WO2014136877A1 - 高純度2-フルオロブタン - Google Patents
高純度2-フルオロブタン Download PDFInfo
- Publication number
- WO2014136877A1 WO2014136877A1 PCT/JP2014/055778 JP2014055778W WO2014136877A1 WO 2014136877 A1 WO2014136877 A1 WO 2014136877A1 JP 2014055778 W JP2014055778 W JP 2014055778W WO 2014136877 A1 WO2014136877 A1 WO 2014136877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorobutane
- volume
- ppm
- purity
- butene
- Prior art date
Links
- IXHWZHXLJJPXIS-UHFFFAOYSA-N 2-fluorobutane Chemical compound CCC(C)F IXHWZHXLJJPXIS-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims abstract description 14
- 238000001312 dry etching Methods 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 10
- 239000010419 fine particle Substances 0.000 claims description 4
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 abstract description 14
- 239000012495 reaction gas Substances 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 238000004821 distillation Methods 0.000 description 24
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 21
- 238000010992 reflux Methods 0.000 description 17
- 238000005530 etching Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- 239000012535 impurity Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- 238000004817 gas chromatography Methods 0.000 description 10
- 239000002808 molecular sieve Substances 0.000 description 10
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 10
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 6
- 239000012025 fluorinating agent Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 5
- 238000001577 simple distillation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- UPSXAPQYNGXVBF-UHFFFAOYSA-N 2-bromobutane Chemical compound CCC(C)Br UPSXAPQYNGXVBF-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- BQHQZFUAEAVJRE-UHFFFAOYSA-N 2-fluorobuta-1,3-diene Chemical compound FC(=C)C=C BQHQZFUAEAVJRE-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 229910000617 Mangalloy Inorganic materials 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 101000956368 Trittame loki CRISP/Allergen/PR-1 Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- -1 difluoro hydrocarbons Chemical class 0.000 description 2
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N monofluoromethane Natural products FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229940110728 nitrogen / oxygen Drugs 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011698 potassium fluoride Substances 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- IIADOUMJKYSCPM-UHFFFAOYSA-N 2,2-difluorobutane Chemical compound CCC(C)(F)F IIADOUMJKYSCPM-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- IZKCZVUEJZBDPL-UHFFFAOYSA-N N,N-diethylethanamine 1,1,2,2,3,3-hexafluorocyclobutane Chemical compound CCN(CC)CC.FC1(F)CC(F)(F)C1(F)F IZKCZVUEJZBDPL-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- UZADUQHNWBREGQ-UHFFFAOYSA-N [Li]C(C)CC.C1CCCCC1 Chemical compound [Li]C(C)CC.C1CCCCC1 UZADUQHNWBREGQ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- YFZQMMKPTZLTEU-UHFFFAOYSA-N n,n-diethyl-1,1,1,3,3,3-hexafluoropropan-2-amine Chemical compound CCN(CC)C(C(F)(F)F)C(F)(F)F YFZQMMKPTZLTEU-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OBDFQUSHNJZDSN-UHFFFAOYSA-N n-ethylethanamine;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical compound CCNCC.FC(F)=C(F)C(F)(F)F OBDFQUSHNJZDSN-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K13/00—Etching, surface-brightening or pickling compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K13/00—Etching, surface-brightening or pickling compositions
- C09K13/04—Etching, surface-brightening or pickling compositions containing an inorganic acid
- C09K13/08—Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
Definitions
- the present invention relates to a high-purity 2-fluorobutane useful as a plasma etching gas, a CVD gas, a raw material for producing a fluorine-containing pharmaceutical intermediate, and a hydrofluorocarbon solvent in the field of manufacturing semiconductor devices using plasma reactions. .
- Patent Document 2 discloses that 2-butanol is reacted with N, N′-diethyl-3-oxo-methyltrifluoropropylamine as a fluorinating agent. It was described that 2-fluorobutane was obtained in a yield of 46%. Patent Document 3 describes that 2-fluorobutane was obtained in a yield of 68% by reacting 2-butanol with triethylammonium hexafluorocyclobutane as a fluorinating agent.
- Patent Document 4 describes that the formation of sec-butyl fluoride was confirmed by bringing sulfur hexafluoride into contact with an n-hexane solution of sec-butyl lithium cyclohexane.
- Patent Document 5 describes that 2-fluorobutadiene was obtained by hydrogenating 2-fluorobutadiene in the presence of a catalyst.
- an object of the present invention is to provide 2-fluorobutane suitable as a plasma reaction gas that does not produce hydrocarbon-based deposits even when used as a dry etching gas.
- the present inventor further examined the cause of the phenomenon that etching is stopped when excessively hydrocarbon-based deposits are generated when 2-fluorobutane obtained by the method described in the prior art is used.
- the present inventors have found that this problem occurs when 2-fluorobutane contains a certain amount or more of butene as an impurity, thereby completing the present invention.
- a method of using the following high purity 2-fluorobutane (4) (4) (1) High purity 2-fluorobutane having a purity of 99.9% by volume or more and a butene content of 1000 ppm by volume or less. (2) The high purity 2-fluorobutane according to (1), wherein the nitrogen content is 100 ppm by volume and the oxygen content is 50 ppm by volume or less. (3) High-purity 2-fluorobutane as described in (1) or (2), wherein the water content is 50 ppm by volume or less. (4) A method of using the high-purity 2-fluorobutane described in any one of (1) to (3) as a dry etching gas.
- the 2-fluorobutane of the present invention is characterized by having a purity of 99.9% by weight or more and a butene content of 1000 ppm by volume or less.
- butene is a generic name for 1-butene, 2-butene ((E) -2-butene and (Z) -2-butene) and isobutene (hereinafter, these may be collectively referred to as “butenes”).
