WO2014156054A1 - 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2014156054A1
WO2014156054A1 PCT/JP2014/001537 JP2014001537W WO2014156054A1 WO 2014156054 A1 WO2014156054 A1 WO 2014156054A1 JP 2014001537 W JP2014001537 W JP 2014001537W WO 2014156054 A1 WO2014156054 A1 WO 2014156054A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
particles
secondary battery
Prior art date
Application number
PCT/JP2014/001537
Other languages
English (en)
French (fr)
Inventor
純一 菅谷
学 滝尻
毅 小笠原
柳田 勝功
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015508035A priority Critical patent/JP6305984B2/ja
Priority to US14/763,417 priority patent/US20160006029A1/en
Priority to CN201480017558.9A priority patent/CN105122514B/zh
Publication of WO2014156054A1 publication Critical patent/WO2014156054A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • a lithium ion secondary battery which is a typical non-aqueous electrolyte secondary battery, has a high energy density, and is therefore widely used as a driving power source for mobile information terminals such as mobile phones and laptop computers.
  • nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are also attracting attention as power sources for power tools, electric vehicles, and the like, and further expansion of applications is expected.
  • Patent Document 1 in order to improve output characteristics and cycle characteristics, non-aqueous electrolyte 2 in which the resistance between the positive electrode active material and the electrolyte solution interface is reduced by adding tungsten (W) or the like during firing of the positive electrode active material.
  • W tungsten
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery in which an oxide such as gadolinium (Gd) is present on the surface of a mother particle capable of inserting and extracting lithium ions.
  • Gad gadolinium
  • non-aqueous electrolyte secondary batteries are required to maintain good cycle characteristics even when large current discharge is repeated and to achieve higher capacity.
  • such a demand is remarkable in applications such as electric tools and electric vehicles.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a mother particle formed by agglomerating primary particles composed of a lithium-containing transition metal oxide containing tungsten, and a rare earth compound attached to the surface of the mother particle. It is characterized by providing.
  • the present invention it is possible to provide a nonaqueous electrolyte secondary battery that has a high capacity and can maintain good cycle characteristics even when large current discharge is repeated.
  • a nonaqueous electrolyte secondary battery 10 (hereinafter referred to as “secondary battery 10”), which is an example of an embodiment of the present invention, has a positive electrode 12 and a negative electrode 13 wound around a separator 14. It is a cylindrical battery provided with the electrode body 11 formed and a non-aqueous electrolyte (not shown).
  • the structure of the electrode body 11 is a winding structure and it demonstrates as what has a cylindrical external appearance, the structure and external appearance shape of an electrode body are not limited to this.
  • the structure of the electrode body may be a stacked type in which positive electrodes and negative electrodes are alternately stacked via separators, for example.
  • the external shape of the battery may be a square shape or a coin shape.
  • the secondary battery 10 includes an electrode body 11 to which a positive electrode lead 16 and a negative electrode lead 17 are respectively attached, and a battery case 15 that houses an electrolyte.
  • the battery case 15 is, for example, a metal bottomed cylindrical container.
  • the negative electrode lead 17 is connected to the inner bottom portion of the battery case 15, and the battery case 15 is also used as a negative electrode external terminal.
  • the battery case 15 is not limited to a metal hard container, and may be formed of a laminate packaging material.
  • insulating plates 20 and 21 are provided above and below the electrode body 11.
  • a filter 22, an inner cap 23, a valve body 24, and a positive electrode external terminal 25 are provided in this order.
  • These members are arranged so as to integrally close the opening of the battery case 15.
  • the gasket 26 is provided in the clearance gap between the periphery of each of these members and the battery case 15, and the inside of the battery case 15 is sealed.
  • the positive electrode lead 16 extends upward through the hole of the insulating plate 20 and is connected to the filter 22 by welding or the like.
  • the negative electrode lead 17 extends downward through the hole of the insulating plate 20 and is connected to the battery case 15 by welding or the like.
  • the positive electrode 12 includes a positive electrode current collector 30 and a positive electrode active material layer 31 formed on the current collector.
  • the positive electrode active material layer 31 is preferably formed on both surfaces of the positive electrode current collector 30.
  • a conductive thin film sheet particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode 12, a film having a metal surface layer, or the like can be used.
  • the metal constituting the positive electrode current collector 30 is preferably a metal containing aluminum as a main component, for example, aluminum or an aluminum alloy.
  • the positive electrode active material layer 31 preferably contains a conductive material and a binder in addition to the positive electrode active material particles 32 (see FIG. 2).
  • the positive electrode active material particles 32 include mother particles 33 formed by agglomerating primary particles 33 a and rare earth compound particles 34 attached to the surfaces of the mother particles 33. That is, the mother particle 33 is a secondary particle formed by the primary particles 33a contacting and aggregating with each other.
  • the primary particles 33a are composed of a lithium-containing transition metal oxide containing W.
  • the rare earth compound particles 34 are uniformly dispersed and attached on the surface of the mother particles 33, for example.
  • the rare earth compound particles 34 are also present in the vicinity of the interface (hereinafter referred to as “contact interface”) where the primary particles 33 a contact each other. Further, a part of the rare earth compound particles 34 may enter and enter the contact interface.
  • the positive electrode active material particles 32 have rare earth compound particles 34 attached at least at the contact interface or in the vicinity thereof (hereinafter, at least A or B is expressed as “A and / or B”). Moreover, since the positive electrode active material particle 32 is comprised from the lithium containing transition metal oxide containing at least W, W exists in a contact interface or its vicinity. W is usually present uniformly in the primary particles 33a, but may be present in a large amount on the surface and / or surface layer (near the surface inside the primary particles 33a) of the primary particles 33a, or the mother particles 33 that are secondary particles. A large amount may exist on the surface and / or surface layer. Thereby, a stable structure is formed at the contact interface, and cracking of the mother particles 33 during large current discharge can be suppressed. As a result, good cycle characteristics can be maintained even when charging and discharging are repeated under conditions involving large current discharge.
  • the lithium-containing transition metal oxide has a composition formula Li x M 1 -y W y O 2 (M is at least one element selected from the group consisting of Ni, Co, Mn, and Al, and 0.9 ⁇ x ⁇ 1.2, 0.001 ⁇ y ⁇ 0.01).
  • M may contain one or more metal elements such as Mg, Ga, Ge, Ti, Sr, Y, Zr, Nb, Mo, and Ta in addition to the above metal elements such as Ni.
  • the lithium-containing transition metal oxide the composition formula Li x Ni a Co b Mn c Al (1-yab) W y O 2 (0.9 ⁇ x ⁇ 1.2,0.001 ⁇ y ⁇ 0. 01, 0.30 ⁇ a ⁇ 0.95, 0 ⁇ b ⁇ 0.50, and ac> 0.03).
  • X is preferably 0.9 ⁇ x ⁇ 1.2, more preferably 0.98 ⁇ x ⁇ 1.05.
  • the value of x is 0.9 or less, the stability of the crystal structure is lowered, and for example, the effect of improving the cycle characteristics is reduced.
  • the value of x is 1.2 or more, there is a tendency that the amount of gas generation increases.
  • the value of y is preferably 0.001 ⁇ y ⁇ 0.01, more preferably 0.003 ⁇ y ⁇ 0.007. If the value of y is less than 0.001, the effect of improving the cycle characteristics by W is reduced. On the other hand, when the value of y exceeds 0.01, the discharge capacity tends to decrease.
  • ac> 0.03 is preferable. (1) When the composition ratio of Mn is high, an impurity phase is generated, resulting in a decrease in capacity and a decrease in output, so that ac is preferably 0 or more. (2) The higher the Ni composition ratio, the larger the capacity per weight of the positive electrode active material. Therefore, it is desirable that the Ni composition ratio is as high as possible.
  • the particle diameter of the primary particles 33a is preferably 0.2 ⁇ m or more and 2 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 1 ⁇ m or less.
  • the “particle diameter” is an average particle diameter (D50) observed with a scanning electron microscope (SEM) and means an average value of about 10 to 30 particles.
  • the stabilization of the structure at the contact interface becomes insufficient, and the effect of improving the cycle characteristics and the effect of suppressing the decrease in output characteristics may be reduced.
  • the primary particle diameter exceeds 2 ⁇ m, the diffusion distance of lithium ions in the lithium-containing transition metal oxide becomes long during large current discharge, and the output characteristics may deteriorate.
  • the particle diameter of the mother particles 33 (secondary particles) (hereinafter referred to as “secondary particle diameter”) is preferably 3 ⁇ m or more and 20 ⁇ m or less, and more preferably 8 ⁇ m or more and 15 ⁇ m or less.
  • the secondary particle diameter is less than 3 ⁇ m, for example, the positive electrode active material particles 32 are less likely to be clogged during rolling, and the electrode plate density is not increased and it is difficult to increase the capacity.
