WO2014148250A1 - リチウムイオンキャパシタおよびその充放電方法 - Google Patents

リチウムイオンキャパシタおよびその充放電方法 Download PDF

Info

Publication number
WO2014148250A1
WO2014148250A1 PCT/JP2014/055557 JP2014055557W WO2014148250A1 WO 2014148250 A1 WO2014148250 A1 WO 2014148250A1 JP 2014055557 W JP2014055557 W JP 2014055557W WO 2014148250 A1 WO2014148250 A1 WO 2014148250A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
negative electrode
lithium
anion
ion capacitor
Prior art date
Application number
PCT/JP2014/055557
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
高橋 賢治
真嶋 正利
石川 正司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480013669.2A priority Critical patent/CN105190810A/zh
Priority to EP14767837.9A priority patent/EP2978002A4/en
Priority to US14/777,663 priority patent/US20160111228A1/en
Priority to KR1020157024508A priority patent/KR20150131019A/ko
Publication of WO2014148250A1 publication Critical patent/WO2014148250A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a lithium ion capacitor and a method for charging and discharging the lithium ion capacitor, and more specifically, to an improvement in an electrolytic solution of the lithium ion capacitor.
  • Amid the close-up of environmental issues, systems for converting clean energy such as sunlight and wind power into electric power and storing it as electric energy are being actively developed.
  • a lithium ion secondary battery (LIB), an electric double layer capacitor (EDLC), a lithium ion capacitor, and the like are known.
  • capacitors such as EDLCs and lithium ion capacitors have been attracting attention from the viewpoints of being excellent in instantaneous charge / discharge characteristics, obtaining high output characteristics, and being easy to handle.
  • a lithium ion capacitor includes a positive electrode including activated carbon as a positive electrode active material, a negative electrode including a carbon material capable of inserting and extracting lithium ions as a negative electrode active material, and a non-aqueous electrolyte.
  • a carbon material capable of occluding and releasing lithium ions is used for the negative electrode. Therefore, by pre-doping lithium into the negative electrode, the potential of the negative electrode can be lowered and a high capacity can be easily secured.
  • an organic solvent solution organic electrolyte solution containing an electrolyte such as a lithium salt is used as a non-aqueous electrolyte solution of a lithium ion capacitor, and ethylene carbonate (EC) or diethyl carbonate (DEC) is used as the organic solvent of the electrolyte solution. Etc.) are used (Patent Document 1). Further, it has been studied to use an organic electrolytic solution in which an ionic liquid is further added in addition to an electrolyte and an organic solvent for a lithium ion capacitor (Patent Document 2). On the other hand, in the field of LIB, the use of an ionic liquid as a solvent for an electrolytic solution has been studied (Patent Document 3).
  • the ionic liquid is a salt having fluidity in a molten state composed of a cation and an anion, and has ionic conductivity at least in the molten state.
  • Lithium ion capacitors are advantageous in terms of capacity increase because the charging voltage can be made relatively high among capacitors.
  • an organic electrolyte is used in a lithium ion capacitor.
  • the charging voltage of the lithium ion capacitor using the organic electrolyte is increased, the potential of the positive electrode during charging is increased, so that the organic solvent contained in the organic electrolytic solution is oxidized and decomposed at the positive electrode. As a result, a large amount of gas is generated, making it difficult to perform stable charge and discharge.
  • an ionic liquid is used as a solvent for the electrolyte solution of LIB.
  • Ionic liquids are less likely to decompose than EC and DEC. Therefore, even in the lithium ion capacitor, if an ionic liquid is used, it is not necessary to use an organic solvent, or even when an organic solvent is used, the amount of use can be reduced. It is considered that the upper limit voltage of charging can be increased.
  • the present inventors have found that, in a lithium ion capacitor, even when an ionic liquid is used, charging / discharging may not be performed reversibly unlike LIB.
  • one aspect of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a lithium ion conductive electrolyte.
  • the electrolytic solution includes a lithium salt and an ionic liquid.
  • the lithium salt is a salt of a lithium ion that is a first cation and a first anion
  • the ionic liquid is a second cation and a second anion.
  • the first anion and the second anion are the same.
  • charging / discharging can be performed reversibly and stably.
  • charging / discharging can be performed stably.
  • the total content of the lithium salt and the ionic liquid in the electrolytic solution can be, for example, 90% by mass or more.
  • Charging and discharging can be performed more stably even when the upper limit voltage of charging is high.
  • a solvent having low decomposition resistance for example, an organic solvent such as carbonate
  • the amount can be reduced, so that gas generation accompanying decomposition of the solvent can be effectively suppressed.
  • the first anion and the second anion are preferably a bisfluorosulfonylimide anion or a bis (trifluoromethylsulfonyl) imide anion.
  • the electrolyte contains such anions, the viscosity of the electrolyte can be easily reduced, and lithium ions can be smoothly occluded in the negative electrode active material. It is advantageous.
  • the second cation is preferably an organic onium cation.
  • the organic onium cation preferably has a nitrogen-containing heterocycle.
  • the lithium concentration of the electrolytic solution is preferably 1 mol / L to 5 mol / L.
  • the negative electrode active material preferably contains at least one selected from the group consisting of graphite and hard carbon. Such a negative electrode active material has high occlusion and release properties of lithium ions, and can perform charging and discharging more smoothly.
  • the ratio of the reversible capacity C n of the negative electrode to the reversible capacity C p of the positive electrode: C n / C p may be, for example, 1.2 to 10. In such a reversible capacity ratio, a sufficient amount of lithium can be pre-doped into the negative electrode, and the lithium ion capacitor can be increased in capacity or voltage more effectively.
  • Another aspect of the present invention is a method for charging and discharging a lithium ion capacitor, wherein the lithium ion capacitor includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a positive electrode. And a separator interposed between the anode and the negative electrode, and a lithium ion conductive electrolyte, the electrolyte includes a lithium salt and an ionic liquid, and the lithium salt is a lithium ion that is a first cation.
  • the ionic liquid is a molten salt of the second cation and the second anion, the first anion and the second anion are the same, and the lithium ion capacitor is 4.2V. It is related with the charging / discharging method which has the process charged / discharged by the upper limit voltage of 5V or less. When the electrolytic solution has the above composition, even when the upper limit voltage for charging exceeds 4.2V and is as high as 5V or less, charging and discharging can be performed stably and reversibly.
  • the electrolytic solution contains an ionic liquid
  • charging and discharging of the lithium ion capacitor can be performed stably and reversibly.
  • gas generation etc. hardly occur. Therefore, a high capacity lithium ion capacitor can be obtained.
  • the lithium ion capacitor includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a lithium ion conductive electrolyte.
  • the electrolytic solution includes a lithium salt and an ionic liquid.
  • the lithium salt is a salt of a lithium ion that is a first cation and a first anion
  • the ionic liquid is a mixture of a second cation and a second anion. Molten salt.
  • the first anion and the second anion are the same.
  • a negative electrode active material capable of occluding and releasing lithium ions is used for the negative electrode of LIB. Such a negative electrode active material is considered to reversibly cause occlusion (or insertion) and release of lithium ions during charge and discharge.
  • the electrolyte is the only lithium source. Therefore, the ease of movement of lithium ions greatly affects the charge / discharge characteristics. For example, occlusion of lithium ions in the negative electrode active material may be delayed because the strength of interaction with lithium ions varies depending on the type of anion that constitutes the ionic liquid and the lithium salt. Moreover, while the occlusion of lithium ions is delayed, a phenomenon in which cations constituting the ionic liquid are occluded in the negative electrode active material also occurs. Occlusion of cations (cations other than lithium ions) constituting the ionic liquid into the negative electrode active material occurs irreversibly.
  • the lithium ion capacitor can be charged / discharged at an upper limit voltage exceeding 4.2V.
  • the upper limit voltage is preferably 4.4 V or higher, more preferably 4.6 V or higher, or 4.8 V or higher.
  • an upper limit voltage can also be made into the value exceeding 5V, it is preferable that it is 5V or less.
  • the upper limit voltage of charging may be, for example, more than 4.2V, 5V or less, or 4.4V to 5V.
  • the electrolytic solution In the electrolytic solution, the ionic liquid functions as an ion carrier, but also functions as a solvent for dissolving the lithium salt. Therefore, the electrolytic solution preferably contains an ionic liquid with a certain content.
  • the electrolytic solution can include known components contained in the electrolytic solution of the lithium ion capacitor, such as an organic solvent and an additive. However, when the electrolytic solution contains an organic solvent, gas tends to be generated by decomposition when the charging voltage is increased. Therefore, the content of components other than the lithium salt and the ionic liquid is preferably relatively small.
  • the total content of the lithium salt and the ionic liquid in the electrolytic solution is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the electrolytic solution preferably does not contain an organic solvent such as carbonate, and the total content of the lithium salt and the ionic liquid in the electrolytic solution may be 100% by mass.
  • electrolyte solution The lithium salt contained in the electrolytic solution is dissociated into lithium ions and first anions in the electrolytic solution, and the lithium ions become charge carriers in the lithium ion capacitor.
  • first anion and the second anion constituting the ionic liquid it is preferable to use a bissulfonylimide anion.
  • Examples of the bissulfonylimide anion include an anion having a bissulfonylimide skeleton and a fluorine atom in the sulfonyl group.
  • Examples of the sulfonyl group having a fluorine atom include a sulfonyl group having a fluoroalkyl group in addition to a fluorosulfonyl group.
  • the fluoroalkyl group may be a perfluoroalkyl group in which some of the hydrogen atoms of the alkyl group are replaced with fluorine atoms, or all of the hydrogen atoms are replaced with fluorine atoms.
  • the sulfonyl group having a fluorine atom is preferably a fluorosulfonyl group or a perfluoroalkylsulfonyl group.
  • a bissulfonylimide anion specifically, the following formula (1):
  • X 1 and X 2 are each independently a fluorine atom or a C 1-8 perfluoroalkyl group.
  • the anion represented by these is mentioned.
  • Examples of the perfluoroalkyl group represented by X 1 and X 2 include a trifluoromethyl group, a pentafluoroethyl group, and a heptafluoropropyl group. From the viewpoint of reducing the viscosity of the ionic liquid, at least one of X 1 and X 2 is preferably a perfluoroalkyl group, both X 1 and X 2, the perfluoroalkyl group are more preferable. Further, from the viewpoint of reducing the viscosity of the ionic liquid, the carbon number of the perfluoroalkyl group is preferably 1 to 3, and more preferably 1 or 2.
  • bissulfonylimide anion examples include bisfluorosulfonylimide anion (FSI ⁇ ); bis (trifluoromethylsulfonyl) imide anion (TFSI ⁇ ), bis (pentafluoroethylsulfonyl) imide anion, fluorotrifluoromethylsulfonylimide And bis (perfluoroalkylsulfonyl) imide anion (PFSI ⁇ ) such as an anion ((FSO 2 ) (CF 3 SO 2 ) N ⁇ ).
