WO2013170720A1 - 一种石墨烯基LiFePO4/C复合材料的制备方法 - Google Patents

一种石墨烯基LiFePO4/C复合材料的制备方法 Download PDF

Info

Publication number
WO2013170720A1
WO2013170720A1 PCT/CN2013/075363 CN2013075363W WO2013170720A1 WO 2013170720 A1 WO2013170720 A1 WO 2013170720A1 CN 2013075363 W CN2013075363 W CN 2013075363W WO 2013170720 A1 WO2013170720 A1 WO 2013170720A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
iron
preparing
phosphate
graphene oxide
Prior art date
Application number
PCT/CN2013/075363
Other languages
English (en)
French (fr)
Inventor
胡国荣
曹雁冰
武开鹏
彭忠东
杜柯
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to KR1020147035063A priority Critical patent/KR101681461B1/ko
Priority to JP2015511914A priority patent/JP6172818B2/ja
Priority to DE112013002485.3T priority patent/DE112013002485B4/de
Priority to US14/401,489 priority patent/US9672951B2/en
Publication of WO2013170720A1 publication Critical patent/WO2013170720A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of preparation of a positive electrode material for a lithium ion battery, and particularly relates to a method for preparing a graphene-based LiFePO 4 /C composite material.
  • Lithium iron phosphate has a high voltage platform (3.4 ⁇ 3.5V), high theoretical capacity (170mAh/g), good cycle performance (LiFePO 4 synthesized under optimized conditions can be recycled more than 2000 times), and good stability
  • high voltage platform 3.4 ⁇ 3.5V
  • high theoretical capacity 170mAh/g
  • good cycle performance LiFePO 4 synthesized under optimized conditions can be recycled more than 2000 times
  • good stability The characteristics of high temperature performance, good safety performance, simple synthesis process, environmental friendliness, non-toxicity and rich raw materials have attracted much attention.
  • a Chinese patent discloses a method for preparing a lithium iron phosphate cathode material lithium iron phosphate/carbon composite, which mixes iron oxyhydroxide, lithium salt and phosphorus salt according to a stoichiometric ratio and adds an appropriate amount of carbon. The source and the liquid ball milling medium, the ball mill, and the dried mixture are reacted at a certain temperature to finally obtain a lithium iron phosphate/carbon composite.
  • Graphene is a new material in the carbon family that has been very popular in recent years. Its thickness is only 0.335 nm, and it has unique electronic structure and electrical properties. In the energy band structure of graphene, the valence band and the conduction band intersect at the six vertices of the Fermi level. In this sense, graphene is a substance having no energy gap and exhibits metallicity. In single-layer graphene, each carbon atom contributes an unbonded electron that can move freely in the crystal, giving the graphene very good conductivity. The typical conduction rate of electrons in graphene reaches 1/300 of the speed of light, far exceeding the conduction speed of electrons in general semiconductors.
  • the Chinese patent (CN101752561A) discloses a graphene-modified lithium iron phosphate cathode active material, a preparation method thereof and a lithium ion secondary battery based on the cathode active material, which is a graphene or graphene oxide and iron phosphate Lithium is dispersed in an aqueous solution, uniformly mixed by stirring and ultrasonication, and then dried to obtain a graphene or graphene oxide composite lithium iron phosphate material, and then subjected to high temperature annealing to finally obtain a simple graphene-modified lithium iron phosphate positive electrode. Active material.
  • the invention provides a method for graphene-based LiFePO 4 /C composite material, which solves the problems of the prior art preparation technology of lithium iron phosphate and the poor conductivity and poor rate performance of the lithium iron phosphate cathode material.
  • Graphene oxide and iron salt are dissolved in deionized water at a mass ratio of graphene oxide to iron of 0.1 to 0.3:1, and dispersed by ultrasonic wave to obtain an iron salt solution in which graphene oxide is dispersed;
  • the iron oxide solution in which the graphene oxide is dispersed prepared in the step 1) is mixed with a phosphate solution to obtain a reaction mixture, and the molar ratio of Fe:P in the reaction mixture is 1:1 to 1.2, and the pH of the reaction mixture is adjusted. Up to 2 ⁇ 4, the temperature is controlled to 60 ° C ⁇ 80 ° C to obtain an emulsion, the emulsion is filtered, washed, and dried to obtain a ferric phosphate / graphene oxide precursor;
  • the iron ion concentration of the iron oxide solution in which the graphene oxide is dispersed in the step 1) is 0.5 to 2 mol/L.
  • the ultrasonic wave in the step 1) is dispersed for 2 to 5 hours.
  • the reaction time in the step 2) is 3 to 6 hours; the sintering time in the step 2) is 5 to 10 hours.
  • the principle of the present invention is that the positively charged Fe 3+ is adsorbed on the graphene oxide sheet layer by electrostatic force by ultrasonically dispersing the graphene oxide and the ferric iron solution.
  • the formed iron phosphate crystals are nucleated and grown in situ on the graphene oxide sheet by the addition of phosphate and Fe 3+ counter-precipitation, thereby obtaining an iron phosphate/graphene oxide precursor.
  • graphene oxide provides a template.
  • the surface carbon coating is obtained by high-temperature heat treatment, and the graphene-modified lithium iron phosphate cathode material and graphene greatly reduce the contact resistance between the lithium iron phosphate particles, thereby enhancing the conductivity of the material.
  • the graphene oxide solution is mixed with the ferric ion solution at the molecular level, and then the lithium iron phosphate precursor iron phosphate is grown in situ on the surface of the graphene oxide, and then Lithium is lithium iron phosphate, so it is advantageous to obtain a uniformly dispersed graphene-lithium iron phosphate composite structure; since iron phosphate is supported on the surface of the graphite oxide, iron phosphate and graphene oxide are integrated to prevent agglomeration between the graphite oxides.
  • the composite precursor of iron phosphate and graphene oxide facilitates subsequent filtration and washing operations, which is highly beneficial for industrial production.
