WO2014133248A1 - 스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법 - Google Patents

스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법 Download PDF

Info

Publication number
WO2014133248A1
WO2014133248A1 PCT/KR2013/011330 KR2013011330W WO2014133248A1 WO 2014133248 A1 WO2014133248 A1 WO 2014133248A1 KR 2013011330 W KR2013011330 W KR 2013011330W WO 2014133248 A1 WO2014133248 A1 WO 2014133248A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sucrose synthase
stevioside
glycotransferase
sucrose
Prior art date
Application number
PCT/KR2013/011330
Other languages
English (en)
French (fr)
Inventor
박성희
김정은
윤란영
홍영호
김성보
박승원
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to JP2015560087A priority Critical patent/JP6147370B2/ja
Priority to ES13876125.9T priority patent/ES2674480T3/es
Priority to US14/770,962 priority patent/US10472660B2/en
Priority to CN201380073982.0A priority patent/CN105164270B8/zh
Priority to EP13876125.9A priority patent/EP2963122B1/en
Publication of WO2014133248A1 publication Critical patent/WO2014133248A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)

Definitions

  • the present invention relates to a method for producing ribioside A by the reaction of sucrose synthase and sugar transferase using sucrose and stevioside as raw materials.
  • Stevia a sweetener with more than 200 times the sweetness of sugar, is obtained from hydrothermal extraction of the Asteraceae plant Stevia rebaudiana Bertoni.
  • rebaudioside A whose sweetness is the most similar to sugar and has no bitter taste and 400 times the sweetness of sugar, occupies only about 20% of the extract in non-improved plants.
  • the highest content component is stevioside, the precursor of Ribaudioside A. Therefore, in order to produce high purity rebaudioside A, there have been economic problems in terms of time and cost such as rebaudioside A high content seed improvement, cultivation, harvesting, and variety management.
  • beta-1,3-glucanase derived from soil microorganisms was used to convert steviosides to steviosides.
  • a method of converting one molecule of glucose into ribaudioside A is disclosed (Korean Patent Application Publication No. 2004-0026747 and US Patent Registration No. 6469947).
  • sugar donor substrates used in the enzyme conversion reaction include beta-1,3-glucan, curdlan, which has a disadvantage in that industrial application is difficult due to the high solubility of the raw material.
  • a method for producing ribioside A comprising the step of reacting glucose-linked nucleotide diphosphate with stevioside in the presence of a sugar transferase to produce ribioside A.
  • a rebaudioside A from stevioside comprising the step of reacting sucrose, nucleotide diphosphate, stevioside, sucrose synthase and glycotransferase in situ to produce rebaudioside A
  • a method of preparing the same comprising the step of reacting sucrose, nucleotide diphosphate, stevioside, sucrose synthase and glycotransferase in situ to produce rebaudioside A
  • Ribaudioside A prepared by a method for producing Ribaudioside A according to the present invention.
  • the process for preparing rebaudioside A according to the present invention provides a high purity and high yield of rebaudioside A with little byproducts.
  • the method for producing rebaudioside A according to the present invention is suitable for mass production of rebaudioside A using low cost raw materials, which is economical, simple in procedure and low in time.
  • FIG. 1 is an HPLC analysis result showing that uridine diphosphate combined with fructose and glucose is produced by sucrose synthase.
  • FIG. 1 shows that only uridine diphosphate (1) exists when the reaction time is 0 hours, and (b) shows uridine diphosphate (2) in which glucose is bound by sucrose synthase after 1 hour of reaction. ) Is generated.
  • Figure 2 is an HPLC analysis showing that steviosides are converted to ribaudioside A by sugar transferase.
  • FIG. 2 shows that only Stevioside (1) exists when the reaction is 0 hours, and (b) shows that both Stevioside (1) and Rebaudioside A (2) exist after 0.5 hours of reaction.
  • C shows that stevioside (1) was all converted to rebaudioside A (2) after 1 hour of reaction.
  • FIG. 3 shows the results of HPLC analysis showing that rebaudioside A (2) is produced from stevioside (1) by sucrose synthase and sugar transferase.
  • FIG. 3 shows that stevioside (1) exists only at the reaction time of stevioside substrate concentration of 100 mM and 0 hours, and (b) shows the reaction of stevioside substrate concentration of 100 mM after 24 hours of reaction. Only Baudioside A (2) is present, and (c) shows that both Stevioside (1) and Rebaudioside A (2) are present after 24 hours with 250 mM Stevioside substrate concentration. Shows.
  • Figure 4 is a chart showing the optimum pH evaluation results of sucrose synthase and sugar transferase.
  • Figure 5 is a chart showing the optimum temperature evaluation results of sucrose synthase and sugar transferase.
  • Step (1) and step (2) may be performed sequentially or continuously in the in-situ system, preferably in the in-situ system.
  • Another aspect of the present invention provides a method for preparing ribioside A from stevioside, comprising reacting sucrose, nucleotide diphosphate, stevioside, sucrose synthase, and sugar transferase to produce ribioside A. It is about a method.
  • the reaction of sucrose, nucleotide diphosphate, stevioside, sucrose synthase and sugar transferase may be a reaction in situ.
  • the term 'identical reaction system' refers to the reaction occurring continuously in one reaction system or reaction system.
  • sucrose synthase plays a role in producing sucrose by reversing glucose associated with nucleotide diphosphate to fructose in plant metabolism.
  • sucrose and nucleotide diphosphate react with glucose in a pH range of 5-10. It shows the activity of separating into bound nucleotide diphosphate and fructose.
  • the nucleotide diphosphate conjugated with glucose may be reacted with stevioside by a sugar transferase to generate ribioside A.
  • Formulas 1 and 2 may each proceed sequentially in separate reactors, but may preferably proceed by continuous reaction in one reactor.
  • reaction formula 1 and 2 when represented by the reaction formula 1 and 2 in one reaction scheme is as follows:
  • the present invention provides a continuous reaction system for synthesizing ribioside A in high yield by binding one glucose specifically to the C-3 ′ position of stevioside 13-O-glucose according to the above formula (3). .
  • sucrose synthase may be sucrose synthase derived from rice, corn, wheat, bamboo, Arabidopsis, grass, barley, sorghum or potato, preferably sucrose derived from rice, corn, wheat, or barley Synthetase, and particularly preferably sucrose synthase derived from rice, in particular Oryza sativa.
  • the sucrose synthase may be produced from recombinant E. coli, Bacillus, yeast, Corynebacterium or Agrobacterium transformed with a vector containing a sucrose synthase gene.
  • the sucrose synthase may be further purified after production from E. coli.
  • the sucrose synthase is known in the art and may include, but is not particularly limited to, the sequence of SEQ ID NO: 3.
  • Sucrose in the present invention is not limited as long as it can serve as a substrate of sucrose synthase to provide glucose to nucleotide diphosphate, for example, raw sugar or sugar can be used.
  • the nucleotide diphosphate may be a purine nucleotide or a pyrimidine nucleotide, preferably uridine diphosphate.
  • the reaction temperature of step (1) or the formula (1) is 20 °C to 60 °C
  • the reaction pH may be in the range of 5 to 10, preferably 30 °C to 55 °C
  • the reaction pH is 6 to 9 It may be in the range of, particularly preferably 35 °C to 50 °C
  • the reaction pH may be in the range of 7 to 8.
  • the reaction time of the step (1) or the formula (1) may be in the range of 30 minutes to 48 hours, preferably 1 hour to 36 hours, particularly preferably 1 hour to 24 hours, but is not particularly limited.
  • the glycotransferase may be a glycotransferase derived from Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii, Brachypodium distachyon, Hordeum vulgare, Sorghum bicolor, Zea mays, Arabidopsis thaliana.
  • the sugar transferase may be a sugar transferase derived from Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii.
  • it may be a sugar transferase derived from Stevia rebaudiana Bertoni.
  • the glycotransferase may be produced from recombinant E.
  • glycotransferase may be further purified after production from E. coli.
  • the glycotransferase is known in the art, and may be one including the sequence of SEQ ID NO: 4, but is not particularly limited.
  • Stevioside in the present invention is a by-product after the production of Ribaudioside A of an extract of Stevia riboudiana or hot water or ethanol, or a purified product or extract thereof, and the stevioside content is 10% by weight or more based on the total weight of steviol glycosides.
  • Ribaudioside A of an extract of Stevia riboudiana or hot water or ethanol, or a purified product or extract thereof
  • the stevioside content is 10% by weight or more based on the total weight of steviol glycosides.
  • it can be used containing at least 50% by weight, particularly preferably at least 70% by weight, more particularly preferably at least 80% by weight.
  • the reaction temperature of the step (2) or the formula (2) is 20 °C to 60 °C
  • the reaction pH may be in the range of 5 to 10, preferably 30 °C to 55 °C
  • the reaction pH is 6 to 9 It may be in the range of, particularly preferably 35 °C to 50 °C
  • the reaction pH may be in the range of 7 to 8.
  • the reaction time of the step (2) or the formula (2) may be in the range of 30 minutes to 48 hours, preferably 1 hour to 36 hours, particularly preferably 1 hour to 24 hours, but is not particularly limited.
  • the reaction temperature of preparing Rebaudioside A by reacting the sucrose, nucleotide diphosphate, stevioside, sucrose synthase and sugar transferase in the same reaction system is 20 ° C. to 60 ° C., and a reaction pH of 5 It may be in the range of 10 to 10, preferably 30 ° C to 55 ° C, the reaction pH may range from 6 to 9, particularly preferably 35 ° C to 50 ° C, the reaction pH is in the range of 7 to 8 Can be.
  • the nucleotide diphosphate may be a purine nucleotide or a pyrimidine nucleotide, preferably uridine diphosphate.
  • Ribaudioside A prepared by the production method described herein.
  • Ribaudioside A is characterized by being produced by using the entire amount of steviosides present in the steviol glycoside as a raw material.
  • This feature allows the stevioside content in the glycoside to be within 5% by weight, preferably within 3% by weight, particularly preferably within 1% by weight, thus eliminating the separation of stevioside and rebaudioside A from the purification process. As a result, the cost can be reduced.
  • an enzyme conversion reaction may produce a high purity product having a content of riboside A in the steviol glycoside of 99% or more. It has the advantage that it can.
  • sucrose which is used as a sugar donor in this reaction, can be purchased at a price of at least one-fifth the price of curdlan, which is a raw material of existing inventions. It is possible.
  • the primer sequences used for PCR included partial sequences of both ends of the sucrose synthase gene and restriction enzyme reaction sequences of NdeI and HindIII, respectively.
  • PCR products of about 2.5 kb were obtained by repeating the incubation process 30 times for 30 seconds at 94 ° C, 30 seconds at 60 ° C, and 2 minutes at 72 ° C.
  • the obtained cDNA fragment was inserted into the pET-28a (+) vector and transformed into E. coli BL21 (DE3).
  • the transformed Escherichia coli was plated in a plate medium containing kanamycin (kanamycin) to select the strain resistant to kanamycin (kanamycin) first. After straining the first selected strains in liquid culture, the strains were finally screened for DNA fragments of about 2.5 kb when the DNA was purified and double-cut into NdeI and HindIII.
  • the reported nucleotide sequence of the sucrose synthase gene and the nucleotide sequence of the sucrose synthase gene obtained in this study were identified as follows.
  • the primer sequence used for PCR included a partial sequence of both ends of the stevia ribaudiana derived glycotransferase gene and restriction enzyme reaction sequences of NdeI and HindIII, respectively.
  • a PCR product of about 1.4 kb was obtained by repeating 30 times of incubation for 30 seconds at 94 ° C, 30 seconds at 60 ° C, and 2 minutes at 72 ° C.
  • the obtained cDNA fragment was inserted into the pET-28a (+) vector and transformed into E. coli BL21 (DE3).
  • the transformed Escherichia coli was plated in a plate medium containing kanamycin (kanamycin) to select the strain resistant to kanamycin (kanamycin) first. After straining each of the first selected strains in liquid culture, the final strain was selected for DNA fragments of about 1.4 kb when the DNA was purified and double-cut into NdeI and HindIII.
  • the reported base sequence of the nucleotide sequence of the glycotransferase gene and the nucleotide sequence of the glycotransferase gene obtained in this study were as follows.
  • the frozen E. coli BL21 (DE3) strain was inoculated into a test tube containing 5 ml of LB medium, and the seed culture was performed at 37 ° C. until the absorbance was reached at 600 nm.
  • the seed culture was added to a 2000 ml flask containing 500 ml of LB medium to carry out this culture.
  • 0.1 mM IPTG isopropyl ⁇ -D-1-thiogalactothiopyranoside
  • the stirring rate during the process was adjusted to 180rpm, the culture temperature was maintained at 37 °C, after the addition of IPTG was stirred at 120rpm, the culture temperature was 16 °C.
  • the culture of the transformed strain was centrifuged at 6,000 ⁇ g for 20 minutes at 4 ° C., washed twice with 50 mM Tris-HCl buffer solution, and then 50 mM Tris-HCl buffer solution (50 mM Tris-HCl, pH 7.5).
  • the cell solution was added and disrupted by an ultrasonic sonicator.
  • the cell lysate was again centrifuged at 13,000 ⁇ g at 4 ° C. for 20 minutes to separate only the cell supernatant as an enzyme solution.
  • sucrose synthase derived from rice was 92 kDa (SEQ ID NO: 3) and stevia rebaudiana derived sugar transfer enzyme (UDP-glucosyltransferase) was 57 kDa (SEQ ID NO: Listing 4) confirmed that.
  • sucrose synthase derived from rice was measured using HPLC.
  • HPLC analysis conditions for measuring activity of sucrose synthase derived from rice are as follows.
  • Solvent A: 8 mM Tetrabutylammonium persulfate in 100 mM potassium phosphate [pH 5.3]
  • the concentration of solvent B is increased to 20% at 15 minutes of analysis, and then converted to 100% of solvent A at 17 minutes, and the total analysis time is set to 30 minutes.
  • sucrose synthase derived from rice (Oryza sativa) reacts with the raw sugar or sugar (sucrose) and the uridine diphosphate to determine whether glucose-linked uridine diphosphate is produced. It was confirmed by the enzyme reaction. Enzyme reaction conditions are as follows.
  • HPLC analysis conditions for measuring activity of Stevia rebaudiana-derived glucose transferase are as follows.
  • the activity of Stevia rebaudiana-derived glucose transferase was confirmed by the enzymatic conversion reaction by converting 1 molecule of glucose to stevioside and converting it to riboudioside A.
  • Enzyme reaction conditions are as follows. 0.1 mg / ml stevia-derived glycotransferase prepared in 2 mM Stevioside (> 96%) dissolved in 50 mM phosphate buffer solution (pH 7.0), uridine diphosphate glucose, and Example 1-3) for 1 hour. The enzyme reaction was carried out at a temperature of 37 ° C.
  • the stevioside used as the substrate for the enzymatic reaction was 96% or more as pure stevioside, and was used as a standard material before and after the reaction in HPLC analysis by using a mixed sample containing about 3% of rebaudioside A. The reaction was stopped by heating at 100 ° C. for 5 minutes, followed by HPLC to determine the yield of Ribaudioside A. As a result, it was confirmed that 100% conversion of the molar concentration from stevioside to rebaudioside A (FIG. 2).
  • Figure 2 is an HPLC analysis showing that steviosides are converted to ribaudioside A by sugar transferase.
  • FIG. 1 The stevioside used as the substrate for the enzymatic reaction was 96% or more as pure stevioside, and was used as a standard material before and after the reaction in HPLC analysis by using a mixed sample containing about 3% of rebaudioside A. The reaction was stopped by heating at 100 ° C. for 5 minutes, followed by
  • sucrose synthase and glycotransferase were used to confirm the conversion of ribioside A to stevioside.
  • Enzyme reaction conditions are as follows. Sucrose 1M, uridine diphosphate 20 mM, stevioside 100-250 mM and 0.1 mg / ml sucrose synthase prepared in Examples 1-3) and 0.1 mg / ml glycotransferase prepared in Examples 1-3) 50 mM phosphate buffer solution (pH 6.5) containing the enzyme reaction was carried out at a temperature of 45 °C for 24 hours. The substrate used in this reaction is stevioside as a mixture specified in Example 2.
  • FIG. 3 shows the results of HPLC analysis showing that rebaudioside A (2) is produced from stevioside (1) by the sucrose synthase and sugar transferase.
  • FIG. 3 shows that stevioside (1) exists only at the stevioside substrate concentration of 100 mM at 0 hours of reaction, and (b) shows that the stevioside substrate concentration is 100 mM at 24 hours of reaction. Only Baudioside A (2) is present, and (c) shows that both Stevioside (1) and Rebaudioside A (2) are present after 24 hours with 250 mM Stevioside substrate concentration. Shows.
  • Uridine diphosphate combined with glucose produced by sucrose synthase derived from rice (Oryza sativa) is converted to ribioside A by reacting with stevioside by sugar transferase. Uridine diphosphate can be dissociated.
  • the two enzymes are present in one reactor and Ribaudioside A is produced, the optimum pH was confirmed. HPLC analysis conditions for confirming the optimum pH are as follows.
  • sucrose synthase and sugar transfer enzyme UDP-glycosyltransferase
  • Enzyme reaction conditions are as follows. Sucrose 1M, uridine diphosphate 20 mM, stevioside 40 mM and 0.1 mg / ml sucrose synthase prepared in Examples 1-3) and 0.1 mg / ml glycotransferase prepared in Examples 1-3)
  • the 50 mM phosphate buffer solution pH 6.5
  • Rebaudioside A for 5 minutes and then subjected to HPLC analysis to determine the production rate of Rebaudioside A.
  • the amount of rebaudioside A produced is compared with each other, and the reaction pH of the reaction system showing the maximum value is found to be the optimum pH of this complex reaction.
  • the optimum pH of the sucrose synthase and sugar transferase complex reaction was confirmed to be around pH 7.5 at the reaction temperature of 45 ° C. for 60 minutes (FIG. 4 and Table 2).
  • Glucose-bound uridine diphosphate produced by sucrose synthase from rice is converted to ribioside A by reaction with stevioside by glucotransferase and uridine Uridine diphosphate can be dissociated.
  • the two enzymes are present in one reactor and Ribaudioside A is produced, the optimum temperature is confirmed.
  • HPLC analysis conditions for confirming the optimum temperature are as follows.
  • sucrose synthase and sugar transfer enzyme UDP-glycosyltransferase
  • Enzyme reaction conditions are as follows. 50 mM phosphate buffer (pH 6.5) containing 1 mM sucrose, 20 mM uridine diphosphate, 40 mM stevioside and 0.1 mg / ml sucrose synthase and 0.1 mg / ml glycotransferase (pH 6.5) for 4 hours, 20, 30 Enzyme reaction was carried out by addition of temperature at 37, 45, 60, 70 and 80 ° C. The reaction was stopped by heating at 100 ° C. for 5 minutes, followed by HPLC analysis to compare the amount of riboside A produced, and the reaction temperature of the reaction system showing the maximum value was found to be the optimum temperature of the complex reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 수크로오스와 스테비오사이드로부터 수크로오스 합성효소 및 당전이효소에 의해 동일반응계에서 리바우디오사이드 A를 제조하는 방법에 관한 것이다.

Description

스테비오사이드로부터 리바우디오사이드 A를 제조하는 방법
본 발명은 수크로오스와 스테비오사이드를 원료로 하여 수크로오스 합성효소 및 당전이효소의 반응에 의해 리바우디오사이드 A를 제조하는 방법에 관한 것이다.
감미도가 설탕의 200배 이상인 고감미료 스테비아(stevia)는 국화과 식물인 Stevia rebaudiana Bertoni의 열수 추출로부터 얻어진다. 스테비아 추출물의 감미성분 중 감미질이 설탕과 가장 유사하며 쓴맛이 없고 감미도가 설탕의 400배로 알려진 리바우디오사이드 A(rebaudioside A)는 비개량 식물체의 경우 추출물의 약 20% 내외만을 차지하며, 추출물 중 가장 높은 함량을 보이는 성분은 리바우디오사이드 A의 전구체인 스테비오사이드이다. 따라서 고순도의 리바우디오사이드 A를 생산하기 위해서 리바우디오사이드 A 고함량 종자 개량, 재배, 수확, 품종 관리 등 시간과 비용적 측면에서 경제적인 문제가 수반되어 왔다.
이러한 문제를 해결하기 위해 스테비오사이드를 리바우디오사이드 A로 전환하고자 하는 노력은 다각도로 이루어져 왔는데, 대표적인 예로 토양 미생물 유래의 베타-1,3-글루카네이즈를 사용하여 효소 전환 반응으로 스테비오사이드에 포도당 1분자를 결합시켜 리바우디오사이드 A로 전환하는 방법을 들 수 있다(대한민국 특허 출원 공개 제2004-0026747호 및 미국 특허 등록 제6469947호). 상기 효소 전환 반응에 사용되는 당 공여 기질로는 대표적으로 베타-1,3-글루칸인 커들란을 예로 들 수 있는데, 커들란은 용해도가 낮은 고가의 원료로 산업화 적용이 어렵다는 단점이 있다. 또한 곰팡이 발효를 통해 스테비오사이드를 리바우디오사이드 배당체로 전환하는 보고가 있으나, 미생물 배양에 보름 가량이 소요되며 리바우디오사이드 B 등 기타 스테비올 배당체 역시 생산되어 최종 리바우디오사이드 A로의 전환율은 40% 가량에 그친다는 단점이 있다.
본 발명은 상기와 같이 미생물 유래 효소 전환 반응에서 낮은 리바우디오사이드 A의 생산율의 한계를 극복하여 생산 효율이 높은 리바우디오사이드 A의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 절차가 간단하고 비용이 절감되며 시간 소모가 적어 산업상 유용성이 높은 리바우디오사이드 A의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양태에서,
(1) 수크로오스와 뉴클레오티드 디포스페이트를 수크로오스 합성효소 존재하에 반응시켜 포도당이 결합된 뉴클레오티드 디포스페이트를 제조하는 단계;
(2) 상기 포도당이 결합된 뉴클레오티드 디포스페이트를 당전이효소의 존재하에 스테비오사이드와 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 리바우디오사이드 A의 제조 방법이 제공된다.
본 발명의 다른 양태에서, 수크로오스, 뉴클레오티드 디포스페이트, 스테비오사이드, 수크로오스 합성효소 및 당전이효소를 동일 반응계에서 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 스테비오사이드로부터 리바우디오사이드 A를 제조하는 방법이 제공된다.
본 발명의 또 다른 양태에서, 본 발명에 따른 리바우디오사이드 A를 제조하는 방법에 의해 제조된 리바우디오사이드 A가 제공된다.
본 발명에 따른 리바우디오사이드 A의 제조 방법은 부산물이 거의 없는 고순도 및 고수율의 리바우디오사이드 A를 제공한다.
본 발명에 따른 리바우디오사이드 A의 제조 방법은 저가의 원료를 사용하여 경제적이며 절차가 간단하고 시간 소모가 적어 리바우디오사이드 A의 대량 생산에 적합하다.
도 1은 수크로오스 합성효소에 의해 프럭토스 및 포도당이 결합된 우리딘 디포스페이트가 생성됨을 보여주는 HPLC 분석 결과이다. 도 1에서 (a)는 반응 0시간일 때 우리딘 디포스페이트(1)만이 존재함을 보여주며, (b)는 반응 1시간 종료 후 수크로오스 합성효소에 의해 포도당이 결합된 우리딘 디포스페이트(2)가 생성됨을 보여준다.
도 2는 당전이효소에 의해 스테비오사이드가 리바우디오사이드 A로 전환됨을 보여주는 HPLC 분석 결과이다. 도 2에서 (a)는 반응 0시간일 때 스테비오사이드(1)만이 존재함을 보여주며, (b)는 반응 0.5시간 후 스테비오사이드(1)와 리바우디오사이드 A(2)가 모두 존재함을 보여주며, (c)는 반응 1시간 후 스테비오사이드(1)가 리바우디오사이드 A(2)로 모두 전환되었음을 보여준다.
도 3은 수크로오스 합성효소와 당전이효소에 의해 스테비오사이드(1)로부터 리바우디오사이드 A(2)가 생성됨을 보여주는 HPLC 분석 결과이다. 도 3에서 (a)는 스테비오사이드 기질 농도를 100mM로 하여 반응 0시간일 때 스테비오사이드(1)만이 존재함을 보여주며, (b)는 스테비오사이드 기질 농도를 100mM로 하여 반응 24 시간 후에는 리바우디오사이드 A(2)만이 존재함을 보여주며, (c)는 스테비오사이드 기질 농도를 250mM로 하여 반응 24시간 후에는 스테비오사이드(1)와 리바우디오사이드 A(2)가 모두 존재함을 보여준다.
도 4는 수크로오스 합성효소와 당 전이효소의 최적 pH 평가 결과를 나타내는 도표이다.
도 5는 수크로오스 합성효소와 당 전이효소의 최적 온도 평가 결과를 나타내는 도표이다.
본 발명의 일 양태는,
(1) 수크로오스와 뉴클레오티드 디포스페이트를 수크로오스 합성효소 존재하에 반응시켜 포도당이 결합된 뉴클레오티드 디포스페이트를 제조하는 단계; 및
(2) 상기 포도당이 결합된 뉴클레오티드 디포스페이트를 당전이효소의 존재하에 스테비오사이드와 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 리바우디오사이드 A의 제조 방법에 관한 것이다. 상기 (1) 단계 및 상기 (2) 단계는 순차적으로 이루어지거나 동일 반응계에서 연속적으로 이루어질 수 있으며, 바람직하게는 동일 반응계에서 연속적으로 이루어질 수 있다.
본 발명의 다른 양태는, 수크로오스, 뉴클레오티드 디포스페이트, 스테비오사이드, 수크로오스 합성효소 및 당전이효소를 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 스테비오사이드로부터 리바우디오사이드 A를 제조하는 방법에 관한 것이다. 상기 수크로오스, 뉴클레오티드 디포스페이트, 스테비오사이드, 수크로오스 합성효소 및 당전이효소의 반응은 동일 반응계에서의 반응일 수 있다.
본원에서 용어 '동일 반응계'는 하나의 반응계 혹은 반응 시스템에서 반응이 연속적으로 일어나는 것을 말한다.
*수크로오스 합성효소는 식물체 대사에서 가역적으로 과당에 뉴클레오티드 디포스페이트가 결합된 포도당을 전이하여 수크로오스를 생산하는 역할을 담당하며, 본 발명에서는 5 내지 10의 pH 범위에서 수크로오스와 뉴클레오티드 디포스페이트를 반응하여 포도당이 결합된 뉴클레오티드 디포스페이트 및 과당으로 분리하는 활성을 나타낸다.
화학식 1
Figure PCTKR2013011330-appb-C000001
상기 포도당이 결합된 뉴클레오티드 디포스페이트는 당전이효소에 의해 스테비오사이드와 반응하여 리바우디오사이드 A를 생성할 수 있다.
화학식 2
Figure PCTKR2013011330-appb-C000002
본 발명에서 상기 화학식 1 및 2는 각각 별도의 반응기에서 순차적으로 진행될 수 있지만 바람직하게는 하나의 반응기에서 연속 반응에 의해 진행될 수 있다.
본 발명에서 상기 화학식 1과 2를 하나의 반응식으로 표현하면 아래와 같다:
화학식 3
Figure PCTKR2013011330-appb-C000003
본 발명에서 상기와 같은 화학식 3에 의해 스테비오사이드 13-O-글루코스의 C-3' 위치에 특이적으로 한 개의 글루코스를 결합시켜 리바우디오사이드 A를 고수율로 합성하는 연속 반응 시스템을 제공한다.
본 발명에서 수크로오스 합성효소는 쌀, 옥수수, 밀, 대나무, 애기장대, 잔디, 보리, 수수 또는 감자에서 유래된 수크로오스 합성효소일 수 있으며, 바람직하게는 쌀, 옥수수, 밀, 혹은 보리에서 유래된 수크로오스 합성효소이고, 특히 바람직하게는 쌀, 특히 Oryza sativa에서 유래된 수크로오스 합성효소일 수 있다. 상기 수크로오스 합성효소는 수크로오스 합성효소 유전자를 함유하는 벡터로 형질전환된 재조합 대장균, 바실러스, 효모, 코리네박테리움 또는 아그로박테리움으로부터 생산된 것일 수 있다. 상기 수크로오스 합성효소는 상기 대장균 등으로부터 생산 후 추가 정제된 것일 수 있다. 상기 수크로오스 합성효소는 당업계에 공지되어 있으며, 특별히 제한되는 것은 아니지만 서열목록 3의 서열을 포함할 수 있다.
본 발명에서 수크로오스는 수크로오스 합성효소의 기질로 작용하여 뉴클레오티드 디포스페이트에 포도당을 제공할 수 있는 것이라면 제한이 없으며, 예를 들어, 원당 또는 설탕이 사용될 수 있다.
본 발명에서 상기 뉴클레오티드 디포스페이트는 퓨린뉴클레오티드 또는 피리미딘뉴클레오티드가 사용될 수 있으며, 바람직하게는 우리딘 디포스페이트가 사용될 수 있다.
본 발명에서 상기 (1) 단계 또는 화학식 1의 반응 온도는 20℃ 내지 60℃이고, 반응 pH가 5 내지 10의 범위일 수 있고, 바람직하게는 30℃ 내지 55℃이고, 반응 pH가 6 내지 9의 범위일 수 있고, 특히 바람직하게는 35℃ 내지 50℃이고, 반응 pH가 7 내지 8의 범위일 수 있다. 본 발명에서 상기 (1) 단계 또는 화학식 1의 반응 시간은 30분 내지 48시간, 바람직하게는 1시간 내지 36시간, 특히 바람직하게는 1시간 내지 24시간의 범위일 수 있으나 특별한 제한은 없다.
본 발명에서 당전이효소는 Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii, Brachypodium distachyon, Hordeum vulgare, Sorghum bicolor, Zea mays, Arabidopsis thaliana  유래의 당전이효소일 수 있다. 바람직하게 상기 당전이효소는 Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii 유래의 당전이효소일 수 있다. 특히 바람직하게는 Stevia rebaudiana Bertoni 유래의 당전이효소일 수 있다. 상기 당전이효소는 당전이효소 유전자를 함유하는 벡터로 형질전환된 재조합 대장균, 바실러스, 효모, 코리네박테리움 또는 아그로박테리움으로부터 생산된 것일 수 있다. 상기 당전이효소는 상기 대장균 등으로부터 생산 후 추가 정제된 것일 수 있다. 상기 당전이효소는 당업계에 공지되어 있으며, 특별히 제한되는 것은 아니지만 서열목록 4의 서열을 포함한 것일 수 있다.
본 발명에서 스테비오사이드는 스테비아 리바우디아나 열수 혹은 에탄올 수용액 추출물 또는 이의 정제물 또는 추출물의 리바우디오사이드 A 생산 후 부산물로, 스테비오사이드 함량을 전체 스테비올 배당체 중량을 기준으로 10 중량% 이상, 바람직하게는 50 중량% 이상, 특히 바람직하게는 70 중량% 이상, 더욱 특히 바람직하게는 80 중량% 이상으로 함유하는 것을 사용할 수 있다.
본 발명에서 상기 (2) 단계 또는 화학식 2의 반응 온도는 20℃ 내지 60℃이고, 반응 pH가 5 내지 10의 범위일 수 있고, 바람직하게는 30℃ 내지 55℃이고, 반응 pH가 6 내지 9의 범위일 수 있고, 특히 바람직하게는 35℃ 내지 50℃이고, 반응 pH가 7 내지 8의 범위일 수 있다. 본 발명에서 상기 (2) 단계 또는 화학식 2의 반응 시간은 30분 내지 48시간, 바람직하게는 1시간 내지 36시간, 특히 바람직하게는 1시간 내지 24시간의 범위일 수 있으나 특별한 제한은 없다.
본 발명에서 상기 수크로오스, 뉴클레오티드 디포스페이트, 스테비오사이드, 수크로오스 합성효소 및 당전이효소를 동일 반응계에서 반응시켜 리바우디오사이드 A를 제조하는 단계의 반응 온도는 20℃ 내지 60℃이고, 반응 pH가 5 내지 10의 범위일 수 있고, 바람직하게는 30℃ 내지 55℃이고, 반응 pH가 6 내지 9의 범위일 수 있고, 특히 바람직하게는 35℃ 내지 50℃이고, 반응 pH가 7 내지 8의 범위일 수 있다.
본 발명에서 상기 뉴클레오티드 디포스페이트는 퓨린뉴클레오티드 또는 피리미딘뉴클레오티드가 사용될 수 있으며, 바람직하게는 우리딘 디포스페이트가 사용될 수 있다.
본 발명의 또 다른 양태에서 본원에 기재된 제조 방법에 의해 제조된 리바우디오사이드 A가 제공된다.
본 발명에 따른 리바우디오사이드 A는 스테비올 배당체에 존재하는 스테비오사이드 전량을 원료로 하여 생산되는 특징이 있다. 이러한 특징은 배당체 내 스테비오사이드 함량을 5 중량% 이내, 바람직하게는 3 중량% 이내, 특히 바람직하게는 1 중량% 이내가 되게 하여, 정제 공정에서 스테비오사이드와 리바우디오사이드 A의 분리과정을 생략 가능하게 하므로 비용을 절감하는 효과를 기대할 수 있다. 또한 본 발명과 같이 원료에 스테비올 배당체로서 스테비오사이드 외 소량의 리바우디오사이드 A만 존재하는 경우, 효소 전환 반응을 통해 스테비올 배당체 중 리바우디오사이드 A 함량이 99% 이상인 고순도의 제품을 생산할 수 있다는 장점을 보유한다. 또한 본 반응에서 당 공여체로 사용되는 수크로오스는 기존 발명들의 원료인 커들란에 비해 적어도 50 분의 1 수준의 가격으로 구입이 가능하여 결과적으로 고순도의 리바우디오사이드 A를 기존대비 저비용/고효율로 생산 가능하다.
이하 본 발명을 위해 실시예를 들어 상세히 설명하면 다음과 같다. 단 하기 실시예는 본원 발명의 일 예시에 불과하며 발명의 내용이 이에 한정되는 것으로 해석되어서는 안 된다.
실시예 1
유전자 확보 및 재조합 단백질 생산
1) 수크로오스 합성효소 유전자 재조합 대장균의 제조
PCR에 사용된 프라이머의 서열에는 수크로오스 합성효소 유전자의 양쪽 말단의 일부서열과 각각 NdeI과 HindⅢ의 제한효소 반응서열을 포함하였다.
(FORWARD) 5'-CATATGGCTGCCAAGCTAGCTCG-3'
(BACKWARD) 5'-AAGCTTTTACTTGGATGTGCTCTCTC-3'
유전자 증폭을 위해 94℃에서 30초, 60℃에서 30초, 72℃에서 2분 동안 항온 처리 과정을 30회 반복하여 약 2.5 kb의 PCR 산물을 얻을 수 있었다.
획득한 cDNA 절편을 pET-28a(+) 벡터에 삽입한 후 대장균 BL21(DE3)에 형질전환시켰다. 형질전환된 대장균은 카나마이신(kanamycin)이 포함된 평판배지에서 도말하여 카나마이신(kanamycin)에 대한 내성이 있는 균주를 1차로 선별하였다. 1차 선별된 균주들을 각기 액체 배양한 후 DNA를 정제하여 NdeI과 HindⅢ로 이중절단했을 때 약 2.5kb의 DNA 단편이 확인된 균주를 최종 선별하였다. 자동염기서열분석기를 이용하여 염기서열을 분석한 결과, 보고된 수크로오스 합성효소 유전자 염기서열과 본 연구에서 얻어진 수크로오스 합성효소 유전자의 염기서열(서열목록 1)은 동일하였으며 다음과 같이 확인되었다.
TGCCAACAATCGCAACATGCCATGGTGGCCCTGCTGAGATTATTGTTGATGGGGTGTCTGGTCTGCACATTGATCCTTACCACAGTGACAAGGCTGCTGATATCTTGGTCAACTTCTTTGAGAAGTGCAAGCAGGATTCAACCTACTGGGACAATATTTCACAGGGAGGTCTGCAGAGGATTTACGAGAAGTACACCTGGAAGCTGTACTCTGAGAGGCTGATGACCTTGACTGGTGTATACGGATTCTGGAAGTACGTAAGCAACCTTGAGAGGCGCGAGACTCGCCGTTACATTGAGATGTTCTATGCTCTGAAATACCGCAGCCTGGCCAGCGCCGTCCCATTGGCTGTCGATGGAGAGAGCACATCCAAGTAA
2) 당전이효소 유전자 재조합 대장균의 제조
PCR에 사용된 프라이머의 서열에는 스테비아 리바우디아나 유래 당전이효소 유전자의 양쪽 말단의 일부서열과 각각 NdeI과 HindⅢ의 제한효소 반응서열을 포함하였다.
(FORWARD) 5'-CATATGGAAAATAAAACGGA -3'
(BACKWARD) 5'-AAGCTTTTACAACGATGAAATGT -3'
유전자 증폭을 위해 94℃에서 30초, 60℃에서 30초, 72℃에서 2분 동안 항온 처리 과정을 30회 반복하여 약 1.4 kb의 PCR 산물을 얻을 수 있었다. 획득한 cDNA 절편을 pET-28a(+) 벡터에 삽입한 후 대장균 BL21(DE3)에 형질전환시켰다. 형질전환된 대장균은 카나마이신(kanamycin)이 포함된 평판배지에서 도말하여 카나마이신(kanamycin)에 대한 내성이 있는 균주를 1차로 선별하였다. 1차 선별된 균주들을 각기 액체 배양한 후 DNA를 정제하여 NdeI과 HindⅢ로 이중절단했을 때 약 1.4kb의 DNA 단편이 확인된 균주를 최종 선별하였다. 자동염기서열분석기를 이용하여 염기서열을 분석한 결과, 보고된 당전이효소 유전자 염기서열과 본 연구에서 얻어진 당전이효소 유전자의 염기서열(서열목록 2)은 동일하였으며 다음과 같다.
AGAAGTGCTAGCTCATGGAGCAATAGGCGCATTCTGGACTCATAGCGGATGGAACTCTACGTTGGAAAGCGTTTGTGAAGGTGTTCCTATGATTTTCTCGGATTTTGGGCTCGATCAACCGTTGAATGCTAGATACATGAGTGATGTTTTGAAGGTAGGGGTGTATTTGGAAAATGGGTGGGAAAGAGGAGAGATAGCAAATGCAATAAGAAGAGTTATGGTGGATGAAGAAGGAGAATACATTAGACAGAATGCAAGAGTTTTGAAACAAAAGGCAGATGTTTCTTTGATGAAGGGTGGTTCGTCTTACGAATCATTAGAGTCTCTAGTTTCTTACATTTCATCGTTGTAA
3) 재조합 단백질 생산
냉동 보관된 재조합 대장균 BL21(DE3) 균주를 LB배지 5ml가 들어있는 시험관(test tube)에 접종하고 600nm에서 흡광도 2.0이 될 때까지 37℃의 배양기로 종균 배양을 실시하였다. 종균 배양된 배양액을 LB배지 500ml가 들어있는 2000ml 플라스크에 첨가하여 본 배양을 실시하였다. 또한, 600nm에서의 흡광도가 0.4가 될 때, 0.1mM IPTG(이소프로필 β-D-1-티오갈락토티오피라노시드)를 첨가하여 수크로오스 합성효소(sucrose synthase) 및 당전이 효소(glycosyltransferase)의 대량 발현을 각각 유도하였다. 상기 과정 중의 교반 속도는 180rpm, 배양 온도는 37℃가 유지되도록 조절하고, IPTG를 첨가 후에는 교반 속도는 120rpm, 배양 온도는 16℃로 배양하였다. 상기 형질전환된 균주의 배양액을 6,000×g 로 4℃에서 20분 동안 원심분리하고 50mM 트리스-염산 완충용액으로 두 번 세척한 후, 50mM 트리스-염산 완충용액(50mM Tris-HCl, pH 7.5)을 첨가하여 상기 세포 용액을 초음파 파쇄기(sonicator)로 파쇄하였다. 세포 파쇄물은 다시 13,000×g 로 4℃에서 20분 동안 원심분리하여 세포 상등액만을 효소액으로서 분리하였다. 효소들의 특성을 정확히 파악하기 위해서 Ni-NTA superflow 컬럼을 사용하여 각각 정제하였다. 정제한 효소의 분자량을 SDS-PAGE로 측정한 결과 쌀(Oryza sativa) 유래의 수크로오스 합성효소는 92kDa(서열 목록 3), 스테비아(Stevia rebaudiana) 유래의 당전이효소 (UDP-glucosyltransferase)는 57kDa(서열 목록 4)임을 확인하였다.
실시예 2
HPLC를 이용한 각 효소 활성 측정
1) 수크로오스 합성효소의 활성 측정
쌀(Oryza sativa) 유래의 수크로오스 합성효소(sucrose synthase)의 활성은 HPLC를 이용하여 측정하였다. 쌀(Oryza sativa) 유래의 수크로오스 합성효소(sucrose synthase)의 활성측정을 위한 HPLC 분석조건은 다음과 같다.
*HPLC 분석조건
- Detector Wavelength: 260nm       
- Flow rate: 1㎖/min
- Sample injection vol. : 10㎕     
- Column: C18 4.6 × 250mm(5㎛ pore size)
- Solvent: A: 8mM Tetrabutylammonium persulfate in 100mM potassium phosphate [pH 5.3]
B: 70% A 용매 + 30% Methanol
A 용매 100%로 시작하여, 분석 15분에 B 용매를 20%까지 농도 상승 후 17분에 A 용매 100%로 전환하며 총 분석 소요 시간은 30분으로 설정한다.
쌀(Oryza sativa) 유래의 수크로오스 합성효소(sucrose synthase)의 활성은 원당 혹은 설탕(수크로오스)과 우리딘 디포스페이트(Uridine diphosphate)를 반응하여 포도당이 결합된 우리딘 디포스페이트(Uridine diphosphate)가 생성되는지 효소반응으로 확인하였다. 효소반응 조건은 다음과 같다.
50mM 인산완충용액(pH 6.5)에 용해된 수크로오스 100mM, 우리딘 디포스페이트 10mM 및 실시예 1-3)에서 제조된 0.1mg/ml의 수크로오스 합성효소를 1시간 동안 온도 37℃에서 효소 반응을 수행하였다. 100℃에서 5분 동안 가열하여 반응을 정지시킨 다음, HPLC 분석을 실시하여 포도당이 결합된 우리딘 디포스페이트의 생산량을 측정하였다. 분석 결과, 우리딘 디포스페이트(Uridine diphosphate)에서 포도당이 결합된 우리딘 디포스페이트(Uridine diphosphate)로, 초기 몰농도 대비 90% 전환된 것을 확인하였다(도 1). 도 1에서 (a)는 반응 0시간일 때 우리딘 디포스페이트(1)만이 존재함을 보여주며, (b)는 반응 1시간 종료 후 수크로오스 합성효소에 의해 포도당이 결합된 우리딘 디포스페이트(2)가 생성됨을 보여준다.
2) 당전이효소의 활성 측정
스테비아(Stevia rebaudiana) 유래의 당전이효소(UDP-glycosyltransferase)의 활성 측정을 위한 HPLC 분석조건은 다음과 같다.
HPLC 분석조건
- Detector Wavelength: 210nm       
- Flow rate: 1㎖/min
- Sample injection vol. : 10㎕     
- Column: C18 4.6 × 250mm (5㎛ pore size)
- Solvent: Acetonitrile : 10mM sodium phosphate [pH 2.6] = 32 : 68
스테비아(Stevia rebaudiana) 유래의 당전이효소(UDP-glycosyltransferase) 의 활성은 스테비오사이드에 포도당 1분자를 결합시켜 리바우디오사이드 A로 전환되는지 효소전환반응으로 확인하였다. 효소반응 조건은 다음과 같다. 50mM 인산완충용액(pH 7.0)에 용해된 스테비오사이드(> 96%) 2mM, 우리딘 디포스페이트 글루코오스 10mM 및 실시예 1-3)에서 제조된 0.1mg/ml 스테비아 유래의 당전이효소를 1시간 동안 온도 37℃에서 효소 반응을 수행하였다. 여기서 효소반응의 기질로 사용한 스테비오사이드는 순수 스테비오사이드로서 96% 이상이며, 리바우디오사이드 A가 약 3% 가량 함유된 혼합 시료를 사용함으로써 HPLC 분석시 반응 전, 후의 표준 물질로서 활용하였다. 100℃에서 5분 동안 가열하여 반응을 정지시킨 다음 HPLC를 실시하여 리바우디오사이드 A의 생산량을 측정하였다. 분석 결과, 스테비오사이드에서 리바우디오사이드 A로, 몰농도 대비 100% 전환된 것을 확인하였다(도 2). 도 2는 당전이효소에 의해 스테비오사이드가 리바우디오사이드 A로 전환됨을 보여주는 HPLC 분석 결과이다. 도 2에서 (a)는 반응 0시간일 때 스테비오사이드(1)만이 존재함을 보여주며, (b)는 반응 0.5시간 후 스테비오사이드(1)와 리바우디오사이드 A(2)가 모두 존재함을 보여주며, (c)는 반응 1시간 후 스테비오사이드(1)가 리바우디오사이드 A(2)로 모두 전환되었음을 보여준다.
실시예 3
수크로오스 합성효소와 당전이효소의 동일 반응계 반응에 의한 스테비오사이드로부터 리바우디오사이드 A 전환율 측정
수크로오스 합성효소(Sucrose synthase)와 당전이효소(UDP-glycosyltransferase)의 동일 반응계 반응으로 스테비오사이드로부터 리바우디오사이드 A 전환율을 확인해 보았다. 효소반응 조건은 다음과 같다. 수크로오스 1M, 우리딘 디포스페이트 20mM, 스테비오사이드 100~250mM 및 실시예 1-3)에서 제조된 0.1mg/ml의 수크로오스 합성효소와 실시예 1-3)에서 제조된 0.1mg/ml의 당전이효소가 포함된 50mM 인산완충용액(pH 6.5)을 24시간 동안 온도 45℃에서 효소 반응을 수행하였다. 본 반응에 사용된 기질은 실시예 2 에 명기된 혼합물로서의 스테비오사이드이다. 반응 완료 후 100℃에서 5분 동안 가열하여 반응을 정지시킨 다음 HPLC 분석을 실시하여 스테비오사이드의 농도에 따른 리바우디오사이드 A 발생 농도를 측정하였다. 스테비오사이드로부터 리바우디오사이드 A의 전환율은 사용된 스테비오사이드 몰농도 대비 생산된 리바우디오사이드 A 몰농도로 계산되었다(도 3 및 표 1(반응 24시간 후 전환율)).
표 1
스테비오사이드 농도(mM) 전환율(%)
100 100
150 63.90
200 56.72
250 39.96
도 3은 상기 수크로오스 합성효소와 당전이효소에 의해 스테비오사이드(1)로부터 리바우디오사이드 A(2)가 생성됨을 보여주는 HPLC 분석 결과이다. 도 3에서 (a)는 스테비오사이드 기질 농도를 100mM로 하여 반응 0시간일 때 스테비오사이드(1)만이 존재함을 보여주며, (b)는 스테비오사이드 기질 농도를 100mM로 하여 반응 24시간 후에는 리바우디오사이드 A(2)만이 존재함을 보여주며, (c)는 스테비오사이드 기질 농도를 250mM로 하여 반응 24시간 후에는 스테비오사이드(1)와 리바우디오사이드 A(2)가 모두 존재함을 보여준다.
실시예 4
수크로오스 합성효소와 당전이효소 동일 반응계 반응의 pH 안정성
쌀(Oryza sativa) 유래의 수크로오스 합성효소(sucrose synthase)에 의해 생산된 포도당이 결합된 우리딘 디포스페이트(Uridine diphosphate)는 당전이효소에 의해 스테비오사이드와 반응하여 리바우디오사이드 A로 전환되며 우리딘 디포스페이트(Uridine diphosphate)를 해리할 수 있다. 상기 2종의 효소가 하나의 반응기에 존재하며 리바우디오사이드 A가 생산될 때, 최적 pH를 확인해 보았다. 최적 pH를 확인하기 위한 HPLC 분석조건은 다음과 같다.
HPLC 분석조건
- Detector Wavelength: 210nm       
- Flow rate: 1㎖/min
- Sample injection vol. : 10㎕     
- Column: C18 4.6 × 250mm (5㎛ pore size)
- Solvent: Acetonitrile : 10mM sodium phosphate [pH 2.6] = 32 : 68
수크로오스 합성효소(Sucrose synthase)와 당전이효소(UDP-glycosyltransferase)의 복합반응으로 최적 pH를 확인해 보았다. 효소반응 조건은 다음과 같다. 수크로오스 1M, 우리딘 디포스페이트 20mM, 스테비오사이드 40mM 및 실시예 1-3)에서 제조된 0.1mg/ml의 수크로오스 합성효소와 실시예 1-3)에서 제조된 0.1mg/ml의 당전이효소가 포함된 50mM 인산완충용액(pH 6.5)을 1시간 동안 온도 45℃에서 효소 반응을 수행하였다. 여기서 pH 2.5~12.0 버퍼는 Universal buffer를 사용하였다. 100℃에서 5분 동안 가열하여 반응을 정지시킨 다음 HPLC 분석을 실시하여 리바우디오사이드 A의 생성율을 측정하였다. 리바우디오사이드 A 생성량을 서로 비교하여, 최대값을 나타낸 반응계의 반응 pH가 이 복합반응의 최적 pH로 구해진다. 수크로오스 합성효소와 당전이효소 복합반응의 최적 pH는 온도 45℃, 60분간 반응에서 약 pH 7.5 부근으로 확인되었다(도 4 및 표 2).
표 2
pH 효소 상대 활성(%)
2.5 2.99
3.0 2.85
4.0 2.66
5.0 38.55
5.5 78.66
6.0 84.54
6.5 85.45
7.0 93.24
7.5 100
8.0 93.04
8.5 86.42
9.0 85.12
10.0 84.01
11.0 80.47
12.0 52.34
실시예 4
수크로오스 합성효소와 당전이효소 동일반응계 반응의 온도 안정성
쌀(Oryza sativa) 유래의 수크로오스 합성효소(sucrose synthase)에 의해 생산된 포도당 결합된 우리딘 디포스페이트(Uridine diphosphate)는 당전이효소에 의해 스테비오사이드와 반응하여 리바우디오사이드 A로 전환되며 우리딘 디포스페이트(Uridine diphosphate)를 해리할 수 있다. 상기 2종의 효소가 하나의 반응기에 존재하며 리바우디오사이드 A가 생산될 때, 최적 온도를 확인해 보았다. 최적 온도를 확인하기 위한 HPLC 분석조건은 다음과 같다.
HPLC 분석조건
- Detector Wavelength: 210nm       
- Flow rate: 1㎖/min
- Sample injection vol. : 10㎕     
- Column: C18 4.6 × 250mm (5㎛ pore size)
- Solvent: Acetonitrile : 10mM sodium phosphate [pH 2.6] = 32 : 68
수크로오스 합성효소(Sucrose synthase)와 당전이효소(UDP-glycosyltransferase)의 복합반응으로 최적온도를 확인해 보았다. 효소반응 조건은 다음과 같다. 수크로오스 1M, 우리딘 디포스페이트 20mM, 스테비오사이드 40mM 및 0.1mg/ml의 수크로오스 합성효소와 0.1mg/ml의 당전이효소가 포함된 50mM 인산완충용액(pH 6.5)을 1시간 동안 4, 20, 30, 37, 45, 60, 70, 80℃에서 온도를 가하여 효소 반응을 수행하였다. 100℃에서 5분 동안 가열하여 반응을 정지시킨 다음 HPLC 분석을 실시하여 리바우디오사이드 A의 생성량을 서로 비교하여, 최대값을 나타낸 반응계의 반응 온도가 이 복합반응의 최적온도로 구해진다.
수크로오스 합성효소와 당전이효소 복합반응의 최적 온도는 pH 6.5, 60분간 반응에서 약 45℃ 부근으로 확인되었다. 효소 상대 활성을 도 5 및 표 3에 나타내었다.
표 3
온도(℃) 효소 상대 활성(%)
4 10.19
20 17.20
30 31.21
37 80.48
45 100
60 39.24
70 9.71
80 10.40

Claims (14)

  1. (1) 수크로오스와 뉴클레오티드 디포스페이트를 수크로오스 합성효소 존재하에 반응시켜 포도당이 결합된 뉴클레오티드 디포스페이트를 제조하는 단계;
    (2) 상기 포도당이 결합된 뉴클레오티드 디포스페이트를 당전이효소의 존재하에 스테비오사이드와 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 리바우디오사이드 A의 제조 방법.
  2. 제1항에 있어서, 상기 수크로오스 합성효소가 쌀, 옥수수, 밀, 대나무, 애기장대, 잔디, 보리, 수수 또는 감자에서 유래된 수크로오스 합성효소인, 제조 방법.
  3. 제1항 또는 제2항에 있어서, 상기 수크로오스 합성효소가 수크로오스 합성효소 유전자를 함유하는 벡터로 형질전환된 재조합 대장균, 바실러스, 효모, 코리네박테리움 또는 아그로박테리움으로부터 생산된 것인, 제조 방법.
  4. 제3항에 있어서, 상기 수크로오스 합성효소가 서열목록 3의 서열을 갖는, 제조 방법.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서, 상기 당전이효소가 Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii, Brachypodium distachyon, Hordeum vulgare, Sorghum bicolor, Zea mays, 또는 Arabidopsis thaliana  유래의 당전이효소인, 제조 방법.
  6. 제1항 내지 제5항 중 어느 하나의 항에 있어서, 상기 당전이효소가 당전이효소 유전자를 함유하는 벡터로 형질전환된 재조합 대장균, 바실러스, 효모, 코리네박테리움 또는 아그로박테리움으로부터 생산된 것인, 제조 방법.
  7. 제1항 내지 제6항 중 어느 하나의 항에 있어서, 상기 당전이효소가 서열목록 4의 서열을 갖는, 제조 방법.
  8. 제1항 내지 제7항 중 어느 하나의 항에 있어서, 상기 (1) 단계 및 상기 (2) 단계가 동일 반응계에서 연속적으로 이루어지는, 제조 방법.
  9. 제8항에 있어서, 상기 동일 반응계의 반응 온도가 20℃ 내지 60℃이고, 반응 pH가 5 내지 10의 범위인, 제조 방법.
  10. 수크로오스, 뉴클레오티드 디포스페이트, 스테비오사이드, 수크로오스 합성효소 및 당전이효소를 동일 반응계에서 반응시켜 리바우디오사이드 A를 제조하는 단계를 포함하는, 스테비오사이드로부터 리바우디오사이드 A를 제조하는 방법.
  11. 제10항에 있어서, 상기 반응 온도가 20℃ 내지 60℃이고, 반응 pH가 5 내지 10의 범위인, 방법.
  12. 제10항 또는 제11항에 있어서, 상기 수크로오스 합성효소가 쌀, 옥수수, 밀, 대나무, 애기장대, 잔디, 보리, 수수 또는 감자에서 유래된 수크로오스 합성효소인, 방법.
  13. 제10항 내지 제12항 중 어느 하나의 항에 있어서, 상기 당전이효소가 Oryza sativa, Stevia rebaudiana Bertoni, Bambusa oldhamii, Brachypodium distachyon, Hordeum vulgare, Sorghum bicolor, Zea mays, 또는 Arabidopsis thaliana  유래의 당전이효소인, 제조 방법.
  14. 제1항 내지 제13항 중 어느 하나의 항에 따른 제조 방법에 의해 제조된 리바우디오사이드 A.
PCT/KR2013/011330 2013-02-28 2013-12-09 스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법 WO2014133248A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015560087A JP6147370B2 (ja) 2013-02-28 2013-12-09 ステビオシドからレバウジオシドaを製造する方法
ES13876125.9T ES2674480T3 (es) 2013-02-28 2013-12-09 Método para preparar rebaudiósido A a partir de esteviósido
US14/770,962 US10472660B2 (en) 2013-02-28 2013-12-09 Method for preparing rebaudioside A from stevioside
CN201380073982.0A CN105164270B8 (zh) 2013-02-28 2013-12-09 由甜菊苷制备莱苞迪甙a的方法
EP13876125.9A EP2963122B1 (en) 2013-02-28 2013-12-09 Method for preparing rebaudioside a from stevioside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0022176 2013-02-28
KR1020130022176A KR101404728B1 (ko) 2013-02-28 2013-02-28 스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2014133248A1 true WO2014133248A1 (ko) 2014-09-04

Family

ID=51132132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011330 WO2014133248A1 (ko) 2013-02-28 2013-12-09 스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법

Country Status (7)

Country Link
US (1) US10472660B2 (ko)
EP (1) EP2963122B1 (ko)
JP (2) JP6147370B2 (ko)
KR (1) KR101404728B1 (ko)
CN (1) CN105164270B8 (ko)
ES (1) ES2674480T3 (ko)
WO (1) WO2014133248A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511335A (ja) * 2015-04-14 2018-04-26 コナゲン インコーポレイテッド 改変された全細胞触媒を用いたノンカロリー甘味料の生成
CN111593062A (zh) * 2020-05-25 2020-08-28 安徽金禾实业股份有限公司 一种利用枯草芽孢杆菌发酵催化制备莱鲍迪苷a的方法
CN111621456A (zh) * 2020-05-25 2020-09-04 安徽金禾实业股份有限公司 一种液态发酵制备莱鲍迪苷a的方法
US10941174B2 (en) 2014-05-05 2021-03-09 Conagen Inc. Non-caloric sweetener
EP4170025A1 (en) 2021-10-19 2023-04-26 CJ Cheiljedang Corporation Novel uridine diphosphate glycosyltransferase and use thereof
WO2023068722A1 (ko) 2021-10-19 2023-04-27 씨제이제일제당 (주) 리바우디오사이드 d 및 리바우디오사이드 m을 제조하는 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146711A1 (en) 2015-03-16 2016-09-22 Dsm Ip Assets B.V. Udp-glycosyltransferases
US20170266524A1 (en) * 2016-03-18 2017-09-21 James C. Van Loon, III Method of using lacrosse mesh
WO2017207484A1 (en) 2016-05-31 2017-12-07 Universiteit Gent Mutant sucrose synthases and their uses
BR112018075816A2 (pt) * 2016-06-15 2019-04-02 Codexis, Inc. métodos para glicosilação de um substrato e para produção de glicose-1-fosfato.
US11299723B2 (en) 2016-06-15 2022-04-12 Codexis, Inc. Engineered beta-glucosidases and glucosylation methods
ES2906310T3 (es) 2016-08-12 2022-04-18 Amyris Inc Glicosiltransferasa dependiente de UDP para la producción de alta eficiencia de rebaudiósidos
CN110914445B (zh) 2017-02-03 2024-08-27 泰莱解决方案美国有限责任公司 工程化糖基转移酶和甜菊醇糖苷葡糖基化方法
CN108315394A (zh) * 2018-04-23 2018-07-24 沈阳师范大学 甜高粱蔗糖合成酶基因的表达检测方法及扩增引物
WO2019161634A1 (zh) * 2018-07-19 2019-08-29 邦泰生物工程(深圳)有限公司 莱苞迪甙a的制备方法、莱苞迪甙a制备用酶及应用
CN111344399B (zh) * 2018-11-16 2023-03-03 邦泰生物工程(深圳)有限公司 一种udp-葡萄糖基转移酶突变体、其应用及其制备莱鲍迪苷d的方法
KR102303415B1 (ko) * 2019-06-14 2021-09-23 씨제이제일제당 (주) 감미 소재 조성물 및 이의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469947B2 (en) 1999-06-29 2002-10-22 Hyundai Electronics Co., Ltd. Semiconductor memory device having regions with independent word lines alternately selected for refresh operation
KR20040026747A (ko) 2002-09-26 2004-04-01 바이오스펙트럼 주식회사 미생물을 이용한 리보디오사이드 에이의 제조방법
US20100099857A1 (en) * 2007-01-22 2010-04-22 Cargill, Incorporated Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization
US7884265B2 (en) * 2005-03-04 2011-02-08 Toyoshige Morita High Rebaudioside-A plant
US20110087011A1 (en) * 2008-05-13 2011-04-14 Cargill, Incorporated Separation of rebaudioside a from stevia glycosides using chromatography
KR20110115699A (ko) * 2010-04-16 2011-10-24 씨제이제일제당 (주) 레바우디오사이드 a의 생산 공정에서 발생하는 부산물을 재활용하여 고수득율의 레바우디오사이드 a를 제조하는 방법
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219571A (en) * 1978-06-15 1980-08-26 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for producing a sweetener
JPS58149697A (ja) * 1982-02-27 1983-09-06 Dainippon Ink & Chem Inc β−1,3グリコシルステビオシドの製造方法
JPH11290075A (ja) * 1998-02-26 1999-10-26 Univ Kyoto 組み換えミュータントシュクロース合成酵素によるシュクロースからのセルロースの合成
JP2000245279A (ja) * 1999-03-01 2000-09-12 Mitsui Chemicals Inc 植物の耐冷性の増強方法
FR2887253A1 (fr) 2005-06-20 2006-12-22 Phosphoenix Sarl Nouvelles arylphosphines p chirales ortho-fonctionnalisees et derives: leur preparation et utilisation en catalyse asymetrique
JP2007330112A (ja) * 2006-06-12 2007-12-27 Sanei Gen Ffi Inc フェノール性化合物のグルコース配糖体の製造方法
BR112014003037B1 (pt) * 2011-08-08 2022-04-05 Evolva Sa Hospedeiro recombinante e método para produzir um glicosídeo de esteviol
CN102766667B (zh) * 2012-08-14 2014-06-11 成都南诺格生物科技有限责任公司 甜菊苷转化为莱鲍迪苷e的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469947B2 (en) 1999-06-29 2002-10-22 Hyundai Electronics Co., Ltd. Semiconductor memory device having regions with independent word lines alternately selected for refresh operation
KR20040026747A (ko) 2002-09-26 2004-04-01 바이오스펙트럼 주식회사 미생물을 이용한 리보디오사이드 에이의 제조방법
US7884265B2 (en) * 2005-03-04 2011-02-08 Toyoshige Morita High Rebaudioside-A plant
US20100099857A1 (en) * 2007-01-22 2010-04-22 Cargill, Incorporated Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization
US20110087011A1 (en) * 2008-05-13 2011-04-14 Cargill, Incorporated Separation of rebaudioside a from stevia glycosides using chromatography
KR20110115699A (ko) * 2010-04-16 2011-10-24 씨제이제일제당 (주) 레바우디오사이드 a의 생산 공정에서 발생하는 부산물을 재활용하여 고수득율의 레바우디오사이드 a를 제조하는 방법
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941174B2 (en) 2014-05-05 2021-03-09 Conagen Inc. Non-caloric sweetener
JP2018511335A (ja) * 2015-04-14 2018-04-26 コナゲン インコーポレイテッド 改変された全細胞触媒を用いたノンカロリー甘味料の生成
CN111593062A (zh) * 2020-05-25 2020-08-28 安徽金禾实业股份有限公司 一种利用枯草芽孢杆菌发酵催化制备莱鲍迪苷a的方法
CN111621456A (zh) * 2020-05-25 2020-09-04 安徽金禾实业股份有限公司 一种液态发酵制备莱鲍迪苷a的方法
EP4170025A1 (en) 2021-10-19 2023-04-26 CJ Cheiljedang Corporation Novel uridine diphosphate glycosyltransferase and use thereof
WO2023068722A1 (ko) 2021-10-19 2023-04-27 씨제이제일제당 (주) 리바우디오사이드 d 및 리바우디오사이드 m을 제조하는 방법

Also Published As

Publication number Publication date
EP2963122A1 (en) 2016-01-06
KR101404728B1 (ko) 2014-06-09
US20160010133A1 (en) 2016-01-14
JP2017148050A (ja) 2017-08-31
CN105164270A (zh) 2015-12-16
JP2016508378A (ja) 2016-03-22
EP2963122A4 (en) 2016-10-12
JP6147370B2 (ja) 2017-06-21
EP2963122B1 (en) 2018-05-30
CN105164270B8 (zh) 2019-12-06
ES2674480T3 (es) 2018-07-02
CN105164270B (zh) 2019-07-09
US10472660B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2014133248A1 (ko) 스테비오사이드로부터 리바우디오사이드 a를 제조하는 방법
WO2014196811A1 (ko) 타가토스의 제조방법
WO2018182345A1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
WO2011049418A2 (ko) 테라박터 속 유래의 신규한 진세노시드 글리코시다제 및 이의 용도
WO2018021896A1 (ko) D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
WO2023068472A1 (ko) 신규한 당전이효소 및 이의 용도
WO2015199387A2 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
CN110699373A (zh) 尿苷二磷酸葡萄糖高产菌株及其应用
US11976312B2 (en) Enzymatic method for preparing Rebaudioside C
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2023121427A1 (ko) 당전이 효소 변이체 및 이를 이용한 스테비올 배당체의 제조방법
WO2013157887A1 (ko) 카우린, 카우린산 또는 스테비올 생성능을 가지는 재조합 미생물 및 이를 이용한 카우린, 카우린산 또는 스테비올의 제조 방법
WO2017164616A1 (en) Methods for preparing 3'-amino-2',3'-dideoxyguanosine by using nucleoside phosphorylases derived from bacillus and adenosine deaminase derived from lactococcus
WO2022139522A1 (ko) 당전이 효소 및 이를 이용한 스테비올 배당체의 제조방법
WO2018093196A1 (ko) 변형 류코노스톡속 균주를 이용한 스테비오사이드 배당체의 합성 방법 및 이에 의하여 제조된 신규한 스테비오사이드 배당체
WO2015046848A1 (ko) 싸이클로덱스트린 글루카노트랜스퍼라제 돌연변이 효소 및 이를 이용한 l-아스코르빈산 유도체의 제조방법
WO2023068722A1 (ko) 리바우디오사이드 d 및 리바우디오사이드 m을 제조하는 방법
WO2019083309A2 (ko) 아스로박터 속 미생물을 이용하여 과당전이 스테비올 배당체를 제조하는 방법
WO2018012644A1 (ko) 스테비올 배당체 생산용 재조합 미생물
WO2017164615A1 (en) Method for preparing 3'-amino-2',3'-dideoxyadenosine by using nucleoside phosphorylase derived from bacillus
WO2022114632A1 (ko) 포도당 전이 스테비아를 포함하는 감미질이 개선된 조성물
JP7210626B2 (ja) 酵素的方法を使用してレバウディオサイドjを調製するための方法
Mariño et al. Facile synthesis of benzyl β-D-galactofuranoside. A convenient intermediate for the synthesis of D-galactofuranose-containing molecules
WO2020251228A1 (ko) 포도당 전이 효소를 포함하는 포도당 전이 스테비올 배당체 생산용 조성물 및 이를 이용한 포도당 전이 스테비올 배당체 제조방법
WO2021086080A1 (ko) 말토테트라오스 함유 당류의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073982.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14770962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013876125

Country of ref document: EP