  • FSI ⁇ or TFSI ⁇ has a relatively small interaction with lithium ions, is difficult to capture lithium ions, and is difficult to inhibit the insertion of lithium ions into the negative electrode active material.
  • FSI ⁇ or TFSI ⁇ especially FSI ⁇
  • lithium ions can be smoothly occluded by the negative electrode active material, and more stable charge / discharge can be performed.
  • the viscosity of the electrolytic solution can be reduced and the solubility of the lithium salt is high.
  • inorganic cation As the second cation constituting the ionic liquid, inorganic cation [alkali metal cation other than lithium ion (sodium ion, potassium ion, rubidium ion, cesium ion, etc.), alkaline earth metal cation (magnesium ion, calcium ion, etc.) And metal cations such as transition metal cations; ammonium cations and the like]; and organic cations such as organic onium cations.
  • Organic onium cations include cations derived from aliphatic amines, alicyclic amines, and aromatic amines (eg, quaternary ammonium cations), as well as cations having nitrogen-containing heterocycles (that is, derived from cyclic amines). Nitrogen-containing onium cations such as cations), sulfur-containing onium cations, and phosphorus-containing onium cations.
  • sulfur-containing onium cations include sulfur-containing tertiary onium cations such as trialkylsulfonium cations such as trimethylsulfonium cation, trihexylsulfonium cation, and dibutylethylsulfonium cation (eg, tri-C 1-10 alkylsulfonium cation). it can.
  • sulfur-containing tertiary onium cations such as trialkylsulfonium cations such as trimethylsulfonium cation, trihexylsulfonium cation, and dibutylethylsulfonium cation (eg, tri-C 1-10 alkylsulfonium cation).
  • Examples of phosphorus-containing onium cations include quaternary onium cations, for example, tetraalkylphosphonium cations such as tetramethylphosphonium cation, tetraethylphosphonium cation, tetraoctylphosphonium cation (for example, tetra C 1-10 alkylphosphonium cation); triethyl (methoxy) Alkyl (alkoxyalkyl) phosphonium cations such as methyl) phosphonium cation, diethylmethyl (methoxymethyl) phosphonium cation, trihexyl (methoxyethyl) phosphonium cation (eg tri-C 1-10 alkyl (C 1-5 alkoxy C 1-5 alkyl) And phosphonium cations).
  • tetraalkylphosphonium cations such as tetramethylphosphonium cation, tetraeth
  • the total number of alkyl groups and alkoxyalkyl groups bonded to the phosphorus atom is 4, and the number of alkoxyalkyl groups is preferably 1 or 2.
  • organic onium cations nitrogen-containing organic onium cations are preferable, and among them, organic onium cations having a nitrogen-containing heterocycle are preferable.
  • the electrolytic solution contains such an organic onium cation, the viscosity of the molten salt can be lowered, so that the ionic conductivity can be increased.
  • Examples of the nitrogen-containing heterocyclic skeleton of the organic onium cation include pyrrolidine, imidazoline, imidazole, pyridine, piperidine, and the like, 5- to 8-membered heterocyclic rings having 1 or 2 nitrogen atoms as ring members; Examples of the ring-constituting atoms include 5- to 8-membered heterocycles having 1 or 2 nitrogen atoms and other heteroatoms (oxygen atoms, sulfur atoms, etc.).
  • the nitrogen atom which is a constituent atom of the ring may have an organic group such as an alkyl group as a substituent.
  • alkyl group examples include alkyl groups having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1, 2, or 3.
  • nitrogen-containing organic onium cations those having pyrrolidine or imidazoline as the nitrogen-containing heterocyclic skeleton are particularly preferable.
  • the organic onium cation having a pyrrolidine skeleton preferably has two alkyl groups on one nitrogen atom constituting the pyrrolidine ring.
  • the organic onium cation having an imidazoline skeleton preferably has one of the above alkyl groups on each of two nitrogen atoms constituting the imidazoline ring.
  • organic onium cation having a pyrrolidine skeleton examples include N, N-dimethylpyrrolidinium cation, N, N-diethylpyrrolidinium cation, N-methyl-N-ethylpyrrolidinium cation, and N-methyl-N.
  • -Propylpyrrolidinium cation MPPY +
  • MBPY + N-methyl-N-butylpyrrolidinium cation
  • N-ethyl-N-propylpyrrolidinium cation and the like examples of the organic onium cation having a pyrrolidine skeleton.
  • organic onium cation having an imidazoline skeleton examples include 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation (EMI + ), 1-methyl-3-propylimidazolium cation, 1- Examples include butyl-3-methylimidazolium cation (BMI + ), 1-ethyl-3-propylimidazolium cation, and 1-butyl-3-ethylimidazolium cation.
  • imidazolium cations having a methyl group and an alkyl group having 2 to 4 carbon atoms such as EMI + and BMI + are preferable.
  • the second cation small reactivity with the positive electrode active material, has a high aspect decomposition resistance be enhanced charging voltage, preferably an organic onium cation having an imidazoline skeleton, due to the high ionic conductivity, EMI + is Particularly preferred.
  • Specific examples of the salt of the second cation and the second anion include EMIFSI, EMITFSI, EMIPFSI, and the like.
  • the ionic liquid preferably contains at least EMIFSI from the viewpoint of hardly inhibiting occlusion of lithium ions and having high decomposition resistance and lithium salt solubility.
  • the salt of the second cation and the second anion needs to be in a molten state (ionic liquid) at the operating temperature of the lithium ion capacitor, it is preferable that the salt has a lower melting point.
  • a plurality of salts may be used in combination.
  • the anion of these salts needs to be the same as the first anion, but the cation can be appropriately selected and combined from those exemplified above as the second cation.
  • the ionic liquid may include a salt using an EMI + cation such as EMIFSI and a salt using an MPPY + cation such as MPPYFSI.
  • the lithium concentration of the electrolytic solution is, for example, more than 0.8 mol / L and less than 5.5 mol / L.
  • the lithium concentration is preferably 1 mol / L or more, more preferably 1.5 mol / L or more or 2 mol / L or more, and particularly preferably 2.5 mol / L or more or 3 mol / L or more.
  • the lithium concentration is preferably 5 mol / L or less, more preferably 4.5 mol / L or less or 4 mol / L or less. These lower limit value and upper limit value can be appropriately selected and combined.
  • the lithium concentration of the electrolytic solution may be, for example, 1 mol / L to 5 mol / L, 2.5 mol / L to 5 mol / L, or 3 mol / L to 5 mol / L.
  • the lithium concentration is in such a range, it is possible to more effectively suppress cations other than lithium ions to be occluded in the negative electrode active material, and to easily reduce the influence of current and resistance loss during charging and discharging. Moreover, since it can suppress that the viscosity of electrolyte solution becomes higher than necessary, high ionic conductivity can be ensured more effectively. Even if the upper limit voltage of charge is increased, stable charge / discharge can be performed more effectively, which is more advantageous in increasing the capacity or output of the lithium ion capacitor. Furthermore, even if the thickness of the electrode is large or the filling amount of the electrode active material is high, charging / discharging can be performed efficiently.
  • the water content in the electrolytic solution is preferably 300 ppm or less (for example, 150 ppm or less), and more preferably 40 ppm or less.
  • the amount of water in the electrolyte is reduced by drying the components in the electrolyte (eg, lithium salts, ionic liquids, etc.) or by drying the positive and / or negative electrodes (or their active materials). it can. Drying can be performed under reduced pressure, and may be performed under heating as necessary.
  • Electrode Each of the electrodes (that is, the positive electrode and the negative electrode) of the lithium ion capacitor includes an electrode active material.
  • the electrode can include an electrode current collector and an electrode current collector that holds the electrode active material.
  • the electrode current collector may be a metal foil, but is preferably a metal porous body having a three-dimensional network structure from the viewpoint of obtaining a high-capacity capacitor.
  • As a material of the positive electrode current collector aluminum, an aluminum alloy, or the like is preferable.
  • As a material of the negative electrode current collector copper, copper alloy, nickel, nickel alloy, stainless steel, or the like is preferable.
  • the electrode is applied or filled with the slurry containing the electrode active material on the electrode current collector, and then the dispersion medium contained in the slurry is removed, and if necessary, the current collector holding the electrode active material is rolled. Can be obtained.
  • the slurry may contain a binder, a conductive aid, and the like in addition to the electrode active material.
  • the dispersion medium for example, water or the like is used in addition to an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • the type of the binder is not particularly limited.
  • a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene
  • a chlorine-containing vinyl resin such as polyvinyl chloride
  • a polyolefin resin such as styrene butadiene rubber
  • Pyrrolidone polyvinyl alcohol
  • cellulose derivatives such as carboxymethyl cellulose (cellulose ether, etc.)
  • the amount of the binder is not particularly limited, and may be, for example, 0.5 to 10 parts by mass per 100 parts by mass of the electrode active material.
  • the type of the conductive aid is not particularly limited, and examples thereof include carbon black such as acetylene black; conductive fiber such as carbon fiber.
  • the amount of the conductive assistant is not particularly limited, and may be, for example, 0.1 to 10 parts by mass per 100 parts by mass of the electrode active material.
  • the positive electrode active material materials that can reversibly carry lithium and can adsorb anions electrochemically, such as activated carbon and carbon nanotubes, are used.
  • activated carbon is preferred.
  • the content of activated carbon in the positive electrode active material exceeds 50% by mass.
  • activated carbon known ones used for lithium ion capacitors can be used.
  • the raw material of activated carbon include wood; coconut shells; pulp waste liquid; coal or coal-based pitch obtained by thermal decomposition thereof; heavy oil or petroleum-based pitch obtained by thermal decomposition thereof; phenol resin and the like.
  • the carbonized material is generally activated afterwards.
  • the activation method include a gas activation method and a chemical activation method.
  • the gas activation method is a method in which activated carbon is obtained by contact reaction with water vapor, carbon dioxide gas, oxygen or the like at a high temperature.
  • the chemical activation method is a method in which activated carbon is obtained by impregnating the above-mentioned raw material with a known activation chemical and heating it in an inert gas atmosphere to cause dehydration and oxidation reaction of the activation chemical.
  • the activation chemical include zinc chloride and sodium hydroxide.
  • the average particle diameter of the activated carbon (median diameter in the volume-based particle size distribution, the same shall apply hereinafter) is not particularly limited, but is preferably 20 ⁇ m or less.
  • the specific surface area is not particularly limited, but is preferably about 800 m 2 / g to 3000 m 2 / g. By setting this range, the electrostatic capacity of the lithium ion capacitor can be increased, and the internal resistance can be reduced.
  • Examples of the negative electrode active material include a lithium titanium oxide, silicon oxide, silicon alloy, tin oxide, and tin alloy in addition to a carbon material capable of inserting and extracting lithium ions.