  • the secondary particle diameter exceeds 20 ⁇ m, the diffusion distance of lithium ions in the lithium-containing transition metal oxide becomes long during large current discharge, and the output characteristics may deteriorate.
  • the rare earth compound constituting the rare earth compound particles 34 is preferably a rare earth hydroxide, a rare earth oxyhydroxide, or a rare earth oxide, more preferably a rare earth hydroxide or a rare earth oxyhydroxide. preferable. When these are used, the effect of improving the cycle characteristics becomes more remarkable.
  • the rare earth compound may partially contain a rare earth carbonate compound, a rare earth phosphate compound, a fluoride, and the like.
  • rare earth elements constituting the rare earth compounds include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Of these, neodymium, samarium and erbium are preferred. This is because a neodymium compound, a samarium compound, and an erbium compound have a smaller average particle diameter than other rare earth compounds and are more likely to be deposited more uniformly on the surface of the positive electrode active material.
  • the rare earth compound examples include lanthanum hydroxide, lanthanum oxyhydroxide, neodymium hydroxide, neodymium oxyhydroxide, samarium hydroxide, samarium oxyhydroxide, erbium hydroxide, erbium oxyhydroxide and the like. Since lanthanum is inexpensive, the production cost of the positive electrode 12 can be reduced when lanthanum hydroxide or lanthanum oxyhydroxide is used.
  • the particle diameter of the rare earth compound particles 34 is preferably 1 nm or more and 100 nm or less, and more preferably 10 nm or more and 50 nm or less.
  • the particle diameter of the rare earth compound particles 34 becomes too large, the number per unit weight decreases, and the existence probability of the rare earth compound particles 34 in the contact interface and / or in the vicinity thereof decreases.
  • the particle diameter of the rare earth compound particles 34 becomes too small, the surfaces of the mother particles 33 are too densely covered with the rare earth compound particles 34, and the lithium ion occlusion / release performance is lowered, and the charge / discharge characteristics are lowered. There is a case.
  • the ratio of voids formed inside the mother particle 33 to the entire area of the mother particle 33 is preferably 0.1% or more and 10% or less. . More preferably, it is 0.5% or more and 8% or less, and particularly preferably 1% or more and 5% or less.
  • the entire area of the mother particle 33 is an area surrounded by the outer periphery of the mother particle 33.
  • the ratio of the voids formed inside the mother particle 33 to the entire area of the mother particle 33 described above is calculated as follows, for example. After obtaining the average particle size of the mother particles 33, about 3 to 10 particles having the same size as the average particle size are randomly extracted from the cross-sectional SEM image of the positive electrode. For each of the extracted mother particles 33, the area ratio of the area where the primary particles do not exist (voids formed inside the mother particles 33) with respect to the entire area is calculated, and an average value of about 3 to 10 particles is calculated. The ratio of voids formed inside the mother particle 33 to the entire area of 33 is taken as the ratio.
  • the ratio of the voids When the ratio of the voids is less than 0.1%, the amount of the electrolytic solution taken into the mother particles 33 (secondary particles) via the primary particle interface becomes insufficient, and the discharge capacity during high rate discharge is increased. It may be insufficient. On the other hand, when the ratio of the voids exceeds 10%, the voids inside the mother particles 33 are excessively increased, and the rare-earth compound is not adhered, so that the side reaction inside may not be suppressed. When the ratio of the voids is 1% or more and 5% or less, the electrolyte solution penetrates into the mother particles 33, but there is no excess space inside the active material, and there is sufficient contact between the primary particles and the primary particles. It becomes a secured state. Therefore, not only excellent high rate discharge performance and cycle characteristics can be obtained, but also an electrode plate having a high packing density and a high capacity can be obtained.
  • the rare earth compound particles 34 can be deposited on the surface of the mother particles 33 by, for example, attaching a rare earth salt to the surfaces of the mother particles 33 and then performing a heat treatment.
  • a rare earth salt for example, an aqueous solution in which an erbium salt is dissolved is mixed in a dispersion in which the mother particle 33 is dispersed, and the mother particle 33 having an erbium salt hydroxide adhering to the surface is mixed. obtain.
  • the heat treatment temperature is preferably 120 ° C. or higher and 700 ° C. or lower, and more preferably 250 ° C. or higher and 500 ° C. or lower.
  • the temperature is lower than 120 ° C.
  • moisture adsorbed on the active material is difficult to remove, and moisture may be mixed in the battery.
  • the rare earth compound diffuses into the active material, and the effect of improving the cycle characteristics becomes small.
  • heat treatment is performed at 250 ° C. to 500 ° C.
  • moisture can be easily removed, and a state where the rare earth compound particles 34 are selectively attached to the surfaces of the mother particles 33 can be formed.
  • a rare earth salt hydroxide may be adhered to the surface of the mother particle 33 by spraying an aqueous solution in which the rare earth salt is dissolved while mixing the mother particle 33.
  • the rare earth compound particles 34 deposited on the surfaces of the mother particles 33 by a method using a rare earth salt are physically in close contact with the mother particles 33.
  • the mother particles 33 and the rare earth compound particles 34 attached to the mother particles 33 are integrated, and the rare earth compound particles 34 are not released from the mother particles 33 during slurry preparation or the like.
  • An aqueous solution in which a rare earth salt is dissolved refers to a solution in which a rare earth nitrate compound, a sulfuric acid compound, an acetic acid compound, or the like is dissolved in water.
  • a solution obtained by dissolving a rare earth oxide or the like in an acid such as nitric acid, sulfuric acid, or acetic acid can be regarded as being in the same state as an aqueous solution in which the rare earth salt is dissolved, and thus can be used as an aqueous solution in which the rare earth salt is dissolved. A combination of these can also be used.
  • the mother particles 33 and the rare earth compound particles 34 may be mixed using a mixing processor, and the rare earth compound particles 34 may be mechanically attached to the surfaces of the mother particles 33. Also in this case, it is preferable to perform the heat treatment under the same conditions as in the method using the rare earth salt.
  • the rare earth compound particles 34 are preferably deposited using a rare earth salt, and particularly preferably a method in which an aqueous solution in which a rare earth salt such as an erbium salt is dissolved is mixed into the dispersion of the mother particles 33. .
  • the rare earth compound particles 34 can be attached to the surfaces of the mother particles 33 in a more uniformly dispersed state. Since the rare earth compound particles 34 attached to the mother particles 34 by this method adhere to the surface of the mother particles 33 without releasing the rare earth compounds even after the slurry is produced, the mother particles 33 are cracked during large current discharge. When the charge / discharge is repeated under conditions involving large current discharge, the cycle characteristics are further improved.
  • the pH of the dispersion liquid of the mother particles 33 it is preferable to make the pH of the dispersion liquid of the mother particles 33 constant, and it is particularly preferable to regulate the pH to 6-10. This facilitates the uniform precipitation of rare earth compound particles 34, which are fine particles of 1 to 100 nm, on the entire surface of the base particles 33.
  • the transition metal which comprises the mother particle 33 may elute.
  • the rare earth compound particles 34 may segregate.
  • the adhesion amount of the rare earth compound particles 34 is preferably 0.003 mol% or more and 0.25 mol% or less based on the ratio of the rare earth element to the total molar amount of the transition metal constituting the mother particle 33.
  • the ratio is less than 0.003 mol%, the effect of attaching the rare earth compound particles 34 may not be sufficiently exhibited.
  • the ratio exceeds 0.25 mol%, the reactivity of the lithium-containing transition metal oxide on the particle surface is lowered, and the cycle characteristics in large current discharge may be deteriorated.
  • the conductive agent is used to increase the electrical conductivity of the positive electrode active material layer.
  • the conductive agent include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive agent and to enhance the binding property of the positive electrode active material and the like to the surface of the positive electrode current collector.
  • the binder for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or a modified product thereof is used.
  • the binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).
  • the negative electrode 13 includes a negative electrode current collector 40 and a negative electrode active material layer 41 formed on the current collector.
  • the negative electrode active material layer 41 is preferably formed on both surfaces of the negative electrode current collector 40.
  • a conductive thin film sheet particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode 13, a film having a metal surface layer, or the like can be used.
  • the metal constituting the negative electrode current collector 40 is preferably a metal mainly composed of copper.
  • the negative electrode active material layer 41 preferably contains a binder in addition to, for example, a negative electrode active material that reversibly occludes / releases lithium ions.
  • a carbon material a metal alloyed with lithium, an alloy material, a metal oxide, or the like can be used. From the viewpoint of reducing the material cost, it is preferable to use a carbon material for the negative electrode active material.
  • the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, and hard carbon.
  • a carbon material obtained by coating a graphite material with low crystalline carbon it is preferable to use a carbon material obtained by coating a graphite material with low crystalline carbon.
