板上に積層することが困難となる、すなわち、皮膜の表面粗さRaが30nmを超えるおそれがある。
(プレコート法で複数層積層した金属基板を作製する場合)
 複数層の各皮膜の膜厚は0.1μm以上40μm以下であり、複数層の皮膜の膜厚の合計は3μm以上である。複数層の各皮膜の膜厚は1μm以上であることが好ましい。1層当たりの膜厚が0.1μm未満であると、皮膜にピンホール等の欠陥が生じるおそれがあり、耐電圧(絶縁耐性)を確保できないおそれがある。また、複数層の皮膜の膜厚の合計が3μm未満であると、金属基板の耐電圧が0.1kV未満となってしまい、耐電圧性(絶縁耐性)を確保できないおそれがある。一方、1層当たりの膜厚が40μmを超えると、皮膜が平滑になるように積層することが困難となる、すなわち、金属板から最も離れた皮膜の表面粗さRaが30nmを超えるおそれがある。複数層積層する場合には、好ましくは2層以上、4層以下の積層であり、より好ましくは2層のみの積層である。
(ポストコート法で複数層積層した金属基板を作製する場合)
 複数層の各皮膜の膜厚は0.1μm以上40μm以下であり、複数層の皮膜の膜厚の合計は3μm以上40μm以下でもよく、40μm超120μm以下でもよい。複数層の各皮膜の膜厚は1μm以上であることが好ましい。1層当たりの膜厚が0.1μm未満であると、皮膜にピンホール等の欠陥が生じるおそれがあり、耐電圧(絶縁耐性)を確保できないおそれがある。また、複数層の皮膜の膜厚の合計が3μm未満であると、金属基板の耐電圧が0.1kV未満となってしまい、耐電圧性(絶縁耐性)を確保できないおそれがある。一方、1層当たりの膜厚が40μmを超えると、皮膜が平滑になるように金属板上に積層することが困難となる、すなわち、皮膜の表面粗さRaが30nmを超えるおそれがある。複数層積層する場合には、好ましくは2層以上、4層以下の積層であり、より好ましくは2層のみの積層である。
 [皮膜表面の平滑性]
 金属板に皮膜が1層のみ積層された場合における皮膜は表面が平滑である必要がある。また、複数層積層された場合における金属板から最も離れた皮膜(以下、皮膜を1層のみ積層した場合における皮膜と複数層積層された場合における金属板から最も離れた皮膜のいずれの皮膜も最表層という。)も表面が平滑である必要がある。具体的には、最表層の表面粗さRaが30nm以下であり、好ましくは最表層の表面粗さRaが10nm以下である。最表層の表面粗さRaが30nmを超えると、最表層表面の凹凸が原因となって、電極間のショートによる絶縁不良を招くおそれがある。最表層の表面粗さRaについては、後述の測定方法により測定することができる。
 なお、ほこりやゴミ等の粒子が付着することによって生じた表面の凹凸については、ほこりやゴミ等の粒子は30nm程度より遙かに大きいため、研磨等の平滑化によって容易に除去できる。そのため、ほこりやゴミ等の粒子による凹凸は、絶縁不良につながるおそれは極めて低い。
 [顔料]
 皮膜表面を平滑にする、具体的には最表層の表面粗さRaを30nm以下にするためには、皮膜形成用組成物には固体顔料を含有しないのが好ましい。但し、皮膜を着色する必要があり、皮膜に顔料を含有させなければならない場合は、皮膜形成用組成物中の固体顔料の体積分率を20%以下とするのが好ましい。固体顔料の粒径は通常30nmよりもかなり大きいため、皮膜形成用組成物中の固体顔料の体積分率が20%を超えると、最表層の表面粗さRaを30nm以下とするのが困難になる。
 下記のそれぞれの色に着色するための顔料種類の例としては、白色:酸化チタン、炭酸カルシウム、酸化亜鉛、硫酸バリウム、リトポン、鉛白等の無機系顔料、黒色:アニリンブラック、ニグロシン等の有機系顔料、カーボンブラック等の無機系顔料、鉄黒等の無機系顔料、赤色:不溶性アゾ系(ナフトール系およびアニライド系)または溶性アゾ系等の有機系顔料や、べんがら、カドミウムレッド、鉛丹等の無機系顔料、黄色:不溶性アゾ系(ナフトール系およびアニライド系)、溶性アゾ系、キナクリドン系等の有機系顔料や、クロムエロー、カドミウムエロー、ニッケルチタンエロー、黄丹、ストロンチウムクロメート等の無機系顔料、緑色:有機フタロシアニン系顔料、青色:有機フタロシアニン系顔料、ジオキサジン系顔料、紺青、群青、コバルト青、エメラルドグリーン等の無機系顔料、橙色:ベンズイミダゾロン系、ピラゾロン系等の有機系顔料等が挙げられる。上記着色顔料のうち、同色でも化学構造の異なるもの、あるいは異なる色の着色顔料を2種類以上適当な配合比で混合することにより、灰色、茶色、紫色、赤紫色、青紫色、橙色、黄金色等所望の色に着色することができる。
 例えば、酸化チタンにおいては、平均粒径は、例えば粒状の場合は概ね0.1~0.5μm、好ましくは0.2μm以上、0.4μm以下、更に好ましくは0.3μm以下とすることが推奨される。平均粒径が0.5μmを超えると、酸化チタンを含む皮膜形成用組成物より形成された最表層の表面粗さRaを30nm以下とするのが困難になる。
 ここで、上記酸化チタンの平均粒径は、一般的な粒度分布計によって分級後の酸化チタン粒子の粒度分布を測定し、その測定結果に基づいて算出される小粒径側からの積算値50%の粒度(D50)を意味する。斯かる粒度分布は、粒子に光を当てることにより生じる回折や散乱の強度パターンによって測定することができ、この様な粒度分布計としては、例えば、日機装社製のマイクロトラック9220FRAやマイクロトラックHRA等が例示される。
 なお、上述した好ましい平均粒径を満足する酸化チタンは、市販品を使用しても良く、例えば、テイカ社製のTITANIX(登録商標)JR-301(平均粒径0.30μm)、JR-603(平均粒径0.28μm)、JR-806(平均粒径0.25μm)、JRNC(平均粒径0.37μm)等が挙げられる。
 なお、顔料の偏析を抑制するために、皮膜形成用組成物には顔料分散剤を添加してもよい。好適な顔料分散剤は、水溶性アクリル樹脂、水溶性スチレンアクリル樹脂およびノニオン系界面活性剤よりなる群から選択される1種以上である。これらを用いた場合、着色塗膜には顔料分散剤が残存することになる。
 [耐電圧]
 耐電圧は後述の方法で測定されており、0.1kV以上が必要である。好ましくは0.3kV以上であり、さらに好ましくは1.0kV以上である。耐電圧が0.1kV未満であると、電極間のショートによる絶縁不良を招くおそれがある。
 [製造方法]
 皮膜形成用組成物の塗布、乾燥方法は、特に制限されず、既知の方法を適宜採用することができる。第1の金属基板や第2の金属基板を作製する際の組成物の塗布方法としては、例えばバーコーター法、ロールコーター法、カーテンフローコーター法、スプレー法、スプレーリンガー法等によるプレコート法を挙げることができ、これらの中でも、コスト等の観点からバーコーター法、ロールコーター法、スプレーリンガー法が好ましい。また、上記以外の組成物の塗布方法として、静電塗装法、スピンコート法等によるポストコート法を用いることもでき、ポストコート法を用いた場合には、第1の金属基板や第2の金属基板のみならず、第3の金属基板も作製することができる。