  • Examples of the carbon material include graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), graphite (artificial graphite, natural graphite, etc.) and the like.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Of the negative electrode active materials, carbon materials are preferable, and graphite and / or hard carbon are particularly preferable.
  • the negative electrode active material is preferably doped with lithium in advance in order to lower the negative electrode potential. This increases the voltage of the capacitor, which is further advantageous for increasing the capacity of the lithium ion capacitor.
  • the doping of lithium is performed when the capacitor is assembled. For example, lithium metal is accommodated in a capacitor container together with a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the assembled capacitor is kept warm in a constant temperature room at around 60 ° C., so that lithium ions are eluted from the lithium metal foil. Occluded by the active material.
  • the amount of lithium doped to the negative electrode active material preferably negative electrode capacity (reversible capacity of the negative electrode): 5% to 90% of C n, it is more preferably at an amount of 10% to 75% is filled with lithium.
  • negative electrode capacity irreversible capacity of the negative electrode
  • the conventional lithium ion capacitor is designed so that the negative electrode capacity C n is extremely large as compared with the positive electrode capacity (reversible capacity of the positive electrode): C p .
  • C n the negative electrode capacity
  • C p the positive electrode capacity (reversible capacity of the positive electrode): C p .
  • the ratio of the negative electrode capacity C n to the positive electrode capacity C p : C n / C p can be set to be relatively small.
  • the positive electrode capacity C p is a value obtained by subtracting the irreversible capacity from the theoretical value of the chargeable charge amount calculated from the amount of the positive electrode active material contained in the positive electrode.
  • the negative electrode capacity C n is a value obtained by subtracting the irreversible capacity from the theoretical value of the chargeable charge amount calculated from the amount of the negative electrode active material contained in the negative electrode.
  • C p and C n can also be evaluated based on the discharge capacity measured for the EDLC using the positive electrode and the half cell using the negative electrode and metallic lithium, respectively.
  • the C n / C p ratio is greater than 1.1 and less than 12.5, for example.
  • the C n / C p ratio is preferably 1.2 or more, more preferably 1.3 or more, or 2 or more.
  • the C n / C p ratio is preferably 10 or less, more preferably 9 or less. These lower limit value and upper limit value can be appropriately selected and combined.
  • the C n / C p ratio may be, for example, 1.2 to 10, or 1.3 to 10.
  • the C n / C p ratio is in the above range, a sufficient amount of lithium can be pre-doped to the negative electrode, and the voltage of the lithium ion capacitor can be increased more effectively. Moreover, it is easy to increase the initial voltage, which is advantageous because the capacity of the lithium ion capacitor can be easily increased. Furthermore, since it is not necessary to increase the volume of the positive electrode or the negative electrode more than necessary, it is easy to suppress a decrease in the capacity density of the lithium ion capacitor while ensuring a high discharge capacity.
  • the separator has ion permeability, is interposed between the positive electrode and the negative electrode, and physically separates them to prevent a short circuit.
  • the separator has a porous material structure and allows ions to permeate by holding the electrolytic solution in the pores.
  • a material of the separator for example, polyolefin such as polyethylene and polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; glass fiber and the like can be used.
  • the thickness of the separator is, for example, about 10 ⁇ m to 100 ⁇ m.
  • FIG. 1 schematically shows an example of the configuration of a capacitor.
  • the electrode plate group is configured by laminating a plurality of positive electrodes 41 and negative electrodes 42 via separators 43.
  • the positive electrode 41 includes a positive electrode current collector 41a having a three-dimensional network structure, and a particulate positive electrode active material 41b filled in a communication hole of the positive electrode current collector 41a.
  • the negative electrode 42 includes a negative electrode current collector 42a having a three-dimensional network structure, and a particulate negative electrode active material 42b filled in a communication hole of the negative electrode current collector 42a.
  • the electrode plate group is not limited to the laminated type, and can also be configured by winding the positive electrode 41 and the negative electrode 42 via the separator 43. From the viewpoint of preventing lithium from being deposited on the negative electrode 42, it is desirable to make the size of the negative electrode 42 larger than that of the positive electrode 41 as shown in FIG. 1.
  • Example 1 A lithium ion capacitor was produced according to the following procedure. (1) Preparation of positive electrode Activated carbon powder (specific surface area 2300 m 2 / g, average particle diameter of about 5 ⁇ m), acetylene black as a conductive auxiliary, PVDF as a binder (NMP solution containing PVDF at a concentration of 12% by mass), and a dispersion medium A positive electrode mixture slurry was prepared by mixing and stirring NMP in a mixer. The content of each component in the slurry was 21.5% by mass of activated carbon, 0.76% by mass of acetylene black, and 20.6% by mass of PVDF.
  • the obtained positive electrode mixture slurry is applied to one surface (roughened surface) of an aluminum foil (thickness: 20 ⁇ m) as a current collector using a doctor blade to form a coating film having a thickness of 100 ⁇ m. Formed and dried at 100 ° C. for 30 minutes. The dried product was rolled using a pair of rolls to produce a positive electrode having a thickness of 65 ⁇ m.
  • the obtained negative electrode mixture slurry is applied to one surface of a punching copper foil (thickness: 20 ⁇ m, opening diameter: 50 ⁇ m, opening ratio 50%) as a current collector using a doctor blade to have a thickness of 200 ⁇ m.
  • a coating film was formed and dried at 100 ° C. for 30 minutes. The dried product was rolled using a pair of rolls to produce a negative electrode having a thickness of 120 ⁇ m.
  • a lithium foil (thickness: 50 ⁇ m) is pressure-bonded to one surface of a punching copper foil (thickness: 20 ⁇ m, opening diameter: 50 ⁇ m, opening ratio 50%, 2 cm ⁇ 2 cm) as a current collector.
  • a lithium electrode was produced.
  • a nickel lead was welded to the other surface of the current collector.
  • a single-cell electrode plate group was formed by laminating a positive electrode and a negative electrode with a cellulose separator (thickness: 60 ⁇ m) interposed between the positive electrode and the negative electrode. Furthermore, a lithium electrode is disposed on the negative electrode side of the electrode plate group with a polyolefin separator (a laminate of a polyethylene microporous membrane and a polypropylene microporous membrane) interposed therebetween. It accommodated in the cell case produced by.
  • the electrolytic solution was injected into the cell case and impregnated into the positive electrode, the negative electrode, and the separator.
  • an EMIFSI solution containing LiFSI as a lithium salt at a concentration of 1.0 mol / L was used.
  • the cell case was sealed while reducing the pressure with a vacuum sealer.
  • the negative electrode and the lithium electrode were connected to each other with a lead wire outside the cell case, and charged to 0 V with a current of 0.2 mA / cm 2 , so that the negative electrode active material was predoped with lithium. Thereafter, a discharge of 0.33 mAh was performed at a current of 0.2 mA / cm 2 . The voltage (initial voltage) at this time was measured. In this way, a lithium ion capacitor was produced. The amount of water in the electrolytic solution stored in the lithium ion capacitor was measured by the Karl Fischer method and found to be 108 ppm.
  • Electrode capacity and C p / C n ratio Two positive electrodes were prepared, and a separator made of cellulose (thickness: 60 ⁇ m) was interposed between them to constitute an electrode plate group. Thereafter, the electrode plate group and the same electrolytic solution as described above were accommodated in an aluminum laminate bag to complete the EDLC. The obtained EDLC was charged and discharged with a voltage range of 0 to 4 V, and the reversible capacity C p of the positive electrode was determined from the discharge capacity at this time.
  • a negative electrode and the same lithium electrode as described above were prepared, and a separator made of cellulose (thickness: 60 ⁇ m) was interposed between them to constitute an electrode plate group.
  • a half cell was fabricated using the obtained electrode plate group and the same electrolytic solution as described above. The half cell was charged and discharged with a voltage range of 0 to 2.5 V, and the reversible capacity C n of the negative electrode was determined from the discharge capacity at this time. The C p / C n ratio was calculated by dividing the obtained C p by C n .
  • Examples 2 to 4 and Comparative Examples 1 to 3 A lithium ion capacitor was produced and evaluated in the same manner as in Example 1 except that an electrolyte containing a lithium salt and a medium (ionic liquid or organic solvent) shown in Table 1 was used.
  • a mixed solvent containing EC and DEC at a volume ratio of 1: 1 was used as the medium. The results are shown in Table 1.
  • Comparative Examples 2 and 3 although the ionic liquid is used, the types of anions of the lithium salt and the ionic liquid are different. In these comparative examples, even if the upper limit voltage of charging was increased to 5.0 V, the swelling of the lithium ion capacitor as in comparative example 1 was not observed. However, in these comparative examples, decrease in discharge capacity of the lithium ion capacitor is significantly, the discharge capacity was less than 1/10 of C p. Moreover, when the charge capacity was evaluated for Comparative Examples 2 and 3, both values were about 0.15 mAh, which was half of C p . That is, in Comparative Examples 2 and 3, although the charge could be performed to some extent, the discharge amount relative to the charge amount was extremely small. Therefore, charging and discharging could not be performed stably and reversibly at a high charging voltage.
  • Examples 5-8 Except for changing the concentration of the lithium salt in the electrolytic solution as shown in Table 2, a lithium ion capacitor was prepared and the upper limit voltage and discharge capacity were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 As in Example 1, charging and discharging could be performed stably even when the upper limit voltage for charging was 5 V, and a capacity comparable to or higher than C p could be secured. .
  • Examples 5 and 8 although the discharge capacity of the lithium ion capacitor was slightly lower than C p , charging and discharging could be performed stably even when the upper limit voltage of charging was 5V.
  • Example 5 when the charge capacity of the lithium ion capacitor was evaluated, the value exceeded 0.3 mAh and was comparable to C p .
  • the lithium salt concentration is preferably more than 0.8 mol / L and less than 5.5 mol / L.
  • Examples 9-14 A negative electrode and a lithium ion capacitor were prepared in the same manner as in Example 1 except that the thickness of the coating film of the negative electrode mixture slurry and the thickness of the negative electrode were changed as shown in Table 3. And the discharge capacity was evaluated. When the thickness of the coating film was less than 50 ⁇ m, the negative electrode mixture slurry was applied to the current collector using a spatula instead of the doctor blade. The results are shown in Table 3. In Table 3, the initial voltage of each lithium ion capacitor is also shown.
  • Example 9 As in Example 1, even when the upper limit voltage for charging was 5 V, charging and discharging could be performed stably, and a high discharge capacity comparable to C p was obtained. In these examples, the initial voltage was also high. In Example 14, the initial voltage and discharge capacity of the lithium ion capacitor were lower than those in the other examples, but charging and discharging could be performed stably even when the upper limit voltage for charging was 5V. Note that if the initial voltage is small, the capacity tends to be small because it is necessary to leave the charged portion to fill the difference from the required voltage. Therefore, from the viewpoint of increasing the initial voltage and the discharge capacity, the C n / C p ratio is preferably larger than 1.1.
