WO2014155559A1 - ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム - Google Patents

ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム Download PDF

Info

Publication number
WO2014155559A1
WO2014155559A1 PCT/JP2013/058994 JP2013058994W WO2014155559A1 WO 2014155559 A1 WO2014155559 A1 WO 2014155559A1 JP 2013058994 W JP2013058994 W JP 2013058994W WO 2014155559 A1 WO2014155559 A1 WO 2014155559A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
external force
attenuation
notch filter
vibration component
Prior art date
Application number
PCT/JP2013/058994
Other languages
English (en)
French (fr)
Inventor
飛 趙
崇 萬羽
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2015507766A priority Critical patent/JPWO2014155559A1/ja
Priority to PCT/JP2013/058994 priority patent/WO2014155559A1/ja
Publication of WO2014155559A1 publication Critical patent/WO2014155559A1/ja
Priority to US14/864,876 priority patent/US20160016310A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B7/00Arrangements for obtaining smooth engagement or disengagement of automatic control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/002Filters with a particular frequency response
    • H03H21/0021Notch filters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41116Compensation for instability
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41121Eliminating oscillations, hunting motor, actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • Y10S901/09Closed loop, sensor feedback controls arm movement

Definitions

  • the disclosed embodiment relates to a notch filter, an external force estimator, a motor control device, and a robot system.
  • the external force estimated value output from the external force estimator may include a vibration component generated with the rotation of the motor, which is a cause of a decrease in accuracy of the external force estimated value. This can occur not only in the estimated external force value but also in other signals that include vibration components generated as the motor rotates.
  • An object of one embodiment is to provide a notch filter, an external force estimator, a motor control device, and a robot system that can attenuate a vibration component generated with the rotation of a motor.
  • a notch filter includes a filtering unit and an attenuation control unit.
  • the filtering unit obtains a signal including a vibration component generated along with the rotation of the motor and attenuates the vibration component.
  • the attenuation control unit controls the amount of attenuation according to the rotational speed of the motor.
  • FIG. 1 is a diagram illustrating an example of a robot to which the robot system according to the first embodiment is applied.
  • FIG. 2 is a block diagram illustrating a configuration of the robot system according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of the external force observer.
  • FIG. 4 is a block diagram showing the configuration of the notch filter according to the first embodiment.
  • FIG. 5A is a diagram illustrating frequency characteristics of the notch filter according to the first embodiment.
  • FIG. 5B is a diagram illustrating frequency characteristics of the notch filter according to the first embodiment.
  • FIG. 6A is a diagram illustrating an example of the relationship between the notch center frequency and the notch depth.
  • FIG. 6B is a diagram illustrating an example of the relationship between the notch center frequency and the notch depth.
  • FIG. 6C is a diagram illustrating an example of the relationship between the notch center frequency and the notch depth.
  • FIG. 7A is a diagram illustrating frequency characteristics of the notch filter according to the second embodiment.
  • FIG. 7B is a diagram illustrating frequency characteristics of the notch filter according to the second embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of a robot system according to the third embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a robot system according to the fourth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration example of an external force observer according to the fourth embodiment.
  • FIG. 11 is a block diagram illustrating a configuration of a robot system according to the fifth embodiment.
  • FIG. 1 is a diagram illustrating an example of a robot 1 to which the robot system 100 according to the first embodiment is applied.
  • the robot 1 includes a base 10, a trunk portion 11, a first arm portion 12, a second arm portion 13, and a wrist portion 14.
  • the base 10 is fixed to the installation surface G.
  • the trunk portion 11 is attached to the base 10 via a turning portion 20 so as to be turnable in the horizontal direction.
  • the first arm portion 12 is swingably connected to the body portion 11 via the first joint portion 21.
  • the second arm unit 13 is swingably connected to the first arm unit 12 via the second joint unit 22.
  • the wrist part 14 is connected to the second arm part 13 via the third joint part 23 so as to be rotatable about an axis and swingable via the fourth joint part 24.
  • the end effector (not shown) according to a use is suitably connected with the tip part of wrist part 14.
  • an actuator 50 for driving the trunk unit 11, the first arm unit 12, the second arm unit 13, and the wrist unit 14 which are movable units is incorporated.
  • the actuator 50 includes a motor 2 and a speed reducer 3 as shown in FIG.
  • the motor 2 is electrically connected to a motor control device 8 that controls the driving of the motor 2 and is driven according to a command output from the motor control device 8.
  • the speed reducer 3 is connected to the output shaft of the motor 2, reduces the rotation of the output shaft of the motor 2, and transmits it to the movable portion such as the first arm portion 12.
  • the motor control device 8 is a control device including, for example, a servo amplifier, a controller that controls the servo amplifier, or a servo amplifier and a controller.
  • a harmonic reduction gear is used as the reduction gear 3.
  • a harmonic reduction gear is a reduction gear (wave gear device) that uses a differential between an ellipse and a perfect circle.
  • Such a harmonic speed reducer has a property that it vibrates twice each time the output shaft of the motor 2 makes one rotation. This point will be described later.
  • FIG. 2 is a block diagram illustrating a configuration of the robot system 100 according to the first embodiment.
  • the configuration of the first joint portion 21 will be described as an example, but the turning portion 20 and the second to fourth joint portions 22 to 24 have the same configuration.
  • the first joint unit 21 includes a torque detection unit 4, a speed detection unit 5, a position detector 9, and an external force estimator 30 in addition to the motor 2 and the speed reducer 3 described above. Prepare.
  • the torque detection unit 4 is provided between the speed reducer 3 and a load (here, the first arm unit 12), and detects a torque (N ⁇ m) when the motor 2 is driven.
  • the position detector 9 is an encoder, for example, and detects the rotational position P fb of the output shaft of the motor 2 and outputs it to the speed detector 5.
  • the encoder is assumed to be an absolute encoder, but is not limited thereto, and may be an incremental encoder. Further, a resolver or the like may be used as the position detector 9 instead of the encoder.
  • the speed detector 5 detects the rotational speed (rad / s) of the output shaft of the motor 2 by calculating a difference between the rotational position P fb input from the position detector 9. Note that any known technique may be used for the torque detection method by the torque detection unit 4 and the rotation speed detection method by the speed detection unit 5.
  • the motor 2, the speed reducer 3, the torque detection unit 4, the speed detection unit 5, and the position detector 9 are assumed to be separate bodies.
  • the external force estimator 30 estimates an external force that acts on the first arm unit 12, the second arm unit 13, and the like.
  • the external force estimator 30 includes an external force observer 6 and a notch filter 7.
  • the external force observer 6 generates an external force torque applied around the output shaft of the motor 2 based on the torque detection value T fb output from the torque detection unit 4 and the speed detection value v fb output from the speed detection unit 5.
  • FIG. 3 is a block diagram illustrating a configuration example of the external force observer 6.
  • the external force observer 6 includes a nonlinear feedback term calculation unit 61, a generalized moment calculation unit 62, a subtraction unit 63, and a linear observer 64.
  • the nonlinear feedback term calculation unit 61 calculates a nonlinear feedback term using the rotational position P fb and the detected speed value v fb .
  • the nonlinear feedback term calculated by the nonlinear feedback term calculation unit 61 is: It is expressed as equation (1).
  • q corresponds to the rotational position P fb and dq / dt corresponds to the speed detection value v fb .
  • C (q, dq / dt) is a matrix related to centrifugal force and Coriolis force
  • g (q) is a gravity term
  • M (q) is a mass matrix of links.
  • the nonlinear feedback term calculation unit 61 outputs the calculated nonlinear feedback term to the subtraction unit 63.
  • the generalized moment calculation unit 62 calculates a generalized moment p using the rotational position P fb and the speed detection value v fb and outputs it to the linear observer 64.
  • p M (q) dq / dt.
  • the nonlinear feedback term calculation unit 61 and the generalized moment calculation unit 62 calculate the rotational position P fb from the speed detection value v fb acquired from the speed detection unit 5, but the nonlinear feedback term calculation unit 61 and the generalized moment calculator 62 may obtain the rotational position P fb from the position detector 9.
  • the subtracting unit 63 subtracts the nonlinear feedback term from the detected torque value T fb and outputs the obtained value T ′ to the linear observer 64.
  • the linear observer 64 is a general linear observer, and uses the generalized moment p input from the generalized moment calculator 62 and the value T ′ input from the subtractor 63 to calculate the external force estimated value Td . calculate.
  • the speed reducer 3 that is a harmonic speed reducer vibrates twice each time the output shaft of the motor 2 makes one rotation, and the vibration of the speed reducer 3 is detected as torque by the torque detector 4. Is done.
  • the vibration torque detection value T fb external force estimated value T d with the vibration of such a torque detection value T fb becomes possible to vibrate.
