WO2014136956A1 - 作業機械の管理サーバ及び作業機械の管理方法 - Google Patents

作業機械の管理サーバ及び作業機械の管理方法 Download PDF

Info

Publication number
WO2014136956A1
WO2014136956A1 PCT/JP2014/056030 JP2014056030W WO2014136956A1 WO 2014136956 A1 WO2014136956 A1 WO 2014136956A1 JP 2014056030 W JP2014056030 W JP 2014056030W WO 2014136956 A1 WO2014136956 A1 WO 2014136956A1
Authority
WO
WIPO (PCT)
Prior art keywords
report
work machine
sensor output
emergency
delivery destination
Prior art date
Application number
PCT/JP2014/056030
Other languages
English (en)
French (fr)
Inventor
足立 宏之
太田 賢治
浩司 関
邦生 関
宏 小野瀬
聡司 阿部
一輝 久保田
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP14760739.4A priority Critical patent/EP2966612B1/en
Priority to US14/772,935 priority patent/US9637891B2/en
Priority to JP2015504423A priority patent/JP6236432B2/ja
Priority to CN201480012356.5A priority patent/CN105027157A/zh
Publication of WO2014136956A1 publication Critical patent/WO2014136956A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/12Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time in graphical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45012Excavator

Definitions

  • the present invention relates to a work machine management server and a work machine management method.
  • Patent Document 1 a management device that communicates with a work machine and creates a work report (work daily report) indicating work contents performed by the work machine for a certain period of time.
  • the prior art has a problem that it is necessary for an administrator or a service person to directly operate the terminal when exchanging information necessary for managing the work machine.
  • the work machine management server displays a receiving unit that receives a sensor output from the work machine, and an operating state of the work machine within a predetermined period for each predetermined period based on the sensor output.
  • a periodic report creating unit that creates a periodic report to detect abnormal data representing an abnormality of the work machine based on the sensor output, an emergency report creating unit that creates at least one emergency report, and an abnormality report based on the sensor output
  • An important report creation unit that creates an important report upon detection of predictive data representing a sign, and a regular report, at least one emergency report and an important report, respectively, a preset regular report delivery destination, an emergency report delivery destination, and an important report.
  • a distribution unit that distributes to a distribution destination.
  • the first database storing the first information about the language, and the language determining unit for determining the language with reference to the first information It is preferable to further comprise.
  • the regular report creation unit, the emergency report creation unit, and the important report creation unit create a regular report, at least one emergency report, and an important report, respectively, in the language determined by the language determination unit.
  • the work server management server according to the second aspect further includes a distribution destination specifying unit that specifies a regular report distribution destination, an emergency report distribution destination, and an important report distribution destination. .
  • the first database further stores second information related to the regular report delivery destination, the emergency report delivery destination, and the important report delivery destination.
  • the distribution destination specifying unit refers to the second information, specifies the first distribution destination corresponding to the purchaser of the work machine and the second distribution destination corresponding to the seller of the work machine as the emergency report distribution destination, and is important.
  • the second distribution destination corresponding to the seller is specified as the report distribution destination, and the first distribution destination corresponding to the purchaser and the second distribution destination corresponding to the seller are specified as the regular report distribution destination.
  • the third information related to the tuning performed on the work machine by the external terminal device is stored.
  • the periodic report creation unit includes sensors from a plurality of other work machines of the same model as the work machine. It is preferable that an average value of any of the fuel consumption based on the output, the hydraulic oil temperature, the water temperature, and the pump pressure is written in the regular report.
  • the emergency report creation unit when the emergency report creation unit detects abnormal data based on the sensor output, the sensor output is predetermined. When the sensor output exceeds the predetermined threshold value a plurality of times, and when the sensor output exceeds the predetermined threshold value within a certain period of time. In either case, it is preferable to switch whether to determine that abnormal data has been detected according to the type of sensor output.
  • the at least one emergency report in the work machine management server according to the third aspect, includes a first emergency report and a second emergency with a larger amount of information than the first emergency report.
  • the delivery destination specifying unit specifies a first delivery destination corresponding to the purchaser as an emergency report delivery destination corresponding to the first emergency report, and delivers an emergency report corresponding to the second emergency report.
  • a destination it is preferable to specify a second delivery destination corresponding to the seller.
  • At least one of the periodic report creation unit, the emergency report creation unit, and the important report creation unit is: Corresponding to the date display area where the numerical value of each date within the predetermined period is displayed as the fuel consumption item of the work machine described in at least one of the periodic report, at least one emergency report and the important report In the provided item display area, the fuel consumption of each date corresponding to the numerical value displayed in the date display area is displayed, and in at least one report, the date display area and the item display area are the number of days within a predetermined period. Are preferably arranged in a matrix.
  • the work machine management method receives a sensor output from the work machine and displays a working report of the work machine within a predetermined period for each predetermined period based on the sensor output. Every time an abnormal data representing an abnormality of the work machine is detected based on the sensor output, and at least one emergency report is created based on the sensor output, and an important report is detected each time the predictive data representing an abnormality sign is detected based on the sensor output And the periodic report, at least one emergency report and important report are distributed to a preset periodic report delivery destination, emergency report delivery destination and important report delivery destination, respectively.
  • the sensor when detecting abnormal data based on the sensor output, if the sensor output exceeds a predetermined threshold value once, the sensor It is determined that abnormal data has been detected in any case when the output exceeds a predetermined threshold value a plurality of times in succession or when the sensor output exceeds a predetermined threshold value for a predetermined number of times within a certain period.
  • the sensor is determined that abnormal data has been detected in any case when the output exceeds a predetermined threshold value a plurality of times in succession or when the sensor output exceeds a predetermined threshold value for a predetermined number of times within a certain period.
  • FIG. 1 is a diagram illustrating an outline of a management system for a hydraulic excavator including a server according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the hydraulic excavator.
  • FIG. 3 is a schematic diagram illustrating an outline of a hydraulic circuit included in the hydraulic excavator.
  • FIG. 4 is a block diagram of a control system of a hydraulic excavator including a controller that detects the state of each part of the hydraulic excavator and transmits state data (sensor output) to the server.
  • FIG. 5 is a diagram illustrating sensors included in the sensor group.
  • FIG. 6 is a schematic diagram showing the configuration of the server.
  • FIG. 7 is a diagram illustrating an example of data stored in the sensor information database.
  • FIG. 1 is a diagram illustrating an outline of a management system for a hydraulic excavator including a server according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the hydraulic exc
  • FIG. 8 is a diagram illustrating an example of data stored in the contract information database.
  • FIG. 9 is a schematic diagram showing the configuration of the client terminal.
  • FIG. 10 is a schematic diagram for explaining the concept of tuning.
  • FIG. 11 is a diagram illustrating an example of the format of a regular report.
  • FIG. 12 is a flowchart of a periodic report distribution process executed by the control device of the server.
  • FIG. 13 is a diagram illustrating an example of an emergency report format.
  • FIG. 14 is a diagram illustrating an example of a format of an important report.
  • FIG. 15 is a flowchart of data reception processing executed by the control device of the server.
  • FIG. 16 is a diagram illustrating a state in which the control device switches the detection method of abnormal data in accordance with the determination result of the data type such as sensor output.
  • FIG. 17 is a diagram illustrating an example of a regular report format.
  • FIG. 1 is a diagram for explaining an outline of a management system for a hydraulic excavator including a server according to an embodiment of the present invention.
  • the management system 1 manages a plurality of hydraulic excavators 100.
  • the management system 1 includes a server 500 according to the present embodiment and a client terminal 800 that is a portable portable information terminal.
  • the server 500 is connected to a network 400 such as a general public line network.
  • a base station 300 and a plurality of information terminals 900 are connected to the network 400.
  • Server 500 can exchange data with these nodes connected to network 400, that is, base station 300 and a plurality of information terminals 900.
  • the client terminal 800 can be connected to the network 400 using a wireless station, connection device, or the like (not shown).
  • Each hydraulic excavator 100 has various sensors that detect the state of each part of each hydraulic excavator 100 itself.
  • a controller, which will be described later, of each hydraulic excavator 100 transmits the outputs of these various sensors to the base station 300 via a transmitter, which will be described later, at a predetermined timing.
  • the predetermined timing is, for example, every several minutes to several hours.
  • the sensor output transmission timing may be a predetermined timing different from this.
  • the sensor output transmission timing may be different for each type of sensor, or may be uniform for all sensors.
  • the base station 300 When the base station 300 receives the sensor output via the communication satellite 200, the base station 300 transmits the sensor output to the server 500 via the network 400.
  • a sensor information database (DB) 600 and a contract information database 700 are connected to the server 500.
  • a control device, which will be described later, included in the server 500 transmits information for identifying the excavator 100 that has transmitted the sensor output to the sensor output received from the excavator 100 via the base station 300 and the sensor output. Information such as the date and time is added and stored in the sensor information database 600. That is, the control device included in the server 500 collects sensor outputs from the plurality of hydraulic excavators 100 and stores them in the sensor information database 600.
  • the client terminal 800 has a control device that tunes the excavator 100.
  • the maintenance staff of the excavator 100 causes the control device included in the client terminal 800 to tune the excavator 100, and then connects the client terminal 800 to the network 400, and the control device included in the client terminal 800 transmits the tuning to the server 500.
  • the control device included in the server 500 stores information related to tuning received from the client terminal 800 in the sensor information database 600 in addition to the sensor output described above.
  • the control device included in the server 500 creates a report that displays the state of each hydraulic excavator 100 based on information such as sensor output stored in the sensor information database 600 and information related to tuning, and transmits the report via the network 400. To do.
  • the control device included in the server 500 determines the transmission destination of the report based on the contents of the contract information database 700.
  • the report is transmitted to, for example, an information terminal 900 used by a seller of the hydraulic excavator 100, an information terminal 900 used by a purchaser (administrator) of the hydraulic excavator 100, an operator, and the like, and displayed on the display screen of the information terminal 900. Is done.
  • FIG. 2 is a schematic diagram illustrating the configuration of the excavator 100.
  • the excavator 100 includes a traveling body 81 and a revolving body 82 connected to the upper portion of the traveling body 81.
  • the turning body 82 can turn with respect to the traveling body 81.
  • the swivel body 82 is provided with an operator cab 83, a work device 84, an engine 85, and a swivel hydraulic motor 86.
  • the work device 84 includes a boom BM attached to the main body of the revolving structure 82, an arm AM connected to the boom BM, and an attachment such as a bucket BK connected to the arm AM.
  • the boom BM can be rotated with respect to the main body of the revolving structure 82.
  • the arm AM is rotatable with respect to the boom BM.
  • Bucket BK is rotatable with respect to arm AM.
  • the boom BM is raised and lowered by the boom cylinder C1.
  • a cloud operation and a dump operation are performed on the arm AM by the arm cylinder C2.
  • Cloud operation and dump operation are performed on the bucket BK by the bucket cylinder C3.
  • the traveling body 81 is provided with left and right traveling hydraulic motors 87 and 88.
  • FIG. 3 is a schematic diagram showing an outline of a hydraulic circuit included in the excavator 100.
  • the engine 85 drives the hydraulic pump 2.
  • the direction and amount of the hydraulic oil discharged from the hydraulic pump 2 are controlled by a plurality of control valves 3s, 3tr, 3tl, 3b, 3a, and 3bk, and the above-described swing hydraulic motor 86, left and right traveling hydraulic motors are controlled. 87, 88 and hydraulic cylinders C1, C2, C3 are driven.
  • the plurality of control valves 3s, 3tr, 3tl, 3b, 3a and 3bk are switched by pilot pressures respectively supplied from the corresponding pilot valves 4s, 4tr, 4tl, 4b, 4a and 4bk.
  • the pilot valves 4s, 4tr, 4tl, 4b, 4a and 4bk are supplied with a pilot hydraulic pressure of a predetermined pressure from the pilot hydraulic pump 5, and the pilot pressure according to the operation amount of the operation levers 4Ls, 4Ltr, 4Ltl, 4Lb, 4La, 4Lbk. Is output.
  • the plurality of control valves 3s, 3tr, 3tl, 3b, 3a and 3bk are integrated into one valve block.
  • a plurality of pilot valves 4s, 4tr, 4tl, 4b, 4a and 4bk are also integrated into one valve block.
  • FIG. 4 is a block diagram of a control system of the hydraulic excavator 100 including a controller that detects the state of each part of the hydraulic excavator 100 via the sensor group 10 and transmits the state data (sensor output) to the server 500.
  • the hydraulic excavator 100 is mounted with a sensor group 10 including a plurality of sensors that detect the state of each part of the hydraulic excavator 100, a controller 20, a storage device 21, a transmitter 30, and a receiver 35.
  • the state detection signal output from the sensor group 10 is read by the controller 20 at a predetermined timing.
  • the controller 20 has a timer function 20a for measuring a traveling operation time, a turning operation time, and a front operation time for excavation. Based on the read state detection signal, the controller 20 measures the traveling operation time, the turning operation time, and the front operation time by the timer function 20a. These measured operation times are stored in the storage device 21 by the controller 20.
  • the excavator 100 also has a key switch 22 for starting the engine 85 and an hour meter 23 for measuring the operating time of the engine 85.
  • the controller 20 has a clock function 20b, and the clock function 20b can recognize the ON time and OFF time of the key switch 22, and the engine start time and engine stop time. These times are also stored in the storage device 21 by the controller 20.
  • the measured value of the hour meter 23 is also read by the controller 20 at a predetermined timing and stored in the storage device 21.
  • the controller 20 also causes the storage device 21 to appropriately store the outputs of other sensors included in the sensor group 10 (for example, the fuel ejection amount during engine operation).
  • the controller 20 does not simply store the state detection signal output from the sensor group 10 in the storage device 21 as state data (sensor output), but also creates new data from these sensor outputs and further stores the storage device 21. May be remembered. Specifically, when a specific sensor output has an abnormal value that deviates from a predetermined normal value, the controller 20 suggests that an abnormality may have occurred in a part corresponding to the sensor output. Alarm data to be generated is created and stored in the storage device 21. For example, if the engine coolant temperature detected by an engine coolant temperature sensor 15w, which will be described later with reference to FIG. 5, exceeds a predetermined threshold value, the controller 20 may have an abnormality in the engine cooling system. Alarm data suggesting sex is created and stored in the storage device 21.
  • the controller 20 transmits each data (for example, sensor output, running, turning and front operation time, key switch on time, alarm data, etc.) stored in the storage device 21 described above at a predetermined timing. 30 to transmit.
  • the alarm data is data that suggests the possibility that an abnormality has occurred, so it is desirable that the alarm data be transmitted promptly.
  • the controller 20 transmits the alarm data as soon as possible. Operation time, key switch-on time, etc. are less urgent than alarm data. Therefore, the controller 20 transmits these data periodically (for example, every several minutes to several hours).
  • the radio wave transmitted from the transmitter 30 is received by the base station 300 via the communication satellite 200.
  • a receiver 35 is also connected to the controller 20. The receiver 35 receives a signal sent from the base station 300 via the communication satellite 200 and sends it to the controller 20.
  • the hydraulic excavator 100 has a connection interface (I / F) 24 for connecting to the client terminal 800.
  • the connection interface 24 is an interface that mediates communication between the client terminal 800 and the controller 20.
  • a mode selection dial 25 is further connected to the controller 20.
  • the mode selection dial 25 is an operation member for selecting an operation mode of the excavator 100.
  • an operation signal corresponding to the operation is sent to the controller 20.
  • the controller 20 determines the operation mode of the excavator 100 based on the operation signal.
  • the excavator 100 is provided with two operation modes: a power mode (hereinafter referred to as P mode) and an economy mode (hereinafter referred to as E mode). That is, the mode selection dial 25 is an operation member for alternatively selecting the P mode and the E mode.
  • the controller 20 makes the rotational speed and / or torque of the engine 85 different between when the excavator 100 is operating in the P mode and when operating in the E mode. Specifically, during the P mode operation, the excavator 100 operates at a higher output than during the E mode operation. Therefore, when performing a high load operation that requires high output, it is desirable to set the P mode as the operation mode of the excavator 100 in the controller 20.
  • the excavator 100 operates with better fuel efficiency than during the P mode operation. That is, the P mode is an operation mode with relatively high output and high fuel consumption (low fuel consumption), and the E mode is an operation mode with relatively low output and low fuel consumption (good fuel consumption).
  • the storage device 21 stores the rotational speed of the engine 85 and the control value of the discharge capacity (push-off volume) of the hydraulic pump 2 corresponding to each of the P mode and the E mode.
  • the controller 20 reads out the rotational speed of the engine 85 and the control value of the discharge capacity of the hydraulic pump 2 corresponding to the P mode from the storage device 21, and reads the read numerical value (the rotation of the engine 85).
  • the engine 85 and the hydraulic pump 2 are controlled based on the number and the control value of the discharge capacity of the hydraulic pump 2.
  • the controller 20 reads each numerical value (control value of the rotational speed of the engine 85 and the discharge capacity of the hydraulic pump 2) corresponding to the E mode from the storage device 21, and based on the read numerical value.
  • the engine 85 and the hydraulic pump 2 are controlled.
  • FIG. 5 is a diagram showing the sensors included in the sensor group 10.
  • the sensor group 10 includes a pressure sensor (main hydraulic system sensor) 11 that detects the pressure state of the main hydraulic circuit system.
  • the pressure sensor 11 includes a pressure sensor 11p that measures the discharge pressure of the hydraulic pump 2 shown in FIG. 3, pressure sensors 11tr and 11tl that measure the driving pressure of the traveling hydraulic motors 87 and 88 shown in FIGS.
  • a pressure sensor 11bk for measuring the driving pressure of the bucket hydraulic cylinder C3 shown in FIG.
  • the sensor group 10 also includes a pressure sensor (pilot hydraulic system sensor) 13 for detecting the pressure state of the pilot hydraulic circuit system.
  • the pressure sensor 13 includes pressure sensors 13tr and 13tl for measuring pilot pressures Ptr and Ptl output from the traveling hydraulic pilot valves 4tr and 4tl shown in FIG. 3, and a pilot pressure output from the swing hydraulic pilot valve 4s shown in FIG.
  • the pressure sensor 13a for measuring and the pressure sensor 13bk for measuring the pilot pressure Pbk output from the bucket hydraulic pilot valve 4bk shown in FIG. 3 are provided.
  • the traveling operation time is a time obtained by integrating the time when the pressure Ptr or Ptl detected by the traveling pilot pressure sensor 13tr or 13tl is equal to or greater than a predetermined value.
  • the turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13s is equal to or greater than a predetermined value.
  • the front operation time is a time obtained by integrating the time when any of the pressures Pb, Pa, and Pbk detected by any of the boom, arm, and bucket pilot pressure sensors 13b, 13a, and 13bk is equal to or greater than a predetermined value.
  • the sensor group 10 includes a hydraulic oil system sensor 14, that is, a pressure sensor 14f that detects clogging of a filter disposed in the main hydraulic line, and a temperature sensor 14t that detects the temperature of the hydraulic oil that drives the hydraulic motor and the hydraulic cylinder. Including. Furthermore, the sensor group 10 includes various engine system sensors 15 that detect the state of the engine system.