  • PTFE or the like can be used as in the case of the positive electrode, but it is preferable to use a styrene-butadiene copolymer (SBR) or a modified product thereof.
  • SBR styrene-butadiene copolymer
  • the binder may be used in combination with a thickener such as CMC.
  • Separator 14 For the separator 14, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • a material for the separator 40 cellulose, or an olefin resin such as polyethylene or polypropylene is preferable.
  • a layer containing an inorganic filler can be formed at the interface between the positive electrode 12 and the separator 14 or the interface between the negative electrode 13 and the separator 14.
  • the filler for example, oxides such as titanium, aluminum, silicon, and magnesium, phosphoric acid compounds, and those whose surfaces are treated with hydroxides or the like can be used.
  • the filler layer can be formed by a method of directly applying a filler-containing slurry to the positive electrode 12, the negative electrode 13, or the separator 14, a method of attaching a sheet containing the filler to the positive electrode 12, the negative electrode 13, or the separator 14.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a solute (electrolyte salt) dissolved in the nonaqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • Nonaqueous solvent is not particularly limited, and a conventionally known solvent can be used.
  • Nonaqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, propionic acid Compounds containing esters such as methyl, ethyl propionate and ⁇ -butyrolactone, compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane , 1,4-dioxane, compounds containing ether such as 2-methyltetrahydrofuran, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile,
  • halogen substituted body which substituted some hydrogen of these solvents with halogen atoms, such as a fluorine.
  • fluorinated cyclic carbonates and fluorinated chain carbonates can be used alone or in combination, and a compound containing a small amount of nitrile or a compound containing ether may be mixed.
  • an ionic liquid can be used as the non-aqueous solvent.
  • the cation species and anion species of the ionic liquid are not particularly limited. However, from the viewpoint of low viscosity, electrochemical stability and hydrophobicity, a combination using a pyridinium cation, an imidazolium cation or a quaternary ammonium cation as the cation and a fluorine-containing imide anion as the anion is particularly preferable. .
  • the solute is preferably a lithium salt.
  • a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used.
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) Lithium salts such as (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , LiPF 2 O 2 and mixtures thereof can be used.
  • LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.
  • lithium salt which uses an oxalato complex as an anion can also be used as the solute.
  • lithium salts having an oxalato complex as an anion include LiBOB [lithium-bisoxalate borate] and lithium salts having an anion in which C 2 O 4 2 ⁇ is coordinated to a central atom, such as Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from Groups 13, 14, and 15 of the periodic table, R is a group selected from halogen, an alkyl group, and a halogen-substituted alkyl group) , X is a positive integer, and y is 0 or a positive integer).
  • LiBOB is suitable for forming a stable film on the surface of the negative electrode even in a high temperature environment.
  • the above solutes may be used alone or in combination of two or more.
  • the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte. In applications that require large current discharge, the concentration of the solute is preferably 1.0 to 1.6 mol per liter of the electrolyte.
  • This coprecipitated transition metal hydroxide was calcined at 750 ° C. for 12 hours to obtain a transition metal oxide.
  • Lithium-containing transition metal oxide particles A1 were obtained by mixing 515 g of Li 2 CO 3 and 15.8 g of WO 3 with respect to 1000 g of the obtained transition metal oxide and firing at 1000 ° C. for 12 hours.
  • XRD measurement it was found that the crystal structure of the lithium-containing transition metal oxide particle A1 was a single phase belonging to the space group R3-m.
  • ICP emission spectroscopic analysis confirmed that the composition of the lithium-containing transition metal oxide particles A1 was LiNi 0.545 Co 0.20 Mn 0.25 W 0.005 O 2 .
  • the lithium-containing transition metal oxide particles A1 are secondary particles formed by agglomeration of primary particles (average particle diameter (D50) by SEM observation is 0.4 ⁇ m). did.
  • the average particle diameter (D50) of the secondary particles was 14 ⁇ m.
  • the average particle diameter (D50) of the secondary particles is obtained by integrating the volume of the particles in order from the smallest particle diameter using a laser diffraction particle size distribution measuring device, and the accumulated volume is 50% of the total particle volume. It calculated
  • lithium-containing transition metal oxide particles A1 were put into 3 liters of pure water and stirred, and then a solution in which 4.58 g of erbium nitrate pentahydrate was dissolved was added thereto. At this time, a 10% by mass aqueous sodium hydroxide solution was appropriately added to adjust the pH of the solution containing lithium-containing transition metal oxide particles A1 to 9 (so that the pH was maintained at 9). Subsequently, after suction filtration and washing with water, the powder obtained by baking at 400 ° C. for 5 hours was dried. Thereby, positive electrode active material particles B1 in which erbium oxyhydroxide was uniformly attached to the surface of the lithium-containing transition metal oxide particles A1 were obtained.
  • the adhesion amount of erbium oxyhydroxide was 0.1 mol% with respect to the total molar amount of transition metals of the lithium-containing transition metal oxide particles A1 in terms of erbium element. SEM observation of the positive electrode active material particle B1 confirmed that erbium oxyhydroxide was attached in the vicinity of the interface where the primary particles of the lithium-containing transition metal oxide particle A1 contact each other.
  • LiPF 6 was dissolved as a solute in the mixed solvent at a rate of 1.5 mol / liter.
  • VC vinyl carbonate
  • test cell C1 which is a cylindrical (18650 type) nonaqueous electrolyte secondary battery (theoretical amount: 2.0 Ah) having a diameter of 18 mm and a height of 65 mm. .
  • Test cell Z1 was produced in the same manner as in Experimental Example 1 except that erbium oxyhydroxide was not used.
  • Test cell Z2 was fabricated in the same manner as in Experimental Example 1, except that WO 3 was not used and the lithium-containing transition metal oxide was baked at 950 ° C.
  • Test cell Z2 was produced in the same manner as in Experimental Example 1 except that WO 3 and erbium oxyhydroxide were not used and the lithium-containing transition metal oxide was calcined at 950 ° C.
  • test cell C1 has an increased number of cycles (75%) compared to the test cells Z1 to Z3.
  • grains which do not have a rare earth compound (erbium oxyhydroxide) are used (test cell Z1, Z3), favorable cycling characteristics are not acquired irrespective of the presence or absence of tungsten.
  • the number of cycles (75%) is increased by attaching a rare earth compound to the surface of the lithium-containing transition metal oxide particles. However, it is still insufficient.
  • the cycle number (75%) cannot be improved simply by adding tungsten to the lithium-containing transition metal oxide.
  • the rare earth compound is simply attached to the lithium-containing transition metal oxide particles.
  • a lithium-containing transition metal oxide containing tungsten a rare earth compound is attached to the particle surface, specifically, the primary particles constituting the lithium-containing transition metal oxide particle are in contact with each other.
  • the cycle number (75%) is specifically increased, and the cycle characteristics are greatly improved.
  • Test cell C2 was prepared in the same manner as in Experimental Example 1 except that lanthanum hexahydrate was used instead of erbium nitrate pentahydrate.
  • lanthanum oxyhydroxide was present in the vicinity of the interface where the primary particles constituting the lithium-containing transition metal oxide particles were in contact with each other, and W was A part of W was present in the primary particles, and a part of W was present at the interface between the primary particles and the primary particles.
  • Test cell C3 was produced in the same manner as in Experimental Example 1 except that neodymium hexahydrate was used instead of erbium nitrate pentahydrate.
  • neodymium oxyhydroxide was present in the vicinity of the interface where the primary particles constituting the lithium-containing transition metal oxide particles were in contact with each other, and W was A part of W was present in the primary particles, and a part of W was present at the interface between the primary particles and the primary particles.
  • Test cell C4 was produced in the same manner as in Experimental Example 1 except that samarium hexahydrate was used instead of erbium nitrate pentahydrate.
  • samarium oxyhydroxide was present in the vicinity of the interface where the primary particles constituting the lithium-containing transition metal oxide particles were in contact with each other.
  • a part of W was present in the primary particles, and a part of W was present at the interface between the primary particles and the primary particles.
  • Example 3 Lithium-containing transition obtained by mixing 515 g of Li 2 CO 3 , 15.8 g of WO 3 and 5.15 g of ZrO 2 with 1000 g of the obtained transition metal oxide, followed by firing at 1000 ° C. for 12 hours.
  • a test cell D1 was produced in the same manner as in Experimental Example 1 except that the positive electrode active material particles B2 having erbium oxyhydroxide uniformly adhered to the surface were obtained using the metal oxide particles A2.
  • ICP emission spectroscopic analysis confirmed that the composition of the lithium-containing transition metal oxide particles A2 was LiNi 0.545 Co 0.20 Mn 0.25 W 0.005 Zr 0.003 O 2 .