  • Example 9 has a large C n / C p ratio, but the initial voltage is comparable. This is because if the amount of lithium doped into the negative electrode approaches the saturation amount, the potential of the negative electrode becomes approximately 0 V with respect to Li metal. Therefore, even if the C n / C p ratio is excessively increased, the discharge capacity of the lithium ion capacitor hardly changes. However, since the volume in the cell of the lithium ion capacitor increases as the amount of the negative electrode increases, the capacity density of the lithium ion capacitor decreases. Therefore, from the viewpoint of suppressing a decrease in the capacity density of the lithium ion capacitor while ensuring a sufficient discharge capacity, the C n / C p ratio is preferably less than 12.5.
  • the lithium ion capacitor of the present invention can stably charge and discharge reversibly even if the charging voltage is increased, a high capacity lithium ion capacitor can be obtained. Therefore, the present invention can be applied to various power storage devices that require high capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

正極活物質を含む正極と、負極活物質を含む負極と、前記正極と前記負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備し、前記電解液は、リチウム塩と、イオン性液体とを含み、前記リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、前記イオン性液体は、第2カチオンと第2アニオンとの溶融塩であり、前記第1アニオンと前記第2アニオンとは同じである、リチウムイオンキャパシタ。

Description

リチウムイオンキャパシタおよびその充放電方法
 本発明は、リチウムイオンキャパシタおよびその充放電方法に関し、より具体的には、リチウムイオンキャパシタの電解液の改良に関する。
 環境問題がクローズアップされる中、太陽光や風力などのクリーンエネルギーを電力に変換し、電気エネルギーとして蓄電するシステムの開発が盛んに行われている。このような蓄電デバイスとしては、リチウムイオン二次電池(LIB)、電気二重層キャパシタ(EDLC)、リチウムイオンキャパシタなどが知られている。最近では、瞬時の充放電特性に優れるとともに、高い出力特性が得られ、取り扱い性に優れるといった観点から、EDLCやリチウムイオンキャパシタなどのキャパシタが注目されている。
 キャパシタは、LIBなどに比べて容量が小さい点が課題であるが、中でも、リチウムイオンキャパシタは、LIBとEDLCの利点を併せ持ち、比較的大きな容量が得られやすいため、種々の用途への展開が期待されている。リチウムイオンキャパシタは、一般に、正極活物質として活性炭などを含む正極と、負極活物質としてリチウムイオンを吸蔵及び放出可能な炭素材料などを含む負極と、非水電解液とを含む。このようなリチウムイオンキャパシタでは、負極にリチウムイオンを吸蔵および放出可能な炭素材料を用いるため、負極にリチウムをプレドープすることにより、負極の電位を低下させて、ある程度高い容量を確保し易い。
 リチウムイオンキャパシタの非水電解液としては、一般に、リチウム塩などの電解質を含む有機溶媒溶液(有機電解液)が使用され、電解液の有機溶媒としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などが使用されている(特許文献1)。また、電解質および有機溶媒に加え、さらにイオン性液体を添加した有機電解液を、リチウムイオンキャパシタに用いることが検討されている(特許文献2)。
 一方、LIBの分野では、イオン性液体を、電解液の溶媒として使用することも検討されている(特許文献3)。なお、イオン性液体とは、カチオンとアニオンとで構成される、溶融状態において流動性を有する塩であり、少なくとも溶融状態において、イオン伝導性を有する。
特開2007-294539号公報 特開2012-142340号公報 特開2010-97922号公報
 リチウムイオンキャパシタは、キャパシタの中でも、充電電圧を比較的高くすることができるため、高容量化の点で有利である。しかし、特許文献1や特許文献2のように、リチウムイオンキャパシタでは、有機電解液が使用されている。有機電解液を用いたリチウムイオンキャパシタの充電電圧を高くすると、充電時の正極の電位が高くなるため、有機電解液に含まれる有機溶媒が正極で酸化分解される。その結果、多量のガスが発生して、安定した充放電を行うことが困難になる。
 特許文献3では、LIBの電解液の溶媒としてイオン性液体が使用されている。イオン性液体は、ECやDECに比べて分解し難い。そのため、リチウムイオンキャパシタにおいても、イオン性液体を使用すれば、有機溶媒を使用する必要がなくなったり、または、有機溶媒を使用する場合でも、その使用量を少量とすることができたりするので、充電の上限電圧を高くすることができると考えられる。ところが、本発明者らは、リチウムイオンキャパシタでは、イオン性液体を用いても、LIBの場合とは異なり、充放電を可逆的に行うことが出来ない場合があることを見出した。
 以上に鑑み、本発明の一局面は、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備し、電解液は、リチウム塩と、イオン性液体とを含み、リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、イオン性液体は、第2カチオンと第2アニオンとの溶融塩であり、第1アニオンと第2アニオンとは同じである、リチウムイオンキャパシタに関する。
このようなリチウムイオンキャパシタによれば、充放電を可逆的に安定して行うことができる。また、このようなリチウムイオンキャパシタによれば、4.2Vを超えるような上限電圧まで充電しても、充放電を安定に行うことができる。
 電解液中のリチウム塩およびイオン性液体の含有量の合計は、例えば、90質量%以上とすることができる。このような電解液を用いることにより、充電の上限電圧が高い場合にも、より安定して充放電を行うことができる。また、耐分解性の低い溶媒(例えば、カーボネートなどの有機溶媒)が含まれる場合でも、その量を少量とすることができることから、溶媒の分解に伴うガス発生を有効に抑制できる。
 第1アニオンおよび第2アニオンは、ビスフルオロスルフォニルイミドアニオン、またはビス(トリフルオロメチルスルフォニル)イミドアニオンであることが好ましい。電解液が、このようなアニオンを含むことにより、電解液の粘度を低減し易いことに加え、リチウムイオンを負極活物質にスムーズに吸蔵させることができるため、充放電を可逆的に行う上で有利である。
 第2カチオンは有機オニウムカチオンであることが好ましい。また、有機オニウムカチオンは、窒素含有へテロ環を有することが好ましい。電解液がこのような第2カチオンを含む場合、溶融塩の融点を低くすることができるため、イオンの移動をよりスムーズに行うことができる。
 電解液のリチウム濃度は1mol/L~5mol/Lであることが好ましい。このようなリチウム濃度の電解液を用いることにより、より効果的にリチウムイオンキャパシタを高容量化または高出力化することができる。
 負極活物質は、黒鉛およびハードカーボンからなる群より選択される少なくとも1種を含むことが好ましい。このような負極活物質は、リチウムイオンの吸蔵および放出性が高く、充放電をよりスムーズに行うことができる。
 正極の可逆容量Cpに対する負極の可逆容量Cnの比:Cn/Cpは、例えば、1.2~10であってもよい。このような可逆容量比である場合、負極に十分な量のリチウムをプレドープすることができ、より効果的にリチウムイオンキャパシタを、高容量化または高電圧化することができる。
 本発明の他の一局面は、リチウムイオンキャパシタの充放電方法であって、リチウムイオンキャパシタは、正極活物質を含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、正極と負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備し、電解液は、リチウム塩と、イオン性液体とを含み、リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、イオン性液体は、第2カチオンと第2アニオンとの溶融塩であり、第1アニオンと第2アニオンとは同じであり、リチウムイオンキャパシタを、4.2Vを超え、かつ5V以下の上限電圧で、充放電する工程を有する、充放電方法に関する。電解液が上記のような組成を有することにより、充電の上限電圧が、4.2Vを超え、5V以下と高くても、安定して、可逆的に充放電することができる。
 本発明によれば、電解液がイオン性液体を含む場合でも、リチウムイオンキャパシタの充放電を安定して可逆的に行うことができる。また、高い上限電圧まで充電しても、ガス発生などが起こり難い。そのため、高容量のリチウムイオンキャパシタを得ることができる。
キャパシタの一例の構成を示す断面図である。
 リチウムイオンキャパシタは、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備する。電解液は、リチウム塩と、イオン性液体とを含み、リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、イオン性液体は、第2カチオンと第2アニオンとの溶融塩である。ここで、第1アニオンと第2アニオンとは同じである。
 安全性および/または充電電圧を高める観点から、LIBの電解液の溶媒として、イオン性液体を使用することが検討されている。同様に、リチウムイオンキャパシタにおいてイオン性液体を電解液に使用すると、充電電圧を高めることができると考えられる。LIBの負極には、リチウムイオンを吸蔵および放出可能な負極活物質が使用される。このような負極活物質は、充放電時に、リチウムイオンの吸蔵(または挿入)と放出とを可逆的に起こすと考えられている。
 ところが、リチウムイオンキャパシタにおいては、正極からリチウムイオンが供給されるLIBとは異なり、電解液が唯一のリチウム源である。よって、リチウムイオンの移動し易さが、充放電特性に大きく影響する。例えば、イオン性液体およびリチウム塩を構成するアニオンの種類によって、リチウムイオンとの相互作用の強さが異なるため、負極活物質へのリチウムイオンの吸蔵が遅延することがある。また、リチウムイオンの吸蔵が遅延する一方、イオン性液体を構成するカチオンが、負極活物質に吸蔵される現象も起こる。イオン性液体を構成するカチオン(リチウムイオン以外のカチオン)の負極活物質への吸蔵は、不可逆的に起こる。つまり、カチオンが一旦吸蔵されることにより、形式上、充電反応が進行しても、カチオンが放出されないため、放電できなくなる。また、リチウムイオン以外のカチオンが負極活物質に不可逆的に吸蔵されるため、放電容量が著しく低下するとともに、充放電を繰り返し可逆的に行うことができなくなる。従って、イオン性液体を用いても、充放電を安定して可逆的に行うことができないことがあり、また、充電電圧を高めても、リチウムイオンキャパシタを高容量化することができないことがある。
 LIBでは、充電時に正極からリチウムイオンが多量に供給されるため、負極活物質へのリチウムイオンの吸蔵が阻害されることはない。そのため、イオン性液体を用いても、上記のような問題は起こらない。
 しかし、リチウムイオンキャパシタでは、正極からリチウムイオンが供給されることがないため、負極活物質へのリチウムイオン以外のカチオンの不可逆的な吸蔵の問題が顕在化する。つまり、このようなカチオンの不可逆的な吸蔵の問題は、リチウムイオンキャパシタに特有のものである。