  • the engine system sensor 15 includes a DPF differential pressure sensor 15d that detects upstream and downstream differential pressures of a diesel particulate filter (DPF) that collects particulate matter (PM) contained in exhaust gas, and an engine A cooling water temperature sensor 15w for detecting the cooling water temperature 85, an engine oil pressure sensor 15op for detecting the pressure of the engine oil, an engine oil temperature sensor 15ot for detecting the temperature of the engine oil, and an engine for detecting the level of the engine oil Oil level sensor 15ol, clogging sensor 15af for detecting clogging of the air filter, fuel remaining amount sensor 15f for measuring the remaining amount of fuel, battery voltage sensor 15v for detecting the charging voltage of the battery, and engine speed And a rotational speed sensor 15r for detection.
  • DPF diesel particulate filter
  • PM particulate matter
  • FIG. 6 is a schematic diagram illustrating the configuration of the server 500.
  • the server 500 includes a control device 510, a storage unit 520, and a communication unit 530.
  • Control device 510 includes a microcomputer (not shown) and its peripheral circuits.
  • the control device 510 controls each unit of the server 500 by reading and executing a control program stored in advance by the storage unit 520.
  • the storage unit 520 is a non-volatile storage device such as a fixed disk.
  • the communication unit 530 performs data communication via the network 400 according to a predetermined procedure.
  • the sensor information database 600 and the contract information database 700 are connected to the control device 510.
  • the contents of these databases will be described with examples.
  • FIG. 7 is a diagram illustrating an example of data stored in the sensor information database 600. Since there are various types of data transmitted from one excavator 100 to the server 500 via the base station 300, only a part of the data is shown in FIG.
  • the control device 510 included in the server 500 stores in the sensor information database 600 the data type 630 of data received from each excavator 100 via the base station 300, the data value 640, the reception date and time 610 of the data, and the data
  • the work machine ID 620 unique to the excavator 100 having the controller 20 that has transmitted the information is stored in association with each other.
  • FIG. 7 as an example of the data type 630, an hour meter, the elapsed time after purchase of the excavator 100 (cumulative), the engine start time, the engine stop time, and the fuel discharge capacity of the engine 85 in the period from the engine start time to the engine stop time are shown. Cite.
  • tuning information transmitted from the client terminal 800 is also stored.
  • the data type 630 is “tuning information”
  • the data value 640 is the content of the tuning information
  • the reception date and time 610 is the date and time when the tuning information is received.
  • the work machine ID 620 is a work machine ID unique to the excavator 100 that has been tuned. The tuning information will be described in detail later.
  • the purchaser (administrator) of the hydraulic excavator 100 can conclude a maintenance contract for the hydraulic excavator 100 with the seller.
  • the maintenance contract of the hydraulic excavator 100 includes an individual contract for individually contracting each individual element related to maintenance, and a comprehensive contract including the plurality of individual contracts as one package.
  • the individual contract includes a long-term guarantee contract, a maintenance contract, a data report contract, and a tuning contract. These individual contracts are concluded for each excavator 100, and a purchaser (manager) of the excavator 100 can freely select which individual contract is concluded for each excavator 100.
  • the comprehensive contract is a contract that includes all the individual contracts, and is concluded for each excavator 100.
  • the contract information database 700 connected to the server 500 stores contract information indicating what kind of contract is concluded for each hydraulic excavator 100.
  • the long-term warranty contract is a contract that guarantees a certain performance, repair and replacement in the event of a failure for a longer period than usual by making a contract to pay a certain fee in advance for specific parts of the excavator 100, etc. .
  • the maintenance contract is a contract that guarantees replenishment and replacement at regular intervals by making a contract to pay a fixed fee in advance for specific consumables and the like of the excavator 100.
  • the data report contract is a contract in which a report is periodically provided (distributed) from the server 500 regarding the operating state of the excavator 100.
  • the tuning contract is a contract in which tuning using the client terminal 800 is provided to the excavator 100.
  • FIG. 8 is a diagram illustrating an example of data stored in the contract information database 700.
  • the contract information database 700 for each hydraulic excavator 100, the work machine ID 710 of the hydraulic excavator 100, customer information 720 regarding the purchaser (administrator) who purchased (owns) the hydraulic excavator 100, and the purchaser
  • the contract contents 730 and the contract period 740 of the maintenance contract concluded between the (manager) and the seller are stored in association with each other.
  • One of the parties to the maintenance contract of the excavator 100 is the purchaser of the excavator 100, and the other of the parties to the excavator 100 is the seller of the excavator 100.
  • the first delivery address which is the email address of the report created in the server 500 750 and a first language 760 representing the language of the report transmitted to the destination are stored together.
  • An e-mail address of a purchaser (administrator) of the hydraulic excavator 100, an operator, or the like is preset in the first destination address 750.
  • the contract information database 700 further stores a second destination address 770 and a second language 780 representing the language of the report transmitted to the second destination address 770.
  • an e-mail address of a seller of the excavator 100 for example, a sales office such as an agency
  • the server 500 can generate a plurality of types of reports.
  • the report generated by the server 500 is transmitted to the purchaser, the seller, or both depending on the type of the report.
  • FIG. 9 is a schematic diagram showing the configuration of the client terminal 800.
  • the client terminal 800 includes a control device 810, a storage unit 820, a communication unit 830, a display unit 840, an operation unit 850, and a connection interface (I / F) 860.
  • the control device 810 includes a microcomputer (not shown) and its peripheral circuits.
  • the control device 810 controls each unit of the client terminal 800 by reading and executing a control program stored in advance by the storage unit 820.
  • the storage unit 820 is a non-volatile storage device such as a fixed disk.
  • the communication unit 830 performs data communication via the network 400 according to a predetermined procedure.
  • the display unit 840 is a display device such as a liquid crystal display.
  • the operation unit 850 includes operation members such as a keyboard, a mouse, and a touch panel, for example, and sends operation signals corresponding to operations performed by the user (maintenance staff) to these operation members to the control device 810.
  • the connection interface 860 is an interface for connecting to the excavator 100.
  • the control device 810 of the client terminal 800 communicates with the controller 20 of the excavator 100 connected by the connection interface 860, so that the storage content of the storage device 21 can be rewritten via the controller 20, for example.
  • FIG. 10 is a schematic diagram for explaining the concept of tuning, in which the horizontal axis represents engine output (kilowatt hours) and the vertical axis represents fuel consumption per unit time (liters per hour), that is, fuel consumption.
  • the relationship between the engine output and fuel consumption in the hydraulic excavator 100 is substantially linear as shown by a straight line 870 in FIG. That is, the fuel consumption per unit time increases as the engine output increases, and conversely, the fuel consumption per unit time decreases as the engine output decreases.
  • Value is set.
  • the engine 85 in the P mode is set so that the engine output in the P mode becomes a predetermined value B larger than the predetermined value A and the fuel consumption becomes a predetermined value Y larger than the predetermined value X.
  • the control value of the discharge capacity of the hydraulic pump 2 are set.
  • the rotational speed of the engine 85 and the control value of the discharge capacity of the hydraulic pump 2 corresponding to each of the E mode and the P mode are stored in the storage device 21.
  • the purchaser of the hydraulic excavator 100 may wish to provide P-mode or E-mode tuning for the hydraulic excavator 100 in which a tuning contract is concluded among the above-described comprehensive contracts or individual contracts. it can.
  • Tuning in the present embodiment refers to rewriting the control value of the rotational speed of the engine 85 and / or the discharge capacity of the hydraulic pump 2 stored in the storage device 21 of the excavator 100 during the P mode / E mode operation. Point to.
  • the output (fuel consumption) during the P mode operation is increased or decreased from the standard output (fuel consumption) of the P mode, and during the E mode operation.
  • the output (fuel consumption) can be increased or decreased from the standard output (fuel consumption) of the E mode.
  • the control value setting range 872 that can be tuned during P-mode operation and the control value setting range 871 that can be tuned during E-mode operation do not overlap each other.
  • the setting range 872 that can be tuned during the P mode operation includes the set value of the control value for the P mode operation at the time of shipment.
  • the setting range 871 that can be tuned during the E mode operation includes the set value of the control value for the E mode operation at the time of shipment.
  • the seller dispatches a maintenance staff possessing the client terminal 800 to the installation site of the excavator 100.
  • the maintenance staff Prior to going to the site, connects the client terminal 800 to the network 400 in advance and downloads contract information regarding the hydraulic excavator 100 to be tuned from the server 500 to the client terminal 800.
  • the control device 510 included in the server 500 receives a download request from the control device 810 included in the client terminal 800
  • the control information included in the excavator 100 corresponding to the request is read from the contract information database 700 and the control included in the client terminal 800.
  • the control device 810 included in the client terminal 800 stores the contract information received from the server 500 in the storage unit 820.
  • the maintenance staff goes to the installation site of the excavator 100 with the client terminal 800 and connects the client terminal 800 to the excavator 100 via the connection interface 860.
  • the maintenance staff inputs a command to execute the tuning process for the excavator 100 to the control device 810 of the client terminal 800.
  • the control device 810 of the client terminal 800 refers to the contract information stored in the storage unit 820 and determines whether tuning to the excavator 100 to which the client terminal 800 is connected is permitted. .
  • the control device 810 determines that the tuning is permitted.
  • the control device 810 changes the engine speed and / or torque of the excavator 100 via the controller 20. In other words, the control value of the rotational speed of the engine 85 and the discharge capacity of the hydraulic pump 2 stored in the storage device 21 of the excavator 100 is input to the control device 810 via the operation unit 850 by the maintenance staff.
  • the controller 20 rewrites.
  • the control value of the rotational speed of the engine 85 of the excavator 100 and the discharge capacity of the hydraulic pump 2 is changed.
  • the input values input to the control device 810 by the maintenance staff via the operation unit 850 for changing the control values are stored by the control device 810 or the storage unit 820 as information (tuning information) regarding the contents of tuning. Is done.
  • the maintenance staff causes the control device 810 of the client terminal 800 to execute the tuning process of the excavator 100, and then connects the client terminal 800 to the network 400 again.
  • Tuning information regarding the contents of the tuning performed is transmitted from the client terminal 800 to the server 500 by the control device 810 via the communication unit 830.
  • the control device 510 of the server 500 adds information such as the work machine ID for identifying the excavator 100 that has been tuned and the date and time that the tuning has been performed to the tuning information received via the communication unit 530. And stored in the sensor information database 600.
  • the torque change described above can be performed as follows.
  • the displacement capacity of the variable displacement hydraulic pump is adjusted by the pump regulator.
  • the hydraulic pump is assumed to be driven by so-called full horsepower control.
  • the displacement volume is defined according to the discharge pressure of the hydraulic pump.
  • This displacement displacement adjustment is performed as follows. Based on a characteristic diagram called a so-called PQ diagram, the displacement of the pump regulator is adjusted by controlling the pump regulator based on the measured value of the pump discharge pressure.
  • the discharge amount is the product of the engine speed and the pump displacement capacity.
  • two types of PQ characteristic diagrams are defined for each of the P mode and the E mode. According to the PQ diagram of the P mode, these two types of PQ characteristic diagrams are set so that a larger torque can be obtained compared to the PQ diagram of the E mode.
  • control to increase or decrease the torque by tuning is as follows.
  • the pump discharge capacity determined from the pump discharge pressure based on the PQ characteristic diagram selected in the P mode may be increased. Therefore, for example, the regulator is controlled so that a pump capacity equal to a value obtained by multiplying the determined pump discharge capacity by a coefficient larger than 1 is obtained by tuning.
  • the control device 510 included in the server 500 creates and distributes three types of reports: a regular report, an emergency report, and an important report.
  • the control device 510 included in the server 500 of the present embodiment creates these three types of reports for each hydraulic excavator 100, but a purchaser who has purchased a plurality of hydraulic excavators 100 and a seller who has sold a plurality of hydraulic excavators 100. Therefore, one report corresponding to the plurality of excavators 100 may be created and distributed.
  • the regular report is a report that the control device 510 of the server 500 collects and creates sensor outputs and the like every predetermined period (in this embodiment, one month of a calendar month).
  • the server 500 refers to the contract information database 700 and specifies the excavator 100 for which a periodic report should be created.
  • the control device 510 extracts a record in which the contract indicated by the contract content 730 is a comprehensive contract or a data report contract and the contract period 740 includes the current date.
  • the excavator 100 corresponding to the work machine ID 710 included in the record thus extracted is specified.
  • the control device 510 generates, for each identified hydraulic excavator 100, a periodic report that displays the previous month's operating state of the hydraulic excavator 100 in a language based on the first language 760 or the second language 780 in the contract information database 700. create.
  • the control device 510 of the server 500 sends the generated report to the distribution destinations set in advance in each of the first delivery destination address 750 and the second delivery destination address 770 in the contract information database 700 (purchase that is the contract builder. And e-mail to consumers and sellers).
  • the regular report is a report for confirming the operation status of the excavator 100 during a certain period, and is a report with less urgency compared to other reports described later. Therefore, the control device 510 of the server 500 does not necessarily need to send a periodic report immediately after it is created. For example, the control device 510 may transmit a regular report after waiting until the communication amount of the network 400 is low (for example, late at night or early morning). About the same periodic report, the timing which the control apparatus 510 transmits to a purchaser, and the timing which the control apparatus 510 transmits to a seller may mutually differ.
  • FIG. 11 is a diagram showing an example of a regular report format.
  • the periodic report 150 includes the latest hour meter value 151, the number of elapsed years 152 after the purchase of the excavator 100, the accumulated operating days 153 of the excavator 100, the accumulated operating time 154 of the excavator 100 in the month for which the report is created,
  • the regular report 150 Based on the cumulative fuel consumption 159 of the excavator 100 in the report creation month, the average fuel consumption 160 per day of the excavator 100 in the report creation month, and the cumulative fuel consumption of the excavator 100.
  • the regular report 150 also includes difference values (increase / decrease values) 162, 163, and 164 of the previous month.
  • the periodic report 150 includes the tuning execution date 156, the P-mode tuning content 157, and the E-mode as the tuning information described above.
  • the tuning content 158 is displayed.
  • the operation time and fuel consumption of the excavator 100 within the predetermined period described above, that is, within the calendar month, are collectively displayed on a daily basis.
  • the first area which is a date display area in which numerical values of dates are displayed (for example, 1 for the first day, 2 for the second day, etc.) and the operating time of the same date provided adjacent to the first area.
  • a second area which is an item display area to be displayed, and a third area which is an item display area which is provided adjacent to the second area and which displays fuel consumption on the same date are the number of days in the calendar month, matrix Arranged.
  • the operation time is 8.2 hours and the fuel consumption is 150 liters
  • YYYY On non-working days such as MM month 1 (Sun), according to the fuel consumption calendar 155, the operating time and non-working, as well as the operating time for each day and the fuel consumption for the day are displayed. You can grasp at a glance.
  • the daily operation time is calculated by integrating the operation time from the engine start time to the engine stop time of the excavator 100 for each day.
  • the background color of the column corresponding to each date is made darker as the operating time is longer, so that the total operating time in the entire month and the operating time by date can be determined at a glance. It is possible to grasp.
  • the background color may be changed based on the daily fuel consumption or the fuel consumption per unit time instead of the daily operating hours.
  • each item described in the periodic report 150 is based on the stored information. Created by controller 510. For example, the latest hour meter value 151 is obtained by the control device 510 searching the sensor information database 600 for the newest hour meter value received by the control device 510 from the excavator 100 within a predetermined period corresponding to the periodic report 150. Can be described in the periodic report 150. Similarly, other items can be created from information such as sensor output stored in the sensor information database 600.
  • FIG. 12 is a flowchart of the regular report distribution process executed by the control device 510 of the server 500.
  • control device 510 selects one unselected work machine ID in the regular report distribution process from the work machine IDs of all hydraulic excavators 100 under management.
  • the processes in steps S310 to S350 are executed for the excavator 100 with the work implement ID selected here.
  • step S310 the control device 510 searches the contract information database 700 for the work machine ID selected in step S300, and includes a comprehensive contract or a data report contract including a data report contract within the valid period corresponding to the work machine ID. Determine whether an individual contract exists. If such a contract does not exist, control device 510 advances the process to step S360. If there is a valid contract in step S310, control device 510 advances the process to step S320.
  • step S320 the control device 510 refers to the first language 760 and the second language 780 of the contract information database 700, and determines the language of the periodic report 150 to be created this time.
  • the sensor output data transmitted from the excavator 100 in the process of step S400, which will be described later with reference to FIG. 15, is received by the control device 510, and the sensor output data received in the process of step S410 is received by the control device 510 in the sensor information database.
  • control device 510 refers to sensor information database 600 and creates periodic report 150 based on the sensor output data stored in sensor information database 600.
  • the first language 760 and the second language 780 are different, two periodic reports 150 corresponding to the respective languages are created. In the two periodic reports 150, the language used for the description is different, but the information itself is the same.
  • step S340 the control device 510 refers to the first destination address 750 and the second destination address 770 of the contract information database 700, and identifies the delivery destination of the periodic report 150 created this time.
  • step S350 the control device 510 distributes the periodic report 150 created in step S330 to the distribution destination specified in step S340 via the communication unit 530.
  • step S360 the control device 510 determines whether or not the work machine IDs of all the excavators 100 managed by the control device 510 have been selected in step S300. When the unselected hydraulic excavator 100 remains, the control device 510 returns the process to step S300 and repeatedly executes the processes after step S300. When all the excavators 100 have been selected, the control device 510 ends the process of FIG.
  • the emergency report is a report for notifying that an abnormality has occurred in the excavator 100.
  • the control device 510 included in the server 500 stores the received information in the sensor information database 600 and attempts to detect abnormal data from the received information.
  • the abnormal data is data representing the occurrence of an abnormality that hinders the operation of the excavator 100, such as a cooling system failure or an engine 85 failure.
  • the detection of abnormality data by the control device 510 of the server 500 is performed based on alarm data transmitted from the excavator 100, sensor output data transmitted from the excavator 100, and the like.
  • the abnormal data detection process will be described with specific examples.
  • the engine 85 of the excavator 100 includes a DPF in the exhaust gas discharge path.
  • the DPF differential pressure sensor 15d detects a pressure difference before and after the DPF. This pressure difference represents the amount of PM deposited on the DPF (the degree of clogging of the DPF).
  • the detected PM accumulation amount is transmitted to the server 500 as sensor output data every time a change of a predetermined value or more occurs.
  • the controller 20 of the excavator 100 executes DPF regeneration control to prevent the DPF from being clogged.
  • the regeneration control is control in which the controller 20 increases the temperature of the exhaust gas that passes through the DPF and burns PM, for example, by executing post injection or increasing the engine speed.
  • the controller 20 can execute two types of regeneration control: time regeneration control that is automatically executed every predetermined time and manual regeneration control that is performed in response to a manual operation by the operator of the excavator 100.