 焼付け温度としては、特に限定されるものではなく、皮膜に用いる樹脂の硬化特性に応じて調整すれば良いが、例えば、プレコート法に用いるポリエステル系樹脂の場合には190℃以上250℃以下が好ましく、より好ましくは200℃以上240℃以下である。焼付け温度を上記の範囲内にして、有機溶媒を激しく蒸発させないようにすることによって、金属板表面近傍において気化した有機溶媒による対流が発生しにくくなり、最表層の皮膜表面をより平滑にすることができる。また、乾燥温度としては、皮膜が熱により劣化しない程度であればよく、例えば、190~250℃程度が好ましく、より好ましくは200~240℃程度である。なお、焼付け・乾燥温度は、到達板温(Peak Metal Temperature:PMT)である。
<耐薬品性にも優れた金属基板>
 耐薬品性にも優れた金属基板とするためには、第2の金属基板において、合計膜厚が5μm以上にすることが好ましく、より好ましくは皮膜形成用組成物にはさらに硬化剤が含まれており、上記皮膜形成用組成物中における上記硬化剤の上記熱硬化性樹脂に対する質量比が0.6以上1.0以下である。また、第2の金属基板において、金属板から最も離れた皮膜を形成する皮膜形成用組成物は、熱硬化性樹脂及び硬化剤に代えて、無機高分子、および/または有機高分子と無機高分子とのハイブリッド高分子を含んでもよい。
 耐薬品性にも優れた金属基板とする場合、皮膜形成用組成物において、硬化剤の熱硬化性樹脂に対する質量比が0.6以上1.0以下であり、好ましくは0.62以上1.0以下であり、より好ましくは0.65以上1.0以下である。皮膜は有機溶媒には溶解しないが、溶媒分子が皮膜に浸入して膨潤等の変質が生じるおそれがある。これを抑制するためには、熱硬化性樹脂に対して所定量の硬化剤を含有させることによって、皮膜の硬化度(架橋密度)を高めることが有効となる。なお、有機溶媒への耐性(耐薬品性)の判断基準については後述する。
 また、耐薬品性にも優れた金属基板とする場合、皮膜形成用組成物には、熱硬化性樹脂が26.5~62.5質量%含まれているのが好ましく、より好ましくは36.0質量%以上、56.3質量%以下である。そして、皮膜形成用組成物には、硬化剤が27.0質量%以上含まれているのが好ましく、より好ましくは31.6質量%以上である。
 [最表層の皮膜]
 第2の金属基板では、最表層形成用組成物として、上述の熱硬化性樹脂及び硬化剤が含まれている皮膜形成用組成物に代えて、無機高分子、または有機高分子と無機高分子とのハイブリッド高分子が含まれた組成物を用いることができる。熱硬化性樹脂に対して所定量の硬化剤を含有させた場合、ベンゼン、キシレンのような溶媒に対しては有効であっても、トリフルオロ酢酸、ニトロメタン、ジクロロベンゼン、クロロベンゼンのような強力な有機溶媒に対しては、最表層が変性してしまうおそれがある。そこで、上述のような強力な有機溶媒に対しても変性に優れた最表層を形成することができるようにするために、熱硬化性樹脂が含まれている皮膜形成用組成物に代えて、無機高分子、および/または有機高分子と無機高分子とのハイブリッド高分子が含まれた組成物を用いることが好ましく、有機高分子と無機高分子とのハイブリッド高分子が含まれた組成物を用いることがより好ましい。
 無機高分子として、例えば、ポリシラザン、ポリシロキサン、ポリシラン、ポリゲルマン、ポリホスファゼン、ポリスタナン、ポリメタロキサン、ポリカルボシランなどが挙げられ、耐熱性の観点からポリシラザンが好ましい。ポリシラザンは、基本構成単位内にメチル基などの有機質成分を含んだ有機ポリシラザンも知られているが、基本構成単位内にメチル基などの有機質成分を含まない無機ポリシラザンであることが好ましい。無機ポリシラザンとは、-(SiH2NH)-を基本構成単位とし、基本構成単位内にメチル基などの有機質成分を含まず、鎖状、環状、若しくはこれらの複合構造からなり、加熱・溶媒除去・大気中の酸素や水分との反応によって-SiO2-(以下、単にSiO2という)に転化する材料である(特開昭60-145903号公報を参照)。
 無機ポリシラザンが含有された最表層形成用組成物を塗布し、これを大気中で加熱することによって溶媒が除去され、また無機ポリシラザンが大気中の酸素や水分と反応し、金属板表面にSiO2を主体とする硬質皮膜(SiO2層)を形成できる。すなわち、無機ポリシラザンが含有された最表層形成用組成物を塗布した後、大気中で加熱することによって、溶媒の除去、及び無機ポリシラザンと大気中の酸素や水分との反応が生じ、無機ポリシラザンはSiO2に転化する。このSiO2によって、金属基板の表面硬度を高めることができる。また、無機ポリシラザンを含有する溶液を用いてSiO2層を形成することによって、金属基板の耐熱性を向上させることができる。
 上記無機ポリシラザンとしては、具体的には、ペルヒドロポリシラザンを好適に用いることができる。上記無機ポリシラザンとしては、数平均分子量が、例えば、500~2500程度のものを用いることが好ましい。
 上記無機ポリシラザン含有溶液としては、無機ポリシラザンを溶解している溶液を用いればよく、溶媒としては、例えば、ジブチルエーテル、キシレン、トルエンなどの有機溶媒を用いることができる。上記無機ポリシラザン含有溶液における上記無機ポリシラザンの濃度は、溶液全体の質量に対して、10質量%以上であることが好ましく、より好ましくは20質量%以上である。
 上記無機ポリシラザン含有溶液は、更に、無機ポリシラザンからSiO2への転化を促進するための触媒を含んでいることが好ましく、例えば、パラジウム触媒を添加することによって、SiO2層を比較的低温で形成できるため、金属板の耐熱温度内でSiO2層を形成できる。
 無機ポリシラザン含有溶液は、例えば、AZエレクトロニックマテリアルズ社などから入手できる。また、入手した溶液を濃縮してから用いてもよい。
 上記無機ポリシラザン含有溶液を塗布した後の加熱は、大気中で行えばよい。大気中で加熱することによって、無機ポリシラザンが大気中の酸素や水分と反応し、SiO2を主体とする皮膜(SiO2層)を形成できる。
 なお、SiO2を主体とする皮膜であることは、加熱前後における皮膜のFT-IR(フーリエ変換型赤外分光光度計)スペクトルを測定したときに、Si-H結合、N-H結合に起因するピーク強度が減少ないしピークが消滅し、Si-O結合に起因するピークが生成ないしピーク強度が増大していることから確認できる。なお、SiO2層中には、例えば、若干のSi-N結合やN-H結合などが含まれていてもよい。