 本発明者らは、リチウムイオンキャパシタの電解液に、リチウム塩を構成するアニオン(第1アニオン)と、イオン性液体を構成するアニオン(第2アニオン)として、同じ種類のものを用いると、イオン性液体のカチオン(第2カチオン)の負極活物質への不可逆的な吸蔵が抑制されることを見出した。その理由は定かではないが、リチウムイオンに対する相互作用の程度に差異がなくなるためと考えられる。そして、このようなアニオンを含む電解液をリチウムイオンキャパシタに用いると、負極活物質へのリチウムイオンの吸蔵が優先的に起こるため、充放電を安定して可逆的に行うことができるとともに、4.2Vを超えるような高い電圧まで充電しても、充放電を安定して行うことができることが分かった。
 本発明のリチウムイオンキャパシタを用いた充放電方法では、4.2Vを超える上限電圧で、リチウムイオンキャパシタを充放電することができる。これにより、正極活物質の容量を有効に利用でき、リチウムイオンキャパシタを大幅に高容量化できる。上限電圧は、好ましくは4.4V以上、さらに好ましくは4.6V以上または4.8V以上であってもよい。上限電圧は、5Vを超える値にすることもできるが、5V以下であることが好ましい。これらの下限値と上限値とは適宜選択して組み合わせることができる。充電の上限電圧は、例えば、4.2Vを超えて、5V以下、または4.4V~5Vであってもよい。
 電解液において、イオン性液体は、イオンのキャリアとしても機能するが、リチウム塩を溶解する溶媒としての機能も有する。そのため、電解液は、イオン性液体をある程度の含有量で含むことが好ましい。電解液は、リチウムイオンキャパシタの電解液に含まれる公知の成分、例えば、有機溶媒、添加剤などを含むことができる。ただし、電解液が有機溶媒を含む場合、充電電圧を高めたときに、分解によりガスが発生し易い。そのため、リチウム塩およびイオン性液体以外の成分の含有量は、比較的少ないことが好ましい。具体的に、電解液中のリチウム塩およびイオン性液体の含有量の合計は、90質量%以上であることが好ましく、95質量%以上であることがさらに好ましい。特に、電解液は、カーボネートなどの有機溶媒を含まないことが好ましく、また、電解液中のリチウム塩およびイオン性液体の含有量の合計は100質量%であってもよい。
 このように、リチウム塩およびイオン性液体の含有量の合計が多いと、充電電圧を高めても、電解液の分解をより効果的に抑制し易い。そのため、より安定に充放電を行うことができる。
 以下に、電解液の成分についてより詳細に説明する。
 (電解液)
 電解液に含まれるリチウム塩は、電解液中で、リチウムイオンと第1アニオンとに解離して、リチウムイオンは、リチウムイオンキャパシタ内において電荷のキャリアとなる。
 第1アニオンおよびイオン性液体を構成する第2アニオンとしては、ビススルフォニルイミドアニオンを用いることが好ましい。
 ビススルフォニルイミドアニオンとしては、ビススルフォニルイミド骨格を有し、スルフォニル基にフッ素原子を有する構造のアニオンが例示できる。フッ素原子を有するスルフォニル基としては、例えば、フルオロスルフォニル基の他、フルオロアルキル基を有するスルフォニル基が挙げられる。フルオロアルキル基は、アルキル基の一部の水素原子が、フッ素原子で置き換わっていてもよく、全ての水素原子がフッ素原子で置き換わったパーフルオロアルキル基であってもよい。フッ素原子を有するスルフォニル基としては、フルオロスルフォニル基、パーフルオロアルキルスルフォニル基が好ましい。
 このようなビススルフォニルイミドアニオンとしては、具体的には、下記式(1):
Figure JPOXMLDOC01-appb-C000001
(X1およびX2は、それぞれ独立に、フッ素原子または炭素数1~8のパーフルオロアルキル基である。)
で表されるアニオンが挙げられる。
 X1およびX2で表されるパーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが例示できる。イオン性液体の粘度を低減する観点から、X1およびX2のうち少なくとも一方は、パーフルオロアルキル基であるのが好ましく、X1およびX2の双方が、パーフルオロアルキル基であるのがさらに好ましい。また、イオン性液体の粘度を低減する観点からは、パーフルオロアルキル基の炭素数は、好ましくは1~3であり、1または2であるのがさらに好ましい。
 ビススルフォニルイミドアニオンの具体例としては、ビスフルオロスルフォニルイミドアニオン(FSI-);ビス(トリフルオロメチルスルフォニル)イミドアニオン(TFSI-)、ビス(ペンタフルオロエチルスルフォニル)イミドアニオン、フルオロトリフルオロメチルスルフォニルイミドアニオン((FSO2)(CF3SO2)N-)などのビス(パーフルオロアルキルスルフォニル)イミドアニオン(PFSI-)が挙げられる。
 これらのアニオンのうち、FSI-またはTFSI-(特に、FSI-)は、リチウムイオンに対する相互作用が比較的小さく、リチウムイオンを捕捉し難く、負極活物質へのリチウムイオンの挿入を阻害し難いため好ましい。FSI-やTFSI-(特に、FSI-)を用いると、リチウムイオンを負極活物質によりスムーズに吸蔵させることができ、より安定した充放電を行うことができる。また、電解液の粘度を低減することができる上、リチウム塩の溶解性も高い。
 イオン性液体を構成する第2カチオンとしては、無機カチオン[リチウムイオン以外のアルカリ金属カチオン(ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオンなど)、アルカリ土類金属カチオン(マグネシウムイオン、カルシウムイオンなど)、遷移金属カチオンなどの金属カチオン;アンモニウムカチオンなど];有機オニウムカチオンなどの有機カチオンなどが例示できる。
 第2カチオンとしては、有機オニウムカチオンが好ましい。有機オニウムカチオンとしては、脂肪族アミン、脂環族アミンや芳香族アミンに由来するカチオン(例えば、第4級アンモニウムカチオンなど)の他、窒素含有へテロ環を有するカチオン(つまり、環状アミンに由来するカチオン)などの窒素含有オニウムカチオン;イオウ含有オニウムカチオン;リン含有オニウムカチオンなどが例示できる。
 イオウ含有オニウムカチオンとしては、トリメチルスルホニウムカチオン、トリヘキシルスルホニウムカチオン、ジブチルエチルスルホニウムカチオンなどのトリアルキルスルホニウムカチオン(例えば、トリC1-10アルキルスルホニウムカチオンなど)などのイオウ含有第3級オニウムカチオンが例示できる。
 リン含有オニウムカチオンとしては、第4級オニウムカチオン、例えば、テトラメチルホスホニウムカチオン、テトラエチルホスホニウムカチオン、テトラオクチルホスホニウムカチオンなどのテトラアルキルホスホニウムカチオン(例えば、テトラC1-10アルキルホスホニウムカチオン);トリエチル(メトキシメチル)ホスホニウムカチオン、ジエチルメチル(メトキシメチル)ホスホニウムカチオン、トリヘキシル(メトキシエチル)ホスホニウムカチオンなどのアルキル(アルコキシアルキル)ホスホニウムカチオン(例えば、トリC1-10アルキル(C1-5アルコキシC1-5アルキル)ホスホニウムカチオンなど)などが挙げられる。なお、アルキル(アルコキシアルキル)ホスホニウムカチオンにおいて、リン原子に結合したアルキル基およびアルコキシアルキル基の合計個数は、4個であり、アルコキシアルキル基の個数は、好ましくは1または2個である。
 有機オニウムカチオンのうち、窒素含有有機オニウムカチオンが好ましく、中でも、窒素含有ヘテロ環を有する有機オニウムカチオンが好ましい。電解液が、このような有機オニウムカチオンを含む場合、溶融塩の粘度を低くすることができるため、イオン伝導性を高めることができる。
 有機オニウムカチオンの窒素含有ヘテロ環骨格としては、ピロリジン、イミダゾリン、イミダゾール、ピリジン、ピペリジンなどの、環の構成原子として1個または2個の窒素原子を有する5~8員ヘテロ環;モルホリンなどの、環の構成原子として、1個または2個の窒素原子と他のヘテロ原子(酸素原子、イオウ原子など)とを有する5~8員ヘテロ環が例示できる。
 なお、環の構成原子である窒素原子は、アルキル基などの有機基を置換基として有していてもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基などの炭素数が1個~10個のアルキル基が例示できる。アルキル基の炭素数は、1~8が好ましく、1~4がさらに好ましく、1、2、または3であるのが特に好ましい。
 窒素含有有機オニウムカチオンのうち、特に、窒素含有ヘテロ環骨格として、ピロリジンやイミダゾリンを有するものが好ましい。ピロリジン骨格を有する有機オニウムカチオンは、ピロリジン環を構成する1つの窒素原子に、2つの上記アルキル基を有することが好ましい。また、イミダゾリン骨格を有する有機オニウムカチオンは、イミダゾリン環を構成する2つの窒素原子に、それぞれ、1つの上記アルキル基を有することが好ましい。
 ピロリジン骨格を有する有機オニウムカチオンの具体例としては、N,N-ジメチルピロリジニウムカチオン、N,N-ジエチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン(MPPY+)、N-メチル-N-ブチルピロリジニウムカチオン(MBPY+)、N-エチル-N-プロピルピロリジニウムカチオンなどが挙げられる。これらのうちでは、特に電気化学的安定性が高いことから、MPPY+、MBPY+などの、メチル基と、炭素数2~4のアルキル基とを有するピロリジニウムカチオンが好ましい。
 イミダゾリン骨格を有する有機オニウムカチオンの具体例としては、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン(EMI+)、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン(BMI+)、1-エチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3- エチルイミダゾリウムカチオンなどが挙げられる。これらのうち、EMI+、BMI+などの、メチル基と、炭素数2~4のアルキル基とを有するイミダゾリウムカチオンが好ましい。
 第2カチオンとしては、正極活物質との反応性が小さく、充電電圧を高めても耐分解性が高い観点から、イミダゾリン骨格を有する有機オニウムカチオンが好ましく、イオン伝導性が高いため、EMI+が特に好ましい。第2カチオンと第2アニオンとの塩の具体例としては、EMIFSI、EMITFSI、EMIPFSIなどが挙げられる。リチウムイオンの吸蔵を阻害し難く、耐分解性およびリチウム塩の溶解性が高い観点から、イオン性液体は、少なくとも、EMIFSIを含むことが好ましい。
 第2カチオンと第2アニオンとの塩は、リチウムイオンキャパシタの作動温度で溶融状態(イオン性液体)である必要があるため、この塩の融点は低い方が好ましい。イオン性液体の融点を適度な範囲に調節するために、複数の塩を組み合わせて使用してもよい。このとき、これらの塩のアニオンは、第1アニオンと同じである必要があるが、カチオンは、上記で第2カチオンとして例示したものの中から適宜選択して組み合わせることができる。例えば、イオン性液体は、EMIFSIなどのEMI+カチオンを用いた塩と、MPPYFSIなどのMPPY+カチオンを用いた塩とを含んでもよい。
 電解液のリチウム濃度は、例えば、0.8mol/Lを超えて、5.5mol/L未満である。リチウム濃度は、1mol/L以上であることが好ましく、1.5mol/L以上または2mol/L以上であることがより好ましく、2.5mol/L以上または3mol/L以上であることが特に好ましい。また、リチウム濃度は、5mol/L以下であることが好ましく、4.5mol/L以下または4mol/L以下であることがより好ましい。これらの下限値と上限値とは適宜選択して組み合わせることができる。電解液のリチウム濃度は、例えば、1mol/L~5mol/L、2.5mol/L~5mol/Lまたは3mol/L~5mol/Lであってもよい。
 リチウム濃度がこのような範囲である場合、リチウムイオン以外のカチオンが負極活物質に吸蔵されるのをより効果的に抑制できるとともに、充放電中の電流や抵抗の損失の影響を低減し易い。また、電解液の粘度が必要以上に高くなることを抑制できるため、高いイオン伝導性をより有効に確保できる。充電の上限電圧を高めても、安定な充放電をより有効に行うことができるため、リチウムイオンキャパシタを高容量化または高出力化する上でより有利である。さらに、電極の厚みが大きかったり、電極活物質の充填量が高かったりしても、充放電を効率よく行うことができる。
 なお、電解液中の水分量が多い場合、充電の上限電圧を高め難い。そのため、電解液中の水分量は、300ppm以下(例えば、150ppm以下)にすることが好ましく、40ppm以下とすることがさらに好ましい。電解液中の水分量は、電解液中の成分(例えば、リチウム塩、イオン性液体など)を乾燥させたり、正極および/または負極(もしくはこれらの活物質)を乾燥させたりすることにより、低減できる。乾燥は、減圧下で行うことができ、必要に応じて、加熱下で行ってもよい。
