WO2014050541A1 - 溶融塩キャパシタ - Google Patents

溶融塩キャパシタ Download PDF

Info

Publication number
WO2014050541A1
WO2014050541A1 PCT/JP2013/074405 JP2013074405W WO2014050541A1 WO 2014050541 A1 WO2014050541 A1 WO 2014050541A1 JP 2013074405 W JP2013074405 W JP 2013074405W WO 2014050541 A1 WO2014050541 A1 WO 2014050541A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation
group
anion
formula
molten salt
Prior art date
Application number
PCT/JP2013/074405
Other languages
English (en)
French (fr)
Inventor
知陽 竹山
奥野 一樹
真嶋 正利
昂真 沼田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014050541A1 publication Critical patent/WO2014050541A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a molten salt capacitor. More specifically, the present invention relates to a molten salt capacitor that is useful as an electricity storage device or the like that is used in a high-temperature environment such as an environment for resource mining.
  • Capacitors can be charged and discharged in a short time compared to secondary batteries, have a long life, and have a high output, so a large current is required in a short time for regeneration of braking force, acceleration assistance, etc.
  • Various uses are expected, including power storage devices for electric vehicles.
  • a capacitor including an electrolyte salt such as tetraethylammonium tetrafluoroborate and a plasticizer such as ethylene carbonate has been proposed (for example, see Patent Document 1).
  • the plasticizer volatilizes at a high temperature in the capacitor, the discharge capacity of the capacitor may become unstable. Therefore, it is desired to develop a capacitor that can withstand use in a high-temperature environment such as an environment in which resources are mined and that can be charged and discharged satisfactorily.
  • This invention is made in view of the said prior art, and makes it a subject to provide the molten salt capacitor which can be charged / discharged favorably in a high temperature environment.
  • the molten salt capacitor of the present invention has a positive electrode, a negative electrode, an electrolyte, and a separator in a container sealed by a container body and a lid, and the electrolyte is interposed between the positive electrode and the negative electrode. And a molten salt capacitor in which the positive electrode and the negative electrode are separated via a separator, Molten salt in which the electrolyte includes at least one anion selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, and at least one cation selected from the group consisting of a metal cation and an organic cation.
  • the positive electrode is an electrode in which a positive electrode material containing a carbon material that reversibly holds the anion as a positive electrode active material is supported on a positive electrode current collector
  • the negative electrode is an electrode in which a negative electrode current collector is supported by a negative electrode material containing a material that reversibly holds the cation as a negative electrode active material
  • the separator is a molten salt capacitor made of a material having a heat resistant temperature of 120 ° C. or higher.
  • molten salt capacitor of the present invention there is an excellent effect that charging and discharging can be favorably performed in a high temperature environment.
  • a container sealed with a container body and a lid has a positive electrode, a negative electrode, an electrolyte, and a separator, and the electrolyte is interposed between the positive electrode and the negative electrode.
  • a molten salt capacitor in which the positive electrode and the negative electrode are separated via a separator Molten salt in which the electrolyte includes at least one anion selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, and at least one cation selected from the group consisting of a metal cation and an organic cation.
  • the positive electrode is an electrode in which a positive electrode material containing a carbon material that reversibly holds the anion as a positive electrode active material is supported on a positive electrode current collector
  • the negative electrode is an electrode in which a negative electrode current collector is supported by a negative electrode material containing a material that reversibly holds the cation as a negative electrode active material
  • the separator includes a molten salt capacitor made of a material having a heat resistant temperature of 120 ° C. or higher.
  • the molten salt capacitor adopting the above configuration exhibits excellent heat resistance and corrosion resistance in a high temperature environment such as an environment for resource mining, for example, and suppresses volatilization and combustion of the electrolyte.
  • the charge / discharge characteristics are shown. Therefore, the molten salt capacitor employing the above-described configuration can withstand use in a high temperature environment, has a long life, and can be charged and discharged satisfactorily.
  • the anion is selected from the group consisting of a halogen anion, an amide anion having a halogen atom, an amide anion having an alkyl group having a halogen atom, a sulfonate anion having a halogen atom, and a sulfonate anion having an alkyl group having a halogen atom.
  • a halogen anion represented by formula (II):
  • R 1 and R 2 are each independently a halogen atom or a C 1-8 alkyl group having a halogen atom
  • R 3 represents a halogen atom or a C 1-8 alkyl group having a halogen atom
  • it is at least one kind of anion selected from the group consisting of sulfonate anions represented by: Since the electrolyte in which the anion is used has high heat resistance, according to the molten salt capacitor in which the above configuration is adopted, charging and discharging can be performed more favorably in a high temperature environment.
  • the cation is preferably at least one cation selected from the group consisting of a metal cation and an organic onium cation. More preferably, the cation is at least one cation selected from the group consisting of a metal cation, a tertiary onium cation and a quaternary onium cation. Said cations are alkali metal cations, alkaline earth metal cations, aluminum cations, silver cations, formula (IV):
  • R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, and A is a sulfur atom
  • R 7 to R 10 are each independently an alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms, and B represents a nitrogen atom or a phosphorus atom
  • R 16 and R 17 are each independently an alkyl group having 1 to 8 carbon atoms, Y is a direct bond, an oxygen atom, a methylene group, or formula (X):
  • each R 18 independently represents an alkyl group having 1 to 8 carbon atoms
  • the material that reversibly retains the cation includes a carbon material that reversibly retains the cation, silicon, tin, a silicon compound, a tin compound, a metal nitride that dissociates the metal cation, and a metal titanate that dissociates the metal cation.
  • a material selected from the group consisting of compounds is preferred. Since the negative electrode active material in which these materials are used as a material for reversibly holding the cation has high life stability and large capacity, the molten salt capacitor employing the above configuration has sufficient life stability. And have enough capacity.
  • a molten salt capacitor according to an embodiment of the present invention includes a positive electrode, a negative electrode, an electrolyte, and a separator in a container sealed with a container main body and a lid, and an electrolyte between the positive electrode and the negative electrode.
  • the positive electrode is an electrode in which a positive electrode material containing a carbon material that reversibly holds the anion as a positive electrode active material is supported on a positive electrode current collector
  • the negative electrode is an electrode in which a negative electrode current collector is supported by a negative electrode material containing a material that reversibly holds the cation as a negative electrode active material
  • the separator is characterized by being made of a material having a heat resistant temperature of 120 ° C. or higher.
  • the molten salt capacitor according to an embodiment of the present invention has the above-described configuration, for example, in a high temperature environment such as an environment when mining resources, volatilization and combustion of the electrolyte are suppressed, In addition, it exhibits excellent charge / discharge characteristics. Therefore, according to the molten salt capacitor which is one embodiment of the present invention, charging and discharging can be favorably performed in a high temperature environment. Moreover, since the molten salt capacitor which is one Embodiment of this invention has the said structure, it shows the outstanding heat resistance and corrosion resistance in the said high temperature environment. Therefore, the molten salt capacitor which is one embodiment of the present invention can withstand use in a high temperature environment and has a long life.
  • molten salt capacitor includes an electric double layer capacitor and a metal ion capacitor.
  • the “metal ion capacitor” refers to a capacitor using a negative electrode material containing a material that reversibly holds a metal cation as a negative electrode active material among molten salt capacitors in which a molten salt is used as an electrolyte.
  • the “molten salt” refers to a salt that is liquid at 120 to 250 ° C., preferably 120 to 130 ° C.
  • the metal cation is a metal cation used for a molten salt.
  • molten salt capacitor for example, an electrode unit in which a positive electrode and a negative electrode are arranged to face each other via a separator is accommodated in a capacitor container body having an opening, and then an electrolyte is
  • the molten salt obtained by heating to a temperature equal to or higher than the melting point can be produced by filling the capacitor container body in which the electrode unit is accommodated, and then sealing the capacitor container body.
  • the electrode unit is obtained, for example, by arranging a positive electrode, a negative electrode, and a separator so that the positive electrode and the negative electrode face each other with the separator interposed therebetween, and the positive electrode, the separator, and the negative electrode overlap each other in the container.
  • the positive electrode is an electrode in which a positive electrode material containing a carbon material that reversibly retains anions as a positive electrode active material is supported on a positive electrode current collector.
  • the positive electrode material contains a carbon material that reversibly holds an anion, and optionally a conductive additive and a binder.
  • “retaining anion reversibly” means that the anion is adsorbed to and desorbed from the surface of the positive electrode active material, or the anion is inserted into the atomic arrangement structure of the positive electrode active material. Or desorption from the structure.
  • the material constituting the positive electrode current collector examples include aluminum, silver, gold, platinum, titanium, stainless steel, nickel chrome alloy, and the like, but the present invention is not limited to such examples. .
  • aluminum, silver, gold, platinum, titanium, stainless steel and nickel chrome alloy are preferable because of high resistance to high voltage and easy procurement, and aluminum, stainless steel and nickel chrome alloy are preferable. More preferred.
  • gold or platinum is used as the material constituting the positive electrode current collector, the positive electrode current collector is formed by forming a layer made of gold or platinum on the surface of the current collector body made of another material. It may be a thing.
  • Examples of the shape of the positive electrode current collector include a foil, a porous body, and a perforated foil (for example, a punching metal, an expanded metal, etc.), but the present invention is not limited to only such examples. Absent.
  • a foil and a porous body are preferable from the viewpoint of sufficiently securing the electric capacity per unit volume of the molten salt capacitor and reducing the internal resistance.
  • the thickness of the positive electrode current collector varies depending on the use of the molten salt capacitor and cannot be determined unconditionally, it is preferable to appropriately determine the thickness depending on the use of the molten salt capacitor.
  • the thickness of the positive electrode current collector is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, from the viewpoint of sufficiently ensuring the electric capacity per unit volume of the molten salt capacitor. From the viewpoint of improving the output, it is preferably 5000 ⁇ m or less, more preferably 2000 ⁇ m or less, and still more preferably 1000 ⁇ m or less.
  • the porosity of the porous body is preferably 50% or more, more preferably from the viewpoint of sufficiently securing the electric capacity per unit volume of the molten salt capacitor. Is 80% or more, and preferably 98% or less, more preferably 95% or less, from the viewpoint of sufficiently securing the mechanical strength of the current collector.
  • the porosity of the porous body is expressed by the formula (1):
  • the average pore diameter of the pores in the porous body is usually 0.01 ⁇ m or more from the viewpoint of smoothly filling the current collector with battery material during production, and the internal resistance in the molten salt capacitor From the viewpoint of reducing the thickness, it is preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the positive electrode active material is a carbon material that holds anions reversibly.
  • the carbon material that reversibly retains anions include carbon materials having a large specific surface area such as activated carbon, carbon nanotubes, graphene, carbon fluoride, and boronated carbon. It is not limited to. These carbon materials can be appropriately selected according to the characteristics required for the carbon material, the characteristics imparted to the molten salt capacitor, and the like. For example, when it is required to increase the surface area of the carbon material, activated carbon and carbon nanotubes are preferable. In addition, graphene, fluorinated carbon, and boronated carbon are preferred when smooth anion insertion and desorption from the carbon layer of the carbon material is required.
  • a carbon nanotube is preferable. Furthermore, carbon nanotubes are preferred when it is desired to extend the life of the molten salt capacitor.
  • the specific surface area of the carbon material is preferably 300 m 2 / g or more, more preferably 500 m 2 / g or more from the viewpoint of sufficiently securing the electric capacity of the molten salt capacitor, and ensures the capacity density of the molten salt capacitor. From the viewpoint, it is preferably 3500 m 2 / g or less, more preferably 2500 m 2 / g or less.
  • Examples of the conductive additive used in the positive electrode material include carbon materials such as carbon black such as acetylene black and ketjen black, carbon fibers such as vapor grown carbon fiber; aluminum, cobalt, gold, silver, platinum, and titanium. However, the present invention is not limited to such examples.
  • the content of the conductive additive in the positive electrode material is usually preferably 10% by mass or less.
  • binder examples include glass, liquid crystal, polytetrafluoroethylene, polyvinylidene fluoride, polyimide, styrene butadiene rubber, and carboxymethyl cellulose, but the present invention is not limited to such examples.
  • the binder content in the positive electrode material is usually preferably 10% by mass or less.
  • the positive electrode material is supported on the positive electrode current collector by, for example, applying the positive electrode material to the surface of the positive electrode current collector, and in the case where the positive electrode current collector is a porous body, the positive electrode material is applied to the positive electrode current collector. This can be done by filling the inside.
  • the thickness of the layer made of the positive electrode material is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more from the viewpoint of sufficiently securing the capacity of the capacitor, and preferably 2500 ⁇ m or less from the viewpoint of ensuring current collection. More preferably, it is 1000 ⁇ m or less.
  • the negative electrode is an electrode in which a negative electrode current material containing a material that reversibly holds cations as a negative electrode active material is supported on a negative electrode current collector.
  • the negative electrode material contains a material that reversibly holds cations, and optionally a conductive additive and a binder.
  • “retaining cations reversibly” means that cations are adsorbed on and desorbed from the surface of the negative electrode active material, or cations are inserted into the atomic arrangement structure of the negative electrode active material. Or desorption from the structure.
  • the material constituting the negative electrode current collector examples include aluminum, nickel, copper, silver, gold, platinum, stainless steel, nickel-chromium alloy, and the like, but the present invention is limited only to such examples. is not. Such a material can be appropriately determined according to the type of the molten salt capacitor.
  • the material constituting the negative electrode current collector is at least one selected from the group consisting of aluminum, nickel, copper, silver, gold, platinum, stainless steel, and nickel chromium alloy Preferably it is a seed.
  • the materials constituting the negative electrode current collector of the electric double layer capacitor it is excellent in electrical conductivity and easy to procure, so at least selected from the group consisting of aluminum, nickel, copper, silver, gold and platinum One is preferable, and at least one selected from the group consisting of aluminum, nickel, and copper is more preferable.
  • the material constituting the negative electrode current collector is at least one selected from the group consisting of nickel, copper, gold, platinum, stainless steel, and nickel chromium alloy. It is preferable.
  • the materials constituting the negative electrode current collector of the molten salt capacitor at least one selected from the group consisting of nickel, copper, gold and platinum is preferable because of excellent electrical conductivity and easy procurement. At least one selected from the group consisting of nickel and copper is more preferable.
  • a layer made of gold or platinum may be formed on the surface of the current collector body made of another material.
  • the shape of the negative electrode current collector, the thickness of the negative electrode current collector, the porosity of the porous material when the shape of the negative electrode current collector is a porous material, and the average pore diameter of the pores in the porous material are the positive electrode The same applies to the shape of the current collector, the thickness of the positive electrode current collector, the porosity of the porous material when the shape of the positive electrode current collector is a porous material, and the average pore diameter of the pores in the porous material.
  • the negative electrode active material is a material that reversibly holds cations.
  • the material that reversibly retains the cation include, for example, a carbon material that reversibly retains the cation; a metal that forms an alloy with a metal that dissociates the metal cation, such as silicon, tin, a silicon compound, and a tin compound; Examples include metals or compounds thereof; metal nitrides that dissociate the metal cations; metal titanate compounds that dissociate the metal cations, but the present invention is not limited to such examples.
