WO2014148076A1 - R-t-b系永久磁石 - Google Patents

R-t-b系永久磁石 Download PDF

Info

Publication number
WO2014148076A1
WO2014148076A1 PCT/JP2014/050738 JP2014050738W WO2014148076A1 WO 2014148076 A1 WO2014148076 A1 WO 2014148076A1 JP 2014050738 W JP2014050738 W JP 2014050738W WO 2014148076 A1 WO2014148076 A1 WO 2014148076A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
permanent magnet
composition
occupying
temperature
Prior art date
Application number
PCT/JP2014/050738
Other languages
English (en)
French (fr)
Inventor
鈴木 健一
崔 京九
龍司 橋本
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2014528364A priority Critical patent/JP5708889B2/ja
Priority to DE112014001585.7T priority patent/DE112014001585T5/de
Priority to CN201480000883.4A priority patent/CN104272403B/zh
Priority to US14/385,838 priority patent/US9947445B2/en
Publication of WO2014148076A1 publication Critical patent/WO2014148076A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets

Definitions

  • the present invention relates to an RTB system permanent magnet, and more particularly to a lightweight permanent magnet obtained by selectively replacing a part of R in an RTB system permanent magnet with Y and Ce.
  • An RTB-based permanent magnet having a tetragonal R 2 T 14 B compound as a main phase (R is a rare earth element, T is Fe or Fe partially substituted by Co, and B is boron) has excellent magnetic properties. It has been known to have characteristics and has been a typical high-performance permanent magnet since the invention in 1982 (Patent Document 1: Japanese Patent Laid-Open No. 59-46008).
  • An RTB-based magnet in which the rare earth element R is Nd, Pr, Dy, Ho, Tb has a large anisotropic magnetic field Ha and is preferable as a permanent magnet material.
  • Nd—Fe—B magnets in which the rare earth element R is Nd have a good balance of saturation magnetization Is, Curie temperature Tc, and anisotropic magnetic field Ha, and R—using other rare earth elements R in terms of resources and corrosion resistance. Widely used because it is superior to TB magnets.
  • the permanent magnet synchronous rotator has a permanent magnet disposed on the rotor, and uses a permanent magnet in which about one third of the mass is occupied by a rare earth element Nd having a large specific gravity, such as an Nd—Fe—B magnet.
  • Nd—Fe—B magnet a rare earth element having a large specific gravity
  • Patent Document 2 discloses a YTB system magnet in which the rare earth element R of the RTB system magnet is Y, and the Y 2 Fe 14 B phase having a small anisotropic magnetic field Ha is used as the main phase.
  • a magnet having a practical coercive force can be obtained by making the amounts of Y and B larger than the stoichiometric composition of Y 2 Fe 14 B.
  • H cJ Br about 0.5 ⁇ 0.6 T of Y-T-B based magnet disclosed in Patent Document 2
  • H cJ is about 250 ⁇ 350kA / m
  • Nd- Fe-B -based magnetic It is difficult to replace the Nd—Fe—B type magnet as a lightweight permanent magnet for a permanent magnet synchronous rotating machine, which is significantly lower than the characteristics.
  • the present invention has been made in recognition of such a situation, and is lighter without significantly degrading the magnetic properties as compared with Nd—Fe—B magnets widely used in consumer, industrial, transportation equipment, and the like.
  • An object of the present invention is to provide a permanent magnet.
  • the RTB-based permanent magnet of the present invention has a composition of (R 1-x (Y 1-z Ce z ) x ) 2 T 14 B (R is La, Pr, Nd, Sm, Eu, Gd, Tb , Dy, Ho, Er, Tm, Yb and Lu are rare earth elements, and T is one or more transition metal elements essentially containing Fe, Fe and Co, 0.0 ⁇ x ⁇ 0.
  • Y occupying the 4f site in the tetragonal R 2 T 14 B structure in the main phase particle is Y 4f and occupying the 4g site Y and Y existence when a 4g ratio Y 4f to / (Y 4f + Y 4g), characterized in that it is 0.8 ⁇ Y 4f / (Y 4f + Y 4g) ⁇ 1.0.
  • the present inventors have made the arrangement of the rare earth element R occupying a specific position in the crystal lattice appropriate, particularly in the Nd—Fe—B system permanent magnet.
  • the magnetic properties are not degraded as compared with conventional Nd—Fe—B based permanent magnets. It has been found that a lightweight permanent magnet can be obtained.
  • the magnetocrystalline anisotropy which is the origin of the coercive force of rare earth magnets, is generated when the one-ion anisotropy of rare earth ions constrains the magnetic moment of the entire crystal.
  • the one-ion anisotropy of this rare earth ion is determined by the atomic arrangement and the electron cloud of the ion.
  • Nd ions there are two types of Nd ions, 4f site and 4g site
  • the ion anisotropy of Nd occupying the 4g site is the magnetic anisotropy of the whole crystal. Therefore, it contributes to the improvement of magnetocrystalline anisotropy.
  • the ionic anisotropy of Nd occupying the 4f site is orthogonal to the magnetic anisotropy of the entire crystal, resulting in a loss of magnetocrystalline anisotropy.
  • the 1-ion anisotropy of Nd occupying the 4f site and causing a loss of magnetocrystalline anisotropy originates from the pancake electron cloud of Nd. If only the Nd at the 4f site is replaced with atoms having a spherical electron cloud that does not exhibit anisotropy, and the loss of magnetocrystalline anisotropy can be reduced, the magnetocrystalline anisotropy higher than that of Nd 2 Fe 14 B can be achieved. Can be obtained.
  • elements having a spherical electron cloud are Y and La.
  • La has a large ionic radius, and it is difficult to selectively replace a 4f site having a small distance from adjacent atoms as compared to a 4g site. That is, if Y is selected as an element for selectively substituting the 4f site, a permanent magnet having a higher magnetocrystalline anisotropy than that of conventional Nd 2 Fe 14 B can be obtained in a relatively easy manufacturing process. it can. Further, since the atomic weight of Y is 88.91 and smaller than the atomic weight of Nd 144.2, the permanent magnet obtained by substituting Nd with Y is compared with the conventional Nd—Fe—B permanent magnet. And lighter.
  • Ce is a suitable additive element for selectively and stably substituting the 4f site of the tetragonal Nd 2 Fe 14 B structure with Y because it shows valence fluctuation and the accompanying change in ionic radius.
  • the magnetic characteristics are remarkably improved as compared with the conventional Nd-Fe-B-based magnet. Without lowering, a lightweight permanent magnet suitable for use in a permanent magnet synchronous rotating machine can be obtained.
  • the RTB-based permanent magnet of the present invention has a composition of (R 1-x (Y 1-z Ce z ) x ) 2 T 14 B (R is La, Pr, Nd, Sm, Eu, Gd, Tb , Dy, Ho, Er, Tm, Yb and Lu are rare earth elements, and T is one or more transition metal elements essentially containing Fe, Fe and Co, 0.0 ⁇ x ⁇ 0.
  • Y occupying the 4f site in the tetragonal R 2 T 14 B structure in the main phase particle is Y 4f and occupying the 4g site Y and Y existence when a 4g ratio Y 4f to / (Y 4f + Y 4g), characterized in that it is 0.8 ⁇ Y 4f / (Y 4f + Y 4g) ⁇ 1.0.
  • R is a rare earth element composed of one or more of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the total amount x of Y and Ce in the composition of the main phase particles is 0.0 ⁇ x ⁇ 0.5.
  • x increases, the effect of reducing the density by replacing Nd having a large atomic weight with Y having a small atomic weight, that is, reducing the weight of the magnet, is enhanced.
  • x exceeds 0.5, the magnetic properties of the obtained sample are significantly deteriorated.
  • the relative amount z of Y and Ce is 0.0 ⁇ z ⁇ 0.5.