 上記大気雰囲気は、水蒸気を含んでいてもよい。水蒸気共存雰囲気で加熱することによって、上述したSiO2の形成が促進される。
 上記大気中で加熱するときの条件は、上述した触媒を併用している場合は、溶液に含まれる溶媒を揮発できる範囲で設定すれば特に限定されない。シリカ転化を速やかに行うための加熱温度は、例えば、200℃以上であることが好ましい。加熱時間は、例えば、30分以上とすることが好ましく、より好ましくは1時間以上である。
 なお、大気中で加熱した後は、SiO2層の表面を公知の条件で研磨し、表面を平滑にしてもよい。
 有機高分子と無機高分子とのハイブリッド高分子(以下、ハイブリッド高分子という)としては、特に制限はなく、目的に応じて適宜選択することができる。上記ハイブリッド高分子とは、有機高分子と無機高分子とがブロック的に結合した高分子であり、有機高分子と無機高分子とはナノレベルで均一に分散している。例えば、ハイブリッド高分子として、アルコキシシリル基含有の有機重合体に、アルコキシシランを加水分解・共縮合して得られるものが挙げられる。特に、-Si(OR)3(但しRは炭素数10以下の低級アルキル基を示す。)で示されるアルコキシシリル基含有の有機重合体に、RnSi(OR)4-n(但しRは炭素数10以下の低級アルキル基を示し、nは1または2の整数を示す。)で表わされるアルコキシシラン類を加水分解・共縮合して得られるハイブリッド高分子が好ましい。
 上記ハイブリッド高分子としては、特に制限はなく、適宜調製したものを使用してもよいし、市販品を使用してもよい。上記市販品としては、例えば、JSR社製グラスカ(登録商標)、荒川化学工業社製コンポセラン(登録商標)などが挙げられる。
 金属板の表面に皮膜を複数層積層する場合、各皮膜の膜厚は0.1μm以上40μm以下であり、複数層の皮膜の膜厚の合計は5μm以上である。1層当たりの膜厚が0.1μm未満であると、皮膜にピンホール等の欠陥が生じるおそれがあり、耐電圧(絶縁耐性)を確保できないおそれがある。また、複数層の皮膜の膜厚の合計が5μm未満であると、金属基板の耐電圧が0.1kV未満となってしまい、耐電圧性(絶縁耐性)を確保できないおそれがある。
 また、後述の耐薬品性試験を行った結果、浸漬後における耐電圧が浸漬前における耐電圧と比べて、変化率が30%以下である場合、耐薬品性があるものとする。変化率は20%以下であることが好ましい。
 <サブストレート型薄膜太陽電池>
 本発明に係る金属基板を備えたサブストレート型薄膜太陽電池について説明する。サブストレート型太陽電池は、本発明に係る金属基板を備えたものであれば、公知のいずれの構造でもよく、例えば、基本的には本発明に係る金属基板の皮膜上に、裏面電極、光電変換層、透明電極がこの順で積層された構造である。光電変換層は、透明電極を通過して到達した光を吸収して電流が発生する層であり、裏面電極および透明電極は、いずれも光電変換層で発生した電流を取り出すためのものであり、いずれも導電性材料からなる。光入射側の透明電極は透光性を有する必要がある。裏面電極、光電変換層、透明電極については、公知のサブストレート型薄膜太陽電池と同様の材料を用いることができる。
 裏面電極は、特に制限されるものではなく、例えば、Mo、Cr、W等の金属、およびこれらの金属を組み合わせたものを用いることができる。裏面電極は、単層構造でもよいし、2層構造等の積層構造でもよい。裏面電極の厚さは、特に制限されるものではないが、厚さが0.1μm以上であることが好ましく、0.45~1.0μmであることがより好ましい。
 光電変換層の構成は、特に制限されるものではなく、例えば、少なくとも1種のカルコパイライト構造の化合物半導体である。また、光電変換層は、Ib族元素とIIIb族元素とVIb族元素とからなる少なくとも1種の化合物半導体であってもよい。
 さらに光吸収率が高く、高い光電変換効率が得られることから、光電変換層は、CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al、GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S、Se、およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体であることが好ましい。この化合物半導体としては、CuAlS2、CuGaS2、CuInS2、CuAlSe2、CuGaSe2、CuInSe2(CIS)、AgAlS2、AgGaS2、AgInS2、AgAlSe2、AgGaSe2、AgInSe2、AgAlTe2、AgGaTe2、AgInTe2、Cu(In1-xGax)Se2(CIGS)、Cu(In1-xAlx)Se2、Cu(In1-xGax)(S、Se)2、Ag(In1-xGax)Se2、およびAg(In1-xGax)(S、Se)2等が挙げられる。
 透明電極は、例えば、Al、B、Ga、Sb等が添加されたZnO、ITO(インジウム-錫酸化物)、またはSnO2およびこれらを組み合わせたものにより構成される。透明電極は、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明電極の厚さは、特に制限されるものではないが、0.3~1μmが好ましい。
 サブストレート型薄膜太陽電池は公知の方法で作製することができ、例えば、以下の製造方法でサブストレート型薄膜太陽電池を作製することができる。まず、本発明に係る金属基板の上に、スパッタ法、真空蒸着法、熱CVD法、湿式塗工法等の従来から知られている方法により裏面電極を形成する。次いで、裏面電極の上にスパッタ法、真空蒸着法、熱CVD法、湿式塗工法等の従来から知られている方法により光電変換層を形成する。続いて、光電変換層の上にスパッタ法、真空蒸着法、熱CVD法、湿式塗工法等の従来から知られている方法により透明電極を形成する。
 なお、透明電極の形成時に光電変換層を保護するために、光電変換層と透明電極との間にバッファ層を設けてもよい。また、透明電極の上に封止材を設けてもよい。
 <トップエミッション型有機EL素子>
 本発明に係る金属基板は、トップエミッション型有機EL素子にも適用可能である。このようなトップエミッション型有機EL素子は、本発明に係る金属基板を備えたものであれば、公知のいずれの構造でもよく、例えば、基本的には本発明に係る金属基板の皮膜の上に、電極、有機層、透明導電膜がこの順に積層されたものである。電極、有機層、透明導電膜については、公知のサブストレート型薄膜太陽電池と同様の材料を用いることができる。トップエミッション型有機EL素子では、光は透明導電性膜を透過して(基板を透過することなく)取り出されるため、基板として透明でない金属板を用いることができる。