  • the material that reversibly holds these cations can be appropriately selected according to the characteristics required of the material, the characteristics imparted to the molten salt capacitor, and the like.
  • a carbon material that reversibly retains the cation a metal nitride that dissociates the metal cation, and a metal titanate compound that dissociates the metal cation are preferable.
  • a silicon, tin, a silicon compound, and a tin compound are preferable.
  • the negative electrode active material is appropriately selected according to the type of molten salt capacitor.
  • the negative electrode active material can be selected from carbon materials that reversibly hold the cations.
  • the carbon material that holds the cation reversibly is the same as the carbon material used as the positive electrode active material.
  • the negative electrode active material includes a carbon material that reversibly holds a metal cation, silicon, tin, a silicon compound, a tin compound, a metal nitride that dissociates the metal cation, and It can be selected from metal titanate compounds that dissociate the metal cation.
  • Examples of the carbon material that reversibly retains the metal cation include carbon black such as acetylene black and ketjen black, hard carbon, graphite, and the like, but the present invention is not limited only to such examples. Absent.
  • Examples of the silicon compound include silicon carbide and silicon oxide, but the present invention is not limited to such examples.
  • Examples of the tin compound include tin oxide and copper-tin alloy, but the present invention is not limited to such examples.
  • Examples of the metal nitride that dissociates the metal cation include alkali metal nitrides such as lithium nitride, sodium nitride, and potassium nitride, but the present invention is not limited to such examples.
  • the negative electrode active material that can be used for these metal ion capacitors can be appropriately selected according to the characteristics required of the negative electrode active material, the characteristics imparted to the metal capacitor, and the like.
  • silicon, tin, a silicon compound, and a tin compound are preferable when it is required to secure a sufficient capacity of the metal capacitor.
  • maintains the said metal cation reversibly, the metal nitride which dissociates the said metal cation, and the metal titanate compound which dissociates the said metal cation are preferable.
  • metal titanate compound that dissociates the metal cation examples include alkali metal titanates such as lithium titanate, sodium titanate, and potassium titanate, beryllium titanate, magnesium titanate, calcium titanate, barium titanate, and the like.
  • alkali metal titanates such as lithium titanate, sodium titanate, and potassium titanate
  • beryllium titanate such as lithium titanate, sodium titanate, and potassium titanate
  • magnesium titanate such as magnesium titanate
  • calcium titanate such as barium titanate
  • barium titanate examples of the metal titanate compound that dissociates the metal cation
  • alkaline earth metal titanate compound, aluminum titanate and the like can be mentioned, but the present invention is not limited to such examples.
  • Examples of the conductive aid used for the negative electrode material include carbon materials such as carbon black such as acetylene black and ketjen black, and carbon fibers such as vapor grown carbon fiber. It is not limited to only.
  • the binder used for the negative electrode material is the same as the conductive additive and binder used for the positive electrode material.
  • the content of the conductive additive in the negative electrode material is usually preferably 10% by mass or less. Further, the content of the binder in the negative electrode material is usually preferably 10% by mass or less.
  • the negative electrode current is supported on the negative electrode current collector by, for example, applying the negative electrode material on the surface of the negative electrode current collector, and when the negative electrode current collector is a porous body, the negative electrode material is applied to the negative electrode current collector. This can be done by filling the inside.
  • the thickness of the layer made of the negative electrode material is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more from the viewpoint of sufficiently securing the capacitance of the capacitor, and preferably 2000 ⁇ m or less from the viewpoint of ensuring current collection. More preferably, it is 1000 ⁇ m or less.
  • the separator is made of a material having a heat resistant temperature of 120 ° C. or higher.
  • the material which comprises the said separator is a material whose heat-resistant temperature is 120 degreeC or more.
  • the heat-resistant temperature means that the material constituting the separator is not degraded or dissolved at the use temperature of the molten salt capacitor, and maintains a structure equivalent to a porous structure at room temperature (25 ° C.).
  • the maximum temperature examples of the material constituting the separator include fluororesins having a melting point of 250 ° C. or higher such as polytetrafluoroethylene; glass; ceramics such as alumina and zirconia; cellulose; polyphenyl sulfide, and the like. It is not limited only to such illustration.
  • Examples of the shape of the separator include a porous body and a fiber body, but the present invention is not limited to such examples.
  • a porous body and a fiber body are preferable from the viewpoint of impregnating a sufficient amount of electrolyte and improving the capacity of the molten salt capacitor.
  • the thickness of the separator is usually 20 ⁇ m or more from the viewpoint of impregnating a sufficient amount of electrolyte to improve the capacity of the molten salt capacitor and suppress the occurrence of an internal short circuit. From the viewpoint of achieving this, it is preferably 400 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the porosity of the porous body is usually 5% or more, more preferably 20% or more, and further preferably 50% or more from the viewpoint of reducing the internal resistance in the molten salt capacitor. From the viewpoint of suppressing the occurrence of an internal short circuit in the molten salt capacitor, it is preferably 98% or less, more preferably 70% or less.
  • the average pore diameter of the pores in the porous body is usually 0.01 ⁇ m or more from the viewpoint of suppressing the occurrence of internal short circuit in the molten salt capacitor, and from the viewpoint of reducing the internal resistance in the molten salt capacitor, Preferably it is 1000 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 1 micrometer or less.
  • the capacitor container body constitutes a molten salt capacitor container together with the lid.
  • Examples of the material constituting the capacitor container body include stainless steel, aluminum, an aluminum alloy, titanium, and the like, but the present invention is not limited only to such illustration.
  • the shape of the capacitor container main body differs depending on the use of the molten salt capacitor and the like, it cannot be determined unconditionally.
  • the molten salt used in the electrolyte is, for example, at least one selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, and a group consisting of a metal cation and an organic cation. It is obtained by heating a salt containing a cation of at a temperature equal to or higher than its melting point.
  • anion examples include a halogen anion; an amide anion having a halogen atom, an amide anion having an alkyl group having a halogen atom, a sulfonate anion having a halogen atom, and a sulfonate anion having an alkyl group having a halogen atom.
  • examples include anions of compounds having atoms, but the present invention is not limited to such examples.
  • the anion includes a halogen anion, an amide anion having a halogen atom, an amide anion having an alkyl group having a halogen atom, a sulfonate anion having a halogen atom, and an alkyl group having a halogen atom. It is preferably at least one selected from the group consisting of sulfonate anions having the formula (I): [X] - (I) (Wherein X represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) A halogen anion represented by formula (II):
  • R 1 and R 2 are each independently a halogen atom or a C 1-8 alkyl group having a halogen atom
  • R 3 represents a halogen atom or a C 1-8 alkyl group having a halogen atom
  • R 3 represents a halogen atom or a C 1-8 alkyl group having a halogen atom
  • it is at least one selected from the group consisting of sulfonate anions represented by:
  • X is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a fluorine atom is preferable from the viewpoint of improving the heat resistance of the electrolyte.
  • R 1 and R 2 are each independently a halogen atom or a C 1-8 alkyl group having a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a boron atom, and an iodine atom, but the present invention is not limited only to such illustration.
  • a fluorine atom is preferable from the viewpoint of improving the heat resistance of the electrolyte.
  • the number of carbon atoms of the alkyl group having a halogen atom in the formula (II) is 1 to 8, preferably 1 to 6, more preferably 1 to 4, from the viewpoint of improving the heat resistance of the electrolyte.
  • alkyl group having 1 to 8 carbon atoms having a halogen atom examples include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluoroheptyl group, and a perfluorooctyl group.
  • a perfluoroalkyl group having 1 to 8 carbon atoms such as a perchloromethyl group, perchloroethyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchloroheptyl group, perchlorooctyl group, etc.
  • 1 to 8 carbon atoms perchloroalkyl group 1 carbon atom such as perbromomethyl group, perbromoethyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromoheptyl group, perbromooctyl group ⁇ 8 perbromoalkyl group; periodomethyl group, par Examples thereof include a periodoalkyl group having 1 to 8 carbon atoms such as a dodoethyl group, a periodopropyl group, a periodobutyl group, a periodopentyl group, a periodoheptyl group, and a periodooctyl group.
  • perfluoroalkyl groups having 1 to 8 carbon atoms are preferable from the viewpoint of improving the heat resistance of the electrolyte, and are perfluoromethyl group, perfluoroethyl group. More preferred are a perfluoropropyl group and a perfluorobutyl group.
  • Examples of the sulfonylamide anion represented by the formula (II) include a bis (trifluoromethylsulfonyl) amide anion, a fluorosulfonyl (trifluoromethylsulfonyl) amide anion, and a bis (fluorosulfonyl) amide anion.
  • the invention is not limited to such examples.
  • sulfonylamide anions represented by the formula (II) from the viewpoint of improving the heat resistance of the electrolyte, bis (trifluoromethylsulfonyl) amide anion, fluorosulfonyl (trifluoromethylsulfonyl) amide anion and bis (fluoro) A sulfonyl) amide anion is preferred, and a bis (trifluoromethylsulfonyl) amide anion is more preferred.
  • R 3 is a halogen atom or a C 1-8 alkyl group having a halogen atom.
  • the halogen atom in formula (III) is the same as the halogen atom in formula (II).
  • the alkyl group having 1 to 8 carbon atoms having a halogen atom in formula (III) is the same as the alkyl group having 1 to 8 carbon atoms having a halogen atom in formula (II).
  • the number of carbon atoms of the alkyl group having a halogen atom in the formula (III) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the sulfonic acid anion represented by the formula (III) include a trifluoromethylsulfonic acid anion and a fluorosulfonic acid anion, but the present invention is not limited to such examples.
  • a trifluoromethylsulfonate anion is preferable from the viewpoint of improving the heat resistance of the electrolyte.
  • the cation is at least one cation selected from the group consisting of a metal cation and an organic cation.
  • Examples of the metal cation include an alkali metal cation, an alkaline earth metal cation, an aluminum cation, and a silver cation, but the present invention is not limited to such examples.
  • Examples of the alkali metal cation include a lithium cation, a sodium cation, a potassium cation, a rubidium cation, and a cesium cation, but the present invention is not limited to such examples.
  • Examples of the alkaline earth metal cation include beryllium cation, magnesium cation, calcium cation, and strontium cation, but the present invention is not limited to such examples.
  • organic cation examples include organic onium cations such as a tertiary onium cation and a quaternary onium cation, but the present invention is not limited to such examples.
  • the electrolyte is preferably at least one selected from the group consisting of a metal cation and an organic onium cation, and includes a metal cation, a tertiary onium cation, and a quaternary onium. More preferably, it is at least one selected from the group consisting of cations.
  • R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, and A is a sulfur atom
  • the present invention is not limited to such examples.
  • R 4 to R 6 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the carbon number of the alkyl group in formula (IV) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the alkyl group having 1 to 8 carbon atoms include straight chain such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group and octyl group.
  • an alkyl group having a branched chain and an alicyclic alkyl group having 1 to 8 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the present invention is not limited to such examples.
  • alkyl groups having 1 to 8 carbon atoms from the viewpoint of improving the heat resistance of the electrolyte, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, Or a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group are preferable.
  • A is a sulfur atom.
  • Examples of the cation represented by the formula (IV) include trialkylsulfonium cations such as trimethylsulfonium cation, triethylsulfonium cation, tributylsulfonium cation, trihexylsulfonium cation, diethylmethylsulfonium cation, and dibutylethylsulfonium cation.
  • the present invention is not limited to such examples.
  • These cations represented by the formula (IV) may be used alone or in combination of two or more.
  • a trialkylsulfonium cation is preferable from the viewpoint of improving the heat resistance of the electrolyte, and a trimethylsulfonium cation, a triethylsulfonium cation, a tributylsulfonium cation, a trihexylsulfonium cation, diethylmethyl A sulfonium cation and a dibutylethylsulfonium cation are more preferable, and a trimethylsulfonium cation, a triethylsulfonium cation, a diethylmethylsulfonium cation, and a dibutylethylsulfonium cation are more preferable.
  • R 7 to R 10 are each independently an alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms, and B represents a nitrogen atom or a phosphorus atom
  • R 16 and R 17 are each independently an alkyl group having 1 to 8 carbon atoms, Y is a direct bond, an oxygen atom, a methylene group, or formula (X):
  • R 18 independently represents an alkyl group having 1 to 8 carbon atoms
  • R 7 to R 10 are each independently an alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (V) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in the formula (V) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • the number of carbon atoms of the alkyloxyalkyl group in the formula (V) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • alkyloxyalkyl group having 1 to 8 carbon atoms examples include methoxymethyl group, 2-methoxyethyl group, ethoxymethyl group, 2-ethoxyethyl group, 2- (n-propoxy) ethyl group, 2- (n- Examples include isopropoxy) ethyl group, 2- (n-butoxy) ethyl group, 2-isobutoxyethyl group, 2- (tert-butoxy) ethyl group, 1-ethyl-2-methoxyethyl group and the like. Is not limited to such examples.
  • alkyloxyalkyl groups having 1 to 8 carbon atoms from the viewpoint of improving the heat resistance of the electrolyte, a methoxymethyl group, a 2-methoxyethyl group, an ethoxymethyl group, a 2-ethoxyethyl group, 2- (n -Propoxy) ethyl group, 2- (n-isopropoxy) ethyl group, 2- (n-butoxy) ethyl group, 2-isobutoxyethyl group, 2- (tert-butoxy) ethyl group, 1-ethyl-2- A methoxyethyl group is preferred.
  • B is a nitrogen atom or a phosphorus atom.
  • Examples of the cation represented by the formula (V) include N, N-dimethyl-N-ethyl-N-methoxymethylammonium cation, N, N-dimethyl-N-ethyl-N-methoxyethylammonium cation, N, N -Dimethyl-N-ethyl-N-ethoxyethylammonium cation, N, N, N-trimethyl-N-propylammonium cation, N, N, N-trimethyl-N-butylammonium cation, N, N, N-trimethyl- N-pentylammonium cation, N, N-trimethyl-N-hexylammonium cation, N, N-trimethyl-N-heptylammonium cation, N, N-trimethyl-N-octylammonium cation, N, N, N, N-tetrabutylammonium cation,
  • cations represented by the formula (V) may be used alone or in combination of two or more.
  • the ammonium cation and the phosphonium cation are preferable from the viewpoint of improving the heat resistance of the electrolyte, and the N, N-dimethyl-N-ethyl-N-methoxymethylammonium cation is preferable.
  • R 11 and R 12 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (VI) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in the formula (VI) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the imidazolium cation represented by the formula (VI) include 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-methyl-3-propylimidazolium cation, 1-butyl- 3-methylimidazolium cation, 1-methyl-3-pentylimidazolium cation, 1-hexyl-3-methylimidazolium cation, 1-heptyl-3-methylimidazolium cation, 1-methyl-3-octylimidazolium cation 1-ethyl-3-propylimidazolium cation, 1-butyl-3-ethylimidazolium cation and the like, but the present invention is not limited to such examples.
  • imidazolium cations represented by the formula (VI) may be used alone or in combination of two or more.
  • 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-methyl- 3-propylimidazolium cation, 1-butyl-3-methylimidazolium cation, 1-methyl-3-pentylimidazolium cation, 1-hexyl-3-methylimidazolium cation, 1-heptyl-3-methylimidazolium cation 1-methyl-3-octylimidazolium cation, 1-ethyl-3-propylimidazolium cation and 1-butyl-3-ethylimidazolium cation are preferred, 1,3-dimethylimidazolium cation, 1-ethyl-3-propylimidazolium cation and 1-butyl-3-ethylimidazolium cation are
  • R 13 and R 14 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (VII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in formula (VII) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the imidazolinium cation represented by the formula (VII) include 1,3-dimethylimidazolinium ion, 1-ethyl-3-methylimidazolinium ion, 1-methyl-3-propylimidazolinium ion, 1-butyl-3-methylimidazolinium ion, 1-methyl-3-pentylimidazolinium ion, 1-hexyl-3-methylimidazolinium ion, 1-heptyl-3-methylimidazolinium ion, 1- Examples include methyl-3-octylimidazolinium ion, 1-ethyl-3-propylimidazolinium ion, 1-butyl-3-ethylimidazolinium ion, and the like, but the present invention is limited only to such examples.
  • imidazolinium cations represented by the formula (VII) may be used alone or in combination of two or more.
  • these imidazolinium cations represented by the formula (VII) from the viewpoint of improving the heat resistance of the electrolyte, 1,3-dimethylimidazolinium ion, 1-ethyl-3-methylimidazolinium ion, 1 -Methyl-3-propylimidazolinium ion, 1-butyl-3-methylimidazolinium ion, 1-methyl-3-pentylimidazolinium ion, 1-hexyl-3-methylimidazolinium ion, 1-heptyl -3-methylimidazolinium ion, 1-methyl-3-octylimidazolinium ion, 1-ethyl-3-propylimidazolinium ion and 1-butyl-3-ethylimidazolinium ion are preferred, -Dimethylimidazolinium ion