  • the size of the 4f site and the 4g site (distance between adjacent atoms) is set so that the substituted Y becomes stable at the 4f site. )
  • Ce which indicates valence fluctuation and accompanying ionic radius change, is preferably replaced with R together with Y by an appropriate amount (0.0 ⁇ z ⁇ 0.5).
  • B may be partially substituted with C.
  • the substitution amount of C is preferably 10 atomic% or less with respect to B.
  • T which is the balance of the composition, is one or more transition metal elements that essentially require Fe or Fe and Co.
  • the Co content is preferably 0 atomic percent or more and 10 atomic percent or less with respect to the T amount.
  • a raw material alloy is prepared so that an RTB system magnet having a desired composition can be obtained.
  • the raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere.
  • a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales).
  • This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 ⁇ m.
  • the raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
  • an RTB-based permanent magnet when an RTB-based permanent magnet is obtained, a so-called single alloy method in which a magnet is made from one kind of alloy is basically applied as a raw material alloy, but R 2 T 14 B which is a main phase particle is used. It is also possible to apply a so-called mixing method using a main phase alloy (low R alloy) mainly composed of crystals and an alloy (high R alloy) that contains more R than the low R alloy and contributes effectively to the formation of grain boundaries. it can.
  • a main phase alloy low R alloy
  • high R alloy that contains more R than the low R alloy and contributes effectively to the formation of grain boundaries. it can.
  • the raw material alloy is subjected to a grinding process.
  • the low R alloy and the high R alloy are pulverized separately or together.
  • the pulverization process includes a coarse pulverization process and a fine pulverization process.
  • the raw material alloy is coarsely pulverized until the particle size becomes about several hundred ⁇ m.
  • the coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it.
  • the hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet.
  • the heating and holding temperature for storing hydrogen is 200 ° C. or higher, preferably 350 ° C. or higher.
  • the holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer.
  • the hydrogen release treatment is performed in a vacuum or Ar gas flow.
  • the hydrogen storage process and the hydrogen release process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.
  • a jet mill is mainly used for fine pulverization, and a coarsely pulverized powder having a particle size of about several hundreds of ⁇ m has an average particle size of 2.5 to 6 ⁇ m, preferably 3 to 5 ⁇ m.
  • the jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing.
  • Wet grinding may be used for fine grinding.
  • a ball mill, a wet attritor or the like is used for the wet pulverization, and the coarsely pulverized powder having a particle size of about several hundreds of ⁇ m has an average particle size of 1.5 to 5 ⁇ m, preferably 2 to 4.5 ⁇ m.
  • the pulverization proceeds without the magnet powder coming into contact with oxygen, so that a fine powder having a low oxygen concentration can be obtained.
  • Fatty acids or fatty acid derivatives and hydrocarbons for the purpose of improving lubrication and orientation during molding such as zinc stearate, calcium stearate, aluminum stearate, stearamide, oleamide, stearic acid or oleic acid
  • Ethylene bisisostearic amide, hydrocarbon paraffin, naphthalene, and the like can be added in an amount of about 0.01 to 0.3 wt% during pulverization.
  • the finely pulverized powder is subjected to molding in a magnetic field.
  • the molding pressure in the molding in the magnetic field may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa).
  • the molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point.
  • the final relative density of the molded body obtained by molding in a magnetic field is usually 40 to 60%.
  • the applied magnetic field may be about 960 to 1600 kA / m (10 to 20 kOe).
  • the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field.
  • a static magnetic field and a pulsed magnetic field can also be used in combination.
  • the formed body is subjected to a sintering process.
  • Sintering is performed in a vacuum or an inert gas atmosphere.
  • the sintering holding temperature and sintering holding time need to be adjusted according to various conditions such as composition, pulverization method, difference in average particle size and particle size distribution, but may be about 1000 ° C. to 1200 ° C. and 2 hours to 20 hours. That's fine.
  • the process proceeds to a temperature lowering process after an appropriate holding time has elapsed, and the temperature lowering rate may be 10 ⁇ 4 ° C./second to 10 ⁇ 2 ° C./second .
  • the temperature lowering rate does not have to be always constant from the holding temperature to the room temperature, and may be controlled within the above range only in a predetermined temperature range.
  • the temperature of the zone where the temperature lowering rate should be controlled is determined by the composition, but is about 400 ° C. to 1000 ° C.
  • the temperature decrease rate is sufficiently slow, and at least the temperature decrease rate needs to be slower than 10 ⁇ 2 ° C./second, but is slower than 10 ⁇ 4 ° C./second.
  • the temperature lowering rate is not realistic because it causes a significant decrease in production efficiency.
  • the obtained sintered body can be subjected to an aging treatment.
  • the aging treatment step is an effective step for increasing the coercive force.
  • the cooling rate from the aging temperature is also decreased. It is effective to control within the speed range.
  • the embodiment relates to a manufacturing method for favorably implementing the present invention, then, of the present invention for the R-T-B-based permanent magnet, of the composition and R 2 T 14 B crystal structure of the main phase grains A method for analyzing the occupied position of the rare earth will be described.
  • the composition of the RTB permanent magnet can be determined by energy dispersive X-ray analysis. After cutting the sintered body as a sample perpendicularly to the direction of magnetic field application during molding, which is an easy axis of magnetization, and confirming that the main generated phase is attributed to the tetragonal R 2 T 14 B structure by X-ray diffraction method The sintered body was processed into a thin film having a thickness of 100 nm using a focused ion beam (FIB) apparatus, and an energy dispersive X-ray analysis provided in a scanning transmission electron microscope (STEM). The composition of the main phase particles can be quantified by analyzing the vicinity of the center of the main phase particles with an (EDS: Energy Dispersive X-ray Spectroscopy) apparatus and using the thin film correction function.
  • EDS Energy Dispersive X-ray Spectroscopy
  • the composition of the main phase particles is determined by the composition ratio of elements other than B based on the fact that the main production phase is a tetragonal R 2 T 14 B structure, which has been confirmed in advance by an X-ray diffraction method. Can do.
  • the composition of the main phase particles quantified by the above-described method can be controlled by adjusting the composition of the entire sintered body sample.
  • ICP spectroscopy inductively coupled plasma spectroscopy
  • the composition showed a tendency to have a large amount of rare earth. This is because the sintered body sample needs to contain more rare earth than R 2 T 14 B, which is the stoichiometric composition, for densification and grain boundary formation by sintering.
