WO2014129603A1 - 接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに電線 - Google Patents

接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに電線 Download PDF

Info

Publication number
WO2014129603A1
WO2014129603A1 PCT/JP2014/054237 JP2014054237W WO2014129603A1 WO 2014129603 A1 WO2014129603 A1 WO 2014129603A1 JP 2014054237 W JP2014054237 W JP 2014054237W WO 2014129603 A1 WO2014129603 A1 WO 2014129603A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
connection structure
wire
adhesive
conductor
Prior art date
Application number
PCT/JP2014/054237
Other languages
English (en)
French (fr)
Inventor
田中 義和
郁 北川
幸大 川村
昭頼 橘
賢悟 水戸瀬
京太 須齋
孝雄 館山
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to CN201480001218.7A priority Critical patent/CN104321931B/zh
Priority to JP2014511669A priority patent/JP5657179B1/ja
Publication of WO2014129603A1 publication Critical patent/WO2014129603A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • H01R4/203Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve having an uneven wire-receiving surface to improve the contact
    • H01R4/206Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve having an uneven wire-receiving surface to improve the contact with transversal grooves or threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5216Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending

Definitions

  • the present invention is, for example, a connection structure, a connector, and a method for manufacturing the connection structure as used for a connector of an automobile wire harness,
  • the present invention relates to a wire connection structure and an electric wire.
  • An electrical equipment equipped in an automobile or the like constitutes an electrical circuit by being connected to another electrical equipment or a power supply device via a wire harness in which covered electric wires are bundled.
  • the wire harness and the electrical equipment and the power supply device are connected to each other by connectors attached thereto.
  • These connectors have a configuration in which a crimp terminal connected by crimping to a covered electric wire is mounted inside, and a female connector and a male connector that are connected corresponding to the unevenness are fitted.
  • the crimp terminal described in Patent Document 1 is a crimp terminal including a conductor crimping portion that crimps a conductor of an electric wire, and a wire connection portion that is configured by a covering enclosure portion that surrounds an insulating coating of the electric wire. Serrations are provided in a direction intersecting the longitudinal direction of the electric wire, and the boundary between the covering surrounding portion and the insulating coating is made uneven. Thereby, the crimp terminal of Patent Document 1 is supposed to complicate a moisture intrusion path and prevent moisture from entering from the insulating coating side.
  • the crimp terminal as in Patent Document 1 has a configuration in which a serration having a concave shape is simply provided on the covering surrounding portion. Therefore, if the covering surrounding portion is not securely crimped, the water stoppage due to the serration is more reliably ensured. There is a problem that you can not.
  • the present invention provides a connection structure, a connector, and a method for manufacturing a connection structure that can reliably prevent moisture from entering from the insulating coating side and can improve durability against thermal cycling.
  • the purpose is to provide.
  • a covering surrounding portion surrounding a vicinity of a leading end of the insulating coating in a coated electric wire whose outer periphery is coated with an insulating insulating coating, and a predetermined length in a longitudinal direction of the coated electric wire from the leading end of the insulating coating.
  • the covered wire and the crimp terminal are formed by the wire connection portion in the crimp terminal including the wire connection portion having a hollow cross section formed integrally with the conductor crimp portion to crimp and crimp the exposed wire conductor.
  • the crimp terminal is a closed barrel type terminal having an electric wire connection part having a hollow cross section, and a connection terminal having a connection part that allows connection with the connection part of the other terminal of the pair of terminals, or electric wire connection Including a terminal composed of only a portion.
  • the resin material is not limited to an organic resin material such as a synthetic resin or rubber, and can be composed of an inorganic resin material, and specifically, grease or an adhesive.
  • the interposition of the resin material between the coated surrounding portion and the insulating coating in the coated electric wire means that the resin material is applied to the insulating coating in the coated electric wire, the resin material is applied to the coated surrounding portion, or the coated surrounding portion. It is a concept including injecting a resin material between the insulating coating in the covered electric wire.
  • the resin material prevents the intrusion of moisture from the end on the insulation coating side of the crimp terminal into the inside of the coating enclosure by adhering between the coating enclosure and the insulation coating of the coated wire. it can.
  • a resin material it is possible to reliably close the gap between the covered enclosure portion and the insulation coating of the covered electric wire for a long period of time, and thus more reliably prevent moisture from entering from the insulation coating side.
  • the durability against thermal cycling can be improved.
  • the resin material can be provided in the insulating coating in the covered electric wire.
  • the above-mentioned provision is not only provided by dripping, spraying, and applying a liquid resin material to a predetermined portion of the covered electric wire, but also by immersing the predetermined portion of the covered electric wire in a liquid resin material basket. It is a concept that includes printing a resin material or sticking a seal-like resin material to a predetermined portion of a covered electric wire.
  • the resin material can be interposed between the covered enclosure portion and the insulation coating of the covered wire simply by inserting the covered wire into the wire connection portion. it can.
  • a resin material can be easily interposed.
  • the electric wire conductor is configured by bundling a plurality of strands, and the resin material has a viscosity that does not penetrate between the plurality of strands. it can. According to the present invention, it is possible to prevent an adverse effect such as a decrease in conductivity of the electric wire conductor formed by bundling the strands by allowing the resin material to permeate between the plurality of strands.
  • the resin material can be formed of a curable synthetic resin material and cured in a state of being interposed between the coating surrounding portion and the insulating coating.
  • the resin material is formed of a curable synthetic resin material, it can be easily and reliably cured by various external factors such as heat, ultraviolet rays, and moisture. .
  • the resin material when the resin material is cured by heat curing, ultraviolet curing, or moisture curing, the resin material does not unexpectedly soften due to external factors such as heat, ultraviolet radiation, or moisture. It can prevent that the water-stopping property of a body falls.
  • connection structure can ensure a stable water-stopping property for a long period even under a severe use environment such as an automobile.
  • connection structure has an end on the insulating coating side in the electric wire connecting portion. It is possible to prevent the covered electric wire from being excessively bent.
  • connection structure prevents the insulating coating from coming into contact with the end of the electric wire connecting portion and is damaged, and the resin material interposed between the covering surrounding portion and the insulating coating is easy. Can be prevented from peeling off.
  • connection structure includes the resin material formed of a curable synthetic resin material, thereby preventing a decrease in water stoppage due to external factors such as moisture, temperature fluctuation, vibration, and aging of the insulation coating. It is possible to ensure stable water-stopping and electrical conductivity over a longer period of time.
  • the synthetic resin material is, for example, a resin that is cured by a chemical reaction induced by an external factor such as heat, ultraviolet light, or external force, or by a chemical reaction with an external factor such as a curing agent or moisture ( (Chemically reactive curable resin).
  • Examples of the chemically reactive curable resin include a thermosetting resin, a thermoplastic resin, an ultraviolet (UV) curable resin, a curing agent mixed resin, a moisture curable resin, an anaerobic curable resin, or an additive that is cured by pressure.
  • a pressure curable resin can be mentioned.
  • thermosetting resin examples include phenol resin, epoxy resin, melamine resin, urea resin (urea resin), unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide.
  • thermoplastic resin examples include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, ABS resin (acrylonitrile butadiene styrene resin), AS resin, and acrylic resin (PMMA).
  • UV curable resin examples include a radical type mainly composed of acrylate and unsaturated polyester, or a cation type mainly composed of epoxy, oxetane and vinyl ether.
  • a polyfunctional silicone oligomer which is a main component contains a photopolymerization initiator. Is in an excited state to generate radicals for polymerizing the silicone oligomer.
  • the curing agent mixed resin include a resin that cures by mixing two liquids of the present agent such as an epoxy resin and a curing agent.
  • the moisture curable resin is a resin that is cured by reacting with moisture in the air in the presence of a catalyst, and examples thereof include a moisture curable silicone resin and a moisture curable urethane-based adhesive resin.
  • An anaerobic curable resin is a resin that cures when air is blocked by a metal part, and examples thereof include an acrylate type (acrylic resin type).
  • the resin material may be provided in a step between the end face of the covering surrounding portion and the outer peripheral surface of the insulating coating in the covered electric wire.
  • the step between the end face of the covered surrounding portion and the outer peripheral surface of the insulating coating in the covered electric wire constitutes an inlet of the covered electric wire with respect to the electric wire connecting portion, and the covered electric wire is inserted into the inlet,
  • crimping the crimp terminal it means a step formed over the entire circumference of the end surface of the covered enclosure portion between the end surface of the covered enclosure portion and the outer peripheral surface of the insulating coating in the covered electric wire.
  • the configuration provided for the above-described step means that the coating is applied so as to straddle the end surface of the covering surrounding portion that forms the step and the outer peripheral surface of the insulating coating.
  • the resin material is not limited to the step between the end face of the covering surrounding portion and the outer peripheral surface of the insulating coating in the covered electric wire, the entire outer periphery of the electric wire connecting portion, the distal end side in the longitudinal direction of the electric wire connecting portion, etc.
  • the connection portion between the electric wire connecting portion and the insulating coating at least a step between the end surface of the covering surrounding portion and the outer peripheral surface of the insulating coating can be provided.
  • the intrusion of moisture can be prevented by the resin material applied over the entire circumference of the end face of the covered enclosure portion. It can prevent more reliably.
  • the resin material provided in the step can be applied so as to straddle the outer peripheral surface on the end side of the covering surrounding portion. According to the above-described configuration, it is possible to reliably ensure water-stopping between the covering surrounding portion and the insulating coating.
  • the outer periphery of the insulating coating from the outer peripheral surface on the end side of the coated surrounding portion in the vicinity of a step between the end surface of the coated surrounding portion and the outer peripheral surface of the insulating coating in the coated electric wire. Since the resin material can be formed continuously over the surface, the resin material can be brought into close contact with at least the outer peripheral surface on the end portion side of the covering surrounding portion and the outer peripheral surface of the insulating coating.
  • the electric wire connecting portion and the insulating coating are connected by pressure bonding, moisture may be temporarily interposed between the covering surrounding portion and the insulating coating due to a change in inner and outer diameters of the covering surrounding portion, an outer diameter change of the insulating coating, or the like. Even if the intrusion path is formed, the resin material can prevent moisture from entering from the end side of the covering surrounding portion.
  • the resin material provided in the step can prevent moisture from entering from the end side of the covering surrounding portion into the covering surrounding portion.
  • connection structure can ensure stable water-stopping for a long period of time, stable conductivity can be ensured.
  • connection structure when the connection structure is exposed to the outside air for a long period of time, corrosion of the wire connection portion or deterioration of the insulation coating may occur at the connection portion between the wire connection portion and the insulation coating. For this reason, there exists a possibility that a clearance gap may arise between an electric wire connection part and insulation coating, and water stop may fall.
  • connection structure has a covering surrounding portion and an insulating covering at a boundary portion between the insulating covering and the end portion of the covering surrounding portion. Can be prevented from coming into direct contact with outside air.
  • connection structure is formed in the boundary between the insulating coating and the end of the covering enclosure, and the covering enclosure and the insulating coating are exposed to the outside air over a long period of time. Can be prevented by the resin material. Thereby, the connection structure can ensure the stable water stop and electroconductivity over a long period of time.
  • the resin material can be interposed over the entire circumference of the covered electric wire.
  • the water stoppage can be improved by interposing the resin material between the coated surrounding portion and the insulating coating over the entire circumference of the covered electric wire.
  • the connection structure can be connected to the end of the coated enclosure portion without crimping the coated enclosure portion against the insulation coating. It is possible to reliably prevent moisture from entering from the part side.
  • connection structure can easily improve the water-stopping property between the covering surrounding portion and the insulating coating, and can secure more stable conductivity.
  • the resin material is configured in a capsule shape in which an adhesive component is enclosed in a capsule, and the capsule surrounding portion and the coating are formed by crushing the capsule when the coated envelope portion is crimped. It can be comprised with the capsule-like adhesive agent which adhere
  • the capsule adhesive can be composed of microcapsules in which an adhesive component is encapsulated.
  • the capsule adhesive capsule when the coated surrounding portion is pressure-bonded, the capsule adhesive capsule is simultaneously disposed in the coated surrounding portion, and the capsule is crushed to bond the coated surrounding portion and the insulating coating on the covered electric wire. be able to.
  • the adhesive component of the capsule adhesive does not leak out of the capsule before the covering surrounding portion is crimped, and the adhesive component is prevented from adhering to an unexpected part such as a wire conductor. be able to.
  • the capsule of the capsule adhesive can be crushed at the same time when the covering surrounding portion is pressure-bonded, the working efficiency can be improved.
  • the conductor crimping portion can be provided with a sealing portion that extends toward the distal end side in the longitudinal direction and seals the distal end in the longitudinal direction.
  • the crimp terminal can prevent moisture from entering the conductor crimping portion from the opening in the longitudinal direction of the conductor crimping portion (conductor exposed portion side). Furthermore, the connection structure can make the inside of the conductor crimping part in a crimped state hermetically sealed by the sealing part and the above-described resin material provided between the covering surrounding part and the insulating coating.
  • connection structure can secure a certain water stop and secure more stable conductivity by sealing the inside of the conductor crimping portion in the crimped state.
  • the electric wire conductor can be made of an aluminum material, and at least the electric wire connection portion can be made of a copper material. According to this invention, it is possible to reduce the weight as compared with a covered electric wire having a wire conductor made of copper wire, and to prevent so-called dissimilar metal corrosion (hereinafter referred to as “electrolytic corrosion”) due to the above-described reliable water stoppage.
  • the electrolytic corrosion is a phenomenon in which, when moisture adheres to a site where a noble metal and a base metal are in contact, a corrosion current is generated, and the base metal is corroded, dissolved, or lost.
  • the conductor part made of an aluminum-based material that is crimped to the wire connection part of the crimp terminal is corroded, dissolved, or lost, and eventually the electrical resistance increases.
  • so-called galvanic corrosion can be prevented by reducing the weight as compared with the covered electric wire having a conductor portion made of a copper-based material due to the above-described reliable water-stopping property.
  • the present invention is a connector in which the crimp terminal in the connection structure described above is disposed in a connector housing. According to this invention, it is possible to connect the crimp terminal while ensuring stable conductivity.
  • the crimping of each connector is ensured while maintaining water-stopping properties.
  • the terminals can be connected to each other. Therefore, the connector can ensure a connection state having reliable conductivity.
  • the present invention provides a coated enclosure portion that crimps and crimps the vicinity of the distal end of the insulating coating in the coated electric wire whose outer periphery is coated with an insulating insulating coating, and the coated electric wire from the distal end of the insulating coating.
  • the wire connection portion in the crimp terminal provided with the wire connection portion having a hollow cross-section formed by crimping the wire conductor exposed by a predetermined length in the longitudinal direction of the wire, the covered wire And the crimp terminal are crimped and connected to each other, and after a resin material is interposed between the sheath portion and the insulation coating of the sheathed wire, the sheathed wire and the crimp terminal are connected.
  • the terminal is connected by crimping.
  • the covering enclosure portion and the insulating coating in the coated electric wire can be reliably bonded.
  • adhering the resin material between the coated enclosure portion and the insulation coating of the coated electric wire it is possible to prevent moisture from entering the inside of the coated enclosure portion from the end portion on the insulation coating side of the crimp terminal.
  • a resin material it is possible to reliably close the gap between the covered enclosure portion and the insulation coating of the covered electric wire for a long period of time, and thus more reliably prevent moisture from entering from the insulation coating side. Can do.
  • the tip of the covered electric wire is connected to the wire connecting portion.
  • the resin material can be interposed between the covered surrounding portion and the insulating coating in the covered electric wire.
  • the resin material By applying a resin material, compared to the case where the tip of the covered electric wire is inserted between the inner peripheral surface of the covered surrounding portion and the outer peripheral surface of the insulating coating, the resin material, It is possible to smoothly and reliably interpose between the inner peripheral surface of the covering surrounding portion and the outer peripheral surface of the insulating coating.
  • the resin material is obtained from an interval between an inner peripheral surface of the covered surrounding portion and an outer peripheral surface of the covered electric wire in a state where a tip of the covered electric wire is inserted into the covered surrounding portion.
  • the tip of the covered electric wire can be applied to the outer peripheral surface of the covered electric wire before being inserted into the covered surrounding portion so as to be thicker.
  • the resin material is applied to the outer peripheral surface of the covered electric wire so as to be thicker than the interval between the inner peripheral surface of the covered surrounding portion and the outer peripheral surface of the covered electric wire.
  • the resin material applied to the outer peripheral surface of the covered electric wire is surely spread between the inner peripheral surface of the covered electric wire and the outer peripheral surface of the covered electric wire when the tip is inserted into the inner portion of the covered electric wire. Can be made. Further, when the tip of the covered electric wire is inserted into the inside of the covered surrounding portion, a part of the resin material comes into contact with the end face of the covered surrounding portion, so that sufficient resin material is transferred to the end of the covered surrounding portion. Therefore, the gap between the inner peripheral surface of the covered enclosure portion and the outer peripheral surface of the covered electric wire can be reliably closed.
  • the resin material is thicker than the interval between the inner peripheral surface of the covered surrounding portion and the outer peripheral surface of the covered electric wire in a state where the tip of the covered electric wire is inserted into the covered surrounding portion.
  • the tip of the covered electric wire is inserted into the inside of the electric wire connecting portion, and in this state, the crimped connection between the covered electric wire and the crimp terminal is performed on the electric wire conductor.
  • the conductor crimping portion may be crimped and crimped, and in addition to crimping the conductor crimping portion against the wire conductor, the sheathing surrounding portion may also be crimped against the insulating coating. May be crimped.
  • the resin material is preferably provided over the entire circumference of the covered wire between the covered surrounding portion and the covered electric wire when the covered surrounding portion is not crimped to the covered electric wire.
  • the resin material is inserted between the inner peripheral surface of the covered surrounding portion and the outer peripheral surface of the covered electric wire in a state where the tip of the covered electric wire is inserted inside the covered surrounding portion.
  • the coated wire and the crimp terminal are crimped and connected to the outer peripheral surface of the coated wire so as to be thinner, the insulation coating in the coated wire inserted into the wire connection portion is used.
  • the covering surrounding portion can be crimped by crimping.
  • the connection structure can be reduced in weight and the material cost of the resin material can be reduced.
  • the resin material is applied to the outer peripheral surface of the covered electric wire so as to be thinner than between the inner peripheral surface of the covered surrounding portion and the outer peripheral surface of the covered electric wire. Also, when crimping and connecting the coated electric wire and the crimp terminal, the outer peripheral surface of the insulating coating and the inner peripheral surface of the coated peripheral portion are crimped by crimping the coated surrounding portion against the insulating coating. With the resin material interposed therebetween, the covered electric wire and the crimp terminal can be crimped and connected without a gap.
  • the wire conductor is exposed from the tip of the insulating coating, and the coated electric wire and the crimp terminal are connected by crimping. can do.
  • the said resin material can be set as the structure apply
  • the predetermined range may be greater than or equal to the range where the wire conductor is exposed and less than or equal to the range where the crimp terminal is crimped.
  • the resin material is applied to the insulating coating in the coated electric wire, and then the electric wire conductor is exposed from the tip of the insulating coating, so that the insulating coating in the portion where the electric wire conductor is exposed is removed together with the resin material. Can do. For this reason, it is possible to interpose the resin material between the sheath portion and the tip of the insulation coating remaining on the coated wire, that is, to the boundary between the exposed wire conductor and the insulation coating.
  • the resin material can be applied over a wide range within a necessary range, so that the adhesive force is improved and the intrusion of moisture from the insulating coating side can be more reliably prevented. Furthermore, since the resin material can be easily removed at the portion where the wire conductor is exposed, and the resin material can be prevented from adhering to the wire conductor, stable conductivity can be ensured.
  • the structure can be set as the structure apply
  • the front end portion of the covered electric wire can be in a predetermined range in the longitudinal direction of the covered electric wire from the front end of the insulating coating in the covered electric wire before exposing the electric wire conductor.
  • the predetermined range may be greater than or equal to the range where the wire conductor is exposed and less than or equal to the range where the crimp terminal is crimped.
  • the resin material can be easily applied to the necessary range of the insulation coating simply by immersing the tip end portion of the covered electric wire in the resin material made of liquid, work efficiency can be improved. Furthermore, by immersing the tip of the covered wire in a resin material made of liquid, the resin material can be applied evenly in the required range of the insulation coating, improving the adhesive force, Intrusion of moisture can be prevented more reliably.
  • the resin material when the wire conductor is exposed from the tip of the insulation coating, the resin material is applied to the insulation coating in the covered wire, and then the covered wire and the crimp terminal are connected by crimping. It can be set as the structure to do. According to the present invention, it is possible to prevent an adverse effect such as a decrease in conductivity of the electric wire conductor formed by bundling the strands by allowing the resin material to permeate between the plurality of strands.
  • the present invention is an electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on an outer periphery of the core wire and a tubular terminal made of a conductor are pressure-bonded, and the conductor insulating layer and the tubular The terminal is joined through a resin material.
  • the terminal may be made of copper or a copper alloy, and the conductor of the electric wire may be made of aluminum or an aluminum alloy.
  • the resin material may be hardened in a grease or a joined state, and may be made of a fluid adhesive before hardening.
  • the tubular terminal has a joint where conductors are joined, the conductor in the joint is thicker than the portion other than the joint, and the resin material is disposed inside the joint. It is good.
  • the conductor insulating layer may include a layer made of a halogen-free resin composition.
  • the conductor insulating layer may include a layer made of polyvinyl chloride resin.
  • the terminal of the present invention is characterized in that it has a tubular crimping portion to be joined by being crimped together with an electric wire, and a resin material is disposed in the crimping portion.
  • the resin material may be arranged in an annular shape along the inner peripheral surface of the planned crimping portion at least in the axial direction of the planned crimping portion.
  • the resin material may be configured to have flexibility after curing.
  • the resin material may be made of a material having thermoplasticity.
  • the present invention is an electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire and a tubular terminal are pressure-bonded, and the conductor insulating layer has an outermost layer. It has two or more coating layers which are layers made of a resin material.
  • the resin material is cured in a grease or bonded state, and may be configured by an adhesive having fluidity before curing.
  • the resin material may have flexibility after curing.
  • the tubular terminal may be made of copper or a copper alloy, and the conductor of the electric wire may be made of aluminum or an aluminum alloy.
  • the conductor insulating layer may include a layer made of a halogen-free resin composition.
  • the conductor insulating layer may include a layer made of polyvinyl chloride resin.
  • the present invention is an electric wire having a core wire and a conductor insulating layer formed on an outer periphery of the core wire, and the conductor insulating layer is a coating of two or more layers, the outermost layer being a layer made of a resin material It has a layer.
  • the coating layer may be partially formed in the axial direction.
  • connection structure a connector, and a method for manufacturing a connection structure that can reliably prevent moisture from entering from the insulating coating side and can improve durability against thermal cycling.
  • the external appearance perspective view which shows the external appearance from the upper direction in a covered electric wire and a crimp terminal.
  • Explanatory drawing explaining the welding in a barrel part Explanatory drawing explaining the crimping
  • Sectional drawing which shows the cross-sectional shape of a connection structure.
  • the perspective view which shows the connection corresponding state of a female connector and a male connector.
  • Explanatory drawing explaining another cross-sectional shape in a connection structure Explanatory drawing explaining another cross-sectional shape in a connection structure.
  • FIG. 1 It is sectional drawing of a tubular terminal, (A) is principal part sectional drawing in a longitudinal direction, (B) is a cross-sectional view in a cylinder part. It is explanatory drawing of the crimping process with respect to a tubular terminal. It is a figure which shows the structure of an electric wire connection structure, (A) is a perspective view, (B) is sectional drawing which shows the longitudinal direction cross section of a tubular crimping part. It is a cross-sectional view which shows the radial direction cross section of a tubular crimping part. It is explanatory drawing which shows the manufacturing method of a tubular terminal. It is explanatory drawing which shows the manufacturing method of a tubular terminal.
  • FIGS. 1 and 2 show an external perspective view of the covered electric wire 200 and the crimp terminal 100 from above, and FIG. 2 shows an explanatory view for explaining the welding in the barrel portion 130.
  • an arrow X indicates the longitudinal direction (hereinafter referred to as “longitudinal direction X”)
  • an arrow Y indicates the width direction (hereinafter referred to as “width direction Y”).
  • a box part 110 side left side in the figure
  • a covered electric wire 200 side right side in the figure
  • FIG. 2B is an enlarged Z portion in FIG. 2A. The figure is shown.
  • the covered electric wire 200 is configured by covering an aluminum core wire 201 in which aluminum strands 201a are bundled with an insulating coating 202 made of an insulating resin. Specifically, the aluminum core wire 201 is formed by twisting an aluminum alloy wire so that the cross section becomes, for example, 0.75 mm 2 . Furthermore, the covered electric wire 200 exposes the aluminum core wire 201 having a predetermined length from the tip of the insulating coating 202.
  • the covered electric wire 200 may be not only the aluminum core wire 201 that constitutes aluminum or an aluminum alloy, but may also be a copper-based core wire that is constituted by copper or a copper alloy, and the aluminum core wire 201 has a cross section of only 0.75 mm 2. Not limited to.
  • the crimp terminal 100 is a female terminal and has a box portion 110 that allows insertion of a male tab of a male terminal (not shown) from the front to the rear in the longitudinal direction X, and a predetermined length at the rear of the box portion 110.
  • the barrel portion 130 disposed via the transition portion 120 is integrally formed.
  • This crimp terminal 100 is formed by punching a copper alloy strip (not shown) such as brass whose surface is tin-plated (Sn-plated) into a planarly expanded terminal shape, and then rearwardly viewing the box portion 110 of the hollow rectangular column body.
  • a copper alloy strip such as brass whose surface is tin-plated (Sn-plated) into a planarly expanded terminal shape, and then rearwardly viewing the box portion 110 of the hollow rectangular column body.
  • This is a closed barrel type terminal which is formed by bending a three-dimensional terminal shape including a substantially O-shaped barrel portion 130 and welding the barrel portion 130.
  • the box portion 110 is formed by bending one of the side surface portions 112 continuously provided on both side portions in the width direction Y orthogonal to the longitudinal direction X of the bottom surface portion 111 so as to overlap the other end portion. It is composed of a hollow quadrangular prism body that is in a substantially rectangular inverted shape as viewed from above.
  • an insertion tab of a male terminal is formed inside the box portion 110 by extending the front side in the longitudinal direction X of the bottom surface portion 111 and bending it toward the rear in the longitudinal direction X.
  • the elastic contact piece 113 (refer FIG. 3) which contacts (omission) is provided.
  • the barrel portion 130 is configured integrally with a covering surrounding portion 131 (covering pressure-bonding portion 131) for pressure-bonding the insulating coating 202 and a conductor pressure-bonding portion 132 for pressure-bonding the exposed aluminum core wire 201.
  • the sealing portion 133 is deformed so that the portion is crushed into a substantially flat plate shape.
  • the barrel portion 130 is formed by rounding the barrel portion 130 in a copper alloy strip punched into a terminal shape to a size that surrounds the outer periphery of the covered electric wire 200, and butting the rounded end portions 130 a to each other. It welds along the welding part W1 of the direction X, and is formed in the back view substantially O type. In other words, the barrel part 130 forms the cross-sectional shape in the width direction Y and the height direction into a closed cross-sectional shape.
  • the sealing portion 133 of the barrel portion 130 forms a planar shape by superposing the front end in the longitudinal direction X of the barrel portion 130 in a planar shape, and is closed in the longitudinal direction. It is welded and sealed along the welding point W2 in the width direction Y at an intermediate position of X. That is, the barrel part 130 is formed in a substantially cylindrical shape having a front end in the longitudinal direction X and an end part 130 a which are welded and closed, and an opening is provided in the rear in the longitudinal direction X.
  • FIGS. 3 and 4 the step of inserting the covered electric wire 200 into the barrel portion 130 of the crimp terminal 100 having such a configuration, crimping the crimp portion by crimping the barrel portion 130, and the connection structure 1 after the crimping are illustrated in FIGS. 3 and 4. Will be described in detail.
  • FIG. 3 shows an explanatory view for explaining the crimping process in the section taken along the line AA in FIG. 1
  • FIG. 4 shows a sectional view of the sectional shape of the connection structure 1.
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3B is a process of crimping the crimping terminal 100 into which the covered electric wire 200 is inserted by crimping with the crimping tool 10.
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3B is a process of crimping the crimping terminal 100 into which the covered electric wire 200 is inserted by crimping with the crimping tool 10.
  • an adhesive 134 is applied in advance to the covering surrounding part 131 in the barrel part 130 of the crimp terminal 100.
  • the adhesive 134 is made of, for example, an epoxy resin as a thermosetting resin.
  • the adhesive 134 may be applied to the covering surrounding portion 131 when the crimp terminal 100 is manufactured, or may be applied to the covering surrounding portion 131 immediately before the crimping.
  • the adhesive 134 is preferably applied with a uniform thickness along the inner peripheral surface of the covering surrounding portion 131.
  • the adhesive 134 is applied to the inner peripheral surface of the covered surrounding portion 131 so as to correspond to the entire area of the covered electric wire 200 to be crimped, the entire area can be bonded.
  • the present invention is not limited to this, and the adhesive 134 may be applied to the inner peripheral surface of the covering surrounding portion 131 so as to correspond to a region narrower in the longitudinal direction X than the region to be crimped in the covered electric wire 200.
  • the covered electric wire 200 with the aluminum core wire 201 exposed is inserted into the barrel portion 130 of the crimp terminal 100 described above from the rear.
  • the exposed aluminum core wire 201 is inserted so as to be disposed in the conductor crimping portion 132 as shown in FIG.
  • the crimping terminal 100 into which the covered electric wire 200 is inserted is crimped so as to be sandwiched by a set of crimping tools 10 composed of an anvil and a crimper.
  • This set of crimping tools 10 includes a first crimping die 11 serving as an anvil and a second crimping die 12 serving as a crimper, as shown in FIG. Furthermore, the inner surface shape of the crimping tool 10 is formed in a shape corresponding to the outer surface shape of the covering surrounding portion 131 and the conductor crimping portion 132 after the crimping.
  • connection structure 1 The conductor crimping part 132 into which the covered electric wire 200 is inserted and the sheathing surrounding part 131 are crimped so as to be sandwiched between the pair of crimping tools 10 as described above, and the aluminum core wire 201 and the insulating coating 202 are crimped to connect the connection structure 1.
  • connection structure 1 the conductor crimping part 132 and the aluminum core wire 201 are crimped and connected to be conductive by crimping the conductor crimping part 132 with the crimping tool 10. ing. Furthermore, the covering surrounding part 131 and the insulating coating 202 are crimped and connected by crimping the covering surrounding part 131 with the crimping tool 10.
  • the covering surrounding part 131 and the insulating covering 202 are bonded by crimping the covering surrounding part 131. Glue.
  • connection structure 1 is configured in which the barrel portion 130 of the crimp terminal 100 is crimped and the covered electric wire 200 is crimped and connected, and the electrical conductivity between the aluminum core wire 201 and the crimp terminal 100 is ensured.
  • FIG. 5 is a perspective view of the connection state of the female connector 21 and the male connector 31.
  • the male connector 31 is indicated by a two-dot chain line.
  • the female connector housing 22 has a plurality of cavities in which the crimp terminal 100 can be mounted along the longitudinal direction X, and is formed in a box shape having a substantially rectangular cross section in the width direction Y and the height direction. ing.
  • a plurality of connection structures 1 composed of the above-described crimp terminals 100 are mounted along the longitudinal direction X with respect to the inside of the female connector housing 22 to constitute a wire harness 20 including the female connector 21. To do.
  • the male connector housing 32 corresponding to the female connector housing 22 has a plurality of cavities to which crimp terminals can be attached, and is in the width direction Y and the height direction.
  • the cross-sectional shape is a substantially rectangular shape, and the female connector housing 22 is formed so as to be connectable to the female connector housing 22 corresponding to the unevenness.
  • a wire harness 30 provided with a male connector 31 by mounting the connection structure 1 composed of male crimp terminals (not shown) along the longitudinal direction X to the inside of such a male connector housing 32. Configure. Then, the wire harness 20 and the wire harness 30 are connected by fitting the female connector 21 and the male connector 31 together.
  • connection structure 1, the female connector 21, and the connection structure 1 that realizes the above-described configuration can reliably prevent moisture from entering from the insulating coating 202 side, and can also prevent thermal cycle. Durability can be improved.
  • the adhesive 134 adheres between the coated surrounding portion 131 and the insulating coating 202 of the coated electric wire 200, so that the end portion on the insulating coating 202 side of the crimp terminal 100 enters the inside of the coated surrounding portion 131. It is possible to prevent moisture from entering.
  • the adhesive 134 by using the adhesive 134, the gap between the covered enclosure 131 and the insulating coating 202 in the covered electric wire 200 can be reliably closed over a long period of time, so that moisture can be prevented from entering from the insulating coating 202 side. While being able to prevent reliably, durability with respect to a heat cycle can be improved. .
  • the female connector 21 is configured by disposing the crimp terminal 100 in the connection structure 1 inside the female connector housing 22, so that the male connector 31 is connected to the crimp terminal 100 disposed in the female connector housing 22.
  • the crimp terminal 100 of the female-side connector 21 can be connected to the male connector 31 while ensuring water-stopping. Therefore, the female connector 21 can ensure a connection state with reliable conductivity.
  • the core wire of the covered electric wire 200 is made of an aluminum alloy, and the barrel portion 130 is made of a copper alloy, so that the weight can be reduced compared to the covered electric wire 200 having a core wire made of copper wire. Furthermore, the above-described reliable water-stopping property can prevent the occurrence of electrolytic corrosion due to the crimp terminal 100 and the covered electric wire 200 made of different metals.
  • the adhesive 134 is interposed between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200, the manufacturing method of the connection structure 1 in which the covered electric wire 200 and the crimp terminal 100 are connected by crimping is used.
  • the insulation between the covered enclosure portion 131 and the insulating coating 202 in the covered electric wire 200 can be reliably bonded. For this reason, the penetration
  • the present invention is not limited to this, and it is also possible to adopt a configuration in which the adhesive 134 is injected between the covered surrounding portion 131 and the insulating coating 202 after the covered electric wire 200 is inserted into the barrel portion 130.
  • the crimp terminal 100 and the covered electric wire 200 may be bonded not only between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200 but also in other portions.
  • connection structure 1 not only between the covered enclosure portion 131 and the insulating coating 202 in the covered electric wire 200 but also the conductor crimping portion 132 and the covered electric wire.
  • the adhesive 134 can also be interposed between the aluminum core wire 201 in 200.
  • the adhesive 134 interposed between the conductor crimping portion 132 and the aluminum core wire 201 has a viscosity that does not penetrate between the plurality of aluminum strands 201a in the aluminum core wire 201.
  • the adhesive 134 interposed between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200 and the adhesive 134 interposed between the conductor crimping portion 132 and the aluminum core wire 201 in the covered electric wire 200 are the same. Although there may be, it is not limited to this, The adhesive 134 of a different kind may be sufficient.
  • Adhesive force is improved by the adhesive 134 being interposed not only between the covering surrounding portion 131 and the insulating coating 202 in the covered electric wire 200 but also between the conductor crimping portion 132 and the aluminum core wire 201 in the covered electric wire 200. Intrusion of moisture from the insulating coating 202 side can be prevented more reliably.
  • the adhesive 134 is injected after the conductor crimping portion 132 is crimped.
  • a decrease in conductivity due to the interposition of the adhesive 134 can be suppressed.
  • FIG. 7 showing an explanatory diagram for explaining another cross-sectional shape in the connection structure 1, not only between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200 but also the end surface of the covered surrounding portion 131.
  • the adhesive 134 can also be applied to the step 135 of the insulated wire 200 with respect to the outer peripheral surface of the insulating coating 202.
  • An end surface of the barrel portion 130 on the rear side of the covered surrounding portion 131 constitutes an inlet of the covered electric wire 200 to the barrel portion 130.
  • the covered electric wire 200 and the crimp terminal 100 are brought into close contact with each other by inserting the covered electric wire 200 into the inlet and crimping the covered electric wire 200 and the crimp terminal 100.
  • a step 135 is formed over the entire circumference of the end surface of the covered surrounding portion 131 between the end surface of the covered surrounding portion 131 and the outer peripheral surface of the insulating coating 202 in the covered electric wire 200.
  • the adhesive 134 can be applied in a range that does not reach the outer peripheral surface of the covering surrounding part 131 beyond the step 135, but is not limited thereto, and the adhesive 134 exceeds the step 135. Then, it may be configured to apply up to the outer peripheral surface of the covering surrounding portion 131.
  • the adhesive 134 interposed between the covering surrounding portion 131 and the insulating coating 202 in the covered electric wire 200 and the adhesive 134 applied to the step 135 may be the same, but are not limited thereto, and are different.
  • a type of adhesive 134 may be used.
  • the adhesive 134 applied over the periphery can prevent moisture from entering. Accordingly, it is possible to more reliably prevent moisture from entering from the insulating coating 202 side.
  • the adhesive 134 is composed of a liquid adhesive component and can be configured to be cured by applying heat after application, but is not limited thereto, and can be composed of an appropriate material.
  • FIG. 8 showing an explanatory diagram for explaining the configuration of the capsule adhesive 134K
  • the adhesive 134 and the capsule adhesive 134K in which the adhesive component 134a is sealed with the capsule 134b are used. You may comprise.
  • the adhesive 134 can be configured by a microcapsule in which an adhesive component 134a is enclosed.
  • 8A is a perspective view of the capsule adhesive 134K
  • FIG. 8B is a perspective view of the capsule 134b of the capsule adhesive 134K in a crushed state.
  • the capsule 134b can be formed of a sealed hollow sphere. By encapsulating a liquid adhesive component 134a in the capsule 134b, a capsule-like adhesive 134K is formed, and a plurality of capsule-like adhesives 134K are interposed between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200.
  • the capsule adhesive 134K is compressed between the coated surrounding portion 131 and the insulating coating 202 in the coated electric wire 200, and the capsule 134b is crushed as shown in FIG. As a result, the adhesive component 134a in the capsule 134b leaks out of the capsule 134b. Thereby, the covering surrounding part 131 and the insulation coating 202 in the covered electric wire 200 can be bonded.
  • the capsule adhesive 134K By using the capsule adhesive 134K, when the coated surrounding part 131 is crimped, the capsule 134b of the capsule adhesive 134K is crushed at the same time, and the insulated surrounding part 131 and the insulating coating 202 in the covered electric wire 200 are bonded. be able to. For this reason, the adhesive component 134a of the capsule-like adhesive 134K does not leak out of the capsule 134b before the covering surrounding portion 131 is pressure-bonded, and the adhesive component 134a is applied to an unexpected part such as the aluminum core wire 201. Adhesion can be prevented. Furthermore, since the capsule 134b of the capsule adhesive 134K can be crushed at the same time when the covering surrounding part 131 is crimped, the working efficiency can be improved. [Second Embodiment A]
  • FIGS. 9 and 10 show an explanatory view for explaining the crimp terminal 100 and the connection structure 1 in the second embodiment A.
  • FIG. 9A shows the crimp terminal 100 and the covered electric wire 200 in the longitudinal direction X.
  • FIG. 9B is a sectional view taken along line BB in FIG. 9A.
  • FIG. 10A is a cross-sectional view showing a state of a crimping process in which crimping is performed by sandwiching the barrel 130 of the crimp terminal 100 into which the distal end portion of the covered electric wire 200 is inserted with a pair of crimping tools 10.
  • FIG. 10B is a cross-sectional view of the connection structure 1 configured by crimping the barrel portion 130 of the crimp terminal 100 to the tip portion of the covered electric wire 200.
  • connection structure 1 in the second embodiment A As shown in FIG. 9A, the adhesive 210 is applied to the outer peripheral surface of the insulating coating 202 in the covered electric wire 200 and then crimped to the covered electric wire 200.
  • the point which crimp-connected with the terminal 100 differs from the above-mentioned 1st Embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • connection structure 1 of the second embodiment A is formed on the entire peripheral surface of the outer peripheral surface of the covering tip portion 202t provided on the tip side of the insulating coating 202 in the covered electric wire 200.
  • the adhesive 210 is applied with a substantially uniform thickness.
  • the covered tip portion 202t indicates a portion surrounded by the covered surrounding portion 131 in a state where the tip end of the covered electric wire 200 is inserted into the barrel portion 130.
  • the adhesive 210 is equivalent to a thickness (t) that is half of the difference between the inner diameter (D) of the covering surrounding part 131 and the outer diameter (d) of the covering tip part 202t.
  • it is applied to the outer peripheral surface of the coating tip portion 202t so as to have a slightly thicker thickness.
  • connection structure 1 the tip portion of the covered electric wire 200 in a state where the adhesive 210 is applied to the outer peripheral surface of the covered tip portion 202t is inserted into the barrel portion 130, and as shown in FIG.
  • the adhesive 210 can be easily interposed between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200. Specifically, after a resin material is applied to the insulating coating 202 in the covered electric wire 200, the coated electric wire 200 is inserted into the barrel portion 130, and adhesion is made between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200. Agent 210 can be interposed.
  • the adhesive 210 is applied between the inner peripheral surface of the coating surrounding portion 131 and the outer peripheral surface of the insulating coating 202 by the crimping by the crimping tool 10. It can interpose in the state which improved adhesiveness without the clearance gap over the perimeter of.
  • connection structure is often used as an automotive part.
  • the temperature fluctuation is severe, and it is likely to be affected by moisture or at least one of drying, vibration, and ultraviolet rays. Often exposed to harsh environments.
  • the insulation coating 202 of the covered electric wire 200 in the conventional connection structure is faded due to aging, and in that case, even if it is a hollow closed barrel type with a sealing portion 133 formed at the tip portion. Even in the case of the crimp terminal 100, there is a possibility that a gap is generated between the covering surrounding portion 131 and the covering tip portion 202t.
  • connection structure 1 of the first embodiment has the adhesive 210 over the entire circumference of the covered electric wire 200 between the covered surrounding portion 131 and the insulating coating 202 in the covered electric wire 200.
  • connection structure 1 is an adhesive formed of a curable synthetic resin material even when an external force due to vibration or the like is applied to the covered electric wire or when the covered electric wire is routed so as to be excessively curved. Since the covering tip 202t can be protected by 210, it is possible to prevent a gap from being generated between the covering surrounding portion 131 and the covering tip 202t.
  • connection structure 1 includes the adhesive 210 formed of a curable synthetic resin material, thereby preventing a decrease in water stoppage due to external factors such as moisture, temperature fluctuation, vibration, and aging of the insulating coating. It is possible to ensure stable water-stopping and electrical conductivity over a longer period of time, so that the high-quality connection structure 1 can be efficiently manufactured.
  • the distal end portion of the covered electric wire 200 when the distal end portion of the covered electric wire 200 is inserted into the barrel portion 130, it is applied to the base end surface 130X1 in the longitudinal direction X of the barrel portion 130 on the outer peripheral surface of the covered distal end portion 202t. Since the adhesive 210 does not come into contact, the tip end portion of the covered electric wire 200 can be smoothly inserted into the barrel portion 130 with almost no contact resistance with respect to the barrel portion 130.
  • the adhesive 210 is preferably applied with a uniform thickness along the outer peripheral surface of the insulating coating 202.
  • the coating is performed.
  • the tip end of the coating is applied such that the tip end side is thicker than the base side. You may apply
  • the adhesive 210 may be applied to the outer peripheral surface of the insulating coating 202 at the time of manufacturing the coated electric wire 200, or may be applied to the outer peripheral surface of the insulating coating 202 immediately before crimping.
  • the adhesive 210 is applied to the entire area of the covered electric wire 200 to be crimped, the entire area can be bonded.
  • the present invention is not limited to this, and the adhesive 210 may be applied to a region narrower in the longitudinal direction X than the region to be crimped on the covered electric wire 200.
  • connection structure 1Pa may be configured as shown in FIG. 11B by performing only the crimping between the conductor crimping part 132 and the conductor crimping part 132.
  • FIG. 11A is a cross-sectional view showing a state of the crimping process in another example attached to the second embodiment A.
  • FIG.11 (b) is sectional drawing of the connection structure 1Pa in the other Example accompanying 2nd Embodiment A.
  • FIG. 10C is a cross-sectional view taken along the line CC of FIG.
  • the crimping tool 10 is configured with only a portion for crimping the conductor crimping portion 132 without including a portion for crimping the covering surrounding portion 131 in the longitudinal direction X of the connection structure 1.
  • the first crimping die 11A as the anvil and the second crimping die 12A as the crimper as a pair of crimping tools 10A.
  • the adhesive 210 is interposed between the inner peripheral surface of the covering surrounding portion 131 and the outer peripheral surface of the covering leading end portion 202t without any gap, even without crimping the covering leading end portion 202t and the covering surrounding portion 131. Therefore, it is possible to ensure the water stoppage inside the conductor crimping part 132.
  • the adhesive 210 that is interposed between the covering surrounding portion 131 and the covering tip portion 202t is not limited to being cured by applying heat from a liquid state, but the type of resin that forms the adhesive 210 Depending on the characteristics, for example, it can be naturally dried from a liquid state, or can be cured by means such as exposure to air to apply moisture, or other means such as irradiation with ultraviolet rays.
  • FIG. 12A is an explanatory view of the method for manufacturing the connection structure 2B in the second embodiment B showing the insertion step of inserting the tip end portion of the covered electric wire 200 into the barrel portion 130 of the crimp terminal 100.
  • FIG. FIG. 12B is an enlarged sectional view taken along line BB in FIG.
  • FIG. 13A is a cross-sectional view showing a state of a crimping process in which crimping is performed by sandwiching the barrel portion 130 of the crimp terminal 100 into which the distal end portion of the covered electric wire 200 is inserted with a pair of crimping tools 10.
  • FIG. 13B is a cross-sectional view of the connection structure 2 ⁇ / b> B configured by crimping the barrel portion 130 of the crimp terminal 100 to the tip portion of the covered electric wire 200.
  • FIG. 13C shows a cross-sectional view taken along the line CC of FIG.
  • the adhesive 210 is applied to the inner peripheral surface of the covering surrounding portion 131 and the outer peripheral surface of the covering front end portion 202t in a state where the front end portion of the covered electric wire 200 is inserted into the barrel portion 130. It is applied to the outer peripheral surface of the coating tip portion 202t with a thickness that is thinner than the gap.
  • the adhesive 210 has a thickness that is half the difference between the inner diameter (D) of the covering surrounding portion 131 and the outer diameter (d) of the covering tip portion 202t ( It is applied to the outer peripheral surface of the coating tip 202t so as to have a thickness (ts) that is thinner than t).
  • the adhesive 210 is applied to the outer peripheral surface of the coating tip portion 202t so as to have a thickness thinner than the gap between the coating surrounding portion 131 and the coating tip portion 202t, thereby FIG.
  • the adhesive 210 applied to the outer peripheral surface of the covered tip portion 202t is applied to the inner peripheral surface of the covered surrounding portion 131 or the proximal end surface of the barrel portion 130. It is possible to smoothly insert the tip end portion of the covered electric wire 200 into the barrel portion 130 without receiving resistance due to contact with 131 ⁇ 1.
  • the bonding is performed between the outer peripheral surface of the covered tip portion 202t and the inner peripheral surface of the covering surrounding portion 131.
  • the agent 210 can be interposed, a gap where the adhesive 210 does not exist remains.
  • the conductor crimping part 132 and the covering surrounding part 131 are crimped so as to be sandwiched by one set of crimping tools 10, and the aluminum core wire 201 and the insulation
  • the coating 202 By crimping the coating 202, there is no gap between the inner circumferential surface of the coating surrounding portion 131 and the outer circumferential surface of the insulating coating 202 with the adhesive 210 interposed, and there is no gap between the inner circumferential surface of the coating surrounding portion 131 and the insulating coating 202. It is possible to perform pressure bonding in a state where the adhesion with the outer peripheral surface of the material is improved.
  • the adhesive 210 interposed between the inner peripheral surface of the covering surrounding part 131 and the outer peripheral surface of the insulating coating 202 is in a thin state, it can be applied by applying external factors such as heat, moisture, and external force. Can be cured quickly.
  • the connection structure 2B of the second embodiment B as shown in FIG. 13B can be configured.
  • connection structure 2B in the second embodiment B by applying the adhesive 210 to the outer peripheral surface of the insulating coating 202 so as to be thin, the adhesive 210 can be suppressed to a small application amount, and the connection structure The weight of the body 2B and the material cost of the adhesive 210 can be reduced.
  • FIGS. 14A illustrates the method for manufacturing the connection structure 2C according to the second embodiment C, showing a state immediately after the start of insertion in the insertion step of inserting the distal end portion of the covered electric wire 200 into the barrel portion 130 of the crimp terminal 100.
  • FIG. FIG. 14B is an enlarged sectional view taken along line BB in FIG.
  • FIG. 15A is an explanatory diagram of a method for manufacturing the connection structure 2C in the second embodiment C, showing a state in the middle of insertion in the insertion step of inserting the tip end portion of the covered electric wire 200 into the barrel portion 130 of the crimp terminal 100.
  • FIG. 15 (b) shows an explanatory view of the manufacturing method of the connection structure 2 ⁇ / b> C in the second embodiment C showing the state when the insertion is completed.
  • FIG. 16A is a cross-sectional view showing a state of a crimping process in which crimping is performed so that the barrel part 130 of the crimping terminal 100 into which the distal end portion of the covered electric wire 200 is inserted is sandwiched by one set of the crimping tool 10.
  • FIG. 16B is a cross-sectional view of the connection structure 2 ⁇ / b> C configured by crimping the barrel portion 130 of the crimp terminal 100 against the tip portion of the covered electric wire 200.
  • FIG. 16C shows a cross-sectional view taken along the line CC of FIG.
  • the adhesive 210 is applied between the inner peripheral surface of the covering surrounding portion 131 and the outer peripheral surface of the covering front end portion 202t in a state where the front end portion of the covered electric wire 200 is inserted into the barrel portion 130. It is applied to the outer peripheral surface of the coating tip portion 202t with a thickness that is thicker than the gap.
  • the adhesive 210 has a gap that is half the difference between the inner diameter (D) of the covering surrounding portion 131 and the outer diameter (d) of the covering tip portion 202t ( It is applied to the outer peripheral surface of the coating tip portion 202t so as to be thicker (th) than t). Note that the adhesive 210 is applied to the outer peripheral surface of the coating tip portion 202t with a thickness (th) that is not bulkier than the outer diameter of the coating surrounding portion 131.
  • the adhesive 210 is applied to the outer peripheral surface of the covering tip portion 202t.
  • the surrounding portion In addition to the portion surrounded by the insulating covering 202 by the covering surrounding portion 131, the surrounding portion In addition, it is applied to the base portion 130X side in the longitudinal direction X, that is, including the portion corresponding to the peripheral edge of the opening portion of the barrel portion 130, and is bonded to the outer peripheral surface of the covering tip portion 202t in the second embodiments A and 2B. It is applied over a wider range in the longitudinal direction X than the application range of the agent 210.
  • the adhesive 210 is applied to the outer peripheral surface of the coated tip portion 202t in a state where the tip portion of the covered wire 200 is inserted along the central axis of the barrel portion 130. Since the coating is applied so as to be thicker than the inner peripheral surface of the covering surrounding portion 131, the adhesive 210 overlaps the end surface 130 x 1 of the base portion 130 x of the barrel portion 130 along the longitudinal direction X. .
  • the adhesive 210 applied to the outer peripheral surface of the coating tip portion 202t comes into contact with the end surface 130x1 of the base portion 130x of the barrel portion 130.
  • the distal end portion of the covered electric wire 200 is further inserted into the barrel portion 130, as shown in FIG. 15A, particularly a partially enlarged view in FIG. 15A, the base portion 130x of the barrel portion 130 is obtained.
  • the thickness of the adhesive 210 is further increased so that the adhesive 210 is scraped off by the end surface 130x1, and the step S between the end surface 130x1 of the base portion 130x of the barrel portion 130 and the outer peripheral surface of the insulating coating 202 in the covered electric wire 200, that is, The adhesive 210 rises at the open end of the barrel portion 130.
  • the liquid adhesive 210 is applied to the outer peripheral surface of the insulating coating 202 as the distal end portion of the covered electric wire 200 is inserted. Depending on the thickness of 210, it flows over the end surface 130 x 1 of the base portion 130 x of the barrel portion 130 until it reaches the outer peripheral surface.
  • the provided adhesive 210 is applied to a portion reaching the outer peripheral surface of the insulating coating 202 so as to straddle the outer peripheral surface of the covering surrounding portion 131 on the base 130x side.
  • the coating is continuously applied across the outer peripheral surface on the end side of the covering surrounding portion 131 and the outer peripheral surface of the insulating coating 202.
  • the conductor crimping portion 132 and the covering surrounding portion 131 are crimped so as to be sandwiched by one set of crimping tools 10, and the aluminum core wire 201 and the insulating coating 202 are placed. Crimp the.
  • connection structure 2C of the second embodiment C as shown in FIG. 16B can be configured by curing the portion including the portion interposed between the surfaces.
  • the portion provided on the step S between the end surface 130 x 1 of the covering surrounding portion 131 and the outer peripheral surface of the insulating coating 202 is the outer periphery of the covering surrounding portion 131 on the base 130 x side.
  • the coating surrounding portion 131 and the insulating coating 202 are temporarily changed due to a change in the inner diameter of the covering surrounding portion 131 or a change in the outer diameter of the insulating coating 202. Even if a moisture intrusion path is formed between them, the adhesive 210 can prevent moisture from entering from the base portion 130x side of the covering surrounding portion 131.
  • the adhesive 210 provided in the step S can prevent moisture from entering the inside of the covering surrounding portion 131 from the base portion 130x side of the covering surrounding portion 131. .
  • connection structure 3C can secure a stable water-stopping property over a long period of time, and thus can secure a stable conductivity.
  • the barrel portion 130 is corroded or the insulating coating 202 is deteriorated at the connection portion between the barrel portion 130 and the insulating coating 202 by being in contact with the outside air for a long period of time. was there. For this reason, there is a possibility that a gap is generated between the barrel portion 130 and the insulating coating 202 and the water stoppage is lowered.
  • the connecting structure 3C allows the adhesive 210 to be interposed over the entire circumference of the covered electric wire 200 between the covered surrounding portion 131 and the covered tip portion 202t, and the outer peripheral surface of the covered surrounding portion 131. Since the coating is applied to the step S with respect to the outer peripheral surface of the insulating coating 202 so as to straddle the outer peripheral surface on the base 130x side of the covering surrounding portion 131, the outer peripheral surface of the covering surrounding portion 131 and the outer peripheral surface of the insulating tip portion 202t are outside air. Can be prevented from contacting directly.
  • connection structure 3C has a covering surrounding portion 131 formed by the outside of the covering surrounding portion 131 and the insulating covering 202 coming into contact with the outside air for a long time at the boundary portion between the insulating covering 202 and the base portion 130x side of the covering surrounding portion 131. Corrosion and deterioration of the insulating coating 202 can be prevented by the adhesive 210. Thereby, 3 C of connection structures can ensure the stable water stop and electroconductivity over a long period of time.
  • the adhesive 210 applied to the outer peripheral surface of the covered tip portion 202t is inserted into the inner periphery of the covered surrounding portion 131 in a state where the tip portion of the covered electric wire 200 is inserted along the central axis of the barrel portion 130. Since it is applied so as to be thicker than the surface, as is apparent from FIG. 15 (b) showing the insertion completion state, the adhesive has no gap between the covering surrounding portion 131 and the covering front end portion 202t after insertion. 210 may be interposed.
  • FIG. 17A is a cross-sectional view showing a state of the crimping process in another example associated with the second embodiment C
  • FIG. 17B is another diagram associated with the second embodiment C. It is sectional drawing of the connection structure 1Pb in an Example.
  • FIG. 17C is a cross-sectional view taken along the line CC in FIG.
  • connection structure 1Pb allows the adhesive 210 to pass between the covering surrounding part 131 and the covering front end part 202t without any gap between the covering front end part 202t and the covering surrounding part 131.
  • it is applied so as to straddle the step S between the outer peripheral surface of the covering surrounding portion 131 and the outer peripheral surface of the insulating coating 202 and the outer peripheral surface of the covering surrounding portion 131 on the base 130x side.
  • the water stop inside the crimping part 132 can be remarkably improved.
  • connection structure of the present invention or the manufacturing method thereof is not limited to the above-described embodiments, and can be configured in various embodiments.
  • a method of applying the adhesive 210 to the outer peripheral surface of the insulating coating 202 in the covered electric wire 200 As shown in FIG. 18, after applying the adhesive 210 to the outer peripheral surface of the insulating coating 202 in the covered electric wire 200, the aluminum core wire 201 is exposed from the tip of the insulating coating 202, as shown in FIG.
  • the crimp terminal 100 may be crimped and connected.
  • the aluminum core wire 201 is exposed from the tip of the insulating coating 202, and the coated electric wire 200 and the crimp terminal 100 are connected. Crimp connection may be used.
  • FIG. 18A shows a cross-sectional view of the covered electric wire 200 when the adhesive 210 is applied to the outer peripheral surface of the insulating coating 202
  • FIG. 18B shows the aluminum core wire 201 exposed from the tip of the insulating coating 202
  • FIG. 18C shows a cross-sectional view of the covered electric wire 200 with the aluminum core wire 201 exposed from the tip of the insulating coating 202.
  • the adhesive 210 When applying the adhesive 210 to the outer peripheral surface of the insulating coating 202, as shown in FIG. 18A, so-called dipping is performed by immersing the tip of the covered electric wire 200 in the adhesive 210 made of liquid. At this time, the adhesive 210 is applied in a predetermined range in the longitudinal direction X of the covered electric wire 200 from the tip of the insulating coating 202 in the covered electric wire 200 before exposing the aluminum core wire 201.
  • the predetermined range is not less than a range 210a in which the aluminum core wire 201 is exposed and not more than a range 210b in which the crimp terminal 100 is crimped and connected.
  • the insulation coating 202 of the coated electric wire 200 to which the adhesive 210 is applied is cut by the cutting device 220 at a position corresponding to the above-described range 210a from the tip, and is closer to the tip than the cutting position. Pull out the part. As a result, the aluminum core wire 201 can be exposed from the tip of the insulating coating 202 as shown in FIG.
  • the adhesive 210 is applied to the insulating coating 202 in the covered electric wire 200, the aluminum core wire 201 is exposed from the tip of the insulating coating 202, thereby bonding the portion of the insulating coating 202 where the aluminum core wire 201 is exposed. It can be removed together with the agent 210. For this reason, the adhesive 210 can be interposed between the sheath portion 131 up to the tip of the insulating coating 202 remaining on the coated electric wire 200, that is, to the boundary 210c between the exposed aluminum core wire 201 and the insulating coating 202.
  • the adhesive 210 can be applied over a wide range within the required range in the insulating coating 202, the adhesive force is improved, and the intrusion of moisture from the insulating coating 202 side can be more reliably prevented. Furthermore, since the adhesive 210 can be easily removed at the portion where the aluminum core wire 201 is exposed, and the adhesive 210 can be prevented from adhering to the aluminum core wire 201, stable conductivity can be ensured. it can.
  • the adhesive 210 it is possible to easily apply the adhesive 210 to the necessary range of the insulating coating 202 simply by immersing the tip end portion of the covered electric wire 200 in the adhesive 210 made of a liquid, so that the work efficiency can be improved. . Furthermore, since the tip of the covered electric wire 200 is immersed in an adhesive 210 made of a liquid, the adhesive 210 can be evenly applied to the required range of the insulating coating 202, so that the adhesive force is improved and the insulation is improved. Intrusion of moisture from the coating 202 side can be more reliably prevented.
  • the adhesive 210 is applied to the insulating coating 202 of the covered electric wire 200, and then the aluminum core wire 201 is exposed from the tip of the insulating coating 202.
  • the present invention is not limited to this, and the adhesive 210 may be applied to the insulating coating 202 when the aluminum core wire 201 is exposed from the tip of the insulating coating 202.
  • FIG. 19 for explaining another method for applying the adhesive 210 to the outer peripheral surface of the insulating coating 202 in the covered electric wire 200, as shown in FIGS. 19 (a) to 19 (c), a cutting application device 230 is used.
  • the step of cutting the insulating coating 202 and the step of applying the adhesive 210 can be performed simultaneously.
  • FIG. 19A shows a cross-sectional view of the covered electric wire 200 before the adhesive 210 is applied to the outer peripheral surface of the insulating coating 202
  • FIG. 19B shows the insulating coating 202 cut simultaneously with the application of the adhesive 210
  • FIG. 19C is a cross-sectional view of the covered electric wire 200 in a state where the aluminum core wire 201 is exposed from the tip of the insulating coating 202.
  • an adhesive 210 is prepared at a portion of the cutting and coating apparatus 230 that comes into contact with the insulating coating 202.
  • cutting is performed by the cutting application device 230 at a position corresponding to the range in which the aluminum core wire 201 is exposed.
  • the adhesive coating 210 is applied to the insulating coating 202 by the cutting and coating device 230, and then the tip side of the cutting position is pulled out, thereby removing the tip of the insulating coating 202 as shown in FIG.
  • the aluminum core wire 201 can be exposed.
  • the adhesive 210 can be applied to the insulating coating 202 in the covered electric wire 200 during the operation of exposing the aluminum core wire 201 from the tip of the insulating coating 202.
  • the adhesive 210 can be applied to the insulating coating 202 when the insulating coating 202 is cut to expose the aluminum core wire 201.
  • the adhesive 210 can be applied to the outer peripheral surface of the insulating coating 202 by printing, but is not limited thereto, and the adhesive 210 can be applied by an appropriate method.
  • the adhesive 210 can be applied to the insulating coating 202 when the aluminum core wire 201 is exposed from the tip of the insulating coating 202, the operation of exposing the aluminum core wire 201 from the tip of the insulating coating 202 and bonding The work efficiency can be improved as compared with the configuration in which the work of applying the agent 210 to the insulating coating 202 is performed separately.
  • the adhesive 210 is applied to the insulating coating 202.
  • the present invention is not limited to this, and the insulating coating 202 after cutting is applied.
  • the adhesive 210 may be applied to the insulating coating 202.
  • the adhesive 210 is provided at a step S between the end face of the covered enclosure portion 131 and the outer peripheral surface of the insulating coating 202 in the covered electric wire 200 or between the insulating cover portion 131 and the insulating coating 202 in the covered electric wire 200. Not only, but also the entire outer peripheral surface of the barrel part 130 or, for example, the sealing part 133 configured at the front end part from the conductor crimping part 132 may be provided.
  • the adhesive 134 interposed between the covering surrounding part 131 and the insulating coating 202 is not limited to be interposed over the entire circumference of the insulating coating 202, but the first anvil on the outer peripheral surface of the covered electric wire 200. Only the portion corresponding to the boundary portion in the state where the crimping die 11 and the second crimping die 12 serving as the crimper are close to each other is applied, so that the waterproof property is improved in a reinforcing manner only at a predetermined portion in the circumferential direction of the covered electric wire 200. You may apply to do.
  • the crimp terminal 100 is the female crimp terminal 100.
  • the present invention is not limited to this. It may be a crimp terminal of a type.
  • the core wire in the covered electric wire 200 is made of an aluminum alloy and the crimp terminal 100 is made of a copper alloy such as brass
  • the core wire in the covered electric wire 200 and the crimp terminal 100 are made of a copper alloy such as brass or an aluminum alloy. You may comprise with the same metal.
  • the electric wire conductor of this invention corresponds to the aluminum core wire 201 of the embodiment
  • the wire connection portion corresponds to the barrel portion 130
  • the connection structure corresponds to the connection structure 1, 1Pa, 1Pb, 2A, 2B, 2C
  • the end side of the covering surrounding portion corresponds to the base portion 130x in the longitudinal direction X of the barrel portion 130 (covering surrounding portion 131)
  • the strand corresponds to the aluminum strand 201a
  • Aluminum material corresponds to aluminum alloy
  • Copper material corresponds to copper alloy strips such as brass
  • the connector housing corresponds to the female connector housing 22 and the male connector housing 32
  • the connector corresponds to the female connector 21 and the male connector 31,
  • the present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
  • a bell mouth 136 whose diameter is increased outward may be formed at the rear end of the covering surrounding part 131 constituting the barrel part 130.
  • the bell mouth 136 By forming the bell mouth 136 at the rear end of the covering surrounding portion 131, it becomes easy to inject the adhesive 134 between the covering surrounding portion 131 and the insulating coating 202. Specifically, even when the covered electric wire 200 is inserted into the barrel portion 130 in which the adhesive 134 has been previously injected into the covered surrounding portion 131, or the covered electric wire 200 to which the adhesive 134 has been applied is removed from the barrel portion 130.
  • the diameter of the bell mouth 136 is increased with respect to the covered surrounding portion 131, so that the covered electric wire 200 can be easily inserted.
  • the diameter of the bell mouth 136 is increased with respect to the covered surrounding portion 131. Can be inserted easily.
  • the bell mouth 136 is formed at the rear end of the covered surrounding portion 131, even when the covered electric wire 200 is curved with respect to the barrel portion 130, the rear end of the covered surrounding portion 131 has the adhesive 134.
  • the durable adhesive 134 can be formed without being damaged. Accordingly, the durability against thermal cycling can be improved.
  • FIG. 21 is a perspective view of the tubular terminal 311 and the electric wire 313 joined to the tubular terminal 311 according to the embodiment.
  • the tubular terminal 311 has a box part 320 and a tubular part 325 of a female terminal, and has a transition part 340 as a bridge between them.
  • the tubular portion 325 includes an enlarged diameter portion 326 that gradually increases in diameter from the transition portion 340, and a cylindrical portion 327 that extends in a cylindrical shape from the edge of the enlarged diameter portion 326.
  • the tubular portion 325 is a hollow tube, and an electric wire insertion port 331 into which the electric wire 313 can be inserted is opened at one end of the tubular portion 325.
  • the other end of the tubular portion 325 is connected to the transition portion 340.
  • the transition part 340 side is closed by means such as welding, and is formed so that moisture or the like does not enter from the transition part 340 side. That is, the space inside the tubular portion 325 is closed on the transition portion 340 side.
  • the electric wire 313 is inserted into the tubular portion 325 from the electric wire insertion port 331, and the tubular portion 327 is compressed by a crimping tool, whereby the tubular terminal 311 and the electric wire 313 are bonded by pressure bonding, and an electric wire connection structure 310 (FIG. 24) described later is formed. Composed.
  • the box part 320 of the tubular terminal 311 is a box part of a female terminal that allows insertion of an insertion tab such as a male terminal.
  • the shape of the details of the box portion 320 is not particularly limited. That is, the tubular terminal 311 only needs to include the tubular portion 325 via at least the transition portion 340, for example, the box portion may not be provided, or the box portion may be an insertion tab of a male terminal, for example. good.
  • the shape by which the terminal part which concerns on another form to the tubular part 325 was connected may be sufficient.
  • a female box is provided for convenience is shown.
  • the tubular terminal 311 is basically made of a base material made of a metal material (copper or copper alloy in this embodiment) in order to ensure conductivity and strength.
  • the base material of the tubular terminal 311 is not limited to copper or a copper alloy, and aluminum, steel, an alloy containing these as a main component, or the like can be used.
  • a part or all of the tubular terminal 311 may be plated with tin, nickel, silver plating, gold, or the like. Moreover, not only plating but reflow processing of tin or the like may be performed.
  • the tubular terminal 311 exemplified in this embodiment is partially or entirely subjected to a treatment such as tin plating.
  • the tubular terminal 311 is formed by bending a plate-like material obtained by punching the strip made of the metal material.
  • the box part 320 and the tubular part 325 can be made of a single plate material, or the box part 320 and the tubular part 325 can be formed of different plate materials and then joined at the transition part 340. is there.
  • the tubular portion 325 is formed by bending the plate material so as to have a C-shaped cross section, butting both open ends and joining them by welding or the like. Laser welding is preferable for joining the tubular portion 325, but welding methods such as electron beam welding, ultrasonic welding, and resistance welding may be used. By joining the openings by laser welding, the opening is formed into a closed tube.
  • connection medium such as solder or solder
  • joining using a connection medium such as solder or solder may be used.
  • a connection medium such as solder or solder
  • FIG. 21 an example in which the tubular portion 325 is formed by laser welding is shown.
  • a weld bead 343 extending in the axial direction is formed in the tubular portion 325.
  • the transition part 340 is formed by pressing and closing one end of the tubular part 325.
  • the transition portion 340 is configured to be pressed so as to crush one end of the tubular portion 325 so as to overlap in a planar shape, and the intermediate position in the longitudinal direction is closed by means such as welding in the width direction. Further, it is formed so that moisture or the like does not enter from the transition part 340 side.
  • the tubular portion 325 is not limited to the method of joining both end portions of the C-shaped cross section described above, and may be formed by a deep drawing method. Further, the tubular portion 325 and the transition portion 340 may be formed by cutting the continuous tube and closing one end side. Note that the tubular portion 325 may be tubular, and is not necessarily cylindrical with respect to the longitudinal direction.
  • the cross section may be an ellipse or a rectangular tube. Further, the diameter does not need to be constant, and may be a shape whose radius changes in the longitudinal direction.
  • the electric wire 313 is configured, for example, by covering a core wire 314 obtained by bundling strands 314a made of a metal or alloy material with a conductor insulating layer 315 made of an insulating resin (for example, polyvinyl chloride).
  • the core wire 314 is formed by twisting the wire 314a so as to have a predetermined cross-sectional area.
  • the core wire 314 is not limited to this form and may be formed by a single wire.
  • the metal material which comprises a core wire should just be a metal which has high electroconductivity, and you may use copper or a copper alloy other than aluminum or an aluminum alloy.
  • the resin material constituting the conductor insulating layer 315 of the electric wire 313 is polyvinyl chloride.
  • halogen-free resins mainly composed of crosslinked polyethylene, ethylene propylene rubber, silicon rubber, polyester, etc. are used, and these may contain additives such as plasticizers and flame retardants.
  • FIG. 22 is a cross-sectional view of the tubular terminal 311, (A) a main-part cross-sectional view showing a longitudinal cross-section of the tubular terminal 311, and (B) a transverse cross-sectional view of the tubular terminal 311 in the tubular part 327.
  • serrations 333 are formed on the inner peripheral surface of the tubular portion 325.
  • the serration 333 is a groove extending in the circumferential direction on the inner peripheral surface of the tubular portion 325.
  • the serration 333 may be formed so as to go around the inner peripheral surface of the tubular portion 325 or may be provided only on a part of the inner peripheral surface of the tubular portion 325 in the circumferential direction.
  • a plurality of serrations 333 are formed side by side in the longitudinal direction of the tubular portion 325. These serrations 333 are provided in the tubular portion 325 at a portion where the conductor crimping reduced diameter portion 335 (FIG. 24), which will be described later, is crimped to the core wire 314.
  • the conductor crimping reduced diameter portion 335 In the conductor crimping reduced diameter portion 335, the core wire 314 from which the conductor insulating layer 315 is peeled and the tubular portion 325 are joined. The core wire 314 is locked by the serration 333, and the contact pressure between the core wire 314 and the tubular portion 325 is increased.
  • the contact resistance of the core wire 314 is lower than when copper or a copper alloy is used.
  • the serration 333 can be formed by, for example, pressing the chain terminal before bending when the tubular portion 325 is formed by bending the plate-like chain terminal from which the strip material is punched.
  • the adhesive agent 355 is arrange
  • the adhesive 355 is attached in a strip shape having a predetermined width in the longitudinal direction of the tubular portion 325.
  • the position of the adhesive 355 is a portion of the tubular portion 325 that is a pressure-bonded and reduced-diameter portion 336 (FIG. 24), which will be described later, and is bonded to the conductor insulating layer 315 (FIG. 21).
  • the adhesive 355 goes around the inner peripheral surface of the tubular portion 325, and the adhesive 355 is also arranged inside the weld bead 343.
  • FIG. 23 is an explanatory diagram of a process of crimping and joining the electric wire 313 to the tubular terminal 311, and is a cross-sectional view corresponding to a transverse cross section of the cylindrical portion 327.
  • the width of the anvil 403 is indicated by symbol A
  • the lateral width (diameter) of the tubular terminal 311 when installed on the anvil 403 is indicated by symbol B.
  • 24 and 25 are diagrams showing a configuration of a wire connection structure 310 formed by joining an electric wire 313 to a tubular terminal 311.
  • FIG. 24A is a perspective view
  • FIG. 25 is a cross-sectional view showing a longitudinal cross section of the tubular caulking portion 330
  • the tubular terminal 311 and the electric wire 313 are pressure-bonded (crimped) using a crimper 401 and an anvil 403 which are a pair of crimping tools.
  • the crimper 401 has a crimping wall 402 formed by a curved surface of the tubular terminal 311, and the anvil 403 has a receiving portion 404 on which the tubular terminal 311 is placed.
  • the receiving portion 404 of the anvil 403 is a curved surface corresponding to the outer shape of the tubular portion 325.
  • the tubular terminal 311 is placed on the receiving portion 404, and the crimper 401 is lowered as indicated by an arrow in the drawing, thereby The tubular portion 325 is compressed by the receiving portion 404 and is pressure-bonded.
  • FIG. 23 shows a cross section of the cylindrical portion 327, the conductor insulating layer 315 outside the core wire 314, the adhesive 355, and the cylindrical portion 327 are shown, but the crimper 401 and the anvil 403 are In addition to the cylindrical portion 327, other portions can be compressed. That is, since the crimper 401 and the anvil 403 have a depth that allows compression of almost the entire diameter of the tubular portion 325 except for the enlarged diameter portion 326, the portion where the core wire 314 and the tubular portion 325 are pressure-bonded and the conductor insulating layer 315 are provided. Both the included electric wire 313 and the portion where the tubular portion 325 is bonded by crimping can be compressed by the pair of crimpers 401 and the anvil 403 at a time. Moreover, you may compress these parts separately.
  • FIG. 23 shows an example in which the inner diameter of the cylindrical portion 327 (the diameter of the space inside the adhesive 355) and the outer diameter of the electric wire 313 are substantially equal, and there is almost no space around the electric wire 313.
  • the scope of application is not limited to this.
  • the outer diameter of the electric wire 313 is smaller than the inner diameter of the cylindrical portion 327 (the diameter of the space inside the adhesive 355) and there is a gap around the electric wire 313, so that crimping can be performed as shown in FIG. .
  • the diameter of the cylindrical portion 327 is reduced by compression, and the cylindrical portion 327, the adhesive 355, and the conductor insulating layer 315 are in close contact with each other, so that the electric wire 313 can be reliably bonded to the tubular terminal 311.
  • the adhesive 355 adheres to the electric wire 313 when the electric wire 313 is inserted into the tubular portion 325, and the adhesive 355 becomes the enlarged portion. It may move to 326 side or insertion of the electric wire 313 may be hindered. For this reason, when the outer diameter of the electric wire 313 is thinner than the space inside the adhesive 355, it can be said that the tubular terminal 311 and the electric wire 313 can be more easily joined, which is preferable.
  • the tubular terminal 311 after the crimping constitutes an electric wire connection structure 310 together with the electric wire 313.
  • the tubular portion 325 is compressed to form a tubular caulking portion 330 including a conductor crimping reduced diameter portion 335 and a coated crimping reduced diameter portion 336.
  • the enlarged diameter part 326 is not compressed among the tubular parts 325.
  • the conductor crimping reduced-diameter portion 335 is bonded to the tubular terminal 311 by the core wire tip 314b of the core wire 314 being reduced in diameter by causing the plastic deformation of the tubular portion 325 by the crimping process shown in FIG. As shown in FIG.
  • the conductor crimping reduced diameter portion 335 is a portion having the highest diameter reduction ratio in the tubular caulking portion 330.
  • the tubular portion 325 is plastically deformed and reduced in diameter by the crimping process shown in FIG. 23, and the electric wire 313 is compressed together with the adhesive 355 and joined to the tubular terminal 311.
  • the conductor crimping reduced diameter portion 335 and the coated crimping reduced diameter portion 336 have different diameter reduction ratios, but the crimping wall 402 (FIG. 23).
  • the caulking portion 330 can be configured.
  • the tubular caulking portion 330 is required to have a function of maintaining the electrical conductivity by strongly compressing the core wire 314 and a function of maintaining the sealing performance by compressing the conductor insulating layer 315.
  • the cross section thereof is caulked into a substantially circular shape, and by applying substantially the same pressure over the entire circumference of the conductor insulating layer 315, a uniform elastic repulsive force is generated over the entire circumference. It is preferable to obtain a sealing property.
  • the shape of the inner surface of the coated crimping reduced diameter portion 336 in the cross section is not a substantially circular shape, and the portions 337 and 337 corresponding to the gaps between the tools are projected to the outside. turn into. Since the protrusions of the portions 337 and 337 occur at the contact position between the crimper 401 and the anvil 403, they occur along the depth direction of the crimper 401 and the anvil 403. Therefore, in the tubular caulking portion 330, a similar bulge occurs in the conductor crimping reduced diameter portion 335, and this bulge extends in the axial direction of the tubular caulking portion 330.
  • the pressure from the coated crimping reduced diameter portion 336 to the conductor insulating layer 315 is insufficient, and a gap is generated between the inner surface of the coated crimped reduced diameter portion 336 and the surface of the conductor insulating layer 315.
  • moisture may enter the tubular caulking portion 330 from the side of the electric wire insertion port 331 as the gap becomes a leak path.
  • the core wire 314 corrodes due to the difference in electromotive force (ionization tendency) between the two metals.
  • tubular terminal 311 and the core wire 314 are made of aluminum, their joints are easily corroded due to a subtle difference in alloy composition. For this reason, in the configuration in which moisture enters the inside of the tubular caulking portion 330 in the wire connection structure 310, the progress of corrosion is a concern.
  • the tubular caulking portion 330 has a weld bead 343 that is welded when the tubular portion 325 is formed.
  • sink marks may occur in the weld bead 343, and the thickness of the weld bead 343 decreases, and the bead of the weld bead 343 forms an irregular concavo-convex structure instead of a smooth inner surface.
  • the inner surface near 343 may be a leak path.
  • the weld bead 343 and the vicinity thereof are subjected to inhomogeneous deformation during the crimping process, so that the inner surface near the weld bead 343 has a leak path. There is a possibility of becoming. Further, in the crimping process of the anvil 403 and the crimper 401 from above and below, the pressure on the lower side (anvil 403 side) of the tubular caulking portion 330 tends to be higher than the upper side (the crimper 401 side).
  • the elastic repulsion force of the conductor insulating layer 315 sometimes became stronger on the lower side (anvil 403 side) than on the upper side (crimper 401 side). For this reason, the elastic repulsive force on the upper side (crimper 401 side) of the tubular caulking portion 330 is insufficient, and the entire interface between the conductor insulating layer 315 and the tubular caulking portion 330 on the upper side may become a leakage path.
  • the adhesive 355 is disposed on the inner peripheral surface of the tubular portion 325 in the tubular terminal 311, and the electric wire 313 is inserted into the adhesive 355 to be crimped.
  • the adhesive 355 has a liquid, sol, or gel-like fluidity, and reversibly or irreversibly increases its hardness through the passage of time, temperature change, moisture absorption, drying, and the like. is there.
  • the adhesive 355 is disposed on the inner peripheral surface of the tubular portion 325 by a method such as coating or spraying in a state of having fluidity before being cured. In order to more reliably increase the water-stopping property after the electric wire 313 is pressure-bonded to the tubular portion 325, it is more preferable that the adhesive 355 has flexibility (elasticity) in a state where the hardness is increased.
  • a suitable material used for the adhesive 355 an adhesive material using a synthetic resin or a natural resin can be given.
  • Adhesive materials include reactive adhesives that cure by chemical reaction over time, solvent-based adhesives that increase hardness by volatilization of the solvent, fluidity when heated, and cooling afterwards.
  • Hot-melt adhesives that increase hardness, and solvent-type adhesives include emulsion-based adhesives. More specific examples include an adhesive material containing a polyurethane resin, a modified silicon resin, a vinyl resin, a polyamide resin, a polyimide resin, a melamine resin, a urea resin, or the like as a main component.
  • a rubber-based adhesive in which a solvent or the like is added to silicone rubber, fluorine rubber, butyl rubber, butadiene rubber, styrene-butadiene rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, nitrile rubber or the like known as a synthetic rubber. It can also be used.
  • a particularly preferred example is a hot melt adhesive.
  • a hot-melt adhesive mainly composed of ethylene vinyl acetate resin, polyamide resin, polyurethane resin, polyolefin resin, modified silicon resin, etc. is suitable, and a mixture of these or those containing other additive components, etc. But it ’s okay.
  • the tubular terminal 311 can be heated or placed in a high temperature environment to give fluidity to the adhesive 355 attached to the tubular portion 325 any number of times. is there.
  • fluidity can be imparted to the adhesive 355 as necessary.
  • hot melt adhesives those having flexibility (elasticity) even when the hardness is increased at room temperature are preferable. More specifically, those containing ethylene vinyl acetate resin, polyurethane resin, polyolefin resin, modified silicon resin and the like as the main agent can be mentioned.
  • the melting process temperature of the adhesive agent 355 it is preferable to set the melting process temperature of the adhesive agent 355 to the maximum temperature or more in the environment where the wire connection structure 310 is arrange
  • a resin material having a melting temperature of 120 to 160 degrees is preferable if it is used in or around the vehicle interior, and is used in the engine compartment. In this case, a higher melting temperature of about 180 degrees is preferable.
  • the tubular terminal 311 is partially or entirely subjected to a treatment such as tin plating. For this reason, it is preferable that the upper limit of the melting temperature of the adhesive 355 does not exceed 231.9 degrees which is the melting point of tin. Moreover, if it has a flame retardance, it is still more preferable.
  • a polyvinyl chloride resin or a crosslinked polyvinyl chloride resin can be used.
  • a halogen-free resin non-halogen resin whose main component is polyolefin resin, ethylene-propylene rubber, silicon rubber, polyester, silicon resin, or the like can be used.
  • These halogen-free resins may be mixed with a flame retardant such as a metal hydrate.
  • the material of the conductor insulating layer 315 is selected so that a combination of the conductor insulating layer 315 and the adhesive 355 does not cause a change in physical properties due to transfer of additives, oils or solvents. Corresponding selection is preferred. Specifically, when a halogen-free resin other than a silicon resin is used for the conductor insulating layer 315, an adhesive material containing a halogen-containing resin, an oil or fat, or an organic solvent is preferably avoided as the adhesive 355.
  • the tubular caulking portion 330 is formed in a bottomed tubular shape, so that intrusion of moisture and the like is suppressed from the outside, and corrosion of the joint portion between the tubular terminal 311 and the electric wire 313 can be suppressed.
  • the conductor insulating layer 315 of the electric wire 313 and the metal material constituting the coated crimping reduced diameter part 336 are crimped and bonded via the adhesive 355 in the coated crimping reduced diameter part 336.
  • the adhesive 355 has plasticity or flexibility.
  • the gap is filled with the adhesive 355.
  • the sealing performance in the covering crimping reduced diameter portion 336 can be enhanced, and the intrusion of moisture into the internal space of the tubular caulking portion 330 can be suppressed. Therefore, since the corrosion of the core wire 314 can be suppressed, the wire connection structure 310 with higher corrosion resistance can be realized.
  • 26 and 27 are explanatory views showing a method for manufacturing the tubular terminal 311.
  • 26A is a cross-sectional view in the longitudinal direction of the tubular terminal 311, and FIG. 26B shows the chain terminal 451 before the tubular terminal 311 is formed by bending, and each part of the tubular terminal 311 and the chain terminal 451. Is shown by a broken line.
  • the surface of the adhesive 355 is indicated by hatching.
  • the manufacturing method of the tubular terminal 311 includes a punching process, a bending process (including a process of applying the adhesive 355 and a welding process), and a cutting process. In the punching process, the strip 450, which is a long metal plate, is punched out by press working to form a chain terminal 451.
  • the strip 450 is a tape-like material having a thickness of, for example, 0.25 mm, in which a metal material (copper or copper alloy in the present embodiment) is previously subjected to a treatment such as plating or surface coating.
  • the chain terminal 451 punched from the strip 450 has a plurality of terminal molded pieces 460 each forming one tubular terminal 311, and each terminal molded piece 460 is connected by a connecting tape 464. It has a shape.
  • the chain terminal 451 is a flat plate since the strip 450 is punched out. Further, when the chain terminal 451 is punched from the strip 450, at the same time, the positioning hole 465 indicating the position of each terminal molding piece 460 is punched in the connecting tape 464.
  • the terminal molding piece 460 includes a box molding part 461 that is molded into the box part 320 by bending, and a spring molding part 462 that is connected to the box molding part 461 and molded into a spring inside the box part 320 by bending. .
  • the box forming portion 461 is connected to a tubular forming portion 463 that is formed into a tubular portion 325 by bending.
  • the process of forming the box part 320 by bending the box forming part 461 a plurality of times substantially at right angles and the process of bending the spring forming part 462 into the box part 320 are performed in parallel.
  • a bending process for rounding the tubular forming portion 463 is performed.
  • the tubular forming portion 463 is first bent into a U-shaped cross section by pressing from the top and bottom directions with respect to the surface of the connecting tape 464, and then formed into a C-shaped cross section by rounding the front end side of the U shape.
  • the bending process for the box forming part 461 and the spring forming part 462 and the process for the tubular forming part 463 may be executed individually or in parallel.
  • the plurality of terminal molded pieces 460 connected by the connecting tape 464 may be bent at the same time to form the plurality of tubular terminals 311.
  • the tubular terminal 311 formed by bending is cut off from the connecting tape 464 in the cutting process.
  • the electric wire connection structure 310 is manufactured by inserting the electric wire 313 from the electric wire insertion port 331 and press-bonding the tubular terminal 311 thus manufactured as shown in FIG.
  • Serration 333 provided in the inside of the tubular portion 325 is formed by pressing the strip 450 before punching or the chain terminal 451 after punching. That is, the serration 333 may be formed by press working at a position where the strip 450 is to become the tubular forming portion 463. In this case, the serration 333 may be formed at the same time in the press work for punching the chain terminal 451 from the strip 450. Further, in the bending process, the serration 333 may be formed at the same time when the chain terminal 451 is pressed to perform the bending process.
  • a step of attaching the adhesive 355 to the chain terminal 451 is performed, and the adhesive 355 is disposed in a portion corresponding to the tube portion 327 when the tubular formed portion 463 is formed into the tubular portion 325.
  • the adhesive 355 is in a liquid, sol, or gel form
  • the adhesive 355 is disposed by a coating or dripping method.
  • the adhesive 355 is a solid material such as a hot melt adhesive
  • the adhesive 355 may be heated and melted and adhered to the chain terminal 451 in a molten state, or a sheet-like hot melt.
  • the adhesive 355 made of an adhesive may be placed on the chain terminal 451 and then heated and melted to adhere the adhesive 355 to the chain terminal 451.
  • FIG. 26 shows an example in which the adhesive 355 is attached to each tubular molded portion 463 after the punching process, but the adhesive 355 can also be attached before the punching process.
  • an adhesive 355 may be attached to the strip 450 before the punching process.
  • an adhesive 355 is attached to a position where the strip 450 is to be molded into the tubular molded portion 463 in the bending process. If this method is used, the adhesive 355 can be used without waste.
  • FIG. 27A is preferable in the case where a liquid, sol, or gel adhesive 355 is attached by a method such as coating, dropping, or spraying.
  • the adhesive 355 is attached to a region extending in the longitudinal direction of the strip 450 regardless of the position of the terminal molding piece 460.
  • the position where the adhesive 355 is attached may be adjusted by adjusting the position of the strip 450 in the width direction, and positioning of the strip 450 in the longitudinal direction is unnecessary. For this reason, there exists an advantage that the process which adheres the adhesive agent 355 can be processed rapidly.
  • the method illustrated in FIG. 27B is suitable when, for example, the adhesive 355 processed into a long sheet is attached to the strip 450.
  • Examples of the method for forming the tubular portion 325 by bending the tubular formed portion 463 include a method in which both ends of the tubular formed portion 463 are butted and joined by laser welding as described above, but the present invention is limited thereto. Not. Hereinafter, another example of the joining method of the tubular molded portion 463 will be described.
  • FIG. 28A and 28B are diagrams showing the configuration of a tubular terminal 311A according to the fourth embodiment, in which FIG. 28A is a perspective view and FIG.
  • the tubular terminal 311A has a box portion 320 similar to the tubular terminal 311 described in the third embodiment.
  • the box unit 320 is indicated by a virtual line.
  • the tubular terminal 311 has a box part 320 and a tubular part 325a, and has a transition part 340A as a bridge between them.
  • the tubular portion 325a includes a diameter-enlarged portion 326A that gradually increases in diameter from the transition portion 340A, and a tube portion 327A that extends in a cylindrical shape from the edge of the diameter-enlarged portion 326A.
  • the tubular portion 325a is a hollow tube, and an electric wire insertion port 331 into which the electric wire 313 can be inserted is opened at one end of the tubular portion 325a.
  • the other end of the tubular portion 325a is connected to the transition portion 340A.
  • the transition part 340A is configured to press the one end of the tubular part 325 so as to be crushed and overlap in a planar shape, and the intermediate position in the longitudinal direction is closed by means such as welding in the width direction. It is formed so that moisture or the like does not enter from the 340 side.
  • the electric wire 313 is inserted into the tubular portion 325a from the electric wire insertion port 331, and the tubular portion 327A is compressed by a crimping tool so that the tubular terminal 311 and the electric wire 313 are pressure bonded to each other, thereby configuring the electric wire connection structure.
  • the tubular portion 325a is configured by bending the tubular molded portion 463 shown in FIG. 26 into a C-shaped cross section.
  • the end of the tubular molded portion 463 is further bent at a substantially right angle to form rising portions 345 and 345 at the joint. Therefore, when the tubular portion 325a is a closed tube, the side surfaces of the rising portion 345 are abutted and joined.
  • the welding bead 343A has a tubular portion 325a as shown in FIG. 28B because there is a depth of the rising portion 345 that becomes the joining portion in the laser irradiation direction. It does not reach the inner surface of the tubular portion 325a.
  • the rising part 345 is provided in the tubular molding part 463, and welding is performed by irradiating a laser from the rising part (outer surface of the tubular part 325a) side of the rising part 345, so that the melting part becomes the tubular part.
  • the inner surface of 325a is not reached.
  • the tubular part 325a can be shape
  • the overlapping portion 44 may be formed by applying laser welding to the transition portion 340A in order to ensure that the end of the tubular portion 325a is closed in the transition portion 340A. .
  • FIGS. 29A and 29B are views showing the configuration of a tubular terminal 311B according to the fifth embodiment, in which FIG. 29A is a perspective view and FIG.
  • the tubular terminal 311B has a box portion 320 similar to the tubular terminal 311 described in the third embodiment.
  • the box unit 320 is indicated by a virtual line.
  • the tubular terminal 311 has a box part 320 and a tubular part 325b, and has a transition part 340B as a bridge between them.
  • the tubular portion 325b includes an enlarged diameter portion 326B that gradually increases in diameter from the transition portion 340B, and a tubular portion 327B that extends in a cylindrical shape from the edge of the enlarged diameter portion 326B.
  • the tubular portion 325b is a hollow tube, and an electric wire insertion port 331 into which the electric wire 313 can be inserted is opened at one end of the tubular portion 325b. The other end of the tubular portion 325b is connected to the transition portion 340B.
  • the electric wire 313 is inserted into the tubular portion 325b from the electric wire insertion port 331, and the tubular portion 327B is compressed by a crimping tool, whereby the tubular terminal 311 and the electric wire 313 are crimped and joined to form an electric wire connection structure.
  • the tubular portion 325b is configured by bending the tubular molded portion 463 shown in FIG. 26 into a C-shaped cross section. Here, the end portions of the tubular molded portion 463 are overlapped with each other. By irradiating the overlapping portion 346 with laser from the outer surface side of the tubular portion 325b in the overlapping direction, the tubular portion 325b is closed. When the overlapping portion 346 is joined by laser welding, since two plate materials overlap in the laser irradiation direction, the weld bead 343B remains outside the tubular portion 325b as shown in FIG. It does not reach the inner surface of the portion 325b.
  • the transition portion 340B is configured to press the one end of the tubular portion 325 so as to crush and overlap in a planar shape, and the intermediate position in the longitudinal direction is closed by means such as welding in the width direction. It is formed so that moisture or the like does not enter from the 340 side.
  • the tubular terminal 311B of the fifth embodiment can be applied with the method of attaching the adhesive 355 before the tubular portion 325b is formed into a tubular shape.
  • the laser welding does not expose the inner peripheral surface of the tubular portion 325b to a high temperature, welding can be performed without causing the adhesive 355 to melt.
  • the tubular part 325b can be shape
  • the overlapping portion 346 can be realized without increasing the number of bending processes, the influence on the productivity of the tubular terminal 311B is slight. In the case where the overlapping portion 346 is provided, the end portion of the tubular portion 325b is reliably closed in the transition portion 340B. Good.
  • Example 1 In the wire connection structure 310 of Example 1, a copper alloy FAS-680 (thickness: 0.25 mm, H material) manufactured by Furukawa Electric was used as a base material for the tubular terminal 311.
  • the alloy composition of FAS-680 is that nickel (Ni) is 2.0 to 2.8% by mass, silicon (Si) is 0.45 to 0.6% by mass, and zinc (Zn) is 0.4 to 0.55. It contains 0.1% to 0.25% by mass of tin (Sn) and 0.05 to 0.2% by mass of magnesium (Mg), with the balance being copper (Cu) and inevitable impurities.
  • the tubular portion 325 was subjected to laser welding so that both end portions of the bent C-shaped cross section were butted to have an inner diameter of 3.2 mm.
  • the core wire 314 of the electric wire 313 has an alloy composition of about 0.2% by mass of iron (Fe), about 0.2% by mass of copper (Cu), about 0.1% by mass of magnesium (Mg), and silicon (Si).
  • an element wire 314a an aluminum alloy wire (wire diameter: 0.3 mm) having approximately 0.04% by mass of aluminum and the balance being aluminum (Al) and unavoidable impurities was used. Eleven strands 314a were used to form a core wire 314 of 0.75 sq, 11 circular compression strands.
  • the conductor insulating layer 315 of the electric wire 313 used an ethylene vinyl acetate copolymer as a halogen-free resin.
  • the conductor insulating layer 315 was formed by an extrusion method around the core wire 314 so that the outer diameter was 1.4 mm.
  • an elastic adhesive mainly containing a modified silicone resin was used as the adhesive 355. This elastic adhesive exhibits elasticity even after curing.
  • This adhesive 355 was coated on the inner peripheral surface of the tubular portion 325 so as to have a thickness of about 0.25 mm.
  • the electric wire 313 was peeled off the conductor insulating layer 315 at the end of the electric wire using a wire stripper to expose the core wire 314. In this state, the electric wire 313 was inserted into the tubular portion 325 of the tubular terminal 311, and the tubular portion 327 of the tubular portion 325 was pressure-bonded by partial strong compression using the crimper 401 and the anvil 403.
  • Comparative Example 1 The wire connection structure of Comparative Example 1 was the same as Example 1 except that the adhesive 355 was not used.
  • an air leak test was performed before and after being left at high temperature.
  • the high temperature storage was left in an environment of 120 degrees Celsius for 120 hours.
  • the air leak test was performed by immersing the electric wire 313 crimp-connected to the tubular terminal 311 in water stored in the container. With the tubular terminal 311 submerged, an air tube extending from the pressurized air supply device was connected to the end of the electric wire 313 opposite to the tubular terminal 311. Pressurized air is injected at a predetermined air pressure from this pressurized air supply device, and the occurrence of bubbles from the tubular caulking portion 330 is visually determined. If bubbles are generated, Air pressure was detected. When bubbles were not generated, the pressure of pressurized air to be injected was increased to 50 kPa, and the test was completed.
  • the wire connection structure 310 of Example 1 bubbles were not generated in both the air leak test before being left at high temperature and the air leak test after being left at high temperature. Since the air pressure reached 50 kPa without generation of bubbles, the test was terminated. On the other hand, the wire connection structure of Comparative Example 1 did not generate bubbles even when the air pressure reached 50 kPa in the air leak test before leaving at high temperature, but after the high temperature was left at 10 kPa when the air pressure was 10 kPa. The generation of bubbles was visually recognized from between the insulating layers. Thereby, it became clear that the adhesive agent 355 tightly joins the tubular portion 325 and the conductor insulating layer 315 and greatly improves the water stoppage on the wire insertion port 331 side. As described above, according to the tubular terminal 311 of the present invention, by providing the adhesive in the tubular crimping portion to be crimped and joined to the electric wire, the electric wire and the terminal are firmly bonded via the adhesive.
  • an electric wire formed by coating a core wire (conductive wire) with an insulator is used, and this type of electric wire is a core wire that is exposed by peeling off the coating.
  • a metal terminal is crimped to the end.
  • the surface of the end of the core wire from which the insulator has been peeled is exposed. Therefore, when applied to applications such as vehicles, the wire is exposed to rainwater, etc. Corrosion of the core wire has been a concern when running for a long time in a humid environment.
  • the core wire material has been replaced with an aluminum-based material such as aluminum or aluminum alloy from a conventional copper-based material.
  • an aluminum-based material such as aluminum or aluminum alloy from a conventional copper-based material.
  • the electric wire and the terminal are firmly bonded to each other through the adhesive by providing the adhesive in the tubular pressure-bonded portion to be pressure-bonded to the electric wire.
  • the water stop performance can be improved and the corrosion of the wire conductor due to moisture can be suppressed.
  • the crimping process can be efficiently performed. Therefore, corrosion of the core wire can be suppressed by a configuration that can be easily manufactured without going through a complicated process. Therefore, durability against thermal cycling can be improved.
  • grease may be used instead of the adhesive 355.
  • a bell mouth 136 (see FIG. 20) whose diameter is increased outward may be formed at the rear end of the tubular portion 325 of the tubular terminal 311, and the bell mouth 136 can achieve the same effect.
  • FIG. 30 is a perspective view showing an electric wire connection structure 510 of the sixth embodiment.
  • the electric wire connection structure 510 includes a tubular terminal 511 and an electric wire 513 that is pressure-bonded to the tubular terminal 511.
  • the tubular terminal 511 has a female terminal box portion 520 and a tubular caulking portion 530, and has a transition portion 540 as a bridge between them.
  • the tubular terminal 511 is basically made of a base material made of a metal material (copper or copper alloy in the sixth embodiment) in order to ensure conductivity and strength.
  • the base material of the tubular terminal 511 is not limited to copper or a copper alloy, and aluminum, steel, an alloy containing these as a main component, or the like can also be used.
  • the tubular terminal 511 may be subjected to a plating process such as tin, nickel, silver plating, or gold on a part or all of the tubular terminal 511, for example.
  • plating process such as tin, nickel, silver plating, or gold on a part or all of the tubular terminal 511, for example.
  • not only plating but reflow processing of tin or the like may be performed.
  • the box portion 520 of the tubular terminal 511 is a box portion of a female terminal that allows insertion of an insertion tab such as a male terminal.
  • the detailed shape of the box portion 520 is not particularly limited. That is, the tubular terminal 511 only needs to include the tubular caulking portion 530 via at least the transition portion 540.
  • the tubular portion 511 may not have the box portion, and the box portion is an insertion tab of the male terminal, for example. Also good.
  • the shape by which the terminal edge part which concerns on another form to the tubular caulking part 530 may be connected. In this specification, in order to explain the tubular terminal of the present invention, an example in which a female box is provided for convenience is shown.
  • the transition part 540 of the tubular terminal 511 is configured to be pressed so that one end of the tubular part 525 is crushed and overlapped in a planar shape, and the intermediate position in the longitudinal direction is closed by means such as welding in the width direction. In addition, it is formed so that moisture or the like does not enter from the transition portion 540 side.
  • FIG. 31 is a cross-sectional view of the main part of the wire connection structure 510 in the longitudinal direction.
  • the electric wire 513 is formed by covering a core wire 514 obtained by bundling strands 514a made of a metal or alloy material with a conductor insulating layer 515 made of an insulating resin (for example, polyvinyl chloride).
  • the core wire 514 is formed by twisting the wire 514a so as to have a predetermined cross-sectional area.
  • the core wire 514 is not limited to this form, and may be formed by a single wire.
  • the metal material which comprises a core wire should just be a metal which has high electroconductivity, and may use copper or a copper alloy other than aluminum or an aluminum alloy.
  • the tubular caulking part 530 is a part that crimps and joins the tubular terminal 511 and the electric wire 513 and includes a conductor crimping reduced diameter part 535 and a coated crimping reduced diameter part 536.
  • the conductor crimped reduced diameter portion 535 and the coated crimped reduced diameter portion 536 are plastically deformed, and are reduced in diameter from the original diameter, so that the core wire tip 514b and the sheath tip of the electric wire 513 (Crimped part) 515a is crimped and joined.
  • One end of the tubular caulking portion 530 has an electric wire insertion port 531 into which the electric wire 513 can be inserted, and the other end is connected to the transition portion 540.
  • the transition portion 540 side of the tubular caulking portion 530 is closed by means such as welding, and is formed so that moisture or the like does not enter from the transition portion 540 side.
  • the core wire 514 corrodes due to the difference in electromotive force (ionization tendency) between the two metals. Further, even if the tubular terminal 511 and the core wire 514 are made of aluminum, their joints are easily corroded due to a subtle difference in alloy composition.
  • the tubular caulking portion 530 is formed in a bottomed tubular shape, so that intrusion of moisture and the like is suppressed from the outside, and corrosion of the joint portion between the tubular terminal 511 and the electric wire 513 can be suppressed.
  • the tubular caulking portion 530 is not necessarily cylindrical with respect to the longitudinal direction, and may be an elliptical or rectangular tube depending on the case because a certain effect against corrosion can be obtained if it is tubular. . Further, the diameter does not need to be constant, and the radius may change in the longitudinal direction.
  • the tubular caulking portion 530 is formed, for example, by punching a strip material made of copper or a copper alloy into a flattened shape and bending it. In this case, the box portion may be provided integrally. Since the portion corresponding to the caulking portion has a C-shaped cross section when bent from a flat state, the tubular caulking portion 530 is formed by joining both open ends and joining them by welding or the like.
  • the Laser welding is preferable for joining the tubular caulking portion 530, but welding methods such as electron beam welding, ultrasonic welding, and resistance welding may be used. Also, joining using a connection medium such as solder or solder may be used.
  • tubular caulking portion 530 is not limited to the method of joining both end portions of the C-shaped cross section, and may be formed by a deep drawing method. Further, the tubular crimping portion 530 may be formed by cutting the continuous tube and closing one end side.
  • the metal base material constituting the tubular caulking portion 530 and the electric wire 513 are mechanically bonded by pressure, thereby ensuring electrical connection at the same time.
  • the caulking is performed by plastic deformation of a base material or an electric wire (core wire).
  • the tubular caulking portion 530 needs to be designed to have a thickness so that it can be caulked and joined, but since it can be joined freely by manual machining or machining, it is particularly limited. is not.
  • the tubular caulking portion 530 is required to have a function of maintaining the electrical conduction by strongly compressing the core wire 514 and a function of maintaining the sealing performance by compressing the conductor insulating layer 515.
  • the cross section thereof is caulked into a substantially circular shape, and by applying substantially the same pressure over the entire circumference of the conductor insulating layer 515, a uniform elastic repulsive force is generated over the entire circumference. It is preferable to obtain a sealing property.
  • the inner wall surface of the tubular caulking portion 530 is provided with an electric wire locking groove (not shown) extending in the circumferential direction of the electric wire 513 at a position in contact with the core wire 514 of the electric wire 513 inserted from the electric wire insertion port 531. It is good also as a structure which maintains the contact pressure with the electric wire 513.
  • the conductor insulating layer 515 of the electric wire 513 includes a resin layer 541 made of, for example, polyvinyl chloride, and a coating tip portion (crimped portion) 515a is provided with a layer of an adhesive 555 outside the resin layer 541. It is formed as a two-layer coating layer.
  • the conductor insulating layer (covering layer) 515 has a two-layer structure with the coating tip (crimped portion) 515a.
  • the adhesive 555 is provided in the outermost layer, two or more layers are provided. Of course, you may comprise.
  • the length of the electric wire 513 is not necessarily obtained. It does not have to be provided over the entire length in the direction.
  • FIG. 32 is a perspective view showing the tubular terminal 511A and the electric wire 513 before being crimp-bonded.
  • the tubular terminal 511 ⁇ / b> A before being crimp-bonded has a box portion 520 and a tubular portion 525 of a female terminal, and has a transition portion 540 as a bridge between them.
  • the tubular portion 525 includes an enlarged diameter portion 526 that gradually increases in diameter from the transition portion 540 and a tubular portion 527 that extends in a cylindrical shape from the edge of the enlarged diameter portion 526.
  • the enlarged diameter portion 526 is formed with a conductor crimping reduced diameter portion 535 (see FIG. 30), and the cylindrical portion 527 is formed with a coated crimping reduced diameter portion 536 (see FIG. 30).
  • the tubular terminal 511A is partially or entirely subjected to a treatment such as tin plating.
  • the resin material constituting the resin layer 541 of the conductor insulating layer 515 polyvinyl chloride resin or cross-linked polyvinyl chloride resin can be used.
  • the resin layer 541 can be formed using a halogen-free resin (non-halogen resin) mainly composed of polyolefin resin, ethylene propylene rubber, silicon rubber, polyester, silicon resin, or the like.
  • halogen-free resins may be a mixture of a flame retardant such as a metal hydrate.
  • the adhesive 555 has a liquid, sol- or gel-like fluidity state, and increases the hardness through the passage of time, temperature change, moisture absorption, drying, and the like.
  • the adhesive 555 is disposed by a method such as application or spraying on the surface of the coating tip portion (crimping portion) 515a in a state having fluidity before being cured. Specifically, after applying the adhesive 555 to a predetermined region of the tip of the resin layer 541 of the electric wire 513, using a tool such as a wire stripper, the tip of the resin layer 541 applied with the adhesive 555 is applied. Part of the region (tip side) is peeled off from the core wire 514. As a result, the adhesive 555 is reliably applied in the axial direction from the tip of the resin layer 541, and the adhesive 555 can be prevented from adhering to the core wire 514 in the application process. An increase in resistance at the portion can be prevented.
  • the adhesive 555 is more flexible (in a state where the hardness is increased) in order to increase the water-stopping property after the electric wire 513 is crimped and joined to the tubular caulking portion 530 (the coated crimping reduced diameter portion 536). What has elasticity is more preferable.
  • an adhesive using a synthetic resin or a natural resin can be given.
  • Adhesives include reactive adhesives that cure by causing a chemical reaction over time, solvent-based adhesives that increase hardness by volatilization of the solvent, fluidity is developed by heating, and then cooled. Hot-melt adhesives that increase hardness are included, and solvent-based adhesives include emulsion-based adhesives.
  • More specific examples include those containing polyurethane resin, modified silicon resin, vinyl resin, polyamide resin, polyimide resin, melamine resin, urea resin and the like as main components.
  • a rubber-based adhesive in which a solvent or the like is added to silicone rubber, fluorine rubber, butyl rubber, butadiene rubber, styrene-butadiene rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, nitrile rubber or the like known as a synthetic rubber. It can also be used.
  • a particularly preferred example is a hot melt adhesive.
  • a hot-melt adhesive mainly composed of ethylene vinyl acetate resin, polyamide resin, polyurethane resin, polyolefin resin, modified silicon resin, etc. is suitable, and a mixture of these or those containing other additive components, etc. But it ’s okay.
  • a hot-melt adhesive is used as the adhesive 555, fluidity can be imparted to the adhesive 555 attached to the tip of the resin layer 541 any number of times by placing the electric wire 513 in a high temperature environment.
  • the adhesive 555 can be given fluidity as necessary.
  • those having flexibility (elasticity) even when the hardness is increased at room temperature are preferable. More specifically, those containing ethylene vinyl acetate resin, polyurethane resin, polyolefin resin, modified silicon resin and the like as the main agent can be mentioned.
  • the melting processing temperature of the adhesive 555 is preferably set to be equal to or higher than the maximum temperature in the environment where the wire connection structure 510 is disposed.
  • a resin material having a melting temperature of 120 to 160 degrees is preferable if it is used in the vehicle interior or the vicinity thereof, and is used in the engine room. In this case, a higher melting temperature of about 180 degrees is preferable.
  • the tubular terminal 511 is partially or entirely subjected to a treatment such as tin plating. For this reason, it is preferable that the upper limit of the melting temperature of the adhesive 555 does not exceed 231.9 degrees which is the melting point of tin. Moreover, if it has a flame retardance, it is still more preferable.
  • the material of the resin layer 541 is selected so that the combination of the resin layer 541 and the adhesive 555 does not cause a change in physical properties due to transfer of additives, oils and fats, or solvents.
  • the resin layer 541 an adhesive containing a halogen-containing resin, an oil or fat, or an organic solvent may be avoided as the adhesive 555.
  • the conductor insulating layer 515 of the electric wire 513 has a two-layer structure having a layer of an adhesive 555 outside the resin layer 541 at the coating tip (crimped portion) 515a. For this reason, when the electric wire 513 is crimped and joined to the tubular caulking portion 530, the inner surface of the tubular caulking portion 530 (covered crimping reduced diameter portion 536) and the surface of the resin layer 541 are brought into close contact via the adhesive 555.
  • Example 2 In the electric wire connection structure 510 of Example 2, a copper alloy FAS-680 (thickness: 0.25 mm, H material) manufactured by Furukawa Electric was used as the base material of the tubular terminal 511 (511A).
  • the alloy composition of FAS-680 is that nickel (Ni) is 2.0 to 2.8% by mass, silicon (Si) is 0.45 to 0.6% by mass, and zinc (Zn) is 0.4 to 0.55. It contains 0.1% to 0.25% by mass of tin (Sn) and 0.05 to 0.2% by mass of magnesium (Mg), with the balance being copper (Cu) and inevitable impurities.
  • the tubular portion 525 was subjected to laser welding so that both end portions of the bent C-shaped cross section were abutted and the inner diameter was 3.2 mm.
  • the core wire 514 of the electric wire 513 has an alloy composition of about 0.2% by mass of iron (Fe), about 0.2% by mass of copper (Cu), about 0.1% by mass of magnesium (Mg), and silicon (Si).
  • an element wire 514a an aluminum alloy wire (wire diameter: 0.42 mm) having approximately 0.04% by mass of aluminum and the balance being aluminum (Al) and inevitable impurities was used. 19 strands 514a were used to form a core wire 514 of 2.5 sq, 19 strands.
  • the resin layer 541 (conductor insulating layer 515) of the electric wire 513 was made of an ethylene vinyl acetate copolymer as a halogen-free resin.
  • the resin layer 541 was formed by an extrusion method around the core wire 514 so that the outer diameter was 2.8 mm.
  • an elastic adhesive mainly containing a modified silicone resin was used as the adhesive 555. This elastic adhesive exhibits elasticity even after curing. This adhesive 555 was coated on the surface of the resin layer 541 so as to have a thickness of about 0.25 mm.
  • the conductor insulating layer 515 (the resin layer 541 and the adhesive 555) at the end of the electric wire was peeled off using a wire stripper to expose the core wire 514.
  • the electric wire 513 was inserted into the tubular portion 525 of the tubular terminal 511, and the tubular portion 527 of the tubular portion 525 was pressure-bonded by partial strong compression using a crimper and an anvil.
  • Comparative Example 2 The wire connection structure of Comparative Example 2 was the same as Example 2 except that the adhesive 555 was not used.
  • an air leak test was performed before and after being left at high temperature.
  • the high temperature storage was left in an environment of 120 degrees Celsius for 120 hours.
  • the air leak test was performed by immersing the electric wire 513 crimped to the tubular terminal 511 in water stored in the container. With the tubular terminal 511 submerged, an air tube extending from the pressurized air supply device was connected to the end of the electric wire 513 opposite to the tubular terminal 511. Pressurized air is injected from the pressurized air supply device at a predetermined air pressure, and the occurrence of bubbles from the tubular caulking portion 530 is visually determined. If bubbles are generated, the compressed air supply device at the time of occurrence is checked. Air pressure was detected. When bubbles were not generated, the pressure of pressurized air to be injected was increased to 50 kPa, and the test was completed.
  • the wire connection structure 510 of Example 2 did not generate bubbles in both the air leak test before being left at high temperature and the air leak test after being left at high temperature. Since the air pressure reached 50 KPa in the absence of bubbles, the test was terminated. On the other hand, the wire connection structure of Comparative Example 2 did not generate bubbles even when the air pressure reached 50 KPa in the air leak test before being left at high temperature, but after the air was left at high temperature, when the air pressure was 10 KPa, the tubular portion and the conductor The generation of bubbles was visually recognized from between the insulating layers. Thereby, it became clear that the adhesive 555 tightly joins the tubular portion 525 and the resin layer 541 and greatly improves the water stoppage on the wire insertion port 531 side.
  • annular terminal 511 of the present invention an electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire and a tubular terminal are pressure-bonded, Since the insulating layer has two or more coating layers whose outermost layer is made of an adhesive, the tubular terminal and the conductor insulating layer of the electric wire are in close contact with each other by the adhesive layer.
  • an electric wire formed by coating a core wire (conductive wire) with an insulator is used, and this type of electric wire is a core wire that is exposed by peeling off the coating.
  • a metal terminal is crimped to the end.
  • the surface of the end of the core wire from which the insulator has been peeled is exposed. Therefore, when applied to applications such as vehicles, the wire is exposed to rainwater, etc. When running for a long time in a humid environment, there is a problem that the core wire is easily corroded.
  • the core wire material has been replaced with an aluminum-based material such as aluminum or aluminum alloy from a conventional copper-based material.
  • an aluminum-based material such as aluminum or aluminum alloy from a conventional copper-based material.
  • an electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire and a tubular terminal are pressure-bonded, and the conductor insulating layer has an outermost layer. Since it has two or more coating layers, which are layers made of an adhesive, the tubular terminal and the conductor insulating layer of the electric wire are brought into close contact with the adhesive layer. Therefore, durability against thermal cycling can be improved.
  • grease may be used instead of the adhesive 555.
  • a bell mouth 136 (see FIG. 20) whose diameter is increased outward may be formed at the rear end of the tubular portion 525 of the tubular terminal 511, and the bell mouth 136 can provide the same effect.

Abstract

【課題】この発明は、絶縁被覆側からの水分の侵入を確実に防止することができる接続構造体、コネクタ、及び接続構造体の製造方法を提供することを目的とする。【解決手段】アルミニウム芯線(201)の外周を絶縁性の絶縁被覆(202)で被覆した被覆電線(200)における絶縁被覆(202)の先端近傍に対して加締めて圧着する被覆囲繞部(131)と、絶縁被覆(202)の先端から被覆電線(200)の長手方向Xに所定の長さ露出したアルミニウム芯線(201)に対して加締めて圧着する導体圧着部(132)とで一体に構成した断面中空状のバレル部(130)を備えた圧着端子(100)におけるバレル部(130)によって、被覆電線(200)と圧着端子(100)とを接続した接続構造体(1)であって、被覆囲繞部(131)と被覆電線(200)における絶縁被覆(202)との間に、接着剤(134)を介在させたことを特徴とする。

Description

接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに電線
 この発明は、例えば自動車用ワイヤーハーネスのコネクタ等に使用されるような接続構造体、コネクタ、及び接続構造体の製造方法、
並びに電線接続構造体、電線に関する。
 自動車等に装備された電装機器は、被覆電線を束ねたワイヤーハーネスを介して、別の電装機器や電源装置と接続して電気回路を構成している。この際、ワイヤーハーネスと電装機器や電源装置とは、それぞれに装着したコネクタ同士で接続されている。 
 これらコネクタは、被覆電線に圧着して接続した圧着端子が内部に装着されており、凹凸対応して接続される雌型コネクタと雄型コネクタとを嵌合させる構成である。
 ところで、このようなコネクタは、様々な環境下で使用されているため、雰囲気温度の変化による結露などによって意図しない水分が被覆電線の表面に付着することがある。そして、被覆電線の表面を伝ってコネクタ内部に水分が侵入すると、被覆電線の先端より露出している電線導体の表面が腐食するという問題がある。
 そこで、圧着端子で圧着された電線導体への水分の侵入を防止する様々な技術が提案されている。 
 例えば、特許文献1に記載の圧着端子は、電線の導体を圧着する導体圧着部、及び電線の絶縁被覆を囲繞する被覆囲繞部で構成した電線接続部を備えた圧着端子において、被覆囲繞部に電線の長手方向と交差する方向にセレーションを設けて、被覆囲繞部と絶縁被覆との境界を凸凹状にしている。これにより、特許文献1の圧着端子は、水分の侵入経路を複雑にして絶縁被覆側からの水分の侵入を防止するとされている。
 しかしながら、特許文献1のような圧着端子は、単に凹状からなるセレーションを被覆囲繞部に設けただけの構成であるため、被覆囲繞部を確実に圧着しなければ、セレーションによる止水性をより確実にすることができないという問題がある。
特開2011-216253号公報
 この発明は、上述の問題に鑑み、絶縁被覆側からの水分の侵入を確実に防止することができるとともに、熱サイクルに対する耐久性を向上できる接続構造体、コネクタ、及び接続構造体の製造方法を提供することを目的とする。
 この発明は、電線導体の外周を絶縁性の絶縁被覆で被覆した被覆電線における前記絶縁被覆の先端近傍を囲繞する被覆囲繞部と、前記絶縁被覆の先端から前記被覆電線の長手方向に所定の長さ露出した前記電線導体に対して加締めて圧着する導体圧着部とで一体に構成した断面中空状の電線接続部を備えた圧着端子における前記電線接続部によって、前記被覆電線と前記圧着端子とを接続した接続構造体であって、前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させたことを特徴とする。
 上記圧着端子は、断面中空状の電線接続部を有するクローズバレル形式の端子であり、一対構成した端子組の他方の端子の接続部との接続を許容する接続部を有する接続端子、あるいは電線接続部のみで構成する端子であることを含む。
 上記樹脂材料は、例えば、合成樹脂やゴムなどの有機系樹脂材料に限らず、無機系樹脂材料で構成することができ、具体的には、グリスや接着剤とすることができる。 
 上記樹脂材料を被覆囲繞部と被覆電線における絶縁被覆との間に介在させるとは、被覆電線における絶縁被覆に樹脂材料を塗布すること、被覆囲繞部に樹脂材料を塗布すること、または被覆囲繞部と被覆電線における絶縁被覆との間に樹脂材料を注入することを含む概念である。
 この発明によれば、絶縁被覆側からの水分の侵入を確実に防止することができる。 
 具体的には、樹脂材料が、被覆囲繞部と被覆電線における絶縁被覆との間を接着することにより、圧着端子における絶縁被覆側の端部から被覆囲繞部の内部に水分が侵入することを防止できる。特に、樹脂材料を使用することにより、被覆囲繞部と被覆電線における絶縁被覆との隙間を長期間にわたって確実に閉塞することができるため、絶縁被覆側からの水分の侵入をより確実に防止することができるとともに、熱サイクルに対する耐久性を向上することができる。
 この発明の態様として、前記樹脂材料を、前記被覆電線における前記絶縁被覆に備えた構成とすることができる。 
 上記備えたとは、被覆電線の所定箇所に液状の樹脂材料を滴下や噴射、塗布することで備えるだけでなく、被覆電線の所定箇所を液状の樹脂材料漕に浸漬する、被覆電線における絶縁被覆に樹脂材料を印刷する、あるいは被覆電線の所定箇所にシール状の樹脂材料に張り付けることを含む概念である。
 この発明によれば、被覆囲繞部と被覆電線における絶縁被覆との間に、樹脂材料を容易に介在させることができる。 
 具体的には、被覆電線における絶縁被覆に樹脂材料を塗布した後、電線接続部に被覆電線を挿入するだけで、被覆囲繞部と被覆電線における絶縁被覆との間に樹脂材料を介在させることができる。このため、被覆囲繞部に樹脂材料を塗布する構成、または被覆囲繞部と被覆電線における絶縁被覆との間に樹脂材料を注入する構成に比べて、被覆囲繞部と被覆電線における絶縁被覆との間に、樹脂材料を容易に介在させることができる。
 また、この発明の態様として、前記電線導体を、複数本の素線を束ねて構成するとともに、前記樹脂材料を、前記複数本の素線間に浸透しない程度の粘度を有する構成とすることができる。 
 この発明により、樹脂材料が複数本の素線間に浸透することで、素線を束ねて構成する電線導体の導電性低下という悪影響が生じることを防止できる。
 また、この発明の態様として、前記樹脂材料を、硬化性の合成樹脂材で形成するとともに、前記被覆囲繞部と前記絶縁被覆との間に介在させた状態で硬化させることができる。
 この発明によれば、前記樹脂材料を、硬化性の合成樹脂材で形成しているため、例えば、熱、紫外線、湿気など様々な外的要因によって容易に、且つ、確実に硬化させることができる。
 しかも、例えば、熱硬化、紫外線硬化、あるいは湿気硬化で前記樹脂材料を硬化させた場合、熱、紫外線、あるいは湿気などの外的要因によって前記樹脂材料が不測に軟化することがないため、接続構造体の止水性が低下することを防止できる。
 従って、接続構造体は、自動車のような過酷な使用環境下であっても、長期間に亘って安定した止水性を確保することができる。
 さらに、前記樹脂材料を、硬化性の合成樹脂材で形成することで、接続構造体は、振動などによる外力が被覆電線に加わった際、電線接続部における絶縁被覆側の端部に対して、被覆電線が過度に湾曲することを防止できる。
 このため、接続構造体は、絶縁被覆が電線接続部の端部に対して接触して損傷することを防止するとともに、前記被覆囲繞部と前記絶縁被覆との間に介在させた樹脂材料が容易に剥離することを防止できる。
 従って、接続構造体は、硬化性の合成樹脂材で形成した前記樹脂材料を備えることで、湿気、気温変動、振動、絶縁被覆の経年劣化などの外的要因による止水性の低下を防止することができ、より長期間に亘って安定した止水性と導電性とを確保することができる。
 ここで、前記合成樹脂材は、例えば、熱、紫外線、外力などの外的要因により誘発される化学反応によって、又は、硬化剤、水分などの外的要因との化学反応によって、硬化する樹脂(化学反応型硬化樹脂)で形成することができる。
 化学反応型硬化樹脂としては、例えば、熱硬化性樹脂、熱可塑性樹脂、紫外線(UV)硬化樹脂、硬化剤混合型樹脂、湿気硬化型樹脂、嫌気硬化型樹脂、或いは、加圧により硬化する加圧硬化樹脂を挙げることができる。
 具体的には、熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドを挙げることができる。
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)を挙げることができる。
 紫外線(UV)硬化樹脂としては、例えば、アクリルレート、不飽和ポリエステルを主成分とするラジカル型、又は、エポキシ、オキセタン、ビニルエーテルを主成分とするカチオン型を挙げることができる。
 例えば、ラジカル型としてのUV硬化型シリコーン樹脂の場合は、主成分である多官能性シリコーンオリゴマーに、光重合開始剤を含有させたものであり、紫外線の照射を受けると、この光重合開始剤が励起状態となって前記シリコーンオリゴマーを重合させるためのラジカルを生成する構成となっている。 
 硬化剤混合型樹脂としては、例えば、エポキシ樹脂などの本剤と硬化剤との2液を混合させて硬化する樹脂を挙げることができる。
 湿気硬化型樹脂は、触媒の存在下、例えば、空気中の湿気と反応して硬化する樹脂であり、例えば、湿気硬化型シリコーン樹脂や、湿気硬化型ウレタン系接着性樹脂を挙げることができる。
 嫌気硬化型樹脂は、金属部で空気を遮断すると硬化する樹脂であり、例えば、アクリレート系(アクリル樹脂系)を挙げることができる。
 また、この発明の態様として、前記樹脂材料を、前記被覆囲繞部の端面と前記被覆電線における前記絶縁被覆の外周面との段差に備えた構成とすることができる。 
 上述の前記被覆囲繞部の端面と前記被覆電線における前記絶縁被覆の外周面との段差は、電線接続部に対する被覆電線の入口を構成しており、該入口に被覆電線を挿入し、被覆電線と圧着端子とを圧着接続することにより、被覆囲繞部の端面と被覆電線における絶縁被覆の外周面との間に、被覆囲繞部の端面の全周にわたって形成される段差を意味しており、さらには上述の段差に備えた構成とは、上記段差を形成する被覆囲繞部の端面と絶縁被覆の外周面とを跨ぐよう塗布することを意味している。
 但し、前記樹脂材料は、前記被覆囲繞部の端面と前記被覆電線における前記絶縁被覆の外周面との段差に限らず、電線接続部の外周全体、電線接続部の長手方向の先端側など、前記電線接続部と前記絶縁被覆との接続部分において、少なくとも前記被覆囲繞部の端面と前記絶縁被覆の外周面との段差に備えることができる。
 この発明によれば、電線接続部に対する被覆電線の入口において、被覆囲繞部の端面の全周にわたって塗布した樹脂材料により水分の侵入を阻止することができるため、絶縁被覆側からの水分の侵入をより確実に防止することができる。
 また、この発明の態様として、前記段差に備えた前記樹脂材料は、前記被覆囲繞部の端部側の外周面を跨ぐように塗布することができる。 
 上述した構成によれば、前記被覆囲繞部と前記絶縁被覆との間の止水性を確実に確保することができる。
 具体的には、上述した構成により、前記被覆囲繞部の端面と前記被覆電線における前記絶縁被覆の外周面との段差近傍において、前記被覆囲繞部の端部側の外周面から前記絶縁被覆の外周面にかけて前記樹脂材料を連続するように形成することができるため、前記樹脂材料を、少なくとも前記被覆囲繞部の端部側の外周面、及び絶縁被覆の外周面に密着させることができる。
 このため、例えば、電線接続部と絶縁被覆とを圧着接続した場合、前記被覆囲繞部の内外径変化や絶縁被覆の外径変化などによって、仮に、前記被覆囲繞部と絶縁被覆との間に水分の浸入経路が形成されても、前記樹脂材料によって前記被覆囲繞部の端部側からの水分の浸入を防止することができる。
 さらに、例えば、被覆電線の配索状態や、振動によって被覆電線が湾曲することで、前記被覆囲繞部と絶縁被覆との密着性が低下し、電線接続部と絶縁被覆との間に隙間が生じた場合であっても、前記段差に備えた前記樹脂材料は、前記被覆囲繞部の端部側から該被覆囲繞部の内部へ水分が侵入することを防止することができる。
 これにより、接続構造体は、長期間に渡って安定した止水性を確保することができるため、安定した導電性を確保することができる。
 さらにまた、例えば、接続構造体は、長期間に亘って外気と触れることにより、電線接続部と絶縁被覆との接続部分において、電線接続部の腐食や絶縁被覆の劣化が生じることがある。このため、電線接続部と絶縁被覆との間に隙間が生じて止水性が低下するおそれがある。
 これに対して、前記樹脂材料を、前記被覆電線の全周に亘って介在させることで、接続構造体は、絶縁被覆と被覆囲繞部の端部との境界部分において、被覆囲繞部及び絶縁被覆が外気と直接的に接触することを防止できる。
 このため、接続構造体は、絶縁被覆と被覆囲繞部の端部との境界部分において、被覆囲繞部及び絶縁被覆が長期間に亘って外気と触れることによる被覆囲繞部の腐食や絶縁被覆の劣化を、前記樹脂材料によって防止することができる。これにより、接続構造体は、長期間に亘って安定した止水性、及び導電性を確保することができる。
 また、この発明の態様として、前記樹脂材料を、前記被覆電線の全周に亘って介在させることができる。
 上述したように、前記被覆電線の全周に亘って前記被覆囲繞部と絶縁被覆との間に前記樹脂材料を介在させることにより、止水性を向上させることができる。 
 特に、前記樹脂材料を、前記被覆電線の全周に亘って介在させることで、接続構造体は、前記被覆囲繞部を絶縁被覆に対して加締めて圧着せずとも、前記被覆囲繞部の端部側からの水分の浸入を確実に防止することができる。
 従って、接続構造体は、前記被覆囲繞部と絶縁被覆との間の止水性を容易に向上するとともに、より安定した導電性を確保することができる。
 また、この発明の態様として、前記樹脂材料を、接着剤成分をカプセルで封入したカプセル状に構成するとともに、前記被覆囲繞部を圧着する際の前記カプセルの圧潰によって、前記被覆囲繞部と前記被覆電線における前記絶縁被覆とを接着するカプセル状接着剤で構成することができる。 
 上記カプセル状接着剤は、接着剤成分を封入したマイクロカプセルで構成することができる。
 この発明によれば、被覆囲繞部を圧着する際に、同時にカプセル状接着剤のカプセルを被覆囲繞部内に配置するとともに、前記カプセルを圧潰し、被覆囲繞部と被覆電線における絶縁被覆とを接着することができる。このため、被覆囲繞部を圧着する前に、カプセル状接着剤の接着剤成分がカプセルの外部に漏れ出すことがなく、電線導体等の予期せぬ部分に接着剤成分が付着することを防止することができる。 
 さらには、被覆囲繞部を圧着する際に、同時にカプセル状接着剤のカプセルを圧潰することができるため、作業効率を向上することができる。
 また、この発明の態様として、前記導体圧着部に、長手方向の先端側に向けて延設するとともに、前記長手方向における先端を封止した封止部を備えることができる。
 上述した構成によれば、圧着端子は、導体圧着部の長手方向の先端側(導体露出部側)の開口からの導体圧着部の内部への水分の浸入を防止することができる。さらに、封止部、及び前記被覆囲繞部と前記絶縁被覆との間に備えた上述の樹脂材料により、接続構造体は、圧着状態における導体圧着部の内部を密閉状態にすることができる。
 従って、接続構造体は、圧着状態における導体圧着部の内部を密閉状態にすることで、確実な止水性を確保するととともに、より安定した導電性を確保することができる。
 また、この発明の態様として、前記電線導体を、アルミ系材料で構成するとともに、少なくとも前記電線接続部を、銅系材料で構成することができる。 
 この発明によれば、銅線による電線導体を有する被覆電線に比べて軽量化できるとともに、上述した確実な止水性により、いわゆる異種金属腐食(以下において電食という)を防止することができる。
 具体的には、被覆電線の電線導体に従来用いられていた銅系材料をアルミニウムあるいはアルミニウム合金などのアルミ系材料に置き換え、そのアルミ系材料製の電線導体を圧着端子に圧着した場合においては、端子材料の錫めっき、金めっき、銅合金等の貴な金属との接触により、卑な金属であるアルミ系材料が腐食される現象、すなわち電食が問題となる。
 なお、電食とは、貴な金属と卑な金属とが接触している部位に水分が付着すると、腐食電流が生じ、卑な金属が腐食、溶解、消失等する現象である。この現象により、圧着端子の電線接続部に圧着されたアルミ系材料製の導体部分が腐食、溶解、消失し、やがては電気抵抗が上昇する。その結果、十分な導電機能を果たせなくなるという問題があった。 
 しかしながら、上述した確実な止水性により、銅系材料による導体部分を有する被覆電線に比べて軽量化を図りながら、いわゆる電食を防止することができる。
 また、この発明は、上述の接続構造体における圧着端子をコネクタハウジング内に配置したコネクタであることを特徴とする。 
 この発明によれば、安定した導電性を確保したまま圧着端子を接続することができる。
 具体的には、例えば、雌型のコネクタと雄型のコネクタを互いに嵌合して、各コネクタのコネクタハウジング内に配置した圧着端子を互いに接続する際、止水性を確保したまま各コネクタの圧着端子を互いに接続することができる。 
 したがって、コネクタは、確実な導電性を備えた接続状態を確保することができる。
 また、この発明は、電線導体の外周を絶縁性の絶縁被覆で被覆した被覆電線における前記絶縁被覆の先端近傍に対して加締めて圧着する被覆囲繞部と、前記絶縁被覆の先端から前記被覆電線の長手方向に所定の長さ露出した前記電線導体に対して加締めて圧着する導体圧着部とで構成した断面中空状の電線接続部を備えた圧着端子における前記電線接続部によって、前記被覆電線と前記圧着端子とを圧着接続する接続構造体の製造方法であって、前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させた後、前記被覆電線と前記圧着端子とを圧着接続することを特徴とする。
 この発明によれば、絶縁被覆側からの水分の侵入を確実に防止することができる。 
 具体的には、被覆電線と圧着端子とを圧着接続する際に、被覆囲繞部と被覆電線における絶縁被覆との間を確実に接着することができる。樹脂材料が、被覆囲繞部と被覆電線における絶縁被覆との間を接着することにより、圧着端子における絶縁被覆側の端部から被覆囲繞部の内部に水分が侵入することを防止できる。特に、樹脂材料を使用することにより、被覆囲繞部と被覆電線における絶縁被覆との隙間を長期間にわたって確実に閉塞することができるため、絶縁被覆側からの水分の侵入をより確実に防止することができる。
 また、この発明の態様として、前記被覆囲繞部の内周面と前記絶縁被覆の外周面とのうち少なくとも一方の周面に、樹脂材料を塗布した後、前記被覆電線の先端を前記電線接続部の内部に挿入することで、前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させることができる。
 上述した構成によれば、前記被覆電線の先端を前記電線接続部の内部に挿入する前に、前記被覆囲繞部の内周面と前記絶縁被覆の外周面とのうち少なくとも一方の周面に、樹脂材料を塗布することにより、前記被覆囲繞部の内周面と前記絶縁被覆の外周面との間に、前記被覆電線の先端を挿入した状態で介在させる場合と比較して、樹脂材料を、前記被覆囲繞部の内周面と前記絶縁被覆の外周面との間にスムーズに且つ、斑なく確実に介在させることができる。
 また、この発明の態様として、前記樹脂材料を、前記被覆電線の先端を前記被覆囲繞部の内部に挿入した状態における、前記被覆囲繞部の内周面と前記被覆電線の外周面との間隔よりも厚くなるように、前記被覆電線の先端を前記被覆囲繞部の内部に挿入前に、前記被覆電線の外周面に塗布することができる。
 上述した構成によれば、前記樹脂材料を、前記被覆囲繞部の内周面と前記被覆電線の外周面との間隔よりも厚くなるように前記被覆電線の外周面に塗布したため、前記被覆電線の先端を前記被覆囲繞部の内部に挿入する際に、前記被覆電線の外周面に塗布した前記樹脂材料を、前記被覆囲繞部の内周面と前記被覆電線の外周面との間に確実に行き渡らせることができる。さらに、前記被覆電線の先端を前記被覆囲繞部の内部に挿入する際に、前記樹脂材料の一部が前記被覆囲繞の端面に当接することによって、十分な前記樹脂材料を前記被覆囲繞部の端部側に備えることができるため、被覆囲繞部の内周面と被覆電線の外周面との隙間を確実に閉塞することができる。
 ここで前記樹脂材料を、前記被覆電線の先端を前記被覆囲繞部の内部に挿入した状態における、前記被覆囲繞部の内周面と前記被覆電線の外周面との間隔よりも厚くなるように、前記被覆電線の外周面に塗布した後、前記被覆電線の先端を前記電線接続部の内部に挿入し、その状態で、前記被覆電線と前記圧着端子とを圧着接続する際に、前記電線導体に対して導体圧着部のみを加締めて圧着してもよく、また、前記電線導体に対して導体圧着部を加締めて圧着するに加えて、前記絶縁被覆に対して前記被覆囲繞部も加締めて圧着してもよい。
 特に、前記樹脂材料は、前記被覆囲繞部を前記被覆電線に対して圧着しない場合は、前記被覆囲繞部と前記被覆電線との間において、前記被覆電線の全周に亘って備えることが好ましい。
 また、この発明の態様として、前記樹脂材料を、前記被覆囲繞部の内部に前記被覆電線の先端を挿入した状態における、前記被覆囲繞部の内周面と前記被覆電線の外周面との間よりも薄くなるように、前記被覆電線の外周面に塗布し、前記被覆電線と前記圧着端子とを圧着接続する際に、前記電線接続部の内部に挿入した前記被覆電線における前記絶縁被覆に対して前記被覆囲繞部を加締めて圧着することができる。
 この発明によれば、前記樹脂材料を少ない塗布量に抑えることができるため、接続構造体の軽量化を図ることができるとともに、前記樹脂材料の材料コストを低減することができる。
 また、上述したように、前記樹脂材料を、前記被覆囲繞部の内周面と前記被覆電線の外周面との間よりも薄くなるように、前記被覆電線の外周面に塗布した場合であっても、前記被覆電線と前記圧着端子とを圧着接続する際に、前記絶縁被覆に対して前記被覆囲繞部を加締めて圧着するため、前記絶縁被覆の外周面と前記被覆囲繞部の内周面との間に、樹脂材料が介在した状態で隙間なく、前記被覆電線と前記圧着端子とを圧着接続することができる。
 この発明の態様として、前記樹脂材料を、前記被覆電線における前記絶縁被覆に塗布した後、前記絶縁被覆の先端から前記電線導体を露出させ、前記被覆電線と前記圧着端子とを圧着接続する構成とすることができる。
 上記樹脂材料は、電線導体を露出させる前の被覆電線における絶縁被覆の先端から、被覆電線の長手方向に所定範囲だけ塗布する構成とすることができる。 
 上記所定範囲は、電線導体を露出させる範囲以上、かつ圧着端子が圧着接続される範囲以下とすることができる。
 この発明によれば、被覆電線における絶縁被覆に樹脂材料を塗布した上で、絶縁被覆の先端から電線導体を露出させることにより、電線導体を露出させた部分の絶縁被覆を樹脂材料とともに除去することができる。このため、被覆電線に残った絶縁被覆の先端、すなわち露出した電線導体と絶縁被覆の境界まで、被覆囲繞部との間に樹脂材料を介在させることができる。
 したがって、絶縁被覆において、必要な範囲内で広範囲にわたって樹脂材料を塗布することができるため、接着力が向上し、絶縁被覆側からの水分の侵入をより確実に防止することができる。 
 さらには、電線導体が露出する部分において、樹脂材料を容易に除去することができるとともに、電線導体に樹脂材料が付着することを防止できるため、安定した導電性を確保することができる。
 また、この発明の態様として、前記被覆電線の先端部を、液体からなる前記樹脂材料に漬けることにより、前記被覆電線における前記絶縁被覆に塗布する構成とすることができる。 
 上記被覆電線の先端部は、電線導体を露出させる前の被覆電線における絶縁被覆の先端から、被覆電線の長手方向に所定範囲とすることができる。 
 上記所定範囲は、電線導体を露出させる範囲以上、かつ圧着端子が圧着接続される範囲以下とすることができる。
 この発明によれば、被覆電線の先端部を、液体からなる樹脂材料に漬けるだけで、絶縁被覆の必要な範囲に樹脂材料を容易に塗布することができるため、作業効率を向上することができる。 
 さらには、被覆電線の先端部を、液体からなる樹脂材料に漬けることにより、絶縁被覆の必要な範囲に樹脂材料をムラなく塗布することができるため、接着力が向上し、絶縁被覆側からの水分の侵入をより確実に防止することができる。
 また、この発明の態様として、前記絶縁被覆の先端から前記電線導体を露出させる際に、前記樹脂材料を前記被覆電線における前記絶縁被覆に塗布した後、前記被覆電線と前記圧着端子とを圧着接続する構成とすることができる。 
 この発明により、樹脂材料が複数本の素線間に浸透することで、素線を束ねて構成する電線導体の導電性低下という悪影響が生じることを防止できる。
 また、本発明は、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とが圧着結合した電線接続構造体であって、前記導体絶縁層と前記管状端子とが樹脂材料を介して接合したことを特徴とする。
 この構成において、前記端子が銅または銅合金製であって、前記電線の導体がアルミニウムまたはアルミニウム合金製である構成としてもよい。 
 また、前記樹脂材料は、グリスや接合状態では硬化されており、硬化前には流動性を有する接着剤からなる構成としてもよい。
 また、前記管状端子は、導体を接合した接合部を有し、前記接合部における前記導体の厚みが前記接合部以外の部分よりも厚く、前記接合部の内側に前記樹脂材料が配置された構成としてもよい。
 また、前記導体絶縁層は、ハロゲンフリー樹脂組成物により構成された層を含む構成としてもよい。或いは、前記導体絶縁層は、ポリ塩化ビニル樹脂により構成された層を含む構成としてもよい。
 また、本発明の端子は、電線とともに圧着されて接合される管状の圧着予定部を有し、前記圧着予定部に樹脂材料が配置されたことを特徴とする。
 この構成において、前記樹脂材料は、前記圧着予定部の軸方向における少なくとも一部に、前記圧着予定部の内周面に沿って環状に配置された構成としてもよい。また、前記樹脂材料は、硬化後に可撓性を有する構成としてもよい。また、前記樹脂材料は、熱可塑性を有する材料により構成されてもよい。
 さらにまた、本発明は、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、管状端子とが圧着結合した電線接続構造体であって、前記導体絶縁層は、最外層が樹脂材料からなる層である二層以上の被覆層を有することを特徴とする。
 この構成において、前記樹脂材料は、グリスや接合状態では硬化されており、硬化前には流動性を有する接着剤からなる構成としても良い。また、前記樹脂材料は、硬化後に可撓性を有しても良い。また、前記管状端子は、銅または銅合金からなり、前記電線の導体は、アルミニウムまたはアルミニウム合金からなる構成としても良い。また、前記導体絶縁層は、ハロゲンフリー樹脂組成物により構成された層を含んでも良い。また、前記導体絶縁層は、ポリ塩化ビニル樹脂により構成された層を含んでも良い。
 また、本発明は、電線であって、芯線と前記芯線の外周に形成された導体絶縁層とを有し、前記導体絶縁層は、最外層が樹脂材料からなる層である二層以上の被覆層を有することを特徴とする。この構成において、前記被覆層は軸方向に部分的に形成されていても良い。
 この発明により、絶縁被覆側からの水分の侵入を確実に防止することができるとともに、熱サイクルに対する耐久性を向上できる接続構造体、コネクタ、及び接続構造体の製造方法を提供することができる。
被覆電線、及び圧着端子における上方からの外観を示す外観斜視図。 バレル部における溶接について説明する説明図。 図1中のA-A矢視断面における圧着工程を説明する説明図。 接続構造体の断面形状を示す断面図。 メス型コネクタとオス型コネクタの接続対応状態を示す斜視図。 接続構造体における別の断面形状を説明する説明図。 接続構造体における別の断面形状を説明する説明図。 カプセル状接着剤の構成を説明する説明図。 第2実施形態Aの接続構造体の製造方法の説明図。 第2実施形態Aの圧着工程、及び、接続構造体を説明する説明図。 第2実施形態Aの他の圧着工程、及び、他の接続構造体の説明図。 第2実施形態Bの接続構造体の製造方法の説明図。 第2実施形態Bの圧着工程、及び、接続構造体を説明する説明図。 第2実施形態Cの接続構造体の製造方法の説明図。 第2実施形態Cの接続構造体の製造方法の説明図。 第2実施形態Cの圧着工程、及び、接続構造体を説明する説明図。 第2実施形態Cの他の圧着工程、及び、他の接続構造体の説明図。 被覆電線における絶縁被覆の外周面に樹脂材料を塗布する方法を説明する説明図。 被覆電線における絶縁被覆の外周面に樹脂材料を塗布する別の方法を説明する説明図。 接続構造体における別の断面形状を説明する説明図。 本発明を適用した第3実施形態にかかる管状端子を示す斜視図である。 管状端子の断面図であり、(A)は長手方向における要部断面図であり、(B)は筒部における横断面図である。 管状端子に対する圧着加工の説明図である。 電線接続構造体の構成を示す図であり、(A)は斜視図、(B)は管状かしめ部の長手方向断面を示す断面図である。 管状かしめ部の径方向断面を示す横断面図である。 管状端子の製造方法を示す説明図である。 管状端子の製造方法を示す説明図である。 第4実施形態に係る管状端子を示す図である。 第5実施形態に係る管状端子を示す図である。 第6実施形態にかかる電線接続構造体を示す斜視図である。 電線接続構造体の長手方向の要部断面図である。 圧着結合する前の管状端子と電線とを示す斜視図である。
 この発明の一実施形態を以下図面と共に説明する。 
 [第1実施形態]
 まず、本実施例における被覆電線200、及び圧着端子100について図1、及び図2を用いて詳しく説明する。 
 なお、図1は被覆電線200、及び圧着端子100における上方からの外観斜視図を示し、図2はバレル部130における溶接について説明する説明図を示している。
 また、図1中において、矢印Xは長手方向を示し(以下「長手方向X」とする)、矢印Yは幅方向を示している(以下、「幅方向Y」とする)。さらに、長手方向Xにおいて、後述するボックス部110側(図中の左側)を前方とし、ボックス部110に対して後述する被覆電線200側(図中の右側)を後方とする。 
 また、図2(a)は、ボックス部110を二点鎖線で示す透過状態とした圧着端子100の底面側の概略斜視図を示し、図2(b)は図2(a)におけるZ部拡大図を示している。
 被覆電線200は、アルミニウム素線201aを束ねたアルミニウム芯線201を、絶縁樹脂で構成する絶縁被覆202で被覆して構成している。詳しくは、アルミニウム芯線201は、断面が、例えば0.75mmとなるように、アルミニウム合金線を撚って構成している。さらに、被覆電線200は、絶縁被覆202の先端から所定の長さアルミニウム芯線201を露出させている。
 なお、被覆電線200は、アルミニウムやアルミニウム合金を構成するアルミニウム芯線201だけでなく、銅や銅合金で構成する銅系芯線であってもよく、アルミニウム芯線201の断面を0.75mmとするだけに限らない。
 圧着端子100は、メス型端子であり、長手方向Xの前方から後方に向かって、図示省略するオス型端子のオスタブの挿入を許容するボックス部110と、ボックス部110の後方で、所定の長さのトランジション部120を介して配置されたバレル部130とを一体に構成している。
 この圧着端子100は、表面が錫メッキ(Snメッキ)された黄銅等の銅合金条(図示せず)を、平面展開した端子形状に打ち抜いた後、中空四角柱体のボックス部110と後方視略O型のバレル部130とからなる立体的な端子形状に曲げ加工するとともに、バレル部130を溶接して構成したクローズバレル形式の端子である。
 ボックス部110は、底面部111の長手方向Xと直交する幅方向Yの両側部に連設された側面部112の一方を、他方の端部に重なり合うように折り曲げて、長手方向Xの前方側から見て略矩形の倒位の中空四角柱体で構成されている。
 さらに、ボックス部110の内部には、底面部111における長手方向Xの前方側を延設して、長手方向Xの後方に向かって折り曲げて形成され、挿入されるオス型端子の挿入タブ(図示省略)に接触する弾性接触片113(図3参照)を備えている。
 バレル部130は、絶縁被覆202を圧着する被覆囲繞部131(被覆圧着部131)と、露出したアルミニウム芯線201を圧着する導体圧着部132とを一体で構成するとともに、導体圧着部132より前方端部を略平板状に押しつぶすように変形させた封止部133で構成している。
 このバレル部130は、図2に示すように、端子形状に打ち抜いた銅合金条におけるバレル部130を被覆電線200の外周を包囲する大きさに丸めるとともに、丸めた端部130a同士を突き合わせて長手方向Xの溶接個所W1に沿って溶接して後方視略O型に形成している。換言すると、バレル部130は、幅方向Y且つ高さ方向における断面形状を閉断面形状に形成している。
 さらに、バレル部130の封止部133は、図2に示すように、バレル部130の長手方向Xの前端を、面状に重ね合せて面状を構成するとともに、閉塞するように、長手方向Xの中間位置において幅方向Yの溶接個所W2に沿って溶接して封止している。 
 つまり、バレル部130は、長手方向Xの前端、及び端部130a同士を溶着して閉塞して、長手方向Xの後方に開口を有する略筒状に形成されている。
 次に、このような構成の圧着端子100のバレル部130に被覆電線200を挿入するとともに、バレル部130を加締めて圧着する工程、及び圧着後の接続構造体1について、図3及び図4を用いて詳しく説明する。
 なお、図3は図1中のA-A矢視断面における圧着工程を説明する説明図を示し、図4は接続構造体1の断面形状の断面図を示している。 
 さらに、図3(a)は図1中のA-A矢視断面図を示し、図3(b)は被覆電線200を挿入した圧着端子100に対して圧着工具10で加締めて圧着する工程を説明する説明図を示している。
 図3(a)に示すように、圧着端子100のバレル部130における被覆囲繞部131には、接着剤134を予め塗布している。接着剤134は、例えば、熱硬化性樹脂としてのエポキシ樹脂で形成している。接着剤134は、圧着端子100の製造時に被覆囲繞部131に塗布してもよいし、圧着直前に被覆囲繞部131に塗布してもよい。 
 接着剤134は、被覆囲繞部131の内周面に沿って、均一な厚みで塗布することが好ましい。
 被覆電線200における圧着される領域全体に対応させて、被覆囲繞部131の内周面に接着剤134を塗布すれば、該領域全体にわたって接着することができる。 
 ただし、これに限定せず、被覆電線200における圧着される領域よりも長手方向Xに狭い領域に対応させて、被覆囲繞部131の内周面に接着剤134を塗布する構成としてもよい。
 上述した圧着端子100のバレル部130に対して、図3(a)に示すように、後方からアルミニウム芯線201が露出した被覆電線200を内部に挿入する。この際、露出したアルミニウム芯線201が、図3(b)に示すように、導体圧着部132に配置されるように挿入する。 
 その後、図3(b)に示すように、被覆電線200を挿入した圧着端子100のバレル部130に対して、アンビルとクリンパで構成された1組の圧着工具10で挟み込むようにして圧着する。
 この1組の圧着工具10は、図3(b)に示すように、アンビルとなる第1圧着型11、及びクリンパとなる第2圧着型12で構成されている。さらに、圧着工具10の内面形状は、圧着後における被覆囲繞部131、及び導体圧着部132の外面形状に応じた形状に形成されている。
 このような1組の圧着工具10で挟み込むようにして被覆電線200を挿入した導体圧着部132、及び被覆囲繞部131を加締め、アルミニウム芯線201、及び絶縁被覆202を圧着して接続構造体1を構成する。
 具体的には、接続構造体1は、図4に示すように、圧着工具10で導体圧着部132を加締めることで、導体圧着部132とアルミニウム芯線201とが圧着して導通可能に接続されている。さらに、圧着工具10で被覆囲繞部131を加締めることで、被覆囲繞部131と絶縁被覆202とが圧着して接続されている。
 さらには、被覆囲繞部131と被覆電線200における絶縁被覆202との間に接着剤134を介在させた後、被覆囲繞部131を圧着することにより、被覆囲繞部131と絶縁被覆202との間を接着する。
 このようにして圧着端子100のバレル部130を加締めて被覆電線200を圧着して接続するとともに、アルミニウム芯線201と圧着端子100との導通性を確保した接続構造体1を構成する。
 次に、上述した接続構造体1をコネクタハウジングの内部に装着したコネクタについて図5を用いて説明する。 
 なお、図5はメス型コネクタ21とオス型コネクタ31の接続対応状態の斜視図を示し、図5中においてオス型コネクタ31を二点鎖線で図示している。
 メス型コネクタハウジング22は、圧着端子100を長手方向Xに沿って装着可能な複数のキャビティを内部に有して、幅方向Y且つ高さ方向における断面形状が略矩形状のボックス形状に形成している。このようなメス型コネクタハウジング22の内部に対して、上述した圧着端子100で構成した複数の接続構造体1を長手方向Xに沿って装着してメス型コネクタ21を備えたワイヤーハーネス20を構成する。
 また、メス型コネクタハウジング22に対応するオス型コネクタハウジング32は、メス型コネクタハウジング22と同様に、圧着端子を装着可能な複数のキャビティを内部に有して、幅方向Y且つ高さ方向における断面形状が略矩形状であってメス型コネクタハウジング22に対して凹凸対応して接続可能に形成している。
 このようなオス型コネクタハウジング32の内部に対して、図示を省略するオス型の圧着端子で構成した接続構造体1を長手方向Xに沿って装着してオス型コネクタ31を備えたワイヤーハーネス30を構成する。 
 そして、メス型コネクタ21とオス型コネクタ31とを嵌合することで、ワイヤーハーネス20とワイヤーハーネス30とを接続する。
 以上のような構成を実現する接続構造体1、メス型コネクタ21、及び接続構造体1の製造方法は、絶縁被覆202側からの水分の侵入を確実に防止することができるとともに、熱サイクルに対する耐久性を向上できる。 
 具体的には、接着剤134が、被覆囲繞部131と被覆電線200における絶縁被覆202との間を接着することにより、圧着端子100における絶縁被覆202側の端部から被覆囲繞部131の内部に水分が侵入することを防止できる。特に、接着剤134を使用することにより、被覆囲繞部131と被覆電線200における絶縁被覆202との隙間を長期間にわたって確実に閉塞することができるため、絶縁被覆202側からの水分の侵入をより確実に防止することができるとともに、熱サイクルに対する耐久性を向上できる。。
 また、接続構造体1における圧着端子100をメス型コネクタハウジング22の内部に配置してメス型コネクタ21を構成することにより、メス型コネクタハウジング22の内に配置した圧着端子100にオス型コネクタ31の圧着端子を接続する際、止水性を確保したままメス側コネクタ21の圧着端子100をオス型コネクタ31に接続することができる。 
 したがって、メス型コネクタ21は、確実な導電性を備えた接続状態を確保することができる。
 また、被覆電線200の芯線を、アルミニウム合金で構成するとともに、バレル部130を、銅合金で構成したことにより、銅線による芯線を有する被覆電線200に比べて軽量化することができる。さらに、上述した確実な止水性により、異種金属で構成された圧着端子100と被覆電線200とによる電食の発生を防止することができる。
 また、被覆囲繞部131と被覆電線200における絶縁被覆202との間に接着剤134を介在させた後、被覆電線200と圧着端子100とを圧着接続する接続構造体1の製造方法としたことにより、被覆電線200と圧着端子100とを圧着接続する際に、被覆囲繞部131と被覆電線200における絶縁被覆202との間を確実に接着することができる。このため、絶縁被覆202側からの水分の侵入をより確実に防止することができる。したがって、熱サイクルに対する耐久性を向上することができる。
 なお、上述の第1実施形態において、被覆囲繞部131に接着剤134を塗布した後、バレル部130に被覆電線200を挿入し、被覆電線200と圧着端子100とを圧着接続する構成としたが、これに限定せず、バレル部130に被覆電線200を挿入した後、被覆囲繞部131と絶縁被覆202との間に接着剤134を注入する構成としてもよい。 
 また、被覆囲繞部131と被覆電線200における絶縁被覆202との間だけでなく、他の部分においても圧着端子100と被覆電線200とを接着した構成としてもよい。
 例えば、接続構造体1における別の断面形状を説明する説明図を示す図6のように、被覆囲繞部131と被覆電線200における絶縁被覆202との間だけでなく、導体圧着部132と被覆電線200におけるアルミニウム芯線201との間にも接着剤134を介在させることができる。
 導体圧着部132とアルミニウム芯線201との間に介在する接着剤134は、アルミニウム芯線201における複数本のアルミニウム素線201a間に浸透しない程度の粘度を有する構成とする。
 被覆囲繞部131と被覆電線200における絶縁被覆202との間に介在する接着剤134、及び導体圧着部132と被覆電線200におけるアルミニウム芯線201との間に介在する接着剤134は、同一のものであってもよいが、これに限定せず、異なる種類の接着剤134であってもよい。
 被覆囲繞部131と被覆電線200における絶縁被覆202との間だけでなく、導体圧着部132と被覆電線200におけるアルミニウム芯線201との間にも接着剤134が介在することにより、接着力が向上し、絶縁被覆202側からの水分の侵入をより確実に防止することができる。
 さらには、接着剤134が複数本のアルミニウム素線201a間に浸透することに起因して、アルミニウム芯線201に電気的な悪影響が生じることを防止できるため、安定した導電性を確保することができる。
 さらに、バレル部130に被覆電線200を挿入した後、被覆囲繞部131と絶縁被覆202との間に接着剤134を注入する場合において、導体圧着部132を圧着した後に接着剤134を注入することで、接着剤134の介在による導電性の低下を抑制することができる。
 また、接続構造体1における別の断面形状を説明する説明図を示す図7のように、被覆囲繞部131と被覆電線200における絶縁被覆202との間だけでなく、被覆囲繞部131の端面と被覆電線200における絶縁被覆202の外周面との段差135にも接着剤134を塗布することができる。
 バレル部130における被覆囲繞部131の後方側の端面、すなわち導体圧着部132側とは反対側の端面は、バレル部130に対する被覆電線200の入口を構成している。 
 上記入口に被覆電線200を挿入し、被覆電線200と圧着端子100とを圧着接続することにより、被覆電線200と圧着端子100とが密着する。この結果、被覆囲繞部131の端面と被覆電線200における絶縁被覆202の外周面との間に、被覆囲繞部131の端面の全周にわたって段差135が形成される。
 接着剤134は、図7に示すように、段差135を越えて被覆囲繞部131の外周面にまで到達しない範囲で塗布する構成とすることができるが、これに限定せず、段差135を越えて被覆囲繞部131の外周面にまで塗布する構成としてもよい。
 被覆囲繞部131と被覆電線200における絶縁被覆202との間に介在する接着剤134、及び段差135に塗布する接着剤134は、同一のものであってもよいが、これに限定せず、異なる種類の接着剤134であってもよい。
 被覆囲繞部131の端面と被覆電線200における絶縁被覆202の外周面との段差135に接着剤134を塗布することにより、バレル部130に対する被覆電線200の入口において、被覆囲繞部200の端面の全周にわたって塗布した接着剤134により水分の侵入を阻止することができる。 
 したがって、絶縁被覆202側からの水分の侵入をより確実に防止することができる。
 接着剤134は、液体の接着剤成分で構成し、塗布後に熱を付与することにより硬化するような構成とすることができるが、これに限定せず、適宜の材料で構成することができる。 
 例えば、カプセル状接着剤134Kの構成を説明する説明図を示す図8において、図8(a)に示すように、接着剤134を、接着剤成分134aをカプセル134bで封入したカプセル状接着剤134Kで構成してもよい。この場合、接着剤134は、接着剤成分134aを封入したマイクロカプセルで構成することができる。 
 なお、図8(a)はカプセル状接着剤134Kの斜視図を示し、図8(b)はカプセル状接着剤134Kのカプセル134bを圧潰した状態の斜視図を示している。
 カプセル134bは、密閉された中空状の球体で構成することができる。カプセル134b内に液体の接着剤成分134aを封入することにより、カプセル状接着剤134Kを構成し、複数のカプセル状接着剤134Kを被覆囲繞部131と被覆電線200における絶縁被覆202との間に介在させる。
 被覆囲繞部131を圧着する際には、被覆囲繞部131と被覆電線200における絶縁被覆202との間でカプセル状接着剤134Kが圧縮され、図8(b)に示すように、カプセル134bの圧潰によって、カプセル134b内の接着剤成分134aがカプセル134bの外部に漏れ出す。 
 これにより、被覆囲繞部131と被覆電線200における絶縁被覆202とを接着することができる。
 カプセル状接着剤134Kを使用することにより、被覆囲繞部131を圧着する際に、同時にカプセル状接着剤134Kのカプセル134bを圧潰し、被覆囲繞部131と被覆電線200における絶縁被覆202とを接着することができる。このため、被覆囲繞部131を圧着する前に、カプセル状接着剤134Kの接着剤成分134aがカプセル134bの外部に漏れ出すことがなく、アルミニウム芯線201等の予期せぬ部分に接着剤成分134aが付着することを防止することができる。 
 さらには、被覆囲繞部131を圧着する際に、同時にカプセル状接着剤134Kのカプセル134bを圧潰することができるため、作業効率を向上することができる。
 [第2実施形態A]
 次に、第1実施形態とは異なる接続構造体1の製造方法について図9、及び図10を用いて説明する。 
 なお、図9は第2実施形態Aにおける圧着端子100、及び接続構造体1を説明する説明図を示し、詳しくは、図9(a)は圧着端子100、及び被覆電線200の長手方向Xにおける断面形状の断面図を示し、図9(b)は図9(a)中のB-B線断面図を示している。
 図10(a)は被覆電線200の先端部分を挿入した圧着端子100のバレル部130に対して1組の圧着工具10で挟み込むようにして圧着する圧着工程の様子を示す断面図である。図10(b)は、被覆電線200の先端部分に対して圧着端子100のバレル部130を圧着して構成した接続構造体1の断面図である。
 第2実施形態Aにおける接続構造体1の製造方法は、図9(a)に示すように、接着剤210を、被覆電線200における絶縁被覆202の外周面に塗布した後、被覆電線200と圧着端子100とを圧着接続した点が、上述の第1実施形態とは異なる。 
 なお、第2実施形態Aにおいて、第1実施形態と同様の構成については、同一の符号を付して、詳細な説明を省略する。
 第2実施形態Aの接続構造体1は、図9(a)、(b)に示すように、被覆電線200における絶縁被覆202の先端側に有する被覆先端部202tにおける外周面の周面全体に、接着剤210を略均等な厚みで塗布している。
 ここで、被覆先端部202tは、被覆電線200の先端をバレル部130の内部に挿入した状態において被覆囲繞部131によって囲繞される部分を示している。
 第2実施形態Aでは、被覆電線200の先端部分をバレル部130に挿入する際に、圧着端子100のバレル部130の内周面の全周に対して接触するように、接着剤210を被覆囲繞部131の内周面と被覆先端部202tの外周面との隙間と同等、或いは、該隙間よりも僅かに厚くなる厚みで被覆先端部202tの外周面に塗布している。
 詳しくは、接着剤210は、図10(a)に示すように、被覆囲繞部131の内径(D)と被覆先端部202tの外径(d)との差の半分の厚み(t)と同等、或いは僅かに厚くなる厚みとなるように被覆先端部202tの外周面に塗布している。
 このように、接着剤210を被覆先端部202tの外周面に塗布した状態の被覆電線200の先端部分をバレル部130に挿入し、図10(a)に示すように、1組の圧着工具10で挟み込むようにして被覆電線200を挿入した導体圧着部132、及び被覆囲繞部131を加締め、アルミニウム芯線201、及び絶縁被覆202を圧着して接続構造体1を構成する。
 以上のような接続構造体1の製造方法によれば、被覆囲繞部131と被覆電線200における絶縁被覆202との間に、接着剤210を容易に介在させることができる。 
 具体的には、被覆電線200における絶縁被覆202に樹脂材料を塗布した後、バレル部130に被覆電線200を挿入するだけで、被覆囲繞部131と被覆電線200における絶縁被覆202との間に接着剤210を介在させることができる。このため、被覆囲繞部131に接着剤134を塗布する構成、または被覆囲繞部131と被覆電線200における絶縁被覆202との間に接着剤134を注入する構成に比べて、被覆囲繞部131と被覆電線200における絶縁被覆202との間に、接着剤210を容易に介在させることができる。
 特に、被覆囲繞部131による絶縁被覆202の圧着に着目すると、圧着工具10による圧着により、接着剤210を被覆囲繞部131の内周面と絶縁被覆202の外周面との間において被覆先端部202tの全周に亘って隙間なく密着性を高めた状態で介在させることができる。
 詳しくは、接続構造体は、自動車用部品として用いられることが多く、このような場合、気温変動が激しく、湿気、或いは、乾燥、振動、紫外線のうち、少なくともいずれかの影響を受けやすいのような過酷な環境下に晒されることが多くなる。
 そうすると、例えば、従来の接続構造体における被覆電線200の絶縁被覆202は、経年劣化により痩せてしまい、その場合には、たとえ、先端部に封止部133を形成した中空状のクローズドバレル型の圧着端子100であっても、被覆囲繞部131と被覆先端部202tとの間に空隙が生じてしまうおそれがあった。
 これに対して、第1実施形態の接続構造体1は、上述したように、被覆囲繞部131と被覆電線200における絶縁被覆202との間に、被覆電線200の全周に亘って接着剤210を介在させることにより、たとえ被覆先端部202tが経年劣化しても、被覆囲繞部131と被覆先端部202tとの隙間を接着剤210によって閉塞することができ、優れた止水性を確保することができる。
 さらに、接続構造体1は、振動などによる外力が被覆電線に加わった際や、被覆電線を過度に湾曲するように配索した場合であっても、硬化性の合成樹脂材で形成した接着剤210によって、被覆先端部202tを保護することができるため、被覆囲繞部131と被覆先端部202tとの間に空隙が生じてしまうことを防ぐことができる。
 従って、接続構造体1は、硬化性の合成樹脂材で形成した接着剤210を備えることで、湿気、気温変動、振動、絶縁被覆の経年劣化などの外的要因による止水性の低下を防止することができ、より長期間に亘って安定した止水性と導電性とを確保することができため、高品質の接続構造体1を効率的に製造することができる。
 また、図9(a)に示すように、被覆電線200の先端部分をバレル部130に挿入する際に、バレル部130の長手方向Xの基端面130X1に、被覆先端部202tの外周面に塗布した接着剤210が接触しないため、バレル部130に対する接触抵抗を殆ど受けることなく、被覆電線200の先端部分をバレル部130の内部にスムーズに挿入することができる。
 なお、接着剤210は、上述したように、絶縁被覆202の外周面に沿って、均一な厚みで塗布することが好ましいが、被覆電線200の先端部分をバレル部130に挿入する際に、被覆先端部202tの外周面に塗布した接着剤210が被覆囲繞部131の内周面に接触することを見越して、被覆先端部202tの基部側よりも先端側が厚くなるように塗布するなど、被覆先端部202tの周方向、或いは長手方向Xにおいて、接着剤210の厚みが変動するように塗布してもよい。或いは、接着剤210は、被覆電線200の製造時に絶縁被覆202の外周面に塗布してもよいし、圧着直前に絶縁被覆202の外周面に塗布してもよい。
 被覆電線200における圧着される領域全体に接着剤210を塗布すれば、該領域全体にわたって接着することができる。ただし、これに限定せず、被覆電線200における圧着される領域よりも長手方向Xに狭い領域に接着剤210を塗布する構成としてもよい。
 また、図10(a)に示すように、被覆電線200の先端部分をバレル部130で圧着する際に、アルミニウム芯線201を導体圧着部132で圧着するとともに、被覆先端部202tを被覆囲繞部131で圧着するに限らず、第2実施形態Aに付随した他の実施例として、図11(a)に示すように、被覆先端部202tと被覆囲繞部131とを圧着せずに、アルミニウム芯線201と導体圧着部132との圧着のみを行い、図11(b)に示すように、接続構造体1Paを構成してもよい。 
 なお、図11(a)は、第2実施形態Aに付随した他の実施例における圧着工程の様子を示す断面図である。図11(b)は、第2実施形態Aに付随した他の実施例における接続構造体1Paの断面図である。図10(c)は図11(b)のC-C線断面図である。
 図11(a)に示すように、圧着工具10には、接続構造体1の長手方向Xにおいて、被覆囲繞部131を加締める部分を備えずに、導体圧着部132を加締める部分のみで構成され、アンビルとなる第1圧着型11A、及びクリンパとなる第2圧着型12Aとで構成する一組の圧着工具10Aを用いて、被覆先端部202tと被覆囲繞部131とを圧着せずに、導体圧着部132のみを加締めることでアルミニウム芯線201と導体圧着部132との圧着のみを行うことができる。
 このように、被覆先端部202tと被覆囲繞部131とを圧着しなくても、被覆囲繞部131の内周面と被覆先端部202tの外周面との間には接着剤210が隙間なく介在しているため、導体圧着部132の内部の止水性を確保することができる。
 ここで、被覆囲繞部131と被覆先端部202tの間に介在する接着剤210に対しては、液状の状態から熱を付与することにより硬化させるに限らず、接着剤210を形成する樹脂の種類、特性に応じて、例えば、液状の状態から自然乾燥させたり、空気中に晒すなどして湿気を付与する、その他にも、紫外線を照射するなどの手段によって硬化させることができる。
 [第2実施形態B]
 次に、上述した実施例とは異なる第2実施形態Bにおける接続構造体2Bの製造方法について図12、及び図13を用いて説明する。 
 なお、図12(a)は被覆電線200の先端部分を圧着端子100のバレル部130に挿入する挿入工程を示す第2実施形態Bにおける接続構造体2Bの製造方法の説明図であり、図12(b)は図12(a)中のB-B線拡大断面図を示している。
 図13(a)は被覆電線200の先端部分を挿入した圧着端子100のバレル部130に対して1組の圧着工具10で挟み込むようにして圧着する圧着工程の様子を示す断面図である。図13(b)は、被覆電線200の先端部分に対して圧着端子100のバレル部130を圧着して構成した接続構造体2Bの断面図である。図13(c)は図13(b)のC-C線断面図を示している。
 第2実施形態Bの接続構造体2Bは、被覆電線200の先端部分をバレル部130に挿入した状態において、接着剤210を、被覆囲繞部131の内周面と被覆先端部202tの外周面との隙間よりも薄くなる厚みで被覆先端部202tの外周面に塗布している。
 詳しくは、接着剤210は、図12(a)、(b)に示すように、被覆囲繞部131の内径(D)と被覆先端部202tの外径(d)との差の半分の厚み(t)よりも薄くなる厚み(ts)となるように被覆先端部202tの外周面に塗布している。
 このように、接着剤210を被覆囲繞部131と被覆先端部202tとの隙間よりも薄い厚みになるように被覆先端部202tの外周面に塗布することで、図12(a)、(b)に示すように、被覆電線200の先端部分をバレル部130に挿入する際に、被覆先端部202tの外周面に塗布した接着剤210が被覆囲繞部131の内周面やバレル部130の基端面131x1に接触することによる抵抗を殆ど受けることがなく、被覆電線200の先端部分をバレル部130にスムーズに挿入することができる。
 しかし、図13(a)に示すように、被覆電線200の先端部分をバレル部130に挿入した状態において、被覆先端部202tの外周面と被覆囲繞部131の内周面との間に、接着剤210を介在させることができるものの、接着剤210が存在しない隙間が残留してしまう。
 ところが、その後に行う圧着工程において、図13(a)に示すように、1組の圧着工具10で挟み込むようにして導体圧着部132、及び被覆囲繞部131を加締め、アルミニウム芯線201、及び絶縁被覆202を圧着することにより、被覆囲繞部131の内周面と絶縁被覆202の外周面との間において接着剤210を介在した状態で隙間なく、被覆囲繞部131の内周面と絶縁被覆202の外周面との密着性を高めた状態で圧着することができる。
 さらに、被覆囲繞部131の内周面と絶縁被覆202の外周面との間に介在する接着剤210は、薄肉の状態であるため、熱、湿気、外力などの外的要因を付与することによって、迅速に硬化させることができる。このように、接着剤210を硬化させることで、図13(b)に示すような第2実施形態Bの接続構造体2Bを構成することができる。
 第2実施形態Bにおける接続構造体2Bによれば、絶縁被覆202の外周面に接着剤210を薄厚となるように塗布することにより、接着剤210を少ない塗布量に抑えることができ、接続構造体2Bの軽量化、及び、接着剤210の材料コストの低減を図ることができる。
 [第2実施形態C]
 次に、上述した実施例とは異なる第2実施形態Cにおける接続構造体2Cの製造方法について図14、乃至図16を用いて説明する。 
 なお、図14(a)は被覆電線200の先端部分を圧着端子100のバレル部130に挿入する挿入工程における挿入開始直後の様子を示す第2実施形態Cにおける接続構造体2Cの製造方法の説明図であり、図14(b)は図14(a)中のB-B線拡大断面図を示している。
 図15(a)は被覆電線200の先端部分を圧着端子100のバレル部130に挿入する挿入工程における挿入途中の様子を示す第2実施形態Cにおける接続構造体2Cの製造方法の説明図であり、図15(b)は挿入完了時の様子を示す第2実施形態Cにおける接続構造体2Cの製造方法の説明図を示している。
 図16(a)は被覆電線200の先端部分を挿入した圧着端子100のバレル部130に対して1組の圧着工具10で挟み込むようにして圧着する圧着工程の様子を示す断面図である。図16(b)は、被覆電線200の先端部分に対して圧着端子100のバレル部130を圧着して構成した接続構造体2Cの断面図である。図16(c)は図16(b)のC-C線断面図を示している。
 第2実施形態Cの接続構造体2Cは、被覆電線200の先端部分をバレル部130に挿入した状態において接着剤210を、被覆囲繞部131の内周面と被覆先端部202tの外周面との隙間よりも厚くなる厚みで被覆先端部202tの外周面に塗布している。
 詳しくは、接着剤210は、図14(a)、(b)に示すように、被覆囲繞部131の内径(D)と被覆先端部202tの外径(d)との差の半分の隙間(t)よりも厚くなる厚み(th)となるように被覆先端部202tの外周面に塗布している。なお、接着剤210は、被覆先端部202tの外周面に対して、被覆囲繞部131の外径よりも嵩高とならない厚み(th)で塗布している。
 また、接続構造体2Cは、接着剤210を、被覆先端部202tの外周面に塗布しているが、被覆囲繞部131によって、絶縁被覆202で囲繞される部分に加えて、該囲繞される部分よりも長手方向Xの基部130X側も含めて、すなわち、バレル部130の開口部の周縁に相当する部分も含めて塗布し、第2実施形態A,2Bにおける被覆先端部202tの外周面に対する接着剤210の塗布範囲よりも長手方向Xにおいて広範囲に塗布している。
 第2実施形態Cの接続構造体2Cは、上述したように、被覆電線200の先端部分をバレル部130の中心軸に沿って挿入する状態において、接着剤210を被覆先端部202tの外周面に、被覆囲繞部131の内周面よりも肉厚になるように塗布しているため、接着剤210が長手方向Xに沿って、バレル部130の基部130xの端面130x1にオーバーラップした状態となる。
 このため、挿入工程において、図15(a)に示すように、被覆先端部202tの外周面に塗布した接着剤210は、バレル部130の基部130xの端面130x1に当接する。
 このため、被覆電線200の先端部分をバレル部130にさらに挿入し続けると、図15(a)の特に、図15(a)中の一部拡大図に示すように、バレル部130の基部130xの端面130x1によって接着剤210が掻きあがられるように、接着剤210の厚みがさらに増し、バレル部130の基部130xの端面130x1と被覆電線200における絶縁被覆202の外周面との段差S、すなわち、バレル部130の開口端部において接着剤210が盛り上がる。
 そして、この状態で被覆電線200の先端部分をバレル部130へ挿入し続けると、被覆電線200の先端部分の挿入に伴って液状の接着剤210は、絶縁被覆202の外周面に塗布した接着剤210の厚みによっては、バレル部130の基部130xの端面130x1を越えて外周面に達するまで流れ込む。
 これにより、被覆電線200の先端部分のバレル部130への挿入が完了した状態においては、図15(b)の特に、図15(b)中の一部拡大図に示すように、段差Sに備えた接着剤210は、被覆囲繞部131の基部130x側の外周面を跨ぐように絶縁被覆202の外周面に至る部分に塗布された状態となる。換言すると、被覆囲繞部131の端部側の外周面と絶縁被覆202の外周面とに亘って連続して塗布された状態となる。
 続いて、圧着工程において、図16(a)に示すように、1組の圧着工具10で挟み込むようにして導体圧着部132、及び被覆囲繞部131を加締め、アルミニウム芯線201、及び絶縁被覆202を圧着する。
 最後に、接着剤210に対して、上述したように、熱、湿気、外力などの外的要因を付与することによって、樹脂材21を、被覆囲繞部131の内周面と絶縁被覆202の外周面との間に介在する部分も含めて硬化させることにより、図16(b)に示すような第2実施形態Cの接続構造体2Cを構成することができる。
 絶縁被覆202の外周面に塗布した接着剤210のうち、前記被覆囲繞部131の端面130x1と絶縁被覆202の外周面との段差Sに備えた部分を、被覆囲繞部131の基部130x側の外周面を跨ぐように塗布することにより、被覆囲繞部131と絶縁被覆202との間の止水性を確実に確保することができる。
 上述した構成により、例えば、バレル部130と絶縁被覆202とを圧着接続した場合、被覆囲繞部131の内径変化や絶縁被覆202の外径変化などによって、仮に、被覆囲繞部131と絶縁被覆202との間に水分の浸入経路が形成されても、接着剤210によって被覆囲繞部131の基部130x側からの水分の浸入を防止することができる。
 さらに、例えば、被覆電線200の配索状態や、振動によって被覆電線200が湾曲することで、被覆囲繞部131と絶縁被覆202との密着性が低下し、被覆囲繞部131と絶縁被覆202との間に隙間が生じた場合であっても、段差Sに備えた接着剤210によって、被覆囲繞部131の基部130x側から該被覆囲繞部131の内部へ水分が侵入することを防止することができる。
 これにより、接続構造体3Cは、長期間に渡って安定した止水性を確保することができるため、安定した導電性を確保することができる。
 さらにまた、例えば、従来の接続構造体は、長期間に渡って外気と触れることにより、バレル部130と絶縁被覆202との接続部分において、バレル部130の腐食や絶縁被覆202の劣化が生じることがあった。このため、バレル部130と絶縁被覆202との間に隙間が生じて止水性が低下するおそれがあった。
 これに対して、接続構造体3Cは、接着剤210を、被覆囲繞部131と被覆先端部202tとの間において被覆電線200の全周に亘って介在させるとともに、被覆囲繞部131の外周面と前記絶縁被覆202の外周面との段差Sに、被覆囲繞部131の基部130x側の外周面を跨ぐように塗布したため、被覆囲繞部131の内周面、及び絶縁先端部202tの外周面が外気と直接的に接触することを防止できる。
 このため、接続構造体3Cは、絶縁被覆202と被覆囲繞部131の基部130x側との境界部分において、被覆囲繞部131及び絶縁被覆202が長期間に渡って外気と触れることによる被覆囲繞部131の腐食や絶縁被覆202の劣化を、接着剤210によって防止することができる。これにより、接続構造体3Cは、長期間に亘って安定した止水性、及び導電性を確保することができる。
 また、被覆先端部202tの外周面に塗布した接着剤210は、上述したように、被覆電線200の先端部分をバレル部130の中心軸に沿って挿入する状態において、被覆囲繞部131の内周面よりも肉厚になるように塗布しているため、挿入完了状態を示す図15(b)からも明らかなとおり、挿入後に被覆囲繞部131と被覆先端部202tとの間に隙間なく接着剤210を介在することができる。
 よって、図17(a)に示すように、第2実施形態Cに付随した他の実施例として、上述した第2実施形態Aに付随した他の実施例と同様に(図11(a)参照)、被覆先端部202tと被覆囲繞部131とを圧着せずに、アルミニウム芯線201と導体圧着部132との圧着のみを行い、図17、(b)に示すような接続構造体1Pbを構成してもよい。 
 なお、図17(a)は、第2実施形態Cに付随した他の実施例における圧着工程の様子を示す断面図であり、図17(b)は、第2実施形態Cに付随した他の実施例における接続構造体1Pbの断面図である。図17(c)は、図17(b)中のC-C断面図である。
 このように、被覆先端部202tと被覆囲繞部131とを圧着せずとも、接続構造体1Pbは、接着剤210を、被覆囲繞部131と被覆先端部202tとの間において、接着剤210を隙間なく介在させることができることに加えて、前記被覆囲繞部131の外周面と前記絶縁被覆202の外周面との段差S、被覆囲繞部131の基部130x側の外周面を跨ぐように塗布したため、導体圧着部132の内部の止水性を格段に向上させることができる。
 本発明の接続構造体、又はその製造方法は、上述した実施例に限定せず、様々な実施例で構成することができる。 
 例えば、上述した第1実施形態,第2実施形態(2A,2B,2C)、又はこれらに付随する上述した実施例において、被覆電線200における絶縁被覆202の外周面に接着剤210を塗布する方法は、特に限定せず、図18に示すように、被覆電線200における絶縁被覆202の外周面に接着剤210を塗布した後、絶縁被覆202の先端からアルミニウム芯線201を露出させ、被覆電線200と圧着端子100とを圧着接続してもよい。
 例えば、図18に示すように、被覆電線200における絶縁被覆202の外周面に接着剤210を塗布した後、絶縁被覆202の先端からアルミニウム芯線201を露出させ、被覆電線200と圧着端子100とを圧着接続してもよい。
 なお、図18(a)は絶縁被覆202の外周面に接着剤210を塗布する際の被覆電線200の断面図を示し、図18(b)は絶縁被覆202の先端からアルミニウム芯線201を露出させる際の被覆電線200の断面図を示し、図18(c)は絶縁被覆202の先端からアルミニウム芯線201が露出した状態の被覆電線200の断面図を示している。
 絶縁被覆202の外周面に接着剤210を塗布する際は、図18(a)に示すように、被覆電線200の先端部を液体からなる接着剤210に漬けることにより、いわゆるデッピングを行う。このとき、接着剤210は、アルミニウム芯線201を露出させる前の被覆電線200における絶縁被覆202の先端から、被覆電線200の長手方向Xに所定範囲だけ塗布する。 
 具体的には、上記所定範囲は、アルミニウム芯線201を露出させる範囲210a以上、かつ圧着端子100が圧着接続される範囲210b以下とする。
 接着剤210を塗布した被覆電線200の絶縁被覆202は、図18(b)に示すように、先端から上述の範囲210aに対応する位置において切断装置220により切断し、切断位置よりも先端側の部分を引き抜く。 
 この結果、図18(c)に示すように、絶縁被覆202の先端からアルミニウム芯線201を露出させることができる。
 このように、被覆電線200における絶縁被覆202に接着剤210を塗布した上で、絶縁被覆202の先端からアルミニウム芯線201を露出させることにより、アルミニウム芯線201を露出させた部分の絶縁被覆202を接着剤210とともに除去することができる。このため、被覆電線200に残った絶縁被覆202の先端、すなわち露出したアルミニウム芯線201と絶縁被覆202の境界210cまで、被覆囲繞部131との間に接着剤210を介在させることができる。
 したがって、絶縁被覆202において、必要な範囲内で広範囲にわたって接着剤210を塗布することができるため、接着力が向上し、絶縁被覆202側からの水分の侵入をより確実に防止することができる。 
 さらには、アルミニウム芯線201が露出する部分において、接着剤210を容易に除去することができるとともに、アルミニウム芯線201に接着剤210が付着することを防止できるため、安定した導電性を確保することができる。
 特に、被覆電線200の先端部を、液体からなる接着剤210に漬けるだけで、絶縁被覆202の必要な範囲に接着剤210を容易に塗布することができるため、作業効率を向上することができる。 
 さらには、被覆電線200の先端部を、液体からなる接着剤210に漬けることにより、絶縁被覆202の必要な範囲に接着剤210をムラなく塗布することができるため、接着力が向上し、絶縁被覆202側からの水分の侵入をより確実に防止することができる。
 なお、上述の第2実施形態(2A,2B,2C)において、被覆電線200における絶縁被覆202に接着剤210を塗布した後、絶縁被覆202の先端からアルミニウム芯線201を露出させる構成としたが、これに限定せず、絶縁被覆202の先端からアルミニウム芯線201を露出させる際に、絶縁被覆202に接着剤210を塗布する構成としてもよい。
 例えば、被覆電線200における絶縁被覆202の外周面に接着剤210を塗布する別の方法を説明する図19において、図19(a)から(c)に示すように、切断塗布装置230を使用して、絶縁被覆202の切断工程、及び接着剤210の塗布工程を同時に行うことができる。
 なお、図19(a)は絶縁被覆202の外周面に接着剤210を塗布する前の被覆電線200の断面図を示し、図19(b)は接着剤210の塗布と同時に絶縁被覆202を切断する際の被覆電線200の断面図を示し、図19(c)は絶縁被覆202の先端からアルミニウム芯線201が露出した状態の被覆電線200の断面図を示している。
 まず、図19(a)に示すように切断塗布装置230の絶縁被覆202と接触する部分に接着剤210を準備する。 
 次に、図19(b)に示すように、アルミニウム芯線201を露出させる範囲に対応する位置において、切断塗布装置230により切断する。
 このとき同時に、切断塗布装置230により絶縁被覆202に接着剤210を塗布し、その後に切断位置よりも先端側の部分を引き抜くことにより、図19(c)に示すように、絶縁被覆202の先端からアルミニウム芯線201を露出させることができる。
 この結果、接着剤210は、絶縁被覆202の先端からアルミニウム芯線201を露出させる作業中に、被覆電線200における絶縁被覆202に塗布することができる。具体的には、アルミニウム芯線201を露出させるために絶縁被覆202を切断する際に、接着剤210を絶縁被覆202に塗布することができる。 
 接着剤210は、印刷により絶縁被覆202の外周面に塗布することができるが、これに限定せず、適宜の方法で接着剤210を塗布することができる。
 このように、絶縁被覆202の先端からアルミニウム芯線201を露出させる際に、接着剤210を絶縁被覆202に塗布することができるため、絶縁被覆202の先端からアルミニウム芯線201を露出させる作業と、接着剤210を絶縁被覆202に塗布する作業とを別々に行う構成に比べて、作業効率を向上することができる。
 なお、図19では、アルミニウム芯線201を露出させるために絶縁被覆202を切断する際に、接着剤210を絶縁被覆202に塗布する構成としているが、これに限定せず、切断後の絶縁被覆202を除去する際に、接着剤210を絶縁被覆202に塗布する構成としてもよい。
 また、接着剤210は、被覆囲繞部131の端面と被覆電線200における絶縁被覆202の外周面との段差Sに、或いは、前記被覆囲繞部131と被覆電線200における絶縁被覆202との間に備えるに限らず、バレル部130の外周面全体や、例えば、導体圧着部132より前方端部に構成した封止部133にも備えてもよい。
 さらにまた、被覆囲繞部131と絶縁被覆202との間に介在させる接着剤134は、絶縁被覆202の全周に亘って介在させるに限らず、被覆電線200の外周面における、アンビルとなる第1圧着型11、及びクリンパとなる第2圧着型12とが近接し合った状態における境界部分に相当する部分のみ塗布するなど、被覆電線200の周方向における所定箇所のみに補強的に止水性を向上するために塗布してもよい。
 上述の第1実施形態及び第2実施形態において、圧着端子100をメス型の圧着端子100としたが、これに限定せず、メス型の圧着端子100に対して長手方向Xに嵌合するオス型の圧着端子であってもよい。 
 また、被覆電線200における芯線をアルミニウム合金とし、圧着端子100を黄銅等の銅合金としたが、これに限定せず、被覆電線200における芯線、及び圧着端子100を黄銅等の銅合金やアルミニウム合金などの同一金属で構成してもよい。
 この発明の構成と、上述の実施形態との対応において、
この発明の電線導体は、実施形態のアルミニウム芯線201に対応し、
以下同様に、
電線接続部は、バレル部130に対応し、
接続構造体は、接続構造体1,1Pa,1Pb,2A,2B,2Cに対応し、
前記被覆囲繞部の端部側は、バレル部130(被覆囲繞部131)の長手方向Xの基部130xに対応し、
素線は、アルミニウム素線201aに対応し、
アルミ系材料は、アルミニウム合金に対応し、
銅系材料は、黄銅等の銅合金条に対応し、
コネクタハウジングは、メス型コネクタハウジング22、及びオス型コネクタハウジング32に対応し、
コネクタは、メス型コネクタ21、及びオス型コネクタ31に対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
 たとえば、接着剤134の代わりに、止水性のあるグリスを介在させてもよい。 
 さらには、図20に示すように、バレル部130を構成する被覆囲繞部131の後方端に、径外側に拡径したベルマウス136を形成してもよい。 
 被覆囲繞部131の後方端にベルマウス136を形成することにより、被覆囲繞部131と絶縁被覆202との間への接着剤134の注入が容易になる。具体的には、被覆囲繞部131にあらかじめ接着剤134を注入したバレル部130に対して、被覆電線200を挿入する場合であっても、あるいは、接着剤134を塗布した被覆電線200をバレル部130に挿入する場合であっても、被覆囲繞部131に対してベルマウス136は拡径されているため、被覆電線200を容易に挿入することができる。逆に、バレル部130に被覆電線200を挿入した後から、接着剤134を注入する場合であっても、被覆囲繞部131に対してベルマウス136は拡径されているため、被覆電線200を容易に挿入することができる。
 また、被覆囲繞部131の後方端にベルマウス136が形成されたことによって、バレル部130に対して被覆電線200が湾曲した場合であっても、被覆囲繞部131の後方端が接着剤134を傷つけることなく、耐久性のある接着剤134を形成することができる。したがって、とともに、熱サイクルに対する耐久性も向上することができる。
 以下、図面を参照して本発明の第3実施形態について説明する。
 図21は、実施形態に係る管状端子311、及び、管状端子311に接合される電線313の斜視図である。
 管状端子311は、雌型端子のボックス部320と管状部325とを有し、これらの橋渡しとしてトランジション部340を有する。管状部325は、トランジション部340から次第に大径となる拡径部326と、この拡径部326の縁部から筒状に延びる筒部327とからなる。管状部325は中空の管となっており、管状部325の一端には、電線313を挿入することができる電線挿入口331が開口している。また、管状部325の他端はトランジション部340に接続されている。トランジション部340側は、溶接等の手段によって閉口しており、トランジション部340側から水分等が浸入しないように形成されている。つまり、管状部325の内部の空間はトランジション部340側で閉鎖されている。電線挿入口331から管状部325に電線313を挿入し、筒部327を圧着工具によって圧縮することで管状端子311と電線313とが圧着接合され、後述する電線接続構造体310(図24)が構成される。
 管状端子311のボックス部320は、例えば雄型端子等の挿入タブの挿入を許容する雌型端子のボックス部である。本発明において、このボックス部320の細部の形状は特に限定されない。すなわち、管状端子311は、少なくともトランジション部340を介して管状部325を備えていれば良く、例えばボックス部を有さなくても良いし、例えばボックス部が雄型端子の挿入タブであっても良い。また、管状部325に他の形態に係る端子端部が接続された形状であっても良い。本明細書では、本発明の管状端子を説明するために便宜的に雌型ボックスを備えた例を示している。
 管状端子311は、導電性と強度を確保するために基本的に金属材料(本実施形態では、銅または銅合金)の基材で製造されている。なお、管状端子311の基材は、銅または銅合金に限るものではなく、アルミニウムや鋼、またはこれらを主成分とする合金等を用いることもできる。
 また、管状端子311は、端子としての種々の特性を担保するために、例えば管状端子311の一部あるいは全部にスズ、ニッケル、銀めっきまたは金等のめっき処理が施されていても良い。また、めっきのみならず、スズ等のリフロー処理を施しても良い。本実施形態で例示する管状端子311は、一部または全部にスズめっき等の処理が施されている。
 管状端子311は、詳しくは後述するように、上記金属材料からなる条材を打ち抜いた板状の材料に曲げ加工を施すことによって形成される。ボックス部320及び管状部325を一枚の板材から作ることも可能であるし、ボックス部320と管状部325とを別の板材から形成して、その後にトランジション部340において接合することも可能である。
 管状部325は、上記板材に曲げ加工を施してC字型断面となるように巻き、開放された両端部を突き合わせて溶接等によって接合することで形成される。管状部325の接合は、レーザー溶接が好ましいが、電子ビーム溶接、超音波溶接、抵抗溶接等の溶接法でもかまわない。開口部をレーザー溶接により接合することにより、側面が閉じた管状に成形される。また、はんだ、ろう等、接続媒体を使っての接合でも良い。本実施形態ではレーザー溶接により管状部325が形成された例を示し、この例では図21に示すように、管状部325に、軸方向に伸びる溶接ビード343が形成される。トランジション部340は、管状部325の一端をプレスして閉じることにより形成される。詳しくは、トランジション部340は、管状部325の一端を押しつぶすようにプレスし、面状に重なり合うようにして構成するとともに、その長手方向の中間位置を幅方向の溶接等の手段によって閉鎖されており、トランジション部340側から水分等が浸入しないように形成されている。また、管状部325の内部空間はトランジション部340において閉塞されている。管状部325は、上記したC字型断面の両端部を接合する方法に限らず、深絞り工法で形成されても良い。さらに、連続管を切断するとともに一端側を閉塞して、管状部325及びトランジション部340を形成しても良い。
 なお、管状部325は管状であればよく、必ずしも長手方向に対して円筒である必要はない。断面が楕円や矩形の管であっても良い。また、径が一定である必要はなく、長手方向で半径が変化する形状であっても良い。
 電線313は、例えば、金属または合金材料で構成される素線314aを束ねた芯線314を、絶縁樹脂(例えば、ポリ塩化ビニル)で構成する導体絶縁層315で被覆して構成される。芯線314は、所定の断面積となるように、素線314aを撚って構成しているが、この形態に限定されるものではなく単線で構成しても良い。
 なお、芯線を構成する金属材料は、高い導電性を有する金属であればよく、アルミニウムまたはアルミニウム合金の他に、銅または銅合金を用いても良い。
 電線313の導体絶縁層315を構成する樹脂材としては、ポリ塩化ビニルであり、このポリ塩化ビニル以外にも、例えば、架橋ポリ塩化ビニル、クロロプレンゴム等を主成分とするハロゲン系樹脂や、ポリエチレン、架橋ポリエチレン、エチレンプロビレンゴム、珪素ゴム、ポリエステル等を主成分とするハロゲンフリー樹脂が用いられ、これらに可塑剤や難燃剤等の添加剤を含んでいても良い。
 図22は、管状端子311の断面図であり、(A)管状端子311の長手方向断面を示す要部断面図であり、(B)は筒部327における管状端子311の横断面図である。
 図22(A)に示すように、管状部325の内周面にはセレーション333が形成されている。セレーション333は、管状部325の内周面において周方向に伸びる溝である。セレーション333は、管状部325の内周面を一周するように形成してもよいし、管状部325の内周面の周方向の一部にのみ設けてもよい。セレーション333は、管状部325の長手方向に複数並べて形成されている。これらのセレーション333は、管状部325において、後述する導体圧着縮径部335(図24)となって芯線314と圧着接合される部位に設けられている。導体圧着縮径部335では、導体絶縁層315が剥離された芯線314と管状部325とが接合される。セレーション333によって芯線314は係止され、芯線314と管状部325との接触圧を高める効果がある。芯線314にアルミニウムまたはアルミニウム合金を用いる場合は、銅及び銅合金を用いる場合と比較すると、芯線314の接触抵抗が低くなると指摘されているが、セレーション333を管状部325に設けることにより確実な導通を確保できる。セレーション333は、例えば、条材を打ち抜いた板状の連鎖端子に曲げ加工を施して管状部325を形成する場合に、曲げ加工前の連鎖端子に対し、プレス加工等により形成することができる。
 そして、管状部325の内周面には、電線挿入口331側に接着剤355が配置されている。接着剤355は、管状部325の長手方向において所定の幅を有する帯状に付着している。接着剤355の位置は、管状部325において、後述する被覆圧着縮径部336(図24)となって導体絶縁層315(図21)と圧着接合される部位である。
 図22(B)に示すように、接着剤355は、管状部325の内周面を一周しており、溶接ビード343の内側にも接着剤355が配置される。管状部325に電線313を挿入した場合、この電線313の周囲が接着剤355により囲まれ、その外側を筒部327が囲む構成となる。
 図23は、管状端子311に電線313を圧着接合する工程の説明図であり、筒部327における横断面に相当する断面図である。図23中に、アンビル403の幅を符号Aで示し、アンビル403に設置した際の管状端子311の横幅(径)を符号Bで示す。
 また、図24及び図25は、管状端子311に電線313を接合して構成される電線接続構造体310の構成を示す図であり、図24(A)は斜視図、図24(B)は管状かしめ部330の長手方向断面を示す断面図、図25は管状かしめ部330の径方向断面を示す横断面図である。
 管状端子311と電線313とは、図23に示すように、一対の圧着工具であるクリンパ401とアンビル403とを用いて圧着接合され(かしめられ)る。クリンパ401は管状端子311を曲面により構成される圧着壁402を有し、アンビル403は、管状端子311を載せる受部404を有する。アンビル403の受部404は、管状部325の外形形状に対応する曲面とされている。
 図23に示すように、管状端子311に電線313が挿入された状態で、受部404に管状端子311を載せて、図中矢印で示すようにクリンパ401を下降させることで、圧着壁402と受部404とにより管状部325が圧縮され、圧着接合される。
 なお、図23には筒部327における断面を示しているため、芯線314の外側の導体絶縁層315と、接着剤355と、筒部327とが図示されているが、クリンパ401及びアンビル403は、筒部327に限らず他の部分を圧縮できる。すなわち、クリンパ401及びアンビル403は、管状部325の拡径部326を除くほぼ全体を圧縮可能な奥行きを有するので、芯線314と管状部325とが圧着接合される部分と、導体絶縁層315を含めた電線313と管状部325とが圧着接合される部分との両方を、一対のクリンパ401及びアンビル403により一度で圧縮できる。また、これらの部位を別々に圧縮してもよい。
 図23には、筒部327の内径(接着剤355の内側の空間の径)と電線313の外径とがほぼ等しく、電線313の周囲に空間がほとんど無い例を示しているが、本発明の適用範囲はこれに限定されない。電線313の外径が筒部327の内径(接着剤355の内側の空間の径)より小さく、電線313の周囲に隙間が存在する状態で、図23に示すように圧着することも可能である。この場合も、圧縮により筒部327が縮径して、筒部327、接着剤355及び導体絶縁層315が密着するので、電線313を管状端子311に確実に接合できる。
 接着剤355の内側の空間の径に対し、電線313の外径が大きい場合、電線313を管状部325に挿入する際に接着剤355が電線313に付着して、接着剤355が拡径部326側に移動したり、電線313の挿入が妨げられたりする可能性がある。このため、電線313の外径が、接着剤355の内側の空間よりも細い場合、管状端子311と電線313とをより容易に接合できるので、好ましいといえる。
 圧着後の管状端子311は電線313とともに電線接続構造体310を構成する。図24(A)及び(B)に示すように、管状部325が圧縮されて、導体圧着縮径部335及び被覆圧着縮径部336を含む管状かしめ部330が形成されている。また、管状部325のうち拡径部326は圧縮されていない。
 導体圧着縮径部335は、図23に示した圧着工程により管状部325が塑性変形を起こして縮径されることで、芯線314の芯線先端部314bが管状端子311に接合される。図24(B)に示すように、芯線先端部314bはセレーション333によって係止されており、より強固に接合されている。導体圧着縮径部335は、管状かしめ部330において最も縮径率が高くなっている部分である。
 被覆圧着縮径部336では、図23に示した圧着工程により管状部325が塑性変形を起こして縮径され、電線313が接着剤355とともに圧縮され、管状端子311に接合される。
 図24(A)及び(B)に示すように、管状かしめ部330においては導体圧着縮径部335と被覆圧着縮径部336の縮径率が異なっているが、圧着壁402(図23)及び受部404(図23)の奥行き方向の形状や深さを導体圧着縮径部335と被覆圧着縮径部336に合わせて調整することにより、一度の圧着工程により必要な縮径率で管状かしめ部330を構成できる。
 管状かしめ部330においては、芯線314を強圧縮して導通を維持する機能と、導体絶縁層315を圧縮してシール性を維持する機能とが要求される。被覆圧着縮径部336では、その断面を略正円にかしめ、導体絶縁層315の全周に渡ってほぼ同等の圧力を与えることにより、全周に渡って均一な弾性反発力を発生させて、シール性を得ることが好ましい。しかしながら、実際の圧着工程では、図23に示すようにアンビル403とクリンパ401の上下からの挟み込みにより圧着加工するため、両工具間の隙間部に、管状端子311の金属材料がはみ出していく挙動が発生する。より具体的には、アンビル403の縁部405と圧着壁402との接触部に管状端子311がはみ出す挙動が発生する。この挙動は、アンビル403とクリンパ401との間に形成される圧縮空間が完全な円形とはならないために生じるので、アンビル403のサイズによらず発生し得る。つまり、図23中にはアンビル403の幅Aが管状端子311の横幅Bより大きい場合を示しているが、アンビル403の幅Aのサイズが管状端子311の横幅Bより小さい場合であっても、上記の挙動は発生し得る。
 このため、図25に示すように、輪切り断面における被覆圧着縮径部336内面の形状は略正円とならず、上記工具間の隙間部に対応する部位337,337が外部へ出っ張った形状となってしまう。部位337、337の出っ張りは、クリンパ401及びアンビル403の当接位置に発生するので、クリンパ401及びアンビル403の奥行き方向に沿って発生する。従って、管状かしめ部330においては、導体圧着縮径部335にも同様の出っ張りが発生し、この出っ張りは管状かしめ部330の軸方向に伸びている。
 部位337,337に対応する位置では、被覆圧着縮径部336から導体絶縁層315への圧力が不足し、被覆圧着縮径部336の内面と導体絶縁層315の表面との間に隙間が生じ、この隙間がリーク経路となって電線挿入口331側から管状かしめ部330内部に水分が浸入する懸念がある。
 管状端子311の金属基材(銅または銅合金)と芯線314(アルミニウム又はアルミニウム合金)との接合部に水分が付着すると、両金属の起電力(イオン化傾向)の差から芯線314が腐食する。また、管状端子311と芯線314とがアルミニウム同士であっても微妙な合金組成の違いによって、それらの接合部は腐食しやすい。このため、電線接続構造体310において管状かしめ部330の内部に水分が侵入する構成では腐食の進行が心配される。
 また、本実施形態では、管状かしめ部330には、管状部325の成形時に溶接された溶接ビード343がある。溶接の条件によっては、溶接ビード343にはひけが生じ、溶接ビード343の肉厚が減少するとともに、溶接ビード343のビードが平滑な内面ではなく不規則な凹凸構造を形成することにより、溶接ビード343付近の内面がリーク経路となることも懸念される。
 また、溶接ビード343と隣接し、溶接による熱影響を受ける部位の強度が低下することにより、圧着加工時に溶接ビード343及びその付近が不均質変形を受けるため、溶接ビード343付近の内面がリーク経路となる可能性も考えられる。
 また、アンビル403とクリンパ401の上下方向からの圧着加工では、管状かしめ部330の下側(アンビル403側)が、上側(クリンパ401側)よりも、受ける圧力が強い傾向にあるため、圧着後の導体絶縁層315の弾性反発力も、下側(アンビル403側)が上側(クリンパ401側)より強くなることがあった。このため、管状かしめ部330における上側(クリンパ401側)での弾性反発力が不足し、上側での導体絶縁層315と管状かしめ部330との界面全域がリーク経路となる可能性がある。
 このため、本実施形態では、管状端子311において管状部325の内周面に接着剤355を配置し、この接着剤355の内側に電線313を挿入して圧着する。
 接着剤355は、液状、ゾルまたはゲル状の流動性を有する状態を有し、時間の経過、温度変化、吸湿、乾燥等を経ることにより、可逆的に、または不可逆的に硬度を増すものである。接着剤355は、硬化する前の流動性を有する状態で管状部325の内周面に塗布や吹き付け等の方法により配置される。
 管状部325に電線313を圧着接合した後の止水性をより確実に高めるため、接着剤355は、硬度を増した状態において可撓性(弾性)を有するものが、より好ましい。
 接着剤355に用いる好適な材料としては、合成樹脂や天然樹脂を用いた接着用材料が挙げられる。接着用材料には、時間の経過により化学反応を生じて硬化する反応型の接着剤、溶剤が揮発することにより硬度を増す溶剤型の接着剤、加熱により流動性を発現し、その後に冷却されて硬度を増すホットメルト系の接着剤を含み、溶剤型の接着剤にはエマルジョン系の接着剤を含む。
 より具体的な例としては、ポリウレタン樹脂、変性シリコン樹脂、ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、尿素樹脂等を主成分として含む接着用材料が挙げられる。また、いわゆる合成ゴムとして知られるシリコーンゴム、フッ素ゴム、ブチルゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレンプロピレンゴム、エピクロロヒドリンゴム、クロロプレンゴム、ニトリルゴム等に溶剤等を添加したゴム系接着剤を用いることもできる。
 特に好ましい例としては、ホットメルト接着剤が挙げられる。例えば、エチレン酢酸ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、変性シリコン樹脂等を主剤としたホットメルト接着剤が好適であり、これらの複数を混合したものや、別の添加成分を含むもの等でも良い。ホットメルト接着剤を接着剤355として用いた場合、管状端子311を加熱し、或いは高温環境下におくことによって、管状部325に付着した接着剤355に何度でも流動性を与えることが可能である。このため、接着剤355を管状部325に付着させる工程や、電線313を管状端子311に圧着接合する工程の前後において、必要に応じて接着剤355に流動性を与えることができる。
 さらに好ましい例としては、ホットメルト接着剤の中で、常温において硬度を増した状態であっても可撓性(弾性)を有するものが好ましい。より具体的には、エチレン酢酸ビニル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、変性シリコン樹脂等を主剤とするものが挙げられる。
 また、接着剤355としてホットメルト接着剤等の熱可塑性の材料を用いる場合、接着剤355の溶融処理温度は、電線接続構造体310が配置される環境における最高温度以上に設定することが好ましい。例えば、電線接続構造体310を自動車ハーネスとして使用する場合、車室内やその周辺で使用されるのであれば、120度~160度の溶融温度を備えた樹脂材が好ましく、エンジン室内で使用されるのであれば、さらに高い180度程度の溶融温度が好ましい。一方、管状端子311は、一部または全部にスズめっき等の処理が施されている。このため、接着剤355の溶融温度の上限は、スズの融点である231.9度を上回らないことが好ましい。また、難燃性を有するものであれば、なお好ましい。
 また、電線313の導体絶縁層315には、ポリ塩化ビニル樹脂や架橋ポリ塩化ビニル樹脂を用いることができる。また、導体絶縁層315として、ポリオレフィン系樹脂、エチレンプロビレンゴム、珪素ゴム、ポリエステル、シリコン樹脂等を主成分とするハロゲンフリー樹脂(ノンハロゲン樹脂)を用いることもできる。これらのハロゲンフリー樹脂は金属水和物等の難燃化剤を混合したものであってもよい。
 接着剤355の材料の選択にあたっては、導体絶縁層315と接着剤355との間で、添加剤、油脂または溶剤の移行による物性変化を生じない組み合わせとなるように、導体絶縁層315の材料に対応して選択されることが好ましい。具体的には、導体絶縁層315としてシリコン樹脂以外のハロゲンフリー樹脂を用いる場合、接着剤355としては、含ハロゲン樹脂、油脂または有機溶剤を含む接着用材料を避けるとよい。
 本構成では、管状かしめ部330は、有底の管状に形成されることにより、外部より水分等の浸入が抑制され、管状端子311と電線313との接合部の腐食を抑えることができる。
 本実施形態では、被覆圧着縮径部336において、電線313の導体絶縁層315と、被覆圧着縮径部336を構成する金属材料とが、接着剤355を介在させて圧着接合されている。そして、接着剤355は、可塑性または可撓性を有するものである。このため、例えば図25に示す部位337等のように、圧着工程において管状かしめ部330の内面と導体絶縁層315との間に空隙が生じたとしても、この空隙が接着剤355により埋められる。これにより、被覆圧着縮径部336におけるシール性を高めることができ、管状かしめ部330の内部空間への水分の浸入を抑制できる。従って、芯線314の腐食を抑制できるので、より耐腐食性の高い電線接続構造体310を実現できる。
 図26及び図27は、管状端子311の製造方法を示す説明図である。図26(A)は管状端子311の長手方向における断面図であり、図26(B)は管状端子311を折り曲げ加工により形成する前の連鎖端子451を示し、管状端子311と連鎖端子451の各部との対応を破線で示す。なお、理解の便宜のため、接着剤355の表面をハッチングにより示す。
 管状端子311の製造方法は、打ち抜き工程、曲げ工程(接着剤355を塗布する工程、及び溶接工程を含む)、切出工程を含む。
 打ち抜き工程では、長手形状の金属板である条450がプレス加工により打ち抜かれ、連鎖端子451が形成される。条450は、予め、金属材料(本実施形態では、銅または銅合金)にメッキや表面塗装等の処理が施された、例えば厚さ0.25mmのテープ状材料である。条450から打ち抜かれる連鎖端子451は、図26(B)に示すように、それぞれが一つの管状端子311となる端子成形片460が複数並び、各端子成形片460が連結テープ464により連結された形状となっている。連鎖端子451は、条450を打ち抜いたものであるため、平板である。また、条450から連鎖端子451が打ち抜かれる際には、同時に、各々の端子成形片460の位置を示す位置決め穴465が連結テープ464において打ち抜かれる。
 端子成形片460は、折り曲げ加工によりボックス部320に成形されるボックス成形部461と、ボックス成形部461に連結され、折り曲げ加工によりボックス部320内部のスプリングに成形されるスプリング成形部462とを有する。また、ボックス成形部461には、曲げ加工により管状部325に成形される管状成形部463が繋がっている。
 曲げ工程においては、ボックス成形部461を略直角に複数回折り曲げてボックス部320を形成する加工と、スプリング成形部462を折り曲げてボックス部320内部に収める加工とが並行して行われ、さらに、管状成形部463を丸める曲げ加工が行われる。管状成形部463は、まず、連結テープ464の面に対する上下方向からのプレス加工により断面U字形状に曲げられ、その後、U字の先端側を丸める加工により、断面C字形状に成形される。ボックス成形部461及びスプリング成形部462に対する曲げ加工と、管状成形部463に対する加工とは、個別に実行されてもよいし、並行して実行されてもよい。また、連結テープ464により連結された複数の端子成形片460に対して同時に曲げ加工を行って、複数の管状端子311を形成してもよい。
 曲げ加工により形成された管状端子311は、切出工程において連結テープ464から切り離される。
 このようにして製造された管状端子311に対し、電線313を電線挿入口331から挿入して、図23に示したように圧着接合することにより、電線接続構造体310が製造される。
 管状部325の内部に設けられるセレーション333は、打ち抜き加工の前の条450、または、打ち抜き加工後の連鎖端子451に対するプレス加工等により形成される。すなわち、条450において管状成形部463となる予定の位置に、プレス加工によりセレーション333を形成すればよい。この場合、条450から連鎖端子451を打ち抜くプレス加工において同時にセレーション333を形成してもよい。また、曲げ工程において、連鎖端子451をプレスして曲げ加工を施す際に、同時にセレーション333を形成してもよい。
 曲げ工程の前に、連鎖端子451に接着剤355を付着させる工程が行われ、管状成形部463を管状部325に成形した場合に筒部327に相当する部分に接着剤355が配置される。
 接着剤355が液体、ゾル、またはゲル状である場合には、接着剤355は塗布や滴下の方法により配置される。
 また、接着剤355がホットメルト接着剤等の固体のものである場合には、接着剤355を加熱して溶融させ、溶融状態で連鎖端子451に付着させてもよいし、シート状のホットメルト接着剤からなる接着剤355を連鎖端子451に載せてから加熱して溶融させ、連鎖端子451に接着剤355を密着させてもよい。
 図26には、打ち抜き工程の後に各々の管状成形部463に接着剤355を付着させる例を示したが、打ち抜き工程の前に接着剤355を付着させることもできる。
 例えば図27(A)及び(B)に示すように、打ち抜き工程前の条450に、接着剤355を付着させてもよい。図27(A)の例では、条450において、曲げ工程で管状成形部463に成形される予定の位置に、接着剤355を付着させる。この方法を用いれば、接着剤355を無駄なく使用できる。また、打ち抜き工程で金型に接着剤355が付着しにくいという利点がある。図27(A)に例示する方法は、液状、ゾル状またはゲル状の接着剤355を塗布、滴下、吹き付け等の方法により付着させる場合に、好適である。一方、図27(B)の例では、端子成形片460の位置にかかわらず条450の長手方向に伸びる領域に接着剤355を付着させる。この場合、接着剤355を付着させる位置は、条450の幅方向における位置を調整すればよく、条450の長手方向における位置決めは不要である。このため、接着剤355を付着させる処理を速やかに処理できるという利点がある。図27(B)に例示する方法は、例えば、長尺のシート状に加工された接着剤355を条450に付着させる場合に、好適である。
 管状成形部463を曲げ加工して管状部325を形成する方法としては、上述のように、管状成形部463の両端を突き合わせてレーザー溶接により接合する方法が挙げられるが、本発明はこれに限定されない。以下、管状成形部463の接合方法の別の例について説明する。
<第4実施形態>
 図28は、第4実施形態に係る管状端子311Aの構成を示す図であり、(A)は斜視図、(B)は要部断面図である。
 管状端子311Aは、上記第3実施形態で説明した管状端子311と同様のボックス部320を有する。なお、理解の便宜のためボックス部320を仮想線で示す。
 管状端子311は、ボックス部320と管状部325aとを有し、これらの橋渡しとしてトランジション部340Aを有する。管状部325aは、トランジション部340Aから次第に大径となる拡径部326Aと、この拡径部326Aの縁部から筒状に延びる筒部327Aとからなる。管状部325aは中空の管となっており、管状部325aの一端には、電線313を挿入することができる電線挿入口331が開口している。また、管状部325aの他端はトランジション部340Aに接続されている。
 トランジション部340Aは、管状部325の一端を押しつぶすようにプレスし、面状に重なり合うようにして構成するとともに、その長手方向の中間位置を幅方向の溶接等の手段によって閉鎖されており、トランジション部340側から水分等が浸入しないように形成されている。
 そして、電線挿入口331から管状部325aに電線313を挿入し、筒部327Aを圧着工具によって圧縮することで管状端子311と電線313とが圧着接合され、電線接続構造体が構成される。
 管状部325aは、図26に示した管状成形部463を断面C字形状に曲げ加工して構成される。ここで、管状成形部463の端部はさらに略直角に曲げられ、接合部において立ち上がり部345、345となる。このため、管状部325aを閉じた管とする場合、立ち上がり部345の側面どうしを突き合わせて接合することになる。
 立ち上がり部345、345をレーザー溶接により接合する場合、レーザーの照射方向においては接合部となる立ち上がり部345の深さがあるので、図28(B)に示すように、溶接ビード343Aは管状部325aの外側にとどまり、管状部325aの内表面に達しない。
 図26~図27で説明したように、管状部325aを管状に成形する前に接着剤355を付着させる方法を採用した場合、レーザー溶接によって管状部325aの内周面まで高温に曝されると、意図しない接着剤355の溶解等を招く可能性がある。図28に示すように、管状成形部463に立ち上がり部345を設けて、立ち上がり部345の立ち上がり(管状部325aの外表面)側からレーザーを照射して溶接を行うことにより、溶解部が管状部325aの内表面に達することがない。このため、既に付着している接着剤355に影響を与えることなく、管状部325aを成形できるという利点がある。
 立ち上がり部345を設けた場合、トランジション部340Aにおいて管状部325aの端部が確実に閉塞された構成とするため、トランジション部340Aにレーザー溶接加工を施して、重ね合わせ部44を形成してもよい。
<第5実施形態>
 図29は、第5実施形態に係る管状端子311Bの構成を示す図であり、(A)は斜視図、(B)は要部断面図である。
 管状端子311Bは、上記第3実施形態で説明した管状端子311と同様のボックス部320を有する。なお、理解の便宜のためボックス部320を仮想線で示す。
 管状端子311は、ボックス部320と管状部325bとを有し、これらの橋渡しとしてトランジション部340Bを有する。管状部325bは、トランジション部340Bから次第に大径となる拡径部326Bと、この拡径部326Bの縁部から筒状に延びる筒部327Bとからなる。管状部325bは中空の管となっており、管状部325bの一端には、電線313を挿入することができる電線挿入口331が開口している。また、管状部325bの他端はトランジション部340Bに接続されている。
 そして、電線挿入口331から管状部325bに電線313を挿入し、筒部327Bを圧着工具によって圧縮することで管状端子311と電線313とが圧着接合され、電線接続構造体が構成される。
 管状部325bは、図26に示した管状成形部463を断面C字形状に曲げ加工して構成される。ここで、管状成形部463の端部は相互に重ね合わされる。この重ね合わせ部346に対して、重なり方向において管状部325bの外表面側からレーザーを照射することにより、管状部325bが閉じた管とされる。重ね合わせ部346をレーザー溶接により接合する場合、レーザーの照射方向において2枚の板材が重なっているので、図29(B)に示すように、溶接ビード343Bは管状部325bの外側にとどまり、管状部325bの内表面に達しない。
 トランジション部340Bは、管状部325の一端を押しつぶすようにプレスし、面状に重なり合うようにして構成するとともに、その長手方向の中間位置を幅方向の溶接等の手段によって閉鎖されており、トランジション部340側から水分等が浸入しないように形成されている。
 この第5実施形態の管状端子311Bは、図26~図27で説明したように管状部325bを管状に成形する前に接着剤355を付着させる方法を適用することができる。すなわち、レーザー溶接によって管状部325bの内周面まで高温に曝されることがないため、接着剤355の溶解等を起こさないように溶接を行える。このため、既に付着している接着剤355に影響を与えることなく、管状部325bを成形できるという利点がある。また、重ね合わせ部346は曲げ加工の工程を増やすことなく実現できるので、管状端子311Bの生産性への影響は軽微である。
 重ね合わせ部346を設けた場合、トランジション部340Bにおいて管状部325bの端部が確実に閉塞された構成とするため、トランジション部340Bにレーザー溶接加工を施して、重ね合わせ部44を形成してもよい。
 次に、実施例1について説明する。
(実施例1)
 実施例1の電線接続構造体310では、管状端子311の基材として、古河電気工業製の銅合金FAS-680(厚さ0.25mm、H材)を用いた。FAS-680の合金組成は、ニッケル(Ni)を2.0~2.8質量%、シリコン(Si)を0.45~0.6質量%、亜鉛(Zn)を0.4~0.55質量%、スズ(Sn)を0.1~0.25質量%、およびマグネシウム(Mg)を0.05~0.2質量%含有し、残部が銅(Cu)および不可避不純物である。
 管状部325は、曲げ加工されたC字型断面の両端部を突き合わせ、内径3.2mmとなるようにレーザー溶接した。
 電線313の芯線314は、合金組成が鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物であるアルミ合金線(線径0.3mm)を素線314aとして用いた。この素線314aを11本用いて0.75sq、11本円形圧縮撚りの芯線314にした。
 また、電線313の導体絶縁層315は、ハロゲンフリー樹脂としてエチレン酢酸ビニル共重合体を用いた。導体絶縁層315は、芯線314の周囲を外径が1.4mmとなるように押出し法により形成した。
 接着剤355として、変性シリコン樹脂を主剤とする弾性接着剤を用いた。この弾性接着剤は硬化後も弾性を発揮する。この接着剤355を、管状部325の内周面に、約0.25mm厚となるようコーティングした。
 電線313は、ワイヤストリッパを用いて電線端部の導体絶縁層315を剥離して芯線314を露出させた。この状態で電線313を管状端子311の管状部325に差し込み、管状部325のうち筒部327をクリンパ401及びアンビル403を用いて部分的に強圧縮することで圧着結合した。
(比較例1)
 比較例1の電線接続構造体は、接着剤355を用いないことを除き、実施例1と共通とした。
 環境試験として、高温放置の前後でエアリーク試験を行った。
 高温放置は、摂氏120度の環境下に120時間静置した。
 エアリーク試験は、管状端子311に圧着接続された電線313を、管状端子311を容器に貯溜した水に浸して行った。管状端子311が水没した状態で、管状端子311とは反対側の電線313の端部に、加圧空気供給装置から延びるエアチューブを接続した。この加圧空気供給装置から所定の空気圧で加圧空気を注入し、管状かしめ部330からの気泡の発生を目視により判定し、気泡が発生した場合には、発生時における加圧空気供給装置の空気圧を検出した。気泡が発生しない場合には注入する加圧空気の圧力を50kPaまで高め、試験を終了した。
 実施例1の電線接続構造体310は、高温放置前のエアリーク試験、及び、高温放置後のエアリーク試験のいずれにおいても、泡が発生しなかった。泡の発生がない状態で空気圧が50kPaに達したため、試験を終了した。
 これに対し、比較例1の電線接続構造体は、高温放置前のエアリーク試験では空気圧が50kPaに達しても泡が発生しなかったが、高温放置後は空気圧が10kPaの時点で管状部と導体絶縁層との間から気泡の発生が視認された。
 これにより、接着剤355が管状部325と導体絶縁層315とを密に接合し、電線挿入口331側における止水性を大幅に向上させることが明らかになった。
 このように、本発明の管状端子311によれば、電線と圧着結合される管状の圧着予定部に接着剤を設けることにより、電線と端子とが接着剤を介して強固に接合される。
 詳述すると、従来、自動車等に使用されるワイヤーハーネスでは、芯線(導線)を絶縁体で被覆して形成された電線が使用され、この種の電線は、被覆を剥離して露出させた芯線端部に金属端子が圧着接続されている。従来の電線と端子の接続構造では、絶縁体が剥離された芯線端部の表面は剥き出しになっているため、車両等の用途に適用すると、電線が雨水等に晒された場合や高温や高湿の環境下で長時間走行した場合などに、芯線の腐食が懸念されていた。
 特に、近年、自動車の燃費向上を目的としてワイヤーハーネスの軽量化を図るために、芯線の材料が従前の銅系材料からアルミニウムあるいはアルミニウム合金等のアルミ系材料へ置き換えられてきている。
 アルミ系材料の芯線を電線に用いて、圧着部の金属端子に銅系材料を用いた場合、電線を構成する金属(アルミ系材料)と金属端子を構成する金属(銅系材料)において電位差が生じる。このとき、電線と端子の接続部に水分等が付着した場合、電線の導体(芯線)は露出しているため、異種金属間腐食が発生し、いずれかの金属の腐食が進行してしまう。アルミ系材料と銅系材料の異種金属間腐食においては、アルミ系材料が腐食により減肉してしまう。そのため電線接続部において、接触不良が生じてしまう恐れがあった。
 これらの問題を解決するために、従来、圧着部の端部露出領域及びその近傍領域の全外周を樹脂によってモールド成形する技術が提案されている(例えば、特開2011-222243号公報参照)。
 また、電線の芯線露出部に金属製の中間キャップを取り付けた後に端子を圧着し、電線と端子との圧着部を保護する技術が提案されている(例えば、特開2004-207172号公報参照)。
 しかしながら、本発明によれば、電線と圧着結合される管状の圧着予定部に接着剤を設けることにより、電線と端子とが接着剤を介して強固に接合される。これにより、止水性能の向上を図ることができ、水分による電線導体の腐食を抑制できる。また、電線側に加工を施すことがないため、効率よく圧着工程を施すことができる。従って、複雑な工程を経ることなく容易に製造可能な構成により、芯線の腐食を抑制できる。よって、熱サイクルに対する耐久性を向上できる。
 なお、接着剤355の代わりに、グリスを用いてもよい。さらには、管状端子311の管状部325の後方端に、径外側に拡径したベルマウス136(図20参照)を形成してもよく、ベルマウス136によって、同様の効果を奏することができる。
 以下、図面を参照して本発明の第6実施形態について説明する。
 図30は、第6実施形態の電線接続構造体510を示す斜視図である。
 電線接続構造体510は、管状端子511と、この管状端子511に圧着結合された電線513とを備える。管状端子511は、雌型端子のボックス部520と管状かしめ部530とを有し、これらの橋渡しとしてトランジション部540を有する。
 管状端子511は、導電性と強度を確保するために基本的に金属材料(第6実施形態では、銅または銅合金)の基材で製造されている。なお、管状端子511の基材は、銅または銅合金に限るものではなく、アルミニウムや鋼、またはこれらを主成分とする合金等を用いることもできる。
 また、管状端子511は、端子としての種々の特性を担保するために、例えば管状端子511の一部あるいは全部にスズ、ニッケル、銀めっきまたは金等のめっき処理が施されていても良い。また、めっきのみならず、スズ等のリフロー処理を施しても良い。
 管状端子511のボックス部520は、例えば雄型端子等の挿入タブの挿入を許容する雌型端子のボックス部である。本発明において、このボックス部520の細部の形状は特に限定されない。すなわち、管状端子511は、少なくともトランジション部540を介して管状かしめ部530を備えていれば良く、例えばボックス部を有さなくても良いし、例えばボックス部が雄型端子の挿入タブであっても良い。また、管状かしめ部530に他の形態に係る端子端部が接続された形状であっても良い。本明細書では、本発明の管状端子を説明するために便宜的に雌型ボックスを備えた例を示している。
 管状端子511のトランジション部540は、管状部525の一端を押しつぶすようにプレスし、面状に重なり合うようにして構成するとともに、その長手方向の中間位置を幅方向の溶接等の手段によって閉鎖されており、トランジション部540側から水分等が浸入しないように形成されている。
 図31は、電線接続構造体510の長手方向の要部断面図である。
 電線513は、例えば、金属または合金材料で構成される素線514aを束ねた芯線514を、絶縁樹脂(例えば、ポリ塩化ビニル)で構成する導体絶縁層515で被覆して構成される。芯線514は、所定の断面積となるように、素線514aを撚って構成しているが、この形態に限定されるものではなく単線で構成しても良い。
 なお、芯線を構成する金属材料は、高い導電性を有する金属であればよく、アルミニウムまたはアルミニウム合金の他、銅または銅合金を用いても良い。
 管状かしめ部530は、管状端子511と電線513とを圧着結合する部位であり、導体圧着縮径部535および被覆圧着縮径部536を備える。
 通常、圧着結合すると、導体圧着縮径部535および被覆圧着縮径部536がそれぞれ塑性変形を起こして、元の径よりも縮径されることで、電線513の芯線先端部514bおよび被覆先端部(圧着部)515aと圧着結合される。
 管状かしめ部530の一端は、電線513を挿入することができる電線挿入口531を有し、他端はトランジション部540に接続されている。管状かしめ部530のトランジション部540側は、溶接等の手段によって閉口しており、トランジション部540側から水分等が浸入しないように形成されている。
 管状端子511の金属基材(銅または銅合金)と芯線514(アルミニウム又はアルミニウム合金)との接合部に水分が付着すると、両金属の起電力(イオン化傾向)の差から芯線514が腐食する。また、管状端子511と芯線514とがアルミニウム同士であっても微妙な合金組成の違いによって、それらの接合部は腐食しやすい。
 本構成では、管状かしめ部530は、有底の管状に形成されることにより、外部より水分等の浸入が抑制され、管状端子511と電線513との接合部の腐食を抑えることができる。なお、管状かしめ部530は、管状であれば腐食に対して一定の効果を得られるため、必ずしも長手方向に対して円筒である必要はなく、場合によっては楕円や矩形の管であっても良い。また、径が一定である必要はなく、長手方向で半径が変化していても良い。
 管状かしめ部530は、例えば、銅または銅合金からなる条材を平面展開した形状に打ち抜き、曲げ加工によって形成される。この場合、ボックス部を一体に設けても良い。
 平面状態からの曲げ加工した際に、かしめ部に相当する部位はC字型断面となっているので、開放された両端部を突き合わせて溶接等によって接合することで、管状かしめ部530が形成される。管状かしめ部530の接合は、レーザ溶接が好ましいが、電子ビーム溶接、超音波溶接、抵抗溶接等の溶接法でもかまわない。また、はんだ、ろう等、接続媒体を使っての接合でも良い。また、管状かしめ部530は、上記したC字型断面の両端部を接合する方法に限らず、深絞り工法で形成されても良い。さらに、連続管を切断するとともに一端側を閉塞して、管状かしめ部530を形成しても良い。
 管状かしめ部530では、管状かしめ部530を構成する金属基材と電線513とが機械的な圧着結合されることにより、同時に電気的な接合を確保する。かしめ接合は、基材や電線(芯線)の塑性変形によって接合が行われる。従って、管状かしめ部530は、かしめ接合をすることができるように肉厚を設計される必要があるが、人力加工や機械加工等で接合を自由に行うことができるので、特に限定されるものではない。
 管状かしめ部530では、芯線514を強圧縮して導通を維持する機能と、導体絶縁層515を圧縮してシール性を維持する機能とが要求される。被覆圧着縮径部536では、その断面を略正円にかしめ、導体絶縁層515の全周に渡ってほぼ同等の圧力を与えることにより、全周に渡って均一な弾性反発力を発生させて、シール性を得ることが好ましい。
 アルミニウムまたはアルミニウム合金は、銅及び銅合金と比較すると接触抵抗が高いため、芯線にアルミニウムまたはアルミニウム合金が用いられた場合には電線と端子との接続に不安がある。このため、管状かしめ部530の内壁面には、電線挿入口531から挿入された電線513の芯線514と接触する位置に、電線513の周方向に延びる電線係止溝(不図示)を設け、電線513との接触圧を保つ構成としても良い。
 電線513の導体絶縁層515は、例えば、ポリ塩化ビニルで構成される樹脂層541を備え、被覆先端部(圧着部)515aには、樹脂層541の外側に接着剤555の層が設けられた二層構造の被覆層として形成される。なお、第6実施形態では、導体絶縁層(被覆層)515は、被覆先端部(圧着部)515aを二層構造としているが、接着剤555を最外層に備えるものであれば、二層以上に構成しても構わないのは勿論である。また、二層以上の導体絶縁層(被覆層)515を、少なくとも電線513の長さ方向(軸方向)における被覆先端部(圧着部)515aに部分的に設ければ、必ずしも電線513の長さ方向全長に亘って設けなくても良い。
 図32は、圧着結合する前の管状端子511Aと電線513とを示す斜視図である。
 圧着結合する前の管状端子511Aは、雌型端子のボックス部520と管状部525とを有し、これらの橋渡しとしてトランジション部540を有する。管状部525は、トランジション部540から次第に大径となる拡径部526と、この拡径部526の縁部から筒状に延びる筒部527とからなる。
 拡径部526には、導体圧着縮径部535(図30参照)が形成され、筒部527には、被覆圧着縮径部536(図30参照)が形成される。管状端子511Aは、一部または全部にスズめっき等の処理が施されている。
 導体絶縁層515の樹脂層541を構成する樹脂材としては、ポリ塩化ビニル樹脂や架橋ポリ塩化ビニル樹脂を用いることができる。また、樹脂層541として、ポリオレフィン系樹脂、エチレンプロビレンゴム、珪素ゴム、ポリエステル、シリコン樹脂等を主成分とするハロゲンフリー樹脂(ノンハロゲン樹脂)を用いることもできる。これらのハロゲンフリー樹脂は金属水和物等の難燃化剤を混合したものであってもよい。
 接着剤555は、液状、ゾルまたはゲル状の流動性を有する状態を有し、時間の経過、温度変化、吸湿、乾燥等を経ることにより硬度を増すものである。接着剤555は、硬化する前の流動性を有する状態で被覆先端部(圧着部)515aの表面に塗布や吹き付け等の方法により配置される。
 具体的には、電線513の樹脂層541の先端部の所定の領域に接着剤555を塗布した後に、ワイヤストリッパ等の工具を用いて、接着剤555が塗布された樹脂層541の先端部の一部の領域(先端側)を芯線514から剥がす。これにより、接着剤555は、樹脂層541の先端から軸方向に確実に塗布されるとともに、接着剤555が塗布工程において、芯線514に付着することを防止でき、接着剤555による導体同士の接合部における抵抗の増加を防止できる。
 接着剤555は、管状かしめ部530(被覆圧着縮径部536)に電線513を圧着接合した後の止水性をより確実に高めるため、接着剤555は、硬度を増した状態において可撓性(弾性)を有するものが、より好ましい。
 接着剤555の好適な材料としては、合成樹脂や天然樹脂を用いた接着剤が挙げられる。接着剤には、時間の経過により化学反応を生じて硬化する反応型の接着剤、溶剤が揮発することにより硬度を増す溶剤型の接着剤、加熱により流動性を発現し、その後に冷却されて硬度を増すホットメルト系の接着剤を含み、溶剤型の接着剤にはエマルジョン系の接着剤を含む。
 より具体的な例としては、ポリウレタン樹脂、変性シリコン樹脂、ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、尿素樹脂等を主成分として含むものが挙げられる。また、いわゆる合成ゴムとして知られるシリコーンゴム、フッ素ゴム、ブチルゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレンプロピレンゴム、エピクロロヒドリンゴム、クロロプレンゴム、ニトリルゴム等に溶剤等を添加したゴム系接着剤を用いることもできる。
 特に好ましい例としては、ホットメルト接着剤が挙げられる。例えば、エチレン酢酸ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、変性シリコン樹脂等を主剤としたホットメルト接着剤が好適であり、これらの複数を混合したものや、別の添加成分を含むもの等でも良い。ホットメルト接着剤を接着剤555として用いた場合、電線513を高温環境下におくことによって、樹脂層541の先端部に付着した接着剤555に何度でも流動性を与えることが可能である。このため、接着剤555を樹脂層541の先端部に付着させる工程や、電線513を管状端子511に圧着接合する工程の前後において、必要に応じて接着剤555に流動性を与えることができる。
 さらに好ましい例としては、ホットメルト接着剤の中で、常温において硬度を増した状態であっても可撓性(弾性)を有するものが好ましい。より具体的には、エチレン酢酸ビニル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、変性シリコン樹脂等を主剤とするものが挙げられる。
 また、接着剤555としてホットメルト接着剤等の熱可塑性の材料を用いる場合、接着剤555の溶融処理温度は、電線接続構造体510が配置される環境における最高温度以上に設定することが好ましい。例えば、電線接続構造体510を自動車ハーネスとして使用する場合、車室内やその周辺で使用されるのであれば、120度~160度の溶融温度を備えた樹脂材が好ましく、エンジン室内で使用されるのであれば、さらに高い180度程度の溶融温度が好ましい。一方、管状端子511は、一部または全部にスズめっき等の処理が施されている。このため、接着剤555の溶融温度の上限は、スズの融点である231.9度を上回らないことが好ましい。また、難燃性を有するものであれば、なお好ましい。
 接着剤555の材料の選択にあたっては、樹脂層541と接着剤555との間で、添加剤、油脂または溶剤の移行による物性変化を生じない組み合わせとなるように、樹脂層541の材料に対応して選択されることが好ましい。具体的には、樹脂層541としてシリコン樹脂以外のハロゲンフリー樹脂を用いる場合、接着剤555としては、含ハロゲン樹脂、油脂または有機溶剤を含む接着剤を避けるとよい。
 第6実施形態では、電線513の導体絶縁層515は、被覆先端部(圧着部)515aにおいて樹脂層541の外側に接着剤555の層を有する二層構造となっている。このため、電線513を管状かしめ部530に圧着接合した場合に、管状かしめ部530(被覆圧着縮径部536)の内面と樹脂層541の表面とが接着剤555を介して密着される。このため、圧着接合した際に、被覆圧着縮径部536の内面と導体絶縁層515の表面との隙間を通じて管状かしめ部530内に水が浸入することが防止され、芯線514の腐食を抑制できる。
 次に、実施例2について説明する。
(実施例2)
 実施例2の電線接続構造体510では、管状端子511(511A)の基材として、古河電気工業製の銅合金FAS-680(厚さ0.25mm、H材)を用いた。FAS-680の合金組成は、ニッケル(Ni)を2.0~2.8質量%、シリコン(Si)を0.45~0.6質量%、亜鉛(Zn)を0.4~0.55質量%、スズ(Sn)を0.1~0.25質量%、およびマグネシウム(Mg)を0.05~0.2質量%含有し、残部が銅(Cu)および不可避不純物である。
 管状部525は、曲げ加工されたC字型断面の両端部を突き合わせ、内径3.2mmとなるようにレーザ溶接した。
 電線513の芯線514は、合金組成が鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物であるアルミ合金線(線径0.42mm)を素線514aとして用いた。この素線514aを19本用いて2.5sq、19本撚りの芯線514にした。
 また、電線513の樹脂層541(導体絶縁層515)は、ハロゲンフリー樹脂としてエチレン酢酸ビニル共重合体を用いた。樹脂層541は、芯線514の周囲を外径が2.8mmとなるように押出し法により形成した。
 接着剤555として、変性シリコン樹脂を主剤とする弾性接着剤を用いた。この弾性接着剤は硬化後も弾性を発揮する。この接着剤555を、樹脂層541の表面に、約0.25mm厚となるようコーティングした。
 電線513は、ワイヤストリッパを用いて電線端部の導体絶縁層515(樹脂層541及び接着剤555)を剥離して芯線514を露出させた。この状態で電線513を管状端子511の管状部525に差し込み、管状部525のうち筒部527をクリンパ及びアンビルを用いて部分的に強圧縮することで圧着結合した。
(比較例2)
 比較例2の電線接続構造体は、接着剤555を用いないことを除き、実施例2と共通とした。
 環境試験として、高温放置の前後でエアリーク試験を行った。
 高温放置は、摂氏120度の環境下に120時間静置した。
 エアリーク試験は、管状端子511に圧着接続された電線513を、管状端子511を容器に貯溜した水に浸して行った。管状端子511が水没した状態で、管状端子511とは反対側の電線513の端部に、加圧空気供給装置から延びるエアチューブを接続した。この加圧空気供給装置から所定の空気圧で加圧空気を注入し、管状かしめ部530からの気泡の発生を目視により判定し、気泡が発生した場合には、発生時における加圧空気供給装置の空気圧を検出した。気泡が発生しない場合には注入する加圧空気の圧力を50kPaまで高め、試験を終了した。
 実施例2の電線接続構造体510は、高温放置前のエアリーク試験、及び、高温放置後のエアリーク試験のいずれにおいても、泡が発生しなかった。泡の発生がない状態で空気圧が50KPaに達したため、試験を終了した。
 これに対し、比較例2の電線接続構造体は、高温放置前のエアリーク試験では空気圧が50KPaに達しても泡が発生しなかったが、高温放置後は空気圧が10KPaの時点で管状部と導体絶縁層との間から気泡の発生が視認された。
 これにより、接着剤555が管状部525と樹脂層541とを密に接合し、電線挿入口531側における止水性を大幅に向上させることが明らかになった。
 このように、本発明の環状端子511によれば、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、管状端子とが圧着結合した電線接続構造体であって、前記導体絶縁層は最外層が接着剤からなる層である二層以上の被覆層を有するため、管状端子と電線の導体絶縁層とが接着剤の層により密着される。
 詳述すると、従来、自動車等に使用されるワイヤーハーネスでは、芯線(導線)を絶縁体で被覆して形成された電線が使用され、この種の電線は、被覆を剥離して露出させた芯線端部に金属端子が圧着接続されている。従来の電線と端子の接続構造では、絶縁体が剥離された芯線端部の表面は剥き出しになっているため、車両等の用途に適用すると、電線が雨水等に晒された場合や高温や高湿の環境下で長時間走行した場合などに、芯線が腐食し易いという問題があった。
 特に、近年、自動車の燃費向上を目的としてワイヤーハーネスの軽量化を図るために、芯線の材料が従前の銅系材料からアルミニウムあるいはアルミニウム合金等のアルミ系材料へ置き換えられてきている。
 アルミ系材料の芯線を電線に用いて、圧着部の金属端子に銅系材料を用いた場合、電線を構成する金属(アルミ系材料)と金属端子を構成する金属(銅系材料)において電位差が生じる。このとき、電線と端子の接続部に水分等が付着した場合、電線の導体(芯線)は露出しているため、異種金属間腐食が発生し、いずれかの金属の腐食が進行してしまう。アルミ系材料と銅系材料の異種金属間腐食においては、アルミ系材料が腐食により減肉してしまう。そのため電線接続部において、接触不良が生じてしまう恐れがあった。
 これらの問題を解決するために、従来、圧着部の端部露出領域及びその近傍領域の全外周を樹脂によってモールド成形する技術が提案されている(例えば、特開2011-222243号公報参照)。
 また、電線の芯線露出部に金属製の中間キャップを取り付け後に端子を圧着し、電線と端子との圧着部を保護する技術が提案されている(例えば、特開2004-207172号公報参照)。
 しかしながら、本発明によれば、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、管状端子とが圧着結合した電線接続構造体であって、前記導体絶縁層は最外層が接着剤からなる層である二層以上の被覆層を有するため、管状端子と電線の導体絶縁層とが接着剤の層により密着される。よって、熱サイクルに対する耐久性を向上できる。
 なお、接着剤555の代わりに、グリスを用いてもよい。さらには、管状端子511の管状部525の後方端に、径外側に拡径したベルマウス136(図20参照)を形成してもよく、ベルマウス136によって、同様の効果を奏することができる。
1,1Pa,1Pb,2A,2B,2C…接続構造体
21…メス型コネクタ
22…メス型コネクタハウジング
31…オス型コネクタ
32…オス型コネクタハウジング
100…圧着端子
130…バレル部
131…被覆囲繞部
132…導体圧着部
134,210…接着剤
134a…接着剤成分
134b…カプセル
134K…カプセル状接着剤
135…段差
200…被覆電線
201…アルミニウム芯線
201a…アルミニウム素線
202…絶縁被覆
X…長手方向
310…電線接続構造体
311、311A、311B…管状端子(端子)
313…電線
314…芯線
315…導体絶縁層
320…ボックス部
325、325A、325B…管状部(圧着予定部)
327、327A、327B…筒部
330…管状かしめ部
333…セレーション
335…導体圧着縮径部
336…被覆圧着縮径部
340、340A、340B…トランジション部
355…接着剤
510…電線接続構造体
511、511A…管状端子
513…電線
515…導体絶縁層
515a…被覆先端部(圧着部)
525…管状部
526…拡径部
527…筒部
530…管状かしめ部
531…電線挿入口
535…導体圧着縮径部
536…被覆圧着縮径部
541…樹脂層
555…接着剤

Claims (36)

  1.  電線導体の外周を絶縁性の絶縁被覆で被覆した被覆電線における前記絶縁被覆の先端近傍を囲繞する被覆囲繞部と、前記絶縁被覆の先端から前記被覆電線の長手方向に所定の長さ露出した前記電線導体に対して加締めて圧着する導体圧着部とで一体に構成した断面中空状の電線接続部を備えた圧着端子における前記電線接続部によって、前記被覆電線と前記圧着端子とを接続した接続構造体であって、
    前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させた
    接続構造体。
  2.  前記樹脂材料を、前記被覆電線における前記絶縁被覆に塗布した
    請求項1に記載の接続構造体。
  3.  前記電線導体を、複数本の素線を束ねて構成するとともに、
    前記樹脂材料を、前記複数本の素線間に浸透しない程度の粘度を有する構成とした
    請求項1または2に記載の接続構造体。
  4.  前記樹脂材料を、
    硬化性の合成樹脂材で形成するとともに、前記被覆囲繞部と前記絶縁被覆との間に介在させた状態で硬化させる
    請求項1から3のいずれか一つに記載の接続構造体。
  5.  前記樹脂材料を、前記被覆囲繞部の端面と前記被覆電線における前記絶縁被覆の外周面との段差に備えた
    請求項1から4のいずれか一つに記載の接続構造体。
  6.  前記段差に備えた前記樹脂材料は、前記被覆囲繞部の端部側の外周面を跨ぐように塗布されている
    請求項5に記載の接続構造体。
  7.  前記樹脂材料を、前記被覆電線の全周に亘って介在させた
    請求項1から6のいずれか一つに記載の接続構造体。
  8.  前記樹脂材料を、
    接着剤成分をカプセルで封入したカプセル状に構成するとともに、
    前記被覆囲繞部を圧着する際の前記カプセルの圧潰によって、前記被覆囲繞部と前記被覆電線における前記絶縁被覆とを接着するカプセル状接着剤で構成した
    請求項1から7のいずれか一つに記載の接続構造体。
  9.  前記導体圧着部に、
    長手方向の先端側に向けて延設するとともに、前記長手方向における先端を封止した封止部を備えた
    請求項1から請求項8のいずれか1つに記載の接続構造体。
  10.  前記電線導体を、アルミ系材料で構成するとともに、
    少なくとも前記電線接続部を、銅系材料で構成した
    請求項1から9のいずれか一つに記載の接続構造体。
  11.  請求項1から10のいずれか一つに記載の接続構造体における圧着端子をコネクタハウジング内に配置した
    コネクタ。
  12.  電線導体の外周を絶縁性の絶縁被覆で被覆した被覆電線における前記絶縁被覆の先端近傍を囲繞する被覆囲繞部と、前記絶縁被覆の先端から前記被覆電線の長手方向に所定の長さ露出した前記電線導体に対して加締めて圧着する導体圧着部とで構成した断面中空状の電線接続部を備えた圧着端子における前記電線接続部によって、前記被覆電線と前記圧着端子とを圧着接続する接続構造体の製造方法であって、
    前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させた後、前記被覆電線と前記圧着端子とを圧着接続する
    接続構造体の製造方法。
  13.  前記被覆囲繞部の内周面と前記絶縁被覆の外周面とのうち少なくとも一方の周面に、樹脂材料を塗布した後、
    前記被覆電線の先端を前記電線接続部の内部に挿入することで、前記被覆囲繞部と前記被覆電線における前記絶縁被覆との間に、樹脂材料を介在させる
    請求項12に記載の接続構造体の製造方法。
  14.  前記樹脂材料を、
    前記被覆電線の先端を前記被覆囲繞部の内部に挿入した状態における、前記被覆囲繞部の内周面と前記被覆電線の外周面との間隔よりも厚くなるように、前記被覆電線の先端を前記被覆囲繞部の内部に挿入前に、前記被覆電線の外周面に塗布した
    請求項13に記載の接続構造体の製造方法。
  15.  前記樹脂材料を、
    前記被覆囲繞部の内部に前記被覆電線の先端を挿入した状態における、前記被覆囲繞部の内周面と前記被覆電線の外周面との間よりも薄くなるように、前記被覆電線の外周面に塗布し、
    前記被覆電線と前記圧着端子とを圧着接続する際に、前記電線接続部の内部に挿入した前記被覆電線における前記絶縁被覆に対して前記被覆囲繞部を加締めて圧着する
    請求項13に記載の接続構造体の製造方法。
  16.  前記樹脂材料を、前記被覆電線における前記絶縁被覆に塗布した後、前記絶縁被覆の先端から前記電線導体を露出させ、前記被覆電線と前記圧着端子とを圧着接続する
    請求項12から15のうちいずれか一項に記載の接続構造体の製造方法。
  17.  前記被覆電線の先端部を、液体からなる前記樹脂材料に漬けることにより、前記被覆電線における前記絶縁被覆に塗布する
    請求項16に記載の接続構造体の製造方法。
  18.  前記絶縁被覆の先端から前記電線導体を露出させる際に、前記樹脂材料を前記被覆電線における前記絶縁被覆に塗布した後、前記被覆電線と前記圧着端子とを圧着接続する
    請求項16に記載の接続構造体の製造方法。
  19.  芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とが圧着結合した電線接続構造体であって、
     前記導体絶縁層と前記管状端子とが樹脂材料を介して接合したことを特徴とする電線接続構造体。
  20.  前記端子が銅または銅合金製であって、前記電線の導体がアルミニウムまたはアルミニウム合金製であることを特徴とする
    請求項19記載の電線接続構造体。
  21.  前記樹脂材料は、接合状態では硬化されており、硬化前には流動性を有する接着剤からなる
    請求項19または20記載の電線接続構造体。
  22.  前記管状端子は、導体を接合した接合部を有し、
    前記接合部における前記導体の厚みが前記接合部以外の部分よりも厚く、前記接合部の内側に前記樹脂材料が配置されたことを特徴とする
    請求項19乃至21のいずれかに記載の電線接続構造体。
  23.  前記導体絶縁層は、
    ハロゲンフリー樹脂組成物により構成された層を含むことを特徴とする
    請求項19乃至22のいずれかに記載の電線接続構造体。
  24.  前記導体絶縁層は、
    ポリ塩化ビニル樹脂により構成された層を含むことを特徴とする
    請求項19乃至23のいずれかに記載の電線接続構造体。
  25.  電線とともに圧着されて接合される管状の圧着予定部を有し、前記圧着予定部に樹脂材料が配置されたことを特徴とする
    端子。
  26.  前記樹脂材料は、
    前記圧着予定部の軸方向における少なくとも一部に、前記圧着予定部の内周面に沿って環状に配置されたことを特徴とする
    請求項25記載の端子。
  27.  前記樹脂材料は、
    硬化後に可撓性を有することを特徴とする
    請求項25または26記載の端子。
  28.  前記樹脂材料は、
    熱可塑性を有する材料により構成されたことを特徴とする
    請求項25乃至27のいずれかに記載の端子。
  29.  芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、管状端子とが圧着結合した電線接続構造体であって、
     前記導体絶縁層は、最外層が樹脂材料からなる層である二層以上の被覆層を有することを特徴とする
    電線接続構造体。
  30.  前記樹脂材料は、接合状態では硬化されており、硬化前には流動性を有する接着剤からなることを特徴とする
    請求項29に記載の電線接続構造体。
  31.  前記樹脂材料は、硬化後に可撓性を有することを特徴とする
    請求項29または30に記載の電線接続構造体。
  32.  前記管状端子は、銅または銅合金からなり、
    前記電線の導体は、アルミニウムまたはアルミニウム合金からなることを特徴とする
    請求項29乃至31のいずれかに記載の電線接続構造体。
  33.  前記導体絶縁層は、
    ハロゲンフリー樹脂組成物により構成された層を含むことを特徴とする
    請求項29乃至32のいずれかに記載の電線接続構造体。
  34.  前記導体絶縁層は、
    ポリ塩化ビニル樹脂により構成された層を含むことを特徴とする
    請求項29乃至32のいずれかに記載の電線接続構造体。
  35.  芯線と前記芯線の外周に形成された導体絶縁層とを有し、
     前記導体絶縁層は、最外層が樹脂材料からなる層である二層以上の被覆層を有することを特徴とする
    電線。
  36.  前記被覆層は、
    軸方向に部分的に形成されていることを特徴とする
    請求項35に記載の電線。
PCT/JP2014/054237 2013-02-23 2014-02-21 接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに電線 WO2014129603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480001218.7A CN104321931B (zh) 2013-02-23 2014-02-21 连接结构体、连接器、连接结构体的制造方法、电线连接结构体以及电线
JP2014511669A JP5657179B1 (ja) 2013-02-23 2014-02-21 接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに管状端子

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-033965 2013-02-23
JP2013033965 2013-02-23
JP2013-034048 2013-02-24
JP2013034048 2013-02-24
JP2013034054 2013-02-24
JP2013-034054 2013-02-24
JP2013-099789 2013-05-10
JP2013099789 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014129603A1 true WO2014129603A1 (ja) 2014-08-28

Family

ID=51391383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054237 WO2014129603A1 (ja) 2013-02-23 2014-02-21 接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに電線

Country Status (3)

Country Link
JP (1) JP5657179B1 (ja)
CN (1) CN104321931B (ja)
WO (1) WO2014129603A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047738A1 (ja) * 2015-09-18 2017-03-23 株式会社オートネットワーク技術研究所 端子付き電線、及び配線モジュール
CN106961042A (zh) * 2017-03-03 2017-07-18 温州晟荣工业自动化有限公司 一种浇注式防水连接器的制作工艺
WO2018177616A1 (de) * 2017-03-29 2018-10-04 Auto-Kabel Management Gmbh Verbindung eines anschlussteils mit einer litzenleitung
EP3886260A1 (en) * 2020-03-23 2021-09-29 Yazaki Corporation Terminal-equipped electric wire and method of manufacturing terminal-equipped electric wire
US11610701B2 (en) 2017-11-15 2023-03-21 Nippon Telegraph And Telephone Corporation Composite wiring, signal acquisition member, and production method of same
JP7380606B2 (ja) 2021-01-18 2023-11-15 東芝三菱電機産業システム株式会社 接続具及び接続構造

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6423783B2 (ja) * 2015-12-16 2018-11-14 矢崎総業株式会社 圧着端子
JP6627620B2 (ja) * 2016-04-05 2020-01-08 株式会社オートネットワーク技術研究所 コネクタ、接続状態検知システム、および、端子
JP2018006160A (ja) * 2016-07-01 2018-01-11 古河電気工業株式会社 端子付き電線およびその製造方法
CN110137701A (zh) * 2018-02-09 2019-08-16 矢崎总业株式会社 装接有端子的电线、装接有端子的电线的制造方法和线束
CN108711685A (zh) * 2018-06-05 2018-10-26 吴开源 新型汽车线束产品及电磁脉冲焊接方法及应用
JP6947139B2 (ja) * 2018-08-29 2021-10-13 株式会社オートネットワーク技術研究所 過電流遮断ユニット
CN112496205A (zh) * 2020-11-27 2021-03-16 贵州航天精工制造有限公司 一种电线端子定位检查结构加工装置及其加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284169A (ja) * 1997-04-03 1998-10-23 Yazaki Corp コネクタ
JPH11135161A (ja) * 1997-10-29 1999-05-21 Yazaki Corp 電気コネクタ
JPH11233175A (ja) * 1998-02-18 1999-08-27 Sumitomo Wiring Syst Ltd 電線端末の防水構造及び該防水構造の形成方法
JP2002216862A (ja) * 2001-01-19 2002-08-02 Yazaki Corp 端子と電線の接続部の防水構造及び防水方法
JP2003281944A (ja) * 2002-03-20 2003-10-03 Auto Network Gijutsu Kenkyusho:Kk 自動車用電線及びその製造方法
JP2004200094A (ja) * 2002-12-20 2004-07-15 Yazaki Corp 端子と電線との接続方法
JP2006331931A (ja) * 2005-05-27 2006-12-07 Mitsubishi Cable Ind Ltd 電線の接続構造及びその接続方法
JP2013008610A (ja) * 2011-06-27 2013-01-10 Auto Network Gijutsu Kenkyusho:Kk 端子付電線

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338334A (ja) * 2002-05-20 2003-11-28 Yazaki Corp 雌端子およびその接続構造ならびにワイヤハーネス
CN101920862B (zh) * 2002-07-30 2012-05-02 日立化成工业株式会社 粘接剂带的压接方法
EP1744403B1 (en) * 2004-04-26 2011-06-29 Sumitomo Wiring Systems, Ltd. Waterproof structure and waterproof method for wire connecting part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284169A (ja) * 1997-04-03 1998-10-23 Yazaki Corp コネクタ
JPH11135161A (ja) * 1997-10-29 1999-05-21 Yazaki Corp 電気コネクタ
JPH11233175A (ja) * 1998-02-18 1999-08-27 Sumitomo Wiring Syst Ltd 電線端末の防水構造及び該防水構造の形成方法
JP2002216862A (ja) * 2001-01-19 2002-08-02 Yazaki Corp 端子と電線の接続部の防水構造及び防水方法
JP2003281944A (ja) * 2002-03-20 2003-10-03 Auto Network Gijutsu Kenkyusho:Kk 自動車用電線及びその製造方法
JP2004200094A (ja) * 2002-12-20 2004-07-15 Yazaki Corp 端子と電線との接続方法
JP2006331931A (ja) * 2005-05-27 2006-12-07 Mitsubishi Cable Ind Ltd 電線の接続構造及びその接続方法
JP2013008610A (ja) * 2011-06-27 2013-01-10 Auto Network Gijutsu Kenkyusho:Kk 端子付電線

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047738A1 (ja) * 2015-09-18 2017-03-23 株式会社オートネットワーク技術研究所 端子付き電線、及び配線モジュール
JP2017059468A (ja) * 2015-09-18 2017-03-23 株式会社オートネットワーク技術研究所 端子付き電線、及び配線モジュール
CN106961042A (zh) * 2017-03-03 2017-07-18 温州晟荣工业自动化有限公司 一种浇注式防水连接器的制作工艺
WO2018177616A1 (de) * 2017-03-29 2018-10-04 Auto-Kabel Management Gmbh Verbindung eines anschlussteils mit einer litzenleitung
US11610701B2 (en) 2017-11-15 2023-03-21 Nippon Telegraph And Telephone Corporation Composite wiring, signal acquisition member, and production method of same
EP3711663B1 (en) * 2017-11-15 2023-07-26 Nippon Telegraph And Telephone Corporation Composite wiring, signal acquisition member, and production method of same
EP3886260A1 (en) * 2020-03-23 2021-09-29 Yazaki Corporation Terminal-equipped electric wire and method of manufacturing terminal-equipped electric wire
US11482799B2 (en) 2020-03-23 2022-10-25 Yazaki Corporation Terminal-equipped electric wire and method of manufacturing terminal-equipped electric wire
JP7380606B2 (ja) 2021-01-18 2023-11-15 東芝三菱電機産業システム株式会社 接続具及び接続構造

Also Published As

Publication number Publication date
CN104321931A (zh) 2015-01-28
JP5657179B1 (ja) 2015-01-21
CN104321931B (zh) 2017-10-13
JPWO2014129603A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5657179B1 (ja) 接続構造体、コネクタ、接続構造体の製造方法、電線接続構造体、並びに管状端子
KR101505793B1 (ko) 전선 접속 구조체의 제조방법 및 전선 접속 구조체
JP5684583B2 (ja) 電線と端子の接続構造およびその製造方法
JP5767551B2 (ja) 圧着端子、接続構造体及びコネクタ
CN110071394B (zh) 装接有端子的电线
JP5940198B2 (ja) 圧着端子、接続構造体及びコネクタ
JP5860618B2 (ja) 電線の接続方法
JP4157843B2 (ja) 接続キャップ及びそれを用いた電線接続方法
JP5914942B2 (ja) 端子付きアルミ電線
WO2011118416A1 (ja) 端子金具付き電線及びその製造方法
JP2010020980A (ja) 端子金具付き電線及びその製造方法
JP5369637B2 (ja) 端子金具付き電線及びその製造方法
JP6140337B2 (ja) 接続構造体の製造方法
JP6131888B2 (ja) 端子付き被覆電線及びワイヤーハーネス
JP6182355B2 (ja) 圧着接続構造体、コネクタ、及び圧着接続構造体の製造方法
WO2012060151A1 (ja) 端子付き電線、及び端子付き電線の製造方法
WO2018139420A1 (ja) 端子付き電線及び端子付き電線の製造方法
WO2014129220A1 (ja) 電線接続構造体、電線接続構造体の製造方法、電線接続構造体を備えたコネクタ、及び圧着用金型
JP5787919B2 (ja) 端子、及び、電線接続構造体
JP2019046735A (ja) 端子付き電線製造方法
JP2015174995A (ja) 粘着剤組成物、防食端子及び端子付き被覆電線
JP2019046734A (ja) 端子付き電線製造方法
JP6996974B2 (ja) 端子付き電線および端子付き電線の製造方法
WO2015108011A1 (ja) 端子および該端子の電線接続構造
JP5823439B2 (ja) 被覆電線、接続構造体、コネクタ、並びに、被覆電線の製造方法、接続構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014511669

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754931

Country of ref document: EP

Kind code of ref document: A1