WO2014136877A1 - 高純度2-フルオロブタン - Google Patents

高純度2-フルオロブタン Download PDF

Info

Publication number
WO2014136877A1
WO2014136877A1 PCT/JP2014/055778 JP2014055778W WO2014136877A1 WO 2014136877 A1 WO2014136877 A1 WO 2014136877A1 JP 2014055778 W JP2014055778 W JP 2014055778W WO 2014136877 A1 WO2014136877 A1 WO 2014136877A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorobutane
volume
ppm
purity
butene
Prior art date
Application number
PCT/JP2014/055778
Other languages
English (en)
French (fr)
Inventor
杉本 達也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US14/773,043 priority Critical patent/US9659787B2/en
Priority to KR1020157027491A priority patent/KR20150125005A/ko
Priority to EP14759957.5A priority patent/EP2966053B1/en
Priority to JP2015504385A priority patent/JP6256462B2/ja
Priority to CN201480012705.3A priority patent/CN105008316A/zh
Publication of WO2014136877A1 publication Critical patent/WO2014136877A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Definitions

  • the present invention relates to a high-purity 2-fluorobutane useful as a plasma etching gas, a CVD gas, a raw material for producing a fluorine-containing pharmaceutical intermediate, and a hydrofluorocarbon solvent in the field of manufacturing semiconductor devices using plasma reactions. .
  • Patent Document 2 discloses that 2-butanol is reacted with N, N′-diethyl-3-oxo-methyltrifluoropropylamine as a fluorinating agent. It was described that 2-fluorobutane was obtained in a yield of 46%. Patent Document 3 describes that 2-fluorobutane was obtained in a yield of 68% by reacting 2-butanol with triethylammonium hexafluorocyclobutane as a fluorinating agent.
  • Patent Document 4 describes that the formation of sec-butyl fluoride was confirmed by bringing sulfur hexafluoride into contact with an n-hexane solution of sec-butyl lithium cyclohexane.
  • Patent Document 5 describes that 2-fluorobutadiene was obtained by hydrogenating 2-fluorobutadiene in the presence of a catalyst.
  • an object of the present invention is to provide 2-fluorobutane suitable as a plasma reaction gas that does not produce hydrocarbon-based deposits even when used as a dry etching gas.
  • the present inventor further examined the cause of the phenomenon that etching is stopped when excessively hydrocarbon-based deposits are generated when 2-fluorobutane obtained by the method described in the prior art is used.
  • the present inventors have found that this problem occurs when 2-fluorobutane contains a certain amount or more of butene as an impurity, thereby completing the present invention.
  • a method of using the following high purity 2-fluorobutane (4) (4) (1) High purity 2-fluorobutane having a purity of 99.9% by volume or more and a butene content of 1000 ppm by volume or less. (2) The high purity 2-fluorobutane according to (1), wherein the nitrogen content is 100 ppm by volume and the oxygen content is 50 ppm by volume or less. (3) High-purity 2-fluorobutane as described in (1) or (2), wherein the water content is 50 ppm by volume or less. (4) A method of using the high-purity 2-fluorobutane described in any one of (1) to (3) as a dry etching gas.
  • the 2-fluorobutane of the present invention is characterized by having a purity of 99.9% by weight or more and a butene content of 1000 ppm by volume or less.
  • butene is a generic name for 1-butene, 2-butene ((E) -2-butene and (Z) -2-butene) and isobutene (hereinafter, these may be collectively referred to as “butenes”).
  • butenes one or more butenes present in 2-fluorobutane are all impurities.
  • the purity of 2-fluorobutane and the content of butenes are values calculated from the peak area by gas chromatography using a flame ionization detector (FID) as a detector.
  • FID flame ionization detector
  • Butenes can be identified by gas chromatography mass spectrometry.
  • the amounts of nitrogen and oxygen in 2-fluorobutane are values measured by gas chromatography using a thermal conductivity detector (TCD) as a detector.
  • TCD thermal conductivity detector
  • the water content in 2-fluorobutane is a value measured using FT-IR.
  • the 2-fluorobutane of the present invention is a known production method, for example, a method of fluorinating 2-butanol as a raw material with a fluorinating agent, or an alkali metal fluoride such as 2-bromobutane with potassium fluoride or cesium fluoride.
  • the crude 2-fluorobutane produced by, for example, the method of treating with 1 can be obtained by distillation purification.
  • the number of theoretical plates is usually about 10 or more and about 50, preferably about 20 or more and about 50. Since these butenes have a boiling point of room temperature or lower, the separation from the target 2-fluorobutane is apparently deteriorated due to the vaporization phenomenon in the fraction extraction line of the rectification column. Therefore, it is preferable that the fraction extraction line and the container for storing the initial fraction are sufficiently cooled.
  • the content of butenes can be 1000 ppm by volume or less, preferably 500 ppm by volume or less.
  • the pressure during rectification is a gauge pressure, and is usually from normal pressure (1 atm) to 10 atm, preferably from about normal pressure to 5 atm.
  • the ratio between the reflux amount and the withdrawal amount (hereinafter sometimes referred to as “reflux ratio”) is preferably set to a reflux ratio of 30: 1 or more in order to efficiently separate butenes that are likely to be in a gas state. . If the reflux ratio is too small, butenes are not efficiently separated, and not only the improvement in the purity of 2-fluorobutane becomes small, but also the initial fraction increases, and the total amount of 2-fluorobutane recovered is small. Less. On the other hand, if the reflux ratio is too large, it takes a lot of time to recover per extraction, so that the rectification itself takes a lot of time and the productivity is poor.
  • a batch system or a continuous system may be employed, but a batch system is preferably employed when the production amount is small, and a continuous system through several rectification towers when the production amount is large. Preferably employed. Moreover, you may carry out combining the extractive distillation operation which added the extraction solvent.
  • the raw material compound is obtained by the first distillation.
  • stepwise distillation such as separation of butenes that are the target of impurities in the second distillation may be performed.
  • the reflux ratio is preferably 40: 1 or more.
  • Nitrogen and oxygen in 2-fluorobutane can be purified by a method of purifying in an inert gas of group 0 when the above-mentioned butenes are removed by rectification, or by distilling 2-fluorobutane by simple distillation. It can be removed by a method of performing an operation of extracting the. In the latter method, the amount of nitrogen and oxygen in 2-fluorobutane remaining in the kettle can be reduced by extracting nitrogen and oxygen together with 2-fluorobutane by simple distillation.
  • the amount of 2-fluorobutane to be extracted is preferably 20 to 50%, more preferably 30 to 40%, based on the weight with respect to 2-fluorobutane charged in the distillation still.
  • the extracted 2-fluorobutane is stored and can be recovered and reused by adding it to the next batch.
  • the nitrogen content of 2-fluorobutane is preferably 100 ppm by volume or less, more preferably 80 ppm by volume or less.
  • the oxygen content is preferably 50 ppm by volume or less, more preferably 30 ppm by volume or less.
  • a method for removing water in 2-fluorobutane a general method such as bringing 2-fluorobutane into contact with an adsorbent can be employed.
  • adsorbent molecular sieve, alumina or the like can be used.
  • the drying of mono- or difluoro hydrocarbons such as 2-fluorobutane and 2,2-difluorobutane is molecular.
  • the use of sieve 3A is preferred.
  • the alumina is preferably activated alumina with low crystallinity produced by heat dehydration of alumina hydrate. It is preferable to activate an adsorbent such as molecular sieve or alumina before the contact with 2-fluorobutane by an operation such as calcination, because more water can be adsorbed.
  • the water content in 2-fluorobutane can be reduced to 50 ppm by volume or less. If the moisture content is high, moisture will remain on the processed surface after etching the substrate, causing peeling of the laminated film and corrosion of the embedded wiring in the wiring formation process such as copper. Is preferably reduced as much as possible. From this viewpoint, the water content of 2-fluorobutane is preferably 50 ppm by volume or less, more preferably 20 ppm by volume or less.
  • the number of fine particles of 0.1 ⁇ m or more of 2-fluorobutane is preferably 50 / ml or less. For this reason, in the water removal step, it is preferable to recover the 2-fluorobutane by filtering after contacting the molecular sieve and 2-fluorobutane.
  • the step of reducing the crude 2-fluorobutane contained in the reaction crude product to a purity of 99.9% by volume or more and butenes to 1000 ppm by volume or less by rectification, and then the adsorbent A step of removing moisture by contacting with water, and a step of reducing the concentration of nitrogen and oxygen in 2-fluorobutane to 100 ppm by volume or less and 50 ppm by volume or less by simple distillation of 2-fluorobutane.
  • high-purity 2-fluorobutane suitable for the plasma reaction gas can be obtained.
  • 2-Fluorobutane is useful not only as a silicon nitride film but also as a dry etching gas for a silicon nitride oxide film or a titanium nitride film.
  • a silicon oxide film formed on an object to be processed is obtained by using the processing gas containing the high purity 2-fluorobutane of the present invention.
  • the silicon nitride film, the silicon nitride oxide film, and the silicon nitride film covering the substrate can be efficiently and highly selectively etched.
  • GC part HP-6890 (manufactured by Agilent)
  • the temperature of the oil bath was lowered to 80 ° C., and two glass traps immersed in a dry ice-ethanol bath were connected in series to the reactor. Furthermore, a pressure controller and a vacuum pump were connected to the exit of the glass trap. The vacuum pump was started, and the pressure in the system was reduced stepwise from 50 to 45 kPa, then 35 to 30 kPa, and further to 30 to 25 kPa using a pressure controller, and volatile components were collected in a glass trap. The contents of two glass traps were combined and analyzed by gas chromatography.
  • Example 1 (1) Primary distillation: 4340 g of 2-fluorobutane crude product obtained by repeating the reaction of Production Example 1 was charged into a distillation kettle, and KS type rectification column (manufactured by Toshin Seiki Co., Ltd., column length: 30 cm, packed) Agent: Distillation was performed using Helipac No. 1). A -5 ° C refrigerant was circulated through the condenser. The distillation kettle was heated to 90 ° C. and fully refluxed for 1 hour to stabilize the inside of the system, and then the fraction was extracted at a reflux ratio of 30: 1. The distillation kettle was appropriately heated from 90 ° C. and heated to 125 ° C. while observing the reflux condition in the condenser.
  • Example 2 298 g of 2-fluorobutane obtained by distillation and purification in Example 1 was placed in a 1.2 liter SUS316 container (inner surface: electrolytic polishing treatment) containing 100 g of molecular sieve 3A (manufactured by Wako Pure Chemical Industries, Ltd.). And soaking at room temperature for 22 hours. Thereafter, a simple distillation apparatus equipped with a short column, a condenser and a receiver was assembled on the top of a 1 L capacity SUS316 kettle, and -10 ° C cooling water was circulated through the condenser. The kettle was charged with 427 g of 2-fluorobutane from which moisture had been removed, and the kettle was heated to 50 ° C.
  • the nitrogen and oxygen concentrations in 2-fluorobutane at this time were measured by gas chromatography, and found to be 515 ppm by volume and 138 ppm by volume, respectively.
  • 2-fluorobutane charged was withdrawn into a receiver, simple distillation was stopped and the kettle was cooled to room temperature.
  • 309 g of 2-fluorobutane in the kettle was filled into a 1 L manganese steel cylinder (inner surface roughness: 1S) equipped with a diaphragm valve.
  • the nitrogen, oxygen, and water contents in 2-fluorobutane were measured and found to be 68 ppm by volume, 20 ppm by volume, and 16 ppm by volume.
  • Example 3 2060 g of crude 2-fluorobutane obtained by repeating the reaction of Production Example 1 was charged into a distillation kettle, and a KS type rectification column (manufactured by Toshin Seiki Co., Ltd., column length: 60 cm, packing material: Helipak No. 1) was used. Distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated from 90 to 125 ° C. in consideration of the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was withdrawn at a reflux ratio of 30: 1 to 15: 1.
  • Example 4 309 g of 2-fluorobutane obtained in Example 3 was immersed in 60 g of molecular sieve 3A (manufactured by Wako Pure Chemical Industries, Ltd.) for 20 hours at room temperature in a 1.2 L stainless steel container. A stainless steel container and a 1 L manganese steel cylinder were connected with a stainless steel tube, and 2-fluorobutane was filled into the cylinder under reduced pressure through a metal filter having a pore diameter of 0.2 ⁇ m. The cylinder was cooled with ice water, and about 30 g of 2-fluorobutane was withdrawn through a pressure controller while reducing the pressure with a vacuum pump at a pressure of 5 to 10 kPa. After returning to room temperature and allowing to stand for a while, the nitrogen / oxygen and water contents in 2-fluorobutane were measured and found to be 36 ppm by volume, 18 ppm by volume, and 44 ppm by volume, respectively.
  • molecular sieve 3A manufactured by Wak
  • Example 5 604 g of crude 2-fluorobutane obtained by repeating the reaction of Production Example 2 was charged into a distillation kettle, and a KS type rectifying column (manufactured by Toshin Seiki Co., Ltd., column length: 60 cm, packing material: Helipak No. 1) was used. Distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated at 45 to 70 ° C., taking into account the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was extracted at a reflux ratio of 10: 1.
  • Example 6 Dry etching evaluation: Using a wafer having a silicon nitride film formed on the surface and a wafer having a silicon oxide film formed on the surface, each wafer was etched separately. Then, the etching rates of the silicon nitride film and the silicon oxide film were measured, and the selection ratio (SiN film / SiO 2 film) was obtained from the etching rate ratio of the silicon nitride film to the silicon oxide film based on these measurement results. A wafer with a silicon nitride film formed on the surface and a wafer with a silicon oxide film formed on the surface were set in an etching chamber of a parallel plate plasma etching apparatus, respectively, and the system was evacuated. Etching was performed using the prepared 2-fluorobutane under the following etching conditions. The results are shown in Table 1.
  • Example 8 As the impurities obtained by repeated purification by repeating Example 1, 1-butene, (E) -2-butene, and (Z) -2-butene were 92 area (volume) ppm and 361 area (volume), respectively. 2) 900 g of 2-fluorobutane having a purity of 99.924% by volume, containing ppm and 307 area (volume) ppm, was placed in a 2 liter container made of SUS316 (inner surface: electrolytic polishing treatment).
  • this container was filled with 45 g of a polytetrafluoroethylene filter (manufactured by Nippon Pole Co., Ltd., pore size 0.05 ⁇ m) and molecular sieve 3A (manufactured by Tosoh Corporation, product name “Zeoram (registered trademark) A-3”).
  • the cylindrical stainless steel tower was connected so that 2-fluorobutane exiting from the container would return to the container through the filter via the molecular sieve packed tower.
  • 2-fluorobutane in the container was pumped at a rate of 0.1 liter / min and dried for 12 hours. The moisture value of 2-fluorobutane after drying was 9 ppm by volume.
  • the vessel made of SUS316 containing 2-fluorobutane having a water content of 9 ppm by volume was cooled to 5 ° C., allowed to stand for 3 hours, and then placed in a clean booth through a valve. Connected to a light scattering type in-liquid particle detector “KS-40A”, a particle counter “KE-40”, and a pressure sampler, manufactured by Rion Co., Ltd.) and sent 2-fluorobutane at a rate of 10 ml / min The number of fine particles in 2-fluorobutane was measured. As a result, the number of fine particles of 0.1 ⁇ m or more was 37 / ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明は、純度が99.9容量%以上で、ブテン類の含有量が1000容量ppm以下であることを特徴とする高純度2-フルオロブタン、及び、この高純度2-フルオロブタンを、ドライエッチングガスとして使用する方法である。 本発明によれば、半導体向けのプラズマ反応用ガスとして好適な、高純度の2-フルオロブタンが提供される。

Description

高純度2-フルオロブタン
 本発明は、プラズマ反応を用いた半導体装置の製造分野において、プラズマ用エッチングガスやCVD用ガスや、含フッ素医薬中間体の製造原料、ハイドロフルオロカーボン系溶剤として有用な、高純度2-フルオロブタンに関する。
 近年、半導体製造技術の微細化が進んでおり、最先端プロセスでは線幅が20nm、さらには10nm世代が採用されてきている。微細化に伴ってその加工する際の技術難度も向上しており、使用する材料、装置、加工方法等、多方面からのアプローチにより技術開発が進められている。
 このような背景から、式:CxHyFz(式中、xは3、4又は5を表し、y、zはそれぞれ正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素(A)が、窒化シリコン膜のエッチングに用いられているモノフルオロメタンを凌ぐ性能を有することが見出されている(特許文献1)。
 本発明に関連して、2-フルオロブタンの製造方法として、特許文献2には、2-ブタノールに、フッ素化剤であるN,N’-ジエチル-3-オキソ-メチルトリフルオロプロピルアミンを反応させることにより、2-フルオロブタンを収率46%で得られたことが記載されている。特許文献3には、2-ブタノールに、フッ素化剤であるトリエチルアンモニウムヘキサフルオロシクロブタンを反応させることにより、2-フルオロブタンを収率68%で得られたことが記載されている。特許文献4には、sec-ブチルリチウムシクロヘキサンのn-ヘキサン溶液に、六フッ化硫黄を接触させることにより、フッ化sec-ブチルの生成が確認されたと記載されている。また、特許文献5には、2-フルオロブタジエンを、触媒存在下に水素化することにより、2-フルオロブタンを得たことが記載されている。
国際公開WO2009/123038号 特開昭59-46251号公報 特開平9-48741号公報 特開2009-292749号公報 米国特許第2550953号公報
 本発明者は、シリコンやシリコン酸化膜上に積層された窒化シリコン膜を選択的にドライエッチングするガスとして、上記の従来技術に記載の方法で得られた2-フルオロブタンを使用したところ、炭化水素系の堆積物が過剰に生成し、エッチング自体が停止しまうことを確認した。
 そこで本発明は、ドライエッチングガスとして使用した場合であっても、炭化水素系の堆積物が生成することのない、プラズマ反応用ガスとして好適な2-フルオロブタンを提供することを目的とする。
 本発明者は、従来技術に記載の方法で得られた2-フルオロブタンを使用した場合に、炭化水素系の堆積物が過剰に生成し、エッチング自体が停止しまう現象が生じる原因についてさらに検討を加えたところ、2-フルオロブタン中に、ブテンが不純物として一定量以上含まれている場合に、この問題が生じることを見いだし、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(3)の高純度2-フルオロブタン、(4)の使用する方法が提供される。
(1)純度が99.9容量%以上で、ブテン類の含有量が1000容量ppm以下であることを特徴とする高純度2-フルオロブタン。
(2)窒素含有量が100容量ppmで、かつ、酸素含有量が50容量ppm以下である(1)に記載の高純度2-フルオロブタン。
(3)水分含有量が50容量ppm以下である(1)又は(2)に記載の高純度2-フルオロブタン。
(4)前記(1)~(3)のいずれかに記載の高純度2-フルオロブタンを、ドライエッチングガスとして使用する方法。
 以下、本発明を詳細に説明する。
(高純度2-フルオロブタン)
 本発明の2-フルオロブタンは、純度が99.9重量%以上であり、ブテンの含有量が1000容量ppm以下であることを特徴とする。
 本発明において、ブテンは、1-ブテン、2-ブテン((E)-2-ブテンと(Z)-2-ブテン)及びイソブテンの総称(以下、これらをまとめて「ブテン類」ということがある。)であり、2-フルオロブタン中に存在する1種以上のブテン類は、すべて不純物である。
 本発明において、2-フルオロブタンの純度、及びブテン類の含有量は、水素炎イオン化検出器(FID)を検出器としたガスクロマトグラフィーによりピーク面積から算出される値である。
 ブテン類は、ガスクロマトグラフィー質量分析により同定することができる。
 2-フルオロブタン中の窒素と酸素の量は、熱電導度検出器(TCD)を検出器としたガスクロマトグラフィーにより測定した値である。
 また、2-フルオロブタン中の水分量は、FT-IRを用いて測定した値である。
 本発明の2-フルオロブタンは、公知の製造方法、例えば、2-ブタノールを原料に、フッ素化剤でフッ素化する方法や、2-ブロモブタンをフッ化カリウムやフッ化セシウム等のアルカリ金属フッ化物で処理する方法等により製造された粗2-フルオロブタンを蒸留精製することにより得ることができる。
 上述した2-ブタノールを原料に、フッ素化剤でフッ素化して、2-フルオロブタンを得る方法として、より具体的には、Journal of Organic Chemistry,Vol.44,3872(1979)や、Bulletin of the Chemical Society of Japan,Vol.52,3377(1979)に記載の方法が挙げられる。前者は、2-ブタノールを原料に、フッ素化剤としてピリジンのポリフッ化水素錯体を用いる方法であり、後者は、2-ブタノールを原料に、ヘキサフルオロプロペンとジエチルアミンから調製される、N,N’-ジエチルアミノヘキサフルオロプロパンをフッ素化剤として用いる方法である。
 上述した方法等で製造された粗2-フルオロブタンを蒸留精製(精留)等に賦すことにより、ブテン類をはじめとする有機系不純物が除去される。
 蒸留精製により有機系不純物を除去する場合、精留塔が用いられる。特に、2-フルオロブタン(沸点:24~25℃)と、ブテン類:1-ブテン(沸点:-6.3℃)、(E)-2-ブテン(沸点:0.9℃)、(Z)-2-ブテン(沸点:3.7℃)を効率的に分離するために、適度な理論段数を持つ精留塔が用いられる。理論段数は通常10段以上、50段程度であり、好ましくは20段以上、50段程度である。これらブテン類は沸点が常温以下であるため、精留塔の留分抜き出しライン内での気化現象により、目的とする2-フルオロブタンとの分離が見かけ上悪くなる。よって、留分抜き出しラインや初留分を貯留する容器は十分に冷却されていることが好ましい。
 粗2-フルオロブタンを精留することにより、ブテン類の含有量は1000容量ppm以下、好ましくは500容量ppm以下にすることができる。
 精留時の圧力は、ゲージ圧で、通常常圧(1気圧)~10気圧、好ましくは常圧~5気圧程度である。
 還流量と抜出量の比(以下、「還流比」と言うことがある)は、ガス状態に成りやすいブテン類を効率良く分離するために、還流比30:1以上に設定するのが好ましい。還流比が小さすぎるとブテン類が効率良く分離されず、2-フルオロブタンの純度の向上幅が小さくなるばかりでなく、初留分が多くなってしまい、回収される2-フルオロブタンの総量が少なくなる。逆に還流比が大きすぎると、抜き出し1回当たりの回収までに多大な時間を要すために、精留そのものに多大な時間を要し、生産性に劣る。
 精製は回分式、連続式のいずれを採用しても良いが、製造量が少ない場合には回分式が好適に採用され、製造量が多い場合には精留塔を数本経由させる連続式が好適に採用される。また、抽出溶剤を加えた抽出蒸留操作を組み合わせて行っても良い。
 また、2-フルオロブタンを製造する際に適用する反応にもよるが、反応転化率が低く、原料回収を必要とする場合等には、蒸留精製においては、例えば、1回目の蒸留で原料化合物を分離し、2回目の蒸留で不純物の対象となるブテン類を分離する等段階的な蒸留を行ってもよい。その場合においても、還流比は40:1以上であることが好ましい。
 2-フルオロブタン中の窒素と酸素は、前述のブテン類の除去を精留で行う場合に、0族の不活性ガス中で精製を行う方法、あるいは2-フルオロブタンを単蒸留し、留分を抜き出す操作を行う方法等により除去することができる。
 後者の方法による場合、単蒸留で、窒素と酸素を2-フルオロブタンと一緒に抜出すことにより、釜に残った2-フルオロブタン中の窒素と酸素の量を低減することができる。抜出す2-フルオロブタン中の量は、蒸留釜に仕込まれた2-フルオロブタンに対し、重量基準で20~50%が好ましく、30~40%がより好ましい。抜き出された2-フルオロブタンは貯留しておき、次のバッチに加えることで回収、再使用が可能である。
 本発明において2-フルオロブタンの窒素の含有量は、好ましくは100容量ppm以下、より好ましくは80容量ppm以下である。また、酸素の含有量は、好ましくは50容量ppm以下、より好ましくは30容量ppm以下である。
 2-フルオロブタン中の水分を除去する方法としては、2-フルオロブタンを吸着剤と接触させる等の一般的な方法を採用することができる。
 吸着剤としては、モレキュラーシーブやアルミナ等を用いることができる。特開2014-24785号公報(特願2012-165797号)に記載されているように、2-フルオロブタンや、2,2-ジフルオロブタンのような、モノあるいはジフルオロ炭化水素の乾燥については、モレキュラーシーブ3Aの使用が好ましい。モレキュラーシーブ4A及び5A等の細孔径が大きく、2-フルオロブタン分子が細孔内に取り込まれてしまうと、水分を低減させる効果が下がり、また、アルカリ性を帯びたモレキュラーシーブの使用は2-フルオロブタンの脱HF反応を引き起こすので、いずれも使用に際しては注意を要する。
 また、アルミナはアルミナ水和物の加熱脱水により生成する、結晶性の低い活性アルミナが好ましい。
 2-フルオロブタンを接触させる前に、モレキュラーシーブやアルミナ等の吸着剤を焼成等の操作により活性化しておくと、より多くの水分を吸着させることが可能になるので好ましい。2-フルオロブタンを吸着剤と接触させることにより、2-フルオロブタン中の水分含有量を50容量ppm以下に低減することが可能である。水分含有量が多いと、基板をエッチング加工した後に加工面に水分が吸着残存し、銅等の配線形成工程で積層膜の剥がれや、埋め込んだ配線の腐食を起こす恐れがあるので、水分含有量は可能な限り低減されていることが好ましい。
 この観点から、2-フルオロブタンの水分含有量は、好ましくは50容量ppm以下、より好ましくは20容量ppm以下である。
 尚、水分除去工程で用いるモレキュラーシーブ由来のパーティクルを含む2-フルオロブタンを充填容器内で保存すると、経時による純度低下を引き起こすことがある。そのため、容器内での2-フルオロブタンの純度低下を抑制するため、2-フルオロブタンの0.1μm以上の微粒子数が、50個/ml以下にすることが好ましい。このため、水分除去工程において、モレキュラーシーブと2-フルオロブタンとを接触後、2-フルオロブタンをフィルター濾過して回収するのが好ましい。
 以上に説明したように、精留により、反応粗生成物中に含まれる粗2-フルオロブタンを純度99.9容量%以上、且つ、ブテン類を1000容量ppm以下にする工程、次いで、吸着剤と接触させることにより、水分を除去する工程、及び、2-フルオロブタンを単蒸留することにより、2-フルオロブタン中の窒素、酸素濃度を100容量ppm以下、50容量ppm以下に低減する工程とを経て、プラズマ反応用ガスに好適な高純度の2-フルオロブタンを取得することができる。
 このように、2-フルオロブタン中に含まれる不純物量を低減することにより、2-フルオロブタンを用いるドライエッチング時の加工安定性を高めることが可能になる。
 2-フルオロブタンは、窒化シリコン膜のみならず、窒化酸化シリコン膜や窒化チタン膜等のドライエッチングガスとしても有用である。
 本発明によれば、プラズマ条件下において処理ガスを用いるプラズマエッチング方法において、本発明の高純度2-フルオロブタンを含む処理ガスを用いることにより、例えば、被処理体上に形成されたシリコン酸化膜を覆うシリコン窒化膜、窒化酸化シリコン膜、窒化シリコン膜を効率よく、高選択的にエッチングすることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。なお、特に断りがない限り、「%」は「重量%」を表す。
 以下において採用した分析条件は下記の通りである。
(1)ガスクロマトグラフィー分析(GC分析)
装置:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後240℃で10分間保持
インジェクション温度:200℃
キャリヤーガス:窒素
スプリット比:100/1
検出器:FID
(2)不純物種の同定(ガスクロマトグラフィー質量分析)
GC部分:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
MS部分:アジレント社製 5973 NETWORK
検出器 EI型(加速電圧:70eV)
(3)H-NMR及び19F-NMR測定
装置:JNM-ECA-400(日本電子社製)400MHz
(4)窒素・酸素の含有量の測定(ガスクロマトグラフィー分析)
GC部分:HP-7890(アジレント社製)
カラム:アジレント社製 HP-5 長さ30m、内径0.32mm、膜厚0.25μmカラム温度:40℃で5分間保持し、次いで、5℃/分で昇温し、その後、65℃で1分間保持
ガスサンプラー:50℃
キャリヤーガス:ヘリウム
検出器:TCD+パルス放電型
(5)水分含有量の測定(FT-IR)
IG-1000(大塚電子社製)
セル長:10m
[製造例1]
 攪拌機及びジムロート型コンデンサーを付した容量500mlのガラス製反応器に、スプレードライフッ化カリウム116g(アルドリッチ社製)、2-ブロモブタン137g(東京化成工業社製)、及びプロピレングリコール200mlを仕込み、窒素雰囲気下に置いた。反応器をオイルバスに浸して、95~100℃で12時間加熱した。ジムロート型コンデンサーには-10℃に冷却した冷媒を循環させた。12時間後、オイルバスの温度を80℃まで下げ、反応器にドライアイス-エタノール浴に浸したガラス製トラップを直列に2つ繋げた。さらに、ガラス製トラップの出口には圧力コントローラー、及び真空ポンプを繋げた。真空ポンプを起動し、圧力コントローラーを使って、系内の圧力を50~45kPa、次いで、35~30kPa、さらに、30~25kPaまで段階的に下げて、揮発成分をガラストラップに回収した。2つのガラス製トラップの中身を合わせて、ガスクロマトグラフィーにて分析した結果、(E)-2-ブテン0.71面積(容量)%、(Z)-2-ブテン0.68面積(容量)%、2-フルオロブタン21.23面積(容量)%、及び2-ブロモブタン77.35面積(容量)%を含む混合物であった。
[製造例2]
 滴下ロートを付した容量500mlのガラス製反応器に撹拌子を入れ、2-ブタノール44g、乾燥1,2-ジクロロエタン200mlを仕込み、窒素雰囲気下に置いた。反応器を氷水で冷却し、滴下ロートから、乾燥1,2-ジクロロエタン120mlに溶解させたヘキサフルオロプロペン-ジエチルアミン錯体164g(東京化成工業社製)を約1時間かけて滴下した。滴下終了後、反応器を0℃に維持して3時間、次いで、室温(25℃)で2時間撹拌を継続した。ガスクロマトグラフィーにて原料がほぼ消失したのを確認後、反応液に氷水を投入し、さらに10%炭酸カリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。
 得られた1,2-ジクロロエタン溶液を単蒸留したところ、ドライアイス-エタノール浴に浸漬した受器内には31.9gの液体が捕集された。この液体をガスクロマトグラフィー、及びガスクロマトグラフィー質量分析計にて分析したところ、1-ブテン2.36面積(容量)%、(E)-2-ブテン19.45面積%、(Z)-2-ブテン16.78面積(容量)%、2-フルオロブタン58.51面積(容量)%、及び溶媒の1,2-ジクロロエタン2.9面積(容量)%から成る混合物であった。
[実施例1]
(1)1次蒸留:製造例1の反応を繰り返して得られた2-フルオロブタンの粗体4340gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:30cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-5℃の冷媒を循環させた。蒸留釜を90℃に加温し、1時間全還流させて系内を安定させた後、還流比30:1で留分の抜き出しを行った。蒸留釜はコンデンサーでの還流具合を見ながら、90℃から適宜昇温し、125℃まで加温した。得られた留分をガスクロマトグラフィー分析の結果、93.24面積(容量)%の2―フルオロブタンが648g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンをそれぞれ、1.47面積(容量)%、1.98面積(容量)%、及び2.48面積(容量)%含んでいた。
(2)2次蒸留:1次蒸留で得られた、粗2-フルオロブタン648gを蒸留釜に仕込み、KS型精留塔(東科精機製、カラム長60cm、充填剤ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、45~70℃で加温した。全還流後、還流比45:1~15:1の間で留分の抜き出しを行った。その結果、99.952面積(容量)%の2-フルオロブタンが498g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、53.4面積(容量)ppm、57.8面積(容量)ppm、及び85.0面積(容量)ppm含まれていた。
2-フルオロブタンのスぺクトルデータ
H-NMR(CDCl,TMS)δ(ppm):0.88(t、3H)、1.17(dq、3H),1.73(m、2H),4.35(m、1H)
19F-NMR(CDCl、CFCl)δ(ppm)-173(m,F)
[実施例2]
 モレキュラーシーブ3A(和光純薬工業社製)100gを入れた、容量1.2LのSUS316製容器(内面:電解研磨処理)に、実施例1で蒸留精製して得た2-フルオロブタンを498g入れ、室温で22時間浸漬させた。
 その後、容量1LのSUS316製釜の上部に、ショートカラム及びコンデンサー、及び受器を取り付けた単蒸留装置を組み、コンデンサーには-10℃の冷却水を循環させた。釜に水分除去を行った2-フルオロブタン427gを仕込み、釜を50℃に加温した。
このときの、2-フルオロブタン中の窒素及び酸素濃度をガスクロマトグラフィーにて測定したところ、それぞれ515容量ppm及び138容量ppmであった。仕込んだ2-フルオロブタンに対して、約30重量%を受器に抜出したところで、単蒸留を停止し、釜を室温まで冷却した。釜内の2-フルオロブタンを、ダイヤフラム式バルブを付した容量1Lのマンガン鋼製シリンダー(内面粗度:1S)に309g充填した。2-フルオロブタン中の窒素、酸素、及び水分含有量を測定したところ、68容量ppm、20容量ppm、及び16容量ppmであった。
[実施例3]
 製造例1の反応を繰り返して得られた粗2-フルオロブタン2060gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、90から125℃まで加温した。全還流後、還流比30:1~15:1の間で留分の抜き出しを行った。その結果、99.903面積(容量)%の2-フルオロブタンが309g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、108面積(容量)ppm、378面積(容量)ppm、及び362面積(容量)ppm含まれていた。
[実施例4]
 実施例3で得られた2-フルオロブタン309gを容量1.2Lのステンレス製容器内で、モレキュラーシーブ3A(和光純薬工業社製)60gと20時間、室温下で浸漬した。ステンレス容器と容量1Lのマンガン鋼製シリンダーをステンレスチューブで繋ぎ、孔径0.2μmの金属製フィルターを介して、減圧下に2-フルオロブタンをシリンダー内に充填した。シリンダーを氷水で冷却し、圧力コントローラーを介して、5~10kPa圧力下、真空ポンプで減圧しながら、約30gの2-フルオロブタンを抜いた。室温に戻し、暫く静置後、2-フルオロブタン中の窒素・酸素、及び水分含有量を測定したところ、それぞれ36容量ppm、18容量ppm、及び44容量ppmであった。
[実施例5]
 製造例2の反応を繰り返して得られた粗2-フルオロブタン604gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、45~70℃で加温した。全還流後、還流比10:1で留分の抜き出しを行った。その結果、99.892面積%の2-フルオロブタンが282g得られた。この2-フルオロブタンには、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、223面積(容量)ppm、516面積(容量)ppm、及び551面積(容量)ppm含まれていた。その後、実施例4と同様の操作を行い、2-フルオロブタン230gをシリンダーに充填した。2-フルオロブタン中の窒素・酸素、及び水分含有量を測定したところ、それぞれ40容量ppm、11容量ppm、及び26容量ppmであった。
[実施例6]
 ドライエッチング評価:表面に窒化シリコン膜が形成されたウェハと表面にシリコン酸化膜が形成されたウェハを用い、それぞれのウェハを、別々にエッチングを行った。そして、窒化シリコン膜及びシリコン酸化膜それぞれのエッチング速度を測定し、これらの測定結果に基づいてシリコン酸化膜に対する窒化シリコン膜のエッチング速度比から選択比(SiN膜/SiO膜)を求めた。
 平行平板型プラズマエッチング装置のエッチングチャンバー内に、表面に窒化シリコン膜が形成されたウェハと表面にシリコン酸化膜が形成されたウェハをそれぞれセットし、系内を真空にした後、実施例2で調製した2-フルオロブタンを用いて、下記のエッチング条件下でエッチングを実施した。結果を表1に示す。
<エッチング条件>
 混合ガスの圧力:6.7Pa
 上部電極の高周波電源電力:200W
 下部電極の高周波電源電力:100W
 上部電極と下部電極の間隔:50mm
 電極温度:20℃
 ガス流量
  Oガス:60sccm
  2-フルオロブタン:50sccm
  エッチング時間:180秒
[実施例7]
 2-フルオロブタンを実施例4で調製したものに代えた以外は実施例6と同様にしてエッチング評価を行った。
[比較例1]
 2-フルオロブタンを、実施例5で調製したものに代えた以外は実施例6と同様にしてエッチング評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例8]
 実施例1を繰り返して蒸留精製して得た、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、92面積(容量)ppm、361面積(容量)ppm、及び307面積(容量)ppm含む、純度99.924容量%の2-フルオロブタン900gを、容量2リットルのSUS316製容器(内面:電解研磨処理)に入れた。次に、この容器と、ポリテトラフルオロエチレン製フィルター(日本ポール社製、孔径0.05μm)とモレキュラーシーブ3A(東ソー社製、製品名「ゼオラム(登録商標)A-3」)45gを充填した、円筒状のステンレス製塔とを、容器から出た2-フルオロブタンがモレキュラシーブの充填塔を経由して、フィルターを通して容器に戻るように接続した。次いで、前記容器内の2-フルオロブタンを、0.1リットル/分の速度でポンプ循環させて、12時間乾燥させた。乾燥後の2-フルオロブタンの水分値は9容量ppmであった。
 その後、水分値が9容量ppmの2-フルオロブタンが入った前記SUS316製容器を5℃に冷却し、3時間静置後、バルブを介して、クリーンブース内に設置された液中パーティクルカウンター(リオン社製、光散乱式液中微粒子検出器「KS-40A」、微粒子計数器「KE-40」、及び加圧サンプラーからなる)に接続し、10ml/分の速度で2-フルオロブタンを送液し、2-フルオロブタン中の微粒子数を測定した。その結果、0.1μm以上の微粒子数は、37個/mlであった。

Claims (5)

  1.  純度が99.9容量%以上で、ブテン類の含有量が1000容量ppm以下であることを特徴とする高純度2-フルオロブタン。
  2.  窒素含有量が100容量ppmで、かつ、酸素含有量が50容量ppm以下である請求項1に記載の高純度2-フルオロブタン。
  3.  水分含有量が50容量ppm以下である請求項1又は2に記載の高純度2-フルオロブタン。
  4.  2-フルオロブタン中の0.1μm以上の微粒子数が、50個/ml以下である請求項1~3のいずれかに記載の高純度2-フルオロブタン。
  5.  請求項1~4のいずれかに記載の高純度2-フルオロブタンを、ドライエッチングガスとして使用する方法。
PCT/JP2014/055778 2013-03-07 2014-03-06 高純度2-フルオロブタン WO2014136877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/773,043 US9659787B2 (en) 2013-03-07 2014-03-06 High-purity 2-fluorobutane
KR1020157027491A KR20150125005A (ko) 2013-03-07 2014-03-06 고순도 2-플루오로부탄
EP14759957.5A EP2966053B1 (en) 2013-03-07 2014-03-06 High-purity 2-fluorobutane
JP2015504385A JP6256462B2 (ja) 2013-03-07 2014-03-06 高純度2−フルオロブタン
CN201480012705.3A CN105008316A (zh) 2013-03-07 2014-03-06 高纯度2-氟丁烷

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-045131 2013-03-07
JP2013045131 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136877A1 true WO2014136877A1 (ja) 2014-09-12

Family

ID=51491385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055778 WO2014136877A1 (ja) 2013-03-07 2014-03-06 高純度2-フルオロブタン

Country Status (7)

Country Link
US (1) US9659787B2 (ja)
EP (1) EP2966053B1 (ja)
JP (1) JP6256462B2 (ja)
KR (1) KR20150125005A (ja)
CN (1) CN105008316A (ja)
TW (1) TWI616428B (ja)
WO (1) WO2014136877A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085681A1 (en) * 2013-12-20 2016-10-26 Zeon Corporation Method for purifying hydrofluorocarbon compound
JP2017048119A (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 2−フルオロブタン又は2,2−ジフルオロブタンの精製方法
JPWO2015064550A1 (ja) * 2013-10-30 2017-03-09 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
US9738578B2 (en) 2014-02-12 2017-08-22 Zeon Corporation Method for producing fluorinated hydrocarbon
WO2017159544A1 (ja) 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
WO2017169809A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法
JPWO2016117464A1 (ja) * 2015-01-22 2017-11-02 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器
WO2018037999A1 (ja) 2016-08-25 2018-03-01 日本ゼオン株式会社 ブテン類の変換方法及びモノフルオロブタンの精製方法
CN107923573A (zh) * 2015-09-14 2018-04-17 日本瑞翁株式会社 已填充氟化烃化合物的气体填充容器、气体填充容器的制造方法及氟化烃化合物的保存方法
WO2018180610A1 (ja) * 2017-03-31 2018-10-04 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法
JP7181486B1 (ja) * 2021-06-23 2022-12-01 ダイキン工業株式会社 モノフルオロアルカンの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088371A (ko) * 2017-12-07 2020-07-22 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 내화학성 및 내오염성 열가소성 폴리우레탄 조성물

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550953A (en) 1944-12-08 1951-05-01 Du Pont Catalytic hydrogenation of unsaturated fluorohydrocarbons
US4049728A (en) * 1976-03-23 1977-09-20 Phillips Petroleum Company Hydrofluorination process
JPS5946251A (ja) 1982-08-31 1984-03-15 Daikin Ind Ltd フツ素化剤
JPH0948741A (ja) 1995-07-14 1997-02-18 Hoechst Ag モノフルオロ誘導体の選択的製造方法
JPH10506107A (ja) * 1994-09-20 1998-06-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ヘキサフルオロエタン生成物の精製方法
JP2009013101A (ja) * 2007-07-04 2009-01-22 Daikin Ind Ltd ペンタフルオロエタンの精製方法
WO2009123038A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 プラズマエッチング方法
JP2009292749A (ja) 2008-06-04 2009-12-17 Ube Ind Ltd フッ素化有機化合物の製造方法
JP2012165797A (ja) 2011-02-10 2012-09-06 Sammy Corp 遊技機
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
JP2014024785A (ja) 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534905A (en) * 1945-07-02 1950-12-19 Phillips Petroleum Co Distillation of fluorohydrocarbons
TW486733B (en) * 1999-12-28 2002-05-11 Toshiba Corp Dry etching method and manufacturing method of semiconductor device for realizing high selective etching

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550953A (en) 1944-12-08 1951-05-01 Du Pont Catalytic hydrogenation of unsaturated fluorohydrocarbons
US4049728A (en) * 1976-03-23 1977-09-20 Phillips Petroleum Company Hydrofluorination process
JPS5946251A (ja) 1982-08-31 1984-03-15 Daikin Ind Ltd フツ素化剤
JPH10506107A (ja) * 1994-09-20 1998-06-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ヘキサフルオロエタン生成物の精製方法
JPH0948741A (ja) 1995-07-14 1997-02-18 Hoechst Ag モノフルオロ誘導体の選択的製造方法
JP2009013101A (ja) * 2007-07-04 2009-01-22 Daikin Ind Ltd ペンタフルオロエタンの精製方法
WO2009123038A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 プラズマエッチング方法
JP2009292749A (ja) 2008-06-04 2009-12-17 Ube Ind Ltd フッ素化有機化合物の製造方法
JP2012165797A (ja) 2011-02-10 2012-09-06 Sammy Corp 遊技機
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
JP2014024785A (ja) 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 52, 1979, pages 3377
JOURNAL OF ORGANIC CHEMISTRY, vol. 44, 1979, pages 3872

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064550A1 (ja) * 2013-10-30 2017-03-09 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
EP3085681A1 (en) * 2013-12-20 2016-10-26 Zeon Corporation Method for purifying hydrofluorocarbon compound
EP3085681A4 (en) * 2013-12-20 2017-05-10 Zeon Corporation Method for purifying hydrofluorocarbon compound
US9682906B2 (en) 2013-12-20 2017-06-20 Zeon Corporation Method for purifying hydrofluorocarbon compound
US9738578B2 (en) 2014-02-12 2017-08-22 Zeon Corporation Method for producing fluorinated hydrocarbon
JPWO2016117464A1 (ja) * 2015-01-22 2017-11-02 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器
JP2017048119A (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 2−フルオロブタン又は2,2−ジフルオロブタンの精製方法
CN107923573A (zh) * 2015-09-14 2018-04-17 日本瑞翁株式会社 已填充氟化烃化合物的气体填充容器、气体填充容器的制造方法及氟化烃化合物的保存方法
US20180245221A1 (en) * 2015-09-14 2018-08-30 Zeon Corporation Gas-filled container filled with fluorinated hydrocarbon compound, method for manufacturing gas-filled container, and method for storing fluorinated hydrocarbon compound
WO2017159544A1 (ja) 2016-03-15 2017-09-21 日本ゼオン株式会社 ドライエッチング用組成物およびドライエッチング用組成物充填済み容器
WO2017169809A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法
US10472308B2 (en) 2016-08-25 2019-11-12 Zeon Corporation Butene conversion method and monofluorobutane purification method
WO2018037999A1 (ja) 2016-08-25 2018-03-01 日本ゼオン株式会社 ブテン類の変換方法及びモノフルオロブタンの精製方法
KR20190039404A (ko) 2016-08-25 2019-04-11 니폰 제온 가부시키가이샤 부텐류의 변환 방법 및 모노플루오로부탄의 정제 방법
WO2018180610A1 (ja) * 2017-03-31 2018-10-04 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法
JPWO2018180610A1 (ja) * 2017-03-31 2020-02-06 セントラル硝子株式会社 α,α−ジフルオロアセトアルデヒドヘミアセタールの製造方法
JP7032666B2 (ja) 2017-03-31 2022-03-09 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法
JP7181486B1 (ja) * 2021-06-23 2022-12-01 ダイキン工業株式会社 モノフルオロアルカンの製造方法
WO2022270173A1 (ja) * 2021-06-23 2022-12-29 ダイキン工業株式会社 モノフルオロアルカンの製造方法

Also Published As

Publication number Publication date
TW201437187A (zh) 2014-10-01
CN105008316A (zh) 2015-10-28
EP2966053A4 (en) 2016-10-19
JPWO2014136877A1 (ja) 2017-02-16
TWI616428B (zh) 2018-03-01
JP6256462B2 (ja) 2018-01-10
US9659787B2 (en) 2017-05-23
EP2966053B1 (en) 2018-09-05
EP2966053A1 (en) 2016-01-13
US20160016869A1 (en) 2016-01-21
KR20150125005A (ko) 2015-11-06

Similar Documents

Publication Publication Date Title
JP6256462B2 (ja) 高純度2−フルオロブタン
TWI761616B (zh) 六氟丁二烯之製造方法
JP6788176B2 (ja) ドライエッチングガスおよびドライエッチング方法
JP6311710B2 (ja) 高純度1−フルオロブタン及びプラズマエッチング方法
JP2014185111A (ja) 高純度2,2−ジフルオロブタン
KR101962191B1 (ko) 플라즈마 에칭 가스 및 플라즈마 에칭 방법
US9984896B2 (en) High-purity fluorinated hydrocarbon, use as a plasma etching gas, and plasma etching method
JP2017092357A (ja) ドライエッチングガスおよびドライエッチング方法
JP2018093233A (ja) ドライエッチング方法
WO2018037999A1 (ja) ブテン類の変換方法及びモノフルオロブタンの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504385

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027491

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014759957

Country of ref document: EP