WO2014150889A1 - Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product - Google Patents

Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product Download PDF

Info

Publication number
WO2014150889A1
WO2014150889A1 PCT/US2014/024467 US2014024467W WO2014150889A1 WO 2014150889 A1 WO2014150889 A1 WO 2014150889A1 US 2014024467 W US2014024467 W US 2014024467W WO 2014150889 A1 WO2014150889 A1 WO 2014150889A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurity
halogenated ethylene
process according
hfo
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2014/024467
Other languages
English (en)
French (fr)
Inventor
Haiyou Wang
Hsueh Sung Tung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51530207&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014150889(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP25152123.3A priority Critical patent/EP4549417A3/en
Priority to ES14767769T priority patent/ES2972152T3/es
Priority to EP21176638.1A priority patent/EP3925946A1/en
Priority to JP2016501546A priority patent/JP2016511285A/ja
Priority to MX2015010801A priority patent/MX378625B/es
Priority to KR1020237022959A priority patent/KR20230107715A/ko
Priority to EP14767769.4A priority patent/EP2970058B1/en
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to KR1020257033234A priority patent/KR20250152674A/ko
Priority to CN201480015919.6A priority patent/CN105026351A/zh
Priority to PL14767769.4T priority patent/PL2970058T3/pl
Priority to KR1020217033846A priority patent/KR102554663B1/ko
Priority to KR1020257033235A priority patent/KR20250150693A/ko
Priority to KR1020157029299A priority patent/KR20150131272A/ko
Publication of WO2014150889A1 publication Critical patent/WO2014150889A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • This invention relates to methods for removing impurities included in fluorinated organic compounds, especially methods for removing unsaturated impurities included in fluorinated olefins, and even more particularly to methods for removing halogenated ethylene impurities included in 2,3,3,3-tetrafluoro-l-propene (HFO-1234yf), 1,3,3,3- tetrafluoro-l-propene (HFO-1234ze) and l-chloro-3,3,3-trifluoro-l-propene (HFO-1233zd).
  • HFO-1234yf 2,3,3,3-tetrafluoro-l-propene
  • HFO-1234ze 1,3,3,3- tetrafluoro-l-propene
  • HFO-1233zd l-chloro-3,3,3-trifluoro-l-propene
  • HFOs hydrofluoroolefins
  • tetrafluoropropenes including 2,3,3,3- tetrafluoro-l-propene (HFO-1234yf), and 1,3,3,3-tetrafluoro-l-propene (HFO-1234ze)
  • HFO-1234ze 1,3,3,3-tetrafluoro-l-propene
  • HFO- 1234yf hydrochlorofluorocarbons
  • HFO- 1234yf has also been shown to be a low global warming compound with low toxicity and, hence, can meet increasingly stringent requirements for refrigerants in mobile air conditioning. Accordingly, compositions containing these hydrofluoroolefins are among leading materials being developed for use in many of the aforementioned applications.
  • a manufacturing process for preparing one of the fluoroolefins, HFO-1234yf, is disclosed in US Patent No. 8,058,486, and uses 1,1,2,3-tetrachloropropene (HCO-1230xa) as starting raw material.
  • the process consists of the following three steps: 1) HCO-1230xa + HF— > 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) + HC1 in a vapor phase reactor charged with a solid hydrofluorination catalyst such as fluorinated chromia, 2) HCFO- 1233xf + HF -> 2-chloro-l,l,l,2-tetrafluoropropane (HCFC-244bb) in a liquid phase reactor charged with a liquid hydrofluorination catalyst such as fluorinated SbCls, and 3) HCFC-244bb -> HFO-1234yf in a vapor phase reactor.
  • the other fluoroolefins identified hereinabove are prepared similarly from different starting materials. Each of them is prepared from the dehydrochlorination of a
  • HFO-1234ze is formed from the dehydrochlorination of l-chloro-3,3,3-trifluoropropane (244fa) in both the Z and E isomers.
  • HFO-1233zd is prepared from the dehydrochlorination from l,l-dichloro-3,3,3-trifluoro-l- propene (243fa) in both the Z and E isomers.
  • one common method for removing impurities is via distillation.
  • the present inventors have unexpectedly found that the final HFO-1234yf, HFO- 1234ze and HCFO-1233zd products, which were obtained after the distillation of HFO- 1234yf, HFO-1234ze and HCFO-1233zd crude products, respectively still contained halogenated ethylene impurities.
  • halogenated ethylene impurities can be present in the fluoroolefin, e.g., HFO-1234yf, HFO-1234ze and HCFO-1233zd, product stream in an amount as much as 0.1 % by weight, thereby reducing the concentration and purity of the respective fluoroolefin, e.g., HFO-1234yf, HFO-1234ze and HCFO-1233zd, product stream in an amount as much as 0.1 % by weight, thereby reducing the concentration and purity of the respective
  • HCFO-1140 is a carcinogenic agent.
  • the toxicity of other halogenated ethylenes is unknown. Due to at least these reasons, it is undesirable for these halogenated ethylenes to be present in the HFO-1234yf final product.
  • the presence of these halogenated ethylenes may cause detrimental impact on the efficiency of the production of fluoroolefins, such as HFO-1234yf, HFO-1234ze and HCFO-1233zd. Therefore, there is a need for means by which these unsaturated impurities can be removed or at least reduced from the HFO-1234yf product.
  • the present invention provides a method for removing halogenated ethylene impurities included in the fluoroolefin, e.g., HFO-1234yf product.
  • the method comprises contacting the product stream comprising the fluoroolefin product and the halogenated ethylene impurities with a physical adsorption agent of high surface area.
  • adsorption agents include silica, activated carbons, cross linked polymers, amorphous and semicrystalline s-PS (syndiotactic polystyrene), various zeolite molecular sieves (such as 4A, 5A, 13X, ZSM-5, zeolite Beta, zeolite USY, and the like), and combinations thereof.
  • the method comprises contacting the product stream comprising the fluoroolefin product and said halogenated ethylene impurities with a chemisorption catalyst, which is a trivalent metal oxide, or oxyhalide, or halide, or combination thereof.
  • a chemisorption catalyst which is a trivalent metal oxide, or oxyhalide, or halide, or combination thereof.
  • the metals are chromium, iron and aluminum.
  • Non- limiting examples of such chemisorption catalysts include bulk or supported chromium oxide, chromium oxychloride, chromium oxyfluoride, chromium chloride, chromium fluoride, aluminium oxide, aluminium oxychloride, aluminium oxyfluoride, aluminium chloride, aluminium fluoride, iron (III) oxide, iron (III) oxychloride, iron (III) oxyfluoride, ferric chloride, ferric fluoride, and various combinations of these.
  • the useful supports include, but are not limited to, silica, alumina, and activated carbon.
  • a halogenation pre-treatment is conducted by using HC1 or HF.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • "or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B is true (or present).
  • fluoroolefin means a molecule containing hydrogen, carbon, optionally chlorine, fluorine, and a carbon-carbon double bond.
  • hydrofluoroolefin means a molecule containing hydrogen, carbon, fluorine, and a carbon-carbon double bond.
  • fluoroalkane refers to an alkane having two or more carbon atoms containing hydrogen, carbon, fluorine, chlorine, whereby a chlorine atom and a hydrogen atom are substituted on two adjacent carbon atoms.
  • halogenated ethylene refers to an ethylene molecule wherein one or both carbon atoms are substituted by a halogen, such as fluorine or chlorine.
  • these halogenated ethylenes are impurities that are formed in the process of preparing HFO-1234yf, HFO-1234ze and HFO-1233zd products, especially during the dehydrochlorination step.
  • the ethylene impurity compounds may have 1, 2, 3 or 4 halogens thereon.
  • adsorbent refers to a material that has the ability to extract a substance from a gas, liquid or solid by causing the substance to adhere to the material without changing the properties thereof.
  • the adsorbent is a material that can remove halogenated ethylenes from a gas or liquid stream comprised of the halogenated ethylenes and the HFO-1234yf product, whereby the adsorbent has functionality to facilitate its preferential combination with the halogenated ethylene molecules and/or a pore opening sufficiently large to allow the halogenated ethylene molecules to enter into its interior while excluding the fluoroolefin, such as HFO-1234yf, HFO-1234ze and HCFO-1233zd molecules.
  • adsorbents include activated carbons, zeolites, silica, amorphous and semicrystalline syndiotactic polystyrene, cross-linked polymers, and the like.
  • HFO-1234ze may exist as one of two configurational isomers, E or Z.
  • HFO-1234ze as used herein refers to the isomers, E-HFO-1234ze or Z-HFO-1234ze, as well as any combinations or mixtures of such isomers.
  • HCFO-1233zd also may exist as one of two configurational isomers, E or Z.
  • HCFO- 1233zd refers to the isomers, E- HCFO-1233zd or Z-HCFO-1233zd, as well as any combinations or mixtures of such isomers.
  • dehydrochlorination means a process during which hydrogen and chlorine on adjacent carbons in a molecule are removed.
  • an elevated temperature means a temperature higher than room temperature.
  • the present invention relates to a process for removing at least one halogenated ethylene impurities from fluoroolefins, especially those fluoroolefins generated from the dehydrochlorination of a fluoroalkane.
  • the process described herein is applicable for the removal of at least one halogenated ethylene impurity from a fluoroolefin, especially as a result of