- butenes one or more butenes present in 2-fluorobutane are all impurities.
- the purity of 2-fluorobutane and the content of butenes are values calculated from the peak area by gas chromatography using a flame ionization detector (FID) as a detector.
- FID flame ionization detector
- Butenes can be identified by gas chromatography mass spectrometry.
- the amounts of nitrogen and oxygen in 2-fluorobutane are values measured by gas chromatography using a thermal conductivity detector (TCD) as a detector.
- TCD thermal conductivity detector
- the water content in 2-fluorobutane is a value measured using FT-IR.
- the 2-fluorobutane of the present invention is a known production method, for example, a method of fluorinating 2-butanol as a raw material with a fluorinating agent, or an alkali metal fluoride such as 2-bromobutane with potassium fluoride or cesium fluoride.
- the crude 2-fluorobutane produced by, for example, the method of treating with 1 can be obtained by distillation purification.
- the number of theoretical plates is usually about 10 or more and about 50, preferably about 20 or more and about 50. Since these butenes have a boiling point of room temperature or lower, the separation from the target 2-fluorobutane is apparently deteriorated due to the vaporization phenomenon in the fraction extraction line of the rectification column. Therefore, it is preferable that the fraction extraction line and the container for storing the initial fraction are sufficiently cooled.
- the content of butenes can be 1000 ppm by volume or less, preferably 500 ppm by volume or less.
- the pressure during rectification is a gauge pressure, and is usually from normal pressure (1 atm) to 10 atm, preferably from about normal pressure to 5 atm.
- the ratio between the reflux amount and the withdrawal amount (hereinafter sometimes referred to as “reflux ratio”) is preferably set to a reflux ratio of 30: 1 or more in order to efficiently separate butenes that are likely to be in a gas state. . If the reflux ratio is too small, butenes are not efficiently separated, and not only the improvement in the purity of 2-fluorobutane becomes small, but also the initial fraction increases, and the total amount of 2-fluorobutane recovered is small. Less. On the other hand, if the reflux ratio is too large, it takes a lot of time to recover per extraction, so that the rectification itself takes a lot of time and the productivity is poor.
- a batch system or a continuous system may be employed, but a batch system is preferably employed when the production amount is small, and a continuous system through several rectification towers when the production amount is large. Preferably employed. Moreover, you may carry out combining the extractive distillation operation which added the extraction solvent.
- the raw material compound is obtained by the first distillation.
- stepwise distillation such as separation of butenes that are the target of impurities in the second distillation may be performed.
- the reflux ratio is preferably 40: 1 or more.
- Nitrogen and oxygen in 2-fluorobutane can be purified by a method of purifying in an inert gas of group 0 when the above-mentioned butenes are removed by rectification, or by distilling 2-fluorobutane by simple distillation. It can be removed by a method of performing an operation of extracting the. In the latter method, the amount of nitrogen and oxygen in 2-fluorobutane remaining in the kettle can be reduced by extracting nitrogen and oxygen together with 2-fluorobutane by simple distillation.
- the amount of 2-fluorobutane to be extracted is preferably 20 to 50%, more preferably 30 to 40%, based on the weight with respect to 2-fluorobutane charged in the distillation still.
- the extracted 2-fluorobutane is stored and can be recovered and reused by adding it to the next batch.
- the nitrogen content of 2-fluorobutane is preferably 100 ppm by volume or less, more preferably 80 ppm by volume or less.
- the oxygen content is preferably 50 ppm by volume or less, more preferably 30 ppm by volume or less.
- a method for removing water in 2-fluorobutane a general method such as bringing 2-fluorobutane into contact with an adsorbent can be employed.
- adsorbent molecular sieve, alumina or the like can be used.
- the drying of mono- or difluoro hydrocarbons such as 2-fluorobutane and 2,2-difluorobutane is molecular.
- the use of sieve 3A is preferred.
- the alumina is preferably activated alumina with low crystallinity produced by heat dehydration of alumina hydrate. It is preferable to activate an adsorbent such as molecular sieve or alumina before the contact with 2-fluorobutane by an operation such as calcination, because more water can be adsorbed.
- the water content in 2-fluorobutane can be reduced to 50 ppm by volume or less. If the moisture content is high, moisture will remain on the processed surface after etching the substrate, causing peeling of the laminated film and corrosion of the embedded wiring in the wiring formation process such as copper. Is preferably reduced as much as possible. From this viewpoint, the water content of 2-fluorobutane is preferably 50 ppm by volume or less, more preferably 20 ppm by volume or less.
- the number of fine particles of 0.1 ⁇ m or more of 2-fluorobutane is preferably 50 / ml or less. For this reason, in the water removal step, it is preferable to recover the 2-fluorobutane by filtering after contacting the molecular sieve and 2-fluorobutane.
- the step of reducing the crude 2-fluorobutane contained in the reaction crude product to a purity of 99.9% by volume or more and butenes to 1000 ppm by volume or less by rectification, and then the adsorbent A step of removing moisture by contacting with water, and a step of reducing the concentration of nitrogen and oxygen in 2-fluorobutane to 100 ppm by volume or less and 50 ppm by volume or less by simple distillation of 2-fluorobutane.
- high-purity 2-fluorobutane suitable for the plasma reaction gas can be obtained.
- 2-Fluorobutane is useful not only as a silicon nitride film but also as a dry etching gas for a silicon nitride oxide film or a titanium nitride film.
- a silicon oxide film formed on an object to be processed is obtained by using the processing gas containing the high purity 2-fluorobutane of the present invention.
- the silicon nitride film, the silicon nitride oxide film, and the silicon nitride film covering the substrate can be efficiently and highly selectively etched.
- GC part HP-6890 (manufactured by Agilent)
- the temperature of the oil bath was lowered to 80 ° C., and two glass traps immersed in a dry ice-ethanol bath were connected in series to the reactor. Furthermore, a pressure controller and a vacuum pump were connected to the exit of the glass trap. The vacuum pump was started, and the pressure in the system was reduced stepwise from 50 to 45 kPa, then 35 to 30 kPa, and further to 30 to 25 kPa using a pressure controller, and volatile components were collected in a glass trap. The contents of two glass traps were combined and analyzed by gas chromatography.
- Example 1 (1) Primary distillation: 4340 g of 2-fluorobutane crude product obtained by repeating the reaction of Production Example 1 was charged into a distillation kettle, and KS type rectification column (manufactured by Toshin Seiki Co., Ltd., column length: 30 cm, packed) Agent: Distillation was performed using Helipac No. 1). A -5 ° C refrigerant was circulated through the condenser. The distillation kettle was heated to 90 ° C. and fully refluxed for 1 hour to stabilize the inside of the system, and then the fraction was extracted at a reflux ratio of 30: 1. The distillation kettle was appropriately heated from 90 ° C. and heated to 125 ° C. while observing the reflux condition in the condenser.
- Example 2 298 g of 2-fluorobutane obtained by distillation and purification in Example 1 was placed in a 1.2 liter SUS316 container (inner surface: electrolytic polishing treatment) containing 100 g of molecular sieve 3A (manufactured by Wako Pure Chemical Industries, Ltd.). And soaking at room temperature for 22 hours. Thereafter, a simple distillation apparatus equipped with a short column, a condenser and a receiver was assembled on the top of a 1 L capacity SUS316 kettle, and -10 ° C cooling water was circulated through the condenser. The kettle was charged with 427 g of 2-fluorobutane from which moisture had been removed, and the kettle was heated to 50 ° C.
- the nitrogen and oxygen concentrations in 2-fluorobutane at this time were measured by gas chromatography, and found to be 515 ppm by volume and 138 ppm by volume, respectively.
- 2-fluorobutane charged was withdrawn into a receiver, simple distillation was stopped and the kettle was cooled to room temperature.
- 309 g of 2-fluorobutane in the kettle was filled into a 1 L manganese steel cylinder (inner surface roughness: 1S) equipped with a diaphragm valve.
- the nitrogen, oxygen, and water contents in 2-fluorobutane were measured and found to be 68 ppm by volume, 20 ppm by volume, and 16 ppm by volume.
- Example 3 2060 g of crude 2-fluorobutane obtained by repeating the reaction of Production Example 1 was charged into a distillation kettle, and a KS type rectification column (manufactured by Toshin Seiki Co., Ltd., column length: 60 cm, packing material: Helipak No. 1) was used. Distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated from 90 to 125 ° C. in consideration of the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was withdrawn at a reflux ratio of 30: 1 to 15: 1.
- Example 4 309 g of 2-fluorobutane obtained in Example 3 was immersed in 60 g of molecular sieve 3A (manufactured by Wako Pure Chemical Industries, Ltd.) for 20 hours at room temperature in a 1.2 L stainless steel container. A stainless steel container and a 1 L manganese steel cylinder were connected with a stainless steel tube, and 2-fluorobutane was filled into the cylinder under reduced pressure through a metal filter having a pore diameter of 0.2 ⁇ m. The cylinder was cooled with ice water, and about 30 g of 2-fluorobutane was withdrawn through a pressure controller while reducing the pressure with a vacuum pump at a pressure of 5 to 10 kPa. After returning to room temperature and allowing to stand for a while, the nitrogen / oxygen and water contents in 2-fluorobutane were measured and found to be 36 ppm by volume, 18 ppm by volume, and 44 ppm by volume, respectively.
- molecular sieve 3A manufactured by Wak
- Example 5 604 g of crude 2-fluorobutane obtained by repeating the reaction of Production Example 2 was charged into a distillation kettle, and a KS type rectifying column (manufactured by Toshin Seiki Co., Ltd., column length: 60 cm, packing material: Helipak No. 1) was used. Distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated at 45 to 70 ° C., taking into account the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was extracted at a reflux ratio of 10: 1.
- Example 6 Dry etching evaluation: Using a wafer having a silicon nitride film formed on the surface and a wafer having a silicon oxide film formed on the surface, each wafer was etched separately. Then, the etching rates of the silicon nitride film and the silicon oxide film were measured, and the selection ratio (SiN film / SiO 2 film) was obtained from the etching rate ratio of the silicon nitride film to the silicon oxide film based on these measurement results. A wafer with a silicon nitride film formed on the surface and a wafer with a silicon oxide film formed on the surface were set in an etching chamber of a parallel plate plasma etching apparatus, respectively, and the system was evacuated. Etching was performed using the prepared 2-fluorobutane under the following etching conditions. The results are shown in Table 1.
- Example 8 As the impurities obtained by repeated purification by repeating Example 1, 1-butene, (E) -2-butene, and (Z) -2-butene were 92 area (volume) ppm and 361 area (volume), respectively. 2) 900 g of 2-fluorobutane having a purity of 99.924% by volume, containing ppm and 307 area (volume) ppm, was placed in a 2 liter container made of SUS316 (inner surface: electrolytic polishing treatment).
- this container was filled with 45 g of a polytetrafluoroethylene filter (manufactured by Nippon Pole Co., Ltd., pore size 0.05 ⁇ m) and molecular sieve 3A (manufactured by Tosoh Corporation, product name “Zeoram (registered trademark) A-3”).
- the cylindrical stainless steel tower was connected so that 2-fluorobutane exiting from the container would return to the container through the filter via the molecular sieve packed tower.
- 2-fluorobutane in the container was pumped at a rate of 0.1 liter / min and dried for 12 hours. The moisture value of 2-fluorobutane after drying was 9 ppm by volume.