 以下に、電解液以外のリチウムイオンキャパシタの構成要素について、より詳細に説明する。
 (電極)
 リチウムイオンキャパシタの電極(つまり、正極および負極)は、それぞれ、電極活物質を含む。電極は、電極活物質とともに、これを保持する電極集電体を含むことができる。
 電極集電体は、金属箔でもよいが、高容量なキャパシタを得る観点からは、三次元網目状の構造を有する金属多孔体であることが好ましい。正極集電体の材質としては、アルミニウム、アルミニウム合金などが好ましい。負極集電体の材質としては、銅、銅合金、ニッケル、ニッケル合金、ステンレス鋼等が好ましい。
 電極は、電極集電体に、電極活物質を含むスラリーを塗布または充填し、その後、スラリーに含まれる分散媒を除去し、さらに必要に応じて、電極活物質を保持した集電体を圧延することにより得られる。スラリーは、電極活物質の他に、バインダ、導電助剤などを含んでもよい。分散媒としては、例えば、N-メチル-2-ピロリドン(NMP)などの有機溶媒の他、水などが用いられる。
 バインダの種類は特に制限されず、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリビニルクロリドなどの塩素含有ビニル樹脂;ポリオレフィン樹脂;スチレンブタジエンゴムなどのゴム状重合体;ポリビニルピロリドン、ポリビニルアルコール;カルボキシメチルセルロースなどのセルロース誘導体(セルロースエーテルなど)などを用いることができる。バインダの量は、特に限定されず、電極活物質100質量部あたり、例えば、0.5質量部~10質量部であってもよい。
 導電助剤の種類は、特に制限されず、例えば、アセチレンブラックなどのカーボンブラック;炭素繊維などの導電性繊維などが挙げられる。導電助剤の量は、特に限定されず、電極活物質100質量部あたり、例えば0.1質量部~10質量部であってもよい。
 正極活物質としては、リチウムを可逆的に担持可能であり、アニオンを電気化学的に吸着できる材料、例えば、活性炭、カーボンナノチューブなどが用いられる。これらのうちでは、活性炭が好ましい。例えば、正極活物質中の活性炭の含有量が、50質量%を超えることが好ましい。
 活性炭としては、リチウムイオンキャパシタに使用される公知のものを使用できる。活性炭の原料としては、例えば、木材;ヤシ殻;パルプ廃液;石炭またはその熱分解により得られる石炭系ピッチ;重質油またはその熱分解により得られる石油系ピッチ;フェノール樹脂などが挙げられる。
 炭化された材料は、その後、賦活するのが一般的である。賦活法としては、ガス賦活法および薬品賦活法が例示できる。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素等と接触反応させることにより活性炭を得る方法である。薬品賦活法は、上記原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水及び酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム等が挙げられる。
 活性炭の平均粒径(体積基準の粒度分布におけるメディアン径、以下同じ。)は、特に限定されないが、20μm以下であることが好ましい。比表面積も特に限定されないが、800m2/g~3000m2/g程度が好ましい。この範囲とすることにより、リチウムイオンキャパシタの静電容量を大きくすることができ、また、内部抵抗を小さくすることができる。
 負極活物質としては、リチウムイオンを吸蔵および放出可能な炭素材料の他、リチウムチタン酸化物、ケイ素酸化物、ケイ素合金、錫酸化物、錫合金が挙げられる。炭素材料としては、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、黒鉛(人造黒鉛、天然黒鉛など)などが例示できる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。負極活物質のうち、炭素材料が好ましく、特に、黒鉛および/またはハードカーボンが好ましい。
 負極活物質には、負極電位を低下させるために、予めリチウムをドープしておくことが好ましい。これにより、キャパシタの電圧が高くなり、リチウムイオンキャパシタの高容量化に更に有利となる。リチウムのドープは、キャパシタの組み立て時に行われる。例えば、リチウム金属を、正極、負極および非水電解質とともにキャパシタ容器内に収容し、組み立て後のキャパシタを60℃前後の恒温室中で保温することにより、リチウム金属箔からリチウムイオンが溶出し、負極活物質に吸蔵される。負極活物質にドープするリチウム量は、好ましくは負極容量(負極の可逆容量):Cnの5%~90%、より好ましくは10%~75%がリチウムで満たされる量であることが好ましい。これにより、負極電位が十分に低くなり、高電圧のキャパシタを得ることが容易となる。
 従来のリチウムイオンキャパシタは、正極容量(正極の可逆容量):Cpに比べて、負極容量Cnが極めて大きくなるように設計されている。その理由の一つは、アニオンを吸着および脱離する正極の能力を確保するためには、正極活物質を含む層を厚く形成することが困難なためである。正極活物質を含む層が厚くなるほど、表層部の正極活物質によるアニオンの吸着及び脱離(充放電)が困難になり、正極利用率(実際に蓄電される電荷量/活物質量から計算される蓄電可能な電荷量の理論値)が小さくなる。また、他の理由は、負極活物質には、負極電位を下げるために、比較的多くのリチウムをプレドープする必要があるためである。
従って、従来のリチウムイオンキャパシタの負極容量Cnは、正極容量Cpの10倍を超える程度となっている。
 一方、本発明によれば、4.2Vを超えるような上限電圧まで、安定して可逆的に充放電可能であるため、正極を効果的に高容量化できる。そのため、負極容量Cnと正極容量Cpとの比:Cn/Cpを、比較的小さく設定することが可能である。
 ここで、正極容量Cpとは、正極に含まれる正極活物質量から計算される蓄電可能な電荷量の理論値から不可逆容量を差し引いた値である。また、負極容量Cnとは、負極に含まれる負極活物質量から計算される蓄電可能な電荷量の理論値から不可逆容量を差し引いた値である。なお、CpおよびCnは、それぞれ、正極を用いたEDLC、および負極と金属リチウムを用いたハーフセルについて測定される放電容量に基づいて評価することもできる。
 Cn/Cp比は、例えば、1.1より大きく、12.5未満である。Cn/Cp比は、好ましくは1.2以上、さらに好ましくは1.3以上または2以上である。Cn/Cp比は、好ましくは10以下、さらに好ましくは9以下である。これらの下限値と上限値とは適宜選択して組み合わせることができる。Cn/Cp比は、例えば、1.2~10、または1.3~10であってもよい。
 Cn/Cp比が上記のような範囲である場合、負極に十分な量のリチウムをプレドープすることができ、より効果的にリチウムイオンキャパシタを高電圧化することができる。また、初期電圧を高め易く、これにより、リチウムイオンキャパシタを高容量化し易くなるため有利である。さらに、正極または負極の体積を必要以上に大きくする必要がないため、高い放電容量を確保しながらも、リチウムイオンキャパシタの容量密度の低下を抑制し易い。
 (セパレータ)
 セパレータは、イオン透過性を有し、正極と負極との間に介在して、これらを物理的に離間させて短絡を防止する。セパレータは、多孔質材構造を有し、細孔内に電解液を保持することで、イオンを透過させる。セパレータの材質としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリエチレンレテフタレートなどのポリエステル;ポリアミド;ポリイミド;セルロース;ガラス繊維などを用いることができる。
 セパレータの厚みは、例えば10μm~100μm程度である。
 図1に、キャパシタの一例の構成を概略的に示す。セルケース45内には、キャパシタ40の主構成要素である極板群と電解液が収容されている。極板群は、複数の正極41と負極42とをセパレータ43を介して積層することにより構成されている。正極41は、三次元網目状の構造を有する正極集電体41aと、正極集電体41aの連通孔に充填された粒子状の正極活物質41bとで構成されている。負極42は、三次元網目状の構造を有する負極集電体42aと、負極集電体42aの連通孔に充填された粒子状の負極活物質42bとで構成されている。
 ただし、極板群は、積層タイプに限らず、正極41と負極42とをセパレータ43を介して捲回することにより構成することもできる。負極42にリチウムが析出するのを防止する観点から、図1に示すように、正極41よりも負極42の寸法を大きくすることが望ましい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1
 下記の手順でリチウムイオンキャパシタを作製した。
(1)正極の作製
 活性炭粉末(比表面積2300m2/g、平均粒径約5μm)、導電助剤としてアセチレンブラック、バインダとしてPVDF(濃度12質量%でPVDFを含むNMP溶液)、および分散媒としてNMPを、混合機にて混合、攪拌することにより、正極合剤スラリーを調製した。スラリー中の各成分の含有量は、活性炭21.5質量%、アセチレンブラック0.76質量%、PVDF20.6質量%であった。
 得られた正極合剤スラリーを、集電体としてのアルミニウム箔(厚み:20μm)の一方の表面(粗面化処理した表面)に、ドクターブレードを用いて塗布することにより厚み100μmの塗膜を形成し、100℃にて30分乾燥した。乾燥物を、一対のロールを用いて圧延し、厚み65μmの正極を作製した。
(2)負極の作製
 ハードカーボン粉末(平均粒径約10μm)、導電助剤としてアセチレンブラック、バインダとしてPVDF(濃度12質量%でPVDFを含むNMP溶液)、分散媒としてNMPを、混合機にて混合、攪拌することにより、負極合剤スラリーを調製した。スラリー中の各成分の含有量は、ハードカーボン28.0質量%、アセチレンブラック2.7質量%、PVDF13.3質量%であった。
 得られた負極合剤スラリーを、集電体としてのパンチング銅箔(厚み:20μm、開口径:50μm、開口率50%)の一方の表面に、ドクターブレードを用いて塗布することにより厚み200μmの塗膜を形成し、100℃にて30分乾燥した。乾燥物を、一対のロールを用いて圧延し、厚み120μmの負極を作製した。
(3)リチウム極の作製
 集電体としてのパンチング銅箔(厚み:20μm、開口径:50μm、開口率50%、2cm×2cm)の一方の表面に、リチウム箔(厚み:50μm)を圧着することにより、リチウム極を作製した。集電体の他方の表面には、ニッケル製のリードを溶接した。
(4)リチウムイオンキャパシタの作製
 上記(1)および(2)で得られた正極および負極を、それぞれ、1.5cm×1.5cmのサイズに切り出し、1辺に沿って幅0.5mmの部分の合剤を取り除いて集電体露出部を形成した。正極の集電体露出部には、アルミニウム製のリードを、負極集電体露出部には、ニッケル製のリードを、それぞれ溶接した。なお、得られた正極および負極において、合剤が存在する部分の面積は、いずれも、1.5cm2であった。
 正極と負極との間に、セルロース製のセパレータ(厚み:60μm)を介在させて正極と負極とを積層することにより単セルの極板群を形成した。さらに、極板群の負極側に、ポリオレフィン製のセパレータ(ポリエチレン微多孔膜とポリプロピレン微多孔膜との積層体)を介在させて、リチウム極を配置し、得られた積層物を、アルミニウムラミネートシートで作製されたセルケース内に収容した。
 次いで、電解液をセルケース内に注入して、正極、負極およびセパレータに含浸させた。電解液としては、リチウム塩としてLiFSIを1.0mol/Lの濃度で含むEMIFSI溶液を用いた。最後に真空シーラーにて減圧しながらセルケースを封止した。
 負極とリチウム極とを、セルケース外部で、リード線で接続し、0.2mA/cm2の電流で0Vまで充電することにより、負極活物質にリチウムをプレドープした。その後、0.2mA/cm2の電流で0.33mAh放電した。このときの電圧(初期電圧)を測定した。
 このようにして、リチウムイオンキャパシタを作製した。リチウムイオンキャパシタ内に収めた電解液中の水分量をカールフィッシャー法で測定したところ、108ppmであった。
 得られた正極および負極、ならびにリチウムイオンキャパシタを用いて、下記の評価を行った。
(a)電極容量およびCp/Cn
 正極を2枚準備し、これらの間にセルロース製セパレータ(厚み:60μm)を介在させて、極板群を構成した。その後、極板群と上記と同じ電解液とを、アルミニウムラミネート製の袋内に収容し、EDLCを完成させた。
 得られたEDLCについて、電圧範囲を0~4Vとして充放電を行い、このときの放電容量から、正極の可逆容量Cpを求めた。