  • an embodiment of the present invention is directed to a process for purifying HFO-1234yf product that is prepared by the process described herein by reducing the amount of halogenated ethylenes that may be present therein.
  • These impurities arise from the preparation of HFO-1234yf, such as from the
  • HFO-1234yf A process for preparing HFO-1234yf is described in U.S. Patent No. 8,084,653, the contents of which are incorporated by reference. As described hereinabove, the preparation of HFO-1234yf generally includes at least three reaction steps, as follows:
  • the starting material of the first reaction step may be represented by one or more chlorinated compounds according to Formulas I, II, and/or III:
  • CX 2 CC1-CH 2 X (Formula I)
  • X is independently selected from F, CI, Br, and I, provided that at least one X is not fluorine.
  • these compounds contain at least one chlorine, a majority of X is chlorine, or all X is chlorine.
  • such starting materials which, in certain embodiments includes 1,1,2,3-tetrachloropropene (HCO-1230xa) and/or 1,1,1,2,3-pentachloropropane (HCC- 240db) is reacted with anhydrous HF in a first vapor phase reactor (fluorination reactor) to produce a mixture of at least HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) and HC1.
  • the reaction can be carried out at a temperature of about 200-400°C and a pressure of about 0- 200 psig.
  • the effluent stream exiting the vapor phase reactor may optionally comprise additional components, such as un-reacted HF, heavy intermediates, HCFC-244bb, HFC- 245cb (1,1,1,2,2-pentafluoropropane), or the like.
  • This reaction may be conducted in any reactor suitable for a vapor phase fluorination reaction.
  • the reactor may be constructed from materials which are resistant to the corrosive effects of hydrogen fluoride and catalyst such as Hastalloy, Inconel, Monel.
  • the reactor is filled with a vapor phase fluorination catalyst.
  • Any fluorination catalysts known in the art may be used in this process. Suitable catalysts include, but are not limited to, chromium, aluminum, cobalt, manganese, nickel and iron oxides, hydroxides, halides, oxyhalides, inorganic salts thereof and their mixtures, any of which may be optionally halogenated.
  • Combinations of catalysts suitable for the present invention nonexclusively include Cr 2 0 3 , FeCl 3 /C, Cr 2 0 3 /Al 2 0 3 , Cr 2 0 3 /A1F 3 , Cr 2 0 3 /carbon, CoCl 2 /Cr 2 0 3 /Al 2 0 3 , NiCl 2 /Cr 2 0 3 /Al 2 0 3 , CoCl 2 /AlF 3 , NiCl 2 /AlF 3 and mixtures thereof.
  • Chromium oxide/aluminum oxide catalysts are described in U.S. Pat. No. 5,155,082, the contents of which are incorporated herein by reference.
  • Chromium (III) oxides such as crystalline chromium oxide or amorphous chromium oxide are preferred with amorphous chromium oxide being most preferred.
  • Chromium oxide (Cr 2 0 3 ) is a commercially available material which may be purchased in a variety of particle sizes. Fluorination catalysts having a purity of at least 98% are preferred. The fluorination catalyst is present in an excess but in at least an amount sufficient to catalyze the reaction.
  • This first step of the reaction is not necessarily limited to a vapor phase reaction, as described above, but may also be performed using a liquid phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 20070197842, the contents of which are incorporated herein by reference. It is also contemplated that the reaction can be carried out batch wise, continuously, or a combination of these.
  • the reaction can be catalytic or non-catalytic.
  • Lewis acid catalysts such as metal-halide catalysts, including antimony halides, tin halides, thallium halides, iron halides, and combinations of two or more of these, may be employed.
  • metal chlorides and metal fluorides are employed, including, but not limited to, SbCl 5 , SbCl 3 , SbFs, SnCl 4 , TiCl 4 , FeCl 3 and combinations of two or more of these.
  • the effluent from the reactor may be optionally processed to achieve desired degrees of separation and/or other processing.
  • the product effluent may contain one or more impurities, such as, HC1, unconverted reactants, and/or other byproducts. These products may be removed using standard methods known or otherwise discussed herein.
  • HC1 for example, can be recovered by conventional distillation, or using water or caustic scrubbers, and the unreacted starting reagents isolated and recycled.
  • HCFO- 1233xf is converted to HCFC-244bb.
  • this step may be performed in the liquid phase in a liquid phase reactor, which may be TFE or PFA-lined. Such a process may be performed in a temperature range of about 70-120°C and about 50-120 psig.
  • Any liquid phase fluorination catalyst may be used in the invention.
  • a non- exhaustive list includes Lewis acids, transition metal halides, transition metal oxides, Group IVb metal halides, Group Vb metal halides, or combinations thereof.
  • Non-exclusive examples of liquid phase fluorination catalysts are antimony halide, tin halide, tantalum halide, titanium halide, niobium halide, molybdenum halide, iron halide, fluorinated chrome halide, fluorinated chrome oxide or combinations thereof.
  • liquid phase fluorination catalysts are SbCl 5 , SbCl 3 , SbFs, SnCl 4 , TaCl 5 , TiCl 4 , NbCl 5 , MoCl 6 , FeCl 3 , a fluorinated species of SbCl 5 , a fluorinated species of SbCl 3 , a fluorinated species of SnCl 4 , a fluorinated species of TaCl 5 , a fluorinated species of TiCl 4 , a fluorinated species of NbCl 5 , a fluorinated species of MoCl 6 , a fluorinated species of FeCl 3 , or combinations thereof.
  • Antimony pentachloride is most preferred.
  • These catalysts can be readily regenerated by any means known in the art if they become deactivated.
  • One suitable method of regenerating the catalyst involves passing a stream of chlorine through the catalyst. For example, from about 0.002 to about 0.2 lb per hour of chlorine can be added to the liquid phase reaction for every pound of liquid phase fluorination catalyst. This may be done, for example, for from about 1 to about 2 hours or continuously at a temperature of from about 65°C to about 100°C.
  • This second step of the reaction is not necessarily limited to a liquid phase reaction and may also be performed using a vapor phase reaction or a combination of liquid and vapor phases, such as that disclosed in U.S. Published Patent Application No. 20070197842, the contents of which are incorporated herein by reference.
  • the HCFO-1233xf containing feed stream is preheated to a temperature of from about 50°C to about 400°C, and is contacted with a catalyst and fluorinating agent.
  • Catalysts may include standard vapor phase agents used for such a reaction and fluorinating agents may include those generally known in the art, such as, but not limited to, hydrogen fluoride.
  • HCFC-244bb is fed to a second vapor phase reactor (dehydrochlorination reactor) to be dehydrochlorinated to make the desired product 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • This reaction can either be non-catalytic or it can contain a catalyst that can catalytically dehydrochlorinate HCFC-244bb to make HFO-1234yf.
  • the vessel contains catalyst, for example a fixed or fluid catalyst bed, packed with a suitable dehydrohalogenation catalyst, with suitable means to heat the reaction mixture to about the desired reaction temperature.
  • the catalysts, if present, for the dehydrochlorination reaction may be metal halides, halogenated metal oxides, neutral (or zero oxidation state) metal or metal alloy, or activated carbon in bulk or supported form.
  • Metal halide or metal oxide catalysts may include, but are not limited to, mono-, bi-, and tri-valent metal halides, oxides and their
  • Component metals include, but are not limited to, Cr , Fe , Mg ,
  • Component halogens include, but are not limited to, F “ , CI " , Br " , and ⁇ .
  • useful mono- or bi-valent metal halide include, but are not limited to, LiF, NaF, KF, CsF, MgF 2 , CaF 2 , LiCl, NaCl, KC1, and CsCl.
  • Halogenation treatments can include any of those known in the prior art, particularly those that employ HF, F 2 , HC1, Cl 2 , HBr, Br 2 , HI, and I 2 as the halogenation source.
  • metals, metal alloys and their mixtures are used.
  • Useful metals include, but are not limited to, Pd, Pt, Rh, Fe, Co, Ni, Cu, Mo, Cr, Mn, and combinations of the foregoing as alloys or mixtures.
  • the catalyst may be supported or unsupported.
  • Useful examples of metal alloys include, but are not limited to, SS 316, Monel 400, Incoloy 825, Alloy 20, Hastelloy, Inconel 600, and Inconel 625.
  • Catalysts that may be utilized in this step include activated carbon, stainless steel (e.g., SS 316), austenitic nickel- based alloys (e.g., Inconel 625), nickel, and in certain embodiments fluorinated 10%
  • reaction temperature for the dehydrohalogentation step ranges from about 200°C to about 800°C. In an embodiment, the reaction ranges from about 300°C to about 800°C, but, in another embodiment, it is conducted at a temperature from about 300°C, to about 500°C, for example, from about 400°C to about 500°C.
  • reaction pressure can be, for example, superatmospheric, atmospheric or under vacuum, and in certain embodiments, it ranges from about 1 to about 200 psia, for example, from about 1 to about 120 psia.
  • an inert diluent gas such as nitrogen, may be used in combination with the other reactor feed(s).
  • HCFC-244bb comprises from about 50% to greater than 99% by weight based on the combined weight of diluent and HCFC-244bb.
  • the effluent from the dehydrochlorination reactor in the aforementioned reaction may be processed to achieve desired degrees of separation and/or other processing.
  • the effluent generally contains HCl, unconverted HCFC-244bb, and HCFO-1233xf (which is mainly carried over from the previous step of HCFO-1233xf hydrofluonnation).
  • HCl is then recovered from the result of the dehydrochlorination reaction. Recovery of HCl is conducted by conventional distillation where it is removed from the distillate. Alternatively, HCl can be recovered or removed by using water or caustic scrubbers. When a water extractor is used, HCl is removed as an aqueous solution. When a caustic solution is used, HCl is removed from the system as a chloride salt in aqueous solution.
  • the organic stream may be sent to a distillation column for separation.
  • HFO-1234yf collected from the overhead of the column, may be sent to another column for further purification, while a fraction of the mixture of HCFO-1233xf and HCFC-244bb, accumulated in the reboiler, may be sent back to the dehydrochlorination reactor for the recycle of HCFC-244bb, and the rest to the HCFO-1233xf hydrofluorination reactor for the recycle of HCFO-1233xf.
  • the reactor effluent may be fed to a caustic scrubber or to a distillation column to remove the byproduct of HCl to produce an acid-free organic product which, optionally, may undergo further purification using one or any combination of purification techniques that are known in the art.
  • HCFC-244bb feed which can be formed from HCFO- 1233xf hydrofluorination as described in US 20090240090, the contents of which are incorporated herein by reference, is fed continuously to a vaporizer and the vaporized feed to a reactor. Due to incomplete conversion of HCFO-1233xf and its close boiling point to HCFC-244bb as well as the formation of azeotrope or azeotrope-like composition of HCFC-244bb and HCFO-1233xf under certain conditions, the separation of these two compounds is difficult. For this reason, the HCFC-244bb feed generally contains certain amount of HCFO-1233xf.
  • the dehydrochlorination reaction may be carried out under conditions to attain a HCFC-244bb conversion of about 5% or higher, about 20% or higher, or about 30% or higher.
  • HCO-1140 is a carcinogenic agent.
  • the toxicity of other halogenated ethylenes is unknown.
  • the presence of these halogenated ethylenes may cause detrimental impact on the efficiency of the HFO-1234yf production. Due to at least these reasons, it is undesirable for these halogenated ethylenes to be present in the HFO-1234yf final product.
  • the present invention provides methods for removing said halogenated ethylenes from the HFO-1234yf product.
  • the inventors have surprisingly found the presence of halogenated ethylene impurities from the fluoroolefins formed from the dehydrochlorination of other fluoroalkanes.
  • the present process also reduces the amount of at least one of those halogenated ethylene impurities and/or substantially removes at least one of those halogenated ethylene impurities from the fluoroolefins.
  • the product stream contains the fluoroolefin, e.g. , HFO-1234yf , with the impurities, including the halogenated ethylenes.
  • the amount of the fluoroolefin, e.g., HFO-1234yf, present in the mixture is at least 50 wt % based on the total weight of the mixture.
  • the amount of fluoroolefin, e.g. , HFO-1234yf, in the mixture is at least 70 wt % based on the total weight of the mixture.
  • the amount of fluoroolefin, e.g. , HFO-1234f, in the mixture is at least 90 wt % based on the total weight of the mixture.
  • the method comprises contacting the product stream comprising the fluoroolefin, e.g. , HFO-1234yf, product and said halogenated ethylene impurities with an adsorbent of sufficiently high surface area to remove the halogenated ethylene impurities.
  • the fluoroolefin e.g. , HFO-1234yf
  • Non-limiting examples of such adsorption agents include activated carbons, cross linked polymers, amorphous and semicrystalline s-PS (syndiotactic polystyrene), silica, zeolite molecular sieves (such as 4A, 5 A, AW-500, ZSM-5, 13X, zeolite beta, zeolite USY, and the like.), and combinations thereof.
  • adsorbents is activated carbon.
  • activated carbons can be utilized, such as powdered activated carbon, granular activated carbon and extruded activated carbon.
  • the adsorption efficiency and adsorption capacity of the activated carbon depend upon the particle size of the activated carbon in a dynamic flow system.
  • the activated carbon has an average particle size range of about 0.005 millimeter to about 10 millimeters.
  • the activated carbon has an average particle size range of about 0.04 millimeter to about 5 millimeters. In another embodiment, the activated carbon has an average particle size range of about 0.1 millimeter to about 2 millimeters.
  • the adsorption capacity of a given activated carbon may also be improved by removing the ash content of the carbon. This may be done by a standard technique such as acid wash.
  • the term "activated carbon” includes any carbon with a relatively high surface area such as from about 50 to about 3000 m 2 /g or from about 100 to about 2000 m 2 /g (e.g. from about 200 to about 1500 m 2 /g or about 300 to about 1000m 2 /g).
  • the activated carbon may be derived from any carbonaceous material, such as coal (e.g. charcoal), nutshells (e.g. coconut) and wood. Any form of activated carbon may be used, such as powdered, granulated, extruded and pelleted activated carbon.
  • activated carbon includes the activated carbon which has been modified (e.g. impregnated) by additives which modify the functionality of the activated carbon and facilitate its combination with the compounds it is desired to remove.
  • suitable additives include metals or metal compounds, and bases.
  • Typical metals include transition, alkali or alkaline earth metals, or salts thereof.
  • suitable metals include Na, K, Cr, Mn, Au, Fe, Cu, Zn, Sn, Ta, Ti, Sb, Al, Co, Ni, Mo, Ru, Rh, Pd and/or Pt and/or a compound (e.g. a halide, hydroxide, carbonate) of one or more of these metals.
  • Alkali metal (e.g. Na or K) salts are currently a preferred group of additive for the activated carbon, such as halide, hydroxide or carbonate salts of alkali metals salts. Hydroxide or carbonate salts of alkali metals salts are bases.
  • the impregnated activated carbon can be prepared by any means known in the art, for example soaking the carbon in a solution of the desired salt or salts and evaporating the solvent.
  • activated carbons examples include those available from Chemviron Carbon, such as Carbon 207C, Carbon STIX, Carbon 209M and Carbon 207EA and Carbon STIX.
  • Chemviron Carbon such as Carbon 207C, Carbon STIX, Carbon 209M and Carbon 207EA and Carbon STIX.
  • any activated carbon may be used with the invention, provided they are treated and used as described herein.
  • An activated carbon having a particle size range of 0.595 millimeters.times.1.68 millimeters (12.times.30 mesh) is available from the Calgon Corporation as Calgon PCB (Pittsburgh coconut based) carbon.
  • Another activated carbon having a particle size range of 0.105 millimeters. times.0.595 millimeters (30.times.140 mesh) is available from the Calgon Corporation as Calgon PCB (Pittsburgh coconut based) carbon.
  • Another activated carbon having a particle size range of 0.42 millimeters.times.1.68 millimeters (12.times.40 mesh) is available from the Calgon Corporation as Calgon CAL (bituminous coal based) carbon.
  • cross-linked polymers which contain short side chains (cross links) that connect different polymer chains into a "network".
  • a cross-link is a bond that links one polymer chain to another.
  • Cross-linked polymers are usually insoluble (don't dissolve) in solvents because the polymer chains are tied together by strong covalent bonds.
  • Other polymers are usually soluble (they dissolve) in one or more solvents because it is possible to separate the polymer chains which are not covalently linked.
  • Crosslinking can be accomplished by a heat induced reaction between the polymers and a crosslinking agent.
  • Polymers may also be crosslinked by means of electron irradiation.
  • Non-limiting examples of polymers that can be cross-linked include polyethylene, polypropylene, polystyrene, etc.
  • Very high surface area materials based on crosslinking of swollen chloromethylated polystyrene were prepared via Friedel-Crafts alkylation reaction (J. Chromatogr. A, 2002, 965, 65-73).
  • Porous polymer adsorbent having a N 2 /BET specific surface area of 1466 m7e was prepared from precursor polystyrene beads cosslinked with 2% divinylbenzene (Chem.
  • s-PS is a polymer which forms co-crystalline phases (both clathrate and intercalate) with several guest molecules. By suitable solvent-extraction procedures, the guest molecules can be easily removed resulting in the nanoporous ⁇ form with a permanent cavity ( J. Chem. Mater., 2001, 13, 1506).
  • the ⁇ -nanoporous crystalline phase of s-PS presents high ethylene solubility and low ethylene diffusivity (J. Mater. Chem., 2008, 18, 1046-1050), which makes it suitable for the removal of ethylene and the like.
  • s-PS is available from Dow Chemical under trademark Questra.
  • Silica is another type of adsorbents that can be used to purify the HFO-1234yf and delete the halogenated ethylenes.
  • the silica is present in the form of a gel, which is available commercially.
  • Aluminosilicate molecular sieves are a further group of adsorbents that may be used in the subject invention.
  • the zeolites have pores having openings which are sufficiently large to allow the undesired compounds to enter into the interior of the zeolite whereby the undesired compounds are retained, whilst excluding the desired compound from entering the interior of the zeolite.
  • the zeolites used are those zeolites having pores which have openings which have a size across their largest dimension in the ranges indicated hereinabove. Examples of zeolite that can be used include 4A, 5A, AW- 500, ZSM-5, 13X, zeolite beta, zeolite USY, and the like.
  • pore opening in this context, it is referring to the mouth of the pore by which the undesired compound enters the body of the pore, where it may be retained.
  • the openings to the pores may be elliptically shaped, essentially circular or even irregularly shaped, but will generally be elliptically shaped or essentially circular.
  • the pore openings are essentially circular, they should have a diameter in the range of about 3 to about 10 A across their smaller dimension. They can still be effective at adsorbing compounds provided that the size of the openings across their largest dimension is in the range of from about 4 to about 8A.
  • the adsorbent has pores having elliptically shaped openings, which are below 6 A across their smaller dimension, they can still be effective at adsorbing compounds provided that the size of the openings across their largest dimension is in the range of from about 4 to about 8A.
  • the fluoroolefin e.g., the HFO-1234yf is in admixture with at least one halogenated ethylene is contacted with an adsorbent or chemisorption catalyst, as defined here.
  • the fluoroolefin, e.g., HFO-1234yf, in admixture with at least one halogenated ethylene is contacted with an absorbent.
  • the contacting step in this invention can be carried out using well-known chemical engineering practices for scrubbing organic compounds, which includes continuous, semi-continuous or batch operations.
  • the contacting step can be carried out by passing a stream of gaseous or liquid mixture of the fluoroolefin, e.g., HFO-1234yf, and the halogenated ethylene impurities through a fixed bed comprised of the adsorbent, as defined herein, in a vessel.
  • the fluoroolefin, e.g., HFO-1234yf, formed from the above process containing the halogenated ethylene impurities is mixed with the bed of adsorbent described hereinabove in a vessel equipped with an agitator.
  • the temperature during the contacting step is from about -20°C to about 200°C, while in other embodiments, the temperature during the contacting step is from about 0°C to about 100°C. In some embodiments, the temperature during the contacting step is from about 10°C to about 60°C, while in some embodiments of this invention, the temperature during the contacting step is about room temperature.
  • the pressure during the contacting step is not critical and can be in the range of 1 psi to about 400 psi.
  • the mixture of the fluoroolefin, e.g., HFO-1234yf, and at least one halogenated ethylene impurity is scrubbed with the adsorbent in the contacting vessel, and the halogenated impurity is removed.
  • the concentration of the at least one halogenated impurity in the mixture is reduced to 50 ppm or less.
  • the concentration of the at least one halogenated ethylene impurity in the mixture is reduced to 20 ppm or less.
  • the concentration of the at least one halogenated ethylene impurity in the mixture is reduced to 10 ppm or less.
  • the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 20% by weight relative to the amount originally present. In some embodiments of this invention, the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 50 % by weight relative to the amount originally present. In some embodiments of this invention, the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 80% by weight relative to the amount originally present.
  • the fluoroolefin, e.g., HFO-1234yf, having reduced concentration of the impurity obtained from the contacting step can be recovered using techniques well-known in the art, such as condensation or distillation.
  • the fluoroolefin e.g., HFO-1234yf
  • fluoroolefin e.g., HFO-1234yf
  • obtained from the contacting step may be further purified by fractional distillation.
  • the adsorbents eventually become saturated with the halogenated ethylenes, at which point the adsorbent will no longer effectively remove the contaminants from the hydrocarbon stream.
  • the adsorbent materials must be either replaced or regenerated.
  • the fluoroolefin, e.g., HFO-1234yf, streams before and after passing through the adsorber vessel are periodically analyzed by various means such as gas chromatography for the compositions of halogenated ethylenes present on the adsorbent.
  • the spent absorption can be regenerated and then can be reused.
  • the adsorbent is regenerated by passing a heated regeneration fluid stream comprised of a carrier gas, which is inert through the adsorbent bed, often in a countercurrent manner.
  • the regeneration step constitutes removal of at least one of the halogenated ethylenes from the adsorbent by heating and purging with an inert carrier gas.
  • Suitable carrier gases include, but are not limited to, inert gases such as N 2 , Ar, He, and various combinations of these gases.
  • Sufficient heat must be applied to raise the temperature of the adsorbent and the vessel to vaporize the liquid and offset the heat of wetting the adsorbent agent surface.
  • bed temperatures range from about 100 to about 400°C. For instance, 4A and 5 A molecular sieves require a temperature in the 200-315°C range.
  • a cooling period is necessary to reduce the absorption agent temperature to within 15°C of the temperature of the HFO-1234yf stream to be processed. This is most conveniently done by using the same gas stream as for heating, but with no heat input.
  • the gas flow is countercurrent to the gas flow during the heat cycle, and then in the same direction as in the gas flow during the heat cycle (relative to the process stream) during cooling. In this way the adsorbed contaminants are desorbed from the adsorbent and then removed by regenerated fluid stream, by which the contaminants are carried out of the bed.
  • small quantities of adsorption agent may be dried in the absence of a purge gas by oven heating followed by slow cooling in a closed drying system using a desiccant.
  • the regeneration of the adsorbent occurs simultaneously with the purging of the halogenated impurities.
  • the HFO-12343yf stream is passed through one or more beds of adsorbent, as defined herein to remove halogenated ethylenes, while simultaneously regenerating a used bed at the high temperatures, as described hereinabove, to desorb the halogenated ethylenes. The heated bed is then cooled and is ready for another adsorption step.
  • the method comprises contacting the product stream comprising the fluoroolefin, e.g., HFO-1234yf product, obtained from the process described herein, including the dehydrochlorination reaction, and said halogenated ethylene impurities with a chemisorption catalyst, which is a trivalent metal oxide, or oxyhalide, or halide, or combination thereof.
  • a chemisorption catalyst which is a trivalent metal oxide, or oxyhalide, or halide, or combination thereof.
  • Non-limiting examples of such chemisorption catalysts include chromium oxide, chromium oxychloride, chromium oxyfluoride, chromium chloride, chromium fluoride, aluminium oxide, aluminium oxychloride, aluminium oxyfluoride, aluminium chloride, aluminium fluoride, iron (III) oxide, iron (III) oxychloride, iron (III) oxyfluoride, ferric chloride, ferric fluoride, and various combinations of these, such as a mixture of one chromium compound with an aluminum compound identified hereinabove or a chromium compound with an iron compound identified hereinabove, or a mixture of an aluminum compound with an iron compound from the list hereinabove or a mixture of a chromium compound, aluminum compound and an iron compound from the list hereinabove or one or more of the chromium compounds, with one or more of the aluminum compounds and one or more of the iron compounds from the list hereinabove.
  • chemisorption catalysts may be supported or unsupported.
  • the useful supports include, but are not limited to, silica, alumina, and activated carbon.
  • metal oxide chromium oxide, aluminium oxide, iron (III) oxide, or any combination of these
  • a halogenation pre-treatment is conducted by using HC1 or HF.
  • the process involves passing the halogenated ethylenes contained HFO-1234yf stream through a catalytic bed charged with the chemisorption catalyst under conditions effective to remove the halogenated ethylenes.
  • the chemisorption temperature can vary from room temperature to 100°C.
  • an HCl-pretreated 35 wt% 0 ⁇ 2 0 3 / ⁇ - ⁇ 1 2 0 3 catalyst requires a temperature range of 70 - 75°C.
  • the pressure during the contacting step is not critical and can be in the range of 1 psi to about 400 psi.
  • the mixture of the fluoroolefin, e.g., 1234yf, and at least one halogenated ethylene impurity is scrubbed with a chemisorption catalyst, and the halogenated impurity is removed.
  • the concentration of the at least one halogenated impurity in the mixture is reduced to 50 ppm or less. In some embodiments of this invention, the concentration of the at least one halogenated ethylene impurity in the mixture is reduced to 20 ppm or less. In some embodiments of this invention, the concentration of the at least one halogenated ethylene impurity in the mixture is reduced to 10 ppm or less.
  • the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 20% by weight relative to the amount originally present. In some embodiments of this invention, the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 50 % by weight relative to the amount originally present. In some embodiments of this invention, the amount of the at least one halogenated ethylene impurity in the mixture is reduced at least about 80% by weight relative to the amount originally present.
  • the fluoroolefin, e.g., 1234yf, having reduced concentration of the impurity obtained from the contacting step can be recovered using techniques well-known in the art, such as condensation or distillation.
  • the fluoroolefin, e.g., HFO-1234yf, obtained from the contacting step may be further purified by fractional distillation.
  • the chemisorption catalyst eventually become saturated with the halogenated ethylenes, at which point the chemisorption catalyst will no longer effectively remove the contaminants from the hydrocarbon stream.
  • the chemisorption catalyst must be either replaced or regenerated.
  • the fluoroolefin, e.g., HFO-1234yf streams before and after catalytic reactor are periodically analyzed by various means such as, for example, by gas chromatography, to determine the amount of halogenated ethylenes present on the chemisorption catalyst.
  • the spent chemisorption catalyst can be regenerated using techniques known in the art and then can be re-used.
  • the chemisorption catalyst is regenerated by passing a heated regeneration fluid stream comprised of a carrier gas, which is inert through the adsorbent bed, often in a countercurrent manner.
  • regeneration constitutes removal of at least one of the halogenated ethylenes from the chemisorptions catalyst by heating and purging with a regeneration fluid, such as an inert gas, such as nitrogen, helium or argon.
  • a regeneration fluid such as an inert gas, such as nitrogen, helium or argon.
  • Sufficient heat must be applied to raise the temperature of the chemosorption catalyst and the vessel to vaporize the liquid and offset the heat of wetting the adsorbent agent surface.
  • the bed temperature is raised from about 200 to about 600°C, but in another embodiment, it ranges from about 300 to about 500°C, while in another embodiment, it ranges from about 350 to about 400°C.
  • a cooling period is necessary to reduce the temperature to within 15°C of the temperature of the HFO-1234yf stream to be processed.
  • the regeneration of the chemisorption catalyst involves passing the fluoroolefin, e.g., HFO- 1234yf stream through the chemisorption catalyst under conditions effective to remove halogenated ethylenes, while simultaneously, regenerating a previously used chemisorption catalyst at a high temperature to restore the activity of the catalyst. The chemisorption catalyst is then cooled and is ready for another chemisorption step. .
  • Regeneration of a chemisorption catalyst can also be carried out in continuous flow of an oxidizing agent.
  • oxidizing agents include, but are not limited to, H 2 0, C0 2 , 0 2 , air, O3, Cl 2 , N 2 0, and combinations of these.
  • the regeneration is carried out at a temperature of from about 200°C to about 600°C, while in another embodiment, it is carried out in a temperature of about 300°C to about 500°C. In still another embodiment, it is carried out in a temperature of about 350°C to about 400°C.
  • the oxidizing agent is diluted or provided in diluted form. Suitable diluents include inert gases such as N 2 , Ar, and He.
  • the oxidizing agent is oxygen and is diluted with nitrogen.
  • the dilution can be as high as practically possible, for example, up to and including about 0.1% volume of oxidizing agent.
  • the concentration of oxidizing agent after dilution ranges from about 0.5 to about 21 vol%, while in another embodiment, it ranges from about 1 to about 5 vol%, and, in another embodiment, it ranges from about 2 to about 3 vol%.
  • the fluoroolefin e.g., HFO-1234yf
  • the fluoroolefin e.g., HFO-1234yf
  • the amount of the halogenated ethylene in admixture with 1234yf is reduced considerably.
  • at least one of these additional impurities can be removed or at least reduced together with halogenated ethylenes.
  • an embodiment is directed to a process for removing at least one halogenated ethylene impurity admixed with a fluorolefin comprised of 2,3,3,3-tetrafluoro-l-propene , said process comprising: contacting said mixture comprised of said fluoroolefin and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
  • another embodiment is directed to a process comprising: (a) dehydrochlorinating 2-chloro-l,l,l,2-tetrafluoropropane to form a mixture comprising 2,3,3,3-tetrafluoropropene and at least one halogenated ethylene impurity;
  • a further embodiment is directed to a process for removing at least one halogenated ethylene impurity admixed with a fluorolefin comprised of 1,3,3,3-tetrafluoro-l-propene in either the E form or Z form, said process comprising: contacting said mixture comprised of said fluoroolefin and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
  • another embodiment is to a process comprising: (a) dehydrochlorinating l-chloro-1,3,3, 3-tetrafluoropropane to form a mixture comprising 1,3,3,3-tetrafluoro-l-propene in either the E form or Z form and at least one halogenated ethylene impurity;(b) contacting a mixture comprising 1,3,3,3- tetrafluoropropene and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity; and (c) recovering 1,3,3,3-tetrafluoropropene having reduced concentration of said halogenated ethylene impurity.
  • Another embodiment is directed to a process or removing at least one halogenated ethylene impurity admixed with a fluorolefin comprised of l-chloro-3,3,3-trifluoro-l- propene in either the Z- or E-form, said process comprising: contacting said mixture comprised of said fluoroolefin and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
  • another embodiment is to a process comprising: (a) dehydrochlorinating l,l-dichloro-3,3,3- trifluoropropane to form a mixture comprising l-chloro-3,3,3-trifluoro-l-propene in either the Z- or E-form and at least one halogenated ethylene impurity; (b) contacting said mixture comprising l-chloro-3,3,3-trifluoro-l-propene in either the Z- or E-form and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity; and recovering l-chloro-3,3,3-trifluoro-l-propene having reduced concentration of said halogenated ethylene impurity.
  • Example 1 illustrates the use of granule activated carbon (GAC) as a physical absorption agent to remove halogenated ethylene impurities included in HFO-1234yf product. This example also illustrates the regeneration of spent GAC.
  • GAC granule activated carbon
  • granule activated carbon (GAC), which has a specific surface area of about 1200 m 2 /g, is loaded into a cylindrical Inconel 625 tube reactor of 3 ⁇ 4" diameter.
  • the reactor is immersed into a 3 -zone electrical furnace. Process temperatures are recorded using a multi-point thermocouple running through the catalyst bed of about 4" high.
  • the purified HFO-1234yf feed is fed to the reactor at a rate of 12 g/h after being vaporized.
  • the reactor is kept at room temperature and 1 atm.
  • a regeneration of the spent GAC is followed. The purified HFO-1234yf feed is stopped first and then nitrogen flow is started at a rate of 100 ml/min.
  • Example 2 illustrates the use of 5A molsieve as a physical absorption agent to remove halogenated ethylene impurities included in HFO-1234yf product. This example also illustrates the regeneration of spent of 5A molsieve.
  • Example 2 illustrates the use of ZSM-5 molsieve as a physical absorption agent to remove halogenated ethylene impurities included in HFO-1234yf product. This example also illustrates the regeneration of spent of ZSM-5 molsieve.
  • Example 4 illustrates the use of 35 wt% Cr 2 0 3 /65 wt y-Al 2 0 3, pretreated with 0.5 vol HC1, as a chemisorption catalyst to remove halogenated ethylene impurities included in HFO-1234yf product and the regeneration of spent chromium oxide catalyst.
  • the 2% 0 2 /N 2 flow is switched to N 2 flow (100 ml/min) and the catalyst bed temperature is lowered to 75°C.
  • the regenerated chromium oxide catalyst is then tested under the same condition as used for the fresh chromium oxide catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
PCT/US2014/024467 2013-03-15 2014-03-12 Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product Ceased WO2014150889A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020157029299A KR20150131272A (ko) 2013-03-15 2014-03-12 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법
KR1020257033234A KR20250152674A (ko) 2013-03-15 2014-03-12 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법
EP21176638.1A EP3925946A1 (en) 2013-03-15 2014-03-12 Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
JP2016501546A JP2016511285A (ja) 2013-03-15 2014-03-12 2,3,3,3−テトラフルオロプロペン生成物中のハロゲン化エチレン不純物を除去する方法
MX2015010801A MX378625B (es) 2013-03-15 2014-03-12 Metodos para eliminar impurezas de etileno halogenado en producto de 2,3,3,3-tetrafluoropropeno.
KR1020237022959A KR20230107715A (ko) 2013-03-15 2014-03-12 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화에틸렌 불순물을 제거하는 방법
EP14767769.4A EP2970058B1 (en) 2013-03-15 2014-03-12 Method for the removal of halogenated ethylene impuritites form a fluoroolefin mixture
EP25152123.3A EP4549417A3 (en) 2013-03-15 2014-03-12 Methods for removing halogenated ethylene impurities in 2, 3, 3, 3-tetrafluoropropene product
PL14767769.4T PL2970058T3 (pl) 2013-03-15 2014-03-12 Sposób usuwania fluorowcowanego etylenu stanowiącego zanieczyszczenia z mieszaniny fluoroolefin
ES14767769T ES2972152T3 (es) 2013-03-15 2014-03-12 Método para eliminar impurezas de etileno halogenado de una mezcla de fluoroolefinas
CN201480015919.6A CN105026351A (zh) 2013-03-15 2014-03-12 去除2,3,3,3-四氟丙烯产物中的卤化乙烯杂质的方法
KR1020217033846A KR102554663B1 (ko) 2013-03-15 2014-03-12 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법
KR1020257033235A KR20250150693A (ko) 2013-03-15 2014-03-12 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361792669P 2013-03-15 2013-03-15
US61/792,669 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014150889A1 true WO2014150889A1 (en) 2014-09-25

Family

ID=51530207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/024467 Ceased WO2014150889A1 (en) 2013-03-15 2014-03-12 Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product

Country Status (10)

Country Link
US (3) US9447004B2 (enExample)
EP (3) EP3925946A1 (enExample)
JP (5) JP2016511285A (enExample)
KR (5) KR20250152674A (enExample)
CN (1) CN105026351A (enExample)
ES (1) ES2972152T3 (enExample)
MX (1) MX378625B (enExample)
PL (1) PL2970058T3 (enExample)
PT (1) PT2970058T (enExample)
WO (1) WO2014150889A1 (enExample)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528690A (en) * 2014-07-28 2016-02-03 Mexichem Amanco Holding Sa Process
WO2016159205A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 ハイドロフルオロオレフィン化合物を含有する組成物
WO2017031046A1 (en) * 2015-08-19 2017-02-23 Honeywell International Inc. Methods for removing acidic impurities from halogenated propenes
WO2018085512A3 (en) * 2016-11-02 2018-06-14 Honeywell International Inc. Process for reducing 3,3,3-trifluoropropyne in 2,3,3,3-tetrafluoropropene
US10301236B2 (en) 2015-05-21 2019-05-28 The Chemours Company Fc, Llc Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase
CN110023272A (zh) * 2016-11-30 2019-07-16 Agc株式会社 1-氯-2,3,3-三氟丙烯的制造方法
US20220280908A1 (en) * 2021-03-04 2022-09-08 American Air Liquide, Inc. Selective adsorption of halocarbon impurities containing cl, br and i in fluorocarbons or hydrofluorocarbons using adsorbent supported metal oxide

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250152674A (ko) * 2013-03-15 2025-10-23 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법
JP5915808B1 (ja) * 2014-12-24 2016-05-11 ダイキン工業株式会社 反応に用いた触媒の取り出し方法
CN108349755A (zh) * 2015-11-05 2018-07-31 霍尼韦尔国际公司 用于从通过1230xa得到1234yf的方法的无水或含水氢氯酸副产物中去除氟化有机物的方法
CN106345264B (zh) * 2016-07-19 2018-10-30 浙江博瑞电子科技有限公司 一种使用杂质分解剂的有机氟气体的提纯方法
JP7003934B2 (ja) * 2016-11-15 2022-02-04 Agc株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
CN107008103A (zh) * 2017-05-05 2017-08-04 上海化工研究院有限公司 一种物理吸附脱出气相中挥发性氯代烃的方法
US10233137B1 (en) * 2017-10-13 2019-03-19 Honeywell International Inc. Method for removing unsaturated halogenated impurities from 2,3,3,3-tetrafluoropropene (HFO-1234yf)
CN109985663B (zh) * 2017-12-29 2020-09-08 华中科技大学 一种对一锅法原位合成的Cu-SSZ-13分子筛进行后处理的方法
US10351494B1 (en) * 2018-01-08 2019-07-16 Honeywell International Inc. Systems and methods for reducing the formation of impurities during 244bb dehydrochlorination to 1234yf
CN119118781A (zh) 2018-06-06 2024-12-13 霍尼韦尔国际公司 用于HCFC-244bb的脱氯化氢以制备HFO-1234yf的方法
US10941091B2 (en) * 2018-12-03 2021-03-09 Honeywell International Inc. Processes for producing high-purity trifluoroiodomethane
EP3834914A1 (en) * 2019-12-13 2021-06-16 General Electric Technology GmbH Use of a transition metal oxide for removing fluorinated by-products from a gas, device and method for removing such by-products
CN112169767B (zh) * 2020-09-30 2022-06-10 中船(邯郸)派瑞特种气体股份有限公司 一种去除六氟丁二烯中氯烃杂质的吸附剂
JP7441985B2 (ja) * 2022-02-21 2024-03-01 ダイキン工業株式会社 分離方法
JP7744595B2 (ja) * 2023-08-23 2025-09-26 ダイキン工業株式会社 分離方法
TW202513512A (zh) * 2023-09-29 2025-04-01 美商科慕Fc有限責任公司 用於純化共同生產的hfo-e/z-1132之程序及其組成物
WO2025174927A1 (en) * 2024-02-16 2025-08-21 The Chemours Company Fc, Llc Purification of flourinated propenes by liquid phase adsorption

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155082A (en) 1991-04-12 1992-10-13 Allied-Signal Inc. Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
US5233107A (en) * 1991-04-27 1993-08-03 Hoechst Aktiengesellschaft Process for the purification of chlorofluorohydrocarbons
US7084315B2 (en) * 2000-05-04 2006-08-01 Ineos Fluor Holdings Limited Removal of (hydro)haloalkene impurities from product streams
US20070197842A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US20100193347A1 (en) * 2009-01-30 2010-08-05 Honeywell International Inc. Process for the purification of hydrofluoroolefins
US20110172470A1 (en) * 2008-09-11 2011-07-14 Central Glass Company, Limited Process for Producing Fluorinated Propene
US20110270001A1 (en) * 2009-02-03 2011-11-03 Central Glass Company ,Limited Method of Purifying (Z)-1-Chloro-3,3,3-Trifluoropropene
US8252964B2 (en) * 2008-07-03 2012-08-28 Arkema France Process for the purification of 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
US20120293937A1 (en) 2011-05-18 2012-11-22 Myerchin Enterprises, Inc. Actuated hinge and cable assembly for use with computer display monitors

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2044370C3 (de) * 1970-09-08 1978-11-02 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von 1,1 -Difluoräthylen
ES2056229T3 (es) 1988-11-22 1994-10-01 Du Pont Purificacion de halocarburos saturados.
GB0010614D0 (en) 2000-05-04 2000-06-21 Ici Plc Removal of (hydro)haloalkene impurities from product streams
GB0303972D0 (en) 2003-02-20 2003-03-26 Ineos Fluor Holdings Ltd Process
US7524805B2 (en) 2004-04-29 2009-04-28 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons
US7897823B2 (en) 2004-10-29 2011-03-01 E. I. Du Pont De Nemours And Company Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes
ES2401347T3 (es) * 2005-11-03 2013-04-18 Honeywell International Inc. Método para producir compuestos orgánicos fluorados
RU2399607C2 (ru) 2006-04-03 2010-09-20 Е.И.Дюпон Де Немур Энд Компани Селективно взаимодействующие олефины, содержащие концевую группу cf2, в смеси
GB0611742D0 (en) 2006-06-14 2006-07-26 Ineos Fluor Holdings Ltd Desiccants for fluids
JP5132555B2 (ja) 2006-06-30 2013-01-30 昭和電工株式会社 高純度ヘキサフルオロプロピレンの製造方法及びクリーニングガス
GB0614927D0 (en) 2006-07-27 2006-09-06 Ineos Fluor Holdings Ltd Separation process
US8067650B2 (en) 2006-08-24 2011-11-29 Honeywell International Inc. Process for the production of HFO trans-1234ze from HFC-245fa
US7485760B2 (en) 2006-08-24 2009-02-03 Honeywell International Inc. Integrated HFC trans-1234ze manufacture process
CN101597209A (zh) * 2008-03-20 2009-12-09 霍尼韦尔国际公司 用于制备2,3,3,3-四氟丙烯的一体式方法
JP5701205B2 (ja) * 2008-05-07 2015-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 2,3−ジクロロ−1,1,1−トリフルオロプロパン、2−クロロ−1,1,1−トリフルオロプロペン、2−クロロ−1,1,1,2−テトラフルオロプロパンまたは2,3,3,3−テトラフルオロプロペンを含む組成物
US8975454B2 (en) 2008-07-31 2015-03-10 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US9546311B2 (en) 2008-08-19 2017-01-17 Honeywell International Inc. Azeotrope-like compositions of 1,1,1,2-tetrafluoropropene and 1,1,1,2-tetrafluoroethane
CN102686544B (zh) 2009-10-09 2017-02-15 蓝立方知识产权公司 用于生产氯化和/或氟化丙烯和高级烯烃的方法
GB0918069D0 (en) * 2009-10-15 2009-12-02 Ineos Fluor Holdings Ltd Process
US8618340B2 (en) * 2009-11-03 2013-12-31 Honeywell International Inc. Integrated process for fluoro-olefin production
JP5626345B2 (ja) 2009-11-10 2014-11-19 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの精製方法
JP2012001495A (ja) * 2010-06-17 2012-01-05 Asahi Glass Co Ltd 2,3,3,3−テトラフルオロプロペンの精製方法
US8263817B2 (en) 2010-07-06 2012-09-11 E I Du Pont De Nemours And Company Synthesis of 1234YF by selective dehydrochlorination of 244BB
JP5747684B2 (ja) 2010-09-14 2015-07-15 セントラル硝子株式会社 ヒドロフルオロカーボンまたはヒドロクロロフルオロカーボンの脱水方法、および該脱水方法を用いた1,3,3,3−テトラフルオロプロペンの製造方法
JP5817373B2 (ja) 2010-11-10 2015-11-18 セントラル硝子株式会社 トランス−1,3,3,3−テトラフルオロプロペンの製造方法
US8337595B2 (en) 2011-04-20 2012-12-25 Honeywell International Inc. Purification of trans-1,3,3,3-tetrafluoropropene
GB2492847A (en) 2011-07-15 2013-01-16 Mexichem Amanco Holding Sa A process for reducing TFMA content in R-1234
US8796493B2 (en) * 2011-09-30 2014-08-05 Honeywell International Inc. Methods to separate halogentated olefins from 2-chloro-1,1,1,2-tetrafluoropropane using a solid adsorbent
JP5899974B2 (ja) * 2012-02-02 2016-04-06 セントラル硝子株式会社 (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP2013241390A (ja) * 2012-04-27 2013-12-05 Asahi Glass Co Ltd フルオロオレフィンの精製方法、およびフルオロオレフィンの製造方法
KR20250152674A (ko) * 2013-03-15 2025-10-23 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화 에틸렌 불순물을 제거하는 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155082A (en) 1991-04-12 1992-10-13 Allied-Signal Inc. Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
US5233107A (en) * 1991-04-27 1993-08-03 Hoechst Aktiengesellschaft Process for the purification of chlorofluorohydrocarbons
US7084315B2 (en) * 2000-05-04 2006-08-01 Ineos Fluor Holdings Limited Removal of (hydro)haloalkene impurities from product streams
US20070197842A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US8084653B2 (en) 2004-04-29 2011-12-27 Honeywell International, Inc. Method for producing fluorinated organic compounds
US8252964B2 (en) * 2008-07-03 2012-08-28 Arkema France Process for the purification of 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
US20110172470A1 (en) * 2008-09-11 2011-07-14 Central Glass Company, Limited Process for Producing Fluorinated Propene
US20100193347A1 (en) * 2009-01-30 2010-08-05 Honeywell International Inc. Process for the purification of hydrofluoroolefins
US20110270001A1 (en) * 2009-02-03 2011-11-03 Central Glass Company ,Limited Method of Purifying (Z)-1-Chloro-3,3,3-Trifluoropropene
US20120293937A1 (en) 2011-05-18 2012-11-22 Myerchin Enterprises, Inc. Actuated hinge and cable assembly for use with computer display monitors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. COMM., 2006, pages 2670 - 72
J. CHEM. MATER., vol. 13, 2001, pages 1506
J. CHROMATOGR. A, vol. 965, 2002, pages 65 - 73
J. MATER. CHEM., vol. 18, 2008, pages 1046 - 1050

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528690A (en) * 2014-07-28 2016-02-03 Mexichem Amanco Holding Sa Process
US9944578B2 (en) 2014-07-28 2018-04-17 Mexichem Amanco Holding S.A. De C.V. Process for the preparation of halogenated alkenes by dehydrohalogenation of halogenated alkanes
US10442743B2 (en) 2014-07-28 2019-10-15 Mexichem Amanco Holding S.A. De C.V. Process for the preparation of halogenated alkenes by dehydrohalogenation of halogenated alkanes
EP3974492A1 (en) * 2015-03-31 2022-03-30 Daikin Industries, Ltd. Composition containing hydrofluoroolefin compound
WO2016159205A1 (ja) * 2015-03-31 2016-10-06 ダイキン工業株式会社 ハイドロフルオロオレフィン化合物を含有する組成物
JP2016190999A (ja) * 2015-03-31 2016-11-10 ダイキン工業株式会社 ハイドロフルオロオレフィン化合物を含有する組成物
CN107429149A (zh) * 2015-03-31 2017-12-01 大金工业株式会社 含有氢氟烯烃化合物的组合物
EP3279287A4 (en) * 2015-03-31 2019-02-20 Daikin Industries, Ltd. COMPOSITION WITH A HYDROFLUOROLEFIN COMPOUND
US11572326B2 (en) 2015-05-21 2023-02-07 The Chemours Company Fc, Llc Method for preparing 1,1,1,2,2-pentafluoropropane
US11008267B2 (en) 2015-05-21 2021-05-18 The Chemours Company Fc, Llc Hydrofluoroalkane composition
US10301236B2 (en) 2015-05-21 2019-05-28 The Chemours Company Fc, Llc Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase
US12006274B2 (en) 2015-05-21 2024-06-11 The Chemours Company Fc, Llc Compositions including olefin and hydrofluoroalkane
US10988422B2 (en) 2015-05-21 2021-04-27 The Chemours Company Fc, Llc Hydrofluoroalkane composition
WO2017031046A1 (en) * 2015-08-19 2017-02-23 Honeywell International Inc. Methods for removing acidic impurities from halogenated propenes
US10913697B2 (en) 2016-11-02 2021-02-09 Honeywell International Inc. Process for reducing 3,3,3-trifluoropropyne in 2,3,3,3-tetrafluoropropene
KR20190067927A (ko) * 2016-11-02 2019-06-17 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 중 3,3,3-트리플루오로프로핀을 감소시키는 방법
KR102582866B1 (ko) 2016-11-02 2023-09-25 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 중 3,3,3-트리플루오로프로핀을 감소시키는 방법
KR20230141910A (ko) * 2016-11-02 2023-10-10 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 중 3,3,3-트리플루오로프로핀을 감소시키는 방법
WO2018085512A3 (en) * 2016-11-02 2018-06-14 Honeywell International Inc. Process for reducing 3,3,3-trifluoropropyne in 2,3,3,3-tetrafluoropropene
KR102830918B1 (ko) 2016-11-02 2025-07-04 허니웰 인터내셔날 인코포레이티드 2,3,3,3-테트라플루오로프로펜 중 3,3,3-트리플루오로프로핀을 감소시키는 방법
CN110023272A (zh) * 2016-11-30 2019-07-16 Agc株式会社 1-氯-2,3,3-三氟丙烯的制造方法
CN110023272B (zh) * 2016-11-30 2022-08-12 Agc株式会社 1-氯-2,3,3-三氟丙烯的制造方法
US20220280908A1 (en) * 2021-03-04 2022-09-08 American Air Liquide, Inc. Selective adsorption of halocarbon impurities containing cl, br and i in fluorocarbons or hydrofluorocarbons using adsorbent supported metal oxide
WO2022187489A1 (en) * 2021-03-04 2022-09-09 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude SELECTIVE ADSORPTION OF HALOCARBON IMPURITIES CONTAINING CI, Br AND I IN FLUOROCARBONS OR HYDROFLUOROCARBONS USING ADSORBENT SUPPORTED METAL OXIDE
TWI813184B (zh) * 2021-03-04 2023-08-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 使用負載在吸附劑上的金屬氧化物選擇性吸附氟烴或氫氟烴中的含有Cl、Br和I的鹵烴雜質
US12083493B2 (en) 2021-03-04 2024-09-10 American Air Liquide, Inc. Selective adsorption of halocarbon impurities containing cl, br and i in fluorocarbons or hydrofluorocarbons using adsorbent supported metal oxide
EP4301719A4 (en) * 2021-03-04 2025-08-20 Air Liquide SELECTIVE ADSORPTION OF HALOCARBON IMPURITIES CONTAINING CI, BR AND I INTO FLUOROCARBONS OR HYDROFLUOROCARBONS USING METAL OXIDE ON ADSORBENT SUPPORT

Also Published As

Publication number Publication date
KR20210129275A (ko) 2021-10-27
EP4549417A3 (en) 2025-08-27
US10099977B2 (en) 2018-10-16
KR20150131272A (ko) 2015-11-24
MX378625B (es) 2025-03-11
PT2970058T (pt) 2024-03-05
JP2024096818A (ja) 2024-07-17
PL2970058T3 (pl) 2024-05-06
KR20230107715A (ko) 2023-07-17
US20140275655A1 (en) 2014-09-18
JP2019048827A (ja) 2019-03-28
KR20250150693A (ko) 2025-10-20
EP2970058A1 (en) 2016-01-20
KR20250152674A (ko) 2025-10-23
US10676415B2 (en) 2020-06-09
EP2970058A4 (en) 2016-11-09
JP7470744B2 (ja) 2024-04-18
US9447004B2 (en) 2016-09-20
JP2016511285A (ja) 2016-04-14
EP3925946A1 (en) 2021-12-22
MX2015010801A (es) 2015-11-26
KR102554663B1 (ko) 2023-07-11
EP2970058B1 (en) 2023-12-13
CN105026351A (zh) 2015-11-04
ES2972152T3 (es) 2024-06-11
US20170001931A1 (en) 2017-01-05
US20190047927A1 (en) 2019-02-14
EP4549417A2 (en) 2025-05-07
JP2022141845A (ja) 2022-09-29
JP2021006551A (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
JP7470744B2 (ja) 2,3,3,3-テトラフルオロプロペン生成物中のハロゲン化エチレン不純物を除去する方法
CN104781219B (zh) 用于制造2,3,3,3-四氟丙烯的改进的方法
EP3412647B2 (en) Process for the reduction of alkyne impurities in fluoroolefins
US10343961B2 (en) Process for the reduction of RfC=CX impurities in fluoroolefins
US12180134B2 (en) Process for the reduction of RfC=CX impurities in fluoroolefins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015919.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014767769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/010801

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016501546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157029299

Country of ref document: KR

Kind code of ref document: A

WWR Wipo information: refused in national office

Ref document number: 1020237022959

Country of ref document: KR

WWD Wipo information: divisional of initial pct application

Ref document number: 1020257033235

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020257033235

Country of ref document: KR