  • the estimated external force Td includes a vibration component generated as the motor 2 rotates, specifically, a vibration component generated when the speed reducer 3 vibrates as the motor 2 rotates. Therefore, in the robot 1 according to the first embodiment, the accuracy of the estimated external force is improved by attenuating the vibration component using the notch filter 7.
  • FIG. 4 is a block diagram illustrating a configuration of the notch filter 7 according to the first embodiment.
  • the notch filter 7 includes a first input unit 71, a second input unit 72, a filtering unit 73, an attenuation control unit 74, and an output unit 75.
  • the first input unit 71 inputs an external force estimated value Td .
  • the second input unit 72 inputs the speed detection value v fb .
  • the output unit 75 outputs an estimated external force T d ′ in which the vibration component is attenuated by the filtering unit 73 described later.
  • the first input unit 71, the second input unit 72, and the output unit 75 correspond to ports, terminals, nodes, and the like, for example.
  • the filtering unit 73 attenuates the vibration component included in the external force estimated value Td input from the first input unit 71.
  • the transfer function G (s) of the filtering unit 73 is It is expressed as in equation (2).
  • is a parameter that determines the attenuation amount of the vibration component (hereinafter referred to as “notch depth”)
  • is a parameter that determines the width of the attenuation band (hereinafter referred to as “notch width”)
  • ⁇ n is This parameter determines the center frequency of the attenuation band (hereinafter referred to as “notch center frequency”).
  • the attenuation control unit 74 receives the speed detection value v fb from the second input unit 72 and controls the notch center frequency ⁇ n of the filtering unit 73 according to the input speed detection value v fb . Specifically, the attenuation control unit 74 increases or decreases the notch center frequency ⁇ n of the filtering unit 73 according to the increase or decrease of the speed detection value v fb . Thereby, the vibration component whose frequency varies according to the rotation speed of the motor 2 can be appropriately attenuated by the filtering unit 73.
  • FIGS. 5A and 5B are diagrams illustrating frequency characteristics of the notch filter 7 according to the first embodiment.
  • the filtering unit 73 attenuates a predetermined frequency band of the input signal.
  • ⁇ n is the notch center frequency
  • is the notch depth.
  • the speed reducer 3 that is a harmonic speed reducer vibrates twice each time the output shaft of the motor 2 rotates, in other words, vibrates at a frequency twice the rotational speed of the motor 2. Accordingly, the vibration component included in the estimated external force value Td becomes higher as the rotational speed of the motor 2 increases.
  • the attenuation control unit 74 increases the notch center frequency ⁇ n of the filtering unit 73 as the velocity detection value v fb input from the second input unit 72 increases, thereby detecting the velocity detection value v.
  • the attenuation band of the filtering unit 73 is moved according to the detected speed value v fb. I decided to let them. Specifically, the speed reducer 3 vibrates at a frequency twice the rotational speed of the motor 2. For this reason, the attenuation control unit 74 changes the notch center frequency ⁇ n to a frequency twice the speed detection value v fb . Thereby, the vibration component contained in the external force estimated value Td can be appropriately attenuated, and the accuracy of the external force estimated value can be improved.
  • the attenuation control unit 74 increases or decreases the notch depth ⁇ in accordance with the increase or decrease in the speed detection value v fb input from the second input unit 72.
  • this point will be described.
  • the vibration of the speed reducer 3 becomes higher as the rotational speed of the motor 2 increases, but the amplitude is almost constant regardless of the rotational speed of the motor 2. Nevertheless, the notch filter 7 according to the first embodiment makes the notch depth ⁇ shallow when the rotation speed of the motor 2 is low, that is, when the vibration of the speed reducer 3 is low frequency, Reduce the attenuation of vibration components.
  • the attenuation control unit 74 is configured such that the filtering unit 73 decreases as the notch center frequency ⁇ n decreases, that is, as the velocity detection value v fb input from the second input unit 72 decreases.
  • the notch depth ⁇ is reduced.
  • FIGS. 6A ⁇ 6C are diagrams showing an example of the relationship between the notch center frequency omega n and notch depth [nu.
  • 6A to 6C show the relationship between ⁇ n and ⁇ when the notch center frequency ⁇ n is taken on the horizontal axis and ⁇ which is a parameter for determining the notch depth ⁇ is taken on the vertical axis.
  • the notch depth ⁇ is 0 when ⁇ is 1, and the notch depth ⁇ is infinite when ⁇ is 0.
  • the attenuation amount of attenuation by the filtering unit 73 may be controlled so as to decrease in a curved manner.
  • the attenuation control unit 74 is not limited to the curve shown in FIG. 6A, and may control the attenuation amount of the attenuation by the filtering unit 73 so that ⁇ decreases according to a curve having no inflection point (for example, an exponential curve). Good.
  • two threshold values ⁇ 2 and ⁇ 3 are provided.
  • the attenuation control unit 74 may control the attenuation amount of the filtering unit 73 so that ⁇ linearly decreases from 1 to ⁇ as ⁇ n increases.
  • the attenuation control unit 74 omega 2/2 if the (first threshold value) following the speed detection value v fb is input, notch depth ⁇ is 0 and,, omega 3/2 (second When a velocity detection value v fb equal to or greater than the threshold value is input, the attenuation amount of the filtering unit 73 may be controlled so that the notch depth ⁇ is a constant amount greater than zero.
  • the attenuation control unit 74 the predetermined threshold value (here omega 3/2) to a constant notch depth ⁇ when more speed detection value v fb is input. This is because the amplitude of the vibration of the reduction gear 3 originally caused by the rotation of the motor 2 is substantially constant regardless of the rotational speed of the motor 2, thus notch depth in omega 3/2 or more rotational speed ⁇ By making the value constant, the processing load can be reduced compared to the case shown in FIG. 6A.
  • omega 2 when omega n ⁇ omega 3, omega it is assumed that n with increasing to linearly decrease the [delta], to reduce the [delta] with the increase of omega n curvedly May be.
  • the threshold value is two here, the threshold value may be three or more.
  • one threshold value ⁇ 4 is provided.
  • the attenuation control unit 74 may control the attenuation amount of the filtering unit 73 so that
  • the filtered external force estimated value T d ′ output from the external force estimator 30 is fed back to the motor control device 8. Then, the motor control device 8 corrects the torque command based on the estimated external force value T d ′, and outputs the corrected torque command T ref to the motor 2.
  • the motor control device 8 performs positive feedback that outputs a value obtained by subtracting the estimated external force T d ′ from the torque command before correction as the torque command T ref .
  • motor controller 8, 'upon obtained by inverting the phase of the pre-correction of the external force estimation value T d after phase inversion from the torque command' external force estimated value T d may be performed negative feedback to subtract. Thereby, the robot 1 can be controlled with high accuracy.
  • the robot system 100 includes the robot 1, the external force observer 6, and the notch filter 7.
  • each joint portion 21 to 24 includes a motor 2 and a speed reducer 3.
  • the external force observer 6 generates an external force estimated value Td based on the detected torque value T fb and the detected speed value v fb of the motor 2.
  • the notch filter 7 attenuates the vibration component caused by the rotation of the motor 2 included in the estimated external force Td output from the external force observer 6.
  • the notch filter 7 includes a filtering unit 73 and an attenuation control unit 74.
  • Filtering unit 73 obtains the external force estimation value T d, performs attenuation of the vibration component contained in the external force estimation value T d.
  • the attenuation control unit 74 acquires the speed detection value v fb of the motor 2 and controls the attenuation amount of attenuation by the filtering unit 73 according to the acquired speed detection value v fb .
  • the vibration component generated with the rotation of the motor 2 can be attenuated.
  • the filtering unit 73 acquires the estimated external force Td including the vibration component generated by the speed reducer 3 as the motor 2 rotates. Thereby, the vibration component which the reduction gear 3 generates with rotation of the motor 2 can be attenuated.
  • the notch center frequency ⁇ n is twice the speed detection value v fb. Indicated.
  • the notch center frequency ⁇ n is n times the speed detection value v fb (n is 2 or more). Integer).
  • said n is not limited to an integer greater than or equal to 2.
  • the notch center frequency ⁇ n may be 3/2 times and 1/3 times the detected speed value v fb , respectively.
  • the attenuation control unit 74 may change the notch center frequency ⁇ n to a frequency proportional to the speed detection value v fb .
  • the speed reducer 3 is a speed reducer that generates a vibration component in accordance with the rotation of the motor 2
  • the speed reducer 3 generates a vibration component regardless of the rotation of the motor 2.
  • a reduction gear to be generated may be used. Even in such a case, when the vibration component of the speed reducer 3 changes according to the rotation of the motor 2, the vibration component can be appropriately damped using the notch filter 7 described above.
  • FIGS. 7A and 7B are diagrams illustrating frequency characteristics of the notch filter 7 according to the second embodiment.
  • the attenuation control unit 74 of the notch filter 7 performs notch centering when the speed detection value v fb input from the second input unit 72 changes. without changing the frequency omega n, changing the notch depth ⁇ only.
  • the speed reducer 3 is a harmonic speed reducer.
  • the amplitude of the vibration component may increase or decrease as the rotational speed of the motor 2 increases or decreases depending on the type of the speed reducer.
  • the notch depth ⁇ is increased / decreased according to the increase / decrease of the speed detection value v fb , and this occurs with the rotation of the motor 2.
  • the vibration component can be attenuated.
  • FIG. 8 is a block diagram illustrating a configuration of a robot system according to the third embodiment.
