WO2014139200A1 - 一种制备镍钴锰氢氧化物的方法 - Google Patents

一种制备镍钴锰氢氧化物的方法 Download PDF

Info

Publication number
WO2014139200A1
WO2014139200A1 PCT/CN2013/074976 CN2013074976W WO2014139200A1 WO 2014139200 A1 WO2014139200 A1 WO 2014139200A1 CN 2013074976 W CN2013074976 W CN 2013074976W WO 2014139200 A1 WO2014139200 A1 WO 2014139200A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
manganese
source
manganese hydroxide
Prior art date
Application number
PCT/CN2013/074976
Other languages
English (en)
French (fr)
Inventor
欧彦楠
李长东
余海军
Original Assignee
佛山市邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 佛山市邦普循环科技有限公司
Priority to US14/775,397 priority Critical patent/US9815709B2/en
Priority to KR1020157028231A priority patent/KR101738498B1/ko
Priority to JP2015549948A priority patent/JP5981049B2/ja
Publication of WO2014139200A1 publication Critical patent/WO2014139200A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process for preparing nickel cobalt manganese hydroxide.
  • Nickel-cobalt-manganese hydroxide a nickel-cobalt-manganese ternary precursor, can synthesize lithium nickel cobalt manganese oxide by adding a lithium source. Therefore, nickel-cobalt-manganese hydroxide is an essential material for producing nickel-cobalt-manganese hydride.
  • the size, morphology and structure of nickel-cobalt-manganese hydroxide have a direct influence on the size, morphology and structure of the subsequently processed lithium nickel cobalt manganate. Therefore, the performance of the nickel-cobalt-manganese ternary precursor determines the performance of lithium nickel cobalt manganese oxide.
  • a method for preparing nickel-cobalt-manganese hydroxide is generally carried out by direct precipitation method, and a nickel-cobalt-manganese hydroxide, that is, a nickel-cobalt-manganese ternary precursor, is synthesized by adding a strong alkaline precipitant to a nickel, cobalt and manganese solution.
  • This method is relatively common, but due to the violent reaction, the appearance structure of the nickel-cobalt-manganese ternary precursor is uncontrollable, resulting in low consistency of product performance, affecting the performance of subsequent processing of battery materials.
  • the object of the present invention is to provide a method for preparing nickel-cobalt-manganese hydroxide, A precursor of high quality nickel-cobalt-manganese ternary battery material is obtained.
  • a method of preparing nickel cobalt manganese hydroxide comprising the steps of:
  • step (3) filtering the reaction solution obtained in the step (2), taking the filter residue, respectively washing the filter residue with pure water and ethanol, and then drying, pulverizing and sieving the filter residue to obtain nickel cobalt manganese hydroxide;
  • the nickel source is one of nickel acetate, nickel chloride or nickel sulfate;
  • the cobalt source is one of cobalt acetate, cobalt chloride or cobalt sulfate;
  • the manganese source is one of manganese acetate, manganese chloride or manganese sulfate.
  • the invention adopts microcrystalline cellulose as a template, and nickel, cobalt, manganese ions interact with hydroxyl groups on the surface of microcrystalline cellulose, and can uniformly grow nucleation along the distribution of microcrystalline cellulose hydroxyl groups, thus preparing nickel cobalt manganese
  • the hydroxide has a uniform particle size and a uniform morphology.
  • the present invention uses hexamethylenetetramine to promote nucleation of nickel cobalt manganese hydroxide. Hexamethylenetetramine reacts with water to form OH-, which controls the nucleation of nickel, cobalt and manganese ions on the surface of microcrystalline cellulose. Compared with the traditional direct addition of strong alkaline precipitant, the strong alkaline precipitant makes nickel, cobalt and manganese ions grow rapidly in a short time, and it is difficult to control the nucleation of nickel, cobalt and manganese ions on the surface of microcrystalline cellulose. The product size is large and the topography is inconsistent.
  • the invention adopts the microwave heating method to accelerate the nucleation growth of the nickel-cobalt-manganese hydroxide on the surface of the microcrystalline cellulose, improve the reaction speed, and solve the natural growth time of the nickel-cobalt-manganese hydroxide on the surface of the microcrystalline cellulose. Long question.
  • Example 1 is a scanning electron micrograph of nickel cobalt manganese hydroxide prepared in Example 1.
  • a method of preparing nickel cobalt manganese hydroxide comprising the steps of:
  • the obtained nickel-cobalt-manganese hydroxide has a uniform particle size of about 10 ⁇ m, and the morphology is spherical and the structure is uniform.
  • a method of preparing nickel cobalt manganese hydroxide comprising the steps of:
  • the nickel-cobalt-manganese hydroxide prepared in this example has a particle size and morphology similar to that of the first embodiment, and has a uniform particle size of about 10 ⁇ m, and the morphology is spherical and the structure is uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种制备镍钴锰氢氧化物的方法,该方法包括以下步骤:(1)将微晶纤维素溶于水中得到悬浮液;往悬浮液中加入镍源、钴源和锰源,获得含镍、钴、锰的溶液;(2)往含镍、钴、锰的溶液中加入六亚甲基四胺,将反应溶液加热至80-90℃反应5-10min,然后用微波水热合成仪以频率2450MHz加热10-60min;(3)将步骤(2)得到的反应溶液过滤,取滤渣,分别用纯水和乙醇洗涤滤渣,然后将滤渣干燥、粉碎、筛分后得到镍钴锰氢氧化物。上述方法制得的镍钴锰氢氧化物粒径均匀、形貌结构一致,克服了现有的制备镍钴锰氢氧化物的方法由于反应剧烈所造成的产品外观结构不可控、性能不一致的问题。

Description

一种制备镍钴锰氢氧化物的方法
技术领域
本发明涉及一种制备镍钴锰氢氧化物的方法。
背景技术
随着数码产品行业的不断发展,人们对电池的需求日益增加。镍钴锰酸锂是一种重要的锂电池正极材料,生产和使用日益广泛,市场需求量较大。镍钴锰氢氧化物,即镍钴锰三元前驱体,能通过加入锂源合成镍钴锰酸锂,因此,镍钴锰氢氧化物是生产镍钴锰酸锂的必需材料。镍钴锰氢氧化物的尺寸、形貌、结构,对后续加工的镍钴锰酸锂的尺寸、形貌、结构有直接影响。因此,镍钴锰三元前驱体的性能好坏决定了镍钴锰酸锂的性能好坏。
目前制备镍钴锰氢氧化物的方法常用直接沉淀法,通过往镍、钴、锰溶液中加入强碱性沉淀剂,合成镍钴锰氢氧化物,即镍钴锰三元前驱体。这种方法比较普遍,但由于反应剧烈,镍钴锰三元前驱体的外观结构不可控,导致产品性能一致性不高,影响后续加工电池材料的性能。
发明内容
为了克服现有的制备镍钴锰氢氧化物的方法由于反应剧烈所造成的产品外观结构不可控、性能不一致的问题,本发明的目的在于提供一种制备镍钴锰氢氧化物的方法,以获得优质的镍钴锰酸锂三元电池材料的前驱体。
本发明的目的通过下述技术方案实现:
一种制备镍钴锰氢氧化物的方法,包括以下步骤:
(1)将微晶纤维素(作为模板赋形剂)溶于水中,搅匀,得到悬浮液;往悬浮液中加入镍源、钴源和锰源,其中镍源、钴源、锰源的质量比为(1-3):1:(1-1.5),镍源、钴源、锰源的总质量与微晶纤维素质量之比为(1-3):1,搅匀,获得含镍、钴、锰的溶液;
(2)往含镍、钴、锰的溶液中加入六亚甲基四胺(是弱碱性成核剂),使镍源、钴源、锰源的总质量与六亚甲基四胺质量之比为1:(1-5),搅匀,获得反应溶液;将反应溶液加热至80-90℃反应5-10min,然后用微波水热合成仪以频率2450MHz加热10-60min;
(3)将步骤(2)得到的反应溶液过滤,取滤渣,分别用纯水和乙醇洗涤滤渣,然后将滤渣干燥、粉碎、筛分后得到镍钴锰氢氧化物;
所述的镍源为醋酸镍、氯化镍或硫酸镍中的一种;
所述的钴源为醋酸钴、氯化钴或硫酸钴中的一种;
所述的锰源为醋酸锰、氯化锰或硫酸锰中的一种。
本发明相对于现有技术具有如下的优点及效果:
1、本发明采用微晶纤维素为模板,镍、钴、锰离子与微晶纤维素表面的羟基作用,能顺着微晶纤维素羟基的分布均匀成核生长,因此制得的镍钴锰氢氧化物粒径均匀,形貌结构一致。
2、本发明采用六亚甲基四胺促进镍钴锰氢氧化物成核。六亚甲基四胺与水反应,逐渐生成OH-,控制镍、钴、锰离子能稳定在微晶纤维素表面成核。与传统的直接添加强碱性沉淀剂相比,强碱性沉淀剂使镍、钴、锰离子短时间快速成核生长,难于控制镍、钴、锰离子稳定在微晶纤维素表面成核,导致产品尺寸较大,形貌结构不一致。
3、本发明采用微波加热法,加快镍钴锰氢氧化物在微晶纤维素表面的成核生长,提高反应速度,解决了镍钴锰氢氧化物在微晶纤维素表面自然生长耗时较长的问题。  
附图说明
图1是实施例1制备的镍钴锰氢氧化物的扫描电镜图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种制备镍钴锰氢氧化物的方法,包括以下步骤:
(1)将2g微晶纤维素溶于80mL水中,搅匀,得到悬浮液;往悬浮液中加入1g醋酸镍、1g醋酸钴、1g醋酸锰,搅匀,获得含镍、钴、锰的溶液;
(2)往含镍、钴、锰的溶液中加入3g六亚甲基四胺,搅匀,获得反应溶液;将反应溶液加热至80℃反应5min,然后用微波水热合成仪(北京祥鹄科技发展有限公司,型号:XH-800S-10;下同)以频率2450MHz加热30min;
(3)将步骤(2)得到的反应溶液过滤,取滤渣,分别用纯水和乙醇洗涤滤渣,然后将滤渣60℃下干燥、粉碎、筛分后得到镍钴锰氢氧化物。
由图1可见,所得到的镍钴锰氢氧化物粒径均匀,约为10μm,形貌均呈球形,结构一致。
实施例2
一种制备镍钴锰氢氧化物的方法,包括以下步骤:
(1)将4g微晶纤维素溶于100mL水中,搅匀,得到悬浮液;往悬浮液中加入2g氯化镍、2g氯化钴、2g氯化锰,搅匀,获得含镍、钴、锰的溶液;
(2)往含镍、钴、锰的溶液中加入6g六亚甲基四胺,搅匀,获得反应溶液;将反应溶液加热至90℃反应10min,然后用微波水热合成仪以频率2450MHz加热60min;
(3)将步骤(2)得到的反应溶液过滤,取滤渣,分别用纯水和乙醇洗涤滤渣,然后将滤渣60℃下干燥、粉碎、筛分后得到镍钴锰氢氧化物。
本实施例制得的镍钴锰氢氧化物,其粒径和形貌与实施例1的相似,粒径均匀,约为10μm,形貌均呈球形,结构一致。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

  1. 一种制备镍钴锰氢氧化物的方法,其特征在于包括以下步骤:
    (1)将微晶纤维素溶于水中,搅匀,得到悬浮液;往悬浮液中加入镍源、钴源和锰源,其中镍源、钴源、锰源的质量比为(1-3):1:(1-1.5),镍源、钴源、锰源的总质量与微晶纤维素质量之比为(1-3):1,搅匀,获得含镍、钴、锰的溶液;
    (2)往含镍、钴、锰的溶液中加入六亚甲基四胺,使镍源、钴源、锰源的总质量与六亚甲基四胺质量之比为1:(1-5),搅匀,获得反应溶液;将反应溶液加热至80-90℃反应5-10min,然后用微波水热合成仪以频率2450MHz加热10-60min;
    (3)将步骤(2)得到的反应溶液过滤,取滤渣,分别用纯水和乙醇洗涤滤渣,然后将滤渣干燥、粉碎、筛分后得到镍钴锰氢氧化物。
  2. 根据权利要求1所述的制备镍钴锰氢氧化物的方法,其特征在于:所述的镍源为醋酸镍、氯化镍或硫酸镍中的一种。
  3. 根据权利要求1所述的制备镍钴锰氢氧化物的方法,其特征在于:所述的钴源为醋酸钴、氯化钴或硫酸钴中的一种。
  4. 根据权利要求1所述的制备镍钴锰氢氧化物的方法,其特征在于:所述的锰源为醋酸锰、氯化锰或硫酸锰中的一种。
PCT/CN2013/074976 2013-03-11 2013-04-28 一种制备镍钴锰氢氧化物的方法 WO2014139200A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/775,397 US9815709B2 (en) 2013-03-11 2013-04-28 Method for preparing nickel-cobalt-manganese hydroxide
KR1020157028231A KR101738498B1 (ko) 2013-03-11 2013-04-28 니켈-코발트-망간 수산화물 제조 방법
JP2015549948A JP5981049B2 (ja) 2013-03-11 2013-04-28 ニッケル−コバルト−マンガンの水酸化物の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310076317.9 2013-03-11
CN201310076317.9A CN103137962B (zh) 2013-03-11 2013-03-11 一种制备镍钴锰氢氧化物的方法

Publications (1)

Publication Number Publication Date
WO2014139200A1 true WO2014139200A1 (zh) 2014-09-18

Family

ID=48497484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074976 WO2014139200A1 (zh) 2013-03-11 2013-04-28 一种制备镍钴锰氢氧化物的方法

Country Status (5)

Country Link
US (1) US9815709B2 (zh)
JP (1) JP5981049B2 (zh)
KR (1) KR101738498B1 (zh)
CN (1) CN103137962B (zh)
WO (1) WO2014139200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820554A (zh) * 2020-06-22 2021-05-18 深圳大学 镍钴氢氧化物复合材料及其制备方法和超级电容器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785264B1 (ko) * 2013-08-08 2017-10-16 삼성에스디아이 주식회사 복합체 전구체, 이로부터 형성된 복합체, 그 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지
CN104167542A (zh) * 2014-08-06 2014-11-26 西南民族大学 一种锂电池正极材料镍钴锰酸锂粉体及其制备方法
CN104437362B (zh) * 2014-11-03 2017-01-18 东北林业大学 一种磁性碳微球的水热制备方法
CN107834041A (zh) * 2017-10-11 2018-03-23 苏州宇量电池有限公司 核壳结构高性能富锂锰基正极材料的制备方法
CN108172822B (zh) * 2017-12-29 2020-10-09 昶联金属材料应用制品(广州)有限公司 镍钴锰酸锂正极材料及其制备方法
CN109037673A (zh) * 2018-10-18 2018-12-18 珠海嘉志科技咨询有限公司 一种环保、高效制备镍钴锰三元正极材料前驱体的方法
CN110289175B (zh) * 2019-07-12 2021-09-28 大连海事大学 一种高容量NiMn2O4微米球/泡沫镍电极材料及其制备方法和应用
CN110342588A (zh) * 2019-07-23 2019-10-18 上海应用技术大学 一种锂离子电池三元正极材料及其制备方法
CN110416540A (zh) * 2019-07-26 2019-11-05 陕西科技大学 一种高镍三元正极材料及其制备方法
CN112777649A (zh) * 2021-01-15 2021-05-11 昆明理工大学 一种镍钴锰三元前驱体及其制备方法与应用
CN113471424B (zh) * 2021-07-12 2022-05-24 青海师范大学 一种锂离子电池三元正极材料及其制备方法
CN115490277B (zh) * 2022-09-30 2024-02-13 山东精工电子科技股份有限公司 一种磁场改性锂离子电池三元材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807532A (en) * 1995-01-26 1998-09-15 Japan Metals And Chemicals Co., Ltd. Method of producing spinel type limn204
CN101202343A (zh) * 2006-12-15 2008-06-18 中国电子科技集团公司第十八研究所 锂离子电池正极材料氧化镍钴锰锂及其制备方法
EP2312677A2 (en) * 2009-10-16 2011-04-20 Sunyen Co., Ltd. Composite Positive Active Material of Lithium Battery and Method for Manufacturing the Same
CN102751485A (zh) * 2012-07-17 2012-10-24 中国电子科技集团公司第十八研究所 锂离子电池用复合正极材料的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132708A (ja) * 1985-12-03 1987-06-16 Nok Corp セラミツクス超微粒子の製造法
JP2977909B2 (ja) * 1995-01-26 1999-11-15 日本重化学工業株式会社 スピネル型LiMn2O4製造方法
DE19939025A1 (de) * 1998-12-24 2000-06-29 Starck H C Gmbh Co Kg Nickel-Mischydroxid, Verfahren zu dessen Herstellung und dessen Verwendung als Kathodenmaterial in alkalischen Batterien
JP3066021B2 (ja) * 1999-07-15 2000-07-17 東芝電池株式会社 アルカリ二次電池の正極用活物質の製造方法、その活物質を含む正極を用いたアルカリ二次電池の製造方法
JP2003059490A (ja) * 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
JP2003119028A (ja) * 2001-10-16 2003-04-23 National Institute Of Advanced Industrial & Technology リチウム・マンガン複合酸化物の製造方法
CN1724390A (zh) * 2005-06-30 2006-01-25 上海交通大学 微波水热法制备α相氢氧化镍的方法
FR2932396A1 (fr) * 2008-06-11 2009-12-18 Centre Nat Rech Scient Procede de preparation d'oxydes inorganiques par voie solvothermale
EP2297383A1 (en) 2008-06-18 2011-03-23 Board of Trustees of the University of Arkansas Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
CN101777643A (zh) * 2010-01-14 2010-07-14 镇江科捷锂电池有限公司 Al2O3包覆锰基层状晶体锂电池正极材料的制备方法
WO2012155092A2 (en) * 2011-05-12 2012-11-15 Applied Materials, Inc. Precursor formulation for battery active materials synthesis
CN102267729B (zh) * 2011-06-30 2013-06-12 合肥工业大学 一种电池正极材料用球形氢氧化镍的制备方法
JP2013017953A (ja) * 2011-07-12 2013-01-31 Nagoya Institute Of Technology 形態制御した材料およびその製造方法
CN102557129B (zh) * 2012-02-22 2013-11-13 福建农林大学 酸法纳米纤维素模板合成的介孔TiO2及其应用
CN102916177B (zh) * 2012-11-06 2014-12-24 中国科学院宁波材料技术与工程研究所 镍钴锰氢氧化物前驱体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807532A (en) * 1995-01-26 1998-09-15 Japan Metals And Chemicals Co., Ltd. Method of producing spinel type limn204
CN101202343A (zh) * 2006-12-15 2008-06-18 中国电子科技集团公司第十八研究所 锂离子电池正极材料氧化镍钴锰锂及其制备方法
EP2312677A2 (en) * 2009-10-16 2011-04-20 Sunyen Co., Ltd. Composite Positive Active Material of Lithium Battery and Method for Manufacturing the Same
CN102751485A (zh) * 2012-07-17 2012-10-24 中国电子科技集团公司第十八研究所 锂离子电池用复合正极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820554A (zh) * 2020-06-22 2021-05-18 深圳大学 镍钴氢氧化物复合材料及其制备方法和超级电容器
CN112820554B (zh) * 2020-06-22 2022-07-26 深圳大学 镍钴氢氧化物复合材料及其制备方法和超级电容器

Also Published As

Publication number Publication date
US9815709B2 (en) 2017-11-14
JP2016508941A (ja) 2016-03-24
US20160016815A1 (en) 2016-01-21
CN103137962A (zh) 2013-06-05
KR20150127217A (ko) 2015-11-16
KR101738498B1 (ko) 2017-05-29
CN103137962B (zh) 2014-11-26
JP5981049B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2014139200A1 (zh) 一种制备镍钴锰氢氧化物的方法
WO2013170720A1 (zh) 一种石墨烯基LiFePO4/C复合材料的制备方法
CN105731527B (zh) 纳米级氧化铟锡粉体的共沉淀制备方法
WO2023024584A1 (zh) 掺镍碳酸钴及其制备方法和应用
CN109546144B (zh) 三元前驱体的制备方法及其应用
CN101319371B (zh) 一种纺锤形纳米ZnO单晶的制备方法
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
CN110092421B (zh) 一种粒径可控的球形碱式碳酸钴的生产方法
WO2022151977A1 (zh) 纳米钴酸锂正极材料的制备方法及其应用
CN113292105A (zh) 一种碳氮包覆的Fe0.4Co0.6S2@NC中空纳米盒子的制备方法及其应用
WO2024178933A1 (zh) 高振实密度磷酸铁及其制备方法、磷酸铁锂
GB2618692A (en) Synthesis method for cobalt hydroxide and cobalt hydroxide
CN113353962A (zh) 一种常温高浓度制备活性纳米碳酸钙的方法
CN104183827A (zh) 一种磷酸铁锂纳米棒及其制备方法
CN107935838B (zh) 无水柠檬酸一钠的制备方法及制备系统
CN107658443B (zh) 碳包覆单质锡材料的制备方法及其在锂离子电池上的应用
CN111690148B (zh) 一种二维金属-有机骨架材料的绿色制备方法
WO2024060504A1 (zh) 一种铝镍共掺碳酸钴前驱体及其制备方法与应用
CN111392779A (zh) 一种锰锌铁氧体-生物质碳多孔复合吸波材料及其制法
CN107331835B (zh) 一步溶剂热法合成三维石墨烯包裹碳酸钴量子点复合物电极材料及方法
CN109835956B (zh) 一种锂离子电池正极材料的制备方法及其应用
CN113213558A (zh) 一种大颗粒球形碳酸钴前驱体及其制备方法、以及四氧化三钴的制备方法
CN115140744B (zh) 一种由纳米纤维素调控的多级孔a型分子筛制备方法
CN112391646A (zh) 一种溶剂热法制备的β-Ni(OH)2电极及方法和应用
CN111362297B (zh) 一种CuO纳米管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14775397

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157028231

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13878200

Country of ref document: EP

Kind code of ref document: A1