  • R 15 is an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (VIII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in formula (VIII) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the pyridinium cation represented by the formula (VIII) include N-methylpyridinium cation, N-ethylpyridinium cation, N-propylpyridinium cation, N-butylpyridinium cation, N-pentylpyridinium cation, N-hexylpyridinium cation, Examples include N-heptylpyridinium cation and N-octylpyridinium cation, but the present invention is not limited to such examples. These pyridinium cations represented by the formula (VIII) may be used alone or in combination of two or more.
  • N-methylpyridinium cation, N-ethylpyridinium cation, N-propylpyridinium cation, N-butylpyridinium cation, N -Pentylpyridinium cation, N-hexylpyridinium cation, N-heptylpyridinium cation and N-octylpyridinium cation are preferred, N-methylpyridinium cation, N-ethylpyridinium cation, N-propylpyridinium cation, N-butylpyridinium cation, N -Pentylpyridinium cation, N-hexylpyridinium cation are more preferred, N-methylpyridinium cation, N-ethylpyridinium cation and N-
  • R 16 and R 17 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (IX) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the number of carbon atoms of the alkyl group in formula (IX) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Y is a direct bond, an oxygen atom, a methylene group, or a group represented by Formula (X).
  • R 18 is an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (X) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in the formula (X) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • R 19 and R 20 each independently represents an alkyl group having 1 to 8 carbon atoms
  • R 19 and R 20 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (XI) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the carbon number of the alkyl group in formula (XI) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the pyrrolidinium cation represented by the formula (XI) include N, N-dimethylpyrrolidinium cation, N-methyl-N-ethylpyrrolidinium cation, N-methyl-N-propylpyrrolidinium cation, N-methyl-N-butylpyrrolidinium cation, N-methyl-N-pentylpyrrolidinium cation, N-methyl-N-hexylpyrrolidinium cation, N-methyl-N-octylpyrrolidinium cation, N- Examples include ethyl-N-butylpyrrolidinium cation, but the present invention is not limited to such examples.
  • pyrrolidinium cations represented by the formula (XI) may be used alone or in combination of two or more.
  • R 21 and R 22 each independently represents an alkyl group having 1 to 8 carbon atoms
  • R 21 and R 22 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (XII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the number of carbon atoms of the alkyl group in formula (XII) is 1 to 8, preferably 1 to 6, more preferably 1 to 4, from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the morpholinium cation represented by the formula (XII) include N, N-dimethylmorpholinium cation, N-methyl-N-ethylmorpholinium cation, N-methyl-N-propylmorpholinium cation, N-methyl-N-butylmorpholinium cation, N-ethyl-N-butylmorpholinium cation, N-methyl-N-pentylmorpholinium cation, N-hexyl-N-methylmorpholinium cation, N- Examples include methyl-N-octylmorpholinium cation, but the present invention is not limited to such examples.
  • R 23 and R 24 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (XIII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the number of carbon atoms of the alkyl group in formula (XIII) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • Examples of the piperidinium cation represented by the formula (XIII) include N, N-dimethylpiperidinium ion, N-ethyl-N-methylpiperidinium ion, N-methyl-N-propylpiperidinium ion, and N-butyl. -N-methylpiperidinium ion, N-methyl-N-pentylpiperidinium ion, N-hexyl-N-methylpiperidinium ion, N-methyl-N-octylpiperidinium ion, and the like. It is not limited only to such illustration. These piperidinium cations represented by the formula (XIII) may be used alone or in combination of two or more.
  • N, N-dimethylpiperidinium ion, N-ethyl-N-methylpiperidinium ion, N-methyl are used from the viewpoint of improving the heat resistance of the electrolyte.
  • N-dimethylpiperidinium ion, N-ethyl-N-methylpiperidinium ion, N-methyl-N-propylpiperidinium ion, N-butyl-N-methylpiperidinium ion and N-methyl- N-pentylpiperidinium ion is more preferred, N N- dimethylpiperidinium ion, N- ethyl -N- methyl-piperidinium ion, N- methyl -N- propyl piperidinium ion and N- butyl -N- methyl-piperidinium ion is more preferable.
  • R 18 is an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the formula (X) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (IV).
  • the combination of an anion and cation differs depending on the type of the molten salt capacitor and the like, it cannot be determined unconditionally. Therefore, it is preferable to appropriately determine the combination depending on the type of the molten salt capacitor.
  • the molten salt capacitor is a metal ion capacitor
  • the molten salt includes a metal cation as a cation.
  • the combination of an anion and a cation is a combination including a combination of an arbitrary anion among the anions and a metal cation.
  • the combination of an anion and a cation is not particularly limited.
  • the salt may be a salt composed of the anion and the cation, or may be a mixture of two or more salts composed of the anion and the cation.
  • the salts composed of the anion and the cation for example, there is a salt that is solid at 120 to 250 ° C. (hereinafter also referred to as “solid salt”).
  • the solid salt can be used by dissolving in a salt which is composed of the anion and the cation and is liquid at 120 to 250 ° C.
  • lithium bis (trifluoromethylsulfonyl) amide is solid at 120-250 ° C.
  • 1-ethyl-3-methyl-imidazolium bis (fluorosulfonyl) amide is liquid at 120-250 ° C.
  • Such a mixture of lithium bis (trifluoromethylsulfonyl) amide and 1-ethyl-3-methyl-imidazolium bis (fluorosulfonyl) amide is liquid at 120-250 ° C. Therefore, in the present invention, a salt that is solid at 120 to 250 ° C. and a salt that is liquid at 120 to 250 ° C. can be blended, and a mixture that is liquid at 120 to 250 ° C. can be used as the molten salt.
  • the electrolyte is preferably a molten salt containing a sulfonylamide anion represented by the formula (II) and an alkali metal cation, and is a bis (trifluoromethylsulfonyl) amide anion.
  • the amount of the molten salt filled in the capacitor container body in which the electrode unit is accommodated varies depending on the use of the molten salt capacitor, the size of the capacitor container body, etc., it cannot be determined unconditionally. It is preferable to determine appropriately according to the application, the size of the capacitor container body, and the like.
  • the capacitor container body can be sealed by caulking and fixing a gasket and a lid to the opening of the capacitor container body.
  • Examples of the material constituting the lid include stainless steel, aluminum, aluminum alloy, and titanium, but the present invention is not limited to such examples.
  • the shape of the lid body only needs to be a shape that can be caulked and fixed to the opening of the capacitor container body together with the gasket, and since it varies depending on the shape of the capacitor container body and the gasket, it cannot be determined unconditionally. It is preferable to determine appropriately according to the shape of the container body and the gasket.
  • the material constituting the gasket has heat resistance at the use temperature of the molten salt capacitor, corrosion resistance to the electrolyte, and electrical insulation.
  • the material constituting the gasket include fluorine resins such as polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers; aromatic polyether ketone resins such as polyether ether ketone; fluoro rubber, glass and ceramics , Polyphenyl sulfide, heat-resistant polyvinyl chloride and the like, but the present invention is not limited to such examples.
  • the thickness of the gasket is preferably 0.5 mm or more, more preferably 1 mm or more from the viewpoint of suppressing the occurrence of an internal short circuit, and preferably 5 mm or less, more preferably 3 mm or less from the viewpoint of suppressing leakage current. is there.
  • the shape of the gasket may be any shape as long as it can be caulked and fixed to the opening of the capacitor container body together with the lid, and since it varies depending on the shape of the capacitor container body and the lid, etc. It is preferable to determine appropriately according to the shape of the container body and the lid.
  • the molten salt capacitor according to an embodiment of the present invention includes at least one anion selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, a metal cation, and an organic cation.
  • a positive electrode in which a positive electrode material containing a carbon material that reversibly holds the anion as a positive electrode active material is supported on a positive electrode current collector as a positive electrode active material with a molten salt containing at least one cation selected from the group; Since the negative electrode material containing the material which hold
  • the average particle diameter of each of activated carbon and carbon black is the average particle diameter of D50 measured using a laser diffraction / scattering particle size distribution analyzer.
  • Example 1 Production of electrode Activated carbon (specific surface area: 2000 m 2 / g, average particle diameter: 5 ⁇ m) as an active material, carbon black as a conductive additive, and polyvinylidene fluoride as a binder (hereinafter referred to as “PVDF”) ) And activated carbon / carbon black / PVDF (mass ratio) of 87/3/10, and 2.5 g of the resulting mixture was used as a solvent for N-methylpyrrolidone (hereinafter referred to as “NMP”). By suspending in 7.5 g, a slurry having a solid content of 25% by mass was obtained.
  • PVDF polyvinylidene fluoride
  • an aluminum foil (thickness: 20 ⁇ m) as a current collector is coated with aluminum using a doctor blade so that the coating amount of the slurry per 1 cm 2 is 5.5 mg and the coating thickness of the slurry is 200 ⁇ m.
  • the slurry was applied to the surface of the foil to form a slurry coating.
  • the aluminum foil having the slurry coating film was dried in a dryer at 120 ° C. for 3 hours.
  • an aluminum foil having a dried slurry coating film is pressed with a roller press (press gap: 150 ⁇ m) to thereby form an electric double layer capacitor electrode plate (hereinafter referred to as an “EDLC electrode plate”) (thickness). Obtained: 150 ⁇ m).
  • the obtained EDLC electrode plate was punched into a disk shape having a diameter of 1.1 mm to obtain a disk-shaped EDLC electrode.
  • a glass fiber nonwoven fabric having a thickness of 100 ⁇ m is punched into a disk shape having a diameter of 1.4 mm, and a disk-shaped glass fiber nonwoven fabric (diameter: 1.4 mm, thickness: 100 ⁇ m) as a separator is obtained. Obtained.
  • LiFSA Lithium bis (fluorosulfonyl) amide
  • KFSA potassium bis (fluorosulfonyl) amide
  • CsFSA cesium bis (fluorosulfonyl) amide
  • LiFSA is a salt containing a lithium cation as a metal cation and a bis (fluorosulfonyl) amide anion as an anion of a compound having a halogen atom.
  • KFSA is a salt containing a potassium cation as a metal cation and a bis (fluorosulfonyl) amide anion as an anion of a compound having a halogen atom.
  • CsFSA is a salt containing a cesium cation as a metal cation and a bis (fluorosulfonyl) amide anion as an anion of a compound having a halogen atom.
  • the electrode unit was obtained by making two disk-shaped electrodes for EDLC face each other with a disk-shaped nonwoven fabric made of glass fiber sandwiched therebetween.
  • the obtained electrode unit was accommodated in a stainless steel coin cell case (cell size: R2032). Next, 0.5 mL of the eutectic molten salt obtained in (3) above was heated to 80 ° C. and dropped into the coin cell case.
  • the lid of the coin cell case was closed and sealed through a polytetrafluoroethylene (PTFE) gasket to obtain an electric double layer capacitor.
  • the discharge capacity of the obtained electric double layer capacitor was charged to 2.5 V at a current of 0.1 mA / cm 2 at 25 ° C., and then discharged to 0 V at 0.1 mA / cm 2 . As a result, the discharge capacity was 0.22 mAh.
  • Example 2 In Example 1, instead of using an eutectic molten salt of LiFSA, KFSA, and CsFSA [LiFSA / KFSA / CsFSA (molar ratio): 3/4/3, melting point: 38 ° C.] as the electrolyte, sodium bis (fluoro By performing the same operation as in Example 1 except that a eutectic molten salt of [sulfonyl] amide (NaFSA) and CsFSA [NaFSA / CsFSA (molar ratio): 1/1, melting point: 55 ° C.] was used. An electric double layer capacitor was obtained. The electric double layer capacitor obtained had a charging voltage of 2.5 V and a discharge capacity of 0.21 mAh.
  • NaFSA is a salt containing a sodium cation as a metal cation and a bis (fluorosulfonyl) amide anion as an anion of a compound having a halogen atom.
  • Example 1 In Example 1, instead of using a disk-shaped glass fiber nonwoven fabric (diameter: 1.4 mm, thickness: 100 ⁇ m) as a separator, a disk-shaped glass fiber nonwoven fabric (diameter: 1.4 mm, thickness: 30 ⁇ m) ) And eutectic molten salt of LiFSA, KFSA, and CsFSA [LiFSA / KFSA / CsFSA (molar ratio): 3/4/3, melting point: 38 ° C.] instead of using 1 mol / L tetraethyl as an electrolyte.
  • An electric double layer capacitor was obtained by performing the same operation as in Example 1 except that the ammonium tetrafluoroborate-containing propylene carbonate solution was used.
  • the electric double layer capacitor obtained had a charging voltage of 2.5 V and a discharge capacity of 0.18 mAh.
  • Example 3 Production of positive electrode A positive electrode was obtained by performing the same operation as in Example 1 (1).
  • Ethylene carbonate hereinafter referred to as “EC”
  • DEC diethyl carbonate
  • LiPF 6 Lithium hexafluorophosphate
  • a copper foil as a current collector (thickness: 15 ⁇ m) is coated with a doctor blade so that the coating amount of the slurry per 1 cm 2 is 2.7 mg and the thickness of the coating film of the slurry is 100 ⁇ m.
  • the slurry was applied to the surface of the foil to form a slurry coating.
  • the copper foil having the slurry coating film was dried in a dryer at 120 ° C. for 3 hours.
  • the negative electrode plate (thickness: 60 micrometers) was obtained by pressurizing the copper foil which has the coating film of the slurry after drying with a roller press machine (press gap: 60 micrometers).
  • the obtained negative electrode plate was punched into a disk shape having a diameter of 1.1 mm to obtain a disk-shaped negative electrode plate for LIC.
  • a disk-shaped negative electrode plate and a disk-shaped lithium metal foil were opposed to each other with a disk-shaped non-woven fabric made of glass fiber interposed therebetween so as to be opposed to each other.
  • the obtained electrode unit was accommodated in a stainless steel coin cell case (cell size: R2032). Next, 0.5 mL of the electrolyte for preparing a negative electrode obtained in (3) was dropped into the coin cell case.
  • Li-doped negative electrode a negative electrode doped with lithium ions
  • a glass fiber nonwoven fabric having a thickness of 30 ⁇ m is punched into a disk shape having a diameter of 1.4 mm, and a disk-shaped glass fiber nonwoven fabric (diameter: 1.4 mm, thickness: 30 ⁇ m) is used as a separator. Obtained.
  • LiFSA and NaFSA were mixed so that the LiFSA / NaFSA (molar ratio) was 2/3, and the resulting mixture was heated to a melting point of 76 ° C or higher to obtain an electrolyte.
  • a eutectic molten salt of LiFSA and NaFSA [LiFSA / NaFSA (molar ratio): 2/3, melting point: 76 ° C.] was obtained.
  • the electrode unit was obtained by making the positive electrode and the Li-doped negative electrode face each other with the disc-shaped glass fiber non-woven fabric interposed therebetween so as to be opposed to each other with the non-woven fabric interposed therebetween.
  • the obtained electrode unit was accommodated in a stainless steel coin cell case (cell size: R2032). Next, 0.5 mL of the eutectic molten salt obtained in (6) above was heated to 100 ° C. and dropped into the coin cell case.
  • the obtained metal ion capacitor had a charging voltage of 4.2 V and a discharge capacity of 0.19 mAh.
  • Example 2 (Comparative Example 2) In Example 3, instead of using the eutectic molten salt of LiFSA and NaFSA [LiFSA / NaFSA (molar ratio): 2/3, melting point: 76 ° C.] as the electrolyte, the electrolytic solution obtained in Example 3 (3) A metal ion capacitor was obtained by performing the same operation as in Example 3 except that was used. The charging voltage of the obtained metal ion capacitor was 4.2 V, and the discharge capacity was 0.18 mAh.
  • Test Example 1 Each capacitor obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was allowed to stand in a high-temperature bath at 150 ° C. for 24 hours to stabilize the surface temperature of each capacitor. The battery was charged at a current density of 1 mA / cm 2 and discharged at a current density of 0.1 mA / cm 2 to examine the capacity. The results are shown in Table 1.
  • the electric double layer capacitors obtained in Examples 1 and 2 can obtain the same charging voltage and discharging capacity even in a high temperature environment of 150 ° C. and in a temperature environment of 25 ° C. Thus, it can be seen that the device operates normally even in a high temperature environment and can be charged and discharged satisfactorily.
  • the molten salt capacitor obtained in Comparative Example 1 in a high temperature environment of 150 ° C., the cell burst during charging, and charging / discharging could not be performed.
  • the metal ion capacitor obtained in Example 3 can obtain the same charging voltage and discharge capacity as those in a temperature environment of 25 ° C. even in a high temperature environment of 150 ° C. It can be seen that the device operates normally even in an environment and can be charged and discharged satisfactorily. In contrast, the metal ion capacitor obtained in Comparative Example 2 could not be charged / discharged in a high temperature environment of 150 ° C. because the cell burst during charging.
  • Example 4 In Example 1, instead of using a eutectic molten salt of LiFSA, KFSA and CsFSA, at least one anion selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, a metal cation and an organic cation The same operation as in Example 1 was performed except that a molten salt other than a eutectic molten salt of LiFSA, KFSA, and CsFSA was used among molten salts containing at least one cation selected from the group consisting of By doing so, an electric double layer capacitor is obtained. Such an electric double layer capacitor also has the same properties as the electric double layer capacitor obtained in Example 1.
  • Example 5 instead of using a eutectic molten salt of LiFSA and NaFSA, it comprises at least one anion selected from the group consisting of a halogen anion and an anion of a compound having a halogen atom, and a metal cation and an organic cation.
  • a metal is obtained.
  • An ion capacitor is obtained.
  • Such a metal ion capacitor also has the same properties as the metal ion capacitor obtained in Example 3.
  • a molten salt capacitor (a molten salt capacitor which is an embodiment of the present invention obtained in Examples 1 to 3) provided with a negative electrode in which a negative electrode material contained is supported on a negative electrode current collector, It can be seen that charging and discharging can be performed satisfactorily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、電解質がハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であり、正極がアニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させた電極であり、負極がカチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させた電極であり、セパレータが、耐熱温度が120℃以上である材料からなる溶融塩キャパシタに関する。