  • the first joint portion 21A is configured by removing the external force estimator 30 from the first joint portion 21 according to the first and second embodiments.
  • the other joint portions have a configuration excluding the external force estimator 30.
  • the motor control device 8A includes an external force estimation unit 30A and a control unit 81.
  • the external force estimation unit 30 ⁇ / b> A is a processing unit corresponding to the external force estimator 30, and includes the external force observer 6 and the notch filter 7, as with the external force estimator 30.
  • the motor control device 8A includes a plurality of external force estimation units 30A corresponding to the respective joint portions, but only the external force estimation unit 30A corresponding to the first joint portion 21A is shown here.
  • Torque detection value T fb and speed detection value v fb are input to external force estimation unit 30A provided in motor control device 8A. Specifically, the detected torque value T fb is input to the external force observer 6, and the detected speed value v fb is input to the external force observer 6 and the notch filter 7.
  • the external force observer 6 similarly to the external force estimator 30 described above, the external force observer 6 generates an external force estimation value Td based on the torque detection value T fb and the speed detection value v fb and outputs it to the notch filter 7.
  • notch filter 7 attenuates the vibration component from the external force estimation value T d, and outputs the external force estimation value T d 'to the control unit 81.
  • the notch filter 7 includes a filtering unit 73 and an attenuation control unit 74 (see FIG. 4).
  • the attenuation control unit 74 filters the filtering unit 73 according to the speed detection value v fb.
  • the notch center frequency ⁇ n and the notch depth ⁇ are changed. Thereby, it is possible to attenuate the vibration component generated in association with the rotation of the motor 2 included in the estimated external force value Td .
  • control unit 81 corrects the torque command based on the external force estimation value T d ′ input from the external force estimation unit 30 ⁇ / b > A , and outputs the corrected torque command T ref to the motor 2.
  • the filtering unit 73 and the attenuation control unit 74 may be provided in the motor control device 8A.
  • the notch filter 7 is separate from the external force observer 6, and is shown in FIG. It may be provided anywhere in the control loop.
  • the input signal input to the notch filter 7 is not limited to the external force estimated value Td as long as it includes a vibration component generated with the rotation of the motor 2.
  • the notch filter 7 may be provided in the subsequent stage of the torque detection unit 4 so that the vibration component included in the torque detection value T fb is attenuated by the notch filter 7.
  • FIG. 9 is a block diagram illustrating a configuration of a robot system according to the fourth embodiment.
  • the first joint portion 21 ⁇ / b> B included in the robot system 100 ⁇ / b> B according to the fourth embodiment includes the speed reducer 3 and the torque detection from the first joint portion 21 (see FIG. 2) according to the first embodiment. It has a configuration excluding the part 4.
  • the vibration component is generated not only due to the reduction gear 3, but due to, for example, the structure of the motor 2 itself. There is also.
  • a vibration component generated with the rotation of the motor 2 is included in the estimated external force Td. is there. Therefore, even when the robot system 100B is applied to such a system, the vibration component generated along with the rotation of the motor 2 can be attenuated.
  • the external force observer 6B estimates the external force estimated value Td using the torque command T ref output from the motor control device 8. In such a case, the external force observer 6B estimates the sum of the external force, the frictional force, and other forces acting on the first arm portion 12, etc., that is, the disturbance as the “external force”.
  • FIG. 10 is a block diagram illustrating a configuration example of the external force observer 6B according to the fourth embodiment.
  • the external force observer 6B includes a differentiator 65, an inertia moment multiplier 66, a subtractor 67, and a low-pass filter 68.
  • the differentiator 65 calculates the acceleration detection value A fb by differentiating the speed detection value v fb , and outputs the calculated acceleration detection value A fb to the inertia moment multiplier 66.
  • the inertia moment multiplication unit 66 calculates an acceleration torque detection value TA fb by multiplying the acceleration detection value A fb input from the differentiator 65 by the inertia moment around the motor shaft, and calculates the calculated acceleration torque detection value TA.
  • fb is output to the subtractor 67.
  • the subtraction unit 67 subtracts the torque command T ref from the acceleration torque detection value TA fb and outputs the obtained value T ′′ to the low-pass filter 68.
  • the low-pass filter 68 outputs a value obtained by applying the low-pass filter to T ′′ as the external force estimated value T d .
  • the external force observer 6B may calculate the external force estimated value T d by using a torque command T ref instead of the torque detection value T fb.
  • the processing corresponding to the external force estimator 30B is used instead of the external force estimator 30B as in the third embodiment. May be provided in the motor control device 8.
  • FIG. 11 is a block diagram illustrating a configuration of a robot system according to the fifth embodiment.
  • the robot system 100C further includes notch filters 7C1 and 7C2.
  • the notch filter 7C1 is provided downstream of the notch filter 7 of the first joint portion 21C
  • the notch filter 7C2 is provided downstream of the notch filter 7 of the second joint portion 22C.
  • first joint portion 21C and the second joint portion 22C have the same configuration as the first joint portion 21 according to the first embodiment described above.
  • the torque command, rotation position, torque detection value, speed detection value, and external force estimation value for the first joint portion 21C are respectively “T ref — 1 ”, “P fb — 1 ”, “T fb — 1 ”, “v fb — 1 ”, “ T d — 1 (T d — 1 ′) ”.
  • the second joint portion 22C is referred to as “T ref — 2 ”, “P fb — 2 ”, “T fb — 2 ”, “v fb — 2 ”, and “T d — 2 (T d — 2 ′)”, respectively.
  • the signal of the first joint portion 21C may include a vibration component generated in another system (for example, the second joint portion 22C) in the robot system 100C.
  • the second joint portion 22C may include a vibration component generated in another system (for example, the second joint portion 22C) in the robot system 100C. The same applies to the second joint portion 22C.
  • notch filters 7C1 and 7C2 are further provided, and vibration components generated in other systems are attenuated by the notch filters 7C1 and 7C2.
  • the notch filter 7C1 includes an external force estimated value output from the notch filter 7 of the first joint portion 21C, that is, an external force estimated value in which the vibration component by the speed reducer 3 of the first joint portion 21C is attenuated, and a second The speed detection value v fb_2 output from the speed detection unit 5 of the joint unit 22C is input.
  • the notch filter 7C1 is a notch center frequency omega n and notch depth corresponding to the speed detection value v FB_2 [nu, filtering the external force estimation value output from the notch filter 7 of the first joint portion 21C.
  • produced in 22 C of 2nd joint parts contained in the external force estimated value output from the notch filter 7 of 21 C of 1st joint parts can be attenuated.
  • the external force estimated value T d — 1 ′ after filtering is output to the motor control device 8.
  • the notch filter 7C2 includes an external force estimated value output from the notch filter 7 of the second joint portion 22C, that is, an external force estimated value in which the vibration component due to the speed reducer 3 of the second joint portion 22C is attenuated, and the first The speed detection value v fb_1 output from the speed detection unit 5 of the joint part 21C is input. Then, the notch filter 7C2 filters the estimated external force value output from the notch filter 7 of the second joint portion 22C with the notch center frequency ⁇ n and the notch depth ⁇ according to the speed detection value v fb_1 .
  • the vibration component generated in the first joint portion 21C included in the estimated external force output from the notch filter 7 of the second joint portion 22C can be attenuated.
  • the external force estimated value T d — 2 ′ after filtering is output to the motor control device 8.
  • vibration components generated in other systems can be attenuated.
  • a notch filter 7C1 for attenuating a vibration component generated in the second joint portion 22C is provided at the subsequent stage of the notch filter 7 of the first joint portion 21C.
  • the present invention is not limited to this, and a notch filter that attenuates vibration components generated in joint portions other than the second joint portion 22C may be further provided in the subsequent stage of the notch filter 7 in addition to the notch filter 7C1. .
  • notch filters 7C1 and 7C2 are provided outside the first joint portion 21C and the second joint portion 22C, for example, but the notch filters 7C1 and 7C2 are respectively the first joint portion 21C. And may be provided inside the second joint portion 22 ⁇ / b> C or may be provided inside the motor control device 8.
  • the external force estimator 30 may be excluded from the first joint portion 21C and the second joint portion 22C, and a processing unit corresponding to the external force estimator 30 may be provided in the motor control device 8.
  • the external force observer 6 may calculate the estimated external force T d using the torque command T ref instead of the detected torque value T fb .
  • the motor 2 is not limited to the rotary type, and may be a linear motion type linear motor.
  • the translational force corresponds to the torque described above
  • the translational speed corresponds to the rotational speed described above.
  • the motor 2 is not limited to an electric motor but may be a fluid pressure actuator or the like.
  • the example in which the external force estimator 30 is applied to the robot 1 has been described.
  • the configuration of the robot to which the external force estimator 30 is applied is not limited to that shown in FIG.
  • the external force estimator 30 is not limited to the robot 1 and can be applied to anything driven by the motor 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Manipulator (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