 電極は、例えば、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、錫酸化物、Au等の金属の極薄膜、導電性高分子、導電性の有機材料、ドーパント(ドナー又はアクセプタ)含有有機層、導電体と導電性有機材料(高分子含む)の混合物、又はこれらの積層体等が材料として用いられる。電極は、これら材料をスパッタ法やイオンプレーティング法等の気相成長法を用いて成膜することができる。
 有機層の有機発光層は、例えば、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、及びこれらの誘導体、あるいは、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、及びこれらの発光性化合物からなる基を分子の一部分に有する化合物あるいは高分子等が材料として用いられる。さらに、上記化合物に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えば、Ir錯体、Os錯体、Pt錯体、ユーロピウム錯体等の発光材料、若しくはそれらを分子内に有する化合物又は高分子も用いられる。有機層は、スパッタ法、真空蒸着法等の従来から知られている方法により形成することができる。なお、有機層は、有機発光層の他にも正孔注入層、正孔輸入層、電子輸送層、電子注入層等を含んでいてもよい。
 透明導電膜は、Alや銀等の単体、又はAlや銀等と他の電極材料を組み合わせて積層構造に構成されたものが材料として用いられる。電極材料の組み合わせは、アルカリ金属とAlの積層体、アルカリ金属と銀の積層体、アルカリ金属のハロゲン化物とAlの積層体、アルカリ金属の酸化物とAlの積層体、アルカリ土類金属や希土類金属とAlの積層体、これらの金属種と他の金属の合金等が挙げられる。具体的には、例えば、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム等とAlの積層体、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、LiFとAlの混合物、AlとAl23の混合物等が挙げられる。透明導電膜は、スパッタ法、真空蒸着法等の従来から知られている方法により形成することができる。
 本願は、2013年3月28日に出願された日本国特許出願第2013-070259号及び2013年3月28日に出願された日本国特許出願第2013-070260号に基づく優先権の利益を主張するものである。2013年3月28日に出願された日本国特許出願第2013-070259号及び2013年3月28日に出願された日本国特許出願第2013-070260号の明細書の全内容が、本願に参考のため援用される。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。また、実施例で用いた評価方法は、以下の通りである。
 <耐電圧(絶縁耐性)>
 後述の作製方法で寸法50mm×50mm×0.8mmの供試材を作製した後、JIS規格C2110-1に準拠して、供試材の一方の面に外径20mmの球形電極を荷重500gで接触させた状態で、絶縁破壊試験装置を用いて、20~40秒程度で絶縁破壊が起こるような一定速度で厚み方向に直流電圧を印加し、絶縁破壊を生じたときの電圧を測定した。上記電圧測定を5回行い、その平均値を耐電圧とした。
 <平均表面粗さRa>
 後述の作製方法で得られた供試材について、原子間力顕微鏡(Atomic Force Microscope、AFM)(セイコー電子工業製SPI3800N)を用いて、10μm×10μmのエリアの任意の3箇所の表面粗さを測定し、その平均値を平均表面粗さRaとした。
 <耐薬品性(表面粗さRa及び耐電圧の変化率)>
 後述の作製方法で得られた供試材をキシレンに24時間浸漬し、浸漬後における表面粗さRa及び耐電圧の、浸漬前における表面粗さRa及び耐電圧との変化率を求めた。なお、浸漬後における表面粗さRa及び耐電圧は、上述の浸漬前の各測定方法と同様に測定した。
 (塗料1-1の作製方法)
 キシレン(沸点:140℃)とシクロヘキサノン(沸点:156℃)とを等量ずつ混合した溶媒に、ポリエステル樹脂(東洋紡社製バイロン(登録商標)300)を固形分換算で75質量部、メラミン樹脂(DIC社製スーパーベッカミン(登録商標)J-820-60)を固形分換算で25質量部加えて、塗料1-1を得た。ポリエステル樹脂とメラミン樹脂との合計の固形分が58質量%となるようにキシレンとシクロヘキサノンとの混合溶媒の量を調整した。
 (塗料1-2の作製方法)
 塗料1-1において、キシレンとシクロヘキサノンとを等量ずつ混合した溶媒に代えて、芳香族炭化水素系溶媒(エクソンモービル社製ソルベッソ(登録商標)150(沸点:183℃))を用いた点以外は、塗料1-1と同様にして塗料1-2を得た。
 (塗料1-3の作製方法)
 キシレンとシクロヘキサノンとを等量ずつ混合した溶媒に、ポリエステル樹脂(東洋紡社製バイロン(登録商標)300)を固形分換算で75質量部、メラミン樹脂(DIC社製スーパーベッカミン(登録商標)J-820-60)を固形分換算で25質量部、酸化チタン(テイカ社製TITANIX(登録商標)JR-301(粒径0.30μm))を50質量部加えて、塗料1-3を得た。ポリエステル樹脂、メラミン樹脂、及び酸化チタンの合計の固形分が63質量%となるようにキシレンとシクロヘキサノンとの混合溶媒の量を調整した。
 (塗料1-4の作製方法)
 塗料1-3において、酸化チタンを100質量部加えた点、ポリエステル樹脂、メラミン樹脂、及び酸化チタンの合計の固形分が67質量%となるように調整した点以外は、塗料1-3と同様にして塗料1-4を得た。
 (塗料1-5の作製方法)
 酢酸ブチル(沸点:126℃)と1-ブタノール(沸点:117℃)とを等量ずつ混合した溶媒に、金属素材用アクリル樹脂焼付上塗クリヤー(エーエスペイント社製サグラン(登録商標)7000クリヤーを加えて、塗料1-5を得た。アクリル樹脂焼付上塗クリヤーの固形分が25質量%となるように混合溶媒の量を調整した。
 (実施例1-1)
 供試材としては、電気亜鉛めっき鋼板(板厚0.8mm)を金属板として、金属板の表面に、バーコーターにて塗料1-1を膜厚24.0μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させ、1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (実施例1-2)
 実施例1-1において、皮膜の膜厚が14.1μmとなるように塗布する点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (実施例1-3)