  • R 2 T 14 B which is the stoichiometric composition, for densification and grain boundary formation by sintering.
  • the ratio of the rare earth element contained as R the composition of the entire sintered body sample and the composition of the main phase particles were substantially the same. That is, the ratio of the rare earth element contained as R in the main phase particle R 2 T 14 B can be controlled by adjusting the composition of the entire sintered body sample.
  • the Y occupying the 4f site tetragonal R 2 T 14 B structure and Y 4f, the existence ratio Y 4f / (Y 4f + Y 4g) when the Y occupying the 4g site was Y 4g is 0.8 ⁇ Y 4f / (Y 4f + Y 4g ) ⁇ 1.0.
  • the present invention shows no anisotropy only for Nd occupying the 4f site causing the loss of uniaxial anisotropy of the whole crystal due to the anisotropy of Nd 2 Fe 14 B and the ionic anisotropy in the vertical direction.
  • Y 4f / of a Y occupying Y a is Y 4f and 4g site occupying the 4f site tetragonal R 2 T 14 B structure described above Y 4g (Y 4f + Y 4g) scanning transmission electron microscopy It can be determined from a high-angle scattered dark-field (HAADF) image.
  • HAADF high-angle scattered dark-field
  • the sintered body is cut perpendicularly to the direction of magnetic field application during molding, which is an easy axis of magnetization, and is processed into a thin piece with a thickness of 100 nm using a focused ion beam (FIB) apparatus, and then a scanning transmission electron microscope ( A STEM: Scanning Transmission Electron Microscope) adjusts the crystal structure of the Nd 2 Fe 14 B type to an observable position from the [110] direction to obtain a HAADF image.
  • FIG. 1 illustrates (a) a HAADF image and (b) a crystal structure model from the [110] direction obtained from a sintered body having a composition of main phase particles of Nd 2 Fe 14 B.
  • the HAADF image described above has a luminance proportional to approximately the square of the atomic number, B (atomic number: 5), Fe (atomic number: 26), Y (atomic number: 39), rare earth element containing no Y (atom Number: 57 or more) can be easily distinguished.
  • B atomic number: 5
  • Fe atomic number: 26
  • Y atomic number: 39
  • rare earth element containing no Y atom Number: 57 or more
  • the brightness obtained from the HAADF image of the sintered body having the composition (a) Nd 2 Fe 14 B and the sintered body having the composition (b) (Y 0.5 Nd 0.5 ) 2 Fe 14 B
  • a line profile is illustrated in FIG. The line profile was acquired along a rectangular area shown in the HAADF image in FIG.
  • the luminance at the 4f site position and the 4g site position are both high and similar in intensity. It is possible to determine that both 4g sites and 4g sites are occupied by Nd having a large atomic number.
  • the luminance at the 4f site position is low and the luminance at the 4g site position is high. That is, it is possible to determine that Y having a small atomic number occupies the 4f site and Nd having a large atomic number occupies the 4g site.
  • the obtained fine powder is filled into a mold (opening size: 20 mm ⁇ 18 mm), and uniaxial pressing is performed at a pressure of 2.0 ton / cm 2 while applying a magnetic field (2T) in a direction perpendicular to the pressing direction. did.
  • the obtained molded body was heated up to the optimum sintering temperature and held for 4 hours, and then the temperature decreasing rate was 10 0 ° C / second to 10 -2 in a temperature range of ⁇ 50 ° C centering on 400 ° C to 800 ° C.
  • the sintered body was obtained by cooling to near room temperature at a temperature drop rate of 10 -1 ° C / second in other temperature zones.
  • Table 1 The results of measuring the magnetic properties of the sintered body with a BH tracer and the results of measuring the density of the sintered body are shown in Table 1.
  • the sintered body was cut perpendicularly to the magnetic field application direction during molding, which is an easy axis of magnetization, and it was confirmed by X-ray diffraction that the main product phase was attributed to the tetragonal R 2 T 14 B structure.
  • analysis was performed near the center of the main phase particles with an EDS apparatus provided in the STEM, and the composition of the main phase particles was quantified using a thin film correction function. .
  • the sample was adjusted to a position where the tetragonal R 2 T 14 B structure was observable from the [110] direction, and a HAADF image was obtained.
  • Y 4f occupying the 4f site in the tetragonal R 2 T 14 B structure obtained by counting the number of Y occupying the 4f site and the 4g site based on the luminance information for the 10 nm square area in the HAADF image existence ratio Y 4f / a Y 4g occupying 4g site (Y 4f + Y 4g) shown in Table 1.
  • Example 3 Examples 6 to 8, Comparative Examples 6 to 7, and Comparative Example 10
  • Ce relative to Y As the relative amount z increases, the density of the sintered body gradually increases, and when z ⁇ 0.6, it becomes equivalent to the conventional Nd—Fe—B magnet. Further, the residual magnetic flux density B r and coercivity H cJ also the relative amounts of Ce with respect to Y is severely degraded exceeds half (z ⁇ 0.6).
  • the magnetic properties are slightly decreased.
  • the ratio Y 4f / (Y 4f + Y 4g ) of the occupied Y 4g is maintained.
  • the decrease in magnetic properties due to the decrease in temperature drop rate is not due to the 4f site occupancy rate of Y, but the grain boundary structure necessary for the expression of the coercive force of the R 2 T 14 B type permanent magnet is lost due to the temperature drop rate being too small. The present inventors consider that this is caused.
  • the magnetic characteristics are deteriorated and tetragonal R 2 T 14 B
  • the abundance ratio Y 4f / (Y 4f + Y 4g ) of Y 4f occupying the 4f site and Y 4g occupying the 4g site in the structure also decreased.
  • the present inventors consider that the decrease in the magnetic characteristics accompanying the lowering of the temperature band for controlling the temperature lowering rate is caused by insufficient energy for the rare earth element to move to the stable site.
  • the temperature range in which the rate of temperature decrease is 1 ⁇ 10 ⁇ 2 ° C./second is higher than 750 ° C. to 850 ° C. (800 ⁇ 50 ° C.)
  • the magnetic characteristics are lowered, and tetragonal R 2 T 14 B
  • the abundance ratio Y 4f / (Y 4f + Y 4g ) of Y 4f occupying the 4f site and Y 4g occupying the 4g site in the structure also slightly decreased.
  • the present inventors consider that the decrease in the magnetic characteristics accompanying the increase in temperature in the temperature range for controlling the temperature decrease rate is caused by the fact that the rare earth element has moved out of the adjacent site due to excessive energy.
  • the abundance ratio Y 4f / (Y 4f + Y 4g ) of Y 4f occupying the 4f site and Y 4g occupying the 4g site is 0.88 to 0.89, and R substituted Y was found to selectively occupy the 4f site.
  • the RTB permanent magnet according to the present invention is useful for the field of a permanent magnet synchronous rotating machine widely used in consumer, industrial and transportation equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】従来のNd-Fe-B系永久磁石と同等の磁気特性を有しながらも軽量であり、永久磁石同期回転機の界磁用磁石として好適な、R-T-B系永久磁石を提供するにある。 【解決手段】主相を形成する化合物の組成が(R1-x(Y1-zCe14B(RはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素であり、Yはイットリウム、Ceはセリウム、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、Bはホウ素、0.0<x≦0.5、0.0≦z≦0.5)の場合に、正方晶R14B構造中の4fサイトを占有するYであるY4fと4gサイトを占有するYであるY4gの存在比率が、0.8≦Y4f/(Y4f+Y4g)≦1.0となることによって、従来のNd-Fe-B系永久磁石と同等の磁気特性を有しながらも軽量である磁石を得る。