 モータの回転に伴って発生する振動成分を減衰させることを課題とする。この課題を解決するために、実施形態に係るノッチフィルタは、フィルタリング部と、減衰制御部とを備える。フィルタリング部は、モータの回転に伴って発生する振動成分を含む信号を取得して、前記振動成分の減衰を行う。減衰制御部は、モータの回転速度に応じて減衰の減衰量を制御する。

Description

ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム
 開示の実施形態は、ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステムに関する。
 従来、たとえばロボットの分野では、モータに加わる外力トルクを外力推定器を用いて推定している(特許文献1参照)。
特開2001-353687号公報
 しかしながら、外力推定器から出力される外力推定値には、モータの回転に伴って発生する振動成分が含まれている場合があり、外力推定値の精度低下の一因となっていた。このことは、外力推定値に限らずモータの回転に伴って発生する振動成分が含まれる他の信号においても同様に生じ得る。
 実施形態の一態様は、モータの回転に伴って発生する振動成分を減衰させることのできるノッチフィルタ、外力推定器、モータ制御装置およびロボットシステムを提供することを目的とする。
 実施形態の一態様に係るノッチフィルタは、フィルタリング部と、減衰制御部とを備える。フィルタリング部は、モータの回転に伴って発生する振動成分を含む信号を取得して、前記振動成分の減衰を行う。減衰制御部は、モータの回転速度に応じて減衰の減衰量を制御する。
 実施形態の一態様によれば、モータの回転に伴って発生する振動成分を減衰させることができる。
図1は、第1の実施形態に係るロボットシステムが適用されたロボットの一例を示す図である。 図2は、第1の実施形態に係るロボットシステムの構成を示すブロック図である。 図3は、外力オブザーバの構成例を示すブロック図である。 図4は、第1の実施形態に係るノッチフィルタの構成を示すブロック図である。 図5Aは、第1の実施形態に係るノッチフィルタの周波数特性を示す図である。 図5Bは、第1の実施形態に係るノッチフィルタの周波数特性を示す図である。 図6Aは、ノッチ中心周波数とノッチ深さとの関係の一例を示す図である。 図6Bは、ノッチ中心周波数とノッチ深さとの関係の一例を示す図である。 図6Cは、ノッチ中心周波数とノッチ深さとの関係の一例を示す図である。 図7Aは、第2の実施形態に係るノッチフィルタの周波数特性を示す図である。 図7Bは、第2の実施形態に係るノッチフィルタの周波数特性を示す図である。 図8は、第3の実施形態に係るロボットシステムの構成を示すブロック図である。 図9は、第4の実施形態に係るロボットシステムの構成を示すブロック図である。 図10は、第4の実施形態に係る外力オブザーバの構成例を示すブロック図である。 図11は、第5の実施形態に係るロボットシステムの構成を示すブロック図である。
 以下、添付図面を参照して、本願の開示するノッチフィルタ、外力推定器、モータ制御装置およびロボットシステムの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
 図1は、第1の実施形態に係るロボットシステム100が適用されたロボット1の一例を示す図である。
 図1に示すように、ロボット1は、基台10と、胴部11と、第1アーム部12と、第2アーム部13と、リスト部14とを備える。
 基台10は、設置面Gに固設される。胴部11は、基台10に対して旋回部20を介して水平方向に旋回自在に取付けられる。第1アーム部12は、胴部11に対し、第1関節部21を介して揺動自在に連結される。第2アーム部13は、第1アーム部12に対し、第2関節部22を介して揺動自在に連結される。リスト部14は、第2アーム部13に対し、第3関節部23を介して軸回りに回転自在に、かつ第4関節部24を介して揺動自在に連結される。そして、リスト部14の先端部には、用途に応じたエンドエフェクタ(不図示)が適宜連結される。
 旋回部20および第1~第4関節部21~24には、可動部である胴部11、第1アーム部12、第2アーム部13およびリスト部14を駆動するアクチュエータ50が内蔵される。具体的には、アクチュエータ50は、図1に示すようにモータ2と減速機3とを含んで構成される。
 モータ2は、当該モータ2の駆動を制御するモータ制御装置8と電気的に接続され、モータ制御装置8から出力される指令に従って駆動する。減速機3は、モータ2の出力軸に接続され、モータ2の出力軸の回転を減じて第1アーム部12等の可動部へ伝達する。モータ制御装置8は、たとえばサーボアンプ、サーボアンプを制御するコントローラ、または、サーボアンプとコントローラとを含む制御装置である。
 第1の実施形態では、減速機3としてハーモニック減速機が用いられる。ハーモニック減速機は、楕円と真円の差動を利用した減速機(波動歯車装置)である。かかるハーモニック減速機は、モータ2の出力軸が1回転する毎に2回振動するという性質を有するが、かかる点については後述する。
 次に、ロボットシステム100の構成について図2を参照して具体的に説明する。図2は、第1の実施形態に係るロボットシステム100の構成を示すブロック図である。図2では、第1関節部21の構成を例に挙げて説明するが、旋回部20および第2~第4関節部22~24についても同様の構成である。
 図2に示すように、第1関節部21は、前述のモータ2および減速機3に加えて、トルク検出部4と、速度検出部5と、位置検出器9と、外力推定器30とを備える。
 トルク検出部4は、減速機3と負荷(ここでは、第1アーム部12)との間に設けられ、モータ2が駆動したときのトルク(N・m)を検出する。
 位置検出器9は、たとえばエンコーダであり、モータ2の出力軸の回転位置Pfbを検出して速度検出部5へ出力する。なお、エンコーダは、絶対値エンコーダであるものとするが、これに限らず、インクリメンタルエンコーダであってもよい。また、エンコーダに代えて、レゾルバ等を位置検出器9として用いてもよい。
 速度検出部5は、位置検出器9から入力される回転位置Pfbを差分演算することによってモータ2の出力軸の回転速度(rad/s)を検出する。なお、トルク検出部4によるトルクの検出方法および速度検出部5による回転速度の検出方法については、いずれの公知技術を用いても構わない。
 なお、ここでは、モータ2、減速機3、トルク検出部4、速度検出部5および位置検出器9がそれぞれ別体であるものとするが、たとえば減速機一体型モータや、センサ一体型モータ、あるいは、センサ一体型減速機などを採用してもよい。また、モータ2、減速機3、トルク検出部4、速度検出部5および位置検出器9が一体的に構成されたセンサ一体型アクチュエータを採用してもよい。
 外力推定器30は、たとえばロボットシステム100の例では、第1アーム部12や第2アーム部13等に働く外力を推定する。具体的には、外力推定器30は、外力オブザーバ6と、ノッチフィルタ7とを備える。外力オブザーバ6は、トルク検出部4から出力されるトルク検出値Tfbと、速度検出部5から出力される速度検出値vfbとに基づき、モータ2の出力軸回りに加えられた外力トルクを推定する。
 ここで、外力オブザーバ6の具体的構成の一例について図3を参照して説明する。図3は、外力オブザーバ6の構成例を示すブロック図である。
 図3に示すように、外力オブザーバ6は、非線形フィードバック項算出部61と、一般化モーメント算出部62と、減算部63と、線形オブザーバ64とを備える。
 非線形フィードバック項算出部61は、回転位置Pfbおよび速度検出値vfbを用いて非線形フィードバック項を算出する。ここで、非線形フィードバック項算出部61によって算出される非線形フィードバック項は、
Figure JPOXMLDOC01-appb-M000001
式(1)のように表される。ここで、qは回転位置Pfb相当し、dq/dtは速度検出値vfbに相当する。また、C(q,dq/dt)は遠心力およびコリオリ力に関する行列、g(q)は重力項、M(q)はリンクの質量行列である。非線形フィードバック項算出部61は、算出した非線形フィードバック項を減算部63へ出力する。