 実施例1-1において、皮膜の膜厚が11.3μmとなるように塗布する点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (実施例1-4)
 実施例1-1において、皮膜の膜厚が35.2μmとなるように塗布する点、塗料1-1に代えて塗料1-2を用いる点以外は、実施例1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (実施例1-5)
 実施例1-1において、塗料1-1に代えて塗料1-3を用いる点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (比較例1-1)
 実施例1-1において、皮膜の膜厚が42.2μmとなるように塗布する点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (比較例1-2)
 実施例1-1において、皮膜の膜厚が5.6μmとなるように塗布する点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
 (比較例1-3)
 実施例1-1において、塗料1-1に代えて塗料1-4を用いる点以外は、実施例1-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例1-6)
 供試材としては、電気亜鉛めっき金属板(板厚0.8mm、金属板両面における各面当たりの亜鉛めっき付着量20g/m2)を金属板として、内層皮膜として、金属板の表面に、バーコーターにて塗料1-1を膜厚28.2μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させた。
 その後、外層塗膜として、内層皮膜の表面(内層皮膜の金属板に接していない側の面)に、バーコーターにて塗料1-1を膜厚28.2μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させ、2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表2に示す。
 (実施例1-7)
 実施例1-6において、内層皮膜及び外層皮膜が各々膜厚1.9μmとなるように塗布する点以外は、実施例1-6と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表2に示す。
 (比較例1-4)
 実施例1-6において、内層皮膜及び外層皮膜が各々膜厚1.4μmとなるように塗布する点以外は、実施例1-6と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例1-8)
 供試材としては、電気亜鉛めっき鋼板(板厚0.8mm)を金属板として、金属板の表面に、静電塗装機(ランズバーグ・インダストリー社製オプティフレックス)にて塗料1-5を膜厚10μmとなるように静電塗装し、到達板温(Peak Metal Temperature:PMT)が150℃となるように20分間焼付け・乾燥させ、1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表3に示す。
 (実施例1-9)
 実施例1-8において、皮膜の膜厚が30μmとなるように静電塗装する点以外は、実施例1-8と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表3に示す。
 (実施例1-10)
 実施例1-8において、皮膜の膜厚が50μmとなるように静電塗装する点以外は、実施例1-8と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表3に示す。
 (実施例1-11)
 供試材としては、電気亜鉛めっき金属板(板厚0.8mm、金属板両面における各面当たりの亜鉛めっき付着量20g/m2)を金属板として、内層皮膜として、金属板の表面に、静電塗装機(ランズバーグ・インダストリー社製オプティフレックス)にて塗料1-5を膜厚25μmとなるように静電塗装し、到達板温(Peak Metal Temperature:PMT)が150℃となるように20分間焼付け・乾燥させた。
 その後、外層塗膜として、内層皮膜の表面(内層皮膜の金属板に接していない側の面)に、静電塗装機(ランズバーグ・インダストリー社製オプティフレックス)にて塗料1-5を膜厚25μmとなるように静電塗装し、到達板温(Peak Metal Temperature:PMT)が150℃となるように20分間焼付け・乾燥させ、2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表3に示す。
 (実施例1-12)
 実施例1-11において、内層皮膜の膜厚が35μm、外層皮膜の膜厚が35μmとなるように静電塗装する点以外は、実施例1-11と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (塗料2-1の作製方法)
 キシレン(沸点:140℃)とシクロヘキサノン(沸点:156℃)とを等量ずつ混合した溶媒に、ポリエステル樹脂(東洋紡社製バイロン(登録商標)300)を固形分換算で50質量部、メラミン樹脂(DIC社製スーパーベッカミン(登録商標)J-820-60)を固形分換算で50質量部加えて、塗料2-1を得た。ポリエステル樹脂とメラミン樹脂との合計の固形分が58質量%となるようにキシレンとシクロヘキサノンとの混合溶媒の量を調整した。
 (塗料2-2の作製方法)
 塗料2-1において、ポリエステル樹脂を固形分換算で62.5質量部、メラミン樹脂を固形分換算で37.5質量部加えた点以外は、塗料2-1と同様にして塗料2-2を得た。
 (塗料2-3の作製方法)
 塗料2-1において、ポリエステル樹脂を固形分換算で75質量部、メラミン樹脂を固形分換算で25質量部加えた点以外は、塗料2-1と同様にして塗料2-3を得た。
 (塗料2-4の作製方法)
 溶媒であるシクロヘキサノンに、有機・無機ハイブリッドコーティング材(JSR社製グラスカ(登録商標)HPC7506Aを加えて、塗料2-4を得た。有機・無機ハイブリッドコーティング材の固形分が20質量%となるようにシクロヘキサノンの量を調整した。
 (塗料2-5について)
 ポリシラザンコーティング液(AZエレクトロニックマテリアルズ社製アクアミカ(登録商標)NAX-120-20)をそのまま用いた。
 (塗料2-6の作製方法)
 溶媒であるシクロヘキサノンに、有機・無機ハイブリッドコーティング材(JSR社製グラスカ(登録商標)HPC7506Aを固形分換算で75質量部、酸化チタン(テイカ社製TITANIX(登録商標)JR-301(粒径0.30μm))を25質量部加えて、塗料2-6を得た。有機・無機ハイブリッドコーティング材及び酸化チタンの合計の固形分が50質量%となるようにシクロヘキサノンの量を調整した。