Description

溶融塩キャパシタ
 本発明は、溶融塩キャパシタに関する。さらに詳しくは、本発明は、資源採掘を行なう際の環境などのように高温環境下で使用される蓄電デバイスなどとして有用な溶融塩キャパシタに関する。
 キャパシタは、2次電池と比べ、短時間で充放電を行なうことができ、長寿命であり、しかも高出力であることから、制動力の回生、加速アシストなどに際して短時間で大きな電流を必要とする電気自動車用の蓄電デバイスをはじめ、種々の用途が期待されている。
 前記キャパシタとして、例えば、テトラエチルアンモニウムテトラフルオロボレートなどの電解質塩およびエチレンカーボネートなどの可塑剤を含むキャパシタが提案されている(例えば、特許文献1を参照)。
特開平9-92583号公報
 しかしながら、前記キャパシタには、高温下では前記可塑剤が揮発するため、キャパシタの放電容量などが不安定になるおそれがある。したがって、資源採掘を行なう際の環境などのように高温環境下での使用に耐え、良好に充放電を行なうことができるキャパシタの開発が望まれている。
 本発明は、前記従来技術に鑑みてなされたものであり、高温環境下で良好に充放電を行なうことができる溶融塩キャパシタを提供することを課題とする。
 本発明の溶融塩キャパシタは、容器本体と蓋体とで密封された容器内に、正極と、負極と、電解質とセパレータとを有し、前記正極および前記負極の間に電解質が介在しているとともに、当該正極と当該負極とがセパレータを介して隔離されてなる溶融塩キャパシタであって、
 前記電解質が、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であり、
 前記正極が、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させてなる電極であり、
 前記負極が、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させてなる電極であり、
 前記セパレータが、耐熱温度が120℃以上である材料からなる溶融塩キャパシタである。
 本発明の溶融塩キャパシタによれば、高温環境下で良好に充放電を行なうことができるという優れた効果が奏される。
[本願発明の実施形態の説明]
 最初に、本発明の実施態様を列記して説明する。
 本発明の実施形態には、容器本体と蓋体とで密封された容器内に、正極と、負極と、電解質とセパレータとを有し、前記正極および前記負極の間に電解質が介在しているとともに、当該正極と当該負極とがセパレータを介して隔離されてなる溶融塩キャパシタであって、
 前記電解質が、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であり、
 前記正極が、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させてなる電極であり、
 前記負極が、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させてなる電極であり、
 前記セパレータが、耐熱温度が120℃以上である材料からなる溶融塩キャパシタが含まれる。
 前記構成が採用された溶融塩キャパシタは、例えば、資源採掘を行なう際の環境などのような高温環境下において、優れた耐熱性および耐食性を示すとともに、電解質の揮発および燃焼が抑制され、かつ優れた充放電特性を示す。したがって、前記構成が採用された溶融塩キャパシタは、高温環境下での使用に耐えることができ、かつ長寿命であり、しかも良好に充放電を行なうことができる。
 前記アニオンは、ハロゲンアニオン、ハロゲン原子を有するアミドアニオン、ハロゲン原子を有するアルキル基を有するアミドアニオン、ハロゲン原子を有するスルホン酸アニオンおよびハロゲン原子を有するアルキル基を有するスルホン酸アニオンからなる群より選ばれた少なくとも1種であることが好ましい。前記アニオンは、式(I):
 〔X〕-              (I)
(式中、Xは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す)
で表わされるハロゲンアニオン、式(II):
Figure JPOXMLDOC01-appb-C000010
(式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基)
で表わされるスルホニルアミドアニオンおよび式(III):
Figure JPOXMLDOC01-appb-C000011
(式中、R3は、ハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホン酸アニオンからなる群より選ばれた少なくとも1種のアニオンであることがより好ましい。前記アニオンが用いられた電解質は、耐熱性が高いことから、前記構成が採用された溶融塩キャパシタによれば、高温環境下で、より良好に充放電を行なうことができる。
 前記カチオンは、金属カチオンおよび有機オニウムカチオンからなる群より選ばれた少なくとも1種のカチオンであることが好ましい。前記カチオンは、金属カチオン、三級オニウムカチオンおよび四級オニウムカチオンからなる群より選ばれた少なくとも1種のカチオンであることがより好ましい。前記カチオンは、アルカリ金属カチオン、アルカリ土類金属カチオン、アルミニウムカチオン、銀カチオン、式(IV):
Figure JPOXMLDOC01-appb-C000012
(式中、R4、R5およびR6はそれぞれ独立して炭素数1~8のアルキル基、Aは硫黄原子を示す)
で表わされるカチオン、式(V):
Figure JPOXMLDOC01-appb-C000013
(式中、R7~R10はそれぞれ独立して炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基、Bは窒素原子またはリン原子を示す)
で表わされるカチオン、式(VI):
Figure JPOXMLDOC01-appb-C000014
(式中、R11およびR12はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリウムカチオン、式(VII):
Figure JPOXMLDOC01-appb-C000015
(式中、R13およびR14はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリニウムカチオン、式(VIII):
Figure JPOXMLDOC01-appb-C000016
(式中、R15は炭素数1~8のアルキル基を示す)
で表わされるピリジニウムカチオン、式(IX):
Figure JPOXMLDOC01-appb-C000017
〔式中、R16およびR17はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合、酸素原子、メチレン基または式(X):
Figure JPOXMLDOC01-appb-C000018
(式中、R18はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされる基を示す〕
で表わされるカチオンからなる群より選ばれた少なくとも1種のカチオンであることがさらに好ましい。前記カチオンが用いられた電解質は、耐熱性が高いことから、前記構成が採用された溶融塩キャパシタによれば、高温環境下で、より良好に充放電を行なうことができる。
 前記カチオンを可逆的に保持する材料は、カチオンを可逆的に保持する炭素材料、ケイ素、スズ、ケイ素化合物、スズ化合物、前記金属カチオンを解離する金属窒化物および前記金属カチオンを解離するチタン酸金属化合物からなる群より選ばれた材料であることが好ましい。前記カチオンを可逆的に保持する材料としてこれらの材料が用いられた負極活物質は、寿命安定性が高く、容量が大きいことから、前記構成が採用された溶融塩キャパシタは、十分な寿命安定性および十分な容量を有する。
[本願発明の実施形態の詳細]
 つぎに、本発明の一実施形態である溶融塩キャパシタの具体例を説明する。なお、本発明は、かかる例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の一実施形態である溶融塩キャパシタは、容器本体と蓋体とで密封された容器内に、正極と、負極と、電解質とセパレータとを有し、前記正極および前記負極の間に電解質が介在しているとともに、当該正極と当該負極とがセパレータを介して隔離されてなる溶融塩キャパシタであって、
 前記電解質が、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であり、
 前記正極が、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させてなる電極であり、
 前記負極が、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させてなる電極であり、
 前記セパレータが、耐熱温度が120℃以上である材料からなることに1つの大きな特徴を有する。
 本発明の一実施形態である溶融塩キャパシタは、前記構成を有していることから、例えば、資源採掘を行なう際の環境などのような高温環境下において、電解質の揮発および燃焼が抑制され、かつ優れた充放電特性を示す。したがって、本発明の一実施形態である溶融塩キャパシタによれば、高温環境下で良好に充放電を行なうことができる。また、本発明の一実施形態である溶融塩キャパシタは、前記構成を有していることから、前記高温環境下において、優れた耐熱性および耐食性を示す。したがって、本発明の一実施形態である溶融塩キャパシタは、高温環境下での使用に耐えることができ、かつ長寿命である。
 なお、本明細書において、「溶融塩キャパシタ」の概念には、電気二重層キャパシタおよび金属イオンキャパシタが包含される。また、「金属イオンキャパシタ」とは、電解質として溶融塩が用いられた溶融塩キャパシタのうち、金属カチオンを可逆的に保持する材料を負極活物質として含む負極材料が用いられたキャパシタをいう。「溶融塩」とは、120~250℃、好ましくは120~130℃で液体である塩をいう。前記金属カチオンは、溶融塩に用いられる金属カチオンである。
 本発明の一実施形態である溶融塩キャパシタは、例えば、セパレータを介して正極と負極とが対向配置させた電極ユニットを、開口部を有するキャパシタ容器本体内に収容し、つぎに、電解質をその融点以上の温度に加熱して得られた溶融塩を、前記電極ユニットが収容されたキャパシタ容器本体内に充填し、その後、当該キャパシタ容器本体を密封することなどによって製造することができる。
 前記電極ユニットは、例えば、正極、負極およびセパレータを、当該セパレータを介して正極と負極とが対向し、容器内で正極、セパレータおよび負極が重なるように配置させることなどによって得られる。
 前記正極は、正極活物質として、アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させた電極である。前記正極材料は、アニオンを可逆的に保持する炭素材料、必要により、導電助剤およびバインダーを含有する。なお、本明細書において、「アニオンを可逆的に保持する」とは、アニオンが正極活物質の表面へ吸着および当該表面から脱離すること、またはアニオンが正極活物質の原子配列構造中へ挿入または当該構造中から脱離することをいう。
 前記正極集電体を構成する材料としては、例えば、アルミニウム、銀、金、白金、チタン、ステンレス鋼、ニッケルクロム合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの材料のなかでは、高電圧に対する耐性が高く、調達が容易であることから、アルミニウム、銀、金、白金、チタン、ステンレス鋼およびニッケルクロム合金が好ましく、アルミニウム、ステンレス鋼およびニッケルクロム合金がより好ましい。なお、前記正極集電体を構成する材料として金または白金を用いる場合、前記正極集電体は、他の材料によって構成された集電体本体の表面に金または白金からなる層を形成させたものであってもよい。
 前記正極集電体の形状としては、例えば、箔、多孔質体、穴あき箔(例えば、パンチングメタル、エキスパンドメタルなど)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記正極集電体の形状のなかでは、溶融塩キャパシタの単位体積あたりの電気容量を十分に確保するとともに、内部抵抗を低減させる観点から、箔および多孔質体が好ましい。
 前記正極集電体の厚さは、溶融塩キャパシタの用途などによって異なるので一概には決定することができないため、溶融塩キャパシタの用途などに応じて適宜決定することが好ましい。前記正極集電体の厚さは、通常、溶融塩キャパシタの単位体積あたりの電気容量を十分に確保する観点から、好ましくは50μm以上、より好ましくは100μm以上であり、集電性を向上させて出力を向上させる観点から、好ましくは5000μm以下、より好ましくは2000μm以下、さらに好ましくは1000μm以下である。
 前記正極集電体の形状が多孔質体である場合、当該多孔質体の多孔度は、溶融塩キャパシタの単位体積あたりの電気容量を十分に確保する観点から、好ましくは50%以上、より好ましくは80%以上であり、集電体の機械的強度を十分に確保する観点から、好ましくは98%以下、より好ましくは95%以下である。
 なお、本明細書において、多孔質体の多孔度は、式(1):
Figure JPOXMLDOC01-appb-M000019
〔式中、集電体を構成する材料の真の体積は、式(2):
Figure JPOXMLDOC01-appb-M000020
にしたがって求められた値を示す〕
にしたがって求められた値である。また、前記多孔質体における孔の平均孔径は、通常、製造の際に、集電体内部に電池材料を円滑に充填する観点から、好ましくは0.01μm以上であり、溶融塩キャパシタにおける内部抵抗を低減する観点から、好ましくは1000μm以下、より好ましくは100μm以下、さらに好ましくは1μm以下である。
 前記正極活物質は、アニオンを可逆的に保持する炭素材料である。かかるアニオンを可逆的に保持する炭素材料としては、例えば、活性炭、カーボンナノチューブ、グラフェン、フッ化カーボン、ホウ素化カーボンなどの比表面積の大きい炭素材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの炭素材料は、当該炭素材料に求められる特性、溶融塩キャパシタに付与される特性などに応じて適宜選択することができる。例えば、炭素材料の表面積を大きくすることが求められる場合、活性炭およびカーボンナノチューブが好ましい。また、炭素材料のカーボン層間への円滑なアニオンの挿入および脱離が求められる場合、グラフェン、フッ化カーボンおよびホウ素化カーボンが好ましい。また、溶融塩キャパシタの高電圧化が求められる場合、カーボンナノチューブが好ましい。さらに、溶融塩キャパシタの寿命を延ばすことが求められる場合、カーボンナノチューブが好ましい。前記炭素材料の比表面積は、溶融塩キャパシタの電気容量を十分に確保する観点から、好ましくは300m2/g以上、より好ましくは500m2/g以上であり、溶融塩キャパシタの容量密度を確保する観点から、好ましくは3500m2/g以下、より好ましくは2500m2/g以下である。
 前記正極材料に用いられる導電助剤としては、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、気相成長炭素繊維などの炭素繊維などの炭素材料;アルミニウム、コバルト、金、銀、白金、チタンなどの金属粒子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記正極材料中における導電助剤の含有量は、通常、好ましくは10質量%以下である。
 前記バインダーとしては、例えば、ガラス、液晶、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリイミド、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記正極材料中におけるバインダーの含有量は、通常、好ましくは10質量%以下である。
 前記正極集電体への正極材料の担持は、例えば、正極材料を正極集電体の表面に塗布すること、正極集電体が多孔質体である場合には正極材料を正極集電体の内部に充填することなどによって行なうことができる。この場合、正極材料からなる層の厚さは、キャパシタの容量を十分に確保する観点から、好ましくは100μm以上、より好ましくは200μm以上であり、集電性を確保する観点から、好ましくは2500μm以下、より好ましくは1000μm以下である。
 前記負極は、負極活物質として、カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させた電極である。前記負極材料は、カチオンを可逆的に保持する材料、必要により、導電助剤およびバインダーを含有する。なお、本明細書において、「カチオンを可逆的に保持する」とは、カチオンが負極活物質の表面へ吸着および当該表面から脱離すること、またはカチオンが負極活物質の原子配列構造中へ挿入または当該構造中から脱離することをいう。
 前記負極集電体を構成する材料としては、例えば、アルミニウム、ニッケル、銅、銀、金、白金、ステンレス鋼、ニッケルクロム合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。かかる材料は、溶融塩キャパシタの種類などに応じて適宜決定することができる。溶融塩キャパシタが電気二重層キャパシタである場合、前記負極集電体を構成する材料は、アルミニウム、ニッケル、銅、銀、金、白金、ステンレス鋼およびニッケルクロム合金からなる群より選ばれた少なくとも1種であることが好ましい。電気二重層キャパシタの負極集電体を構成する材料のなかでは、電気伝導性に優れ、調達が容易であることから、アルミニウム、ニッケル、銅、銀、金および白金からなる群より選ばれた少なくとも1種が好ましく、アルミニウム、ニッケルおよび銅からなる群より選ばれた少なくとも1種がより好ましい。一方、溶融塩キャパシタが金属イオンキャパシタである場合、前記負極集電体を構成する材料は、ニッケル、銅、金、白金、ステンレス鋼およびニッケルクロム合金からなる群より選ばれた少なくとも1種であることが好ましい。溶融塩キャパシタの負極集電体を構成する材料のなかでは、電気伝導性に優れ、調達が容易であることから、ニッケル、銅、金および白金からなる群より選ばれた少なくとも1種が好ましく、ニッケルおよび銅からなる群より選ばれた少なくとも1種がより好ましい。なお、前記負極集電体を構成する材料として金または白金を用いる場合、他の材料によって構成された集電体本体の表面に金または白金からなる層を形成させればよい。
 前記負極集電体の形状、負極集電体の厚さ、負極集電体の形状が多孔質体である場合の当該多孔質体の多孔度および多孔質体における孔の平均孔径は、前記正極集電体の形状、正極集電体の厚さ、正極集電体の形状が多孔質体である場合の当該多孔質体の多孔度および多孔質体における孔の平均孔径と同様である。
 前記負極活物質は、カチオンを可逆的に保持する材料である。前記カチオンを可逆的に保持する材料としては、例えば、前記カチオンを可逆的に保持する炭素材料;ケイ素、スズ、ケイ素化合物、スズ化合物などの前記金属カチオンを解離する金属と合金化する金属もしくは非金属またはその化合物;前記金属カチオンを解離する金属窒化物;前記金属カチオンを解離するチタン酸金属化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのカチオンを可逆的に保持する材料は、当該材料に求められる特性、溶融塩キャパシタに付与される特性などに応じて適宜選択することができる。例えば、十分な寿命安定性を確保することが求められる場合、前記カチオンを可逆的に保持する炭素材料、前記金属カチオンを解離する金属窒化物および前記金属カチオンを解離するチタン酸金属化合物が好ましい。また、溶融塩キャパシタの容量を十分に確保することが求められる場合、ケイ素、スズ、ケイ素化合物およびスズ化合物が好ましい。