 負極と、上記と同じリチウム極とを準備し、これらの間に、セルロース製セパレータ(厚み:60μm)を介在させて、極板群を構成した。得られた極板群と、上記と同じ電解液とを用いて、ハーフセルを作製した。このハーフセルについて、電圧範囲を0~2.5Vとして充放電を行い、このときの放電容量から、負極の可逆容量Cnを求めた。
 得られたCpをCnで除することにより、Cp/Cn比を算出した。
(b)充電の上限電圧
 0.4mA/cm2の電流で、電圧が3.8Vになるまで充電し、電圧が3.0Vになるまで放電した。次いで、充電の上限電圧を、0.2Vずつ5.0Vまで上げる以外は、上記と同様にして充放電を行い、充電可能な上限電圧を調べた。
(c)リチウムイオンキャパシタの容量
 0.4mA/cm2の電流で、(b)で調べた上限電圧まで充電し、電圧が3.0Vになるまで放電した。このときの充電容量(mAh)および放電容量(mAh)を求めた。
 実施例2~4および比較例1~3
 電解液として、表1に示すリチウム塩および媒体(イオン性液体、または有機溶媒)を含むものを用いる以外は、実施例1と同様にして、リチウムイオンキャパシタを作製し、評価を行った。なお、比較例1では、媒体として、ECとDECとを体積比1:1で含む混合溶媒を使用した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 イオン性液体を用いていない比較例1では、充電の上限電圧が3.8Vおよび4.2Vのときには、安定して充放電を行うことができたが、4.4Vまで充電する際に、リチウムイオンキャパシタが膨らんだため充電を中止した。つまり、比較例1のリチウムイオンキャパシタでは、充電の上限電圧は4.2Vであった。リチウムイオンキャパシタが膨らんだのは、4.2Vを超える高い電圧まで充電する際に、電解液の分解が起こり、ガスが発生したことによるものと考えられる。また、比較例1のリチウムイオンキャパシタの放電容量は、0.18mAhであり、Cpの0.3mAhよりも大幅に低下した。
比較例1で放電容量が低かったのは、4.2Vまでしか充電できないため、正極の容量を十分に活用できないことによるものである。
 比較例2および3では、イオン性液体を用いているものの、リチウム塩とイオン性液体とのアニオンの種類が異なる。これらの比較例では、充電の上限電圧を5.0Vまで高めても、比較例1のようなリチウムイオンキャパシタの膨れは見られなかった。しかし、これらの比較例では、リチウムイオンキャパシタの放電容量の低下が著しく、放電容量は、Cpの1/10以下であった。また、比較例2および3について、充電容量を評価したところ、その値は、いずれも0.15mAh程度であり、Cpの半分であった。つまり、比較例2および3では、充電はある程度できるものの、充電量に対する放電量が極めて小さくなった。そのため、高い充電電圧では、充放電を安定して可逆的に行うことができなかった。
 一方、リチウム塩とイオン性液体のアニオンが同じである実施例1~4では、充電の上限電圧が3.8V~5Vのいずれの場合でも、安定して充放電を行うことができた。また、実施例では、リチウムイオンキャパシタの放電容量は、Cpとほぼ同じであり、正極の利用効率が高かった。
従って、実施例では、高容量のリチウムイオンキャパシタが得られた。
 実施例5~8
 電解液中のリチウム塩の濃度を、表2に示すように変更する以外は、実施例1と同様に、リチウムイオンキャパシタを作製し、上限電圧および放電容量を評価した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例6および7では、実施例1と同様に、充電の上限電圧が5Vの場合でも安定して充放電を行うことができるとともに、Cpと同程度かまたはそれ以上の容量が確保できた。実施例5および8では、リチウムイオンキャパシタの放電容量は、Cpよりもわずかに低いものの、充電の上限電圧が5Vの場合も安定して、充放電を行うことができた。なお、実施例5について、リチウムイオンキャパシタの充電容量を評価したところ、その値は0.3mAhを超え、Cpに匹敵するものであった。高い放電容量が得られ易い観点からは、リチウム塩の濃度を、0.8mol/Lを超えて、5.5mol/L未満とすることが好ましい。
 実施例9~14
 負極合剤スラリーの塗膜の厚みおよび負極の厚みを表3に示すように変更する以外は、実施例1と同様に負極、およびリチウムイオンキャパシタを作製し、実施例1と同様に、上限電圧および放電容量を評価した。なお、塗膜の厚みが50μm未満の場合には、ドクターブレードに代えて、へらを用いて、負極合剤スラリーを集電体に塗布した。
 結果を表3に示す。なお、表3には、各リチウムイオンキャパシタの初期電圧も合わせて記載した。
Figure JPOXMLDOC01-appb-T000004
 実施例9~13では、実施例1と同様に、充電の上限電圧が5Vの場合でも安定して充放電を行うことができるとともに、Cpに匹敵する高い放電容量が得られた。また、これらの実施例では、初期電圧も高かった。実施例14では、リチウムイオンキャパシタの初期電圧および放電容量は、他の実施例に比べて低くなっているが、充電の上限電圧が5Vでも、充放電を安定して行うことができた。なお、初期電圧が小さいと、要求される電圧との差を埋める分を充電したままにしておく必要があるため、容量が小さくなり易い。そのため、初期電圧および放電容量を高める観点からは、Cn/Cp比は、1.1より大きくすることが好ましい。
 また、実施例9は、実施例1と比較すると、Cn/Cp比が大きいものの、初期電圧は同程度である。これは、負極へのリチウムドープ量が飽和量に近づけば、負極の電位は、Li金属に対して、ほぼ0Vになるためである。よって、Cn/Cp比を過剰に大きくしても、リチウムイオンキャパシタの放電容量はほとんど変化しない。ただし、負極量が増えることにより、リチウムイオンキャパシタのセル内の体積が増加するため、リチウムイオンキャパシタの容量密度は低下することになる。よって、十分な放電容量を確保しながら、リチウムイオンキャパシタの容量密度の低下を抑制する観点からは、Cn/Cp比は、12.5未満であることが好ましい。
 本発明のリチウムイオンキャパシタは、充電電圧を高めても、充放電を安定して可逆的に行うことができるため、高容量のリチウムイオンキャパシタを得ることができる。よって、高い容量が求められる様々な蓄電デバイスに適用することができる。
 40…キャパシタ、41…正極、41a…正極集電体、41b…正極活物質、42…負極、42a…負極集電体、42b…負極活物質、43…セパレータ、45…セルケース

Claims (9)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、前記正極と前記負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備し、
     前記電解液は、リチウム塩と、イオン性液体とを含み、
     前記リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、 前記イオン性液体は、第2カチオンと第2アニオンとの溶融塩であり、
     前記第1アニオンと前記第2アニオンとは同じである、リチウムイオンキャパシタ。
  2.  前記電解液中の前記リチウム塩および前記イオン性液体の含有量の合計は、90質量%以上である、請求項1に記載のリチウムイオンキャパシタ。
  3.  前記第1アニオンおよび前記第2アニオンは、ビスフルオロスルフォニルイミドアニオン、またはビス(トリフルオロメチルスルフォニル)イミドアニオンである、請求項1または請求項2に記載のリチウムイオンキャパシタ。
  4.  前記第2カチオンは有機オニウムカチオンである、請求項1~請求項3のいずれか1項に記載のリチウムイオンキャパシタ。
  5.  前記有機オニウムカチオンは窒素含有へテロ環を有する、請求項4に記載のリチウムイオンキャパシタ。
  6.  前記電解液のリチウム濃度は1mol/L~5mol/Lである、請求項1~請求項5のいずれか1項に記載のリチウムイオンキャパシタ。
  7.  前記負極活物質は、黒鉛およびハードカーボンからなる群より選択される少なくとも1種を含む、請求項1~請求項6のいずれか1項に記載のリチウムイオンキャパシタ。
  8.  前記正極の可逆容量Cpに対する前記負極の可逆容量Cnの比:Cn/Cpは、1.2~10である、請求項1~請求項7のいずれか1項に記載のリチウムイオンキャパシタ。
  9.  リチウムイオンキャパシタの充放電方法であって、
     前記リチウムイオンキャパシタは、正極活物質を含む正極と、負極活物質を含む負極と、前記正極と前記負極との間に介在するセパレータと、リチウムイオン伝導性の電解液と、を具備し、
     前記電解液は、リチウム塩と、イオン性液体とを含み、
     前記リチウム塩は、第1カチオンであるリチウムイオンと第1アニオンとの塩であり、 前記イオン性液体は、第2カチオンと第2アニオンとの溶融塩であり、
     前記第1アニオンと前記第2アニオンとは同じであり、
     前記リチウムイオンキャパシタを、4.2Vを超え、かつ5V以下の上限電圧で、充放電する工程を有する、充放電方法。
PCT/JP2014/055557 2013-03-19 2014-03-05 リチウムイオンキャパシタおよびその充放電方法 WO2014148250A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013669.2A CN105190810A (zh) 2013-03-19 2014-03-05 锂离子电容器及其充放电方法
EP14767837.9A EP2978002A4 (en) 2013-03-19 2014-03-05 LITHIUM ION CONDENSER AND METHOD FOR LOADING AND UNLOADING THEREOF
US14/777,663 US20160111228A1 (en) 2013-03-19 2014-03-05 Lithium ion capacitor and method for charging and discharging same
KR1020157024508A KR20150131019A (ko) 2013-03-19 2014-03-05 리튬 이온 커패시터 및 그 충방전 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013056297A JP2014183161A (ja) 2013-03-19 2013-03-19 リチウムイオンキャパシタおよびその充放電方法
JP2013-056297 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148250A1 true WO2014148250A1 (ja) 2014-09-25

Family

ID=51579939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055557 WO2014148250A1 (ja) 2013-03-19 2014-03-05 リチウムイオンキャパシタおよびその充放電方法

Country Status (6)

Country Link
US (1) US20160111228A1 (ja)
EP (1) EP2978002A4 (ja)
JP (1) JP2014183161A (ja)
KR (1) KR20150131019A (ja)
CN (1) CN105190810A (ja)
WO (1) WO2014148250A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159359A1 (ja) * 2015-04-03 2016-10-06 日本ケミコン株式会社 ハイブリッドキャパシタ及びハイブリッドキャパシタ用セパレータ
CN106504912A (zh) * 2015-09-04 2017-03-15 罗伯特·博世有限公司 混合超级电容器
CN107112146A (zh) * 2014-12-22 2017-08-29 日清纺控股株式会社 蓄电器件
WO2017221830A1 (ja) * 2016-06-22 2017-12-28 日本ケミコン株式会社 ハイブリッドキャパシタ及びその製造方法
EP3240094A4 (en) * 2014-12-22 2018-07-04 Nisshinbo Holdings Inc. Electrolyte solution for secondary batteries, and secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268064A1 (en) * 2015-03-09 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
JP6361599B2 (ja) 2015-07-07 2018-07-25 株式会社豊田中央研究所 蓄電デバイス
KR101997746B1 (ko) * 2015-09-24 2019-07-08 삼성전자주식회사 전지 팩 및 이의 충/방전 제어 방법