  • the regeneration control may have an influence on the operation of the excavator 100, for example, the fuel efficiency is deteriorated or the output of the engine 85 is lowered.
  • the controller 20 performs control so that such an influence is reduced although the regeneration effect of the DPF is small.
  • the controller 20 performs control with greater regeneration effect in manual regeneration control. At this time, for example, work using the hydraulic excavator 100 cannot be performed, or the work content of the hydraulic excavator 100 is limited. Operation will have a greater impact than time regeneration control.
  • the controller 20 transmits sensor output data of the PM accumulation amount detected by the DPF differential pressure sensor 15d after the regeneration is completed, together with data indicating that the regeneration control is completed.
  • the control device 510 of the server 500 displays data indicating that the PM accumulation amount when the time regeneration control is completed is equal to or greater than a predetermined threshold, that is, the PM accumulation amount even though the time regeneration control is executed.
  • the data indicating that has not been sufficiently lowered is detected as abnormal data.
  • the hydraulic excavator 100 detects the temperature of the engine coolant using the engine coolant temperature sensor 15w.
  • the hydraulic excavator 100 detects the temperature of the hydraulic oil that drives the hydraulic motor and the hydraulic cylinder by the hydraulic oil temperature sensor 14t. Further, the excavator 100 detects the outside air temperature of the place where the excavator is operating by an outside air temperature sensor (not shown).
  • These sensor output data detected in the hydraulic excavator 100 are periodically transmitted to the server 500 by the controller 20 of the hydraulic excavator 100.
  • the control device 510 of the server 500 calculates the average engine coolant temperature from the engine coolant temperatures transmitted from a plurality of hydraulic excavators 100 (same model) within the last hour, for example. Similarly, the average temperature is calculated for the hydraulic oil temperature and the outside air temperature.
  • the control device 510 for a certain excavator 100, the latest temperature transmitted from the excavator 100 (the temperature of the engine cooling water, the hydraulic oil temperature, the outside air temperature), the average temperature of each of the latest temperatures, Abnormal data of the excavator 100 is detected based on the temperature transmitted from the excavator. For example, if each of the coolant temperature and hydraulic oil temperature detected in a certain hydraulic excavator 100 is much higher than the average value of the temperatures detected in the same time zone in a hydraulic excavator 100 of the same model as that hydraulic excavator 100. The radiator of the excavator 100 is considered to be considerably clogged. If this situation is left unattended, a serious failure may occur. Therefore, the control device 510 detects data including the coolant temperature and the hydraulic oil temperature detected in the hydraulic excavator 100 as abnormal data. To do.
  • the controller 20 transmits alarm data indicating an overheat warning to the server 500.
  • the control device 510 indicates an overheat warning from the hydraulic excavator 100 even though each of the coolant temperature and the hydraulic oil temperature detected in the hydraulic excavator 100 is not significantly different from the average temperature in the plurality of hydraulic excavators 100.
  • control device 510 of the server 500 detects abnormality data representing an abnormality that hinders the operation of the excavator 100 based on sensor output data, alarm data, and the like collected from the excavator 100. .
  • Control device 510 switches the detection method of abnormal data according to the type of sensor output data or alarm data.
  • FIG. 16 is a diagram illustrating a state in which the control device 510 switches the detection method of abnormal data according to the determination result of the data type such as sensor output, and details of the processing performed in step S430 in FIG. Show. For example, when it is detected that the sensor output data of a certain type X has exceeded a predetermined threshold value (affirmative determination in step S4310 in step S430), the control device 510 determines that the sensor output data of that type X has a predetermined value.
  • step S4320 that is, positive determination in step S430
  • step S4350 positive determination in step S430
  • Control device 510 determines that abnormal data has been detected only when sensor output data obtained by a sensor with such a large detection error exceeds a threshold value a plurality of times in succession. . In the case of negative determination in step S4310 or S4350, control device 510 determines that abnormal data has not been detected (negative determination in step S430).
  • control device 510 detected abnormal data based on whether the sensor output data exceeded a threshold value a plurality of times in succession. Instead of determining whether or not abnormal data has been detected based on whether or not the type Y sensor output data has exceeded a predetermined threshold value within a certain period of time. That is, if the sensor output data exceeds the threshold value a predetermined number of times within a certain period (positive determination in step S4330), if the type of the sensor output data is Y (positive determination in step S4340), Control device 510 determines that abnormal data has been detected (positive determination in step S430).
  • FIG. 13 (a) and FIG. 13 (b) are diagrams showing examples of emergency report formats.
  • the control device 510 included in the server 500 according to the present embodiment has two first emergency reports 250 illustrated in FIG. 13A and second emergency reports 350 illustrated in FIG. Create types of emergency reports.
  • the first emergency report 250 includes a work machine ID 251 for identifying the hydraulic excavator 100 (the hydraulic excavator 100 in which an abnormality has occurred) that is a report target, and an abnormality content 252 that represents the content of the abnormality.
  • the control device 510 included in the server 500 creates the first emergency report 250 in a language based on the first language 760 of the contract information database 700 and distributes the first emergency report 250 to a distribution destination (purchaser) based on the first destination address 750.
  • the second report 350 includes a work machine ID 351 for specifying the hydraulic excavator 100 (the hydraulic excavator 100 in which an abnormality has occurred) that is a report target, and an alarm 352 that indicates the content of alarm data detected in the hydraulic excavator 100.
  • Manual information including a cause 353 that indicates the cause of the abnormality, a specific response 354 that indicates a countermeasure for the abnormality, a page number of a manual that describes the countermeasure, and a URL for referring to the manual 355 and sensor output data 356.
  • the control device 510 included in the server 500 creates the second emergency report 350 in a language based on the second language 780 of the contract information database 700 and distributes the second emergency report 350 to a distribution destination (seller) based on the second destination address 770.
  • the second emergency report 350 shown in FIG. 13 (b) is richer in contents than the first emergency report 250 shown in FIG. 13 (a). In other words, the second emergency report 350 has a larger amount of information than the first emergency report 250. This is because the seller needs to take action (repair etc.) corresponding to the abnormal data on the excavator 100, and it is necessary to grasp the internal information of the excavator 100 such as sensor output data. is there. Presenting such internal information to the purchaser does not help solve the problem of the purchaser, but only increases the complexity of the report. The first emergency report 350 sent to the purchaser Such internal information is not described.
  • the important report is a report for informing that the hydraulic excavator 100 has signs that may cause some abnormality.
  • the control device 510 included in the server 500 tries to detect predictive data based on information received from the excavator 100 before and after the detection of abnormal data.
  • the predictive data means that if the excavator 100 is continuously used as it is, an abnormality that may hinder the operation of the excavator 100, such as a failure of the cooling system or a failure of the engine 85, may occur. It is data to represent.
  • the intake water temperature and hydraulic oil temperature are decreasing, whereas the cooling water temperature is When it is in an upward trend, it is considered that the function of the cooling system of the hydraulic excavator 100 is becoming dull. If this is left unattended, it is conceivable that the cooling system will eventually lose its cooling function, causing overheating of the engine 85, and hindering the operation of the excavator 100.
  • data representing a sign of abnormality that may lead to an abnormality in the future, although immediate action is not necessary is predictive data.
  • the control device 510 detects such predictive data using the sensor output data of the excavator 100 stored in the sensor information database 600, and generates an important report based on the predictor data.
  • FIG. 14 is a diagram showing an example of an important report format.
  • the important report 450 includes the work machine ID 451 for identifying the hydraulic excavator 100 (the hydraulic excavator 100 in which an abnormality is seen) that is the report target, and the contents of past sensor output data detected by the hydraulic excavator 100. Representing sensor output data 452 for the past month, a possible factor 453 presenting the cause of the abnormality, a possible abnormality 454 representing an abnormality that may occur in the future, and the occurrence of the abnormality Specific correspondence 455 representing the correspondence method.
  • the control device 510 included in the server 500 creates the important report 450 in a language based on the second language 780 of the contract information database 700 and distributes it to a distribution destination (seller) based on the second destination address 770. That is, the control device 510 included in the server 500 does not distribute the important report 450 to the purchaser of the excavator 100.
  • This sign data is data for determining what kind of maintenance should be performed on the hydraulic excavator 100 in the future, and indicates that the hydraulic excavator 100 cannot be operated immediately, or that the hydraulic excavator 100 cannot be operated. This is because it is not data.
  • the predictive data is data with higher uncertainty than the abnormal data, and even if the important report 450 is distributed, it does not mean that the hydraulic excavator 100 needs to take any measures.
  • the seller examines the delivered important report 450 and determines whether or not an abnormality is actually occurring in the excavator 100 and whether or not some kind of treatment is necessary. Even if such an uncertain report is distributed to the purchaser, the purchaser only feels uneasy about the purchaser. Therefore, the control device 510 included in the server 500 does not distribute the important report 450 to the purchaser. .
  • FIG. 15 is a flowchart of data reception processing executed by the control device 510 of the server 500. This process is executed every time data is transmitted from the excavator 100 to the server 500.
  • control device 510 receives data such as sensor output from hydraulic excavator 100 via communication unit 530.
  • control device 510 stores the received data in sensor information database 600.
  • step S420 the control device 510 searches the contract information database 700 for the work machine ID of the excavator 100 that has transmitted the data received in step S400, and includes a comprehensive contract or data report within the valid period corresponding to the work machine ID. Determine whether a contract exists. If such a contract does not exist, the control device 510 ends the process of FIG. If there is a valid contract, control device 510 advances the process to step S430.
  • step S430 the control device 510 attempts to detect abnormal data based on the sensor output data stored in the sensor information database 600, and determines whether the abnormal data has been detected. If abnormal data is detected, control device 510 advances the process to step S440.
  • control device 510 refers to the first language 760 and the second language 780 of the contract information database 700, and determines the languages of the first emergency report 250 and the second emergency report 350 to be created this time.
  • control device 510 refers to sensor information database 600, and creates first emergency report 250 and second emergency report 350 based on the sensor output data and the like stored in sensor information database 600 in step S430.
  • control device 510 refers to first delivery address 750 and second delivery address 780 of contract information database 700, and identifies the delivery destinations of first emergency report 250 and second emergency report 350 created this time.
  • control device 510 distributes first emergency report 250 and second emergency report 350 created in step S450 to the distribution destination specified in step S460 via communication unit 530.
  • control device 510 advances the process to step S480.
  • step S480 control device 510 attempts to detect predictive data based on sensor output data and the like stored in sensor information database 600, and determines whether or not predictive data has been detected. When the predictor data is detected, control device 510 advances the process to step S490.
  • step S490 the control device 510 refers to the second language 780 of the contract information database 700, and determines the language of the important report 450 to be created this time.
  • step S500 the control device 510 refers to the sensor information database 600, and creates an important report 450 based on the sensor output data and the like stored in the sensor information database 600 in step S430.
  • step S510 the control device 510 refers to the second destination address 780 of the contract information database 700, and identifies the distribution destination of the important report 450 created this time.
  • step S520 control device 510 distributes important report 450 created in step S500 to the distribution destination specified in step S510 via communication unit 530.
  • the server 500 according to the above-described embodiment provides the following operational effects.
  • the control device 510 creates a regular report 150 based on the sensor output collected from the excavator 100 every predetermined period, and creates emergency reports 250 and 350 when abnormal data is detected based on the sensor output.
  • An important report 450 is generated when predictive data leading to abnormal data is detected based on the output.
  • the control device 510 distributes each of the regular report 150, the emergency reports 250 and 350, and the important report 450 to a distribution destination designated at a distribution timing corresponding to the report. Since it did in this way, the report in which the information required for management of a working machine was described was delivered automatically, and it becomes possible to obtain required information without complicated operation.
  • control device 510 When the control device 510 creates each of the periodic report 150, the emergency reports 250 and 350, and the important report 450, it refers to the contract information database 700 in which various information about the contract is stored, and the language of the report And create a report in the determined language. Since it did in this way, a single system can provide a report delivery service to each of the customers who exist in a plurality of language areas.
  • the control device 510 specifies the purchaser and seller of the hydraulic excavator 100 as the delivery destination of the emergency reports 250 and 350, specifies the seller of the hydraulic excavator 100 as the delivery destination of the important report 450, and periodically As a delivery destination of the report 150, the purchaser and seller of the excavator 100 are specified. Since it did in this way, the important report 450 in which the information which is not necessary for the purchaser of the hydraulic excavator 100 is described is not distributed to the purchaser, and the purchaser is not confused. The information described in the important report 450 is not necessary for the purchaser, but is useful for future maintenance proposals of the excavator 100, and such useful information is reliably distributed to the seller.
  • the control device 510 uses the registered address of the purchaser as one of the parties to the conclusion of a comprehensive contract including a plurality of individual contracts as distribution destinations of the emergency reports 250 and 350, the important report 450, and the periodic report 150. And the registered address of the seller who is the other party to whom the hydraulic excavator 100 is sold is set as the distribution destination. As described above, since the contract information and the report delivery destination are linked, the excavator 100 and the purchaser and the seller are securely linked, and the report can be delivered without error. Apart from the contract information database 700, a database for managing the report delivery destination is not required.
  • the server 500 is connected to a sensor information database 600 that stores information received by the control device 510 regarding tuning performed on the excavator 100 from the client terminal 800. If information related to tuning is stored in the sensor information database 600 when the regular report 150 is created, the control device 510 creates the regular report 150 including information related to tuning. Since it did in this way, the history which performed tuning work is displayed on regular report 150, and the purchaser of hydraulic excavator 100 (work machine), especially the manager can grasp the state of tuning correctly. Since the contents of the tuning are not displayed on the hydraulic excavator 100 itself, the operability, the work amount, and the like are different even though the hydraulic excavator 100 is the same before and after tuning, and the operator may feel uncomfortable.
  • the control device 510 detects abnormal data when one sensor output exceeds a predetermined threshold, or a plurality of continuous time series When abnormal sensor data is detected when the sensor output exceeds a predetermined threshold, or when a specific number of sensor outputs exceed a predetermined threshold among a plurality of sensor outputs output within a certain period Whether or not abnormal data is detected is switched for each type of sensor output. Since it did in this way, the erroneous detection of abnormal data can be suppressed.
  • the control device 510 creates a first emergency report 250 distributed to the purchaser and a second emergency report 350 distributed to the seller and having a larger amount of information than the first emergency report 250. Since it did in this way, the control apparatus 510 can deliver the detailed report in which the necessary information was written in full to the seller, delivering the report easy to understand to the purchaser.
  • the control device 510 of the server 500 collects sensor outputs from the excavator 100 for each predetermined period, and displays information corresponding to the sensor output for that date in each date column of the fuel consumption calendar 155 for the predetermined period. Create and distribute regular reports 150 in style. Since it did in this way, the operator can grasp
  • the fuel consumption calendar 155 described in the periodic report 150 includes a first area in which the numerical value of the date is displayed, and a third area that is provided close to the first area and displays the fuel consumption of the corresponding date.
  • the first region and the third region are arranged in a matrix. Since it did in this way, the operator can grasp
  • the control device 510 included in the server 500 transmits three types of reports to the address of the purchaser or seller of the excavator 100 with which the comprehensive contract or the data report contract is concluded. May be sent to.
  • the control device 510 delivers all of the emergency report, the important report, and the periodic report to the address of the contractor of the comprehensive contract, and the long-term warranty contract, the maintenance contract, the data report contract, and the tuning contract.
  • One or two of the emergency report, the important report, and the periodic report may be distributed to the address of the contractor of at least one of the contracts. That is, a difference may be provided in the types of reports to be distributed according to the comprehensive contract and other contracts.
  • the description content and the format of each report may be different from those illustrated in FIGS. 11, 13, and 14 in the above-described embodiment.
  • the control device 510 included in the server 500 includes, for example, a plurality of other excavators 100 that are the same model as the excavator 100 that is the target of the report, as shown in the example of the regular report format shown in FIG.
  • a display area 1610 including an average value of fuel consumption, hydraulic oil temperature, water temperature, and pump pressure based on the sensor output may be written in the periodic report 150 illustrated in FIG.
  • the control device 510 is not only the same model as the hydraulic excavator 100 that is the report target, but also the positions of the plurality of hydraulic excavators 100 indicated by the respective GPS sensor outputs. Based on the information, the average value of the fuel consumption, hydraulic oil temperature, water temperature, and pump pressure calculated from the sensor outputs of the plurality of hydraulic excavators 100 operating in the same area as the hydraulic excavator 100 to be reported is a regular report 150. It may be written together. By doing in this way, it becomes possible to compare the operation status between the hydraulic excavator 100 to be reported and other hydraulic excavators 100 in which the surrounding environment such as weather conditions is substantially the same. .
  • the classification method of “same area” may be arbitrarily set.
  • the “same area” may be, for example, “same site”, “same municipality”, “same region”, or “same country”.
  • the creation cycle of the regular report 150 and the transmission timing of each report can also be made different from the above-described embodiment.
  • control device 510 included in the server 500 has received the tuning information from the client terminal 800, but may receive this from each hydraulic excavator 100.
  • the fuel consumption calendar 155 is displayed only on the regular report 150, but may be displayed on the emergency report 250, 350 or the important report 450.
  • the fuel consumption calendar 155 instead of displaying the operation time and the fuel consumption amount, other items such as the operation time and the number of regenerations in the DPF, the average load, the maximum load, and the like, and combinations thereof may be displayed. good.
  • the present invention is not limited to the above-described embodiments and modifications, and other forms conceivable within the scope of the technical idea of the present invention are also within the scope of the present invention. include.
  • controller 100 excavator 200 communication satellite 300 base station 400 network 500 server 510 control device 600 sensor information database 700 contract information database 800 client terminal 810 control device 900 information terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 作業機械からのセンサ出力を受信する受信部と、センサ出力に基づいて所定期間ごとに所定期間内の作業機械の稼働状態を表示する定期レポートを作成する定期レポート作成部と、センサ出力に基づいて作業機械の異常を表す異常データを検知すると、少なくとも1つの緊急レポートを作成する緊急レポート作成部と、センサ出力に基づいて異常の兆候を表す予兆データを検知すると、重要レポートを作成する重要レポート作成部と、定期レポート、少なくとも1つの緊急レポート及び重要レポートを、それぞれ予め設定された定期レポート配信先、緊急レポート配信先及び重要レポート配信先に配信する配信部とを備える作業機械の管理サーバ。