 前記負極活物質は、溶融塩キャパシタの種類に応じて適宜選択される。溶融塩キャパシタが電気二重層キャパシタである場合、前記負極活物質は、前記カチオンを可逆的に保持する炭素材料のなかから選択することができる。前記カチオンを可逆的に保持する炭素材料は、前記正極活物質として用いられる炭素材料と同様である。一方、溶融塩キャパシタが金属イオンキャパシタである場合、前記負極活物質は、金属カチオンを可逆的に保持する炭素材料、ケイ素、スズ、ケイ素化合物、スズ化合物、前記金属カチオンを解離する金属窒化物および前記金属カチオンを解離するチタン酸金属化合物のなかから選択することができる。前記金属カチオンを可逆的に保持する炭素材料としては、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、ハードカーボン、グラファイトなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記ケイ素化合物としては、例えば、炭化ケイ素、酸化ケイ素などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記スズ化合物としては、例えば、酸化スズ、銅スズ合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記金属カチオンを解離する金属窒化物としては、窒化リチウム、窒化ナトリウム、窒化カリウムなどのアルカリ金属窒化物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの金属イオンキャパシタに用いることができる負極活物質は、当該負極活性物質に求められる特性、金属キャパシタに付与される特性などに応じて適宜選択することができる。例えば、金属キャパシタの容量を十分に確保することが求められる場合、ケイ素、スズ、ケイ素化合物およびスズ化合物が好ましい。また、金属キャパシタの寿命を延ばすことが求められる場合、前記金属カチオンを可逆的に保持する炭素材料、前記金属カチオンを解離する金属窒化物および前記金属カチオンを解離するチタン酸金属化合物が好ましい。前記金属カチオンを解離するチタン酸金属化合物としては、例えば、チタン酸リチウム、チタン酸ナトリウム、チタン酸カリウムなどのチタン酸アルカリ金属化合物、チタン酸ベリリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸バリウムなどのチタン酸アルカリ土類金属化合物、チタン酸アルミニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記負極材料に用いられる導電助剤としては、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、気相成長炭素繊維などの炭素繊維などの炭素材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記負極材料に用いられるバインダーは、前記正極材料に用いられる導電助剤およびバインダーと同様である。前記負極材料中における導電助剤の含有量は、通常、好ましくは10質量%以下である。また、前記負極材料中におけるバインダーの含有量は、通常、好ましくは10質量%以下である。
 前記負極集電体への負極材料の担持は、例えば、負極材料を負極集電体の表面に塗布すること、負極集電体が多孔質体である場合には負極材料を負極集電体の内部に充填することなどによって行なうことができる。この場合、負極材料からなる層の厚さは、キャパシタの容量を十分に確保する観点から、好ましくは30μm以上、より好ましくは50μm以上であり、集電性を確保する観点から、好ましくは2000μm以下、より好ましくは1000μm以下である。
 前記セパレータは、耐熱温度が120℃以上である材料からなる。前記セパレータを構成する材料は、耐熱温度が120℃以上である材料である。ここで、耐熱温度とは、溶融塩キャパシタの使用温度においてセパレータを構成する材料が分解、溶解などの変質をせず、室温(25℃)での多孔質構造と同等の構造を維持している最高温度をいう。前記セパレータを構成する材料としては、例えば、ポリテトラフルオロエチレンなどの融点が250℃以上のフッ素樹脂;ガラス;アルミナ、ジルコニアなどのセラミックス;セルロース;ポリフェニルサルファイドなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記セパレータの形状としては、例えば、多孔質体、繊維体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのセパレータの形状のなかでは、十分な量の電解質を含浸させ、溶融塩キャパシタの容量を向上させる観点から、多孔質体および繊維体が好ましい。
 前記セパレータの厚さは、通常、十分な量の電解質を含浸させ、溶融塩キャパシタの容量を向上させるとともに内部短絡の発生を抑制する観点から、好ましくは20μm以上であり、溶融塩キャパシタの小型化を図る観点から、好ましくは400μm以下、より好ましくは100μm以下である。
 前記セパレータが多孔質体からなる場合、当該多孔質体の多孔度は、通常、溶融塩キャパシタにおける内部抵抗を低減する観点から、5%以上、より好ましくは20%以上、さらに好ましくは50%以上であり、溶融塩キャパシタにおける内部短絡の発生を抑制する観点から、好ましくは98%以下、より好ましくは70%以下である。また、前記多孔質体における孔の平均孔径は、通常、溶融塩キャパシタにおける内部短絡の発生を抑制する観点から、好ましくは0.01μm以上であり、溶融塩キャパシタにおける内部抵抗を低減する観点から、好ましくは1000μm以下、より好ましくは100μm以下、さらに好ましくは1μm以下である。
 前記キャパシタ容器本体は、蓋体とともに溶融塩キャパシタの容器を構成する。前記キャパシタ容器本体を構成する材料としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記キャパシタ容器本体の形状は、溶融塩キャパシタの用途などによって異なるので一概には決定することができないため、溶融塩キャパシタの用途などに応じて適宜決定することが好ましい。
 前記電解質に用いられる溶融塩は、例えば、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む塩をその融点以上の温度に加熱することなどによって得られる。
 前記アニオンとしては、例えば、ハロゲンアニオン;ハロゲン原子を有するアミドアニオン、ハロゲン原子を有するアルキル基を有するアミドアニオン、ハロゲン原子を有するスルホン酸アニオン、ハロゲン原子を有するアルキル基を有するスルホン酸アニオンなどのハロゲン原子を有する化合物のアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記アニオンは、電解質の耐熱性を向上させる観点から、ハロゲンアニオン、ハロゲン原子を有するアミドアニオン、ハロゲン原子を有するアルキル基を有するアミドアニオン、ハロゲン原子を有するスルホン酸アニオンおよびハロゲン原子を有するアルキル基を有するスルホン酸アニオンからなる群より選ばれた少なくとも1種であることが好ましく、式(I):
 〔X〕-         (I)
(式中、Xはフッ素原子、塩素原子、臭素原子またはヨウ素原子を示す)
で表わされるハロゲンアニオン、式(II):
Figure JPOXMLDOC01-appb-C000021
(式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基)
で表わされるスルホニルアミドアニオンおよび式(III):
Figure JPOXMLDOC01-appb-C000022
(式中、R3は、ハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホン酸アニオンからなる群より選ばれた少なくとも1種であることがより好ましい。
 式(I)において、Xは、フッ素原子、塩素原子、臭素原子またはヨウ素原子である。式(I)で表わされるハロゲンアニオンのなかでは、電解質の耐熱性を向上させる観点から、フッ素原子が好ましい。
 式(II)において、R1およびR2は、それぞれ独立して、ハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基である。ハロゲン原子としては、例えば、フッ素原子、塩素原子、ホウ素原子、ヨウ素原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのハロゲン原子のなかでは、電解質の耐熱性を向上させる観点から、フッ素原子が好ましい。式(II)におけるハロゲン原子を有するアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。ハロゲン原子を有する炭素数1~8のアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘプチル基、パーフルオロオクチル基などの炭素数1~8のパーフルオロアルキル基;パークロロメチル基、パークロロエチル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘプチル基、パークロロオクチル基などの炭素数1~8のパークロロアルキル基;パーブロモメチル基、パーブロモエチル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘプチル基、パーブロモオクチル基などの炭素数1~8のパーブロモアルキル基;パーヨードメチル基、パーヨードエチル基、パーヨードプロピル基、パーヨードブチル基、パーヨードペンチル基、パーヨードヘプチル基、パーヨードオクチル基などの炭素数1~8のパーヨードアルキル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのハロゲン原子を有する炭素数1~8のアルキル基のなかでは、電解質の耐熱性を向上させる観点から、炭素数1~8のパーフルオロアルキル基が好ましく、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロプル基、パーフルオロブチル基がより好ましい。
 式(II)で表わされるスルホニルアミドアニオンとしては、例えば、ビス(トリフルオロメチルスルホニル)アミドアニオン、フルオロスルホニル(トリフルオロメチルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(II)で表わされるスルホニルアミドアニオンのなかでは、電解質の耐熱性を向上させる観点から、ビス(トリフルオロメチルスルホニル)アミドアニオン、フルオロスルホニル(トリフルオロメチルスルホニル)アミドアニオンおよびビス(フルオロスルホニル)アミドアニオンが好ましく、ビス(トリフルオロメチルスルホニル)アミドアニオンがより好ましい。
 式(III)において、R3は、ハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基である。式(III)におけるハロゲン原子は、式(II)におけるハロゲン原子と同様である。また、式(III)におけるハロゲン原子を有する炭素数1~8のアルキル基は、式(II)におけるハロゲン原子を有する炭素数1~8のアルキル基と同様である。式(III)におけるハロゲン原子を有するアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。
 式(III)で表わされるスルホン酸アニオンとしては、例えば、トリフルオロメチルスルホン酸アニオン、フルオロスルホン酸アニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(III)で表わされるスルホン酸アニオンのなかでは、電解質の耐熱性を向上させる観点から、トリフルオロメチルスルホン酸アニオンが好ましい。
 前記カチオンは、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンである。
 前記金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、アルミニウムカチオン、銀カチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記アルカリ金属カチオンとしては、例えば、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、ルビジウムカチオン、セシウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記アルカリ土類金属カチオンとしては、例えば、ベリリウムカチオン、マグネシウムカチオン、カルシウムカチオン、ストロンチウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記有機カチオンとしては、三級オニウムカチオン、四級オニウムカチオンなどの有機オニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 これらのカチオンのなかでは、電解質の耐熱性を向上させる観点から、金属カチオンおよび有機オニウムカチオンからなる群より選ばれた少なくとも1種であることが好ましく、金属カチオン、三級オニウムカチオンおよび四級オニウムカチオンからなる群より選ばれた少なくとも1種であることがより好ましい。
 前記三級オニウムカチオンとしては、例えば、式(IV):
Figure JPOXMLDOC01-appb-C000023
(式中、R4、R5およびR6はそれぞれ独立して炭素数1~8のアルキル基、Aは硫黄原子を示す)
で表わされるカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 式(IV)において、R4~R6は、それぞれ独立して炭素数1~8のアルキル基である。式(IV)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。炭素数1~8のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの直鎖または分岐鎖を有するアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの炭素数1~8の脂環式アルキル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの炭素数1~8のアルキル基のなかでは、電解質の耐熱性を向上させる観点から、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、またはシクロプロピル基、シクロブチル基、シクロペンチル基が好ましい。また、式(IV)において、Aは、硫黄原子である。
 式(IV)で表わされるカチオンとしては、例えば、トリメチルスルホニウムカチオン、トリエチルスルホニウムカチオン、トリブチルスルホニウムカチオン、トリヘキシルスルホニウムカチオン、ジエチルメチルスルホニウムカチオン、ジブチルエチルスルホニウムカチオンなどのトリアルキルスルホニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(IV)で表わされるカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(IV)で表わされるカチオンのなかでは、電解質の耐熱性を向上させる観点から、トリアルキルスルホニウムカチオンが好ましく、トリメチルスルホニウムカチオン、トリエチルスルホニウムカチオン、トリブチルスルホニウムカチオン、トリヘキシルスルホニウムカチオン、ジエチルメチルスルホニウムカチオン、ジブチルエチルスルホニウムカチオンがより好ましく、トリメチルスルホニウムカチオン、トリエチルスルホニウムカチオン、ジエチルメチルスルホニウムカチオン、ジブチルエチルスルホニウムカチオンがさらに好ましい。
 前記四級オニウムカチオンとしては、例えば、式(V):
Figure JPOXMLDOC01-appb-C000024
(式中、R7~R10はそれぞれ独立して炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基、Bは窒素原子またはリン原子を示す)
で表わされるカチオン、式(VI):
Figure JPOXMLDOC01-appb-C000025
(式中、R11およびR12はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリウムカチオン、式(VII):
Figure JPOXMLDOC01-appb-C000026
(式中、R13およびR14はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリニウムカチオン、式(VIII):
Figure JPOXMLDOC01-appb-C000027
(式中、R15は炭素数1~8のアルキル基を示す)
で表わされるピリジニウムカチオン、式(IX):
Figure JPOXMLDOC01-appb-C000028
〔式中、R16およびR17はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合、酸素原子、メチレン基または式(X):
Figure JPOXMLDOC01-appb-C000029
(式中、R18は独立して炭素数1~8のアルキル基を示す)
で表わされる基を示す〕
で表わされるカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 式(V)において、R7~R10は、それぞれ独立して炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基である。式(V)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(V)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。また、式(V)におけるアルキルオキシアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。炭素数1~8のアルキルオキシアルキル基としては、例えば、メトキシメチル基、2-メトキシエチル基、エトキシメチル基、2-エトキシエチル基、2-(n-プロポキシ)エチル基、2-(n-イソプロポキシ)エチル基、2-(n-ブトキシ)エチル基、2-イソブトキシエチル基、2-(tert-ブトキシ)エチル基、1-エチル-2-メトキシエチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの炭素数1~8のアルキルオキシアルキル基のなかでは、電解質の耐熱性を向上させる観点から、メトキシメチル基、2-メトキシエチル基、エトキシメチル基、2-エトキシエチル基、2-(n-プロポキシ)エチル基、2-(n-イソプロポキシ)エチル基、2-(n-ブトキシ)エチル基、2-イソブトキシエチル基、2-(tert-ブトキシ)エチル基、1-エチル-2-メトキシエチル基が好ましい。また、式(V)において、Bは、窒素原子またはリン原子である。