JP6834187B2 (ja) * 2016-06-22 2021-02-24 日本ケミコン株式会社 ハイブリッドキャパシタ及びその製造方法
CN106298263B (zh) * 2016-10-31 2018-05-15 湘潭大学 一种铋/炭超级电容电池及其制备方法
DE102020114893A1 (de) 2020-06-04 2021-12-09 Tdk Electronics Ag Elektrochemische Zelle und elektrochemisches System
CN114597069B (zh) * 2020-12-04 2024-02-02 位速科技股份有限公司 水相电解质溶液、蓄电装置及蓄电装置的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155928A (ja) * 2004-11-25 2006-06-15 Gs Yuasa Corporation:Kk 非水電解質および電気化学デバイス
JP2006260952A (ja) * 2005-03-17 2006-09-28 Toshiba Corp 電気化学デバイス
JP2007294539A (ja) 2006-04-21 2007-11-08 Advanced Capacitor Technologies Inc リチウムイオンハイブリッドキャパシタ
JP2010097922A (ja) 2008-09-17 2010-04-30 Dai Ichi Kogyo Seiyaku Co Ltd イオン液体を用いたリチウム二次電池
JP2010140941A (ja) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd キャパシタ
JP2012142340A (ja) 2010-12-28 2012-07-26 Jm Energy Corp リチウムイオンキャパシタ
JP2013026444A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd 非水電解質電気化学素子用電極の製造方法およびその非水電解質電気化学素子用電極を備えた非水電解質電気化学素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2492344C (en) * 2004-01-15 2010-08-10 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte for electrochemical devices
US7582380B1 (en) * 2004-04-08 2009-09-01 Electrochemical Systems, Inc. Lithium-ion cell with a wide operating temperature range
JP2006286921A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP4731967B2 (ja) * 2005-03-31 2011-07-27 富士重工業株式会社 リチウムイオンキャパシタ
JP2008294314A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd キャパシタ
EP2023434B1 (de) * 2007-07-23 2016-09-07 Litarion GmbH Elektrolytzubereitungen für Energiespeicher auf Basis ionischer Flüssigkeiten
JP5242973B2 (ja) * 2007-08-23 2013-07-24 日本化学工業株式会社 蓄電デバイス用電解質組成物及びそれを用いた蓄電デバイス
JP5163216B2 (ja) * 2008-03-25 2013-03-13 日本ゼオン株式会社 ハイブリッドキャパシタ用電極およびハイブリッドキャパシタ
US8822078B2 (en) * 2008-09-29 2014-09-02 Rochester Institute Of Technology Freestanding carbon nanotube paper, methods of its making, and devices containing the same
JP5408702B2 (ja) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 リチウムイオン電池
JP5446309B2 (ja) * 2009-02-20 2014-03-19 ソニー株式会社 ゲル状電解質及びこれを用いた電池とその使用方法、並びにゲル状電解質の製造方法
CN101841064A (zh) * 2010-05-20 2010-09-22 中南大学 具有高容量与库仑效率的锂离子电容电池负极系统
KR20130127447A (ko) * 2010-11-10 2013-11-22 제이에무에나지 가부시키가이샤 리튬 이온 커패시터
JP2012216401A (ja) * 2011-03-31 2012-11-08 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス
JP2012212632A (ja) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイスの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155928A (ja) * 2004-11-25 2006-06-15 Gs Yuasa Corporation:Kk 非水電解質および電気化学デバイス
JP2006260952A (ja) * 2005-03-17 2006-09-28 Toshiba Corp 電気化学デバイス
JP2007294539A (ja) 2006-04-21 2007-11-08 Advanced Capacitor Technologies Inc リチウムイオンハイブリッドキャパシタ
JP2010097922A (ja) 2008-09-17 2010-04-30 Dai Ichi Kogyo Seiyaku Co Ltd イオン液体を用いたリチウム二次電池
JP2010140941A (ja) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd キャパシタ
JP2012142340A (ja) 2010-12-28 2012-07-26 Jm Energy Corp リチウムイオンキャパシタ
JP2013026444A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd 非水電解質電気化学素子用電極の製造方法およびその非水電解質電気化学素子用電極を備えた非水電解質電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2978002A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112146A (zh) * 2014-12-22 2017-08-29 日清纺控股株式会社 蓄电器件
EP3240094A4 (en) * 2014-12-22 2018-07-04 Nisshinbo Holdings Inc. Electrolyte solution for secondary batteries, and secondary battery
EP3240000A4 (en) * 2014-12-22 2018-07-04 Nisshinbo Holdings Inc. Electricity storage device
US10763548B2 (en) 2014-12-22 2020-09-01 Nisshinbo Holdings, Inc. Electrolyte solution for secondary batteries, and secondary battery
WO2016159359A1 (ja) * 2015-04-03 2016-10-06 日本ケミコン株式会社 ハイブリッドキャパシタ及びハイブリッドキャパシタ用セパレータ
JPWO2016159359A1 (ja) * 2015-04-03 2018-02-08 日本ケミコン株式会社 ハイブリッドキャパシタ及びハイブリッドキャパシタ用セパレータ
EP3279911A4 (en) * 2015-04-03 2018-11-14 Nippon Chemi-Con Corporation Hybrid capacitor and separator for hybrid capacitors
US10504661B2 (en) 2015-04-03 2019-12-10 Nippon Chemi-Con Corporation Hybrid capacitor and separator for hybrid capacitors
CN106504912A (zh) * 2015-09-04 2017-03-15 罗伯特·博世有限公司 混合超级电容器
WO2017221830A1 (ja) * 2016-06-22 2017-12-28 日本ケミコン株式会社 ハイブリッドキャパシタ及びその製造方法
US11152159B2 (en) 2016-06-22 2021-10-19 Nippon Chemi-Con Corporation Hybrid capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
CN105190810A (zh) 2015-12-23
US20160111228A1 (en) 2016-04-21
EP2978002A4 (en) 2016-10-26
JP2014183161A (ja) 2014-09-29
KR20150131019A (ko) 2015-11-24
EP2978002A1 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2014148250A1 (ja) リチウムイオンキャパシタおよびその充放電方法
WO2014185162A1 (ja) キャパシタおよびその充放電方法
WO2014208182A1 (ja) リチウム電池
WO2015125647A1 (ja) 蓄電デバイスおよび充放電システム
KR20090004841A (ko) 전기화학 에너지 축적 디바이스
JP2005229103A (ja) 電気化学素子用非水電解液およびそれを含む電気二重層コンデンサもしくは二次電池
WO2015076059A1 (ja) キャパシタおよびその製造方法
KR20160102974A (ko) 알칼리 금속 이온 커패시터
JP6260209B2 (ja) アルカリ金属イオンキャパシタ、その製造方法および充放電方法
WO2016056493A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP2015153700A (ja) 蓄電デバイス
US20170011860A1 (en) Capacitor and method for charging and discharging same
WO2014050541A1 (ja) 溶融塩キャパシタ
WO2015093289A1 (ja) リチウムイオンキャパシタ
WO2015107800A1 (ja) 銅多孔体、蓄電デバイス用電極および蓄電デバイス
KR102467810B1 (ko) 리튬 이온 커패시터
JP2015041433A (ja) ナトリウム溶融塩電池
WO2015107965A1 (ja) アルミニウム多孔体、蓄電デバイス用電極および蓄電デバイス
WO2016056494A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP2015204437A (ja) リチウムイオンキャパシタ
JP2015153699A (ja) 蓄電デバイス
WO2015087591A1 (ja) キャパシタおよびその充放電方法
JP2016181603A (ja) リチウムイオンキャパシタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013669.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024508

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014767837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014767837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14777663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE