WO2014136933A1 - ポリプロピレン系樹脂発泡粒子の製造方法 - Google Patents
ポリプロピレン系樹脂発泡粒子の製造方法 Download PDFInfo
- Publication number
- WO2014136933A1 WO2014136933A1 PCT/JP2014/055944 JP2014055944W WO2014136933A1 WO 2014136933 A1 WO2014136933 A1 WO 2014136933A1 JP 2014055944 W JP2014055944 W JP 2014055944W WO 2014136933 A1 WO2014136933 A1 WO 2014136933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypropylene resin
- particles
- resin particles
- pressure
- weight
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 277
- 229920005989 resin Polymers 0.000 title claims abstract description 225
- 239000011347 resin Substances 0.000 title claims abstract description 225
- 238000004519 manufacturing process Methods 0.000 title claims description 48
- 238000000034 method Methods 0.000 title claims description 23
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 30
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 15
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 14
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 13
- 239000002612 dispersion medium Substances 0.000 claims abstract description 13
- 235000011187 glycerol Nutrition 0.000 claims abstract description 11
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 8
- -1 polypropylene Polymers 0.000 claims description 198
- 239000004743 Polypropylene Substances 0.000 claims description 190
- 229920001155 polypropylene Polymers 0.000 claims description 190
- 238000005187 foaming Methods 0.000 claims description 70
- 238000002844 melting Methods 0.000 claims description 69
- 230000008018 melting Effects 0.000 claims description 69
- 238000010438 heat treatment Methods 0.000 claims description 56
- 238000010097 foam moulding Methods 0.000 claims description 39
- 239000004088 foaming agent Substances 0.000 claims description 28
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 27
- 239000005977 Ethylene Substances 0.000 claims description 27
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 24
- 229920005630 polypropylene random copolymer Polymers 0.000 claims description 20
- 239000002667 nucleating agent Substances 0.000 claims description 11
- 238000000465 moulding Methods 0.000 abstract description 56
- 230000007423 decrease Effects 0.000 abstract description 5
- 230000000704 physical effect Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 69
- 239000006260 foam Substances 0.000 description 49
- 239000008236 heating water Substances 0.000 description 41
- 230000004927 fusion Effects 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 20
- 229920005604 random copolymer Polymers 0.000 description 19
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 18
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 18
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 16
- 229920005673 polypropylene based resin Polymers 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 239000002270 dispersing agent Substances 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000012860 organic pigment Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- IYYGCUZHHGZXGJ-UHFFFAOYSA-N but-1-ene;ethene;prop-1-ene Chemical compound C=C.CC=C.CCC=C IYYGCUZHHGZXGJ-UHFFFAOYSA-N 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- 239000002685 polymerization catalyst Substances 0.000 description 6
- 239000000454 talc Substances 0.000 description 6
- 229910052623 talc Inorganic materials 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000003570 air Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229910000394 calcium triphosphate Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- RFWLACFDYFIVMC-UHFFFAOYSA-D pentacalcium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O RFWLACFDYFIVMC-UHFFFAOYSA-D 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920005634 random propylene copolymer resin Polymers 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 2
- 229940078499 tricalcium phosphate Drugs 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- XBUBWPOBEDQVOO-SNAWJCMRSA-N (4e)-2-methylhexa-1,4-diene Chemical compound C\C=C\CC(C)=C XBUBWPOBEDQVOO-SNAWJCMRSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- RGIBXDHONMXTLI-UHFFFAOYSA-N chavicol Chemical group OC1=CC=C(CC=C)C=C1 RGIBXDHONMXTLI-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UOURRHZRLGCVDA-UHFFFAOYSA-D pentazinc;dicarbonate;hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O UOURRHZRLGCVDA-UHFFFAOYSA-D 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/125—Water, e.g. hydrated salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/032—Impregnation of a formed object with a gas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/10—Water or water-releasing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/14—Copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2471/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2471/02—Polyalkylene oxides
Definitions
- the present invention relates to a method for producing polypropylene resin expanded particles. More specifically, the present invention relates to a method for producing polypropylene resin expanded particles that can be suitably used as a raw material for an in-mold expanded molded article and that can be molded at a low temperature and has a wide range of molded and heated steam pressure in a single expansion process.
- In-mold foam moldings obtained by filling polypropylene resin foam particles in molds and heat-molding with water vapor are the advantages of in-mold foam moldings, such as shape flexibility, lightness, and heat insulation. have. Compared to in-mold foam moldings using similar synthetic resin foam particles, compared with in-mold foam moldings obtained using polystyrene resin foam particles, chemical resistance, heat resistance, strain recovery rate after compression In addition, it has excellent dimensional accuracy, heat resistance, and compressive strength as compared with an in-mold foam molded product using polyethylene resin expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin foam particles are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automobile bumper core materials.
- a resin having a low resin melting point and a high resin rigidity when compared at the same melting point is known.
- a propylene / 1-butene random copolymer using a Ziegler-based polymerization catalyst or Propylene / ethylene / 1-butene random terpolymers Patent Documents 1 and 2
- polypropylene homopolymers or propylene / ethylene random copolymers using metallocene polymerization catalysts have been proposed.
- the melting point can be further lowered and the melting point can be lowered to 130 ° C. or lower.
- polypropylene resin foam particles made of a polypropylene resin having a resin melting point of 115 to 135 ° C. and an Olsen bending elastic modulus of 500 MPa or more have been proposed ( Patent Document 3).
- the resin used in Patent Document 3 is partly a propylene / ethylene / 1-butene random terpolymer, and most is a propylene / ethylene random copolymer produced using a metallocene polymerization catalyst.
- the resin melting point of the example of Patent Document 3 is 120 to 134 ° C., and indeed in-mold foam molding is realized at a low heating temperature.
- improvement is necessary in terms of in-mold foam molding at high temperatures, and a wide range of molding heating steam pressure has not been realized.
- a polymer using a metallocene polymerization catalyst is very expensive, a molded product cannot be provided to the market at a low cost, which is industrially unpreferable.
- Patent Documents 4 and 5 polypropylene-based resin expanded particles obtained by using water as a foaming agent and using air or nitrogen together and releasing into a high-temperature low-pressure region have been proposed.
- Patent Documents 4 and 5 even a method using water as the foaming agent and using air or nitrogen in combination has not yet achieved a wide molding heating water vapor width.
- polypropylene-based resin foamed particles and such polypropylene-based resin foamed particles that can be molded at a low temperature and do not impair the moldability at high temperatures and have a wide range of molded heat steam pressure are produced in a single foaming process. There is no known way to do it.
- the present invention can produce an in-mold foam molded product with a low molding heating steam pressure, and does not impair moldability when the molding heating steam pressure is high.
- An object of the present invention is to provide polypropylene resin foamed particles that exhibit good moldability when using a mold or the like, and have little deterioration in physical properties such as compression strength when formed into an in-mold foam molded product.
- the present inventor can perform in-mold foam molding with low molding heating steam pressure by foaming polypropylene resin particles satisfying specific requirements under specific conditions, and , Moldability when molding heating steam pressure is high, wide molding heating condition range, good moldability even when using complicated molds, large molds, etc., and polypropylene resin
- the present inventors have found that polypropylene resin expanded particles with little deterioration in physical properties such as compressive strength when formed into an in-mold expanded molded article can be produced in a single expansion process, and have completed the present invention.
- this invention consists of the following structures.
- the melting rate of the apparent bulk density before and after being heated at a melting point of ⁇ 15 ° C. of the polypropylene resin as the base resin is ⁇ 2% or more and + 2% or less, and the expansion ratio Is a method of producing foamed polypropylene resin particles having a ratio of 15 times to 45 times in a single foaming step, and a polypropylene resin particle containing polyethylene glycol and / or glycerin together with an aqueous dispersion medium in a pressure resistant container.
- [6] The method for producing expanded polypropylene resin particles according to any one of [1] to [5], wherein the polypropylene resin contains an inorganic nucleating agent.
- [7] The expanded polypropylene resin particles according to any one of [1] to [6], wherein the amount of the foaming agent used is 3 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. Manufacturing method.
- [8] Expanded polypropylene resin particles produced by the method according to any one of [1] to [7].
- [9] An in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin expanded particles according to [8].
- the method of the present invention it is possible to produce a polypropylene resin in-mold foam molded product with a low molding heating steam pressure, and without compromising moldability when the molding heating steam pressure is high, the molding heating steam width is wide and complicated.
- Polypropylene resin foam particles exhibit good moldability when using a mold having a shape, a large mold, etc., and have little deterioration in physical properties such as compressive strength when formed into an in-mold foam molded product. Can be obtained in the process.
- the in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin foam particles obtained by the method of the present invention is used for various applications such as a heat insulating material, a buffer packaging material, an automobile interior member, and a core material for an automobile bumper. Can do.