 (塗料2-7の作製方法)
 塗料2-6において、有機・無機ハイブリッドコーティング材を固形分換算で67質量部、酸化チタンを固形分換算で33質量部加えた点以外は、塗料2-6と同様にして塗料2-7を得た。
 (実施例2-1)
 供試材としては、電気亜鉛めっき鋼板(板厚0.8mm)を金属板として、金属板の表面に、バーコーターにて塗料2-1を膜厚24.0μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させ、1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (実施例2-2)
 実施例2-1において、皮膜の膜厚が22.5μmとなるように塗布する点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (実施例2-3)
 実施例2-1において、皮膜の膜厚が14.1μmとなるように塗布する点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (実施例2-4)
 実施例2-1において、皮膜の膜厚が11.3μmとなるように塗布する点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (実施例2-5)
 実施例2-1において、塗料2-1に代えて塗料2-2を用いる点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (比較例2-1)
 実施例2-1において、皮膜の膜厚が5.6μmとなるように塗布する点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (比較例2-2)
 実施例2-1において、皮膜の膜厚が42.2μmとなるように塗布する点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
 (比較例2-3)
 実施例2-1において、塗料2-1に代えて塗料2-3を用いる点以外は、実施例2-1と同様にして1層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 (実施例2-6)
 供試材としては、電気亜鉛めっき金属板(板厚0.8mm、金属板両面における各面当たりの亜鉛めっき付着量20g/m2)を金属板として、内層皮膜として、金属板の表面に、バーコーターにて塗料2-1を膜厚28.2μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させた。
 その後、外層塗膜として、内層皮膜の表面(内層皮膜の金属板に接していない側の面)に、バーコーターにて塗料2-1を膜厚28.2μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃となるように2分間焼付け・乾燥させ、2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (実施例2-7)
 実施例2-6において、内層皮膜及び外層皮膜が各々膜厚5.6μmとなるように塗布する点以外は、実施例2-6と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (実施例2-8)
 実施例2-6において、内層皮膜及び外層皮膜が各々膜厚2.8μmとなるように塗布する点以外は、実施例2-6と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (実施例2-9)
 供試材としては、電気亜鉛めっき金属板(板厚0.8mm、金属板両面における各面当たりの亜鉛めっき付着量20g/m2)を金属板として、内層皮膜として、金属板の表面に、バーコーターにて塗料2-1を膜厚11.3μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃で2分間焼付け・乾燥させた。
 その後、外層塗膜として、内層皮膜の表面(内層皮膜の金属板に接していない側の面)に、バーコーターにて塗料2-4を膜厚1.0μmとなるように塗布し、到達板温(Peak Metal Temperature:PMT)が220℃で2分間焼付け・乾燥させ、2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (実施例2-10)
 実施例2-9において、外層塗膜を作製する際に塗料2-4に代えて塗料2-5を用いる点以外は、実施例2-9と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (実施例2-11)
 実施例2-9において、外層塗膜を作製する際に塗料2-4に代えて塗料2-6を用いる点以外は、実施例2-9と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (比較例2-4)
 内層皮膜及び外層皮膜が各々膜厚2.1μmとなるように塗布する点以外は、実施例2-6と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
 (比較例2-5)
 実施例2-9において、外層塗膜を作製する際に塗料2-4に代えて塗料2-7を用いる点以外は、実施例2-9と同様にして2層の皮膜を積層した金属基板を得た。
 得られた積層体の物性、評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 金属板に所定の皮膜を積層することによって、皮膜の表面を平滑にすると共に、皮膜が絶縁性を有する金属基板となり、サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いることが可能となる。

Claims (11)

  1.  サブストレート型薄膜太陽電池又はトップエミッション型有機EL素子に用いられる金属基板であって、
     金属板の表面に、1層又は複数層積層された皮膜が形成されており、上記皮膜の表面粗さRaが30nm以下であり、
     上記皮膜は、熱硬化性樹脂が含まれており、固体顔料の体積分率が20%以下である皮膜形成用組成物を焼き付けして得られる
     ことを特徴とする金属基板。
  2.  上記金属板の表面に、膜厚が10μm以上40μm以下である皮膜が1層のみ積層されている請求項1に記載の金属基板。
  3.  上記皮膜形成用組成物にはさらに硬化剤が含まれており、上記皮膜形成用組成物中における上記硬化剤の上記熱硬化性樹脂に対する質量比が0.6以上1.0以下である請求項2に記載の金属基板。
  4.  上記金属板の表面に、膜厚が0.1μm以上40μm以下である皮膜が複数層積層されており、これらの複数層の皮膜の合計膜厚は3μm以上である請求項1に記載の金属基板。
  5.  上記皮膜形成用組成物にはさらに硬化剤が含まれており、上記皮膜形成用組成物中における上記硬化剤の上記熱硬化性樹脂に対する質量比が0.6以上1.0以下であり、上記複数層の皮膜の合計膜厚は5μm以上である請求項4に記載の金属基板。
  6.  上記金属板から最も離れた皮膜を形成する皮膜形成用組成物は、熱硬化性樹脂及び硬化剤に代えて、無機高分子、および/または有機高分子と無機高分子とのハイブリッド高分子を含む請求項5に記載の金属基板。
  7.  上記皮膜の合計膜厚が40μm超120μm以下である請求項1に記載の金属基板。
  8.  上記熱硬化性樹脂は、ポリエステル樹脂である請求項1~7のいずれか1項に記載の金属基板。
  9.  上記1層のみの皮膜または上記金属板から最も離れた皮膜の表面粗さRaは10nm以下である請求項1~7のいずれか1項に記載の金属基板。
  10.  請求項1~7のいずれか1項に記載の金属基板を備えたサブストレート型薄膜太陽電池。
  11.  請求項1~7のいずれか1項に記載の金属基板を備えたトップエミッション型有機EL素子。
PCT/JP2014/059075 2013-03-28 2014-03-28 金属基板、それを用いたサブストレート型薄膜太陽電池及びトップエミッション型有機el素子 WO2014157601A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480019017.XA CN105102218B (zh) 2013-03-28 2014-03-28 金属基板、使用其的衬底型薄膜太阳能电池及顶部发光型有机el元件
KR1020157026524A KR101821872B1 (ko) 2013-03-28 2014-03-28 금속 기판, 그것을 이용한 서브스트레이트형 박막 태양 전지 및 톱 에미션형 유기 el 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013070260 2013-03-28
JP2013-070260 2013-03-28
JP2013070259 2013-03-28
JP2013-070259 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157601A1 true WO2014157601A1 (ja) 2014-10-02

Family

ID=51624557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059075 WO2014157601A1 (ja) 2013-03-28 2014-03-28 金属基板、それを用いたサブストレート型薄膜太陽電池及びトップエミッション型有機el素子

Country Status (6)

Country Link
JP (1) JP5715721B2 (ja)
KR (1) KR101821872B1 (ja)
CN (2) CN107571572B (ja)
MY (1) MY178501A (ja)
TW (1) TWI559564B (ja)
WO (1) WO2014157601A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190309A1 (ja) * 2015-05-28 2016-12-01 株式会社神戸製鋼所 有機電子デバイス及び有機電子デバイス用基板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510760B2 (ja) * 2014-03-31 2019-05-08 株式会社神戸製鋼所 金属基板
JP2016193512A (ja) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 金属基板
JP2016195162A (ja) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 金属基板
JP2016193580A (ja) * 2015-04-01 2016-11-17 新日鐵住金株式会社 半導体基板用塗装金属板
JP6793083B2 (ja) * 2017-03-30 2020-12-02 株式会社神戸製鋼所 絶縁皮膜積層金属板及び金属基板
JP7066578B2 (ja) * 2018-09-04 2022-05-13 株式会社神戸製鋼所 有機電子デバイス及び有機電子デバイス用基板
WO2020137783A1 (ja) 2018-12-28 2020-07-02 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
JP7435802B2 (ja) 2021-03-23 2024-02-21 Jfeスチール株式会社 フィルムラミネート金属板およびその製造方法、ならびにフレキシブルエレクトロニクス用基板および有機el用基板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136585A (ja) * 1993-11-15 1995-05-30 Nkk Corp 塗装金属板
JP2009076452A (ja) * 2007-08-27 2009-04-09 Panasonic Electric Works Co Ltd 有機el発光素子
JP2010140742A (ja) * 2008-12-11 2010-06-24 Konica Minolta Opto Inc 有機el面発光体、及びそれを用いた有機el表示装置、有機el照明装置
JP2011077229A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 光電変換装置
JP2012182121A (ja) * 2011-02-10 2012-09-20 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法、並びに照明装置及び表示装置
WO2012133465A1 (ja) * 2011-03-28 2012-10-04 住友化学株式会社 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
JP2013084461A (ja) * 2011-10-11 2013-05-09 Nisshin Steel Co Ltd 有機el素子用基板及びその製造方法、並びに有機el素子
JP2013134808A (ja) * 2011-12-23 2013-07-08 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237199C (zh) * 2000-06-21 2006-01-18 日本板硝子株式会社 具有透明导电薄膜的基片和使用该基片的有机电致发光装置
KR100704258B1 (ko) * 2004-06-02 2007-04-06 세이코 엡슨 가부시키가이샤 유기 el 장치 및 전자 기기
KR100563066B1 (ko) * 2004-06-10 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 이의 제조 방법
JP2006164808A (ja) * 2004-12-09 2006-06-22 Hitachi Ltd 発光素子,照明装置及びこれを有する表示装置
JP2006331694A (ja) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd 有機発光素子及び有機発光素子用基板
JP2007065644A (ja) * 2005-08-03 2007-03-15 Asahi Kasei Corp ディスプレイ用基板及びディスプレイ並びにそれらの製造方法
JP5009116B2 (ja) * 2006-09-28 2012-08-22 富士フイルム株式会社 自発光表示装置、透明導電性フイルム、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
JP2011138683A (ja) * 2009-12-28 2011-07-14 Dainippon Printing Co Ltd 電子素子
CN103107290A (zh) * 2011-11-11 2013-05-15 海洋王照明科技股份有限公司 有机电致发光器件、基底及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136585A (ja) * 1993-11-15 1995-05-30 Nkk Corp 塗装金属板
JP2009076452A (ja) * 2007-08-27 2009-04-09 Panasonic Electric Works Co Ltd 有機el発光素子
JP2010140742A (ja) * 2008-12-11 2010-06-24 Konica Minolta Opto Inc 有機el面発光体、及びそれを用いた有機el表示装置、有機el照明装置
JP2011077229A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 光電変換装置
JP2012182121A (ja) * 2011-02-10 2012-09-20 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法、並びに照明装置及び表示装置
WO2012133465A1 (ja) * 2011-03-28 2012-10-04 住友化学株式会社 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
JP2013084461A (ja) * 2011-10-11 2013-05-09 Nisshin Steel Co Ltd 有機el素子用基板及びその製造方法、並びに有機el素子
JP2013134808A (ja) * 2011-12-23 2013-07-08 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190309A1 (ja) * 2015-05-28 2016-12-01 株式会社神戸製鋼所 有機電子デバイス及び有機電子デバイス用基板
JP2016225091A (ja) * 2015-05-28 2016-12-28 株式会社神戸製鋼所 有機電子デバイス及び有機電子デバイス用基板
US20180123065A1 (en) * 2015-05-28 2018-05-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Organic electronic device and substrate for organic electronic device

Also Published As

Publication number Publication date
JP2014208479A (ja) 2014-11-06
KR101821872B1 (ko) 2018-01-24
KR20150125980A (ko) 2015-11-10
CN105102218A (zh) 2015-11-25
MY178501A (en) 2020-10-14
CN105102218B (zh) 2017-11-21
TWI559564B (zh) 2016-11-21
CN107571572A (zh) 2018-01-12
JP5715721B2 (ja) 2015-05-13
TW201507184A (zh) 2015-02-16
CN107571572B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
JP5715721B2 (ja) 金属基板
JP6510760B2 (ja) 金属基板
WO2016190309A1 (ja) 有機電子デバイス及び有機電子デバイス用基板
JP2012191194A (ja) 光電変換素子、太陽電池及び太陽電池モジュール並びにこれらの製造方法
US20150129847A1 (en) Method for producing conductive substrate, conductive substrate, and organic electronic element
JP6426087B2 (ja) 多層被膜のマイクロ波硬化
WO2016158678A1 (ja) 金属基板
JP2016195162A (ja) 金属基板
JP2017177491A (ja) 金属基板
JP2017177490A (ja) 金属基板
JP7066578B2 (ja) 有機電子デバイス及び有機電子デバイス用基板
CN109671791A (zh) 前板、前板制备方法及光伏电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019017.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157026524

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773378

Country of ref document: EP

Kind code of ref document: A1