  • the average value of the void ratio with respect to the entire area of the secondary particles of the lithium-containing transition metal oxide particles A2 calculated in the same manner as in Experimental Example 1 was 3%.
  • SEM observation of the positive electrode active material particle B2 confirmed that erbium oxyhydroxide was attached in the vicinity of the interface where the primary particles of the lithium-containing transition metal oxide particle A2 contact each other. It was also confirmed that Zr and W were present inside the primary particles of the lithium-containing transition metal oxide particles A2, and W was present at the interface between the primary particles and the primary particles.
  • test cell D1 further improves the cycle characteristics in the large current discharge as compared with the test cell C1. This is because tungsten is contained in the primary particle and not only the ion diffusibility inside the crystal is improved but also the interaction with the rare earth compound on the surface of the secondary particle. This is considered to be because it was higher and cracking from the interface could be suppressed.
  • the non-aqueous electrolyte secondary battery which is an example of the embodiment of the present invention has a high capacity and can maintain good cycle characteristics even when a large current discharge is repeated.
  • the non-aqueous electrolyte secondary battery is particularly useful in applications such as an electric vehicle, HEV, and electric tool when it is necessary to discharge with a large current of 2.0 It, 5.0 It, or 10 It.
  • the present invention can be expected to be developed to drive power sources for mobile information terminals such as mobile phones, notebook computers, and smart phones, high power drive power sources such as electric vehicles, HEVs, and power tools, or power sources related to power storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

 高容量であり、且つ大電流放電を繰り返す場合にも良好なサイクル特性を維持可能な非水電解質二次電池を提供する。正極活物質粒子(32)は、タングステンを含むリチウム含有遷移金属酸化物から構成される一次粒子(33a)が凝集してなる母粒子(33)と、母粒子(33)の表面に付着した希土類化合物粒子(34)とを備える。前記希土類化合物が、前記一次粒子同士が接触する界面、又は当該界面の近傍に付着していることが好ましい。

Description

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池に関する。
 代表的な非水電解質二次電池であるリチウムイオン二次電池は、高いエネルギー密度を有するため、携帯電話やノートパソコン等の移動情報端末の駆動電源として広く利用されている。また、リチウムイオン二次電池等の非水電解質二次電池は、電動工具や電気自動車等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。
 かかる状況に鑑みて、サイクル特性等のさらなる向上が求められている。例えば、特許文献1には、出力特性やサイクル特性を改良すべく、正極活物質の焼成時にタングステン(W)等を添加して正極活物質と電解液界面との抵抗を低くした非水電解質二次電池が開示されている。また、特許文献2には、リチウムイオンを吸蔵、放出し得る母粒子の表面にガドリニウム(Gd)等の酸化物を存在させた非水電解質二次電池が開示されている。
特開2009-289726号公報 国際公開第2005/008812号
 ところで近年、非水電解質二次電池には、大電流放電を繰り返す場合にも良好なサイクル特性を維持し、且つさらなる高容量化を達成することが求められている。特に、電動工具や電気自動車等の用途では、かかる要求が顕著である。
 しかしながら、上記特許文献に開示された技術を含む従来の技術では、大電流放電時に発生し易い正極活物質粒子の割れを十分に抑制できない。正極活物質粒子の表面には、充電初期において保護被膜(SEI被膜)が形成され活物質と電解液との副反応が抑制されるが、粒子の割れが発生すると、活物質粒子の新たな表面が露出し、当該表面で電解液との副反応が起こる。したがって、大電流放電を繰り返し行うと、電池容量が小さくなり、サイクル特性が低下する。
 本発明に係る非水電解質二次電池用正極活物質は、タングステンを含むリチウム含有遷移金属酸化物から構成される一次粒子が凝集してなる母粒子と、母粒子の表面に付着した希土類化合物と、を備えることを特徴とする。
 本発明によれば、高容量であり、且つ大電流放電を繰り返す場合にも良好なサイクル特性を維持可能な非水電解質二次電池を提供することができる。
本発明の実施形態の一例である非水電解質二次電池を示す断面図である。 本発明の実施形態の一例である正極活物質を示す断面図である。
 以下、図面を参照しながら、本発明の実施形態の一例について詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1に示すように、本発明の実施形態の一例である非水電解質二次電池10(以下、「二次電池10」とする)は、正極12及び負極13がセパレータ14を介して巻回されてなる電極体11と、非水電解質(図示せず)とを備えた円筒型電池である。以下では、電極体11の構造が巻回構造であり、円筒型の外観を有するものとして説明するが、電極体の構造や外観形状はこれに限定されない。電極体の構造は、例えば正極及び負極がセパレータを介して交互に積層されてなる積層型であってもよい。また、電池の外観形状は、角型やコイン型であってもよい。
 二次電池10は、正極リード16及び負極リード17がそれぞれ取り付けられた電極体11及び電解質を収容する電池ケース15を備える。電池ケース15は、例えば金属製の有底円筒状容器である。本実施形態では、負極リード17が電池ケース15の内底部に接続されており、電池ケース15が負極外部端子として兼用される。なお、電池ケース15は、金属製の硬質容器に限定されず、ラミネート包材で形成されてもよい。
 二次電池10では、電極体11の上下に絶縁板20,21が設けられる。絶縁板20の上方には、フィルタ22、インナーキャップ23、弁体24、及び正極外部端子25が順に設けられる。これら各部材は、一体となって電池ケース15の開口部を塞ぐように配置される。そして、これら各部材の周縁と電池ケース15との隙間にはガスケット26が設けられ、電池ケース15の内部が密閉される。正極リード16は、絶縁板20の孔を通って上方に延び、フィルタ22に溶接等で接続される。負極リード17は、絶縁板20の孔を通って下方に延び、電池ケース15に溶接等で接続される。
 〔正極12〕
 正極12は、正極集電体30と、当該集電体上に形成された正極活物質層31とを有する。正極活物質層31は、正極集電体30の両面に形成されることが好適である。正極集電体30には、導電性を有する薄膜シート、特に正極12の電位範囲で安定な金属箔や合金箔、金属表層を有するフィルム等を用いることができる。正極集電体30を構成する金属は、アルミニウムを主成分とする金属、例えばアルミニウム又はアルミニウム合金であることが好ましい。正極活物質層31は、正極活物質粒子32(図2参照)の他に、導電材及び結着剤を含むことが好ましい。
 図2に示すように、正極活物質粒子32は、一次粒子33aが凝集してなる母粒子33と、母粒子33の表面に付着した希土類化合物粒子34とを備える。即ち、母粒子33は、一次粒子33a同士が接触し凝集して形成された二次粒子である。一次粒子33aは、Wを含むリチウム含有遷移金属酸化物から構成される。希土類化合物粒子34は、例えば母粒子33の表面において均一に分散して付着している。そして、希土類化合物粒子34は、一次粒子33a同士が接触する界面(以下、「接触界面」という)の近傍にも存在する。また、希土類化合物粒子34の一部が接触界面に入り込んで存在していてもよい。
 つまり、正極活物質粒子32は、少なくとも接触界面又はその近傍(以下、少なくともA又はBを「A及び/又はB」表記する)に付着した希土類化合物粒子34を有する。また、正極活物質粒子32は、少なくともWを含むリチウム含有遷移金属酸化物から構成されていることから、接触界面又はその近傍にはWが存在する。Wは、通常、一次粒子33aにおいて均一に存在するが、一次粒子33aの表面及び/又は表層(一次粒子33a内部における表面近傍)に多く存在してもよく、或いは二次粒子である母粒子33の表面及び/又は表層に多く存在してもよい。これにより、接触界面に安定な構造が形成され、大電流放電時における母粒子33の割れを抑制できる。この結果、大電流放電を伴う条件で充放電を繰り返し行っても、良好なサイクル特性を維持することができる。
 上記リチウム含有遷移金属酸化物は、組成式Lix1-yy2(MはNi、Co、Mn、及びAlからなる群より選ばれる少なくとも1種の元素であり、0.9<x<1.2、0.001≦y≦0.01)で表されることが好ましい。Mとしては、Ni等の上記金属元素に加えて、Mg、Ga、Ge、Ti、Sr、Y、Zr、Nb、Mo、Ta等の金属元素を1つ又は複数含んでいてもよい。
 また、上記リチウム含有遷移金属酸化物は、組成式LixNiaCobMncAl(1-y-a-b)y2(0.9<x<1.2、0.001≦y≦0.01、0.30≦a≦0.95、0≦b≦0.50、a-c>0.03)で表されることがより好ましい。
 xの値は、0.9<x<1.2が好ましいが、より好ましくは0.98<x<1.05である。xの値が0.9以下であると、結晶構造の安定性が低下して、例えばサイクル特性の改善効果が小さくなる。一方、xの値が1.2以上であると、ガス発生量が多くなる傾向が見られる。
 yの値は、0.001≦y≦0.01が好ましいが、より好ましくは、0.003≦y≦0.007である。yの値が0.001未満であるとWによるサイクル特性の改善効果が小さくなる。一方、yの値が0.01を超えると、放電容量が低下する傾向が見られる。
 a-c>0.03が好ましい理由は、下記の通りである。
(1)Mnの組成比率が高い場合には不純物相を生じ、容量の低下及び出力の低下を招くため、a-cは0以上であることが望ましい。
(2)Ni組成比率が高いほうが正極活物質重量あたりの容量が大きくなるため、できる限りNi組成比率が高い方が望ましい。
 一次粒子33aの粒子径(以下、「一次粒子径」という)は、0.2μm以上2μm以下が好ましく、0.5μm以上1μm以下がより好ましい。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)で観察した平均粒子径(D50)であり、10個~30個程度の粒子の平均値を意味する。一次粒子径が0.2μm未満であると、接触界面の数が多くなるため、接触界面及び/又はその近傍に付着する希土類化合物粒子34の割合が低下する場合がある。これにより、例えば接触界面における構造の安定化が不十分となり、サイクル特性の向上効果や出力特性の低下抑制効果が小さくなる場合がある。一方、一次粒子径が2μmを超えると、大電流放電時にリチウム含有遷移金属酸化物内でのリチウムイオンの拡散距離が長くなり、出力特性が低下する場合がある。
 母粒子33(二次粒子)の粒子径(以下、「二次粒子径」という)は、3μm以上20μm以下が好ましく、8μm以上15μm以下がより好ましい。二次粒子径が3μm未満であると、例えば圧延時に正極活物質粒子32が詰まり難くなり、極板密度が上がらず高容量化し難い。一方、二次粒子径が20μmを超えると、大電流放電時にリチウム含有遷移金属酸化物内でのリチウムイオンの拡散距離が長くなり、出力特性が低下する場合がある。
 希土類化合物粒子34を構成する希土類化合物は、希土類の水酸化物、希土類のオキシ水酸化物、又は希土類の酸化物であることが好ましく、希土類の水酸化物、又は希土類のオキシ水酸化物がより好ましい。これらを用いると、サイクル特性の向上効果がより顕著になる。なお、希土類化合物には、これらの他に希土類の炭酸化合物や、希土類の燐酸化合物、フッ化物等が一部含まれていてもよい。
 上記希土類化合物を構成する希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。これらのうち、ネオジム、サマリウム、エルビウムが好ましい。ネオジム化合物、サマリウム化合物、及びエルビウム化合物は、他の希土類の化合物に比べて平均粒子径が小さく、正極活物質の表面により均一に析出し易いからである。
 上記希土類化合物の具体例としては、水酸化ランタン、オキシ水酸化ランタン、水酸化ネオジム、オキシ水酸化ネオジム、水酸化サマリウム、オキシ水酸化サマリウム、水酸化エルビウム、オキシ水酸化エルビウム等が挙げられる。なお、ランタンは安価であるということから、水酸化ランタン又はオキシ水酸化ランタンを用いた場合には、正極12の製造コストを低減することができる。
 希土類化合物粒子34の粒子径は、1nm以上100nm以下であることが好ましく、10nm以上50nm以下がより好ましい。希土類化合物粒子34の粒子径が大きくなり過ぎると、単位重量当たりの個数が減少し、接触界面及び/又はその近傍の希土類化合物粒子34の存在確率が減少する。一方、希土類化合物粒子34の粒子径が小さくなり過ぎると、母粒子33の表面が希土類化合物粒子34によって緻密に覆われ過ぎて、リチウムイオンの吸蔵、放出性能が低下して充放電特性が低下する場合がある。
 母粒子33(二次粒子)の断面SEM像において、母粒子33の全体面積に対し、母粒子33の内部に形成された空隙の割合が、0.1%以上10%以下であることが好ましい。さらに好ましくは、0.5%以上8%以下、特に好ましくは1%以上5%以下である。母粒子33の全体面積とは、母粒子33の外周により囲まれた面積のことである。
 上述した、母粒子33の全体面積に対する、母粒子33の内部に形成された空隙の割合は、例えば以下のように算出する。母粒子33の平均粒子径を求めた後、正極の断面SEM像において、平均粒子径と同サイズの粒子を3個~10個程度無作為に抽出する。抽出した各母粒子33について、全体面積に対する、一次粒子が存在しない領域(母粒子33の内部に形成された空隙)の面積割合を算出し、3個~10個程度の平均値を、母粒子33の全体面積に対する、母粒子33の内部に形成された空隙の割合とする。
 上記空隙の割合が0.1%未満になると母粒子33(二次粒子)内部に一次粒子界面を経由して取り込まれる電解液の量が不十分となって、高率放電時の放電容量が不十分となることがある。一方、上記空隙の割合が10%を超えると、母粒子33の内部の空隙が多くなりすぎて、希土類化合物が付着していないために内部での副反応が抑制しきれなくなる恐れがある。上記空隙の割合が1%以上5%以下の場合には、電解液が母粒子33の内部への浸透するものの、過剰な活物質内部の空間がなく、一次粒子と一次粒子の接触部分も十分確保された状態となる。そのため、優れた高率放電性能とサイクル特性が得られるだけでなく、充填密度が高く、高容量な極板を得ることができる。
 希土類化合物粒子34は、例えば母粒子33の表面に希土類塩を付着させた後、熱処理することにより母粒子33の表面に析出させることができる。希土類化合物粒子34としてオキシ水酸化エルビウムを用いる場合、例えば、母粒子33を分散させた分散液にエルビウム塩を溶解した水溶液を混合し、エルビウム塩の水酸化物が表面に付着した母粒子33を得る。そして、当該母粒子33を熱処理する。熱処理温度としては、120℃以上700℃以下であることが好ましく、250℃以上500℃以下がより好ましい。120℃未満の場合、活物質に吸着した水分が除去され難く、電池内に水分が混入する恐れがある。一方、700℃を超える場合には、例えば希土類化合物が活物質の内部に拡散して、サイクル特性の改善効果が小さくなる。特に、250℃~500℃で熱処理を行うと、水分の除去が容易であり、且つ選択的に母粒子33の表面に希土類化合物粒子34が付着した状態を形成できる。なお、母粒子33を混合しながら希土類塩を溶解した水溶液を噴霧して、母粒子33の表面に希土類塩の水酸化物を付着させてもよい。希土類塩を用いる方法により母粒子33の表面に析出した希土類化合物粒子34は、物理的に希土類化合物が母粒子33に密着している。このように、母粒子33と、母粒子33に付着した希土類化合物粒子34は一体となっており、スラリー作製時等において、希土類化合物粒子34が母粒子33から遊離することはない。
 希土類塩を溶解した水溶液は、希土類の硝酸化合物や、硫酸化合物、酢酸化合物などを水に溶解したものを指す。希土類酸化物などを、硝酸や、硫酸、酢酸などの酸に溶解したものは、希土類塩を溶解した水溶液と同じ状態とみなすことができるので、希土類塩を溶解した水溶液として用いることができる。また、これらを組み合わせたものも用いることができる。
 また、母粒子33と希土類化合物粒子34とを混合処理機を用いて混合し、母粒子33の表面に希土類化合物粒子34を機械的に付着させることもできる。この場合も、上記希土類塩を用いる方法と同様の条件で熱処理することが好適である。
 希土類化合物粒子34の付着方法は、上述した方法のうち、希土類塩を用いる方法が好ましく、特に好ましくは、母粒子33の分散液にエルビウム塩等の希土類塩を溶解した水溶液を混合する方法である。当該方法によれば、母粒子33の表面に希土類化合物粒子34をより均一に分散した状態で付着させることができる。当該方法で母粒子34に付着させた希土類化合物粒子34は、スラリー作製後においても、希土類化合物が遊離することなく母粒子33の表面に付着しているため大電流放電時における母粒子33の割れを抑制でき、大電流放電を伴う条件で充放電を繰り返し行った場合に、サイクル特性がより一層向上する。当該方法において、母粒子33の分散液のpHを一定にすることが好ましく、特に好ましくはpHを6~10に規制する。これにより、1~100nmの微粒子である希土類化合物粒子34を母粒子33の表面全体に均一に析出させることが容易になる。なお、pHが6未満になると、母粒子33を構成する遷移金属が溶出する場合がある。一方、pHが10を超えると、希土類化合物粒子34が偏析する場合がある。
 希土類化合物粒子34の付着量は、母粒子33を構成する遷移金属の総モル量に対する希土類元素の割合を基準として、0.003モル%以上0.25モル%以下であることが好ましい。該割合が0.003モル%未満になると、希土類化合物粒子34を付着させる効果が十分に発揮されないことがある。一方、該割合が0.25モル%を超えると、リチウム含有遷移金属酸化物の粒子表面における反応性が低くなって、大電流放電でのサイクル特性が低下することがある。
 上記導電剤は、正極活物質層の電気伝導性を高めるために用いられる。導電剤には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。上記結着剤は、正極活物質及び導電剤間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着剤には、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、又はこれらの変性体等が用いられる。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。
 〔負極13〕
 負極13は、負極集電体40と、当該集電体上に形成された負極活物質層41とを有する。負極活物質層41は、負極集電体40の両面に形成されることが好適である。負極集電体40には、導電性を有する薄膜シート、特に負極13の電位範囲で安定な金属箔や合金箔、金属表層を有するフィルム等を用いることができる。負極集電体40を構成する金属は、銅を主成分とする金属が好ましい。
 負極活物質層41は、例えばリチウムイオンを可逆的に吸蔵・放出する負極活物質の他に、結着剤を含むことが好ましい。負極活物質には、炭素材料や、リチウムと合金化する金属、或いは合金材料、金属酸化物等を用いることができる。材料コスト低減の観点からは、負極活物質に炭素材料を用いることが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン等が例示できる。特に、充放電特性を向上させる観点からは、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。結着剤としては、正極の場合と同様にPTFE等を用いることもできるが、スチレン-ブタジエン共重合体(SBR)又はこの変性体等を用いることが好ましい。結着剤は、CMC等の増粘剤と併用されてもよい。
 〔セパレータ14〕