 一般化モーメント算出部62は、回転位置Pfbおよび速度検出値vfbを用いて一般化モーメントpを算出して線形オブザーバ64へ出力する。ここで、p=M(q)dq/dtである。
 なお、ここでは、非線形フィードバック項算出部61および一般化モーメント算出部62が、速度検出部5から取得した速度検出値vfbから回転位置Pfbを算出するものとするが、非線形フィードバック項算出部61および一般化モーメント算出部62は、位置検出器9から回転位置Pfbを取得してもよい。
 減算部63は、トルク検出値Tfbから非線形フィードバック項を減算し、得られた値T’を線形オブザーバ64へ出力する。
 線形オブザーバ64は、一般的な線形のオブザーバであり、一般化モーメント算出部62から入力される一般化モーメントpと、減算部63から入力された値T’とを用いて外力推定値Tを算出する。
 ここで、上述したように、ハーモニック減速機である減速機3は、モータ2の出力軸が1回転する毎に2回振動し、かかる減速機3の振動は、トルク検出部4によってトルクとして検出される。これにより、トルク検出値Tfbが振動し、かかるトルク検出値Tfbの振動に伴って外力推定値Tが振動することとなる。
 このように、外力推定値Tには、モータ2の回転に伴って発生する振動成分、具体的には、モータ2の回転に伴い減速機3が振動することによって生じる振動成分が含まれる。そこで、第1の実施形態に係るロボット1では、かかる振動成分をノッチフィルタ7を用いて減衰させることにより、外力推定値の精度を向上させることとした。
 かかるノッチフィルタ7の構成について図4を参照して説明する。図4は、第1の実施形態に係るノッチフィルタ7の構成を示すブロック図である。
 図4に示すように、ノッチフィルタ7は、第1の入力部71と、第2の入力部72と、フィルタリング部73と、減衰制御部74と、出力部75とを備える。
 第1の入力部71は、外力推定値Tを入力する。第2の入力部72は、速度検出値vfbを入力する。出力部75は、後述するフィルタリング部73によって振動成分が減衰された外力推定値T’を出力する。なお、第1の入力部71、第2の入力部72および出力部75は、たとえばポートや端子、ノード等に相当する。
 フィルタリング部73は、第1の入力部71から入力される外力推定値Tに含まれる振動成分を減衰させる。ノッチフィルタ7がデジタルフィルタである場合、フィルタリング部73の伝達関数G(s)は、
Figure JPOXMLDOC01-appb-M000002
式(2)のようにあらわされる。ここで、δは振動成分の減衰量(以下、「ノッチ深さ」と記載する)を決めるパラメータ、ζは減衰帯域の幅(以下、「ノッチ幅」と記載する)を決めるパラメータ、ωは減衰帯域の中心周波数(以下、「ノッチ中心周波数」と記載する)を決めるパラメータである。
 また、ノッチ深さを決めるパラメータであるδは、νをノッチ深さとすると、
Figure JPOXMLDOC01-appb-M000003
式(3)のようにあらわされる。
 減衰制御部74は、第2の入力部72から速度検出値vfbを入力し、入力した速度検出値vfbに応じてフィルタリング部73のノッチ中心周波数ωを制御する。具体的には、減衰制御部74は、速度検出値vfbの増減に応じてフィルタリング部73のノッチ中心周波数ωを増減させる。これにより、モータ2の回転速度に応じて周波数が変動する振動成分をフィルタリング部73によって適切に減衰させることができる。
 この点について図5Aおよび図5Bを参照して説明する。図5Aおよび図5Bは、第1の実施形態に係るノッチフィルタ7の周波数特性を示す図である。図5Aに示すように、フィルタリング部73は、入力信号の所定の周波数帯域を減衰させる。ここで、ωはノッチ中心周波数であり、νはノッチ深さである。
 上述したように、ハーモニック減速機である減速機3は、モータ2の出力軸が1回転する毎に2回振動する、言い換えれば、モータ2の回転速度の2倍の周波数で振動する。したがって、外力推定値Tに含まれる振動成分は、モータ2の回転速度が速くなるほど高周波となる。
 そこで、減衰制御部74は、図5Bに示すように、第2の入力部72から入力される速度検出値vfbが高くなるほどフィルタリング部73のノッチ中心周波数ωを高くし、速度検出値vfbが低くなるほどフィルタリング部73のノッチ中心周波数ωを低くすることとした。具体的には、ノッチ中心周波数ωは、ω=2vfbである。
 このように、第1の実施形態では、減速機3の振動の周波数がモータ2の回転速度に応じて増減することに着目し、速度検出値vfbに応じてフィルタリング部73の減衰帯域を移動させることとした。具体的には、減速機3はモータ2の回転速度の2倍の周波数で振動する。このため、減衰制御部74は、ノッチ中心周波数ωを速度検出値vfbの2倍の周波数に変更することとした。これにより、外力推定値Tに含まれる振動成分を適切に減衰させることができ、外力推定値の精度を向上させることができる。
 さらに、減衰制御部74は、第2の入力部72から入力される速度検出値vfbの増減に応じてノッチ深さνも増減させる。以下、この点について説明する。
 上述したように減速機3の振動はモータ2の回転速度が増加するほど高周波となるが、振幅については、モータ2の回転速度に依らずほぼ一定である。これにもかかわらず、第1の実施形態に係るノッチフィルタ7は、モータ2の回転速度が遅いとき、つまり、減速機3の振動が低周波であるときには、ノッチ深さνを浅くする、すなわち、振動成分の減衰量を少なくする。
 これは、外力推定値Tの低い周波数帯域に有用な情報が集中しているためであり、低い周波数帯域において振動成分の減衰量を敢えて少なくすることで、外力推定値Tに含まれる有用な情報を残しつつ不要な振動成分を減衰させることができる。
 具体的には、図5Bに示すように、減衰制御部74は、ノッチ中心周波数ωが低くなるほど、つまり、第2の入力部72から入力される速度検出値vfbが低くなるほどフィルタリング部73のノッチ深さνを浅くする。
 つづいて、ノッチ深さνの変化のさせ方の一例について図6A~図6Cを参照して説明する。図6A~図6Cは、ノッチ中心周波数ωとノッチ深さνとの関係の一例を示す図である。
 なお、図6A~図6Cには、ノッチ中心周波数ωを横軸に、ノッチ深さνを決めるパラメータであるδを縦軸にとった場合のωとδとの関係を示している。上述した式(3)からわかるように、δが1のときにノッチ深さνが0となり、δが0のときにノッチ深さνが無限大となる。
 たとえば、図6Aに示すように、減衰制御部74は、ω=0のときにδ=1とし、ωの増加に伴って(すなわち、速度検出値vfbの増加に伴って)δが曲線的に減少するようにフィルタリング部73による減衰の減衰量を制御してもよい。図6Aに示す曲線は、ω=ω1に変曲点Pを有する曲線(シグモイド曲線)であり、ω<ω1のときには上に凸、ω>ω1のときには下に凸となる。
 なお、減衰制御部74は、図6Aに示した曲線に限らず、δが変曲点のない曲線(たとえば指数曲線など)に従って減少するようにフィルタリング部73による減衰の減衰量を制御してもよい。
 また、図6Bに示すように、2つの閾値ω2,ω3を設け、ω≦ωのときにはδ=1で一定とし、ω≧ωのときにはδ=α(<1)で一定とし、ω<ω<ωのときには、ωの増加に伴ってδが1からαへ直線的に減少するように、減衰制御部74がフィルタリング部73の減衰量を制御してもよい。
 すなわち、減衰制御部74は、ω/2(第1の閾値)以下の速度検出値vfbが入力された場合には、ノッチ深さνが0となり、かつ、ω/2(第2の閾値)以上の速度検出値vfbが入力された場合には、ノッチ深さνが0よりも大きい一定量となるようにフィルタリング部73の減衰量を制御してもよい。
 このように、減衰制御部74は、所定の閾値(ここではω/2)以上の速度検出値vfbが入力された場合のノッチ深さνを一定とする。これは、もともとモータ2の回転に伴う減速機3の振動の振幅がモータ2の回転速度に依らずほぼ一定であるためであり、このようにω/2以上の回転速度におけるノッチ深さνを一定とすることで、図6Aに示す場合と比較して処理負荷を軽減することができる。