- FIG. 3 is an example of a DSC curve obtained when 3-6 mg of expanded polypropylene resin particles obtained by the method of the present invention are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter.
- a point where the endotherm is the smallest between the two melting peaks of the DSC curve is A, and a tangent line is drawn from the point A to the DSC curve, and among the parts surrounded by the tangent line and the DSC curve, the high temperature side is the high temperature side.
- the melting peak heat amount Qh, and the low temperature side is the melting peak heat amount Ql on the low temperature side.
- the heat deformation rate which is the rate of change in apparent bulk density before and after heating at a melting point of ⁇ 15 ° C. of the polypropylene resin as the base resin, is ⁇ 2 % And + 2% or less, and is a method of producing polypropylene resin foamed particles having a foaming ratio of 15 to 45 times in a single foaming process, and contains polyethylene glycol and / or glycerin in a pressure vessel.
- the polypropylene resin particles are dispersed together with an aqueous dispersion medium, carbon dioxide gas is introduced into the pressure vessel as a blowing agent, and the polypropylene resin particles are impregnated with the blowing agent under heating and pressure conditions, and then the pressure vessel It is characterized in that the foaming is carried out by discharging into a pressure range lower than the internal pressure and in a pressure range having a predetermined atmospheric temperature.
- the polypropylene resin used in the present invention is preferably a polypropylene random copolymer containing 1-butene and / or ethylene as a comonomer. However, it may contain a comonomer other than 1-butene and ethylene. Examples of such a comonomer include isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, Examples include ⁇ -olefins such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, and 1-decene.
- cyclic olefins such as cyclopentene, norbornene, tetracyclo [6,2,11,8,13,6] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene
- dienes such as 2-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene.
- a propylene / ethylene / 1-butene random copolymer or a propylene / ethylene random copolymer is preferable from the viewpoint of good foamability.
- the structural unit composed of propylene is 90 wt% or more and 99.8 wt% or less in 100 wt% of the polypropylene resin.
- the structural unit composed of 1-butene and / or ethylene is preferably 0.2% by weight or more and 10% by weight or less, the structural unit composed of propylene is 92% by weight or more and 99% by weight or less, and 1-butene and / or ethylene. It is more preferable that the structural unit consisting of 1 to 8% by weight.
- the molding heating steam pressure tends to be high during in-mold foam molding. is there.
- the structural unit composed of propylene is less than 90% by weight and the structural unit composed of 1-butene and / or ethylene exceeds 10% by weight, the dimensional stability of the in-mold foamed molded product tends to decrease and the compressive strength decreases. Tend.
- the structural unit composed of 1-butene is preferably 6% by weight or less, more preferably 3% by weight or more and 5% by weight or less. If the structural unit consisting of 1-butene exceeds 6% by weight, the rigidity of the polypropylene random copolymer itself tends to be weak, and there is a tendency that practical rigidity such as compressive strength is not satisfied.
- the structural unit composed of ethylene is preferably 0.2% by weight or more and 4% by weight or less, more preferably 0.2% by weight or more and 3% by weight or less. More preferably, it is 5% by weight or less. If the structural unit composed of ethylene is less than 0.2% by weight, the molding heating steam pressure tends to be high during in-mold foam molding, and if it exceeds 4% by weight, it tends to endure practical rigidity such as compressive strength. is there.
- the melting point of the polypropylene random copolymer used in the present invention is preferably 125 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 150 ° C. or lower, and 135 ° C. or higher and 148 ° C. or lower. Further preferred. If the melting point of the polypropylene random copolymer is less than 125 ° C., the dimensional stability of the in-mold foam molding tends to decrease. If the melting point exceeds 155 ° C., the molding heating steam pressure during foam molding in the mold is low. Tend to be higher.
- the polypropylene random copolymer of the present invention may contain a heat ray radiation inhibitor and other additives, which will be described later, as necessary.
- the melting point of the polypropylene random copolymer containing the heat ray radiation inhibitor and other additives is taken as the melting point of the polypropylene random copolymer in the present invention.
- the melting point can be made the melting point of the polypropylene random copolymer of the present invention. is there.
- the melting point of the polypropylene random copolymer is measured using a differential scanning calorimeter DSC [for example, DSC6200, manufactured by Seiko Instruments Inc.] as follows. That is, 5 to 6 mg of a polypropylene random copolymer resin was heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min to melt the resin, and then from 220 ° C. at a temperature decrease rate of 10 ° C./min. From the DSC curve obtained when crystallizing by lowering the temperature to 40 ° C. and then increasing again from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min, and giving such a series of temperature history, The melting peak temperature at the second temperature increase is taken as the melting point (Tm in FIG. 2).
- DSC differential scanning calorimeter
- the melt flow rate (hereinafter referred to as “MFR”) of the polypropylene random copolymer used in the present invention is not particularly limited, but is preferably 0.5 g / 10 min to 100 g / 10 min, and preferably 2 g / 10 minutes or more and 50 g / 10 minutes or less is more preferable, and 3 g / 10 minutes or more and 20 g / 10 minutes or less is more preferable.
- MFR of the polypropylene random copolymer is in the above range, it is easy to obtain polypropylene resin expanded particles having a relatively large expansion ratio, and the surface of the in-mold foam molded product obtained by in-mold foam molding is beautiful. It is possible to obtain one having excellent properties and a small dimensional shrinkage rate.
- the value of MFR is the conditions of orifice 2.0959 ⁇ 0.005 mm ⁇ , orifice length 8.000 ⁇ 0.025 mm, load 2160 g, 230 ⁇ 0.2 ° C. using an MFR measuring instrument described in JIS-K7210. It is the value when measured below.
- a polypropylene random copolymer contains the heat ray radiation inhibitor and other additives which will be described later
- the MFR of the polypropylene random copolymer containing the heat ray radiation inhibitor and other additives is added to the present invention.
- the polypropylene resin foam particles used in the present invention can be obtained by processing the above-mentioned polypropylene random copolymer into polypropylene resin particles and then foaming them.
- the polypropylene resin particles used in the present invention are, for example, a polypropylene random copolymer melted using an extruder, a kneader, a Banbury mixer, a roll, etc., extruded into a strand shape, for example, before or after cooling, in a cylindrical shape Then, it is molded into a desired particle shape such as an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, and the like, and becomes a polypropylene resin particle.
- polyethylene glycol and / or glycerin is contained in the polypropylene resin as the base resin.
- Polyethylene glycol and / or glycerin when bringing polypropylene resin particles into contact with water or impregnating with a foaming agent in an aqueous dispersion, contain water in the polypropylene resin particles, thereby improving foamability, Molding is possible even with a low molding heating vapor pressure, and polypropylene resin expanded particles with a wide range of molding heating conditions can be obtained.
- the content of the polyethylene glycol and / or glycerin is preferably 0.01% by weight or more and 2% by weight or less, and more preferably 0.1% by weight or more and 1% by weight or less in 100% by weight of the polypropylene resin.
- the inorganic nucleating agent used in the present invention promotes the formation of bubble nuclei as a starting point of foaming, contributes to the improvement of the foaming ratio and contributes to uniform bubble formation.
- examples of the inorganic nucleating agent include talc, silica, calcium carbonate and the like.
- the content of the inorganic nucleating agent in the present invention is preferably added so as to be 0.005 wt% or more and 0.5 wt% or less in 100 wt% of the polypropylene resin particles.
- additives such as a heat ray radiation inhibitor, an antioxidant, a light resistance improver, an antistatic agent, a colorant, a flame retardant improver, and a conductivity improver are added to the polypropyne resin particles of the present invention.
- polypropylene resin particles may be used.
- the heat ray radiation inhibitor used in the present invention is not particularly limited as long as it is a substance that suppresses heat conduction by radiation, and examples thereof include carbon black, graphite, activated carbon, titanium oxide, and barium sulfate. These may be used alone or in combination. Among these, carbon black, graphite, activated carbon, and titanium oxide are preferable from the viewpoint of radiation suppression effect, and carbon black and activated carbon are more preferable.
- the carbon black used in the present invention is not particularly limited, and coloring carbon black, conductive carbon black, and the like can be used.
- activated carbon used by this invention is a powdered activated carbon.
- powdered activated carbon having a particle size of 0.1 ⁇ m or more and 150 ⁇ m or less and a BET specific surface area of 500 m 2 / g or more and 2000 m 2 / g or less is preferably used.
- the content of the heat ray radiation inhibitor in the present invention is not particularly limited, but it is preferably added so that it is 0.1 wt% or more and 20 wt% or less in 100 wt% of the polypropylene resin particles.
- the addition amount of the heat ray radiation inhibitor is less than 0.1% by weight, the radiation suppression effect tends to be small, and when it exceeds 20% by weight, the expansion ratio tends to be difficult to increase.
- the water-absorbing substance used in the present invention means that when the substance is added to polypropylene resin particles and the polypropylene resin particles are brought into contact with water or impregnated with a foaming agent in an aqueous dispersion, A substance that can contain water.
- water-absorbing substance used in the present invention examples include water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax, and zinc borate, and a special block type polymer having a polyether as a hydrophilic segment (trade name: Pelestat; Sanyo) Kasei Co., Ltd.), alkali metal salt of ethylene (meth) acrylic acid copolymer, alkali metal salt of butadiene (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, isobutylene-maleic anhydride copolymer
- hydrophilic polymers such as alkali metal salts of polymers and alkali metal salts of poly (meth) acrylic acid, polyhydric alcohols such as ethylene glycol and pentaerythritol, and triazines such as melamine and isocyanuric acid.
- the content of the water-absorbing substance in the present invention varies depending on the target foaming ratio, the blowing agent used, and the type of the water-absorbing substance used, and cannot be described in general, but when water-soluble inorganic substances and polyhydric alcohols are used In 100% by weight of polypropylene resin particles, it is preferably 0.01% by weight or more and 2% by weight or less. When a hydrophilic polymer is used, 0.05% by weight or more and 5% by weight in 100% by weight of polypropylene resin particles. It is preferable that it is below wt%.
- the addition of the colorant is not limited, and it is possible to obtain a natural color without adding the colorant, or to add a colorant such as blue, red, and black to obtain a desired color.
- the colorant include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, selenium organic pigments, dioxazine organic pigments, isoindoline organic pigments, and carbon black.
- the polypropylene resin expanded particles in the present invention are prepared by storing a dispersion containing polypropylene resin particles and water in a pressure vessel, and then dispersing them under stirring conditions and in the presence of a foaming agent.
- the polypropylene resin is heated to above the softening temperature, impregnated with a polypropylene resin under a pressurized condition, and then the dispersion in the pressure container is discharged to a pressure region lower than the internal pressure of the pressure container.
- Particles can be produced by foaming.
- this process may be referred to as a “single-stage foaming process”, and the polypropylene resin particles obtained in this process may be referred to as “single-stage foaming particles”.
- the following method is mentioned, for example.
- the following foaming agent is introduced and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin. By heating, the pressure in the pressure vessel rises from about 2 MPa ⁇ G to 5 MPa ⁇ G.
- polypropylene-based resin expanded particles can be obtained.
- Polypropylene resin foamed particles can be obtained by introducing a foaming agent while heating and then releasing it into a pressure range lower than the internal pressure of the pressure vessel.
- the foaming ratio can also be adjusted by controlling the pressure by introducing carbon dioxide used as a foaming agent, nitrogen, air, or the like into the pressure-resistant container even during release into the low pressure region.
- the pressure range lower than the internal pressure of the pressure vessel is preferably atmospheric pressure. In this case, the equipment does not become complicated, and no special pressure adjustment in the low pressure region is required.
- the atmospheric temperature in the low pressure region is more than 80 ° C. and 110 ° C. or less, more preferably 90 ° C. or more and 100 ° C. or less, thereby reducing the heat deformation rate of the expanded particles.
- the foamability of the foamed particles can be improved, and the heated steam pressure during in-mold foam molding can be lowered.
- the dispersion is discharged into a pressure range lower than the internal pressure of the pressure vessel to produce polypropylene resin particles by foaming
- the atmospheric temperature in the pressure range is 80 ° C. or less
- the heat deformation rate of the foamed particles is ⁇ 2 %
- the effect of lowering the heating water vapor pressure at the time of in-mold molding is hardly obtained.
- the atmospheric temperature exceeds 110 ° C.
- Examples of the pressure region heated by the heated steam in the present invention include, for example, a foaming tank 9 disposed through an orifice 5 provided at the lower portion of the pressure vessel 3 as shown in FIG.
- the foaming tank 9 is maintained in the tank temperature by blowing steam from the steam blowing port 8 in advance. Then, in the pressure vessel 3, the contents composed of the polypropylene resin particles 1 and water 2 as a dispersion medium heated to the foaming temperature and maintained at the foaming pressure are opened, and the valve 4 below the pressure vessel 3 is opened.
- the polypropylene-based resin expanded particles 7 are obtained by discharging into the foaming tank 9 through the orifice 5. At this time, the foamed particles 7 are preferably in contact with a high temperature region of more than 80 ° C. and 110 ° C. or less for 5 minutes or more in the foaming tank 9.
- the pressure vessel used when producing the expanded polypropylene resin particles there is no particular limitation on the pressure vessel used when producing the expanded polypropylene resin particles, and any vessel that can withstand the pressure and temperature in the vessel at the time of producing the expanded polypropylene resin particles can be used.
- an autoclave type pressure vessel can be used. It is done.
- carbon dioxide gas is used as a foaming agent.
- aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane
- aliphatic cyclized hydrogens such as cyclopentane and cyclobutane
- carbon dioxide using air, nitrogen, water, and the like as a blowing agent
- water it is particularly preferable to use water together.
- water water used as an aqueous dispersion medium described later can be used.
- the amount of the foaming agent used in the present invention is not particularly limited, and may be appropriately used according to the desired expansion ratio of the polypropylene resin expanded particles.
- the amount of the foaming agent used is preferably 3 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.
- the aqueous dispersion medium used in the present invention is preferably water, but a dispersion medium to which methanol, ethanol or the like is added can also be used as the aqueous dispersion medium.
- an inorganic dispersant from the viewpoint of enhancing the dispersibility of the dispersion during the production of the polypropylene resin expanded particles and preventing the adhesion between the polypropylene resin expanded particles.
- examples of such inorganic dispersants include tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate, kaolin, and sulfuric acid. Barium etc. are mentioned.
- a dispersion aid in combination in order to further improve dispersibility.
- a dispersion aid include sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfonate, sodium alkyldiphenyl ether disulfonate, sodium ⁇ -propylene sulfonate, and the like.
- a combination of the inorganic dispersant and the dispersion aid a combination of tricalcium phosphate and sodium alkylsulfonate is preferable.
- the amount of the inorganic dispersant and dispersion aid used in the present invention varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 part by weight of the inorganic dispersant with respect to 100 parts by weight of water.
- the amount is preferably 3 parts by weight or less and more preferably 0.001 part by weight or more and 0.1 parts by weight or less.
- the polypropylene resin particles are usually preferably used in an amount of 20 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of water in order to improve dispersibility in water.
- the expansion ratio of the expanded polypropylene resin particles of the present invention is preferably 15 times or more and 45 times or less, more preferably 15 times or more and 40 times or less, and further preferably 18 times or more and 25 times or less. If the expansion ratio of the polypropylene resin expanded particles is less than 15 times, it is not necessary to use the technology of the present invention. If the expansion ratio exceeds 45 times, the polypropylene resin expanded particles tend to be blocked during the production of the expanded polypropylene resin particles, The resulting foamed molded product tends to shrink.
- the foaming ratio K ⁇ r / ⁇ b is calculated from the ratio with the density ⁇ r of the polypropylene resin particles before foaming.
- the heat deformation rate of the expanded polypropylene resin particles of the present invention is preferably -2% or more and + 2% or less. If the polypropylene foam particles have a heat deformation ratio of more than ⁇ 2%, the effect of lowering the molding heating water vapor pressure at the time of molding in the mold tends to be difficult to obtain. The part with good fusion and the part with bad fusion are likely to occur, and when trying to improve the whole, a high heating steam pressure is required, and there are cases where intergranularity is likely to occur on the surface of the molded body. is there.
- the heat deformation rate of the polypropylene resin expanded particles is obtained by measuring the apparent bulk density of the expanded particles before heating after adjusting the expanded particles in a standard state of 23 ° C. for 16 hours or more.
- the bulk density was measured using a 250 cc graduated cylinder (made of heat-resistant glass), and the foamed particles weighed about 200 cc were put into the graduated cylinder. After tapping 20 times, the volume is measured using the scale of the graduated cylinder, and the bulk density (g / cc) before heating is determined by dividing the weight by the volume.
- the foamed particles placed in a graduated cylinder are placed in a hot air circulating dryer adjusted to a temperature of the melting point of the resin of ⁇ 15 ° C., heated for 1 hour, and then taken out. Since the foam particles may be blocking each other, once loosen the foam particles in the graduated cylinder, leave them in a standard test place at 23 ° C for 1 hour, and adjust the bulk density of the foam particles as described above. Determine the bulk density of the expanded foam after heating.
- the amount of the inorganic dispersant adhered to the surface of the expanded polypropylene resin particles of the present invention is preferably 2000 ppm or less, more preferably 1300 ppm or less, and even more preferably 800 ppm or less.
- the amount of the inorganic dispersant adhering to the surface of the polypropylene resin foamed particles exceeds 2000 ppm, the fusion property during in-mold foam molding tends to be lowered.
- the expanded polypropylene resin particles of the present invention preferably have two melting peaks in a DSC curve obtained by differential scanning calorimetry.
- foamed particles having two melting peaks there is a tendency to obtain a polypropylene resin in-mold foam molded article having good in-mold foam moldability and good mechanical strength and heat resistance.
- the DSC curve obtained by differential scanning calorimetry of the polypropylene resin foamed particles means that 3 to 6 mg of foamed particles were heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter. It is a DSC curve sometimes obtained.
- the expanded polypropylene resin particles having two melting peaks can be easily obtained by setting the temperature in the pressure resistant container at the time of foaming to an appropriate value. That is, in the case of the present invention, the temperature in the pressure vessel is usually not less than the softening temperature of the polypropylene resin used as the base material, preferably not less than the melting point, more preferably not less than the melting point + 5 ° C. and less than the melting end temperature, preferably Tends to obtain expanded polypropylene resin particles having two melting peaks by setting the melting end temperature to ⁇ 2 ° C. or lower.
- the melting end temperature is 3 to 6 mg of polypropylene resin particles raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then up to 40 ° C. at a rate of 10 ° C./min. This is the temperature when the bottom of the melting peak of the DSC curve obtained when the temperature is cooled and raised again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.
- the melting peak calorific value on the high temperature side (hereinafter sometimes referred to as Qh) is preferably 5 to 40 J / g, and more preferably 7 to 30 J / g. If Qh is less than 5 J / g, the closed cell ratio (closed cell ratio required by JIS K7138: 2006) of the polypropylene resin expanded particles tends to be low, and if it exceeds 40 J / g, the expanded foam in the polypropylene resin mold is used. There is a tendency that the fusing property at the time of obtaining is reduced.
- the melting peak heat quantity Qh on the high temperature side is defined as A where the endothermic quantity is the smallest between the two melting peaks of the DSC curve, and a tangent line is drawn from point A to the DSC curve.
- the high temperature side is the melting peak heat amount Qh on the high temperature side
- the low temperature side is the melting peak heat amount Ql on the low temperature side.
- the high temperature heat ratio is preferably 10% or more and 40% or less, more preferably 15% or more and 30% or less.
- the high-temperature heat ratio and the high-temperature side heat of fusion are, for example, the retention time from temperature rise to foaming in the one-stage foaming process (maintenance time from reaching the foaming temperature until foaming), foaming temperature (at the time of foaming) Temperature), foaming pressure (pressure during foaming), and the like.
- the high-temperature heat quantity ratio or the high-temperature side heat of fusion tends to increase. From the above, it is possible to easily find the conditions for the desired high-temperature calorie ratio and high-temperature side melting peak calorie by experimenting several times with systematically changing the holding time, foaming temperature, and foaming pressure. Can do.
- the foaming pressure can be adjusted by adjusting the amount of foaming agent.
- the expanded polypropylene particles in which the heat deformation rate of the expanded particles is in the range of ⁇ 2% or more and + 2% or less can be easily obtained by, for example, a combination of the following production conditions.
- a one-stage foaming step polypropylene resin particles impregnated with a foaming agent are foamed in a heated low pressure region such as in heated steam.
- Polyethylene glycol and / or glycerin is contained in an amount of 0.01% by weight to 2% by weight in 100% by weight of the polypropylene resin particles.
- 3 to 60 parts by weight of carbon dioxide gas is used as a foaming agent with respect to 100 parts by weight of the polypropylene resin.
- the atmospheric temperature in the heating and low pressure region is set to be over 80 ° C. and 110 ° C.
- the average cell diameter of the expanded polypropylene resin particles of the present invention is preferably from 50 ⁇ m to 400 ⁇ m, and more preferably from 90 ⁇ m to 300 ⁇ m.
- the average cell diameter of the polypropylene resin expanded particles is less than 50 ⁇ m, the appearance of the surface of the in-mold foam molded product tends to be poor, and when it exceeds 400 ⁇ m, the strength may be lowered.
- the particle weight of the polypropylene resin expanded particles of the present invention is preferably 0.5 mg / particle or more and 1.8 mg / particle or less, more preferably 0.7 mg / particle or more and 1.2 mg / particle or less. preferable.
- the particle weight of the polypropylene resin expanded particles can be easily within the above range by setting the particle weight of the polypropylene resin particles to 0.5 mg / particle or more and 1.8 mg / particle or less.
- the polypropylene resin particles in the present invention are obtained by extruding a once melted resin into a strand shape, and before cooling or after cooling, a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc.
- a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc.
- the particle weight is less than 0.5 mg / particle, the variation in the particle weight tends to be large, and the foamed polypropylene resin particles have a large variation in the expansion ratio.
- the grain weight exceeds 1.8 mg / grain, the foamed particles tend not to be filled in detail.
- the in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin foamed particles of the present invention can be used for various applications such as a heat insulating material, a buffer packaging material, an automobile interior member, and an automobile bumper core material.
- Polypropylene resin ⁇ Polypropylene resin A [ethylene content 2.9% by weight in a propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.] ⁇ Polypropylene resin B [ethylene content in propylene / ethylene random copolymer 3.6% by weight, melt index 7 g / 10 min, melting point 139 ° C.]
- Cell nucleating agent ⁇ Talc [Made by Hayashi Kasei Co., Ltd., PK-S] Other: ⁇ Polyethylene glycol [manufactured by Lion Corporation, PEG # 300] ⁇ Melamine [Mitsui Chemicals, Inc.]
- ⁇ DSC measurement of polypropylene resin expanded particles When using a differential scanning calorimeter (DSC) [DSC6200 type, manufactured by Seiko Instruments Inc.], 3-6 mg of expanded polypropylene resin particles is heated from 20 ° C. to 220 ° C. at a rate of 10 ° C./min. Each melting peak temperature or heat of fusion was determined from the DSC curve obtained during the first temperature increase (see FIG. 1).
- DSC differential scanning calorimeter
- ⁇ Average cell diameter of expanded particles> A line corresponding to a length of 1 mm is observed on the cut surface of each sample taken out of the expanded particles and observed with a microscope with respect to the cut surface of each sample cut with great care so as not to destroy the cell membrane. The number of bubbles through which the line segment passes was measured, and thereafter the average bubble diameter was measured according to ASTM D3576.
- the obtained foamed particles are conditioned for 16 hours or more in a standard state of 23 ° C., and then the apparent bulk density of the foamed particles before heating is measured.
- the bulk density was measured using a 250 cc graduated cylinder (SCHOTT, manufactured by DURAN borosilicate glass), and the foam particles measured for weight of about 200 cc were put into the graduated cylinder so that there was no loosening between the foam particles. After tapping the graduated cylinder about 20 times, the volume is measured using the scale of the graduated cylinder, and the weight density is divided by the volume to obtain the bulk density (g / cc) before heating.
- the foamed particles placed in a graduated cylinder were placed in a hot air circulating dryer (manufactured by Nagano Kagaku Kikai Seisakusho, CH40-15P) adjusted to a temperature of the melting point of the resin of ⁇ 15 ° C. and heated for 1 hour. Then take out. Since the foam particles may be blocking each other, once loosen the foam particles in the graduated cylinder, leave them in a standard test place at 23 ° C for 1 hour, and adjust the bulk density of the foam particles as described above. Determine the bulk density of the expanded foam after heating.
- the fusion property between particles, the surface property of the in-mold foam molded product, the density of the molded product and the 50% compressive strength were evaluated, and all of the fusion property, surface property and 50% compressive strength passed (evaluation was “ ⁇ The lowest molding heating steam pressure at the time of in-mold foam molding that gives an in-mold foam molding was taken as the minimum molding heating steam pressure.
- Example 1 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin A (ethylene content 2.9% by weight in propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.) After blending 0.50 part by weight of polyethylene glycol as a part by weight and a water-absorbing agent, the mixture was melt-kneaded at a resin temperature of 220 ° C. in a ⁇ 50 mm single screw extruder (Osaka Seiki Machine Co., Ltd., 20VSE-50-28 type). .
- the obtained melt-kneaded resin was extruded into a strand from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a cylindrical shape and a weight of 1.2 mg / particle.
- Polypropylene resin foamed particles were produced using an apparatus in which a foaming tank 9 as shown in FIG. 3 was disposed under the pressure-resistant autoclave (pressure-resistant vessel 3) having a capacity of 10L through an orifice 5.
- a pressure-resistant autoclave having a capacity of 10 L 100 parts by weight of the obtained polypropylene-based resin particles, 170 parts by weight of water, 1.0 part by weight of calcium triphosphate as a dispersing agent, 0.07 part by weight of sodium n-paraffin sulfonate as a dispersing aid Then, 6.0 parts by weight of carbon dioxide gas was added as a foaming agent with stirring. After the temperature of the autoclave was raised and heated to a foaming temperature of 150 ° C., carbon dioxide was further added to adjust the autoclave internal pressure to 3.0 MPa ⁇ G.
- the valve 4 at the lower part of the autoclave was opened, and the autoclave contents were discharged through the opening orifice 5 of 3.6 mm ⁇ into the foaming tank 9 under atmospheric pressure to obtain one-stage expanded particles.
- a steam blowing port 8 is provided immediately after the orifice 5 in the foaming tank 9, and the atmospheric temperature in the foaming tank 9 is set to 98 ° C. by steam heating, and the foamed particles are set in contact with each other for 5 minutes. It was.
- In-mold foam molding was carried out by changing the pressure by 0.01 MPa ⁇ G between 16 and 0.32 MPa ⁇ G.
- the obtained in-mold foamed molded product was allowed to stand at room temperature for 1 hour, then cured and dried in a thermostatic chamber at 75 ° C. for 15 hours, taken out again to room temperature, and then allowed to stand at room temperature for 4 hours, and the adhesion between particles.
- Example 2 The one-stage expanded particles and in-mold expanded molded article were obtained in the same manner as in Example 1 except that the temperature rise (foaming temperature) of the autoclave contents in [Production of polypropylene resin expanded particles] was changed to 149 ° C. Got.
- the resulting single-stage expanded particles had an expansion ratio of 18 times, a DSC peak ratio of 29%, and a heat deformation ratio of 0.0%.
- the minimum molding heating water vapor pressure is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property, surface property and 50% compression strength are acceptable. It was.
- Table 1 The results are shown in Table 1.
- Example 3 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin B (ethylene content in propylene / ethylene random copolymer 3.6% by weight, melt index 7 g / 10 min, melting point 139 ° C.), talc 0.10 as a cell nucleating agent Polypropylene resin particles were obtained in the same manner as in Example 1 except that 0.50 part by weight of polyethylene glycol was blended as a part by weight and a water absorbing agent.
- the minimum molding heating water vapor pressure is 0.18 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property, surface property and 50% compression strength are acceptable. It was. The results are shown in Table 1.
- Example 4 Except for changing the temperature rise (foaming temperature) of the autoclave contents to 135 ° C. in [Production of polypropylene resin foamed particles], the same procedure as in Example 3 was carried out to obtain one-stage expanded particles and in-mold expanded molded articles. Got. The resulting single-stage expanded particles had an expansion ratio of 19 times, a DSC peak ratio of 28%, and a heat deformation rate of 1.6%.
- the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.19 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property and the surface property The 50% compressive strength was acceptable. The results are shown in Table 1.
- Example 5 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin A (ethylene content 2.9% by weight in propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.) Polypropylene resin particles and an in-mold foam molded article were obtained by the same operation as in Example 1 except that 0.20 part by weight of glycerin was blended as a part by weight and a water absorbing agent. The resulting single-stage expanded particles had an expansion ratio of 19 times, a DSC peak ratio of 22%, and a heat deformation ratio of -0.2%.
- the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties The 50% compressive strength was acceptable. The results are shown in Table 1.
- Example 6 The one-stage expanded particles and in-mold expanded molded article were obtained in the same manner as in Example 5 except that the temperature rise (foaming temperature) of the autoclave contents in [Production of polypropylene resin expanded particles] was changed to 149 ° C. Got.
- the resulting single-stage expanded particles had an expansion ratio of 18 times, a DSC peak ratio of 29%, and a heat deformation rate of 0%.
- the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties
- the 50% compressive strength was acceptable. The results are shown in Table 1.
- Example 7 In [Production of polypropylene resin foamed particles], the single-stage foamed particles and the in-mold foam-molded product were obtained in the same manner as in Example 5 except that the internal pressure of the autoclave when adding carbon dioxide gas was 3.5 MPa ⁇ G. Obtained.
- the resulting single-stage expanded particles had an expansion ratio of 25 times, a DSC peak ratio of 17%, and a heat deformation ratio of -1.1%.
- the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties The 50% compressive strength was acceptable. The results are shown in Table 1.
- Example 1 Manufacture of expanded foam in polypropylene resin mold
- Example 1-1 The lowest molding heating water vapor pressure was determined from the fusion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.25 MPa ⁇ G.
- Comparative Example 1-2 the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 1-2. It was rejected in terms of fusion rate and surface properties.
- Example 1 it can be seen that the lowest molded heating water vapor pressure can be reduced by using the foamed particles having a heat deformation rate close to zero.
- Example 4 [Production of polypropylene resin particles] Polypropylene resin A was treated in the same manner as in Example 1 except that 100 parts by weight of polypropylene resin A was blended with only 0.5 part by weight of talc [manufactured by Hayashi Kasei Co., Ltd., PK-S] as a cell nucleating agent. Resin particles were obtained.
- Example 1 The lowest molding heating water vapor pressure was determined from the adhesion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.26 MPa ⁇ G. Incidentally, the evaluation results in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G are shown in Comparative Example 4-2. It was rejected in terms of fusion rate and surface properties. In Example 1, it can be seen that the lowest molded heating water vapor pressure can be reduced by using the foamed particles having a heat deformation rate close to zero.
- Single-stage expanded particles were obtained in the same manner as in Example 1 except that the release was performed (the temperature in the expansion tank 9 became 45 ° C.).
- the resulting single-stage expanded particles had an expansion ratio of 15 times and a DSC peak ratio of 22%.
- An internal pressure of 0.28 MPa ⁇ G was applied to the obtained one-stage expanded particles by air impregnation, and heated with 0.02 MPa ⁇ G of steam to obtain expanded particles having an expansion ratio of 19 times.
- Manufacture of expanded foam in polypropylene resin mold In-mold foam molding was performed in the same manner as in Example 1, and the moldability and the obtained molded body were evaluated.
- Comparative Example 5-1 The result is shown as Comparative Example 5-1 in Table 2.
- the lowest molding heating water vapor pressure was determined from the adhesion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.26 MPa ⁇ G.
- the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 5-2. It was rejected in terms of fusion rate and surface properties.
- Example 1 it can be seen that the minimum molding heating water vapor pressure can be reduced by using foamed particles obtained by using carbon dioxide gas as the foaming agent and having a heating deformation rate close to zero.
- Example 1 the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 6-2. It was rejected in terms of fusion rate and surface properties.
- Example 1 it can be seen that the minimum molding heating water vapor pressure can be reduced by using foamed particles obtained by using carbon dioxide gas as the foaming agent and having a heating deformation rate close to zero.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
[1] 基材樹脂であるポリプロピレン系樹脂の融点-15℃の温度で加熱した前後での見掛けのかさ密度の変化率である加熱変形率が-2%以上、+2%以下であり、発泡倍率が15倍以上45倍以下であるポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法であり、耐圧容器内に、ポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、80℃超、110℃以下の雰囲気温度とした圧力域へ放出させることにより、前記ポリプロピレン系樹脂粒子を発泡させることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
[2] 前記ポリプロピレン系樹脂発泡粒子の発泡倍率が18倍以上25倍以下である前記[1]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[3] 前記ポリプロピレン系樹脂が、コモノマーとして1-ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体である前記[1]または[2]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[4] 前記ポリプロピレン系ランダム共重合体の融点が、125℃以上155℃以下である前記[3]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[5] 前記ポリエチレングリコール及び/又はグリセリンの含有量が、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることを特徴とする前記[1]~[4]のいずれかに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[6] 前記ポリプロピレン系樹脂が、無機造核剤を含有してなる前記[1]~[5]のいずれに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[7] 前記発泡剤の使用量が、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下である前記[1]~[6]のいずれかに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[8] 前記[1]~[7]のいずれかに記載の方法により製造されるポリプロピレン系樹脂発泡粒子。
[9] 前記[8]に記載のポリプロピレン系樹脂発泡粒子を型内発泡成形してなる型内発泡成形体。
(1)耐圧容器内に、ポリプロピレン系樹脂粒子および水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、耐圧容器内を真空引きした後、1MPa・G以上2MPa・G以下の発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱する。加熱することによって、耐圧容器内の圧力が約2MPa・G以上5MPa・G以下まで上がる。必要に応じて、発泡温度付近にて、さらに発泡剤を追加して所望の発泡圧力に調整、さらに温度調整を行った後、必要に応じて該発泡圧力および温度で所定時間保持し、次いで、耐圧容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることができる。
(2)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて耐圧容器内を真空引きした後、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱しながら、発泡剤を導入し、次いで、耐圧容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることもできる。
(3)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱し、さらに発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度とし、耐圧容器の内圧よりも低い圧力域に放出してポリプロピレン系樹脂発泡粒子を得ることもできる。
加熱変形率は、次の式によって算出する。
加熱変形率(%)=〔(加熱前の発泡粒子のかさ密度-加熱後の発泡粒子のかさ密度)/加熱前の発泡粒子のかさ密度〕×100
(1)一段発泡工程において、発泡剤を含浸したポリプロピレン系樹脂粒子を、加熱水蒸気中などの加温低圧域で発泡させる。
(2)ポリプロピレン系樹脂粒子100重量%中、ポリエチレングリコール及び/又はグリセリンを0.01重量%以上2重量%以下含有させる。
(3)発泡剤として、ポリプロピレン系樹脂100重量部に対して3重量部以上60重量部以下の炭酸ガスを使用する。
(4)加温低圧域の雰囲気温度を80℃超、110℃以下とする。
ポリプロピレン系樹脂:
●ポリプロピレン系樹脂A[プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃]
●ポリプロピレン系樹脂B[プロピレン/エチレンランダム共重合体中のエチレン含有率3.6重量%、メルトインデックス7g/10分、融点139℃]
セル造核剤:
●タルク[林化成(株)製、PK-S]
その他:
●ポリエチレングリコール[ライオン(株)製、PEG#300]
●メラミン[三井化学(株)製]
示差走査熱量計(DSC)[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂粒子3~6mgを10℃/分の昇温速度で20℃から220℃まで昇温した後、10℃/分で220℃から20℃まで降温し、さらに10℃/分で20℃から220℃まで昇温した際に得られる、2回目の昇温時のDSC曲線の融解ピーク温度を融点とした(図2参照。)。
示差走査熱量計(DSC)[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂発泡粒子3~6mgを10℃/分の昇温速度で20℃から220℃まで昇温したときに得られる、1回目の昇温時のDSC曲線より、各融解ピーク温度、あるいは融解熱量を求めた(図1参照。)。
嵩体積約50cm3のポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリプロピレン系樹脂粒子の密度d=0.9(g/cm3)から、次式により求めた。
発泡倍率=d×v÷w
発泡粒子から任意に10個を取り出し、セル膜が破壊されないように充分注意して切断したそれぞれのサンプルの切断面について、マイクロスコープで観察し、表層部を除く部分に長さ1mmに相当する線分を引き、該線分が通る気泡数を測定し、以後はASTM D3576に準拠して平均気泡径を測定した。
得られた発泡粒子を、23℃の標準状態で16時間以上状態調節した後、加熱前の発泡粒子の見掛けのかさ密度を測定する。
かさ密度の測定は、250ccのメスシリンダー[SCHOTT社、DURAN硼珪酸ガラス製]を用いて、約200ccの重量を測定した発泡粒子をメスシリンダーに投入し、発泡粒子間のゆるみがないように、メスシリンダーを約20回タップしてから、メスシリンダーの目盛りを用いて体積を測定し、前記重量を体積で除して加熱前のかさ密度(g/cc)を求める。
その発泡粒子をメスシリンダーに入れたものを、樹脂の融点-15℃の温度に調節した熱風循環式乾燥機[ナガノ科学機械製作所製、CH40-15P]内に入れて、1時間加熱を行った後、取り出す。発泡粒子どうしがブロッキングしている場合がある為、一度、メスシリンダー内の発泡粒子をほぐした後、23℃の標準状態の試験場所に1時間放置し、前記と同様に発泡粒子のかさ密度を求め、加熱後の発泡粒子のかさ密度とする。
加熱変形率は、次の式によって算出する。
加熱変形率(%)=〔(加熱前の発泡粒子のかさ密度-加熱後の発泡粒子のかさ密度)/加熱前の発泡粒子のかさ密度〕×100
ポリプロピレン発泡成形機[ダイセン株式会社製、KD-345]および、縦400mm×横300mm×厚み50mmの金型を用いて、成形加熱水蒸気圧を0.16MPa・G~0.32MPa・Gの間で0.01MPa・Gずつ変化させて、型内発泡成形を実施した。得られたポリプロピレン系樹脂型内発泡成形体を、1時間室温で放置した後、75℃の恒温室内で15時間養生乾燥を行い、再び室温に取出し、室温で4時間放置した後、下記の発泡粒子間の融着性、型内発泡成形体の表面性、成形体密度および50%圧縮強度を評価し、前記融着性、表面性および50%圧縮強度の全てが合格する(評価が「○」となるる。)型内発泡成形体が得られる、型内発泡成形時の最低の成形加熱蒸気圧を最低成形加熱水蒸気圧とした。
得られたポリプロピレン系樹脂型内発泡成形体を、カッターナイフで型内発泡成形体の厚み方向に約5~10mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
合格 「○」:粒子破断の割合が60%以上。
不合格「×」:粒子破断の割合が60%未満。
得られたポリプロピレン系樹脂型内発泡成形体の表面状態を目視観察し、以下の基準にて表面性を評価した。
合格 「○」:しわ、粒間少なく、美麗。
不合格「×」:しわ、ヒケがあり、外観不良。
得られたポリプロピレン系樹脂型内発泡成形体から、縦50mm×横50mm×厚み25mmの試験体を切り出し、試験体の密度ρを、試験体の重量W(g)と体積V(cm3)から、次式により求めた。
型内発泡成形体の密度ρ(g/L)=(W/V)×1000
得られたポリプロピレン系樹脂型内発泡成形体から、縦50mm×横50mm×厚み25mmの試験体を切り出し、NDA-Z0504に準拠し、10mm/分の速度で圧縮した際の50%圧縮時の圧縮応力(MPa)を測定した。
型内発泡成形体の密度ρに対し、次の基準にて評価した。
合格 「○」:50%圧縮強度が0.0069×ρ+0.0162MPa以上。
不合格「×」:50%圧縮強度が0.0069×ρ+0.0162MPa未満。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂A(プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃)100重量部に対して、セル造核剤としてタルク0.05重量部、吸水剤としてポリエチレングリコール0.50重量部をブレンドした後、φ50mm単軸押出機[大阪精機工作(株)製、20VSE-50-28型]内で樹脂温度220℃にて溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、円筒状で一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
容量10Lの耐圧オートクレーブ(耐圧容器3)の下部に、オリフィス5を介して、図3に示すような発泡槽9が配置された装置を用いて、ポリプロピレン系樹脂発泡粒子の製造を行った。
容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、発泡剤として炭酸ガスを6.0重量部添加した。オートクレーブ内容物を昇温し、150℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa・Gとした。その後、30分間保持した後、オートクレーブ下部のバルブ4を開き、3.6mmφの開口オリフィス5を通して、オートクレーブ内容物を大気圧下の発泡槽9内に放出して、一段発泡粒子を得た。なお、発泡槽9内のオリフィス5の直後の位置には蒸気吹込口8が設けられ、蒸気加熱により、発泡槽9内の雰囲気温度は98℃とし、発泡粒子が5分間接触するように設定されていた。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は19%であり、樹脂の融点144-15=129℃での加熱変形率は、-0.1%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
得られたポリプロピレン系樹脂発泡粒子を、pH=1の塩酸水溶液で洗浄した後水洗し、75℃で乾燥し、前記耐圧オートクレーブとは異なる二段発泡用の耐圧容器にて加圧空気を含浸して粒子内圧を0.2MPa・Gとした後、ポリプロピレン発泡成形機[ダイセン(株)製、KD-345]および、縦400mm×横300mm×厚み50mmの金型を用いて、加熱水蒸気圧力を0.16~0.32MPa・Gの間で0.01MPa・Gずつ変化させて、型内発泡成形を実施した。なお、この時の成形加熱時間は22秒(一方加熱/逆一方加熱/本加熱=5秒/5秒/12秒)とした。得られた型内発泡成形体は1時間室温で放置した後、75℃の恒温室内で15時間養生乾燥を行い、再び室温に取出してから室温で4時間放置した後の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧は0.21MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を149℃に変更した以外は、実施例1と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は18倍、DSCピーク比は29%、加熱変形率は、0.0%であった。最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂B(プロピレン/エチレンランダム共重合体中のエチレン含有率3.6重量%、メルトインデックス7g/10分、融点139℃)100重量部に対して、セル造核剤としてタルク0.10重量部、吸水剤としてポリエチレングリコール0.50重量部をブレンドした以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
得られたポリプロピレン系樹脂粒子を用い、オートクレーブ内容物の昇温温度(発泡温度)を136℃に変更した以外は、実施例1と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は20%、樹脂の融点139-15=124℃での加熱変形率は、-1.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。最低成形加熱水蒸気圧は0.18MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を135℃に変更した以外は、実施例3と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は19倍、DSCピーク比は28%、加熱変形率は、1.6%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.19MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂A(プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃)100重量部に対して、セル造核剤としてタルク0.05重量部、吸水剤としてグリセリン0.20重量部をブレンドした以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は19倍、DSCピーク比は22%、加熱変形率は、-0.2%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を149℃に変更した以外は、実施例5と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は18倍、DSCピーク比は29%、加熱変形率は、0%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂発泡粒子の製造]において、炭酸ガスを追加した際のオートクレーブ内圧を3.5MPa・Gとした以外は、実施例5と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は25倍、DSCピーク比は17%、加熱変形率は、-1.1%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
[ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例1と同様の操作により、一段発泡粒子を得た。
得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は21%であった。
得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率21倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-15.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例1-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ、0.25MPa・Gであった。ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例1-2に示した。融着率、表面性の点で不合格であった。
実施例1では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
[ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例2と同様の操作により、一段発泡粒子を得た。
得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は30%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率18倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-9.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例2-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例2での最低成形加熱水蒸気圧0.22MPa・Gにおける評価結果を、比較例2-2に示した。融着率、表面性及び50%圧縮強度の全ての点で不合格であり、実施例2では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
[ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例3と同様の操作により、一段発泡粒子を得た。得られた一段発泡粒子の発泡倍率は14倍、DSCピーク比は21%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率20倍の発泡粒子を得た。樹脂の融点139-15=124℃での加熱変形率は、-7.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例3-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.22MPa・Gであった。
ちなみに、実施例3での最低成形加熱水蒸気圧0.18MPa・Gでの結果を比較例3-2に示した。融着率、表面性、50%圧縮強度の点で不合格であり、実施例3では、発泡粒子の加熱変形率が0に近いものを使用したことで、最低成形加熱水蒸気圧を低下させることができていることがわかる。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部のみをブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、発泡剤としてイソブタンを添加した。オートクレーブ内容物を昇温し、135℃の発泡温度まで加熱した後、さらにイソブタンを追加してオートクレーブ内圧を2.4MPa・Gとした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、3.6mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下で蒸気加熱していない雰囲気下に放出し、一段発泡粒子を得た。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は19%であった。樹脂の融点144-15=129℃での加熱変形率は、-4.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例4-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例4-2に示した。融着率、表面性の点で不合格であった。実施例1では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部、メラミン[三井化学(株)製]0.5重量部をブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
得られたポリプロピレン系樹脂粒子を用い、オートクレーブ内容物の昇温温度(発泡温度)を152℃に変更し、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例1と同様の操作により、一段発泡粒子を得た。
得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は22%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率19倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-12.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例5-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例5-2に示した。融着率、表面性の点で不合格であった。実施例1では、発泡剤に炭酸ガス用いて得た発泡粒子で加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
[ポリプロピレン系樹脂粒子の製造]
ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部、メラミン[三井化学(株)製]0.5重量部をブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、オートクレーブ内容物を154℃まで加熱した。その後、オートクレーブ内圧を圧縮空気で2.8MPa・G容器内圧力まで昇圧し、該容器内温度で30分間保持した後、オートクレーブ下部のバルブ4を開き、3.6mmφの開口オリフィス5を通して、オートクレーブ内容物を大気圧下の発泡槽9内に放出して、一段発泡粒子を得た。なお、発泡槽9内のオリフィス5の直後の位置には蒸気吹込口8が設けられ、蒸気加熱により、発泡槽9内の雰囲気温度は98℃とし、発泡粒子が5分間接触するように設定されていた。比較例6は、特開2004-67768号公報記載の、発泡剤として水を用いる技術に関する。
得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は21%であり、樹脂の融点144-15=129℃での加熱変形率は-6.7%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例6-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例6-2に示した。融着率、表面性の点で不合格であった。
実施例1では、発泡剤に炭酸ガス用いて得た発泡粒子で加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
2.水系分散媒
3.耐圧容器(オートクレーブ)
4.バルブ
5.オリフィス
6.温度記録計
7.発泡粒子
8.蒸気吹込口
9.発泡槽
Claims (9)
- 基材樹脂であるポリプロピレン系樹脂の融点-15℃の温度で加熱した前後での見掛けのかさ密度の変化率である加熱変形率が-2%以上、+2%以下であり、発泡倍率が15倍以上45倍以下であるポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法であり、
耐圧容器内に、ポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、80℃超、110℃以下の雰囲気温度とした圧力域へ放出させることにより前記ポリプロピレン系樹脂粒子を発泡させることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。 - 前記ポリプロピレン系樹脂発泡粒子の発泡倍率が18倍以上25倍以下である請求項1に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 前記ポリプロピレン系樹脂が、コモノマーとして1-ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体である請求項1または2に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 前記ポリプロピレン系ランダム共重合体の融点が、125℃以上155℃以下である請求項3に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 前記ポリエチレングリコール及び/又はグリセリンの含有量が、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることを特徴とする請求項1~4のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 前記ポリプロピレン系樹脂が、無機造核剤を含有してなる請求項1~5のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 前記発泡剤の使用量が、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下である請求項1~6のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
- 請求項1~7のいずれか一項に記載の方法により製造されるポリプロピレン系樹脂一段発泡粒子。
- 請求項8に記載のポリプロピレン系樹脂一段発泡粒子を型内発泡成形してなる型内発泡成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14760548.9A EP2966119B9 (en) | 2013-03-08 | 2014-03-07 | Method for manufacturing foamed polypropylene-resin particles |
ES14760548.9T ES2687099T3 (es) | 2013-03-08 | 2014-03-07 | Método para la fabricación de partículas de resina de polipropileno expandido |
JP2015504412A JP6447494B2 (ja) | 2013-03-08 | 2014-03-07 | ポリプロピレン系樹脂発泡粒子の製造方法 |
US14/773,204 US20160009887A1 (en) | 2013-03-08 | 2014-03-07 | Method for manufacturing foamed polypropylene-resin particles |
CN201480013100.6A CN105008443B (zh) | 2013-03-08 | 2014-03-07 | 聚丙烯系树脂发泡粒子的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-046547 | 2013-03-08 | ||
JP2013046547 | 2013-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014136933A1 true WO2014136933A1 (ja) | 2014-09-12 |
Family
ID=51491440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055944 WO2014136933A1 (ja) | 2013-03-08 | 2014-03-07 | ポリプロピレン系樹脂発泡粒子の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160009887A1 (ja) |
EP (1) | EP2966119B9 (ja) |
JP (1) | JP6447494B2 (ja) |
CN (1) | CN105008443B (ja) |
ES (1) | ES2687099T3 (ja) |
WO (1) | WO2014136933A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017090432A1 (ja) * | 2015-11-26 | 2017-06-01 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 |
JPWO2016136875A1 (ja) * | 2015-02-26 | 2017-12-07 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子及びその製造方法 |
JP2018162370A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JP2018162371A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JP2018162369A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JPWO2019187986A1 (ja) * | 2018-03-26 | 2021-03-18 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子の製造方法および製造装置 |
WO2023010842A1 (zh) * | 2021-08-05 | 2023-02-09 | 江苏大毛牛新材料有限公司 | 一种环保型高效低成本制备物理发泡材料的方法 |
CN115850783A (zh) * | 2021-09-24 | 2023-03-28 | 中国石油化工股份有限公司 | 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10882968B2 (en) | 2016-08-30 | 2021-01-05 | Lcy Chemical Corporation | Polypropylene foams and processes of making |
CN107857891A (zh) * | 2017-09-30 | 2018-03-30 | 中国科学院长春应用化学研究所 | 聚合物泡沫材料的制备方法 |
CN107674234B (zh) * | 2017-09-30 | 2020-11-03 | 中国科学院长春应用化学研究所 | 聚丙烯系树脂发泡粒子的制备方法 |
US11780981B2 (en) | 2018-12-06 | 2023-10-10 | Exxonmobil Chemical Patents Inc. | Foam beads and method of making the same |
WO2021081660A1 (en) * | 2019-10-31 | 2021-05-06 | Exxonmobil Chemical Patents Inc. | Polymeric foams, methods, and articles thereof |
JPWO2021106354A1 (ja) * | 2019-11-29 | 2021-06-03 | ||
JP2021146679A (ja) | 2020-03-23 | 2021-09-27 | 株式会社リコー | 樹脂粉末、立体造形用樹脂粉末、立体造形物の製造方法、及び立体造形物の製造装置 |
JP7254308B2 (ja) | 2021-02-01 | 2023-04-10 | プライムプラネットエナジー&ソリューションズ株式会社 | オレフィン系樹脂多孔質体の製造方法 |
CN113831647B (zh) * | 2021-09-18 | 2023-01-20 | 无锡会通轻质材料股份有限公司 | 一种发泡聚丙烯珠粒的制备方法 |
JP7534280B2 (ja) * | 2021-12-03 | 2024-08-14 | トヨタ自動車株式会社 | オレフィン系樹脂多孔質体の製造方法、電池用セパレータの製造方法、および製造装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01242638A (ja) | 1988-03-24 | 1989-09-27 | Mitsubishi Yuka Badische Co Ltd | プロピレン系樹脂発泡粒子および発泡成形体 |
JPH07258455A (ja) | 1994-03-23 | 1995-10-09 | Jsp Corp | ポリプロピレン系樹脂発泡粒子成形体 |
JP2001151928A (ja) | 1999-12-01 | 2001-06-05 | Jsp Corp | 成型用ポリプロピレン系樹脂発泡粒子 |
JP2004067768A (ja) | 2002-08-02 | 2004-03-04 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂予備発泡粒子 |
WO2008139822A1 (ja) | 2007-05-09 | 2008-11-20 | Jsp Corporation | ポリプロピレン系樹脂発泡粒子およびその成形体 |
JP2009030048A (ja) * | 2007-07-03 | 2009-02-12 | Kaneka Corp | 付着分散剤量が低減されたポリオレフィン系樹脂予備発泡粒子の製造方法 |
JP2010090232A (ja) * | 2008-10-07 | 2010-04-22 | Kaneka Corp | 金型充填性に優れたポリオレフィン系樹脂発泡粒子の製造方法 |
JP2010106238A (ja) * | 2008-09-30 | 2010-05-13 | Kaneka Corp | 金型充填性に優れたポリオレフィン系樹脂多段発泡粒子 |
JP2012201861A (ja) * | 2011-03-28 | 2012-10-22 | Sekisui Plastics Co Ltd | ポリプロピレン系樹脂を含む予備発泡樹脂粒子とその製造方法および発泡成形体 |
WO2013011951A1 (ja) * | 2011-07-15 | 2013-01-24 | 株式会社カネカ | 帯電防止性能を有する無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体 |
WO2013031745A1 (ja) * | 2011-08-29 | 2013-03-07 | 株式会社カネカ | ポリエチレン系樹脂発泡粒子及びその成形体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8513317B2 (en) * | 2007-12-11 | 2013-08-20 | Kaneka Corporation | Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles |
JP5487558B2 (ja) * | 2008-02-21 | 2014-05-07 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子の製造方法 |
CN102070841B (zh) * | 2011-01-21 | 2012-07-25 | 北京工商大学 | 采用复合发泡剂的聚丙烯泡沫片材及其生产方法 |
-
2014
- 2014-03-07 JP JP2015504412A patent/JP6447494B2/ja active Active
- 2014-03-07 WO PCT/JP2014/055944 patent/WO2014136933A1/ja active Application Filing
- 2014-03-07 CN CN201480013100.6A patent/CN105008443B/zh active Active
- 2014-03-07 US US14/773,204 patent/US20160009887A1/en not_active Abandoned
- 2014-03-07 ES ES14760548.9T patent/ES2687099T3/es active Active
- 2014-03-07 EP EP14760548.9A patent/EP2966119B9/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01242638A (ja) | 1988-03-24 | 1989-09-27 | Mitsubishi Yuka Badische Co Ltd | プロピレン系樹脂発泡粒子および発泡成形体 |
JPH07258455A (ja) | 1994-03-23 | 1995-10-09 | Jsp Corp | ポリプロピレン系樹脂発泡粒子成形体 |
JP2001151928A (ja) | 1999-12-01 | 2001-06-05 | Jsp Corp | 成型用ポリプロピレン系樹脂発泡粒子 |
JP2004067768A (ja) | 2002-08-02 | 2004-03-04 | Kanegafuchi Chem Ind Co Ltd | ポリプロピレン系樹脂予備発泡粒子 |
WO2008139822A1 (ja) | 2007-05-09 | 2008-11-20 | Jsp Corporation | ポリプロピレン系樹脂発泡粒子およびその成形体 |
JP2009030048A (ja) * | 2007-07-03 | 2009-02-12 | Kaneka Corp | 付着分散剤量が低減されたポリオレフィン系樹脂予備発泡粒子の製造方法 |
JP2010106238A (ja) * | 2008-09-30 | 2010-05-13 | Kaneka Corp | 金型充填性に優れたポリオレフィン系樹脂多段発泡粒子 |
JP2010090232A (ja) * | 2008-10-07 | 2010-04-22 | Kaneka Corp | 金型充填性に優れたポリオレフィン系樹脂発泡粒子の製造方法 |
JP2012201861A (ja) * | 2011-03-28 | 2012-10-22 | Sekisui Plastics Co Ltd | ポリプロピレン系樹脂を含む予備発泡樹脂粒子とその製造方法および発泡成形体 |
WO2013011951A1 (ja) * | 2011-07-15 | 2013-01-24 | 株式会社カネカ | 帯電防止性能を有する無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体 |
WO2013031745A1 (ja) * | 2011-08-29 | 2013-03-07 | 株式会社カネカ | ポリエチレン系樹脂発泡粒子及びその成形体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2966119A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016136875A1 (ja) * | 2015-02-26 | 2017-12-07 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子及びその製造方法 |
EP3263638A4 (en) * | 2015-02-26 | 2018-10-03 | Kaneka Corporation | Polyolefin resin foam particles and production method for same |
WO2017090432A1 (ja) * | 2015-11-26 | 2017-06-01 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 |
JPWO2017090432A1 (ja) * | 2015-11-26 | 2018-08-23 | 株式会社カネカ | ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 |
US20180273719A1 (en) * | 2015-11-26 | 2018-09-27 | Kaneka Corporation | Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article |
JP2018162371A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JP2018162370A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JP2018162369A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | ポリプロピレン系樹脂黒色発泡粒子の製造方法 |
JPWO2019187986A1 (ja) * | 2018-03-26 | 2021-03-18 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子の製造方法および製造装置 |
JP7324189B2 (ja) | 2018-03-26 | 2023-08-09 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子の製造方法および製造装置 |
WO2023010842A1 (zh) * | 2021-08-05 | 2023-02-09 | 江苏大毛牛新材料有限公司 | 一种环保型高效低成本制备物理发泡材料的方法 |
CN115960383A (zh) * | 2021-08-05 | 2023-04-14 | 江苏大毛牛新材料有限公司 | 一种环保型高效低成本制备物理发泡材料的方法 |
CN115850783A (zh) * | 2021-09-24 | 2023-03-28 | 中国石油化工股份有限公司 | 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法 |
CN115850783B (zh) * | 2021-09-24 | 2024-03-22 | 中国石油化工股份有限公司 | 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2687099T3 (es) | 2018-10-23 |
US20160009887A1 (en) | 2016-01-14 |
EP2966119A1 (en) | 2016-01-13 |
CN105008443B (zh) | 2019-03-01 |
JPWO2014136933A1 (ja) | 2017-02-16 |
EP2966119B1 (en) | 2018-07-11 |
EP2966119B9 (en) | 2019-01-16 |
CN105008443A (zh) | 2015-10-28 |
JP6447494B2 (ja) | 2019-01-09 |
EP2966119A4 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6447494B2 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法 | |
JP6421165B2 (ja) | ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂発泡粒子の製造方法 | |
CN105849167B (zh) | 聚烯烃系树脂发泡粒子及聚烯烃系树脂模内发泡成型体 | |
US8598241B2 (en) | Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article | |
WO2017030124A1 (ja) | ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂型内発泡成形体の製造方法およびポリプロピレン系樹脂型内発泡成形体 | |
JP5587867B2 (ja) | ポリプロピレン系共重合体樹脂発泡粒子 | |
JPWO2006075491A1 (ja) | ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体 | |
JP5365901B2 (ja) | ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体 | |
JP6637903B2 (ja) | ポリプロピレン系樹脂発泡粒子 | |
JP6730979B2 (ja) | ポリプロピレン系樹脂発泡粒子およびその製造方法 | |
JP2014098161A (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
CN112189032B (zh) | 聚丙烯系树脂发泡粒子、聚丙烯系树脂模内发泡成型体和聚丙烯系树脂发泡粒子的制造方法 | |
JP2013100554A (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
JP6670850B2 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 | |
JP5841076B2 (ja) | ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体 | |
JP5460227B2 (ja) | ポリプロピレン系樹脂型内発泡成形体 | |
JP5248939B2 (ja) | ポリプロピレン系樹脂発泡粒子 | |
JP2010173146A (ja) | ポリプロピレン系樹脂型内発泡成形体の製造方法 | |
JP5161593B2 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法 | |
JP5331344B2 (ja) | ポリプロピレン系樹脂予備発泡粒子 | |
JP2010013606A (ja) | ポリプロピレン系樹脂予備発泡粒子、及びポリプロピレン系樹脂型内発泡成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14760548 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015504412 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773204 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014760548 Country of ref document: EP |