 式(V)で表わされるカチオンとしては、例えば、N,N-ジメチル-N-エチル-N-メトキシメチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-メトキシエチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-エトキシエチルアンモニウムカチオン、N,N,N-トリメチル-N-プロピルアンモニウムカチオン、N,N,N-トリメチル-N-ブチルアンモニウムカチオン、N,N,N-トリメチル-N-ペンチルアンモニウムカチオン、N,N,N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-ヘプチルアンモニウムカチオン、N,N,N-トリメチル-N-オクチルアンモニウムカチオン、N,N,N,N-テトラブチルアンモニウムカチオン、N,N,N,N-テトラペンチルアンモニウムカチオン、N,N,N,N-テトラヘキシルアンモニウムカチオン、N,N,N,N-テトラヘプチルアンモニウムカチオン、N,N,N,N-テトラオクチルアンモニウムカチオンなどのアンモニウムカチオン;トリエチル(メトキシメチル)ホスホニウムカチオン、ジエチルメチル(メトキシメチル)ホスホニウムカチオン、トリプロピル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシエチル)ホスホニウムカチオン、トリペンチル(メトキシメチル)ホスホニウムカチオン、トリペンチル(2-メトキシエチル)ホスホニウムカチオン、トリヘキシル(メトキシメチル)ホスホニウムカチオン、トリヘキシル(メトキシエチル)ホスホニウムカチオン、テトラメチルホスホニウムカチオン、テトラエチルホスホニウムカチオン、テトラブチルホスホニウムカチオン、テトラペンチルホスホニウムカチオン、テトラヘキシルホスホニウムカチオン、テトラヘプチルホスホニウムカチオン、テトラオクチルホスホニウムカチオンなどのホスホニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(V)で表わされるカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(V)で表わされるカチオンのなかでは、電解質の耐熱性を向上させる観点から、前記アンモニウムカチオンおよび前記ホスホニウムカチオンが好ましく、N,N-ジメチル-N-エチル-N-メトキシメチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-メトキシエチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-エトキシエチルアンモニウムカチオン、N,N,N-トリメチル-N-プロピルアンモニウムカチオン、N,N,N-トリメチル-N-ブチルアンモニウムカチオン、N,N,N-トリメチル-N-ペンチルアンモニウムカチオン、N,N,N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-ヘプチルアンモニウムカチオン、N,N,N-トリメチル-N-オクチルアンモニウムカチオン、N,N,N,N-テトラブチルアンモニウムカチオン、トリエチル(メトキシメチル)ホスホニウムカチオン、ジエチルメチル(メトキシメチル)ホスホニウムカチオン、トリプロピル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシエチル)ホスホニウムカチオン、トリペンチル(メトキシメチル)ホスホニウムカチオン、トリペンチル(2-メトキシエチル)ホスホニウムカチオン、トリヘキシル(メトキシメチル)ホスホニウムカチオン、トリヘキシル(メトキシエチル)ホスホニウムカチオン、テトラメチルホスホニウムカチオン、テトラエチルホスホニウムカチオンおよびテトラブチルホスホニウムカチオンがより好ましく、N,N-ジメチル-N-エチル-N-メトキシメチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-メトキシエチルアンモニウムカチオン、N,N-ジメチル-N-エチル-N-エトキシエチルアンモニウムカチオン、N,N,N-トリメチル-N-プロピルアンモニウムカチオン、N,N,N-トリメチル-N-ブチルアンモニウムカチオン、N,N,N-トリメチル-N-ペンチルアンモニウムカチオン、N,N,N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-ヘプチルアンモニウムカチオン、N,N,N-トリメチル-N-オクチルアンモニウムカチオン、トリエチル(メトキシメチル)ホスホニウムカチオン、ジエチルメチル(メトキシメチル)ホスホニウムカチオン、トリプロピル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシメチル)ホスホニウムカチオン、トリブチル(メトキシエチル)ホスホニウムカチオン、トリペンチル(メトキシメチル)ホスホニウムカチオン、トリペンチル(2-メトキシエチル)ホスホニウムカチオン、トリヘキシル(メトキシメチル)ホスホニウムカチオンおよびトリヘキシル(メトキシエチル)ホスホニウムカチオンがさらに好ましい。
 式(VI)において、R11およびR12は、それぞれ独立して炭素数1~8のアルキル基である。式(VI)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(VI)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。
 式(VI)で表わされるイミダゾリウムカチオンとしては、例えば、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-メチル-3-ペンチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-ヘプチル-3-メチルイミダゾリウムカチオン、1-メチル-3-オクチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-エチルイミダゾリウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(VI)で表わされるイミダゾリウムカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(VI)で表わされるイミダゾリウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-メチル-3-ペンチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-ヘプチル-3-メチルイミダゾリウムカチオン、1-メチル-3-オクチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオンおよび1-ブチル-3-エチルイミダゾリウムカチオンが好ましく、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-メチル-3-ペンチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオンおよび1-ブチル-3-エチルイミダゾリウムカチオンがより好ましく、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオンおよび1-ブチル-3-エチルイミダゾリウムカチオンがさらに好ましい。
 式(VII)において、R13およびR14は、それぞれ独立して炭素数1~8のアルキル基である。式(VII)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(VII)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。
 式(VII)で表わされるイミダゾリニウムカチオンとしては、例えば、1,3-ジメチルイミダゾリニウムイオン、1-エチル-3-メチルイミダゾリニウムイオン、1-メチル-3-プロピルイミダゾリニウムイオン、1-ブチル-3-メチルイミダゾリニウムイオン、1-メチル-3-ペンチルイミダゾリニウムイオン、1-ヘキシル-3-メチルイミダゾリニウムイオン、1-ヘプチル-3-メチルイミダゾリニウムイオン、1-メチル-3-オクチルイミダゾリニウムイオン、1-エチル-3-プロピルイミダゾリニウムイオン、1-ブチル-3-エチルイミダゾリニウムイオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(VII)で表わされるイミダゾリニウムカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(VII)で表わされるイミダゾリニウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、1,3-ジメチルイミダゾリニウムイオン、1-エチル-3-メチルイミダゾリニウムイオン、1-メチル-3-プロピルイミダゾリニウムイオン、1-ブチル-3-メチルイミダゾリニウムイオン、1-メチル-3-ペンチルイミダゾリニウムイオン、1-ヘキシル-3-メチルイミダゾリニウムイオン、1-ヘプチル-3-メチルイミダゾリニウムイオン、1-メチル-3-オクチルイミダゾリニウムイオン、1-エチル-3-プロピルイミダゾリニウムイオンおよび1-ブチル-3-エチルイミダゾリニウムイオンが好ましく、1,3-ジメチルイミダゾリニウムイオン、1-エチル-3-メチルイミダゾリニウムイオン、1-メチル-3-プロピルイミダゾリニウムイオン、1-ブチル-3-メチルイミダゾリニウムイオン、1-メチル-3-ペンチルイミダゾリニウムイオン、1-ヘキシル-3-メチルイミダゾリニウムイオン、1-エチル-3-プロピルイミダゾリニウムイオンおよび1-ブチル-3-エチルイミダゾリニウムイオンがより好ましく、1,3-ジメチルイミダゾリニウムイオン、1-エチル-3-メチルイミダゾリニウムイオン、1-メチル-3-プロピルイミダゾリニウムイオン、1-ブチル-3-メチルイミダゾリニウムイオン、1-エチル-3-プロピルイミダゾリニウムイオンおよび1-ブチル-3-エチルイミダゾリニウムイオンがさらに好ましい。
 式(VIII)において、R15は、炭素数1~8のアルキル基である。式(VIII)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(VIII)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。
 式(VIII)で表わされるピリジニウムカチオンとしては、例えば、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオン、N-プロピルピリジニウムカチオン、N-ブチルピリジニウムカチオン、N-ペンチルピリジニウムカチオン、N-ヘキシルピリジニウムカチオン、N-ヘプチルピリジニウムカチオン、N-オクチルピリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(VIII)で表わされるピリジニウムカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(VIII)で表わされるピリジニウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオン、N-プロピルピリジニウムカチオン、N-ブチルピリジニウムカチオン、N-ペンチルピリジニウムカチオン、N-ヘキシルピリジニウムカチオン、N-ヘプチルピリジニウムカチオンおよびN-オクチルピリジニウムカチオンが好ましく、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオン、N-プロピルピリジニウムカチオン、N-ブチルピリジニウムカチオン、N-ペンチルピリジニウムカチオン、N-ヘキシルピリジニウムカチオンがより好ましく、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオンおよびN-プロピルピリジニウムカチオン、N-ブチルピリジニウムカチオンがさらに好ましい。
 式(IX)において、R16およびR17は、それぞれ独立して炭素数1~8のアルキル基である。式(IX)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(IX)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。また、式(IX)において、Yは、直接結合、酸素原子、メチレン基または式(X)で表わされる基である。式(X)において、R18は、炭素数1~8のアルキル基である。式(X)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(X)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。
 式(IX)において、Yが直接結合であるカチオンは、式(XI):
Figure JPOXMLDOC01-appb-C000030
(式中、R19およびR20はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるピロリジニウムカチオンである。
 式(XI)において、R19およびR20は、それぞれ独立して炭素数1~8のアルキル基である。式(XI)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(XI)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(XI)で表わされるピロリジニウムカチオンとしては、例えば、N,N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-メチル-N-ブチルピロリジニウムカチオン、N-メチル-N-ペンチルピロリジニウムカチオン、N-メチル-N-ヘキシルピロリジニウムカチオン、N-メチル-N-オクチルピロリジニウムカチオン、N-エチル-N-ブチルピロリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(XI)で表わされるピロリジニウムカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(XI)で表わされるピロリジニウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、N,N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-メチル-N-ブチルピロリジニウムカチオン、N-メチル-N-ペンチルピロリジニウムカチオン、N-メチル-N-ヘキシルピロリジニウムカチオン、N-メチル-N-オクチルピロリジニウムカチオンおよびN-エチル-N-ブチルピロリジニウムカチオンが好ましく、N,N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-ブチル-N-メチルピロリジニウムカチオン、N-エチル-N-ブチルピロリジニウムカチオンおよびN-メチル-N-ペンチルピロリジニウムカチオンがより好ましく、N,N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-メチル-N-ブチルピロリジニウムカチオンおよびN-エチル-N-ブチルピロリジニウムカチオンがさらに好ましい。
 式(IX)において、Yが酸素原子であるカチオンは、式(XII):
Figure JPOXMLDOC01-appb-C000031
(式中、R21およびR22はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるモルホリニウムカチオンである。
 式(XII)において、R21およびR22はそれぞれ独立して炭素数1~8のアルキル基である。式(XII)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(XII)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(XII)で表わされるモルホリニウムカチオンとしては、例えば、N,N-ジメチルモルホリニウムカチオン、N-メチル-N-エチルモルホリニウムカチオン、N-メチル-N-プロピルモルホリニウムカチオン、N-メチル-N-ブチルモルホリニウムカチオン、N-エチル-N-ブチルモルホリニウムカチオン、N-メチル-N-ペンチルモルホリニウムカチオン、N-ヘキシル-N-メチルモルホリニウムカチオン、N-メチル-N-オクチルモルホリニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(XII)で表わされるモルホリニウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、N,N-ジメチルモルホリニウムカチオン、N-メチル-N-エチルモルホリニウムカチオン、N-メチル-N-プロピルモルホリニウムカチオン、N-メチル-N-ブチルモルホリニウムカチオン、N-メチル-N-ペンチルモルホリニウムカチオン、N-メチル-N-ヘキシルモルホリニウムカチオン、N-メチル-N-オクチルモルホリニウムカチオンおよびN-エチル-N-ブチルモルホリニウムカチオンが好ましく、N,N-ジメチルモルホリニウムカチオン、N-メチル-N-エチルモルホリニウムカチオン、N-メチル-N-プロピルモルホリニウムカチオン、N-ブチル-N-メチルモルホリニウムカチオン、N-エチル-N-ブチルモルホリニウムカチオンおよびN-メチル-N-ペンチルモルホリニウムカチオンがより好ましく、N,N-ジメチルモルホリニウムカチオン、N-メチル-N-エチルモルホリニウムカチオン、N-メチル-N-プロピルモルホリニウムカチオン、N-メチル-N-ブチルモルホリニウムカチオンおよびN-エチル-N-ブチルモルホリニウムカチオンがさらに好ましい。
 式(IX)において、Yがメチレン基であるカチオンは、式(XIII):
Figure JPOXMLDOC01-appb-C000032
(式中、R23およびR24はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるピペリジニウムカチオンである。
 式(XIII)において、R23およびR24は、それぞれ独立して炭素数1~8のアルキル基である。式(XIII)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。式(XIII)におけるアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(XIII)で表わされるピペリジニウムカチオンとしては、例えば、N,N-ジメチルピペリジニウムイオン、N-エチル-N-メチルピペリジニウムイオン、N-メチル-N-プロピルピペリジニウムイオン、N-ブチル-N-メチルピペリジニウムイオン、N-メチル-N-ペンチルピペリジニウムイオン、N-ヘキシル-N-メチルピペリジニウムイオン、N-メチル-N-オクチルピペリジニウムイオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの式(XIII)で表わされるピペリジニウムカチオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの式(XIII)で表わされるピペリジニウムカチオンのなかでは、電解質の耐熱性を向上させる観点から、N,N-ジメチルピペリジニウムイオン、N-エチル-N-メチルピペリジニウムイオン、N-メチル-N-プロピルピペリジニウムイオン、N-ブチル-N-メチルピペリジニウムイオン、N-メチル-N-ペンチルピペリジニウムイオン、N-ヘキシル-N-メチルピペリジニウムイオンおよびN-メチル-N-オクチルピペリジニウムイオンが好ましく、N,N-ジメチルピペリジニウムイオン、N-エチル-N-メチルピペリジニウムイオン、N-メチル-N-プロピルピペリジニウムイオン、N-ブチル-N-メチルピペリジニウムイオンおよびN-メチル-N-ペンチルピペリジニウムイオンがより好ましく、N,N-ジメチルピペリジニウムイオン、N-エチル-N-メチルピペリジニウムイオン、N-メチル-N-プロピルピペリジニウムイオンおよびN-ブチル-N-メチルピペリジニウムイオンがさらに好ましい。
 式(IX)におけるYが式(X)で表わされる基である場合、式(X)において、R18は、炭素数1~8のアルキル基である。式(X)における炭素数1~8のアルキル基は、式(IV)における炭素数1~8のアルキル基と同様である。
 アニオンとカチオンとの組み合わせは、溶融塩キャパシタの種類などによって異なるので一概には決定することができないため、溶融塩キャパシタの種類などに応じて適宜決定することが好ましい。溶融塩キャパシタが金属イオンキャパシタである場合、前記溶融塩は、カチオンとして金属カチオンを含む。この場合、アニオンとカチオンとの組み合わせは、前記アニオンのうちの任意のアニオンと金属カチオンとの組み合わせを含む組み合わせである。一方、溶融塩キャパシタが電気二重層キャパシタである場合、アニオンとカチオンとの組み合わせは、特に限定されるものではない。
 前記塩は、前記アニオンと前記カチオンとからなる塩であってもよく、前記アニオンと前記カチオンとからなる塩が2種類以上配合された混合物であってもよい。
 なお、前記アニオンと前記カチオンとからなる塩のなかには、例えば、120~250℃で固体である塩(以下、「固体塩」ともいう)がある。この場合、当該固体塩を、前記アニオンと前記カチオンとからなり、かつ120~250℃で液体である塩に溶解させて用いることができる。例えば、リチウムビス(トリフルオロメチルスルホニル)アミドは120~250℃で固体であり、1-エチル-3-メチル-イミダゾリウムビス(フルオロスルホニル)アミドは120~250℃で液体である。かかるリチウムビス(トリフルオロメチルスルホニル)アミドと1-エチル-3-メチル-イミダゾリウムビス(フルオロスルホニル)アミドとの混合物は、120~250℃で液体である。したがって、本発明においては、120~250℃で固体である塩と120~250℃で液体である塩とが配合され、120~250℃で液体である混合物を溶融塩として用いることができる。
 また、2種類以上の固体塩の混合物の融点が各固体塩の融点よりも低くなり、当該混合物が120~250℃で液体となる場合には、2種類以上の固体塩を混合して用いることができる。例えば、リチウムビス(トリフルオロメチルスルホニル)アミドおよびセシウムビス(トリフルオロメチルスルホニル)アミドは120~250℃で固体であるが、リチウムビス(トリフルオロメチルスルホニル)アミドとセシウムビス(トリフルオロメチルスルホニル)アミドとの混合物は、120~250℃で液体である。したがって、本発明においては、120~250℃で固体である2種類以上の塩の混合物であって、120~250℃で液体であるものは、溶融塩として用いることができる。
 前記電解質は、溶融塩キャパシタの耐熱性を向上させる観点から、式(II)で表わされるスルホニルアミドアニオンとアルカリ金属カチオンとを含む溶融塩であることが好ましく、ビス(トリフルオロメチルスルホニル)アミドアニオン、フルオロスルホニル(トリフルオロメチルスルホニル)アミドアニオンおよびビス(フルオロスルホニル)アミドアニオンからなる群より選ばれた少なくとも1種のアニオンとリチウムカチオン、ナトリウムカチオン、カリウムカチオン、ルビジウムカチオンおよびセシウムカチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であることがより好ましい。
 前記電極ユニットが収容されたキャパシタ容器本体内に充填される溶融塩の量は、溶融塩キャパシタの用途、キャパシタ容器本体の大きさなどによって異なるので一概には決定することができないため、溶融塩キャパシタの用途、キャパシタ容器本体の大きさなどに応じて適宜決定することが好ましい。
 前記キャパシタ容器本体は、当該キャパシタ容器本体の開口部にガスケットおよび蓋体をかしめ固定することによって密封することができる。
 前記蓋体を構成する材料としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 前記蓋体の形状は、ガスケットとともにキャパシタ容器本体の開口部にかしめ固定することができる形状であればよく、キャパシタ容器本体およびガスケットの形状などによって異なるので一概には決定することができないため、キャパシタ容器本体およびガスケットの形状などに応じて適宜決定することが好ましい。
 ガスケットを構成する材料は、溶融塩キャパシタの使用温度での耐熱性、電解質に対する耐食性および電気絶縁性を有する。ガスケットを構成する材料としては、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素樹脂;ポリエーテルエーテルケトンなどの芳香族ポリエーテルケトン樹脂;フッ素ゴム、ガラス、セラミックス、ポリフェニルサルファイド、耐熱ポリ塩化ビニルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ガスケットの厚さは、内部短絡の発生を抑制する観点から、好ましくは0.5mm以上、より好ましくは1mm以上であり、リーク電流を抑制する観点から、好ましくは5mm以下、より好ましくは3mm以下である。
 ガスケットの形状は、蓋体とともにキャパシタ容器本体の開口部にかしめ固定することができる形状であればよく、キャパシタ容器本体および蓋体の形状などによって異なるので一概には決定することができないため、キャパシタ容器本体および蓋体の形状などに応じて適宜決定することが好ましい。
 以上説明したように、本発明の一実施形態である溶融塩キャパシタは、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩を電解質とし、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させた正極と、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させた負極とを備えているので、高温環境下で良好に充放電を行なうことができる。したがって、本発明の一実施形態である溶融塩キャパシタによれば、例えば、資源採掘を行なう際の環境などのように高温環境下で使用される蓄電デバイスなどとして用いられることが期待されるものである。
 なお、本明細書に開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 つぎに、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。なお、以下の実施例において、活性炭およびカーボンブラックそれぞれの平均粒子径は、レーザー回折/散乱式粒度分布測定装置を用いて測定されるD50の平均粒子径である。
(実施例1)
(1)電極の作製
 活物質としての活性炭(比表面積:2000m2/g、平均粒子径:5μm)と、導電助剤としてのカーボンブラックと、バインダーとしてのポリフッ化ビニリデン(以下、「PVDF」という)とを、活性炭/カーボンブラック/PVDF(質量比)が87/3/10となるように混合し、得られた混合物2.5gを溶媒としてのN-メチルピロリドン(以下、「NMP」という)7.5gに懸濁することにより、固形分含量が25質量%のスラリーを得た。つぎに、集電体としてのアルミニウム箔(厚さ:20μm)1cm2あたりの前記スラリーの塗布量が5.5mg、当該スラリーの塗膜の厚さが200μmとなるようにドクターブレードを用いてアルミニウム箔の表面に塗布し、スラリーの塗膜を形成させた。
 スラリーの塗膜を有するアルミニウム箔を乾燥機内で120℃にて3時間乾燥させた。つぎに、乾燥後のスラリーの塗膜を有するアルミニウム箔をローラープレス機(プレスギャップ:150μm)で加圧することにより、電気二重層キャパシタ用電極板(以下、「EDLC用電極板」という)(厚さ:150μm)を得た。得られたEDLC用電極板を直径1.1mmの円板状に打ち抜き、円板状のEDLC用電極を得た。
(2)セパレータの作製
 厚さ100μmのガラス繊維製不織布を直径1.4mmの円板状に打ち抜き、セパレータとしての円板状のガラス繊維製不織布(直径:1.4mm、厚さ:100μm)を得た。
(3)電解質の調製
 リチウムビス(フルオロスルホニル)アミド(以下、「LiFSA」という)とカリウムビス(フルオロスルホニル)アミド(以下、「KFSA」という)とセシウムビス(フルオロスルホニル)アミド(以下、「CsFSA」という)とをLiFSA/KFSA/CsFSA(モル比)が3/4/3となるように混合し、得られた混合物を当該混合物の融点38℃以上に加熱することにより、電解質としてのLiFSAとKFSAとCsFSAとの共晶溶融塩〔LiFSA/KFSA/CsFSA(モル比):3/4/3、融点:38℃〕を得た。ここで、LiFSAは、金属カチオンとしてのリチウムカチオンと、ハロゲン原子を有する化合物のアニオンとしてのビス(フルオロスルホニル)アミドアニオンとを含む塩である。KFSAは、金属カチオンとしてのカリウムカチオンと、ハロゲン原子を有する化合物のアニオンとしてのビス(フルオロスルホニル)アミドアニオンとを含む塩である。CsFSAは、金属カチオンとしてのセシウムカチオンと、ハロゲン原子を有する化合物のアニオンとしてのビス(フルオロスルホニル)アミドアニオンとを含む塩である。
(4)電気二重層キャパシタの作製
 前記(1)で得られた2枚の円板状のEDLC用電極それぞれのスラリーの塗膜が前記(2)で得られた円板状のガラス繊維製不織布を挟んで対向配置されるように、2枚の円板状のEDLC用電極を、円板状のガラス繊維製不織布を挟んで対向させることで電極ユニットを得た。得られた電極ユニットをステンレス鋼製コインセルケース(セルサイズ:R2032)内に収容した。つぎに、前記(3)で得られた共晶溶融塩0.5mLを80℃に加熱し、前記コインセルケース内に滴下した。その後、ポリテトラフルオロエチレン(PTFE)製ガスケットを介して前記コインセルケースの蓋を閉めて封口して電気二重層キャパシタを得た。得られた電気二重層キャパシタの放電容量を、25℃で0.1mA/cm2の電流で2.5Vまでの充電を行なった後、0.1mA/cm2で0Vまでの放電を行なうことによって求めた、その結果、放電容量は、0.22mAhであった。
(実施例2)
 実施例1において、電解質として、LiFSAとKFSAとCsFSAとの共晶溶融塩〔LiFSA/KFSA/CsFSA(モル比):3/4/3、融点:38℃〕を用いる代わりに、ナトリウムビス(フルオロスルホニル)アミド(NaFSA)とCsFSAとの共晶溶融塩〔NaFSA/CsFSA(モル比):1/1、融点:55℃〕を用いたことを除き、実施例1と同様の操作を行なうことにより、電気二重層キャパシタを得た。得られた電気二重層キャパシタの充電電圧は、2.5Vであり、放電容量は、0.21mAhであった。NaFSAは、金属カチオンとしてのナトリウムカチオンと、ハロゲン原子を有する化合物のアニオンとしてのビス(フルオロスルホニル)アミドアニオンとを含む塩である。
(比較例1)
 実施例1において、セパレータとして円板状のガラス繊維製不織布(直径:1.4mm、厚さ:100μm)を用いる代わりに円板状のガラス繊維製不織布(直径:1.4mm、厚さ:30μm)を用いたことと、電解質としてLiFSAとKFSAとCsFSAとの共晶溶融塩〔LiFSA/KFSA/CsFSA(モル比):3/4/3、融点:38℃〕を用いる代わりに1mol/Lテトラエチルアンモニウムテトラフルオロボレート含有プロピレンカーボネート溶液を用いたこととを除き、実施例1と同様の操作を行なうことにより、電気二重層キャパシタを得た。得られた電気二重層キャパシタの充電電圧は、2.5Vであり、放電容量は、0.18mAhであった。
(実施例3)
(1)正極の作製
 実施例1(1)と同様の操作を行なうことにより、正極を得た。
(2)負極作製用セパレータの作製
 実施例1(1)と同様の操作を行なうことにより、負極作製用セパレータとしての円板状のガラス繊維製不織布(直径:1.4mm、厚さ:100μm)を得た。
(3)負極作製用の電解液の調製
 エチレンカーボネート(以下、「EC」という)とジエチルカーボネート(以下、「DEC」という)とをEC/DEC(体積比)が1/1となるように混合した。得られた混合物に、六フッ化リン酸リチウム(LiPF6)をその濃度が1mol/Lとなるように添加し、負極作製用の電解液を得た。
(4)負極の作製
 活物質としてのハードカーボン〔平均粒子径:5μm、(株)クレハ製、商品名:カーボトロンP〕と、導電助剤としてのカーボンブラックと、バインダーとしてのPVDFとを、ハードカーボン/カーボンブラック/PVDF(質量比)が87/3/10となるように混合し、得られた混合物2.5gを溶媒としてのN-メチルピロリドン(以下、「NMP」という)7.5gに懸濁することにより、固形分比率25質量%のスラリーを得た。つぎに、集電体としての銅箔(厚さ:15μm)1cm2あたりの前記スラリーの塗布量が2.7mg、当該スラリーの塗膜の厚さが100μmとなるようにドクターブレードを用いて銅箔の表面に塗布し、スラリーの塗膜を形成させた。
 スラリーの塗膜を有する銅箔を乾燥機内で120℃にて3時間乾燥させた。つぎに、乾燥後のスラリーの塗膜を有する銅箔をローラープレス機(プレスギャップ:60μm)で加圧することにより、負極板(厚さ:60μm)を得た。得られた負極板を直径1.1mmの円板状に打ち抜き、円板状のLIC用負極板を得た。
 前記円板状の負極板のスラリーの塗膜と直径1.1mmの円板状のリチウム金属箔(厚さ:50μm)とが前記(2)で得られた円板状のガラス繊維製不織布を挟んで対向配置されるように、円板状の負極板と円板状のリチウム金属箔とを、円板状のガラス繊維製不織布を挟んで対向させて電極ユニットを得た。得られた電極ユニットをステンレス鋼製コインセルケース(セルサイズ:R2032)内に収容した。つぎに、前記(3)で得られた負極作製用の電解液0.5mLを前記コインセルケース内に滴下した。その後、ポリテトラフルオロエチレン(PTFE)製ガスケットを介して前記コインセルケースの蓋を閉めて封口してセルを得た。得られたセルの初期電圧約3Vであった。つぎに、リチウム金属箔に対して0~2.5Vの電圧範囲で0.1mA/cm2の電流で3回充放電を行なった。最後の放電では、0Vまで放電した後、0.2mAhまで充電した。セルを分解してリチウムイオンがドープされた負極(以下、「Liドープ負極」という)を取り出した。その後、負極をECとDECとの混合溶媒〔EC/DEC(体積比):1/1〕で十分に洗浄して乾燥させた。
(5)セパレータの作製
 厚さ30μmのガラス繊維製不織布を直径1.4mmの円板状に打ち抜き、セパレータとしての円板状のガラス繊維製不織布(直径:1.4mm、厚さ:30μm)を得た。
(6)電解質の調製
 LiFSAとNaFSAとをLiFSA/NaFSA(モル比)が2/3となるように混合し、得られた混合物を当該混合物の融点76℃以上に加熱することにより、電解質としてのLiFSAとNaFSAとの共晶溶融塩〔LiFSA/NaFSA(モル比):2/3、融点:76℃〕を得た。
(7)金属イオンキャパシタの作製
 前記(1)で得られた正極および前記(4)で得られたLiドープ負極それぞれのスラリーの塗膜が前記(5)で得られた円板状のガラス繊維製不織布を挟んで対向配置されるように、正極とLiドープ負極とを、円板状のガラス繊維製不織布を挟んで対向させて電極ユニットを得た。得られた電極ユニットをステンレス鋼製コインセルケース(セルサイズ:R2032)内に収容した。つぎに、前記(6)で得られた共晶溶融塩0.5mLを100℃に加熱し、前記コインセルケース内に滴下した。その後、ポリテトラフルオロエチレン(PTFE)製ガスケットを介して前記コインセルケースの蓋を閉めて封口して金属イオンキャパシタを得た。得られた金属イオンキャパシタの充電電圧は、4.2Vであり、放電容量は、0.19mAhであった。
(比較例2)
 実施例3において、電解質としてLiFSAとNaFSAとの共晶溶融塩〔LiFSA/NaFSA(モル比):2/3、融点:76℃〕を用いる代わりに実施例3(3)で得られた電解液を用いたことを除き、実施例3と同様の操作を行なうことにより、金属イオンキャパシタを得た。得られた金属イオンキャパシタの充電電圧は、4.2Vであり、放電容量は、0.18mAhであった。
(試験例1)
 実施例1~3ならびに比較例1および2で得られた各キャパシタを、150℃の高温槽中に24時間放置して各キャパシタの表面温度を安定させた後、各キャパシタの充電電圧まで0.1mA/cm2の電流密度で充電し、0.1mA/cm2の電流密度で放電して容量を調べた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000033
 表1に示された結果から、実施例1および2で得られた電気二重層キャパシタは、150℃の高温環境下でも25℃の温度環境下と同様の充電電圧および放電容量を得ることができることから、高温環境下でも正常に動作しており、良好に充放電を行なうことができることがわかる。これに対して、比較例1で得られた溶融塩キャパシタは、150℃の高温環境下では、充電中にセルが破裂してしまい、充放電を行なうことができなかった。なお、比較例1で得られた電気二重層キャパシタは、常温(25℃)環境下では、良好に充放電を行なうことができることが確認できることから、充電中におけるセルの破裂は、高温環境下で電解液の分解が促進されたことに基づくものと考えられる。
 表1に示された結果から、実施例3で得られた金属イオンキャパシタは、150℃の高温環境下でも25℃の温度環境下と同様の充電電圧および放電容量を得ることができることから、高温環境下でも正常に動作しており、良好に充放電を行なうことができることがわかる。これに対して、比較例2で得られた金属イオンキャパシタは、150℃の高温環境下では、充電中にセルが破裂してしまい、充放電を行なうことができなかった。
(実施例4)
 実施例1において、LiFSAとKFSAとCsFSAとの共晶溶融塩を用いる代わりに、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩のうち、LiFSAとKFSAとCsFSAとの共晶溶融塩以外の溶融塩を用いたことを除き、実施例1と同様の操作を行なうことにより、電気二重層キャパシタを得る。かかる電気二重層キャパシタも、実施例1で得られた電気二重層キャパシタと同様の性質が見られる。
(実施例5)
 実施例3において、LiFSAとNaFSAとの共晶溶融塩を用いる代わりに、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩のうち、LiFSAとNaFSAとの共晶溶融塩以外の溶融塩を用いることを除き、実施例3と同様の操作を行なうことにより、金属イオンキャパシタを得る。かかる金属イオンキャパシタも、実施例3で得られた金属イオンキャパシタと同様の性質が見られる。
 以上の結果から、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩を電解質とし、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させた正極と、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させた負極とを備えた溶融塩キャパシタ(実施例1~3で得られた本発明の一実施形態である溶融塩キャパシタ)によれば、高温環境下で良好に充放電を行なうことができることがわかる。

Claims (7)

  1.  容器本体と蓋体とで密封された容器内に、正極と、負極と、電解質とセパレータとを有し、前記正極および前記負極の間に電解質が介在しているとともに、当該正極と当該負極とがセパレータを介して隔離されてなる溶融塩キャパシタであって、
     前記電解質が、ハロゲンアニオンおよびハロゲン原子を有する化合物のアニオンからなる群より選ばれた少なくとも1種のアニオンと、金属カチオンおよび有機カチオンからなる群より選ばれた少なくとも1種のカチオンとを含む溶融塩であり、
     前記正極が、正極活物質として前記アニオンを可逆的に保持する炭素材料を含有する正極材料を正極集電体に担持させてなる電極であり、
     前記負極が、負極活物質として前記カチオンを可逆的に保持する材料を含有する負極材料を負極集電体に担持させてなる電極であり、
     前記セパレータが、耐熱温度が120℃以上である材料からなる溶融塩キャパシタ。
  2.  前記アニオンが、ハロゲンアニオン、ハロゲン原子を有するアミドアニオン、ハロゲン原子を有するアルキル基を有するアミドアニオン、ハロゲン原子を有するスルホン酸アニオンおよびハロゲン原子を有するアルキル基を有するスルホン酸アニオンからなる群より選ばれた少なくとも1種である請求項1に記載の溶融塩キャパシタ。
  3.  前記アニオンが、式(I):
     〔X〕-              (I)
    (式中、Xは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す)
    で表わされるハロゲンアニオン、式(II):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基)
    で表わされるスルホニルアミドアニオンおよび式(III):
    Figure JPOXMLDOC01-appb-C000002

    (式中、R3は、ハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
    で表わされるスルホン酸アニオンからなる群より選ばれた少なくとも1種のアニオンである請求項1または2に記載の溶融塩キャパシタ。
  4.  前記カチオンが、金属カチオンおよび有機オニウムカチオンからなる群より選ばれた少なくとも1種のカチオンである請求項1~3のいずれか一項に記載の溶融塩キャパシタ。
  5.  前記カチオンが、金属カチオン、三級オニウムカチオンおよび四級オニウムカチオンからなる群より選ばれた少なくとも1種のカチオンである請求項1~4のいずれか一項に記載の溶融塩キャパシタ。
  6.  前記カチオンが、アルカリ金属カチオン、アルカリ土類金属カチオン、アルミニウムカチオン、銀カチオン、式(IV):
    Figure JPOXMLDOC01-appb-C000003

    (式中、R4、R5およびR6はそれぞれ独立して炭素数1~8のアルキル基、Aは硫黄原子を示す)
    で表わされるカチオン、式(V):

    (式中、R7~R10はそれぞれ独立して炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基、Bは窒素原子またはリン原子を示す)
    で表わされるカチオン、式(VI):
    Figure JPOXMLDOC01-appb-C000005

    (式中、R11およびR12はそれぞれ独立して炭素数1~8のアルキル基を示す)
    で表わされるイミダゾリウムカチオン、式(VII):
    Figure JPOXMLDOC01-appb-C000006

    (式中、R13およびR14はそれぞれ独立して炭素数1~8のアルキル基を示す)
    で表わされるイミダゾリニウムカチオン、式(VIII):
    Figure JPOXMLDOC01-appb-C000007

    (式中、R15は炭素数1~8のアルキル基を示す)
    で表わされるピリジニウムカチオン、式(IX):
    Figure JPOXMLDOC01-appb-C000008

    〔式中、R16およびR17はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合、酸素原子、メチレン基または式(X):
    Figure JPOXMLDOC01-appb-C000009

    (式中、R18はそれぞれ独立して炭素数1~8のアルキル基を示す)
    で表わされるカチオンからなる群より選ばれた少なくとも1種のカチオンである請求項1~5のいずれか一項に記載の溶融塩キャパシタ。
  7.  前記カチオンを可逆的に保持する材料が、カチオンを可逆的に保持する炭素材料、ケイ素、スズ、ケイ素化合物、スズ化合物、前記金属カチオンを解離する金属窒化物および前記金属カチオンを解離するチタン酸金属化合物からなる群より選ばれた材料である請求項1~6のいずれか一項に記載の溶融塩キャパシタ。
PCT/JP2013/074405 2012-09-28 2013-09-10 溶融塩キャパシタ WO2014050541A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217839 2012-09-28
JP2012217839A JP2014072400A (ja) 2012-09-28 2012-09-28 溶融塩キャパシタ

Publications (1)

Publication Number Publication Date
WO2014050541A1 true WO2014050541A1 (ja) 2014-04-03

Family

ID=50387948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074405 WO2014050541A1 (ja) 2012-09-28 2013-09-10 溶融塩キャパシタ

Country Status (2)

Country Link
JP (1) JP2014072400A (ja)
WO (1) WO2014050541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164948A (ja) * 2015-03-06 2016-09-08 住友電気工業株式会社 キャパシタ用正極およびキャパシタの製造方法ならびにキャパシタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252619A (ja) * 1985-05-02 1986-11-10 旭硝子株式会社 新規な電気二重層コンデンサ
JPH088147A (ja) * 1994-06-16 1996-01-12 Rockwell Internatl Corp 電気コンデンサ
WO2007101303A1 (en) * 2006-03-08 2007-09-13 Cap-Xx Limited Electrolyte
WO2012037171A2 (en) * 2010-09-13 2012-03-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252619A (ja) * 1985-05-02 1986-11-10 旭硝子株式会社 新規な電気二重層コンデンサ
JPH088147A (ja) * 1994-06-16 1996-01-12 Rockwell Internatl Corp 電気コンデンサ
WO2007101303A1 (en) * 2006-03-08 2007-09-13 Cap-Xx Limited Electrolyte
WO2012037171A2 (en) * 2010-09-13 2012-03-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164948A (ja) * 2015-03-06 2016-09-08 住友電気工業株式会社 キャパシタ用正極およびキャパシタの製造方法ならびにキャパシタ

Also Published As

Publication number Publication date
JP2014072400A (ja) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6119755B2 (ja) ナトリウム二次電池
WO2014148250A1 (ja) リチウムイオンキャパシタおよびその充放電方法
JP6666259B2 (ja) 蓄電デバイスの負極活物質層形成用組成物、その組成物を含む負極および蓄電デバイス、並びに、蓄電デバイス用負極の製造方法
WO2015093208A1 (ja) 溶融塩電池、充放電方法および充放電システム
JPWO2015076059A1 (ja) キャパシタおよびその製造方法
JP6064825B2 (ja) ナトリウム溶融塩電池
JP6217434B2 (ja) ナトリウム溶融塩電池
JP6252220B2 (ja) ナトリウムイオン二次電池、充放電方法および充放電システム
JP6260209B2 (ja) アルカリ金属イオンキャパシタ、その製造方法および充放電方法
JP2015153700A (ja) 蓄電デバイス
KR20160009546A (ko) 나트륨 용융염 전지
JP2015022868A (ja) 溶融塩電池
JP6179242B2 (ja) ナトリウム溶融塩電池用負極およびその製造方法、ならびにナトリウム溶融塩電池
WO2014050541A1 (ja) 溶融塩キャパシタ
Hu et al. A highly conductive quasi-solid-state electrolyte based on helical silica nanofibers for lithium batteries
JP2016038945A (ja) 溶融塩電解質および溶融塩電池
JP2016038946A (ja) 溶融塩電池およびその製造方法
WO2014181571A1 (ja) ナトリウム溶融塩電池およびこれに用いる溶融塩電解質またはイオン性液体
JP2014238935A (ja) ナトリウム溶融塩電池に用いるイオン液体および溶融塩電解質、ナトリウム溶融塩電池、ならびにナトリウム溶融塩電池用溶融塩電解質の製造方法
JP2015022907A (ja) ナトリウム溶融塩電池
JP2015041433A (ja) ナトリウム溶融塩電池
JP2015153699A (ja) 蓄電デバイス
JP2015046342A (ja) 溶融塩電池の製造方法および溶融塩電池
JP6369251B2 (ja) ナトリウム溶融塩電池用正極、およびそれを用いたナトリウム溶融塩電池
JP2015088431A (ja) 溶融塩電池用電極およびその製造方法、ならびに溶融塩電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843005

Country of ref document: EP

Kind code of ref document: A1