Description

R-T-B系永久磁石
本発明は、R-T-B系永久磁石に関し、特にR-T-B系永久磁石におけるRの一部を選択的にYおよびCeに置換することによって得られる軽量な永久磁石に関する。
正方晶R14B化合物を主相とするR-T-B系永久磁石(Rは希土類元素、TはFeまたはその一部がCoによって置換されたFe、Bはホウ素)は優れた磁気特性を有することが知られており、1982年の発明(特許文献1:特開昭59-46008号公報)以来、代表的な高性能永久磁石である。
希土類元素RがNd、Pr、Dy、Ho、TbからなるR-T-B系磁石は異方性磁界Haが大きく永久磁石材料として好ましい。中でも希土類元素RをNdとしたNd-Fe-B系磁石は、飽和磁化Is、キュリー温度Tc、異方性磁界Haのバランスが良く、資源量、耐食性において他の希土類元素Rを用いたR-T-B系磁石よりも優れているために広く用いられている。
民生、産業、輸送機器に広く用いられる回転機として、近年では省エネルギーおよびエネルギー密度の観点から、永久磁石同期回転機が多く用いられる傾向がある。
永久磁石同期回転機は回転子に永久磁石が配置されており、Nd-Fe-B系磁石のように質量の3分の1程度を比重の大きい希土類元素Ndが占める永久磁石を用いることは、回転子の重量増加による慣性モーメントの増大、すなわち、制御性および効率の低下を招くという問題がある。
特開昭59-46008号公報 特開2011-187624号公報
R-T-B系永久磁石となるRのうち、Ndと比して軽量な元素としてはYが知られている。特許文献2にはR-T-B系磁石の希土類元素RをYとした、Y-T-B系磁石が開示されており、異方性磁界Haの小さいYFe14B相を主相としながらも、YおよびBの量をYFe14Bの化学量論組成より大きくすることにより、実用的な保磁力を有する磁石が得られるとしている。しかしながら、特許文献2にて開示されているY-T-B系磁石のBrは0.5~0.6T程度、HcJは250~350kA/m程度であり、Nd-Fe-B系の磁気特性よりも著しく低く、永久磁石同期回転機用の軽量な永久磁石として、Nd-Fe-B系磁石の代替とすることは困難である。
本発明はこうした状況を認識してなされたものであり、民生、産業、輸送機器などに広く用いられているNd-Fe-B系磁石と比較して、磁気特性を著しく低下させることなく、軽量な永久磁石を提供することを目的とする。
本発明のR-T-B系永久磁石は、組成が(R1-x(Y1-zCe14B(RはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素であり、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、0.0<x≦0.5、0.0≦z≦0.5)である主相粒子を含み、前記主相粒子における正方晶R14B構造中の4fサイトを占有するYをY4fとし、4gサイトを占有するYをY4gとしたときの存在比率Y4f/(Y4f+Y4g)が、0.8≦Y4f/(Y4f+Y4g)≦1.0であることを特徴とする。
本発明者らは、R-T-B系永久磁石において、結晶格子中の特定の位置を占有する希土類元素Rの配列を適正なものとすることによって、特にNd-Fe-B系永久磁石におけるNdFe14B結晶構造の4fサイトに存在するNdを選択的にYおよびCeに置換することによって、従来のNd-Fe-B系永久磁石と比較して磁気特性の低下を招くことなく、軽量な永久磁石が得られることを見出した。
希土類磁石の保磁力の起源である結晶磁気異方性は、希土類イオンの1イオン異方性が結晶全体の磁気モーメントを拘束することによって発生する。この希土類イオンの1イオン異方性は原子配置とイオンの電子雲によって決定される。例えば、正方晶NdFe14B構造において、Ndイオンの位置は4fサイトと4gサイトの2種類が存在しており、4gサイトを占有するNdのイオン異方性は結晶全体の磁気異方性と平行であるために、結晶磁気異方性の向上に寄与している。しかしながら、4fサイトを占有するNdのイオン異方性は結晶全体の磁気異方性と直交しているために、結晶磁気異方性の損失を招いている。
4fサイトを占有し、結晶磁気異方性の損失を招いているNdの1イオン異方性はNdのパンケーキ型の電子雲に由来する。この4fサイトのNdのみを異方性を示さない球形電子雲を有する原子に置換し、結晶磁気異方性の損失を低減させることができれば、NdFe14Bよりも高い結晶磁気異方性を示す永久磁石を得ることができる。
正方晶NdFe14B構造の4fサイトを置換しうる原子のうち、球形電子雲を有する元素はYとLaである。しかしながら、Laはイオン半径が大きく、4gサイトと比較して近接原子との距離が小さい4fサイトに対して、選択的に置換することは難しい。すなわち、4fサイトを選択的に置換する元素としてYを選択すれば、比較的容易な製造工程にて、従来のNdFe14Bよりも高い結晶磁気異方性を示す永久磁石を得ることができる。また、Yの原子量は88.91であり、Ndの原子量144.2よりも小さいことから、NdをYに置換することによって得られる永久磁石は、従来のNd-Fe-B系永久磁石と比較して軽量となる。
正方晶NdFe14B構造の4fサイトを選択的にYに置換するには、置換したYが4fサイトにて安定となるよう、原子間距離を調整する必要がある。Ceは価数揺動および、それに伴うイオン半径の変化を示すことから、正方晶NdFe14B構造の4fサイトを選択的かつ安定的にYに置換するために好適な添加元素である。
本発明によれば、R-T-B系永久磁石におけるRの一部を選択的にYおよびCeに置換することによって、従来のNd-Fe-B系磁石と比較して、磁気特性を著しく低下させることなく、永久磁石同期回転機に用いるのに好適である軽量な永久磁石を得ることができる。
(a)本発明の比較例1における焼結体の主相粒子の[110]方向からのHAADF像である。(b)NdFe14B結晶構造の[110]方向からの結晶構造模型である。 (a)組成がNdFe14Bである主相粒子(比較例1)の[110]方向からのHAADF像の輝度のラインプロファイルである。(b)組成が(Nd0.50.5Fe14Bである主相粒子(実施例3)の[110]方向からのHAADF像の輝度のラインプロファイルである。
以下、本発明の好適な実施の形態を詳述する。なお、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。
本発明のR-T-B系永久磁石は、組成が(R1-x(Y1-zCe14B(RはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素であり、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、0.0<x≦0.5、0.0≦z≦0.5)である主相粒子を含み、前記主相粒子における正方晶R14B構造中の4fサイトを占有するYをY4fとし、4gサイトを占有するYをY4gとしたときの存在比率Y4f/(Y4f+Y4g)が、0.8≦Y4f/(Y4f+Y4g)≦1.0であることを特徴とする。
本実施形態において、RはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素である。
本実施形態において、主相粒子の組成に占めるYとCeの総量xは0.0<x≦0.5である。xの増加に伴って、原子量の大きいNdを原子量の小さいYで置換することによる低密度化、すなわち磁石の軽量化の効果が高くなる。しかしながら、xが0.5を超えると得られる試料の磁気特性が著しく低下する。
本実施形態において、YとCeの相対量zは0.0≦z≦0.5である。Yは正方晶R14B構造のRとして選択される元素として最も原子量が小さく、磁石の軽量化のみに着目すれば、Yのみによる置換(z=0.0)が有効である。しかしながら、正方晶NdFe14B構造の4fサイトを選択的にYに置換するには、置換したYが4fサイトにて安定となるよう、4fサイトおよび4gサイトの大きさ(近接原子間距離)を適当に調整する必要があり、価数揺動および、それに伴うイオン半径の変化を示すCeを適当な量(0.0≦z≦0.5)だけYとともにRに置換することが好ましい。
本実施形態において、Bはその一部をCで置換してもよい。Cの置換量はBに対して10原子%以下とすることが好ましい。
本実施形態において、組成残部であるTはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素である。Co量はT量に対して0原子%以上10原子%以下が望ましい。Co量の増加によってキュリー温度を向上させることができ、温度上昇に対する保磁力の低下を小さく抑えることが可能となる。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。
以下、本件発明の製造方法の好適な例について説明する。
本実施形態のR-T-B系永久磁石の製造においては、まず、所望の組成を有するR-T-B系磁石が得られるような原料合金を準備する。原料合金は、真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1~50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
本発明においてR-T-B系永久磁石を得る場合、原料合金として、1種類の合金から磁石を作成するいわゆるシングル合金法の適用を基本とするが、主相粒子であるR14B結晶を主体とする主相合金(低R合金)と、低R合金よりRを多く含み、粒界の形成に有効に寄与する合金(高R合金)とを用いる所謂混合法を適用することもできる。