Description

作業機械の管理サーバ及び作業機械の管理方法
 本発明は、作業機械の管理サーバ及び作業機械の管理方法に関する。
 従来から、作業機械との間で通信を行い、作業機械が一定期間に行った作業内容を示す作業報告(作業日報)を一定期間毎に作成する管理装置が知られている(特許文献1)。
日本国特許第4349477号公報
 従来技術には、作業機械の管理に必要な情報の授受に際し、管理者やサービスマンが端末を直接操作する必要があるという問題があった。
 本発明の第1の態様によると、作業機械の管理サーバは、作業機械からのセンサ出力を受信する受信部と、センサ出力に基づいて所定期間ごとに所定期間内の作業機械の稼働状態を表示する定期レポートを作成する定期レポート作成部と、センサ出力に基づいて作業機械の異常を表す異常データを検知すると、少なくとも1つの緊急レポートを作成する緊急レポート作成部と、センサ出力に基づいて異常の兆候を表す予兆データを検知すると、重要レポートを作成する重要レポート作成部と、定期レポート、少なくとも1つの緊急レポート及び重要レポートを、それぞれ予め設定された定期レポート配信先、緊急レポート配信先及び重要レポート配信先に配信する配信部とを備える。
 本発明の第2の態様によると、第1の態様の作業機械の管理サーバにおいて、言語に関する第1情報が格納された第1データベースと、第1情報を参照して言語を決定する言語決定部とをさらに備えるのが好ましい。定期レポート作成部、緊急レポート作成部、及び重要レポート作成部は、言語決定部によって決定された言語で、定期レポート、少なくとも1つの緊急レポート、及び重要レポートをそれぞれ作成する。
 本発明の第3の態様によると、第2の態様の作業機械の管理サーバにおいて、定期レポート配信先、緊急レポート配信先、及び重要レポート配信先を特定する配信先特定部をさらに備えるのが好ましい。第1データベースには定期レポート配信先、緊急レポート配信先、及び重要レポート配信先に関する第2情報がさらに格納される。配信先特定部は、第2情報を参照して、緊急レポート配信先として、作業機械の購入者に対応する第1配信先および作業機械の販売者に対応する第2配信先を特定し、重要レポート配信先として、販売者に対応する第2配信先を特定し、定期レポート配信先として、購入者に対応する第1配信先および販売者に対応する第2配信先を特定する。
 本発明の第4の態様によると、第1~第3のいずれかの態様の作業機械の管理サーバにおいて、外部端末装置によって作業機械に対して行われたチューニングに関する第3情報が格納される第2データベースと、第3情報を外部端末装置から受信して第2データベースに格納する制御部とをさらに備えるのが好ましい。定期レポート作成部は、定期レポートの作成時に第2データベースに第3情報が格納されている場合、第3情報を含む定期レポートを作成する。
 本発明の第5の態様によると、第1~第4のいずれかの態様の作業機械の管理サーバにおいて、定期レポート作成部は、作業機械と同一機種である複数の他の作業機械からのセンサ出力に基づく燃料消費量、作動油温、水温、およびポンプ圧力のいずれかの平均値を、定期レポ-トに併記するのが好ましい。
 本発明の第6の態様によると、第1~第5のいずれかの態様の作業機械の管理サーバにおいて、緊急レポート作成部は、センサ出力に基づいて異常データを検知する際、センサ出力が所定のしきい値を1回越えた場合、センサ出力が所定のしきい値を複数回連続して越えた場合、およびセンサ出力が所定のしきい値を一定期間内に所定回越えた場合の、いずれの場合に異常データを検知したと判定するか、をセンサ出力の種類に応じて切り替えるのが好ましい。
 本発明の第7の態様によると、第3の態様の作業機械の管理サーバにおいて、少なくとも1つの緊急レポートは、第1の緊急レポートと、第1の緊急レポートより情報量の多い第2の緊急レポートと、を含み、配信先特定部は、第1の緊急レポートに対応する緊急レポート配信先として、購入者に対応する第1配信先を特定し、第2の緊急レポートに対応する緊急レポート配信先として、販売者に対応する第2配信先を特定するのが好ましい。
 本発明の第8の態様によると、第1~第7のいずれかの態様の作業機械の管理サーバにおいて、定期レポート作成部、緊急レポート作成部及び重要レポート作成部のうちの少なくとも1つは、定期レポート、少なくとも1つの緊急レポート及び重要レポートのうちの少なくとも1つのレポートに記載する作業機械の燃料消費量の項目として、所定期間内の各日付の数値が表示された日付表示領域に対応して設けられた項目表示領域に、日付表示領域に表示された数値に対応する各日付の燃料消費量を表示し、少なくとも1つのレポートにおいて、日付表示領域と項目表示領域とが、所定期間内の日数分、マトリクス状に配置されるのが好ましい。
 本発明の第9の態様によると、作業機械の管理方法は、作業機械からのセンサ出力を受信し、センサ出力に基づいて所定期間ごとに所定期間内の作業機械の稼働状態を表示する定期レポートを作成し、センサ出力に基づいて作業機械の異常を表す異常データを検知するたびに少なくとも1つの緊急レポートを作成し、センサ出力に基づいて異常の兆候を表す予兆データを検知するたびに重要レポートを作成し、定期レポート、少なくとも1つの緊急レポート及び重要レポートを、それぞれ予め設定された定期レポート配信先、緊急レポート配信先及び重要レポート配信先に配信する。
 本発明の第10の態様によると、第9の態様の作業機械の管理方法において、センサ出力に基づいて異常データを検知する際、センサ出力が所定のしきい値を1回越えた場合、センサ出力が所定のしきい値を複数回連続して越えた場合、およびセンサ出力が所定のしきい値を一定期間内に所定回越えた場合の、いずれの場合に異常データを検知したと判定するか、をセンサ出力の種類に応じて切り替えるのが好ましい。
 本発明によれば、必要な情報が記載されたレポートが自動的に配信されるので、油圧ショベルの購入者や販売者は、必要な情報を煩雑な操作なしに得ることが可能となる。
図1は、本発明の一実施の形態に係るサーバを含む油圧ショベルの管理システムの概略を説明する図である。 図2は、油圧ショベルの構成を示す模式図である。 図3は、油圧ショベルが有する油圧回路の概略を示す模式図である。 図4は、油圧ショベルの各部の状態を検出して状態データ(センサ出力)をサーバへ送信するコントローラを含む油圧ショベルの制御系のブロック図である。 図5は、センサ群に含まれるセンサを示す図である。 図6は、サーバの構成を示す模式図である。 図7は、センサ情報データベースに格納されるデータの一例を示す図である。 図8は、契約情報データベースに格納されるデータの一例を示す図である。 図9は、クライアント端末の構成を示す模式図である。 図10は、チューニングの概念を説明するための模式図である。 図11は、定期レポートの様式の例を示す図である。 図12は、サーバの制御装置が実行する定期レポート配信処理のフローチャートである。 図13は、緊急レポートの様式の一例を示す図である。 図14は、重要レポートの様式の一例を示す図である。 図15は、サーバの制御装置が実行するデータ受信処理のフローチャートである。 図16は、制御装置が、センサ出力等のデータの種類の判別結果に応じて、異常データの検知方法を切り替える様子を表す図である。 図17は、定期レポートの様式の例を示す図である。
 以下、図面を用いて、本発明を、油圧ショベルの管理システムを構成するサーバに適用した一実施の形態について説明する。
 図1は、本発明の一実施の形態に係るサーバを含む油圧ショベルの管理システムの概略を説明する図である。図1において、管理システム1は、複数の油圧ショベル100を管理する。管理システム1は、本実施の形態のサーバ500と、可搬性の携帯情報端末であるクライアント端末800とを含む。サーバ500は、一般公衆回線網等であるネットワーク400に接続されている。ネットワーク400にはサーバ500の他に基地局300と複数の情報端末900とがそれぞれ接続されている。サーバ500はネットワーク400に接続されたこれらのノード、すなわち基地局300および複数の情報端末900とデータの授受を行うことができる。クライアント端末800は、図示しない無線局や接続機器等を用いて、ネットワーク400に接続することが可能である。
 各々の油圧ショベル100は、各々の油圧ショベル100自身の各部の状態を検出する種々のセンサを有している。各々の油圧ショベル100が有する後述するコントローラは、それら種々のセンサの出力を所定のタイミングで基地局300に後述する送信機を介して送信する。所定のタイミングとは、例えば数分~数時間周期毎である。センサ出力の送信タイミングは、これとは異なる所定のタイミングであってもよい。センサ出力の送信タイミングがセンサの種類毎に異なっていてもよいし、全てのセンサについて一律であってもよい。
 基地局300は、通信衛星200を介してセンサ出力を受信すると、ネットワーク400を介して当該センサ出力をサーバ500に送信する。サーバ500にはセンサ情報データベース(DB)600と、契約情報データベース700とが接続されている。サーバ500が有する後述する制御装置は、基地局300を経由して油圧ショベル100から受信したセンサ出力に、当該センサ出力を送信した油圧ショベル100を識別するための情報や、当該センサ出力が送信された日時等の情報を付加して、センサ情報データベース600に格納する。つまりサーバ500が有する制御装置は、複数の油圧ショベル100からのセンサ出力を収集してセンサ情報データベース600に格納する。
 詳細は後述するが、クライアント端末800は、油圧ショベル100に対してチューニングを行う制御装置を有している。油圧ショベル100の保守スタッフは、クライアント端末800が有する制御装置に油圧ショベル100のチューニングを行わせた後に、クライアント端末800をネットワーク400に接続し、クライアント端末800が有する制御装置にサーバ500へ当該チューニングに関する情報を送信させる。サーバ500が有する制御装置は、センサ情報データベース600に、上述のセンサ出力に加えて、クライアント端末800から受信したチューニングに関する情報も格納する。
 サーバ500が有する制御装置は、センサ情報データベース600に格納されたセンサ出力等の情報やチューニングに関する情報等に基づいて、各油圧ショベル100の状態を表示するレポートを作成し、ネットワーク400を介して送信する。サーバ500が有する制御装置は、レポートの送信先を、契約情報データベース700の内容に基づいて決定する。レポートは、例えば油圧ショベル100の販売者が利用する情報端末900や、油圧ショベル100の購入者(管理者)やオペレータ等が利用する情報端末900に送信され、当該情報端末900の表示画面に表示される。
(油圧ショベル100の構成の説明)
 図2は、油圧ショベル100の構成を示す模式図である。油圧ショベル100は、走行体81と、走行体81の上部に連結された旋回体82とを有する。旋回体82は、走行体81に対して旋回可能である。旋回体82には、運転室83と、作業装置84と、エンジン85と、旋回油圧モータ86とが設けられている。作業装置84は、旋回体82の本体に取り付けられたブームBMと、ブームBMに連結されたアームAMと、アームAMに連結されたアタッチメント、例えばバケットBKとを有する。ブームBMは、旋回体82の本体に対して回動可能である。アームAMは、ブームBMに対して回動可能である。バケットBKは、アームAMに対して回動可能である。ブームBMはブームシリンダC1により昇降される。アームAMに対してはアームシリンダC2によりクラウド操作およびダンプ操作が行われる。バケットBKに対してはバケットシリンダC3によりクラウド操作およびダンプ操作が行われる。走行体81には左右の走行用油圧モータ87および88が設けられている。
 図3は、油圧ショベル100が有する油圧回路の概略を示す模式図である。エンジン85は油圧ポンプ2を駆動する。この油圧ポンプ2から吐出される圧油は、複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkでその方向と油量が制御され、上述した旋回油圧モータ86、左右の走行用油圧モータ87、88、油圧シリンダC1、C2、C3を駆動する。複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkはそれぞれ対応する複数のパイロットバルブ4s、4tr、4tl、4b、4aおよび4bkからそれぞれ供給されるパイロット圧力によって切換操作される。パイロットバルブ4s、4tr、4tl、4b、4aおよび4bkは、パイロット油圧ポンプ5から所定圧力のパイロット油圧が供給され、操作レバー4Ls、4Ltr、4Ltl、4Lb、4La、4Lbkの操作量に応じたパイロット圧力を出力する。複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkは1つのバルブブロックに集約される。複数のパイロットバルブ4s、4tr、4tl、4b、4aおよび4bkも1つのバルブブロックに集約される。
 図4は、油圧ショベル100の各部の状態をセンサ群10を介して検出して状態データ(センサ出力)をサーバ500へ送信するコントローラを含む油圧ショベル100の制御系のブロック図である。油圧ショベル100には、上述した油圧ショベル100の各部の状態を検出する複数のセンサを含むセンサ群10、コントローラ20、記憶装置21、送信機30および受信機35が搭載されている。センサ群10から出力される状態検出信号は、所定のタイミングでコントローラ20によって読み込まれる。
 コントローラ20は、走行操作時間、旋回操作時間、および掘削のためのフロント操作時間を計測するためのタイマ機能20aを有している。コントローラ20は、読み込んだ状態検出信号に基づいて、タイマ機能20aにより、走行操作時間、旋回操作時間、フロント操作時間を計測する。これら計測された操作時間は、コントローラ20によって記憶装置21に格納される。油圧ショベル100は、エンジン85を起動するキースイッチ22と、エンジン85の稼働時間を計測するアワメータ23も有している。
 コントローラ20は、時計機能20bを有しており、時計機能20bによって、キースイッチ22のオン時刻およびオフ時刻、ならびにエンジン始動時刻およびエンジン停止時刻を認識することができる。これらの時刻もコントローラ20によって記憶装置21に格納される。アワメータ23の計測値も所定のタイミングでコントローラ20によって読み込まれ、記憶装置21に格納される。コントローラ20は、センサ群10に含まれるその他のセンサの出力(例えばエンジン稼働中の燃料噴出量等)についても、適宜記憶装置21に記憶させる。
 コントローラ20は、センサ群10から出力された状態検出信号を、単に記憶装置21に状態データ(センサ出力)として記憶させるだけではなく、それらのセンサ出力から新たなデータを作成してさらに記憶装置21に記憶させることもある。具体的には、特定のセンサ出力が予め定められた正常値から乖離した異常値になっていた場合には、コントローラ20は、当該センサ出力に対応する部位に異常が生じている可能性を示唆するアラームデータを作成して記憶装置21に記憶させる。例えば、図5を用いて後述するエンジン冷却水温度センサ15wによって検出されたエンジン冷却水の温度が所定のしきい値を上回っていた場合、コントローラ20はエンジンの冷却系に異常が生じている可能性を示唆するアラームデータを作成して記憶装置21に記憶させる。
 コントローラ20は、以上で説明した記憶装置21に記憶させた各データ(例えばセンサ出力、走行、旋回およびフロントの操作時間、ならびにキースイッチオン時刻、およびアラームデータなど)を、所定のタイミングで送信機30を介して送信する。例えば、アラームデータは、異常が生じている可能性を示唆するデータであるため、速やかに送信されることが望ましい。コントローラ20は、記憶装置21がアラームデータを記憶すると、可能な限り速やかに当該アラームデータを送信する。操作時間やキースイッチオン時刻等は、アラームデータに比べて緊急性が低い。そこでコントローラ20は、これらのデータを定期的(例えば数分~数時間ごと)に送信する。
 送信機30から送信された電波は通信衛星200を経由して基地局300で受信される。コントローラ20には受信機35も接続されている。受信機35は、通信衛星200を介して基地局300から送られてくる信号を受信してコントローラ20へ送出する。
 油圧ショベル100は、クライアント端末800と接続するための接続インタフェース(I/F)24を有している。接続インタフェース24は、クライアント端末800とコントローラ20との間の通信を仲介するインタフェースである。コントローラ20には、更に、モード選択ダイヤル25が接続されている。モード選択ダイヤル25は、油圧ショベル100の動作モードを選択するための操作部材である。油圧ショベル100のオペレータがモード選択ダイヤル25を操作すると、コントローラ20には当該操作に応じた操作信号が送出される。コントローラ20は、当該操作信号に基づいて油圧ショベル100の動作モードを決定する。