  • the graphene oxide and the iron salt are dissolved in deionized water at a mass ratio of graphene oxide to iron of 0.1 to 0.3:1 to prepare a mixed solution having a ferric ion concentration of 0.5 to 2 mol/L, and then placed in an ultrasonic dispersion 2 ⁇ 5 hours, obtaining an iron salt solution in which graphene oxide is dispersed;
  • a phosphate solution having a concentration of iron ions or the like in the iron salt solution in which the graphene oxide is dispersed prepared in the step 1) is prepared.
  • Preferred source materials for the present invention include:
  • the iron salt solution in the step 1) includes one of ferric sulfate, ferric chloride and ferric nitrate; and after the ferrous salt is dissolved, it is obtained by oxidation of H 2 O 2 , the ferrous salt. Including one of ferrous sulfate, ferrous chloride, and ferrous nitrate;
  • the phosphate in the step 2) is phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, or sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate;
  • the alkali solution in the step 2) is sodium hydroxide or ammonia water, and the concentration is 0.5-5 mol/L;
  • the lithium salt in the step 3) is one of lithium carbonate, lithium hydroxide and lithium acetate;
  • the carbon source in the step 3) is at least one of glucose, sucrose, fructose, lactose, citric acid, starch, polyvinyl alcohol, polypropylene, and phenolic resin, and the added amount is theoretical lithium iron phosphate mass fraction. 5 ⁇ 20%;
  • the invention has the beneficial effects that the invention fully utilizes the excellent electrical conductivity of graphene in the synthesis of lithium iron phosphate cathode material, to solve the deficiency of the existing lithium iron phosphate preparation technology and the poor conductivity of the lithium iron phosphate cathode material, and the cycle Poor performance.
  • the process of the invention is simple and easy to control, and the obtained graphene-modified lithium iron phosphate/carbon composite material has high specific capacity, good cycle performance and excellent rate performance, and is suitable for the application field of the power battery.
  • Example 1 is an SEM image of the graphene-based LiFePO 4 /C composite obtained in Example 1;
  • Example 2 is an XRD chart of the graphene-based LiFePO 4 /C composite obtained in Example 1.
  • Example 3 is a charge and discharge curve of a lithium ion battery using the graphene-based LiFePO 4 /C composite material obtained in Example 2 as a positive electrode material at different magnifications.
  • Example 4 is a cycle performance curve of a lithium ion battery using the graphene-based LiFePO 4 /C composite material obtained in Example 3 as a positive electrode material at different ratios.
  • the graphene oxide and the ferric sulfate were dissolved in deionized water at a mass ratio of graphene oxide to iron of 0.1:1 to prepare a mixed solution having a ferric ion concentration of 1 mol/L, and then dispersed in an ultrasonic wave for 3 hours to obtain dispersion.
  • a phosphoric acid solution having a concentration of 1 mol/L was prepared.
  • the above-obtained iron oxide solution in which graphene oxide is dispersed and phosphoric acid solution are added in a ratio of the amount of the substance Fe:P 1:1.1 to the reactor with stirring while using ammonia water having a concentration of 1 mol/L.
  • the pH of the reaction liquid was adjusted to 2.1, and the temperature was controlled to 60 ° C for 5 hours to obtain an emulsion.
  • the emulsion obtained above was filtered, washed, and the filter cake was dried in a blast oven at 80 ° C for 24 hours. Obtaining an iron phosphate/graphene oxide precursor;
  • the SEM and XRD patterns of the material obtained in the first embodiment are shown in Fig. 1 and Fig. 2.
  • the product particles are fine, uniformly dispersed, have a regular morphology, and the interface between the particles is obvious, indicating that the grain morphology is intact.
  • the characteristic peaks in the XRD pattern are more obvious, no impurity peaks are found, and the diffraction peaks are sharp, and the synthesized product crystallizes well.
  • Graphene oxide and ferric nitrate were dissolved in deionized water at a mass ratio of graphene oxide to iron of 0.2:1 to prepare a mixed solution having a ferric ion concentration of 0.5 mol/L, and then dispersed in ultrasonic for 3 hours to obtain An iron salt solution in which graphene oxide is dispersed;
  • a solution of ammonium dihydrogen phosphate at a concentration of 0.5 mol/L was prepared.
  • the charge and discharge curves of the lithium ion battery of the graphene-based LiFePO 4 /C composite material obtained in this Example 2 as a positive electrode material at different magnifications are shown in FIG. 3 .
  • the discharge specific capacity at 0.5C, 1C, 2C, and 5 C is maintained at 140 mA ⁇ h/g, 137 mA ⁇ h/g, 130 mA ⁇ h/g, and 120 mA ⁇ h/g, respectively, and the discharge voltage platform remains. good.
  • Graphene oxide and ferrous sulfate are dissolved in deionized water at a mass ratio of graphene oxide to iron of 0.3:1, and then an excess of H 2 O 2 is added for oxidation to prepare a ferric ion concentration of 2 mol/L. Mixing the solution, and then dispersing in ultrasonic waves for 3 hours to obtain an iron salt solution in which graphene oxide is dispersed;
  • a diammonium hydrogen phosphate solution having a concentration of 2 mol/L was prepared.
  • the aqueous sodium hydroxide solution of L adjusts the pH of the reaction liquid to 2.5, and controls the temperature to 80 ° C for 3 hours to obtain an emulsion.
  • the emulsion obtained above is filtered and washed, and the filter cake is placed in an air drying oven at 80 ° C. Drying for 24 hours to obtain an iron phosphate/graphene oxide precursor;
  • the cycle performance curve of the lithium ion battery of the graphene-based LiFePO 4 /C composite material obtained in this Example 3 as a positive electrode material at different magnifications is shown in FIG. 4 .
  • the product has good cycle stability.
  • the positive electrode material has no significant attenuation of cycle discharge at each specific rate.
  • the discharge specific capacity at 5C rate is maintained at 125 mA ⁇ h/g. After the rate test, the recovery was carried out at a rate of 0.2 C, and the capacity remained good, indicating that the composite material had good structural stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

涉及一种石墨烯基LiFePO4/C复合材料的制备方法,以解决现有磷酸铁锂正极材料导电性能差,倍率性能差的问题。其技术方案要点是:1)制备分散有氧化石墨烯的铁盐溶液;2)制备磷酸铁/氧化石墨烯前驱体;3)制备石墨烯基LiFePO4/C复合材料。该方法的有益效果在于:工艺过程简单、易于控制,所得石墨烯基LiFePO4/C复合材料的比容量高、循环性能好、倍率性能优异,尤其适合于动力电池应用领域。

Description

一种石墨烯基LiFePO4/C复合材料的制备方法 技术领域
本发明属于锂离子电池正极材料制备技术领域,具体涉及一种石墨烯基LiFePO4/C复合材料的制备方法。
背景技术
能源是人类社会赖以生存和发展的重要物质基础。随着经济和社会的不断发展,世界对能源的需求量也在不断增加。在如今全球气候变暖和生态环境不断恶化的情况下,锂离子电池作为一种绿色能源也就受到了越来越多的关注。
磷酸铁锂由于具有较高的电压平台(3.4~3.5V)、较高的理论容量(为170mAh/g)、循环性能好(优化条件下合成的LiFePO4可循环2000次以上)、稳定性好、高温性能好、安全性能好、合成过程简单、对环境友好,无毒、原料丰富等特点备受人们的关注。
但是,由于磷酸铁锂结构的独特性阻隔了电子的传导,使得磷酸铁锂的电子电导率很低(10-9S·cm-1),导致其电化学性能差。人们往往通过在磷酸铁锂颗粒的表面包覆一层导电碳来提高其导电性。如中国专利(CN101483236)公开了一种锂离子电池正极材料磷酸亚铁锂/碳复合物的制备方法,该方法将氢氧化氧铁、锂盐、磷盐,按照化学计量比混合,加入适量碳源及液态球磨介质,球磨,干燥后的混合物在一定温度下反应,最终得到磷酸亚铁锂/碳复合物。
石墨烯是近几年非常热门的碳家族的一种新材料,其厚度只有0.335nm,具有独特的电子结构和电学性质。石墨烯的能带结构中价带和导带在费米能级的六个顶点上相交,从这个意义上说,石墨烯是一种没有能隙的物质,显示金属性。在单层石墨烯中,每个碳原子都贡献出一个未成键的电子,这些电子可以在晶体中自由移动,赋予石墨烯非常好的导电性。石墨烯中电子的典型传导速率达到了光速的1/300,远远超过了电子在一般半导体的传导速度。因此,恰当而又巧妙地将石墨烯优异的导电性能与磷酸铁锂特殊的电化学性能结合起来,开发石墨烯改性磷酸铁锂正极复合材料成为可能。如中国专利(CN101752561A)公开了一种石墨烯改性磷酸铁锂正极活性材料及其制备方法和基于该正极活性材料的锂离子二次电池,该方法是将石墨烯或氧化石墨烯与磷酸铁锂分散于水溶液中,通过搅拌和超声使其均匀混合,随后干燥得到石墨烯或氧化石墨烯复合的磷酸铁锂材料,再通过高温退火最终获得只是简单的石墨烯改性处理的磷酸铁锂正极活性材料。
技术问题
本发明提供一种石墨烯基LiFePO4/C复合材料的方法,以解决现有磷酸铁锂制备工艺技术的不足及磷酸铁锂正极材料导电性差,倍率性能差的问题。
技术解决方案
本发明解决该技术问题所采用的技术方案包括如下步骤:
1)制备分散有氧化石墨烯的铁盐溶液
用氧化石墨烯、铁盐,按氧化石墨烯与铁元素质量比0.1~0.3:1的比例溶于去离子水中,经超声波分散,得到分散有氧化石墨烯的铁盐溶液;
2)制备磷酸铁/氧化石墨烯前驱体
将步骤1)中制备的分散有氧化石墨烯的铁盐溶液与磷酸盐溶液混合得到反应混合液,其反应混合液中Fe:P的摩尔比=1:1~1.2,调节反应混合液的pH至2~4,控制温度至60℃~80℃反应,得到乳浊液,将所述乳浊液过滤、洗涤,干燥,得到磷酸铁/氧化石墨烯前躯体;
3)制备石墨烯基LiFePO4/C复合材料
以步骤2)得到的磷酸铁/氧化石墨烯前驱体与锂盐按照物质的量之比Li:Fe=1~1.05:1进行配料,加入碳源后经球磨,然后在还原性气氛条件下于600℃~700℃条件下烧结,得到石墨烯基LiFePO4/C复合材料。
本发明优选的实施方式为:
所述步骤1)中分散有氧化石墨烯的铁盐溶液中铁离子浓度为0.5~2mol/L。