- the vessel made of SUS316 containing 2-fluorobutane having a water content of 9 ppm by volume was cooled to 5 ° C., allowed to stand for 3 hours, and then placed in a clean booth through a valve. Connected to a light scattering type in-liquid particle detector “KS-40A”, a particle counter “KE-40”, and a pressure sampler, manufactured by Rion Co., Ltd.) and sent 2-fluorobutane at a rate of 10 ml / min The number of fine particles in 2-fluorobutane was measured. As a result, the number of fine particles of 0.1 ⁇ m or more was 37 / ml.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
そこで本発明は、ドライエッチングガスとして使用した場合であっても、炭化水素系の堆積物が生成することのない、プラズマ反応用ガスとして好適な2-フルオロブタンを提供することを目的とする。
(1)純度が99.9容量%以上で、ブテン類の含有量が1000容量ppm以下であることを特徴とする高純度2-フルオロブタン。
(2)窒素含有量が100容量ppmで、かつ、酸素含有量が50容量ppm以下である(1)に記載の高純度2-フルオロブタン。
(3)水分含有量が50容量ppm以下である(1)又は(2)に記載の高純度2-フルオロブタン。
(4)前記(1)~(3)のいずれかに記載の高純度2-フルオロブタンを、ドライエッチングガスとして使用する方法。
(高純度2-フルオロブタン)
本発明の2-フルオロブタンは、純度が99.9重量%以上であり、ブテンの含有量が1000容量ppm以下であることを特徴とする。
本発明において、ブテンは、1-ブテン、2-ブテン((E)-2-ブテンと(Z)-2-ブテン)及びイソブテンの総称(以下、これらをまとめて「ブテン類」ということがある。)であり、2-フルオロブタン中に存在する1種以上のブテン類は、すべて不純物である。
ブテン類は、ガスクロマトグラフィー質量分析により同定することができる。
2-フルオロブタン中の窒素と酸素の量は、熱電導度検出器(TCD)を検出器としたガスクロマトグラフィーにより測定した値である。
また、2-フルオロブタン中の水分量は、FT-IRを用いて測定した値である。
蒸留精製により有機系不純物を除去する場合、精留塔が用いられる。特に、2-フルオロブタン(沸点:24~25℃)と、ブテン類:1-ブテン(沸点:-6.3℃)、(E)-2-ブテン(沸点:0.9℃)、(Z)-2-ブテン(沸点:3.7℃)を効率的に分離するために、適度な理論段数を持つ精留塔が用いられる。理論段数は通常10段以上、50段程度であり、好ましくは20段以上、50段程度である。これらブテン類は沸点が常温以下であるため、精留塔の留分抜き出しライン内での気化現象により、目的とする2-フルオロブタンとの分離が見かけ上悪くなる。よって、留分抜き出しラインや初留分を貯留する容器は十分に冷却されていることが好ましい。
粗2-フルオロブタンを精留することにより、ブテン類の含有量は1000容量ppm以下、好ましくは500容量ppm以下にすることができる。
還流量と抜出量の比(以下、「還流比」と言うことがある)は、ガス状態に成りやすいブテン類を効率良く分離するために、還流比30:1以上に設定するのが好ましい。還流比が小さすぎるとブテン類が効率良く分離されず、2-フルオロブタンの純度の向上幅が小さくなるばかりでなく、初留分が多くなってしまい、回収される2-フルオロブタンの総量が少なくなる。逆に還流比が大きすぎると、抜き出し1回当たりの回収までに多大な時間を要すために、精留そのものに多大な時間を要し、生産性に劣る。
後者の方法による場合、単蒸留で、窒素と酸素を2-フルオロブタンと一緒に抜出すことにより、釜に残った2-フルオロブタン中の窒素と酸素の量を低減することができる。抜出す2-フルオロブタン中の量は、蒸留釜に仕込まれた2-フルオロブタンに対し、重量基準で20~50%が好ましく、30~40%がより好ましい。抜き出された2-フルオロブタンは貯留しておき、次のバッチに加えることで回収、再使用が可能である。
吸着剤としては、モレキュラーシーブやアルミナ等を用いることができる。特開2014-24785号公報(特願2012-165797号)に記載されているように、2-フルオロブタンや、2,2-ジフルオロブタンのような、モノあるいはジフルオロ炭化水素の乾燥については、モレキュラーシーブ3Aの使用が好ましい。モレキュラーシーブ4A及び5A等の細孔径が大きく、2-フルオロブタン分子が細孔内に取り込まれてしまうと、水分を低減させる効果が下がり、また、アルカリ性を帯びたモレキュラーシーブの使用は2-フルオロブタンの脱HF反応を引き起こすので、いずれも使用に際しては注意を要する。
また、アルミナはアルミナ水和物の加熱脱水により生成する、結晶性の低い活性アルミナが好ましい。
2-フルオロブタンを接触させる前に、モレキュラーシーブやアルミナ等の吸着剤を焼成等の操作により活性化しておくと、より多くの水分を吸着させることが可能になるので好ましい。2-フルオロブタンを吸着剤と接触させることにより、2-フルオロブタン中の水分含有量を50容量ppm以下に低減することが可能である。水分含有量が多いと、基板をエッチング加工した後に加工面に水分が吸着残存し、銅等の配線形成工程で積層膜の剥がれや、埋め込んだ配線の腐食を起こす恐れがあるので、水分含有量は可能な限り低減されていることが好ましい。
この観点から、2-フルオロブタンの水分含有量は、好ましくは50容量ppm以下、より好ましくは20容量ppm以下である。
2-フルオロブタンは、窒化シリコン膜のみならず、窒化酸化シリコン膜や窒化チタン膜等のドライエッチングガスとしても有用である。
(1)ガスクロマトグラフィー分析(GC分析)
装置:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後240℃で10分間保持
インジェクション温度:200℃
キャリヤーガス:窒素
スプリット比:100/1
検出器:FID
GC部分:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
MS部分:アジレント社製 5973 NETWORK
検出器 EI型(加速電圧:70eV)
(3)1H-NMR及び19F-NMR測定
装置:JNM-ECA-400(日本電子社製)400MHz
(4)窒素・酸素の含有量の測定(ガスクロマトグラフィー分析)
GC部分:HP-7890(アジレント社製)
カラム:アジレント社製 HP-5 長さ30m、内径0.32mm、膜厚0.25μmカラム温度:40℃で5分間保持し、次いで、5℃/分で昇温し、その後、65℃で1分間保持
ガスサンプラー:50℃
キャリヤーガス:ヘリウム
検出器:TCD+パルス放電型
(5)水分含有量の測定(FT-IR)
IG-1000(大塚電子社製)
セル長:10m
攪拌機及びジムロート型コンデンサーを付した容量500mlのガラス製反応器に、スプレードライフッ化カリウム116g(アルドリッチ社製)、2-ブロモブタン137g(東京化成工業社製)、及びプロピレングリコール200mlを仕込み、窒素雰囲気下に置いた。反応器をオイルバスに浸して、95~100℃で12時間加熱した。ジムロート型コンデンサーには-10℃に冷却した冷媒を循環させた。12時間後、オイルバスの温度を80℃まで下げ、反応器にドライアイス-エタノール浴に浸したガラス製トラップを直列に2つ繋げた。さらに、ガラス製トラップの出口には圧力コントローラー、及び真空ポンプを繋げた。真空ポンプを起動し、圧力コントローラーを使って、系内の圧力を50~45kPa、次いで、35~30kPa、さらに、30~25kPaまで段階的に下げて、揮発成分をガラストラップに回収した。2つのガラス製トラップの中身を合わせて、ガスクロマトグラフィーにて分析した結果、(E)-2-ブテン0.71面積(容量)%、(Z)-2-ブテン0.68面積(容量)%、2-フルオロブタン21.23面積(容量)%、及び2-ブロモブタン77.35面積(容量)%を含む混合物であった。
滴下ロートを付した容量500mlのガラス製反応器に撹拌子を入れ、2-ブタノール44g、乾燥1,2-ジクロロエタン200mlを仕込み、窒素雰囲気下に置いた。反応器を氷水で冷却し、滴下ロートから、乾燥1,2-ジクロロエタン120mlに溶解させたヘキサフルオロプロペン-ジエチルアミン錯体164g(東京化成工業社製)を約1時間かけて滴下した。滴下終了後、反応器を0℃に維持して3時間、次いで、室温(25℃)で2時間撹拌を継続した。ガスクロマトグラフィーにて原料がほぼ消失したのを確認後、反応液に氷水を投入し、さらに10%炭酸カリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。
得られた1,2-ジクロロエタン溶液を単蒸留したところ、ドライアイス-エタノール浴に浸漬した受器内には31.9gの液体が捕集された。この液体をガスクロマトグラフィー、及びガスクロマトグラフィー質量分析計にて分析したところ、1-ブテン2.36面積(容量)%、(E)-2-ブテン19.45面積%、(Z)-2-ブテン16.78面積(容量)%、2-フルオロブタン58.51面積(容量)%、及び溶媒の1,2-ジクロロエタン2.9面積(容量)%から成る混合物であった。
(1)1次蒸留:製造例1の反応を繰り返して得られた2-フルオロブタンの粗体4340gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:30cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-5℃の冷媒を循環させた。蒸留釜を90℃に加温し、1時間全還流させて系内を安定させた後、還流比30:1で留分の抜き出しを行った。蒸留釜はコンデンサーでの還流具合を見ながら、90℃から適宜昇温し、125℃まで加温した。得られた留分をガスクロマトグラフィー分析の結果、93.24面積(容量)%の2―フルオロブタンが648g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンをそれぞれ、1.47面積(容量)%、1.98面積(容量)%、及び2.48面積(容量)%含んでいた。
1H-NMR(CDCl3,TMS)δ(ppm):0.88(t、3H)、1.17(dq、3H),1.73(m、2H),4.35(m、1H)
19F-NMR(CDCl3、CFCl3)δ(ppm)-173(m,F)
モレキュラーシーブ3A(和光純薬工業社製)100gを入れた、容量1.2LのSUS316製容器(内面:電解研磨処理)に、実施例1で蒸留精製して得た2-フルオロブタンを498g入れ、室温で22時間浸漬させた。
その後、容量1LのSUS316製釜の上部に、ショートカラム及びコンデンサー、及び受器を取り付けた単蒸留装置を組み、コンデンサーには-10℃の冷却水を循環させた。釜に水分除去を行った2-フルオロブタン427gを仕込み、釜を50℃に加温した。
このときの、2-フルオロブタン中の窒素及び酸素濃度をガスクロマトグラフィーにて測定したところ、それぞれ515容量ppm及び138容量ppmであった。仕込んだ2-フルオロブタンに対して、約30重量%を受器に抜出したところで、単蒸留を停止し、釜を室温まで冷却した。釜内の2-フルオロブタンを、ダイヤフラム式バルブを付した容量1Lのマンガン鋼製シリンダー(内面粗度:1S)に309g充填した。2-フルオロブタン中の窒素、酸素、及び水分含有量を測定したところ、68容量ppm、20容量ppm、及び16容量ppmであった。
製造例1の反応を繰り返して得られた粗2-フルオロブタン2060gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、90から125℃まで加温した。全還流後、還流比30:1~15:1の間で留分の抜き出しを行った。その結果、99.903面積(容量)%の2-フルオロブタンが309g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、108面積(容量)ppm、378面積(容量)ppm、及び362面積(容量)ppm含まれていた。
実施例3で得られた2-フルオロブタン309gを容量1.2Lのステンレス製容器内で、モレキュラーシーブ3A(和光純薬工業社製)60gと20時間、室温下で浸漬した。ステンレス容器と容量1Lのマンガン鋼製シリンダーをステンレスチューブで繋ぎ、孔径0.2μmの金属製フィルターを介して、減圧下に2-フルオロブタンをシリンダー内に充填した。シリンダーを氷水で冷却し、圧力コントローラーを介して、5~10kPa圧力下、真空ポンプで減圧しながら、約30gの2-フルオロブタンを抜いた。室温に戻し、暫く静置後、2-フルオロブタン中の窒素・酸素、及び水分含有量を測定したところ、それぞれ36容量ppm、18容量ppm、及び44容量ppmであった。
製造例2の反応を繰り返して得られた粗2-フルオロブタン604gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、45~70℃で加温した。全還流後、還流比10:1で留分の抜き出しを行った。その結果、99.892面積%の2-フルオロブタンが282g得られた。この2-フルオロブタンには、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、223面積(容量)ppm、516面積(容量)ppm、及び551面積(容量)ppm含まれていた。その後、実施例4と同様の操作を行い、2-フルオロブタン230gをシリンダーに充填した。2-フルオロブタン中の窒素・酸素、及び水分含有量を測定したところ、それぞれ40容量ppm、11容量ppm、及び26容量ppmであった。
ドライエッチング評価:表面に窒化シリコン膜が形成されたウェハと表面にシリコン酸化膜が形成されたウェハを用い、それぞれのウェハを、別々にエッチングを行った。そして、窒化シリコン膜及びシリコン酸化膜それぞれのエッチング速度を測定し、これらの測定結果に基づいてシリコン酸化膜に対する窒化シリコン膜のエッチング速度比から選択比(SiN膜/SiO2膜)を求めた。
平行平板型プラズマエッチング装置のエッチングチャンバー内に、表面に窒化シリコン膜が形成されたウェハと表面にシリコン酸化膜が形成されたウェハをそれぞれセットし、系内を真空にした後、実施例2で調製した2-フルオロブタンを用いて、下記のエッチング条件下でエッチングを実施した。結果を表1に示す。
混合ガスの圧力:6.7Pa
上部電極の高周波電源電力:200W
下部電極の高周波電源電力:100W
上部電極と下部電極の間隔:50mm
電極温度:20℃
ガス流量
O2ガス:60sccm
2-フルオロブタン:50sccm
エッチング時間:180秒
[実施例7]
2-フルオロブタンを実施例4で調製したものに代えた以外は実施例6と同様にしてエッチング評価を行った。
2-フルオロブタンを、実施例5で調製したものに代えた以外は実施例6と同様にしてエッチング評価を行った。結果を表1に示す。
実施例1を繰り返して蒸留精製して得た、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、92面積(容量)ppm、361面積(容量)ppm、及び307面積(容量)ppm含む、純度99.924容量%の2-フルオロブタン900gを、容量2リットルのSUS316製容器(内面:電解研磨処理)に入れた。次に、この容器と、ポリテトラフルオロエチレン製フィルター(日本ポール社製、孔径0.05μm)とモレキュラーシーブ3A(東ソー社製、製品名「ゼオラム(登録商標)A-3」)45gを充填した、円筒状のステンレス製塔とを、容器から出た2-フルオロブタンがモレキュラシーブの充填塔を経由して、フィルターを通して容器に戻るように接続した。次いで、前記容器内の2-フルオロブタンを、0.1リットル/分の速度でポンプ循環させて、12時間乾燥させた。乾燥後の2-フルオロブタンの水分値は9容量ppmであった。
その後、水分値が9容量ppmの2-フルオロブタンが入った前記SUS316製容器を5℃に冷却し、3時間静置後、バルブを介して、クリーンブース内に設置された液中パーティクルカウンター(リオン社製、光散乱式液中微粒子検出器「KS-40A」、微粒子計数器「KE-40」、及び加圧サンプラーからなる)に接続し、10ml/分の速度で2-フルオロブタンを送液し、2-フルオロブタン中の微粒子数を測定した。その結果、0.1μm以上の微粒子数は、37個/mlであった。
Claims (5)
- 純度が99.9容量%以上で、ブテン類の含有量が1000容量ppm以下であることを特徴とする高純度2-フルオロブタン。
- 窒素含有量が100容量ppmで、かつ、酸素含有量が50容量ppm以下である請求項1に記載の高純度2-フルオロブタン。
- 水分含有量が50容量ppm以下である請求項1又は2に記載の高純度2-フルオロブタン。
- 2-フルオロブタン中の0.1μm以上の微粒子数が、50個/ml以下である請求項1~3のいずれかに記載の高純度2-フルオロブタン。
- 請求項1~4のいずれかに記載の高純度2-フルオロブタンを、ドライエッチングガスとして使用する方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/773,043 US9659787B2 (en) | 2013-03-07 | 2014-03-06 | High-purity 2-fluorobutane |
KR1020157027491A KR20150125005A (ko) | 2013-03-07 | 2014-03-06 | 고순도 2-플루오로부탄 |
EP14759957.5A EP2966053B1 (en) | 2013-03-07 | 2014-03-06 | High-purity 2-fluorobutane |
JP2015504385A JP6256462B2 (ja) | 2013-03-07 | 2014-03-06 | 高純度2−フルオロブタン |
CN201480012705.3A CN105008316A (zh) | 2013-03-07 | 2014-03-06 | 高纯度2-氟丁烷 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-045131 | 2013-03-07 | ||
JP2013045131 | 2013-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014136877A1 true WO2014136877A1 (ja) | 2014-09-12 |
Family
ID=51491385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055778 WO2014136877A1 (ja) | 2013-03-07 | 2014-03-06 | 高純度2-フルオロブタン |
Country Status (7)
Country | Link |
---|---|
US (1) | US9659787B2 (ja) |
EP (1) | EP2966053B1 (ja) |
JP (1) | JP6256462B2 (ja) |
KR (1) | KR20150125005A (ja) |
CN (1) | CN105008316A (ja) |
TW (1) | TWI616428B (ja) |
WO (1) | WO2014136877A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3085681A1 (en) * | 2013-12-20 | 2016-10-26 | Zeon Corporation | Method for purifying hydrofluorocarbon compound |
JP2017048119A (ja) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | 2−フルオロブタン又は2,2−ジフルオロブタンの精製方法 |
JPWO2015064550A1 (ja) * | 2013-10-30 | 2017-03-09 | 日本ゼオン株式会社 | 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法 |
US9738578B2 (en) | 2014-02-12 | 2017-08-22 | Zeon Corporation | Method for producing fluorinated hydrocarbon |
WO2017159544A1 (ja) | 2016-03-15 | 2017-09-21 | 日本ゼオン株式会社 | ドライエッチング用組成物およびドライエッチング用組成物充填済み容器 |
WO2017169809A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法 |
JPWO2016117464A1 (ja) * | 2015-01-22 | 2017-11-02 | 日本ゼオン株式会社 | フッ素化炭化水素化合物充填済みガス充填容器 |
WO2018037999A1 (ja) | 2016-08-25 | 2018-03-01 | 日本ゼオン株式会社 | ブテン類の変換方法及びモノフルオロブタンの精製方法 |
CN107923573A (zh) * | 2015-09-14 | 2018-04-17 | 日本瑞翁株式会社 | 已填充氟化烃化合物的气体填充容器、气体填充容器的制造方法及氟化烃化合物的保存方法 |
WO2018180610A1 (ja) * | 2017-03-31 | 2018-10-04 | セントラル硝子株式会社 | α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法 |
JP7181486B1 (ja) * | 2021-06-23 | 2022-12-01 | ダイキン工業株式会社 | モノフルオロアルカンの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200088371A (ko) * | 2017-12-07 | 2020-07-22 | 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 | 내화학성 및 내오염성 열가소성 폴리우레탄 조성물 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550953A (en) | 1944-12-08 | 1951-05-01 | Du Pont | Catalytic hydrogenation of unsaturated fluorohydrocarbons |
US4049728A (en) * | 1976-03-23 | 1977-09-20 | Phillips Petroleum Company | Hydrofluorination process |
JPS5946251A (ja) | 1982-08-31 | 1984-03-15 | Daikin Ind Ltd | フツ素化剤 |
JPH0948741A (ja) | 1995-07-14 | 1997-02-18 | Hoechst Ag | モノフルオロ誘導体の選択的製造方法 |
JPH10506107A (ja) * | 1994-09-20 | 1998-06-16 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | ヘキサフルオロエタン生成物の精製方法 |
JP2009013101A (ja) * | 2007-07-04 | 2009-01-22 | Daikin Ind Ltd | ペンタフルオロエタンの精製方法 |
WO2009123038A1 (ja) | 2008-03-31 | 2009-10-08 | 日本ゼオン株式会社 | プラズマエッチング方法 |
JP2009292749A (ja) | 2008-06-04 | 2009-12-17 | Ube Ind Ltd | フッ素化有機化合物の製造方法 |
JP2012165797A (ja) | 2011-02-10 | 2012-09-06 | Sammy Corp | 遊技機 |
JP2013095669A (ja) * | 2011-10-28 | 2013-05-20 | Nippon Zeon Co Ltd | 含フッ素化アルカンの製造方法 |
JP2014024785A (ja) | 2012-07-26 | 2014-02-06 | Nippon Zeon Co Ltd | フッ素化炭化水素化合物の精製方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2534905A (en) * | 1945-07-02 | 1950-12-19 | Phillips Petroleum Co | Distillation of fluorohydrocarbons |
TW486733B (en) * | 1999-12-28 | 2002-05-11 | Toshiba Corp | Dry etching method and manufacturing method of semiconductor device for realizing high selective etching |
-
2014
- 2014-03-06 WO PCT/JP2014/055778 patent/WO2014136877A1/ja active Application Filing
- 2014-03-06 KR KR1020157027491A patent/KR20150125005A/ko not_active Application Discontinuation
- 2014-03-06 CN CN201480012705.3A patent/CN105008316A/zh active Pending
- 2014-03-06 JP JP2015504385A patent/JP6256462B2/ja active Active
- 2014-03-06 US US14/773,043 patent/US9659787B2/en active Active
- 2014-03-06 EP EP14759957.5A patent/EP2966053B1/en not_active Not-in-force
- 2014-03-07 TW TW103107796A patent/TWI616428B/zh not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550953A (en) | 1944-12-08 | 1951-05-01 | Du Pont | Catalytic hydrogenation of unsaturated fluorohydrocarbons |
US4049728A (en) * | 1976-03-23 | 1977-09-20 | Phillips Petroleum Company | Hydrofluorination process |
JPS5946251A (ja) | 1982-08-31 | 1984-03-15 | Daikin Ind Ltd | フツ素化剤 |
JPH10506107A (ja) * | 1994-09-20 | 1998-06-16 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | ヘキサフルオロエタン生成物の精製方法 |
JPH0948741A (ja) | 1995-07-14 | 1997-02-18 | Hoechst Ag | モノフルオロ誘導体の選択的製造方法 |
JP2009013101A (ja) * | 2007-07-04 | 2009-01-22 | Daikin Ind Ltd | ペンタフルオロエタンの精製方法 |
WO2009123038A1 (ja) | 2008-03-31 | 2009-10-08 | 日本ゼオン株式会社 | プラズマエッチング方法 |
JP2009292749A (ja) | 2008-06-04 | 2009-12-17 | Ube Ind Ltd | フッ素化有機化合物の製造方法 |
JP2012165797A (ja) | 2011-02-10 | 2012-09-06 | Sammy Corp | 遊技機 |
JP2013095669A (ja) * | 2011-10-28 | 2013-05-20 | Nippon Zeon Co Ltd | 含フッ素化アルカンの製造方法 |
JP2014024785A (ja) | 2012-07-26 | 2014-02-06 | Nippon Zeon Co Ltd | フッ素化炭化水素化合物の精製方法 |
Non-Patent Citations (2)
Title |
---|
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 52, 1979, pages 3377 |
JOURNAL OF ORGANIC CHEMISTRY, vol. 44, 1979, pages 3872 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015064550A1 (ja) * | 2013-10-30 | 2017-03-09 | 日本ゼオン株式会社 | 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法 |
EP3085681A1 (en) * | 2013-12-20 | 2016-10-26 | Zeon Corporation | Method for purifying hydrofluorocarbon compound |
EP3085681A4 (en) * | 2013-12-20 | 2017-05-10 | Zeon Corporation | Method for purifying hydrofluorocarbon compound |
US9682906B2 (en) | 2013-12-20 | 2017-06-20 | Zeon Corporation | Method for purifying hydrofluorocarbon compound |
US9738578B2 (en) | 2014-02-12 | 2017-08-22 | Zeon Corporation | Method for producing fluorinated hydrocarbon |
JPWO2016117464A1 (ja) * | 2015-01-22 | 2017-11-02 | 日本ゼオン株式会社 | フッ素化炭化水素化合物充填済みガス充填容器 |
JP2017048119A (ja) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | 2−フルオロブタン又は2,2−ジフルオロブタンの精製方法 |
CN107923573A (zh) * | 2015-09-14 | 2018-04-17 | 日本瑞翁株式会社 | 已填充氟化烃化合物的气体填充容器、气体填充容器的制造方法及氟化烃化合物的保存方法 |
US20180245221A1 (en) * | 2015-09-14 | 2018-08-30 | Zeon Corporation | Gas-filled container filled with fluorinated hydrocarbon compound, method for manufacturing gas-filled container, and method for storing fluorinated hydrocarbon compound |
WO2017159544A1 (ja) | 2016-03-15 | 2017-09-21 | 日本ゼオン株式会社 | ドライエッチング用組成物およびドライエッチング用組成物充填済み容器 |
WO2017169809A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法 |
US10472308B2 (en) | 2016-08-25 | 2019-11-12 | Zeon Corporation | Butene conversion method and monofluorobutane purification method |
WO2018037999A1 (ja) | 2016-08-25 | 2018-03-01 | 日本ゼオン株式会社 | ブテン類の変換方法及びモノフルオロブタンの精製方法 |
KR20190039404A (ko) | 2016-08-25 | 2019-04-11 | 니폰 제온 가부시키가이샤 | 부텐류의 변환 방법 및 모노플루오로부탄의 정제 방법 |
WO2018180610A1 (ja) * | 2017-03-31 | 2018-10-04 | セントラル硝子株式会社 | α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法 |
JPWO2018180610A1 (ja) * | 2017-03-31 | 2020-02-06 | セントラル硝子株式会社 | α,α−ジフルオロアセトアルデヒドヘミアセタールの製造方法 |
JP7032666B2 (ja) | 2017-03-31 | 2022-03-09 | セントラル硝子株式会社 | α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法 |
JP7181486B1 (ja) * | 2021-06-23 | 2022-12-01 | ダイキン工業株式会社 | モノフルオロアルカンの製造方法 |
WO2022270173A1 (ja) * | 2021-06-23 | 2022-12-29 | ダイキン工業株式会社 | モノフルオロアルカンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201437187A (zh) | 2014-10-01 |
CN105008316A (zh) | 2015-10-28 |
EP2966053A4 (en) | 2016-10-19 |
JPWO2014136877A1 (ja) | 2017-02-16 |
TWI616428B (zh) | 2018-03-01 |
JP6256462B2 (ja) | 2018-01-10 |
US9659787B2 (en) | 2017-05-23 |
EP2966053B1 (en) | 2018-09-05 |
EP2966053A1 (en) | 2016-01-13 |
US20160016869A1 (en) | 2016-01-21 |
KR20150125005A (ko) | 2015-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6256462B2 (ja) | 高純度2−フルオロブタン | |
TWI761616B (zh) | 六氟丁二烯之製造方法 | |
JP6788176B2 (ja) | ドライエッチングガスおよびドライエッチング方法 | |
JP6311710B2 (ja) | 高純度1−フルオロブタン及びプラズマエッチング方法 | |
JP2014185111A (ja) | 高純度2,2−ジフルオロブタン | |
KR101962191B1 (ko) | 플라즈마 에칭 가스 및 플라즈마 에칭 방법 | |
US9984896B2 (en) | High-purity fluorinated hydrocarbon, use as a plasma etching gas, and plasma etching method | |
JP2017092357A (ja) | ドライエッチングガスおよびドライエッチング方法 | |
JP2018093233A (ja) | ドライエッチング方法 | |
WO2018037999A1 (ja) | ブテン類の変換方法及びモノフルオロブタンの精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14759957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015504385 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773043 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157027491 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014759957 Country of ref document: EP |