原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行なうことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。水素吸蔵のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、真空中又はArガスフローにて行う。なお、水素吸蔵処理、水素放出処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。
粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径2.5~6μm、望ましくは3~5μmとする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。
微粉砕には湿式粉砕を用いても良い。湿式粉砕にはボールミルや湿式アトライタなどが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径1.5~5μm、望ましくは2~4.5μmとする。湿式粉砕では適切な分散媒の選択により、磁石粉が酸素に触れることなく粉砕が進行するため、酸素濃度が低い微粉末が得られる。
成形時の潤滑及び配向性の向上を目的とした脂肪酸又は脂肪酸の誘導体や炭化水素、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミド、オレイン酸アミド、エチレンビスイソステアリン酸アミド、炭化水素であるパラフィン、ナフタレン等を微粉砕時に0.01~0.3wt%程度添加することができる。
微粉砕粉は磁場中成形に供される。磁場中成形における成形圧力は0.3~3ton/cm(30~300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、40~60%である。
印加する磁場は、960~1600kA/m(10~20kOe)程度とすればよい。印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
成形体は焼結工程に供される。焼結は真空又は不活性ガス雰囲気中にて行われる。焼結保持温度および焼結保持時間は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、凡そ1000℃~1200℃、2時間~20時間であればよい。しかるべき保持時間経過の後に降温させる工程に移るが、降温速度は10-4℃/秒~10-2℃/秒とすればよい。この時、降温速度は保持温度から室温に至るまで常に一定とする必要は無く、所定の温度帯域のみにおいて前記範囲に制御すればよい。この降温速度を制御すべき帯域の温度は組成によって決まるが、凡そ400℃~1000℃である。組成によって決まる所定の温度帯域において、降温速度を制御することによって、組成中に含まれる複数種類の元素が、構造的に最も安定な配置となり、本件発明の特徴である構造が形成されるものと発明者らは考える。すなわち、降温速度は十分に遅いことが本件発明を実現するための必要条件であり、少なくとも降温速度を10-2℃/秒よりも遅くする必要があるが、10-4℃/秒よりも遅い降温速度は製造上の効率の著しい低下を招くため、現実的ではない。
焼結後、得られた焼結体に時効処理を施すことができる。時効処理工程は保磁力を増大させるために有効な工程であるが、前記の降温速度を制御すべき温度帯域の近傍の温度にて時効処理を行う際は、時効温度からの冷却速度も前記降温速度の範囲にて制御することが有効である。
以上、本件発明を好適に実施するための製造方法に関する形態を説明したが、次いで、本件発明のR-T-B系永久磁石について、主相粒子の組成およびR14B結晶構造中の希土類の占有位置を分析する方法について説明する。
本件発明において、R-T-B系永久磁石の組成は、エネルギー分散型X線分析にて決定することが可能である。試料である焼結体を磁化容易軸である成形時の磁場印加方向と垂直に切断し、X線回折法によって主たる生成相が正方晶R14B構造に帰属されることを確認した後に、焼結体を集束イオンビーム(FIB:Focused Ion Beam)装置にて厚さ100nmの薄片状に加工し、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)に備えられたエネルギー分散型X線分析(EDS:Energy Dispersive X-ray Spectroscopy)装置にて主相粒子の中央近傍を分析し、薄膜補正機能を用いることによって主相粒子の組成を定量化できる。
EDS装置は軽元素に対する感度が低いためにBの定量化は困難である。そこで、あらかじめX線回折法によって確認した、主たる生成相が正方晶R14B構造であることを根拠として、B以外の元素の組成比を以って主相粒子の組成を決定することができる。
上述の方法によって定量化される主相粒子の組成は、焼結体試料全体の組成を調整することによって制御が可能である。誘導結合高周波プラズマ分光分析(ICP分光分析:Inductively Coupled Plasma Spectrometry)によって求めた焼結体試料全体の組成と、EDS装置にて求めた主相粒子の組成を比較した結果、焼結体試料全体の組成において希土類量が多い傾向を示した。これは焼結体試料は焼結による緻密化および粒界形成のために化学量論比組成であるR14Bよりも多い希土類を含む必要があることに起因する。しかしながら、Rとして含まれる希土類元素の割合については、焼結体試料全体の組成と主相粒子の組成は略同一であった。すなわち、焼結体試料全体の組成の調整によって、主相粒子R14BにRとして含まれる希土類元素の割合を制御することが可能である。
正方晶R14B構造中の4fサイトを占有するYをY4fとし、4gサイトを占有するYをY4gとしたときの存在比率Y4f/(Y4f+Y4g)は0.8≦Y4f/(Y4f+Y4g)≦1.0である。本発明はNdFe14Bの異方性と垂直方向のイオン異方性によって、結晶全体の一軸異方性の損失を招いている4fサイトを占有するNdのみを、異方性を示さない球形電子雲を有するYに置換することによって、NdFe14Bよりも高い一軸異方性を示す永久磁石を得ることを特徴とする。NdFe14B結晶中に4fサイトと4gサイトは等量存在するため、すべての4fサイトがYにて置換されれば、Y4f/(Y4f+Y4g)=1.0であり、本発明における最も望ましい形態となる。しかしながら、現実にはすべての4fサイトがYにて置換されている必要はなく、0.8≦Y4f/(Y4f+Y4g)≦1.0の範囲にて十分に実用的な磁気特性を示す磁石を得ることができる。
上述の正方晶R14B構造中の4fサイトを占有するYであるY4fと4gサイトを占有するYであるY4gの存在比率Y4f/(Y4f+Y4g)は走査透過電子顕微鏡による高角度散乱暗視野(HAADF:High-Angle Annular Dark-Field)像より決定することが可能である。
焼結体を磁化容易軸である成形時の磁場印加方向と垂直に切断し、集束イオンビーム(FIB:Focused Ion Beam)装置にて厚さ100nmの薄片状に加工した後に、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)にてNdFe14B型の結晶構造が[110]方向から観察可能な位置に調整し、HAADF像を得る。図1に主相粒子の組成がNdFe14Bである焼結体より得た[110]方向からの(a)HAADF像および(b)結晶構造模型を例示する。
上述のHAADF像は輝度が原子番号の略2乗に比例するため、B(原子番号:5)、Fe(原子番号:26)、Y(原子番号:39)、Yを含まない希土類元素(原子番号:57以上)は容易に判別が可能である。特に、[110]方向からのNdFe14B型の結晶構造を観察する場合には、4fサイトと4gサイトを重畳することなく明瞭に分離することが可能である。組成が(a)NdFe14Bである焼結体、および、組成が(b)(Y0.5Nd0.5Fe14Bである焼結体のHAADF像より得た輝度のラインプロファイルを図2に例示する。なお、ラインプロファイルは図1(a)のHAADF像に示す矩形の領域に沿って取得した。
図2(a)に示すNdFe14B結晶の[110]方向からのHAADF像においては、4fサイト位置と4gサイト位置の輝度はいずれも高く、同程度の強度であることから、4fサイトと4gサイトの両方が原子番号の大きいNdに占有されていることを判別することが可能である。
図2(b)に示す(Y0.5Nd0.5)dFe14B結晶の[110]方向からのHAADF像においては、4fサイト位置の輝度が低く4gサイト位置の輝度が高い。すなわち、4fサイトを原子番号の小さいYが、4gサイトを原子番号の大きいNdが占有していることを判別することが可能である。
以下、実施例および比較例に基づき、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
主相粒子の組成が(Nd1-x(Y1-zCeFe14B(x=0.0~0.7、z=0.0~1.0)となるように、Ndメタル、Yメタル、Ceメタル、電解鉄、フェロボロンを所定量秤量し、ストリップキャスト法にて薄板状のR-T-B合金を作製した。この合金を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。得られた微粉末を金型(開口寸法:20mm×18mm)に充填し、加圧方向と直角方向に磁場(2T)を印加しながら2.0ton/cmの圧力にて1軸加圧成形した。得られた成形体を最適焼結温度まで昇温し、4時間保持した後に、400℃から800℃を中心とする±50℃の温度帯において、降温速度を10℃/秒~10-2℃/秒とし、それ以外の温度帯では降温速度を10-1℃/秒として室温近傍まで冷却し焼結体を得た。焼結体の磁気特性をBHトレーサーにて測定した結果、および焼結体の密度を測定した結果を表1に示す。
焼結体を磁化容易軸である成形時の磁場印加方向と垂直に切断し、X線回折法によって主たる生成相が正方晶R14B構造に帰属されることを確認した。次いで、FIB装置にて厚さ100nmの薄片状に加工した後に、STEMに備えられたEDS装置にて主相粒子の中央近傍分析し、薄膜補正機能を用いて主相粒子の組成を定量化した。次いで、試料を正方晶R14B構造が[110]方向から観察可能な位置に調整し、HAADF像を得た。HAADF像における10nm四方の領域について、輝度情報を基に4fサイトおよび4gサイトを占有するYの数を計数して得た、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)を表1に示す。
[実施例1~3、比較例1~3]
正方晶R14B構造のRをNdとし、Yのみにて置換した組成(x=0.0~0.7、z=0.0)では、Ndに対するYの置換量xの増加とともに密度が低下しており、密度低下・軽量化の効果が得られている。しかしながら、x≧0.6では残留磁束密度Bおよび保磁力HcJが著しく低下している。すなわち、NdをYのみにて置換した場合(z=0.0)では、0.0<x≦0.5の範囲にて実用的な残留磁束密度Bおよび保磁力HcJを有しながら、従来のNd-Fe-B系磁石よりも軽量であり、永久磁石同期回転機に用いることによって、高い応答性と制御性を示す、優れた永久磁石が得られることがわかった。また、前記の範囲において、4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)は0.89~0.96であり、Ndを置換したYの多くが4fサイトを選択的に占有していることがわかった。
[比較例8~12]
正方晶R14B構造のRをNdとし、Ceのみにて置換した組成(x=0.2~0.7、z=1.0)では、Ndに対するCeの置換量xの増加とともに残留磁束密度Bおよび保磁力HcJが単調に低下している。また、Ceの置換量xの増加に伴う密度低下もみられない。すなわち、NdをCeのみにて置換した場合(z=1.0)に得られる永久磁石は、実用的な残留磁束密度Bおよび保磁力HcJを有さず、従来のNd-Fe-B系磁石よりも軽量な永久磁石は得られないことがわかった。
[実施例4~6、比較例4~5]
正方晶R14B構造のRをNdとし、YおよびCeにて半量ずつ置換した組成(x=0.2~0.7、z=0.5)では、Ndに対するYおよびCeの置換量xの増加とともに密度が低下しており、NdをYおよびCeに置換したことによる密度低下・軽量化の効果が得られている。また、Ndに対するYおよびCeの置換量xの増加とともに残留磁束密度Bおよび保磁力HcJが漸減しているが、特にx≧0.6では保磁力HcJが急峻に低下している。すなわち、Ndに対してYおよびCeを半量ずつ置換した組成(z=0.5)においても0.0<x≦0.5の範囲にて、従来のNd-Fe-B系磁石と同等の磁気特性を有しながら、軽量であり、永久磁石同期回転機に用いることによって、高い応答性と制御性を示す、優れた永久磁石が得られることがわかった。また、前記の範囲において、4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)は0.87~0.95であり、Ndを置換したYの多くが4fサイトを選択的に占有していることがわかった。
[実施例3、実施例6~8、比較例6~7、比較例10]
正方晶R14B構造のRをNdとし、Ndの半量をYまたはCeもしくは両方にて置換した組成(x=0.5、z=0.0~1.0)では、Yに対するCeの相対量zの増加とともに焼結体の密度が漸増し、z≧0.6では従来のNd-Fe-B系磁石と同等となってしまう。また、残留磁束密度Bおよび保磁力HcJも、Yに対するCeの相対量が半量を超える(z≧0.6)と著しく低下している。すなわち、0.0≦z≦0.5の範囲において従来のNd-Fe-B系磁石と同等の磁気特性を有しながら、軽量であり、永久磁石同期回転機に用いることによって、高い応答性と制御性を示す、優れた永久磁石が得られることがわかった。また、前記の範囲において、4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)は0.87~0.89であり、Ndを置換したYの多くが4fサイトを選択的に占有していることがわかった。
[実施例3、実施例11~12、比較例13~17]
正方晶R14B構造のRをNdとし、Ndの半量をYのみにて置換した組成(x=0.5、z=0.0)において、750℃~850℃(800±50℃)の温度帯域の降温速度を1×10℃/秒~5×10-5℃/秒まで変化させた。降温速度が1×10-4℃/秒~1×10-2℃/秒の場合には、Ndを置換しないNd-Fe-B系磁石(比較例1)と同等の優れた磁気特性が得られた。しかしながら、降温速度が10-2℃/秒よりも大きい場合には、磁気特性が急峻に低下し、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)も低下した。この降温速度の増大に伴う磁気特性の急峻な低下は希土類元素が安定サイトへ移動するための時間が足りなかったことに起因すると本発明者らは考える。また、降温速度が1×10-4℃/秒よりも小さい場合にも、磁気特性が僅かに低下するものの、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)は凡そ維持される。この降温速度の減少に伴う磁気特性の低下はYの4fサイト占有率によるものではなく、小さすぎる降温速度によって、R14B型永久磁石の保磁力発現に必要な粒界構造が失われたことに起因すると本発明者らは考える。
[実施例3、比較例18~22]
正方晶R14B構造のRをNdとし、Ndの半量をYのみにて置換した組成(x=0.5、z=0.0)において、降温速度を1×10-2℃/秒とする温度帯域を450℃~1050℃(500±50℃~1000±50℃)まで変化させた。降温速度を1×10-2℃/秒とする温度帯域が750℃~850℃(800±50℃)の場合には、Ndを置換しないNd-Fe-B系磁石(比較例1)と同等の優れた磁気特性が得られた。しかしながら、降温速度を1×10-2℃/秒とする温度帯域が750℃~850℃(800±50℃)よりも低温である場合には磁気特性が低下し、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)も低下した。この降温速度を制御する温度帯域の低温化に伴う磁気特性の低下は希土類元素が安定サイトへ移動するためのエネルギーが足りなかったことに起因すると本発明者らは考える。また、降温速度を1×10-2℃/秒とする温度帯域が750℃~850℃(800±50℃)よりも高温である場合には磁気特性が低下し、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)も僅かに低下した。この降温速度を制御する温度帯域の高温化に伴う磁気特性の低下はエネルギーが過剰であるために、希土類元素が近接サイト外への移動してしまったことに起因すると本発明者らは考える。
[実施例6、比較例23~26]
正方晶R14B構造のRをNdとし、Ndの半量をYおよびCeにて半量ずつ置換した組成(x=0.5、z=0.5)において、降温速度を1×10-2℃/秒とする温度帯域を350℃~850℃(400±50℃~800±50℃)まで変化させた。降温速度を1×10-2℃/秒とする温度帯域が550℃~650℃(600±50℃)の場合には、Ndを置換しないNd-Fe-B系磁石(比較例1)と同等の優れた磁気特性が得られた。しかしながら、降温速度を1×10-2℃/秒とする温度帯域が550℃~650℃(600±50℃)よりも低温である場合には磁気特性が低下し、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)も低下した。また、降温速度を1×10-2℃/秒とする温度帯域が550℃~650℃(600±50℃)よりも高温である場合にも磁気特性が低下し、正方晶R14B構造中の4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)も低下した。Ndの半量をYのみにて置換した組成(実施例3、比較例18~22)において降温速度を制御する最適な温度帯域と、Ndの半量をYおよびCeにて置換した組成(実施例6、比較例23~26)において降温速度を制御する最適な温度帯域が異なるのは、希土類元素が安定サイトへ移動するためのエネルギーが異なるためであると本発明者らは考える。
[実施例3、実施例9~10]
正方晶R14B構造のRをNdとした場合でも、RをNdおよびDy、もしくは、NdおよびTbとした場合でも、Rの半量をYのみにて置換した組成(x=0.5、z=0.0)において、従来のNd-Fe-B系磁石と同等の磁気特性を有しながら、軽量であり、永久磁石同期回転機に用いることによって、高い応答性と制御性を示す、優れた永久磁石が得られることがわかった。また、前記の組成において、4fサイトを占有するY4fと4gサイトを占有するY4gの存在比率Y4f/(Y4f+Y4g)は0.88~0.89であり、Rを置換したYの多くが4fサイトを選択的に占有していることがわかった。


Figure JPOXMLDOC01-appb-T000001
以上のように、本発明に係るR-T-B系永久磁石は民生、産業、輸送機器に広く用いられる永久磁石同期回転機の界磁に有用である。

Claims (2)

  1. 組成が(R1-x(Y1-zCe14B(RはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素であり、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、0.0<x≦0.5、0.0≦z≦0.5)である主相粒子を含み、前記主相粒子における正方晶R14B構造中の4fサイトを占有するYをY4fとし、4gサイトを占有するYをY4gとしたときの存在比率Y4f/(Y4f+Y4g)が、0.8≦Y4f/(Y4f+Y4g)≦1.0であることを特徴とするR-T-B系永久磁石。
  2. 請求項1に記載のR-T-B系永久磁石を備える回転機。
PCT/JP2014/050738 2013-03-22 2014-01-17 R-t-b系永久磁石 WO2014148076A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014528364A JP5708889B2 (ja) 2013-03-22 2014-01-17 R−t−b系永久磁石
DE112014001585.7T DE112014001585T5 (de) 2013-03-22 2014-01-17 R-T-B-Basierter Dauermagnet
CN201480000883.4A CN104272403B (zh) 2013-03-22 2014-01-17 R-t-b系永久磁铁
US14/385,838 US9947445B2 (en) 2013-03-22 2014-01-17 R-T-B based permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059678 2013-03-22
JP2013059678 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148076A1 true WO2014148076A1 (ja) 2014-09-25