所述步骤1)中超声波分散2~5小时。
所述步骤2)中反应时间为3~6小时;所述步骤2)中烧结时间为5~10小时。
本发明的原理为通过将氧化石墨烯与三价铁溶液进行超声分散处理,带正电荷的Fe3+由于静电力吸附于氧化石墨烯片层之上。利用加入磷酸盐与Fe3+反生沉淀反应,使生成的磷酸铁晶体在氧化石墨烯片层上原位形核并生长,进而得到磷酸铁/氧化石墨烯前驱体。在此过程中,氧化石墨烯提供了模板。然后采用高温热处理的方法得到表面碳包覆,石墨烯改性的磷酸铁锂正极材料,石墨烯极大程度地降低了磷酸铁锂颗粒之间的接触电阻,从而增强了材料的导电性。
本发明与其他发明不同之处及材料的优势还在于:氧化石墨烯溶液与三价铁离子溶液在分子水平上混合,然后在氧化石墨烯表面原位生长出磷酸铁锂前躯体磷酸铁,再锂化为磷酸铁锂,因此利于获得分散均匀的石墨烯-磷酸铁锂复合结构;由于磷酸铁负载到氧化石墨表面后,磷酸铁与氧化石墨烯形成了一个整体,可以防止氧化石墨间的团聚,因而磷酸铁与氧化石墨烯的复合前驱体利于后续的过滤和洗涤工序的操作,这非常有助于工业化生产。
本发明的具体实施步骤为:
1)制备分散有氧化石墨烯的铁盐溶液
用氧化石墨烯、铁盐,按氧化石墨烯与铁元素质量比0.1~0.3:1的比例溶于去离子水中,配制铁离子浓度为0.5~2mol/L的混合溶液,后置于超声波分散2~5小时,得到分散有氧化石墨烯的铁盐溶液;
2)制备磷酸铁/氧化石墨烯前驱体
配制与步骤1)中制备的分散有氧化石墨烯的铁盐溶液中铁离子等浓度的磷酸盐溶液。
以步骤1)中得到的分散有氧化石墨烯的铁盐溶液和磷酸盐溶液按照物质的量之比Fe:P=1:1~1.2并流加入到带有搅拌的反应器内,同时用碱溶液调节反应料液的pH至2~4,控制温度至60℃~80℃反应3~6小时,得到乳浊液,将上述得到的乳浊液过滤、洗涤,滤饼置于80℃鼓风干燥箱中烘干24小时,得到磷酸铁/氧化石墨烯前躯体;
3)制备石墨烯基LiFePO4/C复合材料
以步骤2)得到的磷酸铁/氧化石墨烯前驱体与锂盐按照物质的量之比Li:Fe=1~1.05:1进行配料,加入碳源后经球磨,然后在还原性气氛条件下于600℃~700℃条件下烧结5~10小时,得到石墨烯基LiFePO4/C复合材料。
本发明优选的原料来源包括:
所述的步骤1)中的铁盐溶液包括硫酸铁、氯化铁、硝酸铁中的一种;也可以将亚铁盐溶解后,经过量H2O2氧化后得到,所述亚铁盐包括硫酸亚铁、氯化亚铁、硝酸亚铁中的一种;
所述的步骤2)中的磷酸盐为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸铵、或磷酸二氢钠、磷酸氢二钠、磷酸钠中的一种;
所述的步骤2)中的碱溶液为氢氧化钠或氨水,浓度为0.5~5mol/L;
所述的步骤3)中的锂盐为碳酸锂、氢氧化锂和乙酸锂中的一种;
所述的步骤3)中的碳源为葡萄糖、蔗糖、果糖、乳糖、柠檬酸、淀粉、聚乙烯醇、聚丙烯、酚醛树酯中的至少一种,添加量为理论磷酸铁锂质量分数的5~20%;
所述的步骤3)中的还原性气氛为体积比为Ar:H2=90:10~95:5或N2:H2=90:10~95:5的混合气体。
有益效果
本发明的有益效果在于:本发明充分将石墨烯优异的导电性能应用于磷酸铁锂正极材料的合成中,以解决现有磷酸铁锂制备工艺技术的不足及磷酸铁锂正极材料导电性差,循环性能差的问题。本发明工艺过程简单、易于控制,所得石墨烯改性磷酸铁锂/碳复合材料的比容量高、循环性能好、倍率性能优异,适合于动力电池应用领域。
附图说明
图1为实施例1得到的石墨烯基LiFePO4/C复合材料的SEM图;
图2为实施例1得到的石墨烯基LiFePO4/C复合材料的XRD图。
图3为以实施例2得到的石墨烯基LiFePO4/C复合材料作为正极材料的锂离子电池在不同倍率下的充放电曲线。
图4为以实施例3得到的石墨烯基LiFePO4/C复合材料作为正极材料的锂离子电池在不同倍率下的循环性能曲线。
本发明的实施方式
以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1:
用氧化石墨烯、硫酸铁,按氧化石墨烯与铁元素质量比0.1:1的比例溶于去离子水中,配制铁离子浓度为1mol/L的混合溶液,后置于超声波分散3小时,得到分散有氧化石墨烯的铁盐溶液;
配制浓度为1mol/L的磷酸溶液。
将上述得到的分散有氧化石墨烯的铁盐溶液和磷酸溶液按照物质的量之比Fe:P=1:1.1并流加入到带有搅拌的反应器内,同时用浓度为1mol/L的氨水调节反应料液的pH至2.1,控制温度至60℃反应5小时,得到乳浊液,将上述得到的乳浊液过滤、洗涤,滤饼置于80℃鼓风干燥箱中烘干24小时,得到磷酸铁/氧化石墨烯前躯体;
将上述磷酸铁/氧化石墨烯前驱体与碳酸锂按照物质的量之比Li:Fe=1.05:1进行配料,加入相对于理论磷酸铁锂质量分数20%的葡萄糖后经球磨,然后在体积比为Ar:H2=90:10的还原性气氛条件下于650℃烧结8小时,得到石墨烯基LiFePO4/C复合材料。本实施例1得到的材料SEM图和XRD图参见图1和图2,产物颗粒细小,分散均匀,具有规整的形貌,颗粒之间界面明显,表明晶粒形态生长完整。XRD图谱中特征峰较为明显,没有发现杂质峰,且衍射峰较为尖锐,合成的产物结晶良好。
实施例2:
用氧化石墨烯、硝酸铁,按氧化石墨烯与铁元素质量比0.2:1的比例溶于去离子水中,配制铁离子浓度为0.5mol/L的混合溶液,后置于超声波分散3小时,得到分散有氧化石墨烯的铁盐溶液;
配制浓度为0.5mol/L的磷酸二氢铵溶液。
将上述得到的分散有氧化石墨烯的铁盐溶液和磷酸二氢铵溶液按照物质的量之比Fe:P=1:1并流加入到带有搅拌的反应器内,同时用浓度为0.5mol/L的氢氧化钠水溶液调节反应料液的pH至2.5,控制温度至80℃反应3小时,得到乳浊液,将上述得到的乳浊液过滤、洗涤,滤饼置于80℃鼓风干燥箱中烘干24小时,得到磷酸铁/氧化石墨烯前躯体;
将上述磷酸铁/氧化石墨烯前驱体与碳酸锂按照物质的量之比Li:Fe=1.02:1进行配料,加入相对于理论磷酸铁锂质量分数10%的蔗糖后经球磨,然后在体积比为Ar:H2=95:5的还原性气氛条件下于700℃烧结5小时,得到石墨烯基LiFePO4/C复合材料。
本实施例2得到的石墨烯基LiFePO4/C复合材料作为正极材料的锂离子电池在不同倍率下的充放电曲线参见图3。在0.5C、1C、2C、5 C下放电比容量分别保持在140 mA·h/g、137 mA·h/g、130 mA·h/g、120mA·h/g以上,并且放电电压平台保持良好。
实施例3:
用氧化石墨烯、硫酸亚铁,按氧化石墨烯与铁元素质量比0.3:1的比例溶于去离子水中,然后加入过量的H2O2进行氧化后,配制铁离子浓度为2mol/L的混合溶液,后置于超声波分散3小时,得到分散有氧化石墨烯的铁盐溶液;
配制浓度为2mol/L的磷酸氢二铵溶液。
将上述得到的分散有氧化石墨烯的铁盐溶液和磷酸氢二铵溶液按照物质的量之比Fe:P=1:1并流加入到带有搅拌的反应器内,同时用浓度为5mol/L的氢氧化钠水溶液调节反应料液的pH至2.5,控制温度至80℃反应3小时,得到乳浊液,将上述得到的乳浊液过滤、洗涤,滤饼置于80℃鼓风干燥箱中烘干24小时,得到磷酸铁/氧化石墨烯前躯体;
将上述磷酸铁/氧化石墨烯前驱体与碳酸锂按照物质的量之比Li:Fe=1:1进行配料,加入相对于理论磷酸铁锂质量分数5%的淀粉后经球磨,然后在体积比为Ar:H2=90:10的还原性气氛条件下于600℃烧结10小时,得到石墨烯基LiFePO4/C复合材料。
本实施例3得到的石墨烯基LiFePO4/C复合材料作为正极材料的锂离子电池在不同倍率下的循环性能曲线参见图4。产物具有较好的倍率循环稳定性,正极材料在各个倍率下循环放电比容量都没明显的衰减,5C倍率下放电比容量保持在125mA·h/g。倍率测试后,在0.2C的倍率下进行恢复,容量仍保持很好,说明复合材料具有良好的结构稳定性。

Claims (10)

  1. 一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于,包括如下步骤 :
    1)制备分散有氧化石墨烯的铁盐溶液
    用氧化石墨烯、铁盐,按氧化石墨烯与铁元素质量比0.1~0.3:1的比例溶于去 离子水中,经超声波分散,得到分散有氧化石墨烯的铁盐溶液;
    2)制备磷酸铁/氧化石墨烯前驱体
    将步骤1)中制备的分散有氧化石墨烯的铁盐溶液与磷酸盐溶液混合得到反应混 合液,其反应混合液中Fe:P的摩尔比=1:1~1.2,调节反应混合液的pH至2~4,
    控制温度至60℃~80℃反应,得到乳浊液,将所述乳浊液过滤、洗涤,干燥,得到磷酸铁/氧化石墨烯前躯体;
    3)制备石墨烯基LiFePO4/C复合材料
    以步骤2)得到的磷酸铁/氧化石墨烯前驱体与锂盐按照物质的量之比Li:Fe=1~1.05:1进行配料,加入碳源后经球磨,然后在还原性气氛条件下于600℃
    ~700℃条件下烧结,得到石墨烯基LiFePO4/C复合材料。
  2. 根据权利要求书1所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:所述步骤1)中分散有氧化石墨烯的铁盐溶液中铁离子浓度为 0.5~2mol/L。
  3. 根据权利要求书1所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:所述步骤1)中超声波分散2~5小时。
  4. 根据权利要求书1所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:所述步骤2)中反应时间为3~6小时;所述步骤2)中烧结时间为5~10小时。
  5. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤1)中所述的铁盐溶液包括硫酸铁、氯化铁、硝酸铁中的一种;也可以将亚铁盐溶解后,经过量H2O2氧化后得到,所述亚铁盐包括硫酸亚铁、氯化亚铁、硝酸亚铁中的一种。
  6. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤2)中所述的磷酸盐为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸铵、或磷酸二氢钠、磷酸氢二钠、磷酸钠中的一种。
  7. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤2)中所述的碱溶液为氢氧化钠、碳酸钠或氨水,浓度为0.5~5mol/L。
  8. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤3)中所述的锂盐为碳酸锂、氢氧化锂和乙酸锂中的一种 。
  9. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤3)中所述的碳源为葡萄糖、蔗糖、果糖、乳糖、柠檬酸、淀粉、聚乙烯醇、聚丙烯、酚醛树酯中的至少一种,添加量为理论磷酸铁锂质量分数的5~20%。
  10. 根据权利要求书1-4任一项所述的一种石墨烯基LiFePO4/C复合材料的制备方法,其特征在于:步骤3)中所述的还原性气氛为体积比为Ar:H2=90:10~95:5或N2:H2=90:10~90:5的混合气体。
PCT/CN2013/075363 2012-05-14 2013-05-09 一种石墨烯基LiFePO4/C复合材料的制备方法 WO2013170720A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147035063A KR101681461B1 (ko) 2012-05-14 2013-05-09 그래핀 기반의 LiFePO₄/C 복합재료의 제조방법
JP2015511914A JP6172818B2 (ja) 2012-05-14 2013-05-09 グラフェン基LiFePO4/C複合材料の製造方法
DE112013002485.3T DE112013002485B4 (de) 2012-05-14 2013-05-09 Verfahren zur Herstellung von einem graphen-basierten LiFePO4/C-Verbundmaterial
US14/401,489 US9672951B2 (en) 2012-05-14 2013-05-09 Method for preparing graphene-based LiFePO4/C composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210148114.1 2012-05-14
CN201210148114.1A CN102683697B (zh) 2012-05-14 2012-05-14 一种石墨烯基LiFePO4/C复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2013170720A1 true WO2013170720A1 (zh) 2013-11-21

Family

ID=46815306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075363 WO2013170720A1 (zh) 2012-05-14 2013-05-09 一种石墨烯基LiFePO4/C复合材料的制备方法

Country Status (6)

Country Link
US (1) US9672951B2 (zh)
JP (1) JP6172818B2 (zh)
KR (1) KR101681461B1 (zh)
CN (1) CN102683697B (zh)
DE (1) DE112013002485B4 (zh)
WO (1) WO2013170720A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672951B2 (en) 2012-05-14 2017-06-06 Guoguang Electric Company Limited Method for preparing graphene-based LiFePO4/C composite material
JP2020004738A (ja) * 2015-01-09 2020-01-09 株式会社半導体エネルギー研究所 活物質の作製方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937756B (zh) * 2013-01-23 2018-06-22 东丽株式会社 正极活性物质-石墨烯复合物颗粒和锂离子电池用正极材料
KR102163376B1 (ko) * 2013-05-23 2020-10-08 도레이 카부시키가이샤 폴리 음이온계 정극 활물질 복합체 입자의 제조 방법 및 폴리 음이온계 정극 활물질 전구체-산화 그래파이트 복합 조립체
CN104347854A (zh) * 2014-09-24 2015-02-11 洛阳理工学院 一种纳米级LiFePO4/C电极材料的制备方法
CN104716320B (zh) 2015-03-10 2017-06-16 中国科学院过程工程研究所 一种复合材料包覆的磷酸铁锂、其制备方法及锂离子电池
CN104868121A (zh) * 2015-05-07 2015-08-26 天津大学 石墨烯与碳共包覆磷酸亚铁锂的锂离子电池正极材料及其制备方法
CN104993133A (zh) * 2015-05-28 2015-10-21 中南大学 一种石墨烯修饰的LiMnxFe1-xPO4/C复合材料的制备方法
CN105406035B (zh) * 2015-10-30 2018-03-13 上海应用技术学院 一种正八面体型磷酸铁/氧化石墨烯前驱体的制备方法
CN105514431B (zh) * 2016-01-07 2018-06-22 山东省科学院能源研究所 一种球形石墨烯/FePO4复合材料及其制备方法
CN106410143B (zh) * 2016-10-21 2018-07-06 上海银浆科技有限公司 一种泡沫石墨烯-磷酸铁锂复合材料及其制备方法
CN107403902B (zh) * 2017-07-14 2020-07-07 常州第六元素材料科技股份有限公司 一种高导电磷酸铁锂粉体及其制备方法
CN107394152B (zh) * 2017-07-17 2020-12-29 深圳市贝特瑞纳米科技有限公司 高电导石墨烯基磷酸铁锂球形复合材料、其制备方法及包含其的锂离子电池
CN109244379B (zh) * 2017-09-14 2021-06-22 太原理工大学 一种LiFePO4超薄纳米片@石墨烯气凝胶正极材料的制备方法
CN108711612B (zh) * 2018-05-16 2020-09-08 北京新能源汽车股份有限公司 还原氧化石墨烯-金属碳化物复合材料,其制备方法及应用
US10629897B2 (en) * 2018-06-12 2020-04-21 Mehran Javanbakht High performance cathode active material for lithium ion battery
CN109904409A (zh) * 2019-01-14 2019-06-18 广东工业大学 一种磷酸铁锂纳米棒/石墨烯复合材料及其制备方法和应用
CN109686962B (zh) * 2019-01-21 2021-04-30 新奥石墨烯技术有限公司 制备磷酸铁锂复合正极材料的方法、正极、电池
CN110176599A (zh) * 2019-07-10 2019-08-27 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯原位复合磷酸铁锂正极材料及其制备方法
CN111293294B (zh) * 2020-02-22 2022-04-22 电子科技大学 采用模板法一步合成磷酸铁锂/石墨烯复合材料的方法
CN111883749A (zh) * 2020-06-29 2020-11-03 安徽南都华铂新材料科技有限公司 一种制备锂电池用过渡金属氧化物复合电极的方法
CN111896151A (zh) * 2020-08-04 2020-11-06 工科思维技术(深圳)有限公司 一种具有压敏性能的智能建筑传感器的制备方法
CN112687464B (zh) * 2020-12-23 2022-02-15 上海大学 一种氯化亚铁修饰石墨烯磁性复合材料及其制备方法
CN113851618B (zh) * 2021-08-10 2023-06-23 桂林理工大学 利用铁矾渣盐酸浸出液制备高性能磷酸铁/石墨烯复合负极材料的方法及应用
CN113984842B (zh) * 2021-09-26 2023-10-03 杭州电子科技大学 一种石墨烯/NiZn铁氧体气敏复合材料制备方法
CN114105115B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁及磷酸铁锂的生产方法和应用
CN114057176B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其制备方法和应用
CN114394610A (zh) * 2021-12-20 2022-04-26 格林美股份有限公司 一种废旧磷酸铁锂电池的回收方法
CN114789994B (zh) * 2022-05-24 2024-04-16 荆门市格林美新材料有限公司 一种由红土镍矿提取制备电池级磷酸铁的方法
CN114927684B (zh) * 2022-06-23 2024-06-07 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN115448278B (zh) * 2022-09-21 2023-12-12 广东邦普循环科技有限公司 一种连续化制备磷酸铁的方法和应用
CN115676814B (zh) * 2022-11-04 2024-05-17 宜都兴发化工有限公司 一种钛掺杂石墨烯包覆磷酸铁锂正极材料的制备方法
CN115924899A (zh) * 2022-11-19 2023-04-07 河北麦森钛白粉有限公司 一种磷酸铁锂/氧化石墨烯复合材料的制备方法
CN115954465B (zh) * 2023-03-13 2023-06-09 河北坤天新能源股份有限公司 一种高功率硬碳复合材料及其制备方法
CN116395661B (zh) * 2023-04-28 2024-07-05 天能电池集团股份有限公司 一种季铵盐作为表面活性剂制备磷酸铁锂材料的方法
CN117410579B (zh) * 2023-12-14 2024-03-12 湖南大学 一种储能用高性能锂离子电池的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance
CN101944593A (zh) * 2010-09-15 2011-01-12 天津大学 纳米结构的锂离子电池正极材料及其制备方法
CN102299326A (zh) * 2011-08-04 2011-12-28 浙江工业大学 一种石墨烯改性的磷酸铁锂/碳复合材料及其应用
CN102683697A (zh) * 2012-05-14 2012-09-19 中南大学 一种石墨烯基LiFePO4/C复合材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483236A (zh) * 2009-01-16 2009-07-15 东北师范大学 一种锂离子电池正极材料磷酸亚铁锂/碳复合物的制备方法
CN101752561B (zh) * 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
US20130157135A1 (en) * 2010-09-10 2013-06-20 Mingjie Zhou Lithium salt-graphene-containing composite material and preparation method thereof
CN103003193B (zh) * 2010-09-29 2014-12-10 海洋王照明科技股份有限公司 一种磷酸铁锂复合材料、其制备方法和应用
CN102044666B (zh) * 2010-11-19 2013-03-13 杭州电子科技大学 一种锂电池用磷酸铁锂复合材料的制备方法
CN102583292B (zh) * 2011-01-11 2014-06-25 中国科学院宁波材料技术与工程研究所 一类具有微纳结构磷酸铁盐的制备方法
CN102148371A (zh) * 2011-03-03 2011-08-10 上海大学 三明治结构的石墨烯/磷酸铁锂复合材料及其制备方法
KR102100352B1 (ko) * 2011-08-29 2020-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
CN102306783A (zh) * 2011-09-14 2012-01-04 哈尔滨工业大学 多层石墨烯/磷酸铁锂插层复合材料、其制备方法及以其为正极材料的锂离子电池
CN102544493B (zh) * 2012-02-03 2014-04-23 合肥国轩高科动力能源股份公司 一种石墨烯复合的锂离子电池复合正极材料的制备方法
CN102544516B (zh) * 2012-02-20 2015-09-09 上海交通大学 一种石墨烯包覆磷酸铁锂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance
CN101944593A (zh) * 2010-09-15 2011-01-12 天津大学 纳米结构的锂离子电池正极材料及其制备方法
CN102299326A (zh) * 2011-08-04 2011-12-28 浙江工业大学 一种石墨烯改性的磷酸铁锂/碳复合材料及其应用
CN102683697A (zh) * 2012-05-14 2012-09-19 中南大学 一种石墨烯基LiFePO4/C复合材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672951B2 (en) 2012-05-14 2017-06-06 Guoguang Electric Company Limited Method for preparing graphene-based LiFePO4/C composite material
JP2020004738A (ja) * 2015-01-09 2020-01-09 株式会社半導体エネルギー研究所 活物質の作製方法
US10923706B2 (en) 2015-01-09 2021-02-16 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
JP2022133373A (ja) * 2015-01-09 2022-09-13 株式会社半導体エネルギー研究所 蓄電池用電極の製造方法
US11545655B2 (en) 2015-01-09 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
US11881578B2 (en) 2015-01-09 2024-01-23 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device

Also Published As

Publication number Publication date
KR20150027753A (ko) 2015-03-12
KR101681461B1 (ko) 2016-11-30
JP6172818B2 (ja) 2017-08-02
CN102683697A (zh) 2012-09-19
JP2015525182A (ja) 2015-09-03
DE112013002485B4 (de) 2020-08-27
US20150102267A1 (en) 2015-04-16
DE112013002485T5 (de) 2015-01-29
CN102683697B (zh) 2014-12-17
US9672951B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2013170720A1 (zh) 一种石墨烯基LiFePO4/C复合材料的制备方法
WO2012040920A1 (zh) 一种磷酸铁锂复合材料、其制备方法和应用
Bi et al. Recent advances in LiFePO 4 nanoparticles with different morphology for high-performance lithium-ion batteries
WO2012088705A1 (zh) 一种碳包覆氧化石墨烯复合材料及其制备方法与应用
KR20190040318A (ko) 복합물, 그 제조방법 및 리튬이온이차전지에서의 용도
CN110357057B (zh) 一种片状磷酸铁及其制备方法与应用
WO2012031401A1 (zh) 一种含锂盐-石墨烯复合材料及其制备方法
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
WO2012062110A1 (zh) 一种锂离子电池复合材料磷酸铁锂/碳的制备方法
CN103896260A (zh) 一种基于石墨烯的锂离子电池复合负极材料的制备方法
CN112467108A (zh) 一种多孔硅氧复合材料及其制备方法和应用
CN113097484B (zh) 一种碳包覆类三明治结构SnSe/r-GO@C复合物及其制备方法和应用
CN110611092B (zh) 一种纳米二氧化硅/多孔碳锂离子电池负极材料的制备方法
WO2014077662A1 (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
CN114348984A (zh) 一种利用钛白副产制备纳米磷酸铁、纳米磷酸亚铁的方法
CN105826524A (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN115064695A (zh) 全铁基钠离子电池及其制备方法
CN114940485A (zh) 一种磷酸锰铁锂前驱体及其制备方法和应用
Niu et al. High-rate lithium storage of TiNb2O7/reduced graphene oxide
CN116730317A (zh) 一种磷酸铁锂的制备方法
WO2016101315A1 (zh) 修复镍钴锰三元电池材料前驱体的方法
CN114583158A (zh) 一种磷酸铁锂-石墨烯强耦合材料及其制备方法
CN104332603A (zh) 一种磷酸锰锂纳米片的制备方法及产品
WO2016110261A1 (zh) 电池复合材料及其前驱物的制备方法
WO2014187034A1 (zh) 碳酸酯辅助制备磷酸铁锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511914

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14401489

Country of ref document: US

Ref document number: 112013002485

Country of ref document: DE

Ref document number: 1120130024853

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147035063

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13790659

Country of ref document: EP

Kind code of ref document: A1