 本実施形態において、油圧ショベル100には、パワーモード(以下、Pモードと称する)とエコノミーモード(以下、Eモードと称する)と、の2つの動作モードが設けられている。つまり、モード選択ダイヤル25は、PモードとEモードとを択一的に選択するための操作部材である。コントローラ20は、油圧ショベル100がPモードで動作している場合と、Eモードで動作している場合とで、エンジン85の回転数および/またはトルクを異ならせる。具体的には、Pモード動作時、油圧ショベル100はEモード動作時よりも高出力で動作する。従って、高出力が要求される高負荷作業を行う際には、油圧ショベル100の動作モードとしてPモードをコントローラ20に設定することが望ましい。Eモード動作時、油圧ショベル100はPモード動作時よりも良好な燃費で動作する。つまり、Pモードは相対的に高出力かつ高燃費な(燃費が悪い)動作モードであり、Eモードは相対的に低出力かつ低燃費な(燃費がよい)動作モードである。
 記憶装置21には、PモードおよびEモードの各々に対応するエンジン85の回転数と油圧ポンプ2の吐出容量(押除け容積)の制御値とが記憶されている。コントローラ20は、Pモードが設定された場合には、Pモードに対応するエンジン85の回転数と油圧ポンプ2の吐出容量の制御値とを記憶装置21から読み出し、読み出した数値(エンジン85の回転数および油圧ポンプ2の吐出容量の制御値)に基づいてエンジン85と油圧ポンプ2とを制御する。コントローラ20は、Eモードが設定された場合には、Eモードに対応する各数値(エンジン85の回転数および油圧ポンプ2の吐出容量の制御値)を記憶装置21から読み出し、読み出した数値に基づいてエンジン85と油圧ポンプ2とを制御する。
 図5は、センサ群10に含まれるセンサを示す図である。センサ群10は、メイン油圧回路系の圧力状態を検出する圧力センサ(メイン油圧系センサ)11を含む。圧力センサ11は、図3に示す油圧ポンプ2の吐出圧力を計測する圧力センサ11pと、図2および3に示す走行用油圧モータ87および88の駆動圧力を計測する圧力センサ11trおよび11tlと、旋回油圧モータ86の駆動圧力を計測する圧力センサ11sと、図3に示すブーム油圧シリンダC1の駆動圧力を計測する圧力センサ11bと、図3に示すアーム油圧シリンダC2の駆動圧力を計測する圧力センサ11aと、図3に示すバケット油圧シリンダC3の駆動圧力を計測する圧力センサ11bkとを含む。
 センサ群10は、パイロット油圧回路系の圧力状態を検出する圧力センサ(パイロット油圧系センサ)13も含む。圧力センサ13は、図3に示す走行油圧パイロットバルブ4trおよび4tlから出力されるパイロット圧力PtrおよびPtlを計測する圧力センサ13trおよび13tlと、図3に示す旋回油圧パイロットバルブ4sから出力されるパイロット圧力Psを計測する圧力センサ13sと、図3に示すブーム油圧パイロットバルブ4bから出力されるパイロット圧力Pbを計測する圧力センサ13bと、図3に示すアーム油圧パイロットバルブ4aから出力されるパイロット圧力Paを計測する圧力センサ13aと、図3に示すバケット油圧パイロットバルブ4bkから出力されるパイロット圧力Pbkを計測する圧力センサ13bkとを有している。
 走行操作時間は、走行パイロット圧力センサ13trまたは13tlが検出した圧力PtrまたはPtlが所定値以上である時間を積算した時間である。旋回操作時間は、旋回パイロット圧力センサ13sが検出した圧力Psが所定値以上である時間を積算した時間である。フロント操作時間は、ブーム、アームおよびバケット用パイロット圧力センサ13b、13aおよび13bkのいずれかが検出した圧力Pb、PaおよびPbkのいずれかが所定値以上である時間を積算した時間である。
 センサ群10は、作動油系センサ14、すなわちメイン油圧ラインに配設されたフィルタの目詰まりを検出する圧力センサ14f、および油圧モータや油圧シリンダを駆動する作動油の温度を検出する温度センサ14tも含む。さらにセンサ群10は、エンジン系統の状態を検出する各種のエンジン系センサ15を有している。エンジン系センサ15は、排気ガスに含まれる粒子状物質(PM)を捕集するディーゼル微粒子捕集フィルター(DPF)の上流側および下流側の前後差圧を検出するDPF差圧センサ15dと、エンジン85の冷却水温を検出する冷却水温度センサ15wと、エンジンオイルの圧力を検出するエンジンオイル圧力センサ15opと、エンジンオイルの温度を検出するエンジンオイル温度センサ15otと、エンジンオイルのレベルを検出するエンジンオイルレベルセンサ15olと、エアフィルタの目詰まりを検出する目詰まりセンサ15afと、燃料残量を計測する燃料残量センサ15fと、バッテリの充電電圧を検出するバッテリ電圧センサ15vと、エンジン回転数を検出する回転数センサ15rとを有している。
(サーバ500の構成の説明)
 図6は、サーバ500の構成を示す模式図である。サーバ500は、制御装置510と、記憶部520と、通信部530とを有する。制御装置510は、図示しないマイクロコンピュータおよびその周辺回路を含む。制御装置510は、記憶部520によって予め記憶されている制御プログラムを読み込んで実行することにより、サーバ500の各部を制御する。記憶部520は、例えば固定ディスク等の不揮発性の記憶装置である。通信部530は、所定の手順に則ってネットワーク400を介したデータ通信を行う。
 制御装置510には、センサ情報データベース600および契約情報データベース700が接続されている。以下、これらの各データベースの内容について、例を挙げて説明する。
 図7は、センサ情報データベース600に格納されるデータの一例を示す図である。1つの油圧ショベル100から基地局300を介してサーバ500に送信されるデータの種類は多岐に渡るため、図7ではその一部のみを図示している。
 サーバ500が有する制御装置510は、センサ情報データベース600に、基地局300を介して各油圧ショベル100から受信したデータのデータ種別630と、データ値640と、当該データの受信日時610と、当該データを送信したコントローラ20を有する油圧ショベル100に固有の作業機ID620と、をそれぞれ関連付けて格納する。図7ではデータ種別630の一例として、アワメータ、油圧ショベル100の購入後経過時間(累計)、エンジン始動時刻、エンジン停止時刻、エンジン始動時刻からエンジン停止時刻までの期間におけるエンジン85の燃料吐出容量を挙げている。
 センサ情報データベース600には、クライアント端末800から送信されたチューニング情報も格納される。制御装置510は、チューニング情報をセンサ情報データベース600に格納する際、データ種別630を「チューニング情報」とし、データ値640を当該チューニング情報の内容とし、受信日時610を当該チューニング情報を受信した日時とし、作業機ID620を当該チューニングが為された油圧ショベル100に固有の作業機IDとする。チューニング情報については後に詳述する。
 契約情報データベース700の内容について説明する前に、本実施形態における保守契約の例について説明する。
 油圧ショベル100の購入者(管理者)は、販売者との間で油圧ショベル100の保守契約を締結することができる。油圧ショベル100の保守契約には、保守に関する個々の要素毎に個別に契約を行う個別契約と、それら複数の個別契約を1つのパッケージとして包括した包括契約とが存在する。本実施形態において、個別契約には、長期保証契約と、メンテナンス契約と、データレポート契約と、チューニング契約とが存在する。これらの個別契約は、油圧ショベル100毎に締結され、油圧ショベル100毎にどの個別契約を締結するかを、油圧ショベル100の購入者(管理者)が自由に選択することができる。包括契約は、それらの個別契約を全て含む契約であり、油圧ショベル100毎に締結される。サーバ500と接続されている契約情報データベース700には、個々の油圧ショベル100に対してどのような契約が締結されているかを表す契約情報が格納されている。
 長期保証契約は、油圧ショベル100の特定の部品等について、予め一定の料金を支払う契約を行うことによって、通常よりも長期に一定の性能や故障時の修理および交換等が保証される契約である。メンテナンス契約は、油圧ショベル100の特定の消耗品等について、予め一定の料金を支払う契約を行うことによって、一定期間毎の補給および交換等が保証される契約である。データレポート契約は、油圧ショベル100の稼働状態について、サーバ500から定期的にレポートが提供(配信)される契約である。チューニング契約は、油圧ショベル100に対して、クライアント端末800を用いたチューニングが提供される契約である。
 図8は、契約情報データベース700に格納されるデータの一例を示す図である。契約情報データベース700には、各油圧ショベル100毎に、当該油圧ショベル100の作業機ID710と、当該油圧ショベル100を購入した(保有する)購入者(管理者)に関する顧客情報720と、その購入者(管理者)と販売者との間で締結された保守契約の契約内容730および契約期間740とが関連付けて格納されている。油圧ショベル100の保守契約の締結当事者の一方が油圧ショベル100の購入者であり、その締結当事者の他方が油圧ショベル100の販売者である。データレポート契約が締結されている場合と、包括契約が締結されている場合と、のいずれかの場合には、サーバ500で作成されたレポートの送付先の電子メールアドレスである第1送付先アドレス750と、当該送付先に送信するレポートの言語を表す第1言語760とが、併せて格納される。第1送付先アドレス750には、油圧ショベル100の購入者(管理者)やオペレータ等の電子メールアドレスが予め設定される。契約情報データベース700には更に、第2送付先アドレス770と、当該第2送付先アドレス770に送信されるレポートの言語を表す第2言語780とが格納されている。第2送付先アドレス770には、油圧ショベル100の販売者(例えば代理店などの営業拠点)の電子メールアドレスが予め設定される。
 詳細は後に説明するが、サーバ500では、複数の種類のレポートを作成可能である。サーバ500で作成されたレポートは、当該レポートの種類に応じて、購入者か、販売者か、もしくはその両方に送信される。
(クライアント端末800の構成の説明)
 図9は、クライアント端末800の構成を示す模式図である。クライアント端末800は、制御装置810と、記憶部820と、通信部830と、表示部840と、操作部850と、接続インタフェース(I/F)860とを有する。
 制御装置810は、図示しないマイクロコンピュータおよびその周辺回路を含む。制御装置810は、記憶部820によって予め記憶されている制御プログラムを読み込んで実行することにより、クライアント端末800の各部を制御する。記憶部820は、例えば固定ディスク等の不揮発性の記憶装置である。通信部830は、所定の手順に則ってネットワーク400を介したデータ通信を行う。
 表示部840は、例えば液晶ディスプレイ等の表示装置である。操作部850は、例えばキーボードやマウス、タッチパネル等の操作部材を有しており、それらの操作部材に対してユーザ(保守スタッフ)が行った操作に応じた操作信号を制御装置810に送出する。接続インタフェース860は、油圧ショベル100と接続するためのインタフェースである。クライアント端末800の制御装置810は、接続インタフェース860により接続された油圧ショベル100のコントローラ20と相互に通信を行うことで、例えば記憶装置21の記憶内容をコントローラ20を介して書き換えることができる。
 クライアント端末800を用いた油圧ショベル100のチューニングについて説明する。図10は、チューニングの概念を説明するための模式図であり、横軸がエンジン出力(キロワット時)、縦軸が単位時間あたりの燃料消費量(リットル毎時)すなわち燃費を表している。油圧ショベル100におけるエンジン出力と燃費との関係は、図10に直線870で示す通り、概ね線形になっている。つまり、エンジン出力を高めるほど単位時間当たりの燃料消費量は増大し、逆にエンジン出力を低くするほど単位時間当たりの燃料消費量は減少する。
 出荷時の油圧ショベル100において、Eモードにおけるエンジン出力が所定値Aとなるように、且つ燃費が所定値Xとなるように、Eモードにおけるエンジン85の回転数および油圧ポンプ2の吐出容量の制御値が設定されている。出荷時の油圧ショベル100において、Pモードにおけるエンジン出力が所定値Aよりも大きい所定値Bとなるように、且つ燃費が所定値Xよりも大きい所定値Yとなるように、Pモードにおけるエンジン85の回転数および油圧ポンプ2の吐出容量の制御値が設定されている。具体的には、これらEモードおよびPモードのそれぞれのモードに対応するエンジン85の回転数および油圧ポンプ2の吐出容量の制御値が、記憶装置21によって記憶されている。
 油圧ショベル100の購入者は、上述した包括契約か、または個別契約のうちチューニング契約が締結されている油圧ショベル100に対して、PモードやEモードのチューニングが提供されることを希望することができる。本実施形態におけるチューニングとは、油圧ショベル100の記憶装置21に格納されている、Pモード/Eモード動作時のエンジン85の回転数および/または油圧ポンプ2の吐出容量の制御値を書き換えることを指す。油圧ショベル100に対し、本実施形態におけるチューニングが行われることによって、Pモード動作時の出力(燃費)を、Pモードの標準的な出力(燃費)から上下させること、および、Eモード動作時の出力(燃費)を、Eモードの標準的な出力(燃費)から上下させることができる。Pモード動作時のチューニング可能な上記制御値の設定範囲872と、Eモード動作時のチューニング可能な上記制御値の設定範囲871とは、互いに重複しない。Pモード動作時のチューニング可能な設定範囲872は、出荷時のPモード動作用の上記制御値の設定値を含む。Eモード動作時のチューニング可能な設定範囲871は、出荷時のEモード動作用の上記制御値の設定値を含む。
 購入者がチューニングの申し入れを販売者に対して行うと、販売者はクライアント端末800を所持した保守スタッフを油圧ショベル100の設置現場に派遣する。保守スタッフは、現場に向かうのに先だって、予めクライアント端末800をネットワーク400に接続させ、サーバ500からチューニング対象の油圧ショベル100に関する契約情報をクライアント端末800にダウンロードしておく。
 サーバ500が有する制御装置510は、クライアント端末800が有する制御装置810からダウンロードのリクエストを受信すると、契約情報データベース700から当該リクエストに対応する油圧ショベル100の契約情報を読み出してクライアント端末800が有する制御装置810に送信する。クライアント端末800が有する制御装置810は、サーバ500から受信した契約情報を記憶部820に格納する。その後、保守スタッフは、クライアント端末800を持って油圧ショベル100の設置現場に向かい、クライアント端末800を、接続インタフェース860により油圧ショベル100に接続する。保守スタッフは、クライアント端末800が有する制御装置810に対し、油圧ショベル100に対するチューニング処理を実行するよう、命令を入力する。
 クライアント端末800の制御装置810は、チューニング処理において、記憶部820によって記憶された契約情報を参照し、クライアント端末800が接続されている油圧ショベル100へのチューニングが許可されているか否かを判定する。記憶部820によって記憶された契約情報として、有効な包括契約またはチューニング契約が記憶部820に存在する場合、制御装置810は、チューニングが許可されていると判定する。制御装置810は、チューニングが許可されていると判定した場合、油圧ショベル100のエンジン回転数および/またはトルクを、コントローラ20を介して変更する。換言すると、油圧ショベル100の記憶装置21によって記憶されているエンジン85の回転数および油圧ポンプ2の吐出容量の制御値を、保守スタッフにより操作部850を介して制御装置810に入力された入力値に、コントローラ20が書き換える。このようにして油圧ショベル100のチューニングが実施されることによって、油圧ショベル100のエンジン85の回転数および油圧ポンプ2の吐出容量の制御値が変更される。それらの制御値の変更のために保守スタッフにより操作部850を介して制御装置810に入力された上記入力値が、チューニングの内容に関する情報(チューニング情報)として、制御装置810または記憶部820によって記憶される。
 保守スタッフは、クライアント端末800の制御装置810に油圧ショベル100のチューニング処理を実行させた後、クライアント端末800を再度ネットワーク400に接続する。クライアント端末800からサーバ500へ、実施されたチューニングの内容に関するチューニング情報が、制御装置810によって通信部830を介して送信される。サーバ500の制御装置510は、通信部530を介して受信したチューニング情報に、当該チューニングが行われた油圧ショベル100を識別する作業機IDや、当該チューニングが行われた日時等の情報を付加して、センサ情報データベース600に格納する。
 上述したトルクの変更は以下のようにして行うことができる。
 可変容量油圧ポンプの押し除け容量はポンプレギュレータにより調節される。油圧ポンプは、いわゆる全馬力制御で駆動されるものとする。油圧ポンプ吐出圧力に応じて押し除け容積が規定される。この押し除け容積調節は以下のようにして行われる。いわゆるPQ線図と呼ばれる特性線図に基づき、ポンプ吐出圧力の測定値に基づいてポンプレギュレータが駆動制御されることによって、押し除け容積が調節される。
 PQ線図で表される圧力と吐出量(=エンジン回転数×ポンプ押し除け容量)との積がトルクに対応する物理量(油圧ポンプ吸収馬力)である。吐出量は、エンジン回転数とポンプ押し除け容量との積である。この実施形態では、PモードおよびEモードのそれぞれに応じて2種類のPQ特性線図が規定される。PモードのPQ線図によればEモードのPQ線図に比較して大きなトルクが得られるように、それら2種類のPQ特性線図が設定されている。
 チューニングによりトルクを増減する制御の一例を説明すると以下のとおりである。たとえば、Pモードでエンジン回転数を一定としたままトルクを大きくするためには、Pモードで選択されたPQ特性線図に基づいてポンプ吐出圧力から決定されたポンプ吐出容量を大きくすればよい。したがって、たとえば、決定されたポンプ吐出容量に1よりも大きい係数を掛け合わせた値に等しいポンプ容量がチューニングにより得られるように、レギュレータが制御される。
(レポートの説明)
 サーバ500から油圧ショベル100の購入者(所有者)やオペレータ、販売者等に送信されるレポートについて説明する。サーバ500が有する制御装置510は、定期レポートと、緊急レポートと、重要レポートと、の3種類のレポートを作成し配信する。本実施形態のサーバ500が有する制御装置510は、これら3種類のレポートを油圧ショベル100ごとに作成するが、複数の油圧ショベル100を購入した購入者や、複数の油圧ショベル100を販売した販売者に向けて、それら複数の油圧ショベル100に対応する1つのレポートを作成し配信してもよい。
(定期レポートの説明)
 定期レポートは、サーバ500が有する制御装置510が、センサ出力等を所定期間(本実施形態では暦月の1ヶ月)ごとに収集して作成するレポートである。サーバ500は、月初に、契約情報データベース700を参照して、定期レポートを作成すべき油圧ショベル100を特定する。具体的には、制御装置510は、契約内容730が示す契約が包括契約またはデータレポート契約であり、且つ契約期間740が現在の日付を含むレコードを抽出する。こうして抽出されたレコードに含まれる作業機ID710に対応する油圧ショベル100が特定される。制御装置510は、その特定した各々の油圧ショベル100について、契約情報データベース700内の第1言語760や第2言語780に基づく言語で、当該油圧ショベル100の前月の稼働状態を表示する定期レポートを作成する。サーバ500の制御装置510は、作成したレポートを、契約情報データベース700内の第1送付先アドレス750および第2送付先アドレス770の各々に予め設定された配信先(上記契約の締結者である購入者および販売者)に、電子メールとして配信する。
 定期レポートは、一定期間における油圧ショベル100の稼働状況を確認するためのレポートであり、後述する他のレポートに比べて緊急性の低いレポートである。従って、サーバ500の制御装置510は、必ずしも定期レポートを作成後すぐに送信する必要はない。制御装置510は、例えば、ネットワーク400の通信量が少ない時間帯(例えば深夜あるいは早朝等)になるまで待ってから定期レポートを送信してもよい。同一の定期レポートについて、制御装置510が購入者に送信するタイミングと、制御装置510が販売者に送信するタイミングとが互いに異なっていてもよい。
 図11は、定期レポートの様式の一例を示す図である。定期レポート150は、最新アワメータ値151と、油圧ショベル100の購入後の経過年数152と、油圧ショベル100の累計稼働日数153と、レポート作成対象の月における油圧ショベル100の累計稼働時間154と、油圧ショベル100の燃費カレンダー(稼働状況カレンダー)155と、レポート作成対象の月における油圧ショベル100の累計の燃料消費量159と、レポート作成対象の月における油圧ショベル100の1日あたりの平均燃料消費量160(時間燃費)と、油圧ショベル100の累計燃料消費量に基づいて算出されたCO2排出量161と、を含む。レポート作成対象の月における油圧ショベル100の累計の燃料消費量159と、レポート作成対象の月における油圧ショベル100の1日あたりの平均燃料消費量160と、油圧ショベル100の累計燃料消費量に基づいて算出されたCO2排出量161と、については、更に前月比の差分値(増減値)162、163、および164も定期レポート150に含まれる。
 更に、レポート作成対象の油圧ショベル100が上述したチューニングを受けている場合、定期レポート150には、上述したチューニング情報として、当該チューニングの実施日156と、Pモードのチューニング内容157と、Eモードのチューニング内容158とが表示される。
 定期レポート150に含まれる燃費カレンダー155には、上述した所定期間内、すなわち暦月内の油圧ショベル100の稼働時間と燃料消費量とが、日単位で一括して表示される。具体的には、日付の数値(1日なら1、2日なら2など)が表示された日付表示領域である第1領域と、第1領域に隣接して設けられた同日付の稼働時間を表示する項目表示領域である第2領域と、第2領域に隣接して設けられた同日付の燃料消費量を表示する項目表示領域である第3領域とが、暦月内の日数分、マトリクス状に配置される。例えば、図11に例示する燃費カレンダー155中のYYYY年MM月2日(Mon)においては、稼働時間が8.2時間であって、且つ燃料消費量が150リットルである旨が表示され、YYYY年MM月1日(Sun)のように非稼動日においては、空欄で表示され、燃費カレンダー155によれば、稼動および非稼動の別、ならびに、日毎の稼動時間とその日の燃料消費量とを一目で把握できる。日毎の稼働時間は、油圧ショベル100のエンジン始動時刻からエンジン停止時刻までの稼働時間を日毎に積算することにより算出される。本実施形態では更に、各日付に相当する欄の背景色を、稼働時間が多い日付ほど濃い色にすることで、月全体における累計稼働時間の多寡と日付別の稼働時間の多寡とを一目で把握することができるようになっている。背景色を、日毎の稼働時間でなく、日毎の燃料消費量や、単位時間当たりの燃料消費量に基づいて変化させてもよい。
 上述したように、油圧ショベル100から収集されたセンサ出力等の情報がセンサ情報データベース600によって記憶されているので、それらの記憶されている情報に基づいて定期レポート150に記載されている各項目が制御装置510によって作成される。例えば最新アワメータ値151は、定期レポート150に対応する所定期間内に油圧ショベル100から制御装置510が受信したアワメータ値のうち、最も新しいものを、センサ情報データベース600から制御装置510が検索することにより、定期レポート150に記載することができる。他の項目についても同様に、センサ情報データベース600に蓄積されたセンサ出力等の情報から作成可能である。
 図12は、サーバ500の制御装置510が実行する定期レポート配信処理のフローチャートである。ステップS300において、制御装置510は、管理下にある全ての油圧ショベル100の作業機IDから、本定期レポート配信処理において未選択の作業機IDを1つ選択する。ステップS310~S350の処理は、ここで選択した作業機IDの油圧ショベル100について実行される。
 ステップS310で制御装置510は、ステップS300で選択された作業機IDを契約情報データベース700にて検索し、当該作業機IDに対応する有効期間内のデータレポート契約を含む包括契約またはデータレポート契約の個別契約が存在するか否かを判定する。そのような契約が存在しない場合、制御装置510は処理をステップS360に進める。ステップS310で有効な契約が存在する場合には、制御装置510は処理をステップS320に進める。
 ステップS320において制御装置510は、契約情報データベース700の第1言語760および第2言語780を参照し、今回作成する定期レポート150の言語を決定する。図15を用いて後述するステップS400の処理で、油圧ショベル100から送信されたセンサ出力データは制御装置510によって受信され、ステップS410の処理で受信されたセンサ出力データは制御装置510によってセンサ情報データベース600内に格納される。ステップS330で制御装置510は、センサ情報データベース600を参照し、センサ情報データベース600内に格納されたセンサ出力データに基づいて定期レポート150を作成する。第1言語760と第2言語780とが異なる場合は、それぞれの言語に対応する2つの定期レポート150が作成される。2つの定期レポート150においては、表記に用いられる言語は異なるが、記載される情報自体は同一である。
 ステップS340で制御装置510は、契約情報データベース700の第1送付先アドレス750および第2送付先アドレス770を参照し、今回作成した定期レポート150の配信先を特定する。ステップS350で制御装置510は、ステップS340で特定した配信先に、ステップS330で作成した定期レポート150を、通信部530を介して配信する。
 ステップS360において制御装置510は、制御装置510の管理下の全ての油圧ショベル100の作業機IDをステップS300で選択したか否かを判定する。未選択の油圧ショベル100が残っている場合には、制御装置510は処理をステップS300に戻し、ステップS300以降の処理を繰り返し実行する。制御装置510は、全ての油圧ショベル100を選択済みの場合には、図12の処理を終了する。
(緊急レポートの説明)
 緊急レポートは、油圧ショベル100に何らかの異常が発生したことを報知するレポートである。サーバ500が有する制御装置510は、油圧ショベル100から送信されるセンサ出力等を受信すると、受信した情報をセンサ情報データベース600に格納すると共に、受信した情報から異常データの検知を試みる。異常データとは、例えば冷却系の故障やエンジン85の故障など、油圧ショベル100の稼働に支障を来すような異常の発生を表すデータである。
 サーバ500が有する制御装置510による異常データの検知は、油圧ショベル100から送信されたアラームデータや、油圧ショベル100から送信されたセンサ出力データなどに基づいて行われる。以下、異常データの検知処理について、具体的に例を挙げて説明する。
(1)DPFの再生機構
 油圧ショベル100のエンジン85は、排気ガスの排出経路にDPFを備えている。DPF差圧センサ15dはDPFの前後の圧力の差を検知する。この圧力の差は、DPFへのPMの堆積量(DPFの目詰まりの度合い)を表している。検出されたPMの堆積量は、所定値以上の変化が発生する度に、センサ出力データとしてサーバ500へ送信される。
 油圧ショベル100のコントローラ20は、DPFが目詰まりしてしまうことを防止するため、DPFの再生制御を実行する。再生制御は、例えばポスト噴射を実行したり、エンジンの回転数を上げたりすることによって、コントローラ20が、DPFを通過する排気の温度を上昇させ、PMを燃焼させる制御である。コントローラ20は、所定時間毎に自動的に実行する時間再生制御と、油圧ショベル100のオペレータによる手動操作に応じて実行する手動再生制御と、の2種類の再生制御を実行可能である。
 再生制御は、例えば燃費が悪くなったり、エンジン85の出力が落ちたりといった、油圧ショベル100の稼動に対する影響を生じる場合がある。コントローラ20は、時間再生制御において、DPFの再生効果が小さいもののこのような影響が少なくなるような制御を行う。コントローラ20は、手動再生制御において、より再生効果が大きい制御を行うが、このときは、例えば油圧ショベル100を用いた作業が行えなかったり、あるいはその作業内容に制限が出る等、油圧ショベル100の稼動に対して、時間再生制御より大きな影響が出る。
 コントローラ20は、再生制御の実行が完了すると、再生制御の実行が完了したことを表すデータと共に、再生完了後にDPF差圧センサ15dにより検出されたPMの堆積量のセンサ出力データを送信する。サーバ500の制御装置510は、時間再生制御完了時のPMの堆積量が所定のしきい値以上であることを表すデータ、すなわち、時間再生制御が実行されたにも関わらず、PMの堆積量が十分に下がらなかったことを表すデータを、異常データとして検知する。
(2)エンジンの冷却機構
 油圧ショベル100は、エンジン冷却水温度センサ15wによってエンジン冷却水の温度を検出する。油圧ショベル100は、作動油温度センサ14tによって、油圧モータや油圧シリンダを駆動する作動油の温度を検出する。更に、油圧ショベル100は、図示しない外気温センサにより、油圧ショベルが稼動している場所の外気温度を検出する。
 油圧ショベル100において検出されたこれらのセンサ出力データは、油圧ショベル100のコントローラ20によって、サーバ500へ定期的に送信される。サーバ500の制御装置510は、例えば直近1時間以内に複数の油圧ショベル100(同一機種)から送信されてきたエンジン冷却水の温度から、エンジン冷却水温度の平均温度を算出する。作動油温度、外気温度についても同様に、平均温度を算出する。
 制御装置510は、ある油圧ショベル100について、その油圧ショベル100から送信されてきた最新の温度(エンジン冷却水の温度、作動油温度、外気温度)、上記最新の各温度の平均温度、過去にその油圧ショベルから送信されてきた温度などに基づいて、その油圧ショベル100の異常データを検知する。例えば、ある油圧ショベル100において検出された冷却水温度および作動油温度のそれぞれが、その油圧ショベル100と同一機種の油圧ショベル100において同時間帯に検出された温度の平均値よりも非常に高ければ、その油圧ショベル100のラジエータがかなり目詰まりしていると考えられる。この状況を放置してしまうといずれ深刻な故障が発生することも考えられるため、制御装置510はその油圧ショベル100において検出された冷却水温度と作動油温度とを含むデータを、異常データとして検知する。
 油圧ショベル100において、冷却水温度が一定値以上になると、コントローラ20が、オーバーヒート警告を表すアラームデータをサーバ500へ送信する。制御装置510は、ある油圧ショベル100において検出された冷却水温度と作動油温度とのそれぞれが、複数の油圧ショベル100における平均温度と大差ないにも関わらず、その油圧ショベル100からオーバーヒート警告を表すアラームデータが送信されてきた場合、その油圧ショベル100の電気系に異常が発生しつつあると判断し、異常データを検知したと判定する。
 以上のように、サーバ500の制御装置510は、油圧ショベル100から収集したセンサ出力データやアラームデータ等に基づいて、油圧ショベル100の稼働に支障を来すような異常を表す異常データを検知する。
 制御装置510は、センサ出力データやアラームデータの種類に応じて、異常データの検知方法を切り替える。図16は、制御装置510が、センサ出力等のデータの種類の判別結果に応じて、異常データの検知方法を切り替える様子を表す図であって、図15のステップS430で行われる処理の詳細を示している。例えばある種類Xのセンサ出力データが所定のしきい値を超過したことを検出したとき(ステップS430内のステップS4310で肯定判定)、制御装置510は、その種類Xのセンサ出力データが所定のしきい値を1回でも越えていればすぐに異常データを検知したと判定し(ステップS4320で肯定判定、すなわちステップS430で肯定判定)、種類X以外の別の種類のセンサ出力データについては、制御装置510は、その別の種類のセンサ出力データが所定のしきい値を3回連続して越えていた場合にのみ異常データを検知したと判定する(ステップS4350で肯定判定、すなわちステップS430で肯定判定)。これは、センサの種類に応じて、センサ出力データの信頼性に差があるためである。例えば検出誤差が大きいセンサによって得られたセンサ出力データの場合であれば、そのセンサ出力データが示す検出値が大きな誤差を含んだ結果として偶然しきい値を越えたのか、あるいは実際に異常が発生した結果としてその検出値がしきい値を越えたのかがわからない。制御装置510は、そのような検出誤差が大きいセンサによって得られたセンサ出力データについては、複数回連続してセンサ出力データがしきい値を越えた場合にのみ、異常データを検知したと判定する。ステップS4310またはS4350で否定判定の場合、制御装置510は、異常データを検知しなかったと判定する(ステップS430で否定判定)。制御装置510は、検出誤差の大きさがさらに異なる他の種類Yのセンサ出力データについては、そのセンサ出力データが複数回連続してしきい値を越えたか否かに基づいて異常データを検知したか否かを判定するのではなく、その種類Yのセンサ出力データが一定期間内に所定回しきい値を越えたか否かに基づいて異常データを検知したか否かを判定してもよい。すなわち、制御装置510は、センサ出力データが一定期間内に所定回しきい値を越えた場合(ステップS4330で肯定判定)、そのセンサ出力データの種類がYであれば(ステップS4340で肯定判定)、制御装置510は、異常データを検知したと判定する(ステップS430で肯定判定)。
 図13(a)、図13(b)は、緊急レポートの様式の例を示す図である。本実施形態のサーバ500が有する制御装置510は、同一の異常データに対し、図13(a)に示す第1緊急レポート250と、図13(b)に示す第2緊急レポート350と、の2種類の緊急レポートを作成する。
 第1緊急レポート250は、レポートの対象となった油圧ショベル100(異常が発生した油圧ショベル100)を特定するための作業機ID251と、当該異常の内容を表す異常の内容252とを含む。サーバ500が有する制御装置510は、第1緊急レポート250を、契約情報データベース700の第1言語760に基づく言語で作成し、第1送付先アドレス750に基づく配信先(購入者)に配信する。