Family

ID=51579773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050738 WO2014148076A1 (ja) 2013-03-22 2014-01-17 R-t-b系永久磁石

Country Status (5)

Country Link
US (1) US9947445B2 (ja)
JP (1) JP5708889B2 (ja)
CN (1) CN104272403B (ja)
DE (1) DE112014001585T5 (ja)
WO (1) WO2014148076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181592A1 (ja) * 2017-03-30 2018-10-04 Tdk株式会社 永久磁石及び回転機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708889B2 (ja) 2013-03-22 2015-04-30 Tdk株式会社 R−t−b系永久磁石
WO2014148146A1 (ja) * 2013-03-22 2014-09-25 Tdk株式会社 R-t-b系永久磁石
AU2016390096B2 (en) * 2016-01-27 2019-08-08 Mitsubishi Electric Corporation Rotor, magnetizing method, electric motor, and scroll compressor
JP6848735B2 (ja) * 2016-07-15 2021-03-24 Tdk株式会社 R−t−b系希土類永久磁石
CN108154986B (zh) * 2016-12-06 2020-07-14 中国科学院宁波材料技术与工程研究所 一种含y高丰度稀土永磁体及其制备方法
DE102018107491A1 (de) * 2017-03-31 2018-10-04 Tdk Corporation R-t-b basierter permanentmagnet
DE102018107429A1 (de) * 2017-03-31 2018-10-04 Tdk Corporation R-t-b basierter permanentmagnet
CN113782290B (zh) * 2021-09-07 2023-06-02 钢铁研究总院 一种高Ce含量双主相高磁能积磁体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202506A (ja) * 1985-11-21 1987-09-07 Tdk Corp 永久磁石およびその製法
JPS62281403A (ja) * 1986-05-30 1987-12-07 Tdk Corp 永久磁石
JPH10163014A (ja) * 1996-11-29 1998-06-19 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2002190404A (ja) * 2000-10-04 2002-07-05 Sumitomo Special Metals Co Ltd 希土類焼結磁石およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
JPS6181606A (ja) 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd 希土類磁石の製造方法
US4765848A (en) 1984-12-31 1988-08-23 Kaneo Mohri Permanent magnent and method for producing same
JPS62122106A (ja) 1985-11-21 1987-06-03 Tdk Corp 焼結永久磁石
EP0242187B1 (en) 1986-04-15 1992-06-03 TDK Corporation Permanent magnet and method of producing same
CN1133182C (zh) * 1999-02-12 2003-12-31 通用电气公司 富含镨的铁-硼-稀土组分和其制的永磁铁及其制造方法
US6120620A (en) * 1999-02-12 2000-09-19 General Electric Company Praseodymium-rich iron-boron-rare earth composition, permanent magnet produced therefrom, and method of making
KR100771676B1 (ko) 2000-10-04 2007-10-31 가부시키가이샤 네오맥스 희토류 소결자석 및 그 제조방법
WO2004046409A2 (en) * 2002-11-18 2004-06-03 Iowa State University Research Foundation, Inc. Permanent magnet alloy with improved high temperature performance
JP2011187624A (ja) 2010-03-08 2011-09-22 Hitachi Metals Ltd 希土類系永久磁石およびその製造方法
CN102360655A (zh) 2011-06-16 2012-02-22 李和良 含钇的钕铁硼永磁材料
JP5708889B2 (ja) 2013-03-22 2015-04-30 Tdk株式会社 R−t−b系永久磁石
CN104272404B (zh) 2013-03-22 2019-03-26 Tdk株式会社 R-t-b系永久磁铁
JP5686212B1 (ja) 2014-03-28 2015-03-18 Tdk株式会社 R−t−b系永久磁石
JP5686214B1 (ja) 2014-03-28 2015-03-18 Tdk株式会社 R−t−b系永久磁石
JP5686213B1 (ja) 2014-03-28 2015-03-18 Tdk株式会社 R−t−b系永久磁石

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202506A (ja) * 1985-11-21 1987-09-07 Tdk Corp 永久磁石およびその製法
JPS62281403A (ja) * 1986-05-30 1987-12-07 Tdk Corp 永久磁石
JPH10163014A (ja) * 1996-11-29 1998-06-19 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2002190404A (ja) * 2000-10-04 2002-07-05 Sumitomo Special Metals Co Ltd 希土類焼結磁石およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181592A1 (ja) * 2017-03-30 2018-10-04 Tdk株式会社 永久磁石及び回転機

Also Published As

Publication number Publication date
DE112014001585T5 (de) 2016-01-21
CN104272403A (zh) 2015-01-07
US20150248953A1 (en) 2015-09-03
US9947445B2 (en) 2018-04-17
JP5708889B2 (ja) 2015-04-30
JPWO2014148076A1 (ja) 2017-02-16
CN104272403B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5708889B2 (ja) R−t−b系永久磁石
JP5708887B2 (ja) R−t−b系永久磁石
CN107622853B (zh) R-t-b系稀土类永久磁铁
WO2015159612A1 (ja) 希土類永久磁石
JP2016154219A (ja) 希土類系永久磁石
JP5464289B1 (ja) R−t−b系焼結磁石
JP2016152246A (ja) 希土類系永久磁石
JP5708888B2 (ja) R−t−b系永久磁石
JP2015192043A (ja) R−t−b系永久磁石
JP5729511B1 (ja) R−t−b系永久磁石、及び、回転機
JP5686213B1 (ja) R−t−b系永久磁石
JP6380738B2 (ja) R−t−b系永久磁石、r−t−b系永久磁石用原料合金
US11120931B2 (en) R-T-B based permanent magnet
CN110024057B (zh) 稀土类永久磁铁
JP6468435B2 (ja) R−t−b系焼結磁石
WO2019220950A1 (ja) R-t-b系希土類焼結磁石用鋳造合金薄片
US10784029B2 (en) R-T-B based permanent magnet
JP5686212B1 (ja) R−t−b系永久磁石
JP2018174317A (ja) R−t−b系永久磁石
TW202132584A (zh) R-Fe-B系燒結磁石
JP2018174316A (ja) R−t−b系永久磁石

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528364

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14385838

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120140015857

Country of ref document: DE

Ref document number: 112014001585

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769694

Country of ref document: EP

Kind code of ref document: A1