 なお、ここでは、ω<ω<ωのときに、ωの増加に伴ってδを直線的に減少させることとしたが、ωの増加に伴ってδを曲線的に減少させてもよい。また、ここでは、閾値を2つとしたが、閾値は3つ以上であってもよい。
 また、図6Cに示すように、1つの閾値ωを設け、ω<ωのときにはδ=1(すなわち、ν=0)で一定となり、ω≧ωのときにはδ=αで一定となるように、減衰制御部74がフィルタリング部73の減衰量を制御してもよい。
 また、たとえば図6Bの0≦ω<ωの部分を図6Aに示すような曲線に置き換えてもよい。すなわち、0≦ω<ωのときには、δが図6Aに示すような曲線に従って減少し、ω≧ωのときにはδ=αで一定となるように、減衰制御部74がフィルタリング部73の減衰量を制御してもよい。
 また、図2に示すように、外力推定器30から出力されるフィルタリング後の外力推定値T’は、モータ制御装置8にフィードバックされる。そして、モータ制御装置8は、かかる外力推定値T’に基づいてトルク指令を補正し、補正したトルク指令Trefをモータ2へ出力する。
 たとえば、モータ制御装置8は、補正前のトルク指令から外力推定値T’を減算したものをトルク指令Trefとして出力するポジティブフィードバックを行う。あるいは、モータ制御装置8は、外力推定値T’の位相を反転させたうえで、補正前のトルク指令から位相反転後の外力推定値T’を減算するネガティブフィードバックを行ってもよい。これにより、ロボット1の制御を精度良く行うことができる。
 上述してきたように、第1の実施形態に係るロボットシステム100は、ロボット1と、外力オブザーバ6と、ノッチフィルタ7とを備える。ロボット1は、各関節部21~24がモータ2と減速機3とを含んで構成される。外力オブザーバ6は、モータ2のトルク検出値Tfbと速度検出値vfbとに基づいて外力推定値Tを生成する。ノッチフィルタ7は、外力オブザーバ6から出力される外力推定値Tに含まれる、モータ2の回転に起因する振動成分を減衰させる。また、ノッチフィルタ7は、フィルタリング部73と減衰制御部74とを備える。フィルタリング部73は、外力推定値Tを取得し、外力推定値Tに含まれる振動成分の減衰を行う。減衰制御部74は、モータ2の速度検出値vfbを取得し、取得した速度検出値vfbに応じてフィルタリング部73による減衰の減衰量を制御する。
 したがって、第1の実施形態に係るロボットシステム100によれば、モータ2の回転に伴って発生する振動成分を減衰させることができる。
 また、第1の実施形態に係るロボットシステム100では、フィルタリング部73が、モータ2の回転に伴って減速機3が発生させる振動成分を含む外力推定値Tを取得することとした。これにより、モータ2の回転に伴って減速機3が発生させる振動成分を減衰させることができる。
 なお、ここでは、モータ2の出力軸が1回転する毎に2回振動する性質を有する減速機3の場合に、ノッチ中心周波数ωを速度検出値vfbの2倍とする場合の例を示した。これと同様に、モータ2の出力軸が1回転する毎にn回振動する性質を有する減速機3の場合には、ノッチ中心周波数ωを速度検出値vfbのn倍(nは2以上の整数)とすればよい。また、上記のnは、2以上の整数に限定されない。すなわち、減速機3が、モータ2の出力軸が2回転する毎に3回振動する性質やモータ2の出力軸が3回転する毎に1回振動する性質を有する場合には、ノッチ中心周波数ωを速度検出値vfbのそれぞれ3/2倍、1/3倍とすればよい。このように、減衰制御部74は、ノッチ中心周波数ωを速度検出値vfbに比例した周波数に変更するようにしてもよい。
 また、ここでは、減速機3が、モータ2の回転に応じて振動成分を発生させる減速機である場合の例を示したが、減速機3は、モータ2の回転とは無関係に振動成分を発生させる減速機であってもよい。このような場合であっても、減速機3の振動成分がモータ2の回転に応じて変化する場合には、上述してきたノッチフィルタ7を用いて振動成分を適切に減衰させることができる。
(第2の実施形態)
 上述した第1の実施形態では、モータ2の回転速度の増減に応じて、ノッチ中心周波数ωおよびノッチ深さνの両方を増減させる場合の例について説明したが、ノッチフィルタ7は、ノッチ中心周波数ωを固定とし、ノッチ深さνのみを増減させる構成であってもよい。
 かかる点について図7Aおよび図7Bを参照して説明する。図7Aおよび図7Bは、第2の実施形態に係るノッチフィルタ7の周波数特性を示す図である。
 図7Aおよび図7Bに示すように、第2の実施形態に係るノッチフィルタ7の減衰制御部74は、第2の入力部72から入力される速度検出値vfbが変化した場合に、ノッチ中心周波数ωを変化させることなく、ノッチ深さνのみを変化させる。ノッチ深さνは、たとえば所定の係数k(kは正の数)を用いてν=kvfbとしてもよいし、速度検出値vfbを変数とする所定の関数ν=f(vfb)としてもよい。
 第1の実施形態では、減速機3が、ハーモニック減速機である場合を例に挙げて説明した。しかし、減速機3がハーモニック減速機以外の減速機である場合、減速機の種類によっては、モータ2の回転速度の増減に伴って振動成分の振幅が増減する場合もある。
 このような場合には、第2の実施形態に係るノッチフィルタ7のように、速度検出値vfbの増減に応じてノッチ深さνを増減させることで、モータ2の回転に伴って発生する振動成分を減衰させることができる。
(第3の実施形態)
 ところで、上述してきた各実施形態では、外力推定器30が旋回部20および第1~第4関節部21~24に設けられる場合の例を示したが、外力推定器30は、たとえばモータ制御装置8に設けられてもよい。以下では、モータ制御装置が、外力推定器30に相当する処理部を備える場合の例について図8を参照して説明する。図8は、第3の実施形態に係るロボットシステムの構成を示すブロック図である。
 図8に示すように、第3の実施形態に係るロボットシステム100Aにおいて、第1関節部21Aは、第1および第2の実施形態に係る第1関節部21から外力推定器30を除いた構成を有する。他の関節部についても同様に、外力推定器30を除いた構成を有する。
 第3の実施形態に係るモータ制御装置8Aは、外力推定部30Aと、制御部81とを備える。外力推定部30Aは、外力推定器30に相当する処理部であり、外力推定器30と同様、外力オブザーバ6とノッチフィルタ7とを備える。なお、モータ制御装置8Aは、各関節部に対応する複数の外力推定部30Aを備えるが、ここでは、第1関節部21Aに対応する外力推定部30Aのみを示している。
 トルク検出値Tfbおよび速度検出値vfbは、モータ制御装置8Aに設けられた外力推定部30Aに入力される。具体的には、トルク検出値Tfbは外力オブザーバ6に入力され、速度検出値vfbは、外力オブザーバ6およびノッチフィルタ7にそれぞれ入力される。
 外力推定部30Aでは、上述した外力推定器30と同様、外力オブザーバ6が、トルク検出値Tfbおよび速度検出値vfbに基づいて外力推定値Tを生成してノッチフィルタ7へ出力し、ノッチフィルタ7が、外力推定値Tから振動成分を減衰させて、外力推定値T’を制御部81へ出力する。ノッチフィルタ7は、第1および第2の実施形態において説明した通り、フィルタリング部73および減衰制御部74を備え(図4参照)、減衰制御部74が速度検出値vfbに応じてフィルタリング部73のノッチ中心周波数ωやノッチ深さνを変更する。これにより、外力推定値Tに含まれる、モータ2の回転に伴って発生する振動成分を減衰させることができる。
 そして、制御部81は、外力推定部30Aから入力される外力推定値T’に基づいてトルク指令を補正し、補正したトルク指令Trefをモータ2へ出力する。
 このように、フィルタリング部73および減衰制御部74は、モータ制御装置8Aに設けられていてもよい。
 また、上述してきた各実施形態では、ノッチフィルタ7を外力推定器30や外力推定部30Aに設ける場合の例について説明したが、ノッチフィルタ7は、外力オブザーバ6と別体で、図2に示す制御ループ内の任意の場所に設けられてもよい。
 また、ノッチフィルタ7に入力される入力信号は、モータ2の回転に伴って発生する振動成分を含んだ信号であればよく、外力推定値Tに限定されない。たとえば、ノッチフィルタ7をトルク検出部4の後段に設けて、トルク検出値Tfbに含まれる振動成分をノッチフィルタ7によって減衰させるようにしてもよい。
(第4の実施形態)
 次に、第4の実施形態に係るロボットシステムの構成について図9を参照して説明する。図9は、第4の実施形態に係るロボットシステムの構成を示すブロック図である。
 図9に示すように、第4の実施形態に係るロボットシステム100Bが備える第1関節部21Bは、第1の実施形態に係る第1関節部21(図2参照)から減速機3およびトルク検出部4を除外した構成を有する。
 上述してきた各実施形態では、減速機3が振動成分を発生させる場合の例を示したが、振動成分は、減速機3だけではなく、たとえばモータ2自体の構造等に起因して発生する場合もある。つまり、第4の実施形態に係るロボットシステム100Bのように減速機3を有していない系においても、モータ2の回転に伴って発生する振動成分が外力推定値Tに含まれる可能性がある。したがって、このような系に対してロボットシステム100Bを適用した場合であっても、モータ2の回転に伴って発生する振動成分を減衰させることができる。
 また、第4の実施形態に係る外力オブザーバ6Bは、上述してきた外力オブザーバ6とは異なり、モータ制御装置8から出力されるトルク指令Trefを用いて外力推定値Tを推定する。かかる場合、外力オブザーバ6Bは、第1アーム部12等に働く外力、摩擦力およびその他の力の総和、すなわち、外乱を「外力」として推定する。
 ここで、第4の実施形態に係る外力オブザーバ6Bの構成例について図10を参照して説明する。図10は、第4の実施形態に係る外力オブザーバ6Bの構成例を示すブロック図である。図10に示すように、外力オブザーバ6Bは、微分器65と、慣性モーメント乗算部66と、減算部67と、ローパスフィルタ68とを備える。
 微分器65は、速度検出値vfbを微分することによって加速度検出値Afbを算出し、算出した加速度検出値Afbを慣性モーメント乗算部66へ出力する。慣性モーメント乗算部66は、微分器65から入力された加速度検出値Afbに対してモータ軸周りの慣性モーメントを乗算することによって加速トルク検出値TAfbを算出し、算出した加速トルク検出値TAfbを減算部67へ出力する。
 減算部67は、加速トルク検出値TAfbからトルク指令Trefを減算し、得られた値T’’をローパスフィルタ68へ出力する。ローパスフィルタ68は、T’’にローパスフィルタをかけた値を外力推定値Tとして出力する。
 このように、外力オブザーバ6Bは、トルク検出値Tfbに代えてトルク指令Trefを用いて外力推定値Tを算出してもよい。
 なお、ここでは、外力推定器30Bが第1関節部21Bに設けられる場合の例を示したが、第3の実施形態と同様、外力推定器30Bに代えて、外力推定器30Bに相当する処理部をモータ制御装置8に設けてもよい。
(第5の実施形態)
 次に、第5の実施形態に係るロボットシステムの構成について図11を参照して説明する。図11は、第5の実施形態に係るロボットシステムの構成を示すブロック図である。
 図11に示すように、第5の実施形態に係るロボットシステム100Cは、ノッチフィルタ7C1,7C2をさらに備える。ノッチフィルタ7C1は、第1関節部21Cのノッチフィルタ7の後段に設けられ、ノッチフィルタ7C2は、第2関節部22Cのノッチフィルタ7の後段に設けられる。
 また、第1関節部21Cおよび第2関節部22Cは、上述した第1の実施形態に係る第1関節部21と同様の構成である。以下では、第1関節部21Cについてのトルク指令、回転位置、トルク検出値、速度検出値、外力推定値をそれぞれ「Tref_1」、「Pfb_1」、「Tfb_1」、「vfb_1」、「Td_1(Td_1’)」とする。また、第2関節部22Cについては、それぞれ「Tref_2」、「Pfb_2」、「Tfb_2」、「vfb_2」、「Td_2(Td_2’)」とする。
 ここで、第1関節部21Cの信号には、ロボットシステム100C内の他の系(たとえば、第2関節部22C)において発生した振動成分も含まれ得る。第2関節部22Cにおいても同様である。
 そこで、第5の実施形態に係るロボットシステム100Cでは、ノッチフィルタ7C1,7C2をさらに設け、他の系において発生した振動成分をノッチフィルタ7C1,7C2によって減衰させることとした。
 たとえば、ノッチフィルタ7C1には、第1関節部21Cのノッチフィルタ7から出力される外力推定値、すなわち、第1関節部21Cの減速機3による振動成分が減衰された外力推定値と、第2関節部22Cの速度検出部5から出力される速度検出値vfb_2とが入力される。そして、ノッチフィルタ7C1は、速度検出値vfb_2に応じたノッチ中心周波数ωおよびノッチ深さνで、第1関節部21Cのノッチフィルタ7から出力される外力推定値をフィルタリングする。これにより、第1関節部21Cのノッチフィルタ7から出力される外力推定値に含まれる、第2関節部22Cにおいて発生した振動成分を減衰させることができる。フィルタリング後の外力推定値Td_1’は、モータ制御装置8へ出力される。
 また、ノッチフィルタ7C2には、第2関節部22Cのノッチフィルタ7から出力される外力推定値、すなわち、第2関節部22Cの減速機3による振動成分が減衰された外力推定値と、第1関節部21Cの速度検出部5から出力される速度検出値vfb_1とが入力される。そして、ノッチフィルタ7C2は、速度検出値vfb_1に応じたノッチ中心周波数ωおよびノッチ深さνで、第2関節部22Cのノッチフィルタ7から出力される外力推定値をフィルタリングする。これにより、第2関節部22Cのノッチフィルタ7から出力される外力推定値に含まれる、第1関節部21Cにおいて発生した振動成分を減衰させることができる。フィルタリング後の外力推定値Td_2’は、モータ制御装置8へ出力される。
 このように、第5の実施形態に係るロボットシステム100Cによれば、ノッチフィルタ7C1,7C2を設けることで、他の系において発生した振動成分も減衰させることができる。
 なお、ここでは、第1関節部21Cのノッチフィルタ7の後段に、第2関節部22Cにおいて発生した振動成分を減衰させるためのノッチフィルタ7C1を設ける場合の例を示した。しかし、これに限ったものではなく、ノッチフィルタ7の後段には、ノッチフィルタ7C1に加え、第2関節部22C以外の関節部において発生した振動成分を減衰させるノッチフィルタがさらに設けられてもよい。
 また、ここでは、ノッチフィルタ7C1,7C2が、たとえば第1関節部21Cおよび第2関節部22Cの外部に設けられる場合の例を示したが、ノッチフィルタ7C1,7C2は、それぞれ第1関節部21Cおよび第2関節部22Cの内部に設けられてもよいし、モータ制御装置8の内部に設けられてもよい。
 また、第3の実施形態と同様、外力推定器30を第1関節部21Cおよび第2関節部22Cから除外し、外力推定器30に相当する処理部をモータ制御装置8に設けてもよい。
 また、第4の実施形態と同様、外力オブザーバ6は、トルク検出値Tfbに代えてトルク指令Trefを用いて外力推定値Tを算出してもよい。
 また、モータ2は、回転型に限らず直動型のリニアモータであってもよい。かかる場合、並進力が上述したトルクに相当し、並進速度が上述した回転速度に相当する。また、モータ2は、電気モータに限らず流体圧アクチュエータなどであってもよい。
 また、上述してきた各実施形態では、外力推定器30をロボット1に適用した例について説明したが、外力推定器30が適用されるロボットの構成は、図1に示したものに限定されない。また、外力推定器30は、ロボット1に限らず、モータ2によって駆動されるあらゆるものに適用することができる。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
  1 ロボット
  2 モータ
  3 減速機
  4 トルク検出部
  5 速度検出部
  6 外力オブザーバ
  7 ノッチフィルタ
  8 モータ制御装置
 10 基台
 11 胴部
 12 第1アーム部
 13 第2アーム部
 14 リスト部
 20 旋回部
 21~24 第1~第4関節部
 30 外力推定器
 71 第1の入力部
 72 第2の入力部
 73 フィルタリング部
 74 減衰制御部
 75 出力部
100 ロボットシステム

Claims (12)

  1.  モータの回転に伴って発生する振動成分を含む信号を取得して、前記振動成分の減衰を行うフィルタリング部と、
     前記モータの回転速度に応じて前記減衰の減衰量を制御する減衰制御部と
     を備えることを特徴とするノッチフィルタ。
  2.  前記減衰制御部は、
     前記モータの回転速度に応じて前記減衰の減衰帯域の中心周波数を制御すること
     を特徴とする請求項1に記載のノッチフィルタ。
  3.  前記フィルタリング部は、
     前記モータの回転に伴って減速機が発生させる前記振動成分を含む信号を取得すること
     を特徴とする請求項1に記載のノッチフィルタ。
  4.  前記フィルタリング部は、
     前記モータの回転速度に応じて変動する前記振動成分を含む信号を取得すること
     を特徴とする請求項3に記載のノッチフィルタ。
  5.  前記フィルタリング部は、
     前記モータの回転に伴ってハーモニック減速機が発生させる前記振動成分を含む信号を取得すること
     を特徴とする請求項3に記載のノッチフィルタ。
  6.  前記減衰制御部は、
     前記中心周波数を前記回転速度に比例した周波数に変更すること
     を特徴とする請求項2に記載のノッチフィルタ。
  7.  前記減衰制御部は、
     前記中心周波数を前記回転速度のn倍(nは2以上の整数)の周波数に変更すること
     を特徴とする請求項2に記載のノッチフィルタ。
  8.  前記減衰制御部は、
     前記回転速度が所定の閾値以上である場合には、前記回転速度に依らず前記減衰量を0よりも多い一定量とすること
     を特徴とする請求項1に記載のノッチフィルタ。
  9.  前記減衰制御部は、
     前記回転速度が第1の閾値以下である場合には前記減衰量を0とし、かつ、前記回転速度が前記第1の閾値よりも大きい第2の閾値以上である場合には、前記回転速度に依らず前記減衰量を0よりも多い一定量とすること
     を特徴とする請求項1に記載のノッチフィルタ。
  10.  モータのトルクに関する情報と回転速度に関する情報とに基づいて外力推定値を生成する外力オブザーバと、
     前記外力オブザーバから出力される外力推定値に含まれる、前記モータの回転に伴って発生する振動成分を減衰させるノッチフィルタと
     を備え、
     前記ノッチフィルタは、
     前記外力推定値を取得して、前記振動成分の減衰を行うフィルタリング部と、
     前記モータの回転速度に応じて前記減衰の減衰量を制御する減衰制御部と
     を備えることを特徴とする外力推定器。
  11.  モータの回転に伴って発生する振動成分を含む信号を取得して、前記振動成分の減衰を行うフィルタリング部と、
     前記モータの回転速度に応じて前記減衰の減衰量を制御する減衰制御部と
     を備えることを特徴とするモータ制御装置。
  12.  各関節部がモータを含んで構成されるロボットと、
     前記モータのトルクに関する情報と回転速度に関する情報とに基づいて外力推定値を生成する外力オブザーバと、
     前記外力オブザーバから出力される外力推定値に含まれる、前記モータの回転に伴って発生する振動成分を減衰させるノッチフィルタと
     を備え、
     前記ノッチフィルタは、
     前記外力推定値を取得して、前記振動成分の減衰を行うフィルタリング部と、
     前記モータの回転速度に応じて前記減衰の減衰量を制御する減衰制御部と
     を備えることを特徴とするロボットシステム。
PCT/JP2013/058994 2013-03-27 2013-03-27 ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム WO2014155559A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015507766A JPWO2014155559A1 (ja) 2013-03-27 2013-03-27 ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム
PCT/JP2013/058994 WO2014155559A1 (ja) 2013-03-27 2013-03-27 ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム
US14/864,876 US20160016310A1 (en) 2013-03-27 2015-09-25 Notch filter, external force estimator, motor control apparatus, and robotic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058994 WO2014155559A1 (ja) 2013-03-27 2013-03-27 ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/864,876 Continuation US20160016310A1 (en) 2013-03-27 2015-09-25 Notch filter, external force estimator, motor control apparatus, and robotic system

Publications (1)

Publication Number Publication Date
WO2014155559A1 true WO2014155559A1 (ja) 2014-10-02

Family

ID=51622637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058994 WO2014155559A1 (ja) 2013-03-27 2013-03-27 ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム

Country Status (3)

Country Link
US (1) US20160016310A1 (ja)
JP (1) JPWO2014155559A1 (ja)
WO (1) WO2014155559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196294A (zh) * 2015-10-29 2015-12-30 长春工业大学 采用位置测量的可重构机械臂分散控制系统及控制方法
JP2019162011A (ja) * 2018-03-16 2019-09-19 株式会社リコー モータ制御装置及びモータ制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717093B2 (ja) * 2016-07-15 2020-07-01 Agc株式会社 合わせガラス
JP7012223B2 (ja) * 2016-09-29 2022-01-28 パナソニックIpマネジメント株式会社 電動機制御装置および電動機制御方法
RU171584U1 (ru) * 2017-01-09 2017-06-06 Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП") Перестраиваемый режекторный фильтр
JP7051045B2 (ja) * 2017-11-08 2022-04-11 オムロン株式会社 移動式マニピュレータ、移動式マニピュレータの制御方法及びプログラム
CN109474222B (zh) * 2018-12-28 2020-10-30 中国地质大学(武汉) 基于陷波滤波器的变负载伺服系统振动抑制方法及系统
JP7388870B2 (ja) * 2019-10-18 2023-11-29 ファナック株式会社 ロボットシステムおよび制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263743A (ja) * 2009-05-11 2010-11-18 Toyota Motor Corp 電圧変換器制御装置
JP2011035967A (ja) * 2009-07-30 2011-02-17 Sumitomo Heavy Ind Ltd 電動機械の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710965B2 (en) * 2001-10-02 2004-03-23 Seagate Technology Llc Phase-advanced filter for robust resonance cancellation
US7689320B2 (en) * 2005-12-20 2010-03-30 Intuitive Surgical Operations, Inc. Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations
US20070170379A1 (en) * 2006-01-24 2007-07-26 Nikon Corporation Cooled optical filters and optical systems comprising same
US7528203B2 (en) * 2006-09-14 2009-05-05 Exxonmobil Chemical Patents Inc. Cyclic olefin copolymers, and methods of making the same
WO2008066035A1 (fr) * 2006-11-30 2008-06-05 Mitsubishi Electric Corporation Système de commande d'isolation sismique
JP2008312339A (ja) * 2007-06-14 2008-12-25 Panasonic Corp 電動機の制御装置
US20090218521A1 (en) * 2008-02-08 2009-09-03 Nikon Corporation Gaseous neutral density filters and related methods
JP5124311B2 (ja) * 2008-03-07 2013-01-23 富士機械製造株式会社 作動装置
US9895813B2 (en) * 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
JP2012525591A (ja) * 2009-04-27 2012-10-22 プロテイン・デイスカバリー・インコーポレーテツド プログラム可能な電気泳動ノッチフィルターシステムと方法
JP5170175B2 (ja) * 2010-06-30 2013-03-27 株式会社安川電機 ロボットシステム
JP5324623B2 (ja) * 2011-06-24 2013-10-23 本田技研工業株式会社 車両用駆動制御装置
US8874258B2 (en) * 2011-09-13 2014-10-28 Persimmon Technologies Corporation Method for transporting a substrate with a substrate support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263743A (ja) * 2009-05-11 2010-11-18 Toyota Motor Corp 電圧変換器制御装置
JP2011035967A (ja) * 2009-07-30 2011-02-17 Sumitomo Heavy Ind Ltd 電動機械の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196294A (zh) * 2015-10-29 2015-12-30 长春工业大学 采用位置测量的可重构机械臂分散控制系统及控制方法
JP2019162011A (ja) * 2018-03-16 2019-09-19 株式会社リコー モータ制御装置及びモータ制御方法

Also Published As

Publication number Publication date
US20160016310A1 (en) 2016-01-21
JPWO2014155559A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014155559A1 (ja) ノッチフィルタ、外力推定器、モータ制御装置およびロボットシステム
JP6305283B2 (ja) 動力装置の制御システム
JP4685071B2 (ja) モータ制御装置及びモータ制御方法
JP5919142B2 (ja) 駆動装置
JP5644409B2 (ja) 電動機の位置制御装置
WO2020070988A1 (ja) 振動抑制装置、振動抑制方法及びプログラム
JP6197923B1 (ja) 制御システム
JP6007831B2 (ja) 動力系の試験装置
JP4914979B2 (ja) モータ制御装置およびモータ制御方法
JP2007060767A (ja) 機械定数同定装置を備えたモータ制御装置
JP2018165618A (ja) 信号処理装置、検出装置、物理量測定装置、電子機器及び移動体
JP5176729B2 (ja) 慣性モーメント同定器を備えたモータ制御装置
JP7120821B2 (ja) 制御装置、制御方法及びプログラム
JP6064694B2 (ja) 動力系の試験装置
KR101417486B1 (ko) 착용로봇의 의도토크 추출방법 및 추출시스템
JP2016177513A (ja) タンデム位置制御装置
JP2007020297A (ja) システム同定装置およびそのシステム同定方法
Kubus et al. A sensor fusion approach to angle and angular rate estimation
JP7317597B2 (ja) 制御装置
CN112134504A (zh) 进行惯量评价的控制装置以及惯量评价方法
TWI506943B (zh) 運用於時變信號的信號處理裝置
JP5444929B2 (ja) シャシーダイナモメータシステム
KR101147133B1 (ko) 각도측정을 위한 상보필터 및 그 방법
JP5673087B2 (ja) モータ制御装置
JP2023084722A (ja) トルク補償装置及びトルク補償方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879745

Country of ref document: EP

Kind code of ref document: A1