 第2レポート350は、レポートの対象となった油圧ショベル100(異常が発生した油圧ショベル100)を特定するための作業機ID351と、油圧ショベル100において検出されたアラームデータの内容を表すアラーム352と、異常が発生した原因を表す原因353と、当該異常に対する対処方法を表す具体的対応354と、当該対処方法に関する記載があるマニュアルのページ番号や当該マニュアルを参照するためのURL等を含むマニュアル情報355と、センサ出力データ356とを含む。サーバ500が有する制御装置510は、第2緊急レポート350を、契約情報データベース700の第2言語780に基づく言語で作成し、第2送付先アドレス770に基づく配信先(販売者)に配信する。
 図13(b)に示した第2緊急レポート350は、図13(a)に示した第1緊急レポート250よりも記載内容が豊富である。換言すると、第2緊急レポート350は第1緊急レポート250よりも情報量が多い。これは、販売者は異常データに対応した処置(修理等)を油圧ショベル100に施す必要があり、センサ出力データ等の、いわば油圧ショベル100の内部情報についても把握しておく必要があるためである。そのような内部情報を購入者に提示しても、購入者の問題解決には役に立たず、レポートの煩雑さが増すだけであるため、購入者に送信される第1緊急レポート350には、そのような内部情報は記載されない。
(重要レポートの説明)
 重要レポートは、油圧ショベル100に何らかの異常の発生につながる兆候が見られることを報知するレポートである。サーバ500が有する制御装置510は、異常データの検知と前後して、油圧ショベル100から受信した情報に基づく予兆データの検知を試みる。予兆データとは、油圧ショベル100を現状のまま継続使用すると、例えば冷却系の故障やエンジン85の故障など、油圧ショベル100の稼働に支障を来すような異常が発生する可能性があることを表すデータである。
 例えば、ある油圧ショベル100において、過去一ヶ月間の吸気温と作動油温と冷却水温との変化傾向を見たとき、吸気温と作動油温とが下降傾向にあるのに対し、冷却水温が上昇傾向にあった場合、油圧ショベル100の冷却系の働きが鈍りつつあると考えられる。これを放置すれば、やがて冷却系は冷却機能を喪失し、エンジン85のオーバーヒート等が発生して油圧ショベル100の稼働に支障を来すことが考えられる。以上のように、即時の対処は必要としないものの、今後異常につながる可能性がある、異常の兆候を表すデータが、予兆データである。制御装置510は、センサ情報データベース600に蓄積された油圧ショベル100のセンサ出力データ等を利用して、このような予兆データを検知し、予兆データに基づいて重要レポートを生成する。
 図14は、重要レポートの様式の一例を示す図である。重要レポート450は、レポートの対象となった油圧ショベル100(異常の兆候が見られる油圧ショベル100)を特定するための作業機ID451と、油圧ショベル100において検出された過去のセンサ出力データの内容を表す過去1ヶ月のセンサ出力データ452と、異常の発生要因を提示する考えられる要因453と、今後発生する可能性がある異常を表す発生しうる異常454と、当該異常の発生を防止するための対応方法を表す具体的対応455とを含む。
 サーバ500が有する制御装置510は、重要レポート450を、契約情報データベース700の第2言語780に基づく言語で作成し、第2送付先アドレス770に基づく配信先(販売者)に配信する。つまり、サーバ500が有する制御装置510は重要レポート450を油圧ショベル100の購入者には配信しない。これは、予兆データは今後油圧ショベル100にどのような保守を行えばよいかを決定するためのデータであり、直ちに油圧ショベル100が稼働できなくなったり、必ず油圧ショベル100が稼働できなくなることを表すデータではないためである。換言すれば、予兆データは異常データに比べて不確実性の高いデータであり、重要レポート450が配信されても、油圧ショベル100に何らかの処置を施さなければならないというわけではない。販売者は、配信された重要レポート450を精査し、本当に油圧ショベル100に異常が発生しつつあるのかどうか、また何らかの処置を行う必要があるのかどうかを判断する。そのような不確実なレポートを購入者に配信しても、購入者にいたずらに不安な気持ちを抱かせるだけであるため、サーバ500が有する制御装置510は重要レポート450を購入者には配信しない。
 図15は、サーバ500の制御装置510が実行するデータ受信処理のフローチャートである。この処理は、油圧ショベル100からサーバ500へ何らかのデータが送信される度に実行される。ステップS400において、制御装置510は、油圧ショベル100からセンサ出力等のデータを、通信部530を介して受信する。ステップS410で制御装置510は、受信したデータをセンサ情報データベース600に格納する。
 ステップS420で制御装置510は、ステップS400で受信したデータを送信した油圧ショベル100の作業機IDを契約情報データベース700にて検索し、当該作業機IDに対応する有効期間内の包括契約またはデータレポート契約が存在するか否かを判定する。そのような契約が存在しない場合、制御装置510は図15の処理を終了させる。有効な契約が存在する場合には、制御装置510は処理をステップS430に進める。
 ステップS430で制御装置510は、センサ情報データベース600に格納されているセンサ出力データ等に基づいて異常データの検知を試み、異常データを検知したか否かを判定する。異常データを検知した場合、制御装置510は処理をステップS440に進める。
 ステップS440で制御装置510は、契約情報データベース700の第1言語760および第2言語780を参照し、今回作成する第1緊急レポート250および第2緊急レポート350の言語を決定する。ステップS450で制御装置510は、センサ情報データベース600を参照し、ステップS430でセンサ情報データベース600内に格納されたセンサ出力データ等に基づいて第1緊急レポート250および第2緊急レポート350を作成する。ステップS460で制御装置510は、契約情報データベース700の第1送付先アドレス750および第2送付先アドレス780を参照し、今回作成した第1緊急レポート250および第2緊急レポート350の配信先を特定する。ステップS470で制御装置510は、ステップS460で特定した配信先に、ステップS450で作成した第1緊急レポート250および第2緊急レポート350を、通信部530を介して配信する。
 ステップS430で異常データを検知しなかった場合、制御装置510は処理をステップS480に進める。ステップS480で制御装置510は、センサ情報データベース600に格納されているセンサ出力データ等に基づいて予兆データの検知を試み、予兆データを検知したか否かを判定する。予兆データを検知した場合、制御装置510は処理をステップS490に進める。
 ステップS490で制御装置510は、契約情報データベース700の第2言語780を参照し、今回作成する重要レポート450の言語を決定する。ステップS500で制御装置510は、センサ情報データベース600を参照し、ステップS430でセンサ情報データベース600内に格納されたセンサ出力データ等に基づいて重要レポート450を作成する。ステップS510で制御装置510は、契約情報データベース700の第2送付先アドレス780を参照し、今回作成した重要レポート450の配信先を特定する。ステップS520で制御装置510は、ステップS510で特定した配信先に、ステップS500で作成した重要レポート450を、通信部530を介して配信する。
 上述した実施の形態によるサーバ500によれば、次の作用効果が得られる。
(1)制御装置510は、油圧ショベル100から収集されたセンサ出力に基づく定期レポート150を所定期間ごとに作成し、センサ出力に基づいて異常データを検知すると緊急レポート250及び350を作成し、センサ出力に基づいて異常データにつながる予兆データを検知すると重要レポート450を作成する。制御装置510は、定期レポート150と緊急レポート250及び350と重要レポート450との各々を、当該レポートに応じた配信タイミングで指定された配信先に配信する。このようにしたので、作業機械の管理に必要な情報が記載されたレポートが自動的に配信され、必要な情報を煩雑な操作なしに得ることが可能となる。
(2)制御装置510は、定期レポート150、緊急レポート250及び350、重要レポート450のそれぞれのレポートを作成するにあたり、契約に関する各種情報が格納された契約情報データベース700を参照して当該レポートの言語を決定し、その決定した言語でレポートを作成する。このようにしたので、単一のシステムにより、複数の言語圏に存在する顧客の各々にレポート配信サービスを提供することができる。
(3)制御装置510は、緊急レポート250及び350の配信先として、油圧ショベル100の購入者および販売者を特定し、重要レポート450の配信先として、油圧ショベル100の販売者を特定し、定期レポート150の配信先として、油圧ショベル100の購入者および販売者を特定する。このようにしたので、油圧ショベル100の購入者に必要でない情報が記載された重要レポート450は購入者には配信されず、購入者を混乱させることがない。重要レポート450に記載された情報は、購入者には必要ではないが、油圧ショベル100の今後の保守提案には有用であり、そのような有用な情報が販売者に確実に配信される。
 これらの情報に基づき、購入者から販売者、販売者から購入者への連絡、連携をより緊密に行うことが可能になり、メンテナンスを適時、適切に施すことが可能になって購入者が所有する作業機械の状態を最良の状態で維持することが可能になる。
(4)制御装置510は、緊急レポート250及び350と重要レポート450と定期レポート150との配信先として、複数の個別契約を包括して成る包括契約の締結当事者の一方である購入者の登録アドレスと、油圧ショベル100を販売した締結当事者の他方である販売者の登録アドレスと、を配信先として設定する。このように、契約情報とレポートの配信先とが連動するので、油圧ショベル100と購入者および販売者との紐付けが確実に為され、レポートを誤りなく配信することができる。契約情報データベース700とは別に、レポートの配信先を管理するためのデータベースを必要としない。
(5)サーバ500には、クライアント端末800から油圧ショベル100に対して為されたチューニングに関して制御装置510が受信した情報を記憶するセンサ情報データベース600が接続されている。制御装置510は、定期レポート150の作成時にセンサ情報データベース600にチューニングに関する情報が記憶されている場合、チューニングに関する情報を含む定期レポート150を作成する。このようにしたので、チューニング作業を実施した履歴が定期レポート150に表示され、油圧ショベル100(作業機械)の購入者、とくに管理者がチューニングの状態を正確に把握できる。チューニングの内容は油圧ショベル100自体には表示されないため、チューニング前後において同一の油圧ショベル100であるにも関わらず操作性、作業量などが異なり、オペレータが違和感を覚えることがある。しかし、チューニングの内容が定期レポート150に記載されているので、オペレータが定期レポート150を確認すれば、このような違和感を覚えることがなくなる。さらに、オペレータは、チューニングによって変更されたモード設定値と燃費との関係を一目で把握できるため、モードの変更により燃費がどれだけ向上したのか、または悪化したのかに基づいて、更なるチューニング用設定値の変更の検討が可能になり、より作業内容に即したモード設定を行うことが可能になる。
(6)制御装置510は、センサ出力に基づいて異常データを検知する際、1回のセンサ出力が所定のしきい値を越えた場合に異常データを検知するか、時系列的に連続する複数のセンサ出力が所定のしきい値を越えた場合に異常データを検知するか、一定期間内に出力された複数のセンサ出力のうち特定の個数のセンサ出力が所定のしきい値を越えた場合に異常データを検知するか、をセンサ出力の種類毎に切り替える。このようにしたので、異常データの誤検知を抑制することができる。
(7)制御装置510は、購入者に配信される第1緊急レポート250、販売者に配信され第1緊急レポート250より情報量の多い第2緊急レポート350とを作成する。このようにしたので、制御装置510は、購入者にはわかりやすいレポートを配信しつつ、販売者には必要な情報が余すところなく記載された詳細なレポートを配信することができる。
(8)サーバ500の制御装置510は、油圧ショベル100からのセンサ出力を所定期間ごとに収集し、所定期間の燃費カレンダー155の各々の日付欄に当該日付のセンサ出力に応じた情報を表示した様式の定期レポート150を作成し配信する。このようにしたので、オペレータは、日々のセンサ出力(例えば燃費等)の推移を的確に把握することができる。
(9)定期レポート150に記載された燃費カレンダー155は、日付の数値が表示された第1領域と、第1領域に近接して設けられ、該当する日付の燃費を表示する第3領域とを含み、第1領域と第3領域とがマトリクス状に配置される。このようにしたので、オペレータは、日々の燃費の推移を、容易に把握することができる。
(10)定期レポート150に記載された燃費カレンダー155には、日付の数値が表示された第1領域と、第1領域に近接して設けられ、該当する日付の燃費を表示する第3領域とが暦月ごとに配置されている。このようにしたので、オペレータは、ある月における燃費の偏りを容易に把握することができる。
 次のような変形例も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(第1変形例)
 油圧ショベル100の管理システム1に用いられるサーバ500に本発明を適用した一実施形態について上述したが、本発明は、例えばホイールローダ、鉱山機械、クローラクレーン、ダンプトラックなど、油圧ショベル以外の作業機械の管理システムに用いられるサーバに適用することも可能である。
(第2変形例)
 上述した実施形態では、サーバ500が有する制御装置510が、3種類のレポートを、包括契約またはデータレポート契約が締結された油圧ショベル100の購入者や販売者のアドレスに送信するが、他のアドレスに送信してもよい。例えば、制御装置510は、包括契約の締結者のアドレスに対しては、緊急レポートと重要レポートと定期レポートの全てを配信し、長期保証契約と、メンテナンス契約と、データレポート契約と、チューニング契約と、のうちの少なくとも1つの契約の締結者のアドレスに対しては、緊急レポートと重要レポートと定期レポートとのうちの1つまたは2つのレポートを配信してもよい。つまり、包括契約とそれ以外の契約とに応じて、配信されるレポートの種類に差を設けてもよい。
(第3変形例)
 各レポートの記載内容やその様式は、上述した実施形態において図11、図13、図14に例示したものとそれぞれ異なっていてもよい。サーバ500が有する制御装置510は、例えば図17に示す定期レポートの様式の例に表されているように、レポートの対象である油圧ショベル100と同一機種である複数の他の油圧ショベル100からのセンサ出力に基づく燃費、作動油温、水温、およびポンプ圧力の平均値を含む表示領域1610を、図11に例示した定期レポート150に併記してもよい。このようにすることで、ある油圧ショベル100の稼働状況を、同一機種である複数の他の機械と相対比較することが可能になる。複数の油圧ショベル100にGPSセンサを設けることによって、制御装置510は、単にレポートの対象である油圧ショベル100と同一機種であるだけでなく、それぞれのGPSセンサ出力が示す複数の油圧ショベル100の位置情報に基づいてレポートの対象である油圧ショベル100と同一地域で稼働している複数の油圧ショベル100のセンサ出力から算出された燃費、作動油温、水温、およびポンプ圧力の平均値を定期レポート150に併記してもよい。このようにすることで、レポートの対象である油圧ショベル100と、気象条件等の周囲環境がほぼ同条件下の他の油圧ショベル100との間で、稼働状況の比較を行うことが可能になる。「同一地域」の区分方法は任意に設定してよい。「同一地域」は、例えば「同一の現場」であってもよいし、「同一の市区町村」「同一の地方」「同一の国」であってもよい。更に、定期レポート150の作成周期や各レポートの送信タイミングについても、上述した実施形態と異ならせることが可能である。
(第4変形例)
 上述した実施形態では、サーバ500が有する制御装置510はクライアント端末800からチューニング情報を受信していたが、これを各油圧ショベル100から受信してもよい。
(第5変形例)
 上述した実施形態では、燃費カレンダー155が定期レポート150にのみ表示されるが、緊急レポート250、350や重要レポート450に表示されても良い。燃費カレンダー155において、稼動時間および燃料消費量の表示に代えて、他の項目、例えば、稼動時間およびDPFにおける再生回数、平均負荷および最大負荷等、種々の情報、およびその組み合わせが表示されても良い。
 本発明の特徴を損なわない限り、本発明は上記実施形態や上記変形例に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2013年第46916号(2013年3月8日出願)
1 管理システム
20 コントローラ
100 油圧ショベル
200 通信衛星
300 基地局
400 ネットワーク
500 サーバ
510 制御装置
600 センサ情報データベース
700 契約情報データベース
800 クライアント端末
810 制御装置
900 情報端末