 セパレータ14には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ40の材質としては、セルロース、又はポリエチレン、ポリプロピレン等のオレフィン系樹脂が好適である。また、ポリエチレンの表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂が塗布されたものを用いてもよい。
 正極12とセパレータ14との界面、又は負極13とセパレータ14との界面には、無機物のフィラーを含む層(フィラー層)を形成することができる。フィラーとしては、例えばチタン、アルミニウム、ケイ素、マグネシウム等の酸化物やリン酸化合物、またその表面が水酸化物等で処理されたものを用いることができる。フィラー層は、正極12、負極13、或いはセパレータ14にフィラー含有スラリーを直接塗布して形成する方法や、フィラーを含むシートを正極12、負極13、或いはセパレータ14に貼り付ける方法等により形成できる。
 〔非水電解質〕
 非水電解質は、非水溶媒と、非水溶媒に溶解した溶質(電解質塩)とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 上記非水溶媒は、特に限定されず、従来公知の溶媒を使用することができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物などが例示できる。また、これら溶媒の水素の一部をフッ素等のハロゲン原子で置換したハロゲン置換体を用いてもよい。例えば、フッ素化環状炭酸エステル、フッ素化鎖状炭酸エステルを単独又は複数種組み合わせて使用することができ、これらに少量のニトリルを含む化合物やエーテルを含む化合物を混合してもよい。
 また、上記非水系溶媒としてイオン性液体を用いることもできる。イオン性液体のカチオン種、アニオン種は特に限定されない。但し、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。
 上記溶質は、リチウム塩であることが好ましい。リチウム塩としては、P、B、F、O、S、N、Clの中の1種類以上の元素を含むリチウム塩を用いることができる。具体的には、LiPF6、LiBF4、LiCF3SO3、LiN(FSO22、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(C25SO23、LiAsF6、LiClO4、LiPF22等のリチウム塩及びこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPF6を用いることが好ましい。
 また、上記溶質としてオキサラト錯体をアニオンとするリチウム塩を用いることもできる。オキサラト錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム-ビスオキサレートボレート〕の他、中心原子にC24 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C24xy](式中、Mは遷移金属、周期律表の13族,14族,15族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C24)F2]、Li[P(C24)F4]、Li[P(C2422]等が挙げられる。高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBが好適である。
 上記溶質は、単独で用いてもよいし、2種以上を混合して用いてもよい。溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モルであることが望ましい。なお、大電流放電を必要とする用途では、溶質の濃度が電解液1リットル当たり1.0~1.6モルであることが望ましい。
 以下、実験例により本発明をさらに詳説するが、本発明はこれらの実験例に限定されるものではない。
               (実施例1)
<実験例1>
 〔正極活物質の合成〕
 NiとCoとMnとの原子比が55:20:25になるように混合した硫酸ニッケルと硫酸コバルトと硫酸マンガンとの混合物1600gを5リットルの水に溶解させて、原料溶液を得た。この原料溶液に、水酸化ナトリウムを200g加えて沈殿物を生成させた。この沈殿物を十分に水洗し、乾燥させ、共沈遷移金属水酸化物を得た。
 この共沈遷移金属水酸化物を750℃で12時間焼成して遷移金属酸化物を得た。得られた遷移金属酸化物1000gに対して、Li2CO3を515g、WO3を15.8g混合した後、1000℃で12時間焼成して、リチウム含有遷移金属酸化物粒子A1を得た。XRD測定の結果、リチウム含有遷移金属酸化物粒子A1の結晶構造は、空間群R3-mに帰属する単一相であることがわかった。また、ICP発光分光分析により、リチウム含有遷移金属酸化物粒子A1の組成がLiNi0.545Co0.20Mn0.250.0052であることを確認した。走査型電子顕微鏡(SEM)観察により、リチウム含有遷移金属酸化物粒子A1は、一次粒子(SEM観察による平均粒子径(D50)は0.4μm)が凝集してなる二次粒子であることを確認した。また、二次粒子の平均粒子径(D50)は14μmであった。なお、二次粒子の平均粒子径(D50)は、レーザー回折式粒度分布測定装置を用い、粒子径が小さいものから順に粒子の体積を積算していき、積算体積が全粒子の体積の50%になったときの粒子径を算出することにより求めた。
 また、SEM観察において、二次粒子の平均粒子径14μmと同サイズの二次粒子を、無作為に3点抽出した。抽出した3点の二次粒子について、画像処理を行い、一次粒子が存在しない領域の面積を求め、二次粒子の全体面積に対する、空隙の割合を算出した。3点の平均値は、3%であった。
 続いて、1000gのリチウム含有遷移金属酸化物粒子A1を3リットルの純水に投入し攪拌した後、これに4.58gの硝酸エルビウム5水和物を溶解した溶液を加えた。この際、10質量%の水酸化ナトリウム水溶液を適宜加え、リチウム含有遷移金属酸化物粒子A1を含む溶液のpHが9となるように(pHが9を維持するように)調整した。次いで、吸引濾過、水洗した後、400℃にて5時間焼成して得られた粉末を乾燥した。これにより、リチウム含有遷移金属酸化物粒子A1の表面にオキシ水酸化エルビウムが均一に付着した正極活物質粒子B1を得た。オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、リチウム含有遷移金属酸化物粒子A1の遷移金属の総モル量に対して0.1モル%であった。なお、正極活物質粒子B1のSEM観察により、リチウム含有遷移金属酸化物粒子A1の一次粒子同士が接触する界面の近傍に、オキシ水酸化エルビウムが付着していることを確認した。
 また、断面のSEM-EPMA観察により、Wは一次粒子の内部及び一次粒子と一次粒子の界面に存在しており、75%以上は一次粒子内部に存在した状態(固溶)であることが確認された。
 〔正極の作製〕
 94質量部の正極活物質粒子B1に、炭素導電剤としてカーボンブラック4質量部と、結着剤としてポリフッ化ビニリデン2質量部とを混合し、更に、NMP(N-メチル-2-ピロリドン)を適量加えることにより正極スラリーを調製した。次に、該正極スラリーを、アルミニウムからなる正極集電体の両面に塗布した。続いて、塗布物を乾燥させ、ローラーを用いて圧延することで集電体上に正極活物質層を形成した。最後に、活物質層が形成された集電体を所定の電極サイズにカットし、正極リードを取り付けて正極を得た。
 〔負極の作製〕
 負極活物質として人造黒鉛97.5質量部と、増粘剤としてCMC1質量部と、結着剤としてSBR1.5質量部とを混合し、純水を適量加えて負極スラリーを調製した。次に、この負極スラリーを銅箔からなる負極集電体の両面に塗布した。続いて、塗布物を乾燥させ、ローラーを用いて圧延することで集電体上に負極活物質層を形成した。最後に、活物質層が形成された集電体を所定の電極サイズにカットし、負極リードを取り付けて負極を得た。
 〔非水電解液の調製〕
 EC(エチレンカーボネート)とMEC(メチルエチルカーボネート)とDMC(ジメチルカーボネート)とPC(プロピレンカーボネート)とFEC(フルオロエチレンカーボネート)を10:10:65:5:10の体積比で混合した混合溶媒を用いた。該混合溶媒に溶質としてLiPF6を1.5モル/リットル割合で溶解させた。更に、非水電解液の総重量に対する割合が1重量%となるようにVC(ビニレンカーボネート)を、0.5重量%となるようにジフルオロリン酸リチウムをそれぞれ添加して、非水電解液を調製した。
 〔非水電解質二次電池の作製〕
 上記正極及び上記負極をポリエチレン製微多孔膜からなるセパレータを介して対向配置した後、巻き芯を用いて渦巻状に巻回した。次に、巻き芯を引き抜いて渦巻状の電極体を作製し、この電極体を金属製の外装缶(電池ケース)に挿入した。その後、上記非水電解液を注入して封口し、直径18mm、高さ65mmの円筒型(18650型)の非水電解質二次電池(理論量:2.0Ah)である試験セルC1を作製した。
<実験例2>
 オキシ水酸化エルビウムを使用しなかったこと以外は、実験例1と同様にして試験セルZ1を作製した。
<実験例3>
 WO3を使用せず、且つリチウム含有遷移金属酸化物を950℃で焼成したこと以外は、実験例1と同様にして試験セルZ2を作製した。
<実験例4>
 WO3及びオキシ水酸化エルビウムを使用せず、且つリチウム含有遷移金属酸化物を950℃で焼成したこと以外は、実験例1と同様にして試験セルZ2を作製した。
 〔サイクル特性の評価〕
 試験セルC1、Z1~Z3について、下記条件で充放電を繰り返し、容量維持率が75%となるサイクル数(以下、「サイクル数(75%)」とする)を調べた。その結果等を表1に示す。
 (充放電条件)
 25℃の温度条件下、2.0It(4.0A)の充電電流で電池電圧が4.2Vまで定電流充電を行い、更に、電池電圧4.2Vの定電圧で電流が0.02It(0.04A)になるまで定電圧充電を行った。次に、10.0It(20.0A)の放電電流で2.5Vまで定電流放電を行った。
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかであるように、試験セルC1は試験セルZ1~Z3に比べて、サイクル数(75%)が増加していることが確認できる。なお、希土類化合物(オキシ水酸化エルビウム)を有さない正極活物質粒子を用いた場合(試験セルZ1,Z3)は、タングステン含有の有無に関わらず、良好なサイクル特性は得られない。また、タングステンを含有しない正極活物質を用いた場合(試験セルZ2,Z3)は、リチウム含有遷移金属酸化物粒子の表面に希土類化合物を付着させることでサイクル数(75%)が増加しているが、未だ不十分である。
 つまり、単にリチウム含有遷移金属酸化物にタングステンを含有させただけでは、サイクル数(75%)を向上させることはできない。また、リチウム含有遷移金属酸化物粒子に希土類化合物を付着させただけの場合も同様である。これに対して、タングステンを含むリチウム含有遷移金属酸化物を用いて、その粒子表面に希土類化合物を付着させること、具体的には、リチウム含有遷移金属酸化物粒子を構成する一次粒子同士が接触する界面及び/又はその近傍に希土類化合物を存在させることにより、特異的にサイクル数(75%)が増え、サイクル特性が大幅に改善される。
 この理由は、以下のとおりであると考えられる。タングステンを含有させたリチウム含有遷移金属酸化物は、大電流放電時における電池の発熱による影響により副反応が生じて、粒子割れが促進される。リチウム含有遷移金属酸化物粒子を構成する一次粒子同士が接触する界面及び/又はその近傍に、エルビウムに例示される、リチウムと不活性な希土類元素が存在すると、上記副反応が抑制される。つまり、タングステンと希土類化合物の併用により、タングステンを含有させたリチウム含有遷移金属酸化物が有する高いリチウム拡散性を損なうことなく、正極活物質の一次粒子の接触界面に安定な構造が形成され、大電流放電時における活物質粒子の割れを抑制できる。
               (実施例2)
<実験例5>
 硝酸エルビウム・5水和物に代えて、ランタン・6水和物を用いたこと以外は実験例1と同様にして試験セルC2を作製した。得られた粉末をSEMにより観察したところ、実験例1と同様に、オキシ水酸化ランタンが、リチウム含有遷移金属酸化物粒子を構成する一次粒子同士が接触する界面近傍に存在しており、Wが一次粒子内部に存在し、一部のWが一次粒子と一次粒子の界面に存在していた。
<実験例6>
 硝酸エルビウム・5水和物に代えて、ネオジム・6水和物を用いたこと以外は実験例1と同様にして試験セルC3を作製した。得られた粉末をSEMにより観察したところ、実験例1と同様に、オキシ水酸化ネオジムが、リチウム含有遷移金属酸化物粒子を構成する一次粒子同士が接触する界面近傍に存在しており、Wが一次粒子内部に存在し、一部のWが一次粒子と一次粒子の界面に存在していた。
<実験例7>
 硝酸エルビウム・5水和物に代えて、サマリウム・6水和物を用いたこと以外は実験例1と同様にして試験セルC4を作製した。得られた粉末をSEMにより観察したところ、実験例1と同様に、オキシ水酸化サマリウムが、リチウム含有遷移金属酸化物粒子を構成する一次粒子同士が接触する界面近傍に存在しており、Wが一次粒子内部に存在し、一部のWが一次粒子と一次粒子の界面に存在していた。
〔サイクル特性の評価〕
 試験セルC2~C4について、上記実施例1と同様の条件で、サイクル特性評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、リチウム含有遷移金属酸化物粒子にランタン化合物、ネオジム化合物、サマリウム化合物等の希土類化合物を付着させた場合にも、エルビウム化合物を用いた場合と同様の効果が得られることが推察される。
               (実施例3)
<実験例8>
 得られた遷移金属酸化物1000gに対して、LiCOを515g、WOを15.8g、ZrOを5.15g混合した後、1000℃で12時間焼成して得られたリチウム含有遷移金属酸化物粒子A2を用いて、表面にオキシ水酸化エルビウムが均一に付着した正極活物質粒子B2を得たこと以外は、実験例1と同様にして、試験セルD1を作製した。なお、ICP発光分光分析により、リチウム含有遷移金属酸化物粒子A2の組成がLiNi0.545Co0.20Mn0.250.005Zr0.0032であることを確認した。実験例1と同様に算出した、リチウム含有遷移金属酸化物粒子A2の二次粒子の全体面積に対する、空隙の割合の平均値は、3%であった。正極活物質粒子B2のSEM観察により、リチウム含有遷移金属酸化物粒子A2の一次粒子同士が接触する界面の近傍に、オキシ水酸化エルビウムが付着していることを確認した。また、リチウム含有遷移金属酸化物粒子A2の一次粒子内部にZr及びWが存在しており、かつ、一次粒子と一次粒子の界面にWが存在していることが確認された。
〔サイクル特性の評価〕
 試験セルD1ついて、上記実施例1と同様の条件で、サイクル特性評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、試験セルD1は試験セルC1と比較して、大電流放電でのサイクル特性がより一層向上することがわかる。これは、タングステンが含まれている状態で、さらにジルコニウムが一次粒子内部に含まれることで、結晶内部のイオン拡散性が向上しただけでなく、二次粒子表面にある希土類化合物との相互作用がより高くなり、界面からの割れを抑制できたためと考えられる。
 以上のように、本発明の実施形態の一例である非水電解質二次電池は、高容量であり、且つ大電流放電を繰り返す場合にも良好なサイクル特性を維持可能である。当該非水電解質二次電池は、2.0Itや5.0It、10Itといった大電流で放電する必要性がある場合、例えば電気自動車やHEV、電動工具等の用途において特に有用である。
 本発明は、例えば携帯電話やノートパソコン、スマートフォン等の移動情報端末の駆動電源、電気自動車やHEV、電動工具といった高出力向けの駆動電源、或いは蓄電関連の電源への展開が期待できる。
 10 非水電解質二次電池、11 電極体、12 正極、13 負極、14 セパレータ、15 電池ケース、16 正極リード、17 負極リード、20,21 絶縁板、22 フィルタ、23 インナーキャップ、24 弁体、25 正極外部端子、26 ガスケット、30 正極集電体、31 正極活物質層、32 正極活物質粒子、33 母粒子、34 希土類化合物粒子、40 負極集電体、41 負極活物質層

Claims (8)

  1.  タングステンを含むリチウム含有遷移金属酸化物から構成される一次粒子が凝集してなる母粒子と、
     前記母粒子の表面に付着した希土類化合物と、
     を備える非水電解質二次電池用正極活物質。
  2.  請求項1に記載の正極活物質において、
     前記希土類化合物が、前記一次粒子同士が接触する界面、又は当該界面の近傍に付着している、非水電解質二次電池用正極活物質。
  3.  請求項1または請求項2に記載の正極活物質において、
    前記タングステンは前記一次粒子の内部に含有されている、非水電解質二次電池用正極活物質。
  4.  請求項1から請求項3の何れかに記載の正極活物質において、
    前記一次粒子の内部にジルコニウムが含有されている、非水電解質二次電池用正極活物質。
  5.  請求項1から請求項4の何れかに記載の正極活物質において、
     前記リチウム含有遷移金属酸化物が、組成式Lix1-yy2(MはNi、Co、Mn、及びAlからなる群より選ばれる少なくとも1種の元素であり、0.9<x<1.2、001≦y≦0.01)で表される非水電解質二次電池用正極活物質。
  6.  請求項1から請求項5の何れかに記載の正極活物質において、
    前記希土類化合物が、エルビウム、ランタン、ネオジム、サマリウムから選ばれる少なくとも1種を含む、非水電解質二次電池用正極活物質。
  7.  請求項1から請求項6の何れかに記載の正極活物質において、
    前記母粒子の断面SEM像において、前記母粒子の全体面積に対する、前記母粒子の内部に形成された空隙の割合が、0.1%以上10%以下である、非水電解質二次電池用正極活物質。
  8.  請求項1~請求項7の何れかに記載の正極活物質を用いた正極と、
     リチウムを吸蔵、放出可能な負極活物質を用いた負極と、
     前記正極及び前記負極の間に配置されたセパレータと、
     非水電解質と、
     を備える非水電解質二次電池。
PCT/JP2014/001537 2013-03-26 2014-03-18 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 WO2014156054A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015508035A JP6305984B2 (ja) 2013-03-26 2014-03-18 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US14/763,417 US20160006029A1 (en) 2013-03-26 2014-03-18 Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery by using same
CN201480017558.9A CN105122514B (zh) 2013-03-26 2014-03-18 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013063397 2013-03-26
JP2013-063397 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014156054A1 true WO2014156054A1 (ja) 2014-10-02

Family

ID=51623070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001537 WO2014156054A1 (ja) 2013-03-26 2014-03-18 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US20160006029A1 (ja)
JP (1) JP6305984B2 (ja)
CN (1) CN105122514B (ja)
WO (1) WO2014156054A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125444A1 (ja) * 2014-02-19 2015-08-27 三洋電機株式会社 非水電解質二次電池用正極活物質
WO2016031147A1 (ja) * 2014-08-26 2016-03-03 三洋電機株式会社 非水電解質二次電池用正極活物質
US20160190595A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
WO2017022222A1 (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2017084676A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
JP2017084674A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
CN107004897A (zh) * 2015-02-26 2017-08-01 三洋电机株式会社 非水电解质二次电池
CN107172888A (zh) * 2014-12-26 2017-09-15 三洋电机株式会社 非水电解质二次电池用正极活性物质及非水电解质二次电池
WO2020026687A1 (ja) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法
WO2020026686A1 (ja) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP2020532846A (ja) * 2017-10-20 2020-11-12 エルジー・ケム・リミテッド 二次電池用正極活物質の製造方法、及びこれを用いる二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6378246B2 (ja) 2016-05-09 2018-08-22 トヨタ自動車株式会社 正極活物質、及び、当該正極活物質を用いたリチウムイオン二次電池
US20210288305A1 (en) * 2016-08-10 2021-09-16 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN111356654B (zh) * 2017-12-08 2022-07-12 株式会社Lg化学 锂二次电池用正极活性材料前体及其制备方法
WO2019131194A1 (ja) * 2017-12-27 2019-07-04 パナソニック株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極及び非水電解質二次電池
EP4310954A1 (en) * 2022-03-24 2024-01-24 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, method for producing positive electrode active material for lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277108A (ja) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd リチウム二次電池
JP2005166656A (ja) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd リチウム二次電池用正極活物質の製造方法、及びその製造方法によって製造されたリチウム二次電池用正極活物質
JP2011159619A (ja) * 2010-01-06 2011-08-18 Sanyo Electric Co Ltd リチウム二次電池
JP2012028313A (ja) * 2010-06-22 2012-02-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物及び該正極組成部物を用いた正極スラリーの製造方法
JP2012099271A (ja) * 2010-10-29 2012-05-24 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP4628704B2 (ja) * 2004-06-25 2011-02-09 株式会社クレハ リチウム二次電池用正極材およびその製造方法
CN102077396A (zh) * 2008-07-09 2011-05-25 三洋电机株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法、非水电解质二次电池用正极及非水电解质二次电池
JP5251401B2 (ja) * 2008-09-29 2013-07-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用
CN101777647B (zh) * 2010-02-11 2012-02-15 东莞新能源科技有限公司 锂离子电池表面包覆正极材料及其制备方法
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277108A (ja) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd リチウム二次電池
JP2005166656A (ja) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd リチウム二次電池用正極活物質の製造方法、及びその製造方法によって製造されたリチウム二次電池用正極活物質
JP2011159619A (ja) * 2010-01-06 2011-08-18 Sanyo Electric Co Ltd リチウム二次電池
JP2012028313A (ja) * 2010-06-22 2012-02-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物及び該正極組成部物を用いた正極スラリーの製造方法
JP2012099271A (ja) * 2010-10-29 2012-05-24 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125444A1 (ja) * 2014-02-19 2015-08-27 三洋電機株式会社 非水電解質二次電池用正極活物質
US10218000B2 (en) 2014-02-19 2019-02-26 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
WO2016031147A1 (ja) * 2014-08-26 2016-03-03 三洋電機株式会社 非水電解質二次電池用正極活物質
US10418626B2 (en) 2014-08-26 2019-09-17 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US9960449B2 (en) * 2014-12-26 2018-05-01 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including tungsten
US20160190595A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
DE102015122389B4 (de) 2014-12-26 2024-03-07 Toyota Jidosha Kabushiki Kaisha Sekundärbatterie mit nicht-wässrigem Elektrolyt
CN107172888A (zh) * 2014-12-26 2017-09-15 三洋电机株式会社 非水电解质二次电池用正极活性物质及非水电解质二次电池
CN107004897A (zh) * 2015-02-26 2017-08-01 三洋电机株式会社 非水电解质二次电池
CN107836056A (zh) * 2015-08-06 2018-03-23 松下知识产权经营株式会社 非水电解质二次电池
JPWO2017022222A1 (ja) * 2015-08-06 2018-05-24 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN107836056B (zh) * 2015-08-06 2021-03-30 松下知识产权经营株式会社 非水电解质二次电池
WO2017022222A1 (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
US11094924B2 (en) 2015-08-06 2021-08-17 Panasonic Intellectual Property Management Co, Ltd. Nonaqueous electrolyte secondary batteries
JP2017084674A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
JP2017084676A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
JP2020532846A (ja) * 2017-10-20 2020-11-12 エルジー・ケム・リミテッド 二次電池用正極活物質の製造方法、及びこれを用いる二次電池
JP7046410B2 (ja) 2017-10-20 2022-04-04 エルジー・ケム・リミテッド 二次電池用正極活物質の製造方法、及びこれを用いる二次電池
US11437609B2 (en) 2017-10-20 2022-09-06 Lg Chem, Ltd. Method of preparing positive electrode active material for secondary battery and secondary battery using the same
WO2020026686A1 (ja) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2020026687A1 (ja) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法
US11695116B2 (en) 2018-08-02 2023-07-04 Sumitomo Metal Mining Co., Ltd. Method for manufacturing cathode active material for lithium ion secondary battery
US12015154B2 (en) 2018-08-02 2024-06-18 Sumitomo Metal Mining Co., Ltd. Cathode active material for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
CN105122514A (zh) 2015-12-02
US20160006029A1 (en) 2016-01-07
CN105122514B (zh) 2017-12-19
JP6305984B2 (ja) 2018-04-04
JPWO2014156054A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6305984B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US10461312B2 (en) Positive-electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP6178320B2 (ja) 非水電解質二次電池
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
JP6124309B2 (ja) 非水電解質二次電池用正極活物質及びその正極活物質を用いた非水電解質二次電池
JP6092847B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6399388B2 (ja) 非水電解質二次電池
JP6254091B2 (ja) 非水電解質二次電池
WO2012099265A1 (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
JP6443339B2 (ja) 非水電解質二次電池用正極
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP6633049B2 (ja) 非水電解質二次電池
JP2014072071A (ja) 非水電解質二次電池
WO2014049977A1 (ja) 非水電解質二次電池
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2016103592A1 (ja) 正極活物質及び非水電解質二次電池
JP2016033887A (ja) 非水電解質二次電池
CN107836056B (zh) 非水电解质二次电池
CN109478644B (zh) 非水电解质二次电池用正极、正极活性物质及其制造方法、及非水电解质二次电池
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
WO2022203048A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2014029782A (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508035

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772562

Country of ref document: EP

Kind code of ref document: A1