Claims (10)

  1.  作業機械(100)からのセンサ出力を受信する受信部(510)(S400)と、
     前記センサ出力に基づいて所定期間ごとに前記所定期間内の前記作業機械の稼働状態を表示する定期レポート(150)を作成する定期レポート作成部(510)(S330)と、
     前記センサ出力に基づいて前記作業機械の異常を表す異常データを検知すると、少なくとも1つの緊急レポート(250)(350)を作成する緊急レポート作成部(510)(S450)と、
     前記センサ出力に基づいて前記異常の兆候を表す予兆データを検知すると、重要レポート(450)を作成する重要レポート作成部(510)(S500)と、
     前記定期レポート、前記少なくとも1つの緊急レポート及び前記重要レポートを、それぞれ予め設定された定期レポート配信先、緊急レポート配信先及び重要レポート配信先に配信する配信部(510)(S350)(S470)(S520)とを備える作業機械の管理サーバ(500)。
  2.  請求項1に記載の作業機械の管理サーバにおいて、
     言語に関する第1情報が格納された第1データベース(700)と、
     前記第1情報を参照して前記言語を決定する言語決定部(510)(S320)(S440)(S490)とをさらに備え、
     前記定期レポート作成部、前記緊急レポート作成部、及び前記重要レポート作成部は、前記言語決定部によって決定された前記言語で、前記定期レポート、前記少なくとも1つの緊急レポート、及び前記重要レポートをそれぞれ作成する作業機械の管理サーバ。
  3.  請求項2に記載の作業機械の管理サーバにおいて、
     前記定期レポート配信先、前記緊急レポート配信先、及び前記重要レポート配信先を特定する配信先特定部(510)(S340)(S460)(S510)をさらに備え、
     前記第1データベースには前記定期レポート配信先、前記緊急レポート配信先、及び前記重要レポート配信先に関する第2情報がさらに格納され、
     前記配信先特定部は、前記第2情報を参照して、
      前記緊急レポート配信先として、前記作業機械の購入者に対応する第1配信先および前記作業機械の販売者に対応する第2配信先を特定し、
      前記重要レポート配信先として、前記販売者に対応する前記第2配信先を特定し、
      前記定期レポート配信先として、前記購入者に対応する前記第1配信先および前記販売者に対応する前記第2配信先を特定する作業機械の管理サーバ。
  4.  請求項1に記載の作業機械の管理サーバにおいて、
     外部端末装置によって前記作業機械に対して行われたチューニングに関する第3情報が格納される第2データベース(600)と、
     前記第3情報を前記外部端末装置から受信して前記第2データベースに格納する制御部(510)とをさらに備え、
     前記定期レポート作成部は、前記定期レポートの作成時に前記第2データベースに前記第3情報が格納されている場合、前記第3情報を含む前記定期レポートを作成する作業機械の管理サーバ。
  5.  請求項1に記載の作業機械の管理サーバにおいて、
     前記定期レポート作成部は、前記作業機械と同一機種である複数の他の作業機械からのセンサ出力に基づく燃料消費量、作動油温、水温、およびポンプ圧力のいずれかの平均値を、前記定期レポ-トに併記する作業機械の管理サーバ。
  6.  請求項1に記載の作業機械の管理サーバにおいて、
     前記緊急レポート作成部は、前記センサ出力に基づいて前記異常データを検知する際、前記センサ出力が所定のしきい値を1回越えた場合(S4310)、前記センサ出力が前記所定のしきい値を複数回連続して越えた場合(S4350)、および前記センサ出力が前記所定のしきい値を一定期間内に所定回越えた場合(S4330)の、いずれの場合に前記異常データを検知したと判定するか、を前記センサ出力の種類に応じて切り替える作業機械の管理サーバ。
  7.  請求項3に記載の作業機械の管理サーバにおいて、
     前記少なくとも1つの緊急レポートは、第1の緊急レポートと、前記第1の緊急レポートより情報量の多い第2の緊急レポートと、を含み、
     前記配信先特定部は、前記第1の緊急レポートに対応する前記緊急レポート配信先として、前記購入者に対応する前記第1配信先を特定し、前記第2の緊急レポートに対応する前記緊急レポート配信先として、前記販売者に対応する前記第2配信先を特定する作業機械の管理サーバ。
  8.  請求項1に記載の作業機械の管理サーバにおいて、
     前記定期レポート作成部、前記緊急レポート作成部及び前記重要レポート作成部のうちの少なくとも1つは、前記定期レポート、前記少なくとも1つの緊急レポート及び前記重要レポートのうちの少なくとも1つのレポートに記載する前記作業機械の燃料消費量の項目として、前記所定期間内の各日付の数値が表示された日付表示領域に対応して設けられた項目表示領域に、前記日付表示領域に表示された前記数値に対応する前記各日付の前記燃料消費量を表示し、
     前記少なくとも1つのレポートにおいて、前記日付表示領域と前記項目表示領域とが、前記所定期間内の日数分、マトリクス状に配置された作業機械の管理サーバ。
  9.  作業機械からのセンサ出力を受信し、
     前記センサ出力に基づいて所定期間ごとに前記所定期間内の前記作業機械の稼働状態を表示する定期レポート(150)を作成し、
     前記センサ出力に基づいて前記作業機械の異常を表す異常データを検知するたびに少なくとも1つの緊急レポート(250)(350)を作成し、
     前記センサ出力に基づいて前記異常の兆候を表す予兆データを検知するたびに重要レポート(450)を作成し、
     前記定期レポート、前記少なくとも1つの緊急レポート及び前記重要レポートを、それぞれ予め設定された定期レポート配信先、緊急レポート配信先及び重要レポート配信先に配信する作業機械の管理方法。
  10.  請求項9に記載の作業機械の管理方法において、
     前記センサ出力に基づいて前記異常データを検知する際、前記センサ出力が所定のしきい値を1回越えた場合、前記センサ出力が前記所定のしきい値を複数回連続して越えた場合、および前記センサ出力が前記所定のしきい値を一定期間内に所定回越えた場合の、いずれの場合に前記異常データを検知したと判定するか、を前記センサ出力の種類に応じて切り替える作業機械の管理方法。
PCT/JP2014/056030 2013-03-08 2014-03-07 作業機械の管理サーバ及び作業機械の管理方法 WO2014136956A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14760739.4A EP2966612B1 (en) 2013-03-08 2014-03-07 Management server for work machine and management method for work machine
US14/772,935 US9637891B2 (en) 2013-03-08 2014-03-07 Management server for working machine and management method for working machine
JP2015504423A JP6236432B2 (ja) 2013-03-08 2014-03-07 作業機械の管理サーバ及び作業機械の管理方法
CN201480012356.5A CN105027157A (zh) 2013-03-08 2014-03-07 作业机械的管理服务器以及作业机械的管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013046916 2013-03-08
JP2013-046916 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136956A1 true WO2014136956A1 (ja) 2014-09-12

Family

ID=51491463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056030 WO2014136956A1 (ja) 2013-03-08 2014-03-07 作業機械の管理サーバ及び作業機械の管理方法

Country Status (5)

Country Link
US (1) US9637891B2 (ja)
EP (1) EP2966612B1 (ja)
JP (1) JP6236432B2 (ja)
CN (1) CN105027157A (ja)
WO (1) WO2014136956A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063356A (ja) * 2014-09-17 2016-04-25 株式会社日立ソリューションズ ゲートウェイ装置、データ処理システム及びデータ処理方法
CN109739185A (zh) * 2018-11-16 2019-05-10 成都生活家网络科技有限公司 远程智能家装现场管理系统
CN110582795A (zh) * 2017-07-18 2019-12-17 株式会社小松制作所 施工现场管理装置、输出装置及施工现场的管理方法
JP2020067780A (ja) * 2018-10-23 2020-04-30 株式会社三菱Ufj銀行 運用支援装置、運用支援方法及び運用支援プログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170276530A1 (en) * 2014-09-24 2017-09-28 Hitachi Construction Machinery Co., Ltd. Display apparatus for work machine
JP6147406B1 (ja) * 2016-02-02 2017-06-14 株式会社タダノ サーバ、遠隔監視システム及び遠隔監視方法
KR101953051B1 (ko) * 2016-03-31 2019-02-27 히다찌 겐끼 가부시키가이샤 건설 기계의 출력 특성 변경 시스템
KR102333772B1 (ko) * 2016-04-21 2021-11-30 스미토모 겐키 가부시키가이샤 쇼벨의 표시장치
JP7008687B2 (ja) * 2017-03-29 2022-01-25 株式会社日立製作所 制御装置及び制御システム
KR20200002867A (ko) * 2017-04-26 2020-01-08 스미토모 겐키 가부시키가이샤 쇼벨, 쇼벨관리장치, 및 쇼벨관리지원장치
US11729649B2 (en) * 2018-06-15 2023-08-15 Intel Corporation Periodic unsolicited wireless link measurement report
JP7396281B2 (ja) * 2018-08-02 2023-12-12 株式会社タダノ 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法
JP7025366B2 (ja) * 2019-03-26 2022-02-24 日立建機株式会社 作業機械
WO2021025123A1 (ja) * 2019-08-08 2021-02-11 住友建機株式会社 ショベル、情報処理装置
JP7327136B2 (ja) * 2019-12-13 2023-08-16 コベルコ建機株式会社 作業機械におけるパラメータ変更システム、パラメータ変更方法、および、パラメータ変更プログラム
JP7338514B2 (ja) * 2020-03-04 2023-09-05 コベルコ建機株式会社 作業支援サーバ、作業支援方法
US20220135036A1 (en) * 2020-11-04 2022-05-05 Deere & Company System and method for work state estimation and control of self-propelled work vehicles
US11726451B2 (en) 2021-05-26 2023-08-15 Caterpillar Inc. Remote processing of sensor data for machine operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185190A (ja) * 2002-12-02 2004-07-02 Hitachi Constr Mach Co Ltd 建設機械の情報処理システム及び建設機械の情報処理方法
JP2005149310A (ja) * 2003-11-18 2005-06-09 Hitachi Constr Mach Co Ltd 建設機械の稼働情報管理装置及びこれを備えた建設機械の稼働情報管理システム
JP2007186289A (ja) * 2006-01-12 2007-07-26 Kobelco Cranes Co Ltd 作業機械診断装置、診断方法及び作業機械
JP4349477B2 (ja) 2000-03-17 2009-10-21 株式会社小松製作所 移動体の作業報告に基づく管理装置
JP2011179215A (ja) * 2010-03-01 2011-09-15 Komatsu Ltd モニタシステム及び状態表示方法
WO2012042649A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 センサシステム、計算機、及び、機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349477A (ja) 1991-05-28 1992-12-03 Mita Ind Co Ltd 感光体露光装置
KR20030028732A (ko) * 2000-03-31 2003-04-10 히다치 겡키 가부시키 가이샤 작업현장에 배치된 작업기계의 실제 가동시간의 검출방법,데이터수집 ·관리시스템 및 기지국
KR100639812B1 (ko) * 2000-03-31 2006-10-30 히다치 겡키 가부시키 가이샤 건설기계의 관리 방법
JP4756793B2 (ja) 2000-09-14 2011-08-24 株式会社小松製作所 建設機械の管理装置
JP3721089B2 (ja) * 2001-03-01 2005-11-30 株式会社日立製作所 車両診断システム及び該システムを用いた自動車
KR100523228B1 (ko) * 2001-05-08 2005-10-20 히다치 겡키 가부시키 가이샤 작업기계, 작업기계의 고장진단시스템, 작업기계의메인티넌스시스템
US9026304B2 (en) * 2008-04-07 2015-05-05 United Parcel Service Of America, Inc. Vehicle maintenance systems and methods
CN101908159A (zh) * 2009-06-05 2010-12-08 上海南广电子技术有限公司 生产故障显示发送的方法
US9177428B2 (en) * 2012-08-20 2015-11-03 Innova Electronics, Inc. Predictive diagnostic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4349477B2 (ja) 2000-03-17 2009-10-21 株式会社小松製作所 移動体の作業報告に基づく管理装置
JP2004185190A (ja) * 2002-12-02 2004-07-02 Hitachi Constr Mach Co Ltd 建設機械の情報処理システム及び建設機械の情報処理方法
JP2005149310A (ja) * 2003-11-18 2005-06-09 Hitachi Constr Mach Co Ltd 建設機械の稼働情報管理装置及びこれを備えた建設機械の稼働情報管理システム
JP2007186289A (ja) * 2006-01-12 2007-07-26 Kobelco Cranes Co Ltd 作業機械診断装置、診断方法及び作業機械
JP2011179215A (ja) * 2010-03-01 2011-09-15 Komatsu Ltd モニタシステム及び状態表示方法
WO2012042649A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 センサシステム、計算機、及び、機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIHIKO TAKISHITA: "Application of ICT to Lifecycle Support for Construction Machinery", HITACHI HYORON, vol. 94, no. 5, 1 May 2012 (2012-05-01), pages 26 - 29, XP055279855 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063356A (ja) * 2014-09-17 2016-04-25 株式会社日立ソリューションズ ゲートウェイ装置、データ処理システム及びデータ処理方法
CN110582795A (zh) * 2017-07-18 2019-12-17 株式会社小松制作所 施工现场管理装置、输出装置及施工现场的管理方法
US11599957B2 (en) 2017-07-18 2023-03-07 Komatsu Ltd. Construction site management device, output device, and construction site management method
CN110582795B (zh) * 2017-07-18 2023-06-16 株式会社小松制作所 施工现场管理装置及施工现场的管理方法
JP2020067780A (ja) * 2018-10-23 2020-04-30 株式会社三菱Ufj銀行 運用支援装置、運用支援方法及び運用支援プログラム
CN109739185A (zh) * 2018-11-16 2019-05-10 成都生活家网络科技有限公司 远程智能家装现场管理系统

Also Published As

Publication number Publication date
US20160017574A1 (en) 2016-01-21
EP2966612A1 (en) 2016-01-13
US9637891B2 (en) 2017-05-02
CN105027157A (zh) 2015-11-04
EP2966612B1 (en) 2020-01-08
EP2966612A4 (en) 2016-11-16
JP6236432B2 (ja) 2017-11-22
JPWO2014136956A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6236432B2 (ja) 作業機械の管理サーバ及び作業機械の管理方法
JP4856163B2 (ja) 建設機械の診断情報提供装置
JP4246039B2 (ja) 建設機械の稼働情報管理装置
KR100487598B1 (ko) 고장대처법 출력방법
US10344455B2 (en) Replaceable component management system for construction machine
KR100696730B1 (ko) 건설기계의 정보제공시스템 및 건설기계의 정보제공방법
US6832175B2 (en) Method for managing construction machine, and arithmetic processing apparatus
JP4689136B2 (ja) 作業現場に配備された作業機械の実稼動時間の検出方法、データ収集・管理システム、および基地局
WO2015072280A1 (ja) 作業機械の稼働データ収集装置
JP2013235485A (ja) 産業車両の管理システム
JP2000297443A (ja) 建設機械の情報管理装置
JP4489258B2 (ja) 建設機械の電子制御システム
WO2014136957A1 (ja) 作業機械の管理システム、クライアント端末およびサーバ、ならびに作業機械の管理方法
JP4619386B2 (ja) 建設機械の情報管理装置
JP3735068B2 (ja) 巡回サービス予定作成方法、作成システムおよび作成装置
JP4540695B2 (ja) 建設機械の情報管理装置
JP2004046550A (ja) 建設機械の情報提供システム、建設機械の情報表示装置、及び建設機械の情報提供方法
JP2010287069A (ja) 作業機械管理システムにおける作業機械管理方法
JP2010287070A (ja) 作業機械管理システムにおける作業機械管理方法
JP2004021286A (ja) 建設機械の情報提供システム、建設機械の情報処理装置、及び建設機械の情報提供方法
JP4711321B2 (ja) 双方向通信を用いた作業機械のメンテナンスシステム
JP2004021290A (ja) 建設機械の情報提供システム、建設機械の情報表示装置、及び建設機械の情報提供方法
JP4540694B2 (ja) 建設機械の情報管理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012356.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504423

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772935

Country of ref document: US

Ref document number: 2014760739

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE