WO2014129372A1 - 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 - Google Patents
反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 Download PDFInfo
- Publication number
- WO2014129372A1 WO2014129372A1 PCT/JP2014/053285 JP2014053285W WO2014129372A1 WO 2014129372 A1 WO2014129372 A1 WO 2014129372A1 JP 2014053285 W JP2014053285 W JP 2014053285W WO 2014129372 A1 WO2014129372 A1 WO 2014129372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflective film
- resin
- dispersed phase
- thermoplastic resin
- average
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/14—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0841—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133605—Direct backlight including specially adapted reflectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/416—Reflective
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/418—Refractive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2451/00—Decorative or ornamental articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
Definitions
- the present invention relates to a reflective film that reflects light and has a gloss like metal, and has excellent surface smoothness and regular reflection characteristics.
- Another method is to use a multilayer optical film having a plurality of layers.
- These metallic glossy reflection films impart reflection characteristics using the reflection characteristics at the laminated interface, and exhibit high reflection characteristics by precisely controlling the thickness of each layer.
- Patent Documents 1 to 3 As a method of using a multilayer optical film having a plurality of layers, reflective polymer bodies containing at least first and second different polymers have been reported (Patent Documents 1 to 3). These patent documents sufficiently include alternating layers of first and second polymer materials having different refractive indexes of 0.03 or more, and the majority of each layer is 0.09 ⁇ m or less, or 0.45 ⁇ m or more. Reflective polymer bodies with optical thickness have been reported.
- Patent Documents 1 to 3 require uniform multilayer lamination and precise control of the thickness of each layer, so that the manufacturing process is complicated and there is a concern that productivity may be significantly reduced. there were.
- An object of the present invention is to provide a reflective film having high reflectivity and regular reflection characteristics, gloss like a metal, and high productivity.
- the present inventors have determined that it is important to control the morphology of the dispersed phase as a factor that sufficiently enhances the high reflectance and regular reflection characteristics, and have completed the present invention.
- the present invention is a reflective film comprising at least one thermoplastic resin and having at least one layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the dispersed phase (II)
- the average dimension (L1) in the flow direction and the average dimension (L2) in the width direction are 0.45 ⁇ m or more and 100 ⁇ m or less, and the average dimension (L3) in the thickness direction of the dispersed phase (II) is 0.00.
- the average refractive index difference between the thermoplastic resin (A) forming the continuous phase (I) and the thermoplastic resin (B) forming the dispersed phase (II) is 0.1 ⁇ m or more and 0.45 ⁇ m or less.
- a reflective film is proposed in which the average reflectance of the film at a measurement wavelength of 400 nm to 700 nm is 80% or more.
- the present invention also provides a reflective film comprising at least one thermoplastic resin and having at least one layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the continuous phase (I)
- a thermoplastic resin A) forming the dispersion phase and the thermoplastic resin (B) forming the dispersed phase (II) is mainly composed of a polyester resin, and the other is mainly composed of a fluorine resin.
- a reflection film is proposed which is a component and has a melting endothermic peak temperature of 130 to 250 ° C. of the fluororesin.
- All of the reflective films proposed by the present invention do not require uniform multilayer lamination and precise control of each layer thickness required for a conventional multilayer optical film having a plurality of layers, and thus have high productivity,
- a pseudo multi-layer effect can be developed, and it has high reflection characteristics and regular reflection characteristics, and has a gloss like a metal.
- a reflective film can be provided.
- the present reflective film As an example of an embodiment of the present invention will be described.
- the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
- the main component includes the meaning of occupying 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) of the target composition. To do.
- the ratio of each resin in the target composition is 10% by mass or more, preferably 20% by mass or more, and particularly preferably 30% by mass or more.
- X is preferably greater than X” or “preferably” with the meaning of “X to Y” unless otherwise specified. Also includes the meaning “is smaller than Y”. Furthermore, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”.
- This reflective film is a reflective film containing at least one layer containing at least two types of thermoplastic resins and having a sea-island structure with a continuous phase (I) and a dispersed phase (II).
- phase states are roughly classified into (1) complete compatibility (single phase), (2) sea-island structure (multiphase), (3) co-continuous structure (multiphase), ( 4) Divided into four layers (multiphase).
- (2) sea-island structure refers to a structure in which one of a plurality of components is dispersed in the form of particles (islands) in a phase in which one of the components is continuous.
- the (3) co-continuous structure refers to a structure in which a plurality of components are mixed with each other while forming a continuous phase.
- (4) the layered structure refers to a structure in which each component forms a continuous phase, but the components are independent without being mixed.
- the sea-island structure in the present reflective film refers to the above (2), where the continuous phase is the sea part and the dispersed phase is the island part.
- the island part which is a dispersed phase is discontinuous, and shows a minute substantially spherical structure.
- the island part in this reflective film is discontinuous, since the said film is extended
- thermoplastic resin used for the reflective film The thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) are not particularly limited as long as they do not deviate from the scope defined in the present invention. None happen.
- the average refractive index difference between the thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) is preferably 0.05 or more. By setting the average refractive index difference to be 0.05 or more, light is easily reflected at the interface between the continuous phase and the dispersed phase, so that high reflection characteristics can be imparted.
- the average refractive index difference between the thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) is 0.10 or more. More preferably, it is more preferably 0.15 or more.
- one of the thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) is mainly composed of a polyester resin. It is preferable that the other is mainly composed of a fluororesin.
- the reflective film is preferably oriented in at least one direction, the film flow direction (hereinafter sometimes referred to as MD) and the width direction (hereinafter sometimes referred to as TD). More preferably, it is oriented in the axial direction.
- MD film flow direction
- TD width direction
- the refractive index of the thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) By changing it, the difference in refractive index between (A) and (B) can be further increased.
- the average dimension of the dispersed phase (II) in the flow direction, the width direction, and the thickness direction can be adjusted to the range defined by the present invention, and higher reflection characteristics are imparted to the film of the present invention. Can do.
- the thermoplastic resin (A) and the thermoplastic resin (B) are selected so that the absolute value of the difference in average refractive index from the plastic resin (B) is greater than 0.05, and the continuous
- the thermoplastic resin (A) for forming the phase (I) and / or the thermoplastic resin (B) for forming the dispersed phase (II) are oriented so that the thermoplastic resin (A) and the thermoplastic resin (B)
- the method of adjusting to a preferable range can be mentioned using the difference in birefringence.
- stretching method at this time examples include stretching methods such as free-width uniaxial stretching, constant-width uniaxial stretching, tensile stretching method, inter-roll stretching method, and roll rolling method.
- examples thereof include a method of adjusting a preferable range by adding a plastic resin, a refractive index adjusting agent, or the like.
- Both the intrinsic birefringence of the thermoplastic resin (A) forming the continuous phase (I) and the intrinsic birefringence of the thermoplastic resin (B) forming the dispersed phase (II) may be positive. , Both may be negative. Alternatively, either one may be positive and the other negative.
- the intrinsic birefringence is a birefringence in a state where the polymer chain is completely uniaxially oriented, that is, in a state where the polymer chain is completely extended in the uniaxial direction.
- the birefringence is parallel to the stretching direction. It is a value obtained by subtracting the refractive index in the direction perpendicular to the stretching direction from the refractive index in the direction.
- positive intrinsic birefringence indicates a state where the refractive index in the direction parallel to the stretching direction in the case of uniaxial stretching is larger than the refractive index in the direction perpendicular to the stretching direction.
- the refractive index in the direction parallel to the stretching direction is higher than the average refractive index.
- the intrinsic birefringence is negative, the refractive index in the direction parallel to the stretching direction decreases from the average refractive index.
- whether the intrinsic birefringence index is positive or negative can be determined by checking whether the birefringence value when uniaxially stretched at an appropriate magnification is positive or negative. Can do. That is, if the birefringence is positive, it can be determined that the intrinsic birefringence is also positive.
- the magnitude relationship of the average refractive index of said (A) and said (B) and the magnitude relationship of the birefringence of said (A) and said (B) are equal. That is, if the magnitude relationship of the average refractive index between (A) and (B) is (A)> (B), the magnitude relationship between the birefringence of (A) and (B) is It is preferable that (A)> (B).
- the difference in average refractive index between (A) and (B) is 0.05 or more, when the reflective film is oriented by stretching or the like, the continuous phase (I) And the difference in average refractive index in the orientation direction of the dispersed phase (II) tends to further increase, so the difference in average refractive index should be 0.05 or more even after stretching. If the magnitude relationship does not match, it is considered that the average refractive index difference in the orientation direction of the continuous phase (I) and the dispersed phase (II) hardly occurs when the reflective film is oriented by stretching or the like. However, if the present reflective film oriented at least in the uniaxial direction belongs to the range defined by the present invention, the coincidence of the magnitude relationship between the average refractive index and the birefringence of (A) and (B) is This is not the case.
- thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) may be one kind of thermoplastic resin, or two or more kinds. It may be a mixed resin of thermoplastic resins. Among them, it is preferable that at least one of the thermoplastic resin (A) forming the continuous phase (I) and the thermoplastic resin (B) forming the dispersed phase (II) is a crystalline thermoplastic resin. .
- a crystalline thermoplastic resin is preferable because the polymer chain is easily oriented, the difference in refractive index between the continuous phase (I) and the dispersed phase (II) with respect to the orientation direction is easily increased, and the reflection characteristics are easily improved.
- the crystalline thermoplastic resin generally refers to a thermoplastic resin that has a crystal melting peak temperature (melting point), and more specifically, in differential scanning calorimetry (DSC) performed in accordance with JIS K7121.
- Thermoplastic resins whose melting point is observed include those in a so-called semi-crystalline state.
- a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”.
- Such a crystalline thermoplastic resin is not particularly limited in its type.
- polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly-1,4-cyclohexylenedimethylene terephthalate, polyethylene succinate, polybutylene succinate, polylactic acid, poly- ⁇ -caprolactam Resin, polyethylene resin such as high density polyethylene, low density polyethylene, linear polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer Polymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, ethylene- ⁇ olefin copolymer, etc.
- Ethylene copolymer polypropylene resin, polybutene resin, polyamide resin, polyoxymethylene resin, polymethylpentene resin, polyvinyl alcohol resin, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene Fluorine resins such as resin, cellulose resin, polyetheretherketone, polyetherketone, polyphenylene sulfide, engineering plastics such as polyparaphenylene terephthalamide, super engineering plastics, etc. It can be used in combination of more than one species. Among these, it is preferable to use a polyester resin as a main component, and it is more preferable to select a crystalline aromatic polyester resin.
- thermoplastic resin (A) forming the continuous phase (I) and the thermoplastic resin (B) forming the dispersed phase (II) is mainly composed of a polyester resin. .
- polyester resin is preferably a crystalline thermoplastic resin.
- the crystalline polyester resin is stretched, the polymer chain is easily oriented, the difference in refractive index between the continuous phase (I) and the dispersed phase (II) with respect to the orientation direction is easily increased, and the reflection characteristics are easily improved. Therefore, it is preferable.
- orientation crystallization is facilitated during the heat treatment, which is preferable from the viewpoint of dimensional stability.
- polyester-based resins often have a positive intrinsic birefringence, and aromatic polyester-based resins have a high birefringence, so that the refraction of the continuous phase (I) and the dispersed phase (II) with respect to the orientation direction. It is preferable because the rate difference is easily increased and the reflection characteristics are easily improved.
- either one of the thermoplastic resin (A) forming the continuous phase (I) and the thermoplastic resin (B) forming the dispersed phase (II) contains a polyester-based resin as a main component
- the other preferably contains a fluorinated resin as a main component.
- polyester resins, especially aromatic polyester resins have a high average refractive index, and fluorine resins have a low average refractive index. Therefore, it is easy to increase the difference in refractive index between the continuous phase (I) and the dispersed phase (II). It is preferable because the characteristics are easily improved.
- polyester resin is not particularly limited.
- polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly-1,4-cyclohexylenedimethylene terephthalate, polyethylene succinate, polybutylene succinate, polylactic acid, poly- ⁇ -caprolactam Based resins and the like.
- a crystalline aromatic polyester-based resin is preferable, and a polyethylene naphthalate-based resin is particularly preferable from the viewpoint of having a high average refractive index and a high birefringence.
- the above resins may be used in combination.
- a mixed resin of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) is also a preferred example. Since PEN and PET are compatible, Tg and refractive index can be adjusted by mixing PET with PEN.
- the weight average molecular weight of the resin is preferably 30,000 or more, and more preferably 40,000 or more, from the viewpoint of impact resistance and film forming properties.
- the intrinsic viscosity of the polyester resin is more preferably 0.5 dl / g or more from the viewpoint of film forming properties.
- the glass transition temperature (Tg) of the polyester resin is preferably in the range of 70 ° C to 120 ° C, and more preferably in the range of 80 ° C to 120 ° C. If the glass transition temperature is 70 ° C. or higher, the rigidity of the film can be maintained, and if it is 120 ° C. or lower, stretching becomes easy.
- the melting point (Tm) of the polyester resin is preferably in the range of 240 ° C. to 270 ° C., and more preferably in the range of 250 ° C. to 270 ° C. If the melting point is 240 ° C. or higher, sufficient heat resistance can be imparted, and if it is 270 ° C. or lower, it is preferable to suppress thermal decomposition of the coexisting thermoplastic resin other than the polyethylene naphthalate resin during melt extrusion. .
- the polyester resin When a polyethylene naphthalate resin is used as the polyester resin, it is preferable to use one having a YI value in the range of ⁇ 10 to 10, particularly in the range of ⁇ 3 to 3.
- the YI value is preferably in the range of ⁇ 10 to 10 for each resin. If the YI value is in the range of ⁇ 10 to 10, for example, by incorporating it in a liquid crystal display or the like, it is possible to further improve the image clarity and to further increase the luminance improvement rate.
- a commercial item can also be used as a polyethylene naphthalate-type resin.
- Teonex TN8065S polyethylene naphthalate homopolymer, manufactured by Teijin Chemicals Ltd., intrinsic viscosity 0.71 dl / g
- Teonex TN8065SC polyethylene naphthalate homopolymer, manufactured by Teijin Chemicals Ltd., intrinsic viscosity 0.55 dl) / G
- Teonex TN8756C polyethylene naphthalate and polyethylene terephthalate copolymer, manufactured by Teijin Chemicals Ltd., intrinsic viscosity 0.65 dl / g
- Teonex TN8065S polyethylene naphthalate homopolymer, manufactured by Teijin Chemicals Ltd., intrinsic viscosity 0.71 dl / g
- Teonex TN8065SC polyethylene naphthalate homopolymer, manufactured by Teijin Chemicals Ltd., intrinsic viscosity 0.55 d
- the fluororesin preferably has a melting endothermic peak temperature of 130 ° C. or higher and 250 ° C. or lower.
- the melting endothermic peak temperature of the fluororesin is less than 130 ° C., surface roughness occurs during kneading / extrusion with the polyester resin, and the heat resistance of the reflective film decreases, which is not preferable. Since the reflective film is often disposed around the light source due to its properties, heat resistance is required. Therefore, the melting endothermic peak temperature of the fluororesin is preferably 130 ° C. or higher, preferably 150 ° C. or higher, particularly preferably 180 ° C. or higher.
- the melting endothermic peak temperature of the fluororesin exceeds 300 ° C., it is not preferable because decomposition of the polyester resin is facilitated during molding and extrusion with the polyester resin and molding becomes difficult. Furthermore, when the melting endothermic peak temperature of the fluororesin is higher than 250 ° C. and lower than 300 ° C., it is not preferable because surface roughness occurs and the morphology of the dispersed phase (II) tends to become rough. For this reason, the melting endothermic peak temperature of the fluororesin is preferably 245 ° C. or less, more preferably 240 ° C. or less, and particularly preferably 235 ° C. or less.
- the fluorine-based resin has a low average refractive index, has a glass transition temperature close to that of a polyester-based resin (about 50 ° C. to 100 ° C.), has excellent stretchability, and the like.
- a tetrafluoroethylene resin is preferred.
- the glass transition temperature (Tg) of the resin is preferably in the range of 50 ° C. to 100 ° C., particularly 60 ° C. or more or 80 ° C. The following ranges are more preferable.
- the melting point (Tm) of the fluororesin is preferably in the range of 130 ° C. to 250 ° C., more preferably in the range of 180 ° C. or more and 240 ° C. or less, for the purpose of imparting heat resistance.
- ethylene-tetrafluoroethylene resin Commercially available products can also be used as the ethylene-tetrafluoroethylene resin.
- Fluon ETFE Fluon LM-ETFE
- Fluon LM-ETF AH series manufactured by Asahi Glass Co., Ltd.
- NEOFLON ETFE EP series manufactured by Daikin Industries, Ltd.
- the reflective film may contain other thermoplastic resin as long as it contains at least one kind of the thermoplastic resin (A) and the thermoplastic resin (B). Two or more thermoplastic resins corresponding to the plastic resin (B) may be included.
- an additive such as a compatibilizing agent (C) may be added to the reflective film as necessary.
- the compatibilizer (C) can be selected from conventional compatibilizers depending on the type of continuous phase and dispersed phase.
- at least one resin selected from a polycarbonate resin, an ester resin, a resin having an epoxy group, a resin having an oxazoline ring, a resin having an azlactone group, and at least one selected from a styrene resin, polyphenylene oxide, and polyamide.
- a block copolymer composed of two resins or a graft copolymer from the viewpoint of improving dispersibility, a resin having an epoxy group or an oxazoline group is particularly preferable, and an epoxy-modified one is particularly preferable.
- the blending ratio is 0.1 to 20 parts by mass, preferably 0 with respect to 100 parts by mass in total of the thermoplastic resin (A) and the thermoplastic resin (B). 2 to 15 parts by mass, particularly 0.2 to 10 parts by mass, more preferably 1 to 10 parts by mass.
- additives other than the compatibilizer (C) various additives such as antioxidants, heat stabilizers, light stabilizers, hydrolysis inhibitors, impact modifiers, and the like are added within a range not impairing the characteristics of the present invention. can do.
- the present reflective film has an average dimension (L1) in the flow direction of the dispersed phase (II) and an average dimension (L2) in the width direction of 0.45 ⁇ m or more and 100 ⁇ m or less, and the dispersed phase (II)
- the average dimension (L3) in the thickness direction is preferably 0.01 ⁇ m or more and 0.45 ⁇ m or less.
- the dispersion diameter can be measured by the method described later.
- the dispersed phase (II) has a flat elliptical shape or a disk shape. If the average dimension (L1) in the flow direction and the average dimension (L2) in the width direction of the dispersed phase (II) are 0.45 ⁇ m or more, they are sufficiently larger than the wavelength order of light. The incident light can be sufficiently reflected at the interface between the continuous phase (I) and the dispersed phase (II), and high reflection characteristics can be imparted. From this viewpoint, the lower limit values of L1 and L2 are more preferably 0.80 ⁇ m or more, and further preferably 1.20 ⁇ m or more. On the other hand, the upper limit values of L1 and L2 are preferably 80 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less for reasons of improving dispersibility.
- the average dimension (L3) of the thickness direction of the said dispersed phase (II) is 0.01 micrometer or more and 0.45 micrometer or less.
- the (L3) is 0.01 ⁇ m or more, in the cross section in the thickness direction of the present reflective film, a very thin cross section formed of the disperse phase (II) is in a state where many layers are overlapped. That is, it becomes possible to form a pseudo super multi-layer structure with the inclusion of at least two kinds of thermoplastic resins having a sea-island structure composed of the continuous phase (I) and the dispersed phase (II).
- the lower limit of (L3) is more preferably 0.02 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
- the thickness of the dispersed phase is sufficiently thin, so that the surface roughness of the film surface is suppressed, and it has a gloss like a metal, and has high reflectance and regular reflection characteristics.
- the upper limit value of (L3) is more preferably 0.35 ⁇ m or less, and further preferably 0.25 ⁇ m or less.
- the average dimension (L1) in the flow direction of the dispersed phase (II) and the average dimension (L2) in the width direction are 0.45 ⁇ m or more and 100 ⁇ m or less, and the average dimension in the thickness direction of the dispersed phase (II).
- thermoplastic resin (B) that forms the dispersed phase (II) by increasing the take-up speed, and forming the dispersed phase (II) by rolling or pressing And a method of sufficiently stretching the thermoplastic resin (B).
- the reflective film preferably has an average transmittance of less than 20% at a measurement wavelength of 400 nm to 700 nm.
- the average transmittance is less than 20%, the reflection characteristics of the film can be ensured.
- the content is more preferably less than 18%, and particularly preferably less than 16%.
- the reflective film preferably has an average reflectance of 80% or more at a measurement wavelength of 400 nm to 700 nm.
- the average reflectance is 80% or more, the reflection characteristics of the film can be ensured. For this reason, it is more preferably 82% or more, and particularly preferably 84% or more.
- a mixed resin composition containing at least two thermoplastic resins (A) and (B) and other raw materials may be melted to form a sheet.
- the method for forming the film is not particularly limited, and examples thereof include a T-die casting method, a calendar method, and an inflation method.
- the T die casting method is preferable from the viewpoints of film formation stability and production efficiency.
- at least two kinds of thermoplastic resins are dried, supplied to an extruder, and heated to a temperature equal to or higher than the melting point of the resin to be melted.
- the cast composition may be formed by extruding the melted composition from the slit-shaped discharge port of the T die and firmly solidifying it on a cooling roll.
- the extrusion temperature of the sheet depends on the flow characteristics of each resin, but when a polyethylene naphthalate resin is used, it is preferably about 270 ° C. to 340 ° C., more preferably 280 ° C. to 320 ° C. If the extrusion temperature is 270 ° C. or higher, the sheet can be formed sufficiently for the molten resin to flow. On the other hand, if it is 340 ° C. or lower, the sheet characteristics are less likely to deteriorate due to thermal decomposition of the resin.
- the reflective film is preferably stretched in at least a uniaxial direction.
- the stretching direction may be either MD or TD, or both axes.
- a method of orienting the film in both the MD and TD directions in addition to the above-described stretching method, for example, when forming a film in the T-die casting method, the film is made MD by increasing the take-up speed (cast roll speed). Examples thereof include a method of stretching to TD after drafting, and a method of stretching to TD after drafting MD by increasing the take-up speed when forming a film by an inflation method.
- the disperse phase (II) can be arranged and fixed in a substantially constant direction in the continuous phase (I), so that the continuous phase (I) and the disperse phase (II)
- the refractive index difference increases in the stretching direction, and the dispersed phase (II) is elongated in the stretching direction, and the dispersed diameter of the dispersed phase is included in the preferred range of the present invention. Therefore, the dispersed phase (II) has a pseudo super multi-layer structure, and a reflective film having a gloss like a metal can be produced.
- the stretching temperature is preferably a temperature within the range of the glass transition temperature (Tg) of the resin to (Tg + 50 ° C.). When the stretching temperature is within this range, stretching can be performed stably without breaking during stretching.
- the draw ratio is not particularly limited. For example, it is preferably 2 to 9 times MD and / or TD, preferably 3 to 9 times MD and / or TD, particularly 4 to 7 times MD and / or TD. If the draw ratio is 2 times or more of MD and / or TD, the dispersed phase (II) is stretched and is easily adjusted to the range defined by the present invention.
- thermoplastic resin (A) forming the continuous phase (I) and the thermoplastic resin (B) forming the dispersed phase is increased, and the effect of improving the reflectance is obtained. Therefore, it is preferable. On the other hand, if it is 9 times or less, it is preferable because breakage of the film can be suppressed.
- the stretched sheet is preferably heat-treated to impart heat resistance and dimensional stability.
- the heat treatment temperature is preferably 180 to 230 ° C, more preferably 180 to 200 ° C.
- the treatment time required for the heat treatment is preferably 1 second to 5 minutes.
- the thickness of the reflective film is not particularly limited.
- the thickness is preferably 50 ⁇ m to 250 ⁇ m, particularly 50 ⁇ m to 200 ⁇ m.
- the thickness of a reflective film is increased, the number of scattering increases, so that the reflection characteristics are improved.
- the reflective film preferably has a tensile strength of 150 MPa or more. If it is 150 MPa or more, the rigidity of a film can be ensured. Moreover, it is preferable that the tensile elongation of this reflective film is 30% or more. If it is 30% or more, the crack of a film can be suppressed.
- the shrinkage rate of the reflective film by the method described later is 5% or less. If it is 5% or less, it is excellent in heat resistance and dimensional stability and does not cause any practical problems.
- a method of performing a heat treatment at the time of stretching can be mentioned.
- the reflective properties of the present reflective film exhibit regular reflectivity.
- a method for evaluating the reflection characteristics there is a variable angle photometry. For example, when the normal direction is 0 ° with respect to the film surface and the incident angle is ⁇ X °, In the case of exhibiting diffuse reflectivity, the reflected light is reflected with a spread at various angles. On the other hand, when the sample exhibits regular reflection, the distribution of the reflected light is a reflected light distribution having a reflection angle X ° as a peak. At this time, the higher the specular reflectivity, the sharper the peak appears.
- the maximum intensity of the peak of the reflected light is normalized to 100%, and the light receiving angle width where the light receiving relative peak intensity is 1% and 10% when the horizontal bearing light angle and the vertical axis light receiving relative peak intensity are taken. It becomes an index of regular reflection characteristics.
- the light receiving angle width of the light receiving relative peak intensity of 10% is preferably 5 ° or less. When the angle is 5 ° or less, reflected light having strong directivity can be obtained with respect to the incident angle, and excellent regular reflection characteristics are exhibited. Moreover, it is preferable that the light receiving angle width of the light receiving relative peak intensity 1% is 40 ° or less. If it is 40 degrees or less, the loss of incident light can be prevented with respect to the incident angle, reflected light with strong directivity can be obtained, and excellent regular reflection characteristics are exhibited.
- the surface roughness of the present reflective film is preferably at most 0.1 ⁇ m, more preferably at most 0.09 ⁇ m, as the arithmetic average roughness Ra of at least one surface.
- the arithmetic average roughness Ra is within a predetermined range. By selecting, it can be adjusted. When the melting point of the resin is 130 ° C. or higher and 250 ° C. or lower, elongation deformation is facilitated, so that surface roughness can be prevented.
- both sides of the molten resin composition are sandwiched between films having excellent smoothness.
- surface roughness can also be prevented by bonding one side of the molten resin composition with a film having excellent smoothness or pressing a metal film or metal belt having excellent smoothness.
- this reflective film In this reflective film, you may introduce
- the form of the reflective film is not particularly limited, and includes a plate form, a sheet form, a film form, and other forms.
- film refers to a thin flat product that is extremely small compared to its length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll (Japan) Industrial standard JISK6900), and in general, “sheet” refers to a product that is thin by definition in JIS and generally has a thickness that is small instead of length and width.
- sheet refers to a product that is thin by definition in JIS and generally has a thickness that is small instead of length and width.
- the reflective film proposed by the present invention has high reflection characteristics and regular reflection characteristics, and has a gloss like a metal, so that it can be widely used in applications such as liquid crystal display devices, lighting devices, and decorative articles. .
- thermoplastic resin (A) and thermoplastic resin (B) Using an Atago Abbe refractometer, sodium D-line (589 nm) as a light source, and according to JIS K7124, Examples and Comparison After measuring the average refractive index of each raw material used in the examples, the average refractive index difference was calculated.
- the transmittance was measured by attaching an integrating sphere to a spectrophotometer (manufactured by Hitachi, Ltd .: U-4000), and using an alumina white plate (manufactured by Hitachi Instrument Service Co., Ltd.) as a standard white plate. , 210-0740).
- the measurement wavelength range was 300 nm to 800 nm, and the average value of transmittance at the measurement wavelength of 400 nm to 700 nm was calculated.
- the measurement was performed after performing baseline correction so that the reflectance of the alumina white plate (manufactured by Hitachi Instrument Service Co., Ltd., 210-0740) was 100% by the above apparatus, and the measurement wavelength was 400 nm. The average value of the reflectance at 700 nm was calculated.
- Average dimension (L1) in the flow direction of the dispersed phase (II) The MD cross section of the film obtained with a scanning electron microscope (SEM) was observed, the average value of the dispersed diameter of the dispersed phase (II) was calculated from the obtained photograph, and judged according to the following criteria.
- ⁇ The average dimension (L1) is 0.45 ⁇ m or more and 100 ⁇ m or less.
- X The average dimension (L1) is less than 0.45 ⁇ m or greater than 100 ⁇ m.
- Average dimension (L2) in width direction of dispersed phase (II) The TD cross section of the film obtained with a scanning electron microscope (SEM) was observed, the average value of the dispersion diameter of the dispersed phase (II) was calculated from the obtained photograph, and judged according to the following criteria.
- ⁇ The average dimension (L2) is 0.45 ⁇ m or more and 100 ⁇ m or less.
- X The average dimension (L2) is less than 0.45 ⁇ m or greater than 100 ⁇ m.
- Received relative peak intensity 10% ⁇ : The light receiving angle width with a light receiving relative peak intensity of 10% is 5 ° or less.
- the light receiving angle width of the light receiving relative peak intensity of 10% is larger than 5 °.
- Received relative peak intensity 1% ⁇ : The light receiving angle width with a light receiving relative peak intensity of 1% is 40 ° or less.
- the light receiving angle width of the light receiving relative peak intensity 1% is larger than 40 °.
- Arithmetic mean roughness Ra Conforms to JIS B0601-2001.
- a reflective film is cut out by 9 mm width x 6 mm length.
- the cut-out reflective film is attached to a carbon double-sided tape (Nisshin EM Co., Ltd.) on an observation holder.
- a conductive paste is placed on six locations around the sample, and Pt—Pd is deposited on the surface at 10 mA for 100 seconds.
- the sample was observed with ESA-2000 (Elionix, non-contact type three-dimensional roughness meter) at a measurement magnification of 250 times (measurement range: 480 ⁇ m ⁇ 360 ⁇ m), and an arithmetic average roughness Ra was calculated.
- ESA-2000 Humanix, non-contact type three-dimensional roughness meter
- the obtained cast sheet is MD in a longitudinal drawing machine composed of a preheating roll, a drawing roll, and a cooling roll at a preheating temperature of 120 ° C., a drawing temperature of 130 ° C., and a cooling temperature of 70 ° C. due to the difference in roll speed between the drawing rolls.
- the film was stretched 3 times. Thereafter, the obtained longitudinally stretched film was stretched 4 times to TD at 130 ° C., 130 ° C., and 180 ° C.
- B-1 used in Example 2 is an ethylene-tetrafluoroethylene-based resin (manufactured by Asahi Glass Co., Ltd., Fluon LM-730AP; average refractive index: 1.3812, Tg: 59 ° C., Tm: 228 ° C., intrinsic birefringence) : Positive, hereinafter referred to as B-2), a reflective film was obtained in the same manner as in Example 2. The evaluation results of the obtained film are shown in Tables 1 and 2.
- B-1 used in Example 2 is an ethylene-tetrafluoroethylene-based resin (manufactured by Asahi Glass Co., Ltd., Fluon LM-740AP; average refractive index: 1.3819, Tg: 62 ° C., Tm: 228 ° C., intrinsic birefringence) : Positive, hereinafter referred to as B-3), a reflective film was obtained in the same manner as in Example 2. The evaluation results of the obtained film are shown in Tables 1 and 2.
- Example 1 B-1 used in Example 2 was replaced with tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride resin (manufactured by 3M, THV221GZ; average refractive index: 1.363, Tm: 113 ° C., intrinsic birefringence: positive
- a reflective film was obtained in the same manner as in Example 2 except that it was changed to B-4). The evaluation results of the obtained film are shown in Tables 1 and 2.
- the reflective films of Examples are suitable reflective films having high reflection characteristics, high regular reflection characteristics, excellent surface smoothness, and gloss like metal. I know that there is.
- the sheet of the comparative example had insufficient reflection characteristics, regular reflection characteristics, and surface smoothness because the average dimension (L3) in the thickness direction was not less than a specified value.
- the average dimension (L1) in the flow direction of the dispersed phase (II) and the average dimension (L2) in the width direction are 0.45 ⁇ m to 100 ⁇ m
- the average dimension (L3) in the thickness direction of the dispersed phase (II) is 0.01 ⁇ m to 0.45 ⁇ m.
- the average reflectance of the film at a measurement wavelength of 400 nm to 700 nm is 80% or more, a pseudo multilayer effect can be exhibited, and the film has high reflection characteristics and regular reflection characteristics, Gloss like It can be thought of as that can be.
- Example 6> A reflective film was obtained in the same manner as in Example 2 except that the stretching ratio of TD in Example 2 was changed from 4 times to 5 times. The evaluation results of the obtained film are shown in Table 3.
- Example 7 A reflective film was obtained in the same manner as in Example 2 except that the stretching ratio of TD in Example 2 was changed from 4 times to 6 times. The evaluation results of the obtained film are shown in Table 3.
- Example 8> A reflective film was obtained in the same manner as in Example 2 except that the stretching ratio of TD in Example 2 was changed from 4 times to 7 times. The evaluation results of the obtained film are shown in Table 3.
- the reflective film of the present invention has a state in which a plate-like structure having a very thin dispersed phase is overlapped in many layers. Therefore, it can be seen that this is a suitable reflective film having high reflection characteristics, high regular reflection characteristics, excellent surface smoothness, and gloss like metal.
- the sheets of Comparative Example 1 and Comparative Examples 3 to 5 have a melting endothermic peak temperature of the fluororesin that is lower than the desired range, so that surface roughness occurs during kneading and extrusion with the polyester resin. As a result, both the reflection characteristics and the regular reflection characteristics were insufficient.
- the sheets of Comparative Example 2 and Comparative Examples 6 to 8 have a melting endothermic peak temperature of the fluororesin higher than desired and are formed of an ellipsoid having a large dispersed phase, and the incident light is scattered, so that the reflection characteristics are good. However, both regular reflection characteristics and surface smoothness were insufficient.
- thermoplastic resin (A) that forms the continuous phase (I) and the thermoplastic resin (B) that forms the dispersed phase (II) has a polyester resin as a main component, and the other is If the fluorine-based resin is a main component and the melting endothermic peak temperature of the fluorine-based resin is 130 to 250 ° C., a pseudo multilayer effect can be expressed, and it has high reflection characteristics and regular reflection characteristics. It can be considered that a gloss like a metal can be imparted.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
光を反射して金属のような光沢を有し、優れた表面平滑性と、正反射特性を有する反射フィルムの提供。 少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムであって、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であり、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であり、該フィルムの測定波長400nm~700nmにおける平均反射率が80%以上であることを特徴とする反射フィルム。
Description
本発明は、光を反射して金属のような光沢を有し、優れた表面平滑性と、正反射特性を有する反射フィルムに関する。
従来、反射面に金属のような光沢を付与する方法として、金属を高度に研磨して、反射面を形成する方法が用いられてきた。この方法は、生産性が低く、用いる金属に加工上の問題があるため、近年では、プラスチックに金属を薄く被覆した金属被覆プラスチックが、表示装置や照明等の反射フィルムとして用いられている。通常、金属層の被覆には、電気メッキ、真空蒸着、蒸着、化学吸着などの手法が用いられる。しかしながら、このような金属被覆においては、経時と共に金属が腐食するため、金属被覆層の上にさらに保護層を設けなければならず、さらに生産性や費用の面で不利となる。
また、別の手法として、複数の層を有する多層光学フィルムを用いる方法がある。これらの金属光沢の反射フィルムは積層界面での反射特性を用いて、反射特性を付与し、各層の厚みを緻密に制御することにより、高い反射特性を発現させるものである。
複数の層を有する多層光学フィルムを用いる方法として、少なくとも第1及び、第2の異種ポリマーを含む反射ポリマー体が報告されている(特許文献1~3)。これら、特許文献には、互いに屈折率が0.03以上異なる第1及び第2のポリマー材による交互の層を十分含んでおり、各層の過半量が0.09μm以下、あるいは0.45μm以上の光学的厚みを有する反射ポリマー体が報告されている。
上記特許文献1~3に開示されている多層光学フィルムは、均一な多層積層化や各層厚みの緻密な制御が必要とされるために、製造工程が複雑化し、生産性を著しく落とす懸念点があった。
本発明の目的は、高い反射率と正反射特性を有し、金属のような光沢を持ち、且つ、高い生産性を有する反射フィルムを提供することにある。
本発明者らは、高い反射率と正反射特性を十分に高める因子として、分散相のモルフォロジーを制御することが重要であることを究明し、本発明を完成するに至った。
本発明は、少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムであって、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であり、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であり、該フィルムの測定波長400nm~700nmにおける平均反射率が80%以上であることを特徴とする反射フィルムを提案する。
本発明はまた、少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムであって、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなり、該フッ素系樹脂の融解吸熱ピーク温度が130℃以上250℃以下であることを特徴とする反射フィルムを提案する。
本発明が提案する上記反射フィルムはいずれも、従来の複数の層を有する多層光学フィルムに求められる均一な多層積層化や各層厚みの緻密な制御が必要としないため、高い生産性を有すると共に、本発明が規定するモルフォロジー制御又は融解吸熱ピーク温度の制御を達成することにより、擬似的な多層効果を発現させることができ、高い反射特性と正反射特性を有し、金属のような光沢を有する反射フィルムを提供することが出来る。
以下、本発明の実施形態の一例としての反射フィルム(「本反射フィルム」と称する)について説明する。
なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は対象とする組成物の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。また、2種類以上の樹脂が主成分を構成する場合、対象とする組成物において各樹脂の割合が10質量%以上、好ましくは20質量%以上、特に好ましくは30質量%以上である。
また、本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
さらにまた、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
また、本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
さらにまた、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<本反射フィルム>
本反射フィルムは、少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を、少なくとも1層有する反射フィルムである。
本反射フィルムは、少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を、少なくとも1層有する反射フィルムである。
一般に、異なる樹脂同士を混合する場合、その相状態を大別すると(1)完全相溶(単相)、(2)海島構造(多相)、(3)共連続構造(多相)、(4)層状構造(多相)の4つに分けられる。ここで、(2)海島構造とは、複数成分の片方が連続する相の中に、もう一方が粒子状(島状)に分散している構造を言う。また(3)共連続構造とは、複数成分のそれぞれが連続した相を形成しながら互いに混じり合っている構造を言う。更に、(4)層状構造とはそれぞれの成分が連続相を形成するが、互いの成分が混じりあうことなく独立している構造を言う。
本反射フィルムにおける海島構造とは、上記(2)のことを言い、連続相が海部、分散相が島部である。通常、分散相である島部は不連続であり、かつ、微小な略球状構造を示す。本反射フィルムにおける島部は不連続ではあるが、前記フィルムが流れ方向及び幅方向に延伸されるため、島部は扁平した楕円状構造、又は、円盤状構造を示す。このような構造の有無は、本反射フィルムのMD断面、もしくは、TD断面を走査型電子顕微鏡(SEM)にて観察することにより、確認することができる。
本反射フィルムにおける海島構造とは、上記(2)のことを言い、連続相が海部、分散相が島部である。通常、分散相である島部は不連続であり、かつ、微小な略球状構造を示す。本反射フィルムにおける島部は不連続ではあるが、前記フィルムが流れ方向及び幅方向に延伸されるため、島部は扁平した楕円状構造、又は、円盤状構造を示す。このような構造の有無は、本反射フィルムのMD断面、もしくは、TD断面を走査型電子顕微鏡(SEM)にて観察することにより、確認することができる。
(本反射フィルムに用いる熱可塑性樹脂)
前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)としては、本発明において規定する範囲を逸脱しなければ、特に限定されることはない。但し、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であることが好ましい。
平均屈折率差を0.05以上とすることにより、連続相と分散相との界面における光の反射が生じやすくなるため、高い反射特性を付与することが可能となる。
かかる理由により、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差は0.10以上であることがより好ましく、0.15以上であることがさらに好ましい。
このような観点から、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなることが好ましい。
前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)としては、本発明において規定する範囲を逸脱しなければ、特に限定されることはない。但し、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であることが好ましい。
平均屈折率差を0.05以上とすることにより、連続相と分散相との界面における光の反射が生じやすくなるため、高い反射特性を付与することが可能となる。
かかる理由により、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差は0.10以上であることがより好ましく、0.15以上であることがさらに好ましい。
このような観点から、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなることが好ましい。
また、本反射フィルムは、少なくとも一方向に配向していることが好ましく、フィルムの流れ方向(以下、MDと表記することがある)と幅方向(以下、TDと表記することがある)の二軸方向に配向していることがさらに好ましい。
延伸操作等により、フィルムに配向を付与させることにより、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の屈折率を変化させることにより、前記(A)と前記(B)の屈折率差を更に増大させることが可能となる。また、前記分散相(II)の流れ方向、幅方向、および厚み方向の平均寸法を、本発明の規定する範囲に調節することができ、本発明のフィルムに、より高い反射特性を付与することができる。
延伸操作等により、フィルムに配向を付与させることにより、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の屈折率を変化させることにより、前記(A)と前記(B)の屈折率差を更に増大させることが可能となる。また、前記分散相(II)の流れ方向、幅方向、および厚み方向の平均寸法を、本発明の規定する範囲に調節することができ、本発明のフィルムに、より高い反射特性を付与することができる。
本反射フィルムを少なくとも一方向に配向し、より屈折率差を大きくする手段としては、例えば前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)との平均屈折率の差の絶対値が0.05より大きくなるように、前記熱可塑性樹脂(A)と前記熱可塑性樹脂(B)を選択すると共に、延伸によって、前記連続相(I)を形成する熱可塑性樹脂(A)、及び/又は、前記分散相(II)を形成する熱可塑性樹脂(B)を配向させ、熱可塑性樹脂(A)と熱可塑性樹脂(B)の複屈折率の違いを利用して、好ましい範囲に調整する方法を挙げることができる。この際の延伸法としては、例えば自由幅1軸延伸、一定幅1軸延伸、引っ張り延伸法、ロール間延伸法、ロール圧延法などの延伸法を挙げることができる。
また、他の手段として、前記連続相(I)を形成する熱可塑性樹脂(A)、及び/又は、前記分散相(II)を形成する熱可塑性樹脂(B)に、相溶する他の熱可塑性樹脂や屈折率調整剤などを添加し、好ましい範囲に調整する方法などを挙げることができる。
また、他の手段として、前記連続相(I)を形成する熱可塑性樹脂(A)、及び/又は、前記分散相(II)を形成する熱可塑性樹脂(B)に、相溶する他の熱可塑性樹脂や屈折率調整剤などを添加し、好ましい範囲に調整する方法などを挙げることができる。
前記連続相(I)を形成する熱可塑性樹脂(A)の固有複屈折率と前記分散相(II)を形成する熱可塑性樹脂(B)の固有複屈折率は、共に正であってもよく、共に負であってもよい。或いは、いずれか一方が正で、他方が負であってもよい。
固有複屈折率とは、高分子鎖が完全に一軸配向した状態、すなわち高分子鎖が一軸方向に完全に伸びきった状態の複屈折率であり、複屈折率とは、延伸方向に対し平行方向の屈折率から、延伸方向に対し垂直方向の屈折率を差し引いた値である。よって、固有複屈折率が正とは、一軸延伸した場合における延伸方向に対し平行方向の屈折率の方が、延伸方向に対し垂直方向の屈折率よりも大きい状態を示す。
一般に、固有複屈折率が正の場合、延伸方向に対し平行な方向の屈折率は平均屈折率よりも増大する。一方、固有複屈折率が負の場合、延伸方向に対し平行な方向の屈折率は平均屈折率よりも減少する。
実際には、高分子鎖を完全に一軸配向させることは困難であるため、固有複屈折率の算出は困難である。しかし、固有複屈折率が正であるか負であるかは、適当な倍率で一軸延伸させたときの複屈折率の値が正であるか負であるかを確認することにより、判別することができる。つまり、複屈折率が正であれば、固有複屈折率も正であると判断できる。
固有複屈折率とは、高分子鎖が完全に一軸配向した状態、すなわち高分子鎖が一軸方向に完全に伸びきった状態の複屈折率であり、複屈折率とは、延伸方向に対し平行方向の屈折率から、延伸方向に対し垂直方向の屈折率を差し引いた値である。よって、固有複屈折率が正とは、一軸延伸した場合における延伸方向に対し平行方向の屈折率の方が、延伸方向に対し垂直方向の屈折率よりも大きい状態を示す。
一般に、固有複屈折率が正の場合、延伸方向に対し平行な方向の屈折率は平均屈折率よりも増大する。一方、固有複屈折率が負の場合、延伸方向に対し平行な方向の屈折率は平均屈折率よりも減少する。
実際には、高分子鎖を完全に一軸配向させることは困難であるため、固有複屈折率の算出は困難である。しかし、固有複屈折率が正であるか負であるかは、適当な倍率で一軸延伸させたときの複屈折率の値が正であるか負であるかを確認することにより、判別することができる。つまり、複屈折率が正であれば、固有複屈折率も正であると判断できる。
また、前記(A)と前記(B)との平均屈折率の大小関係と、前記(A)と前記(B)の複屈折率の大小関係とが等しいことが好ましい。すなわち、仮に、前記(A)と前記(B)との平均屈折率の大小関係が(A)>(B)とした場合、前記(A)と前記(B)の複屈折率の大小関係は(A)>(B)であることが好ましい。該大小関係が一致する場合、前記(A)と前記(B)の平均屈折率の差が0.05以上であれば、本反射フィルムを延伸等により配向を付与した際、連続相(I)と分散相(II)の配向方向における平均屈折率差はさらに増大する傾向にあるため、平均屈折率の差は延伸後においても0.05以上となるはずである。該大小関係が合致しない場合、仮に、本反射フィルムを延伸等により配向を付与した際、連続相(I)と分散相(II)の配向方向における平均屈折率差が生じにくいと考えられる。
しかしながら、少なくとも一軸方向に配向した本反射フィルムが、本発明の規定する範囲に属するのであれば、前記(A)と前記(B)との、平均屈折率と複屈折率の大小関係の合致はこの限りではない。
しかしながら、少なくとも一軸方向に配向した本反射フィルムが、本発明の規定する範囲に属するのであれば、前記(A)と前記(B)との、平均屈折率と複屈折率の大小関係の合致はこの限りではない。
前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)は、一種類の熱可塑性樹脂であってもよいし、二種類以上の熱可塑性樹脂の混合樹脂であってもよい。
中でも、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の少なくとも一方が、結晶性の熱可塑性樹脂であることが好ましい。結晶性の熱可塑性樹脂であれば、高分子鎖が配向しやすく、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。また、熱処理の際に、結晶性の熱可塑性樹脂は、配向結晶化しやすくなり、寸法安定性の観点からも好ましい。
なお、結晶性の熱可塑性樹脂とは、一般に結晶融解ピーク温度(融点)が存在するとされる熱可塑性樹脂を指し、より具体的にはJIS K7121に準拠して行う示差走査熱量測定(DSC)において融点が観測される熱可塑性樹脂であって、いわゆる半結晶性の状態のものを包含する。逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。
中でも、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の少なくとも一方が、結晶性の熱可塑性樹脂であることが好ましい。結晶性の熱可塑性樹脂であれば、高分子鎖が配向しやすく、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。また、熱処理の際に、結晶性の熱可塑性樹脂は、配向結晶化しやすくなり、寸法安定性の観点からも好ましい。
なお、結晶性の熱可塑性樹脂とは、一般に結晶融解ピーク温度(融点)が存在するとされる熱可塑性樹脂を指し、より具体的にはJIS K7121に準拠して行う示差走査熱量測定(DSC)において融点が観測される熱可塑性樹脂であって、いわゆる半結晶性の状態のものを包含する。逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。
このような結晶性の熱可塑性樹脂としては、特にその種類を限定するものではない。例えばポリエチレンテレフタレートやポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ-1,4-シクロへキシレンジメチレンテレフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸、ポリ-ε-カプロラクタム等のポリエステル系樹脂、高密度ポリエチレンや低密度ポリエチレン、直鎖状ポリエチレン等のポリエチレン系樹脂、エチレン-酢酸ビニル共重合体や、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、エチレン-塩化ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体、エチレン-αオレフィン共重合体等のエチレン系共重合体、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリアミド系樹脂、ポリオキシメチレン系樹脂、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、ポリテトラフルオロエチレンや、ポリフッ化ビニリデン、エチレン-テトラフルオロエチレン系樹脂等のフッ素系樹脂、セルロース系樹脂、ポリエーテルエーテルケトンやポリエーテルケトン、ポリフェニレンサルファイド、ポリパラフェニレンテレフタルアミド等のエンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどを挙げることができ、これらを単独、又は2種以上組み合わせて用いることができる。これらの中でもポリエステル系樹脂を主成分とするのが好ましく、中でも結晶性の芳香族ポリエステル系樹脂を選択することがさらに好ましい。
前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の少なくともどちらか一方が、ポリエステル系樹脂を主成分としてなることが好ましい。
(ポリエステル系樹脂)
上記のポリエステル系樹脂は、結晶性の熱可塑性樹脂であることが好ましい。結晶性のポリエステル系樹脂は、延伸を行うと、高分子鎖が配向しやすく、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。また、熱処理の際に、配向結晶化しやすくなり、寸法安定性の観点からも好ましい。
一般に、ポリエステル系樹脂は、固有複屈折率が正となることが多く、中でも芳香族ポリエステル系樹脂は高い複屈折率を有する為、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。
上記のポリエステル系樹脂は、結晶性の熱可塑性樹脂であることが好ましい。結晶性のポリエステル系樹脂は、延伸を行うと、高分子鎖が配向しやすく、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。また、熱処理の際に、配向結晶化しやすくなり、寸法安定性の観点からも好ましい。
一般に、ポリエステル系樹脂は、固有複屈折率が正となることが多く、中でも芳香族ポリエステル系樹脂は高い複屈折率を有する為、配向方向に対する連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。
また、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分として含有し、もう一方が、フッ素系樹脂を主成分として含有することが好ましい。
一般にポリエステル系樹脂、特に芳香族ポリエステル系樹脂は平均屈折率が高く、フッ素系樹脂は平均屈折率が低いため、連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。
一般にポリエステル系樹脂、特に芳香族ポリエステル系樹脂は平均屈折率が高く、フッ素系樹脂は平均屈折率が低いため、連続相(I)と分散相(II)の屈折率差を増大させやすく、反射特性を向上させやすいため好ましい。
ポリエステル系樹脂としては、特にその種類を限定するものではない。例えばポリエチレンテレフタレートやポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ-1,4-シクロへキシレンジメチレンテレフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸、ポリ-ε-カプロラクタム等のポリエステル系樹脂などを挙げることができる。
これらの中でも、結晶性の芳香族ポリエステル系樹脂であることが好ましく、特にポリエチレンナフタレート系樹脂であることが、高い平均屈折率と高い複屈折率を有するという観点から好ましい。また、ガラス転移温度(Tg)や屈折率を調整する観点から、上記樹脂を組み合わせて用いてもよい。
また、ポリエチレンテレフタレート(PET)とポリエチレンナフタレート(PEN)との混合樹脂も好ましい一例である。PENとPETは相溶するためで、PENにPETを混ぜることによって、Tgや屈折率が調整することができる。
これらの中でも、結晶性の芳香族ポリエステル系樹脂であることが好ましく、特にポリエチレンナフタレート系樹脂であることが、高い平均屈折率と高い複屈折率を有するという観点から好ましい。また、ガラス転移温度(Tg)や屈折率を調整する観点から、上記樹脂を組み合わせて用いてもよい。
また、ポリエチレンテレフタレート(PET)とポリエチレンナフタレート(PEN)との混合樹脂も好ましい一例である。PENとPETは相溶するためで、PENにPETを混ぜることによって、Tgや屈折率が調整することができる。
ポリエチレンナフタレート系樹脂を使用する場合、該樹脂の重量平均分子量は、耐衝撃性や製膜性の観点から、3万以上であることが好ましく、4万以上であることがより好ましい。
上記ポリエステル系樹脂の固有粘度は、製膜性の観点から、0.5dl/g以上であることがより好ましい。
上記ポリエステル系樹脂のガラス転移温度(Tg)は、70℃~120℃の範囲が好ましく、80℃~120℃の範囲であることがより好ましい。ガラス転移温度が70℃以上であれば、フィルムの剛性を保持することができ、120℃以下であれば延伸が容易となるため好ましい。
さらに、上記ポリエステル系樹脂の融点(Tm)は、240℃~270℃の範囲が好ましく、250℃~270℃の範囲であることがより好ましい。融点が240℃以上であれば、十分な耐熱性を付与することができ、270℃以下であれば溶融押出時に、ポリエチレンナフタレート系樹脂以外の共存する熱可塑性樹脂の熱分解を抑制するため好ましい。
上記ポリエステル系樹脂のガラス転移温度(Tg)は、70℃~120℃の範囲が好ましく、80℃~120℃の範囲であることがより好ましい。ガラス転移温度が70℃以上であれば、フィルムの剛性を保持することができ、120℃以下であれば延伸が容易となるため好ましい。
さらに、上記ポリエステル系樹脂の融点(Tm)は、240℃~270℃の範囲が好ましく、250℃~270℃の範囲であることがより好ましい。融点が240℃以上であれば、十分な耐熱性を付与することができ、270℃以下であれば溶融押出時に、ポリエチレンナフタレート系樹脂以外の共存する熱可塑性樹脂の熱分解を抑制するため好ましい。
上記ポリエステル系樹脂としてポリエチレンナフタレート系樹脂を使用する場合、YI値が-10~10の範囲内、特に-3~3の範囲内であるものを用いるのが好ましい。
ポリエチレンナフタレート系樹脂が各々混合物からなる場合には、各樹脂ともにYI値が-10~10の範囲内であることが好ましい。YI値が-10~10の範囲内であれば、例えば液晶ディスプレイ等に組み込むことにより、画像の精彩性をより一層良好にすることができ、輝度向上率をより一層高めることができる。
ポリエチレンナフタレート系樹脂が各々混合物からなる場合には、各樹脂ともにYI値が-10~10の範囲内であることが好ましい。YI値が-10~10の範囲内であれば、例えば液晶ディスプレイ等に組み込むことにより、画像の精彩性をより一層良好にすることができ、輝度向上率をより一層高めることができる。
ポリエチレンナフタレート系樹脂としては、市販品を用いることもできる。
例えば、テオネックスTN8065S(ポリエチレンナフタレートのホモポリマー、帝人化成(株)製、固有粘度0.71dl/g)、テオネックスTN8065SC(ポリエチレンナフタレートのホモポリマー、帝人化成(株)製、固有粘度0.55dl/g)、テオネックスTN8756C(ポリエチレンナフタレートとポリエチレンテレフタレートのコポリマー、帝人化成(株)製、固有粘度0.65dl/g)などを好ましい例として挙げることができる。
例えば、テオネックスTN8065S(ポリエチレンナフタレートのホモポリマー、帝人化成(株)製、固有粘度0.71dl/g)、テオネックスTN8065SC(ポリエチレンナフタレートのホモポリマー、帝人化成(株)製、固有粘度0.55dl/g)、テオネックスTN8756C(ポリエチレンナフタレートとポリエチレンテレフタレートのコポリマー、帝人化成(株)製、固有粘度0.65dl/g)などを好ましい例として挙げることができる。
(フッ素系樹脂)
一方、前記フッ素系樹脂は、融解吸熱ピーク温度が130℃以上250℃以下であるのが好ましい。
フッ素系樹脂の融解吸熱ピーク温度が130℃未満の場合、ポリエステル系樹脂との混練・押出の際に表面荒れが生じたり、反射フィルムの耐熱性が低下したりするため、好ましくない。反射フィルムは、その性質上、光源周辺に配置されることが多いため、耐熱性が求められる。そのため、前記フッ素系樹脂の融解吸熱ピーク温度が130℃以上であることが好ましく、中でも好ましくは150℃以上、特に好ましくは180℃以上である。
また、フッ素系樹脂の融解吸熱ピーク温度が300℃を超える場合、ポリエステル系樹脂との混練・押出の際に、ポリエステル系樹脂の分解が促進されやすくなり、成形が困難となるため好ましくない。さらに、フッ素系樹脂の融解吸熱ピーク温度が250℃より大きく300℃未満の場合、表面荒れが生じたり、分散相(II)のモルフォロジーが粗雑になりやすくなったりするため、好ましくない。かかる理由により、フッ素系樹脂の融解吸熱ピーク温度は、245℃以下であることが好ましく、240℃以下であることがより好ましく、235℃以下であることが特に好ましい。
一方、前記フッ素系樹脂は、融解吸熱ピーク温度が130℃以上250℃以下であるのが好ましい。
フッ素系樹脂の融解吸熱ピーク温度が130℃未満の場合、ポリエステル系樹脂との混練・押出の際に表面荒れが生じたり、反射フィルムの耐熱性が低下したりするため、好ましくない。反射フィルムは、その性質上、光源周辺に配置されることが多いため、耐熱性が求められる。そのため、前記フッ素系樹脂の融解吸熱ピーク温度が130℃以上であることが好ましく、中でも好ましくは150℃以上、特に好ましくは180℃以上である。
また、フッ素系樹脂の融解吸熱ピーク温度が300℃を超える場合、ポリエステル系樹脂との混練・押出の際に、ポリエステル系樹脂の分解が促進されやすくなり、成形が困難となるため好ましくない。さらに、フッ素系樹脂の融解吸熱ピーク温度が250℃より大きく300℃未満の場合、表面荒れが生じたり、分散相(II)のモルフォロジーが粗雑になりやすくなったりするため、好ましくない。かかる理由により、フッ素系樹脂の融解吸熱ピーク温度は、245℃以下であることが好ましく、240℃以下であることがより好ましく、235℃以下であることが特に好ましい。
また、前記フッ素系樹脂は、低い平均屈折率を有する点、ポリエステル系樹脂に近いガラス転移温度(50℃~100℃付近)を有する点、及び、優れた延伸性を有する点などから、エチレン-テトラフルオロエチレン系樹脂であることが好ましい。
例えば、前記エチレン-テトラフルオロエチレン系樹脂を使用する場合、該樹脂のガラス転移温度(Tg)は、延伸性付与の理由において、50℃~100℃の範囲が好ましく、中でも60℃以上或いは80℃以下の範囲がさらに好ましい。
また、該フッ素系樹脂の融点(Tm)は、耐熱性付与の理由において、130℃~250℃の範囲が好ましく、中でも180℃以上或いは240℃以下の範囲が更に好ましい。
例えば、前記エチレン-テトラフルオロエチレン系樹脂を使用する場合、該樹脂のガラス転移温度(Tg)は、延伸性付与の理由において、50℃~100℃の範囲が好ましく、中でも60℃以上或いは80℃以下の範囲がさらに好ましい。
また、該フッ素系樹脂の融点(Tm)は、耐熱性付与の理由において、130℃~250℃の範囲が好ましく、中でも180℃以上或いは240℃以下の範囲が更に好ましい。
エチレン-テトラフルオロエチレン系樹脂としては、市販品を用いることもできる。
例えば、Fluon ETFE、Fluon LM-ETFE、Fluon LM-ETFE AHシリーズ(旭硝子社製)、ネオフロンETFE EPシリーズ(ダイキン工業社製)などを好ましい例として挙げることができる。
例えば、Fluon ETFE、Fluon LM-ETFE、Fluon LM-ETFE AHシリーズ(旭硝子社製)、ネオフロンETFE EPシリーズ(ダイキン工業社製)などを好ましい例として挙げることができる。
(本反射フィルムの組成)
本反射フィルムを構成する、前記連続相(I)を形成する熱可塑性樹脂(A)と前記分散相(II)を形成する熱可塑性樹脂(B)の混合質量比は、(A)/(B)=90質量%/10質量%~50質量%/50質量%であることが好ましく、中でも80質量%/20質量%~55質量%/45質量%、その中でも75質量%/25質量%~60質量%/40質量%であるのが特に好ましい。このような混合質量比とすることにより、分散相が少なくなり過ぎず、連続相と分散相との界面における散乱が小さくなり反射特性が低下するなどのおそれがないため好ましい。
なお、本反射フィルムは、前記熱可塑性樹脂(A)と前記熱可塑性樹脂(B)を少なくとも1種ずつ含有していれば、さらに他の熱可塑性樹脂を含有しても構わず、例えば前記熱可塑性樹脂(B)に該当する熱可塑性樹脂を2種以上含んでいても構わない。
本反射フィルムを構成する、前記連続相(I)を形成する熱可塑性樹脂(A)と前記分散相(II)を形成する熱可塑性樹脂(B)の混合質量比は、(A)/(B)=90質量%/10質量%~50質量%/50質量%であることが好ましく、中でも80質量%/20質量%~55質量%/45質量%、その中でも75質量%/25質量%~60質量%/40質量%であるのが特に好ましい。このような混合質量比とすることにより、分散相が少なくなり過ぎず、連続相と分散相との界面における散乱が小さくなり反射特性が低下するなどのおそれがないため好ましい。
なお、本反射フィルムは、前記熱可塑性樹脂(A)と前記熱可塑性樹脂(B)を少なくとも1種ずつ含有していれば、さらに他の熱可塑性樹脂を含有しても構わず、例えば前記熱可塑性樹脂(B)に該当する熱可塑性樹脂を2種以上含んでいても構わない。
(その他成分)
本反射フィルムには、前記分散相(II)の分散性を向上させる目的で、必要に応じて相溶化剤(C)などの添加剤を添加してもよい。
本反射フィルムには、前記分散相(II)の分散性を向上させる目的で、必要に応じて相溶化剤(C)などの添加剤を添加してもよい。
相溶化剤(C)としては、連続相及び分散相の種類に応じて慣用の相溶化剤から選択することができる。例えば、ポリカーボネート樹脂、エステル系樹脂、エポキシ基を持つ樹脂、オキサゾリン環を持つ樹脂、アズラクトン基を持つ樹脂から選ばれた少なくとも1つの樹脂と、スチレン系樹脂、ポリフェニレンオキシド、ポリアミドから選ばれた少なくとも1つの樹脂とからなるブロックコポリマー、あるいはグラフトコポリマーを挙げることができる。中でも、分散性向上の点で、エポキシ基やオキサゾリン基を持つ樹脂などが特に好ましく、特にエポキシ変性のものが好ましい。
相溶化剤(C)を添加する場合の配合割合は、前記熱可塑性樹脂(A)及び前記熱可塑性樹脂(B)の合計100質量部に対して、0.1~20質量部、好ましくは0.2~15質量部、特に0.2~10質量部、さらに好ましくは1~10質量部とするのが好ましい。
相溶化剤(C)を添加する場合の配合割合は、前記熱可塑性樹脂(A)及び前記熱可塑性樹脂(B)の合計100質量部に対して、0.1~20質量部、好ましくは0.2~15質量部、特に0.2~10質量部、さらに好ましくは1~10質量部とするのが好ましい。
前記相溶化剤(C)以外の添加剤として、酸化防止剤、熱安定剤、光安定剤、加水分解防止剤、衝撃改良剤などの各種添加剤を、本発明の特性を阻害しない範囲で添加することができる。
(分散相(II)の分散径)
本反射フィルムは、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であることが好ましい。分散径は、後述する方法により測定することができる。
本反射フィルムは、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であることが好ましい。分散径は、後述する方法により測定することができる。
本反射フィルムは、分散相(II)が、扁平した楕円状、又は、円盤状となる。前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上であれば、光の波長オーダーよりも十分大きい為、フィルム面内に入射された光が連続相(I)と分散相(II)の界面で十分反射させることが可能となり、高い反射特性を付与することができる。
かかる観点から、前記L1、およびL2の下限値は0.80μm以上であることがより好ましく、1.20μm以上であることがさらに好ましい。
一方、前記L1、およびL2の上限値は、分散性向上の理由から、80μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
かかる観点から、前記L1、およびL2の下限値は0.80μm以上であることがより好ましく、1.20μm以上であることがさらに好ましい。
一方、前記L1、およびL2の上限値は、分散性向上の理由から、80μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
また、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であることが好ましい。前記(L3)が、0.01μm以上であることにより、本反射フィルムの厚み方向の断面において、前記分散相(II)で形成される非常に薄い断面が何層も重なった状態となる。すなわち、連続相(I)と分散相(II)による海島構造を有する、少なくとも2種の熱可塑性樹脂の含有物で、擬似的な超多層構造を形成することが可能となる。かかる観点から、(L3)の下限値は、0.02μm以上であることがより好ましく、0.03μm以上であることがさらに好ましい。
前記(L3)が、0.45μm以下であれば、分散相の厚みが十分に薄い為、フィルム表面の表面粗さを抑制し、金属のような光沢を有した、高い反射率と正反射特性を付与することが可能となる。かかる観点から、(L3)の上限値は0.35μm以下であることがより好ましく、0.25μm以下であることがさらに好ましい。
前記(L3)が、0.45μm以下であれば、分散相の厚みが十分に薄い為、フィルム表面の表面粗さを抑制し、金属のような光沢を有した、高い反射率と正反射特性を付与することが可能となる。かかる観点から、(L3)の上限値は0.35μm以下であることがより好ましく、0.25μm以下であることがさらに好ましい。
前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下とする手法としては、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)とを、単軸押出機、又は、二軸押出機等を用いて相溶しない程度に十分に混錬する手法、一軸延伸により前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法、同時二軸延伸により前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法、逐次二軸延伸により前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法、Tダイキャスト法において製膜する際に、引き取り速度(キャストロールの速度)を速くすることによって前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法、キャスト法で引き取り速度を速くし、前記分散相(II)を形成する熱可塑性樹脂(B)を伸長した後、さらに、幅方向に一軸延伸し、分散相(II)を形成する熱可塑性樹脂(B)を伸長する方法、インフレーション法によって製膜する際に、引き取り速度を速くすることによって前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法、圧延やプレスにより前記分散相(II)を形成する熱可塑性樹脂(B)を十分に伸長する方法などが挙げられる。
(平均透過率)
本反射フィルムは、測定波長400nm~700nmの平均透過率が20%未満であることが好ましい。前記平均透過率が20%未満であることにより、フィルムの反射特性を担保することができる。かかる理由により、18%未満であることがさらに好ましく、16%未満であることが特に好ましい。
前記平均透過率を20%未満とするためには、前記連続相(I)を形成する熱可塑性樹脂(A)の平均屈折率と前記分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率との差の絶対値や、前記分散相(II)の分散径の制御により、達成可能である。
本反射フィルムは、測定波長400nm~700nmの平均透過率が20%未満であることが好ましい。前記平均透過率が20%未満であることにより、フィルムの反射特性を担保することができる。かかる理由により、18%未満であることがさらに好ましく、16%未満であることが特に好ましい。
前記平均透過率を20%未満とするためには、前記連続相(I)を形成する熱可塑性樹脂(A)の平均屈折率と前記分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率との差の絶対値や、前記分散相(II)の分散径の制御により、達成可能である。
(平均反射率)
本反射フィルムは、測定波長400nm~700nmの平均反射率が80%以上であることが好ましい。前記平均反射率が80%以上であることにより、フィルムの反射特性を担保することができる。かかる理由により、82%以上であることがさらに好ましく、84%以上であることが特に好ましい。
前記平均反射率を80%以上とするためには、前記連続相(I)を形成する熱可塑性樹脂(A)の平均屈折率と前記分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率との差の絶対値や、前記分散相(II)の分散径の制御により、達成可能である。
本反射フィルムは、測定波長400nm~700nmの平均反射率が80%以上であることが好ましい。前記平均反射率が80%以上であることにより、フィルムの反射特性を担保することができる。かかる理由により、82%以上であることがさらに好ましく、84%以上であることが特に好ましい。
前記平均反射率を80%以上とするためには、前記連続相(I)を形成する熱可塑性樹脂(A)の平均屈折率と前記分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率との差の絶対値や、前記分散相(II)の分散径の制御により、達成可能である。
(製膜方法)
本反射フィルムを製造する方法としては、まず、少なくとも2種の熱可塑性樹脂(A)(B)及びその他の原料を含有する混合樹脂組成物を、溶融してシート状に製膜すればよい。この時、製膜する方法としては特に限定されず、Tダイキャスト法、カレンダー法、インフレーション法などを例示できる。これらの中でも、製膜安定性や生産効率化の観点から、Tダイキャスト法が好ましい。
Tダイキャスト法を採用する場合には、例えば、少なくとも2種の熱可塑性樹脂を乾燥させ、押出機に供給し、樹脂の融点以上の温度に加熱して溶融する。そして、溶融した組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させてキャストシートを形成すればよい。
シートの押出温度は、各樹脂の流動特性にもよるが、ポリエチレンナフタレート系樹脂を使用する場合、概ね270℃~340℃が好ましく、280℃~320℃の範囲にあることがより好ましい。押出温度が270℃以上であれば、溶融樹脂が流動するに十分シート成形が可能であり、一方、340℃以下であれば、樹脂の熱分解などによるシートの特性低下が生じにくいため好ましい。
本反射フィルムを製造する方法としては、まず、少なくとも2種の熱可塑性樹脂(A)(B)及びその他の原料を含有する混合樹脂組成物を、溶融してシート状に製膜すればよい。この時、製膜する方法としては特に限定されず、Tダイキャスト法、カレンダー法、インフレーション法などを例示できる。これらの中でも、製膜安定性や生産効率化の観点から、Tダイキャスト法が好ましい。
Tダイキャスト法を採用する場合には、例えば、少なくとも2種の熱可塑性樹脂を乾燥させ、押出機に供給し、樹脂の融点以上の温度に加熱して溶融する。そして、溶融した組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させてキャストシートを形成すればよい。
シートの押出温度は、各樹脂の流動特性にもよるが、ポリエチレンナフタレート系樹脂を使用する場合、概ね270℃~340℃が好ましく、280℃~320℃の範囲にあることがより好ましい。押出温度が270℃以上であれば、溶融樹脂が流動するに十分シート成形が可能であり、一方、340℃以下であれば、樹脂の熱分解などによるシートの特性低下が生じにくいため好ましい。
本反射フィルムは、少なくとも一軸方向に延伸されてなることが好ましい。延伸方向としては、MDとTDのいずれかでも、両軸でもよい。但し、本反射フィルムの有する特性をより効果的に発現させるためには、MD、TD両方向に延伸し、フィルムを配向させること好ましい。
MD、TD両方向にフィルムを配向させる方法としては、上述の延伸による方法以外にも、例えば、Tダイキャスト法において製膜する際に、引き取り速度(キャストロールの速度)を速くすることによってMDにドラフトをかけた後にTDに延伸する方法、インフレーション法によって製膜する際に、引き取り速度を速くすることによってMDにドラフトをかけた後にTDに延伸する方法などを例示できる。
中でも、製膜安定性や生産効率化を考慮する場合には、上述の通りTダイキャスト法によって製膜したシートを、MD、TDに二軸延伸する方法を選択することが好ましい。
MD、TD両方向にフィルムを配向させる方法としては、上述の延伸による方法以外にも、例えば、Tダイキャスト法において製膜する際に、引き取り速度(キャストロールの速度)を速くすることによってMDにドラフトをかけた後にTDに延伸する方法、インフレーション法によって製膜する際に、引き取り速度を速くすることによってMDにドラフトをかけた後にTDに延伸する方法などを例示できる。
中でも、製膜安定性や生産効率化を考慮する場合には、上述の通りTダイキャスト法によって製膜したシートを、MD、TDに二軸延伸する方法を選択することが好ましい。
このように二軸延伸することにより、連続相(I)中に分散相(II)をほぼ一定方向に配列させて固定させることができるため、連続相(I)と分散相(II)との屈折率差は延伸方向に大きくなるとともに、分散相(II)が延伸方向に伸長され、分散相の分散径が、本発明の好ましい範囲内に含まれてくる。そのため、分散相(II)が擬似的な超多層構造を有するようになり、金属のような光沢を有する反射フィルムを作製することができる。
延伸方法は、引っ張り延伸法、ロール間延伸法、ロール圧延法、その他の方法のいずれを採用してもよい。
延伸温度は、樹脂のガラス転移温度(Tg)程度から(Tg+50℃)の範囲内の温度とするのが好ましい。延伸温度がこの範囲であれば、延伸時に破断することなく安定して延伸を行うことができる。
延伸倍率は、特に限定するものではない。例えば、MD及び/又はTDに2~9倍、好ましくはMD及び/又はTDに3~9倍、特にMD及び/又はTDに4~7倍とするのが好ましい。延伸倍率が、MD及び/又はTDに2倍以上であれば、分散相(II)の伸長し、本発明の規定する範囲に調整しやすくなり好ましい。また、配向が付与され、連続相(I)を形成する熱可塑性樹脂(A)と分散相を形成する熱可塑性樹脂(B)との屈折率差が増大し、反射率向上の効果が得られるため好ましい。一方、9倍以下であれば、フィルムの破断を抑制できる為、好ましい。
延伸温度は、樹脂のガラス転移温度(Tg)程度から(Tg+50℃)の範囲内の温度とするのが好ましい。延伸温度がこの範囲であれば、延伸時に破断することなく安定して延伸を行うことができる。
延伸倍率は、特に限定するものではない。例えば、MD及び/又はTDに2~9倍、好ましくはMD及び/又はTDに3~9倍、特にMD及び/又はTDに4~7倍とするのが好ましい。延伸倍率が、MD及び/又はTDに2倍以上であれば、分散相(II)の伸長し、本発明の規定する範囲に調整しやすくなり好ましい。また、配向が付与され、連続相(I)を形成する熱可塑性樹脂(A)と分散相を形成する熱可塑性樹脂(B)との屈折率差が増大し、反射率向上の効果が得られるため好ましい。一方、9倍以下であれば、フィルムの破断を抑制できる為、好ましい。
延伸したシートは、耐熱性及び寸法安定性を付与するべく、熱処理するのが好ましい。
例えば、ポリエチレンナフタレート系樹脂を使用する場合、熱処理温度は180~230℃とするのが好ましく、180~200℃とするのがさらに好ましい。熱処理に要する処理時間は、好ましくは1秒~5分である。
例えば、ポリエチレンナフタレート系樹脂を使用する場合、熱処理温度は180~230℃とするのが好ましく、180~200℃とするのがさらに好ましい。熱処理に要する処理時間は、好ましくは1秒~5分である。
(厚み)
本反射フィルムの厚みは、特に限定するものではない。例えば液晶ディスプレイ等に組み込む場合には、50μm~250μm、特に50μm~200μmとするのが好ましい。一般的に、反射フィルムは、厚みを増大させた場合、散乱回数が増大する為、反射特性が向上する。
本反射フィルムの厚みは、特に限定するものではない。例えば液晶ディスプレイ等に組み込む場合には、50μm~250μm、特に50μm~200μmとするのが好ましい。一般的に、反射フィルムは、厚みを増大させた場合、散乱回数が増大する為、反射特性が向上する。
(引張強伸度)
本反射フィルムの引張強度は、150MPa以上であることが好ましい。150MPa以上であれば、フィルムの剛性を担保することができる。
また、本反射フィルムの引張伸度は、30%以上であることが好ましい。30%以上であれば、フィルムの割れを抑制することができる。
本反射フィルムの引張強度は、150MPa以上であることが好ましい。150MPa以上であれば、フィルムの剛性を担保することができる。
また、本反射フィルムの引張伸度は、30%以上であることが好ましい。30%以上であれば、フィルムの割れを抑制することができる。
(収縮率)
後述の手法による本反射フィルムの収縮率は、5%以下であることが好ましい。5%以下であれば、耐熱性、および寸法安定性に優れ、実用上不具合を生じることがない。収縮率を上述の範囲にする手段としては、前述のとおり、延伸時に熱処理する手法を挙げることができる。
後述の手法による本反射フィルムの収縮率は、5%以下であることが好ましい。5%以下であれば、耐熱性、および寸法安定性に優れ、実用上不具合を生じることがない。収縮率を上述の範囲にする手段としては、前述のとおり、延伸時に熱処理する手法を挙げることができる。
(正反射特性)
本反射フィルムの反射特性として、正反射性を示すことが好ましい。
反射特性の評価方法としては、変角光度測定があり、例えば、フィルムの面に対して法線方向を0°とし、入射角を、-X°として、サンプルに光を入射した時、サンプルが拡散反射性を示す場合においては、その反射光は様々な角度に広がりを持って反射される。一方、サンプルが正反射性を示す場合、反射光の分布は、反射角X°をピークとした反射光分布を示す。このとき、正反射性が高い程、ピークがシャープに現れる。このとき、反射された光のピークの最大強度を100%と規格化し、横軸受光角、縦軸受光相対ピーク強度としたときの受光相対ピーク強度が1%、10%となる受光角幅が正反射特性の指標となる。
本反射フィルムの反射特性として、正反射性を示すことが好ましい。
反射特性の評価方法としては、変角光度測定があり、例えば、フィルムの面に対して法線方向を0°とし、入射角を、-X°として、サンプルに光を入射した時、サンプルが拡散反射性を示す場合においては、その反射光は様々な角度に広がりを持って反射される。一方、サンプルが正反射性を示す場合、反射光の分布は、反射角X°をピークとした反射光分布を示す。このとき、正反射性が高い程、ピークがシャープに現れる。このとき、反射された光のピークの最大強度を100%と規格化し、横軸受光角、縦軸受光相対ピーク強度としたときの受光相対ピーク強度が1%、10%となる受光角幅が正反射特性の指標となる。
この受光相対ピーク強度10%の受光角幅は、5°以下であることが好ましい。5°以下であれば、入射角に対して、指向性の強い反射光を得ることができ、優れた正反射特性を示す。また、受光相対ピーク強度1%の受光角幅は、40°以下であることが好ましい。40°以下であれば、入射角に対して、入射した光のロスを防ぐことができ、指向性の強い反射光を得ることができ、優れた正反射特性を示す。
(表面粗さ)
本反射フィルムの表面粗さは、少なくとも片方の表面の算術平均粗さRaとして、0.1μm以下であることが好ましく、0.09μm以下であることがより好ましい。
算術平均粗さRaを上述の範囲にする手段としては、例えば、分散相(II)にフッ素系樹脂であるエチレン-テトラフルオロエチレン系樹脂を用いた場合、その融点が所定の範囲にあるものを選択することにより、調整することができる。該樹脂の融点が130℃以上250℃以下であることにより、伸長変形が容易となるため、表面荒れを防止することができる。
また、製膜時において、溶融した樹脂組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させる際に、溶融した樹脂組成物の両面を平滑性の優れたフィルムにより挟み込む、もしくは、溶融した樹脂組成物の片面を平滑性の優れたフィルムにより貼りあわせることや、平滑性の優れた金属膜や金属ベルトを押し当てること等によっても表面粗荒れを防止することができる。
本反射フィルムの表面粗さは、少なくとも片方の表面の算術平均粗さRaとして、0.1μm以下であることが好ましく、0.09μm以下であることがより好ましい。
算術平均粗さRaを上述の範囲にする手段としては、例えば、分散相(II)にフッ素系樹脂であるエチレン-テトラフルオロエチレン系樹脂を用いた場合、その融点が所定の範囲にあるものを選択することにより、調整することができる。該樹脂の融点が130℃以上250℃以下であることにより、伸長変形が容易となるため、表面荒れを防止することができる。
また、製膜時において、溶融した樹脂組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させる際に、溶融した樹脂組成物の両面を平滑性の優れたフィルムにより挟み込む、もしくは、溶融した樹脂組成物の片面を平滑性の優れたフィルムにより貼りあわせることや、平滑性の優れた金属膜や金属ベルトを押し当てること等によっても表面粗荒れを防止することができる。
(層構成)
本反射フィルムにおいては、本発明の主旨を超えない範囲で、力学特性やその他の改良など、必要に応じて他の層を適宜導入してもよい。例えば、拡散反射性を示す反射フィルムなどと重ね合わせることができる。また、積層構成とするにあたり、各層の樹脂組成や厚み比に関しては同一であっても異なっていてもよい。
本反射フィルムにおいては、本発明の主旨を超えない範囲で、力学特性やその他の改良など、必要に応じて他の層を適宜導入してもよい。例えば、拡散反射性を示す反射フィルムなどと重ね合わせることができる。また、積層構成とするにあたり、各層の樹脂組成や厚み比に関しては同一であっても異なっていてもよい。
<用語の説明>
本反射フィルムの形態は特に限定するものではなく、板状、シート状、フィルム状その他の形態を包含する。
本反射フィルムの形態は特に限定するものではなく、板状、シート状、フィルム状その他の形態を包含する。
一般的に「フィルム」とは、長さ及び幅に比べて厚みが極めて小さく、最大厚みが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいい(日本工業規格JISK6900)、一般的に「シート」とは、JISにおける定義上、薄く、一般にその厚みが長さと幅のわりには小さく平らな製品をいう。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
本発明が提案する反射フィルムは、高い反射特性と正反射特性を有し、金属のような光沢を有することから、液晶表示装置、照明装置、装飾用物品などの用途に幅広く使用することができる。
以下に実施例を示し、本発明を更に具体的に説明する。但し、本発明はこれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の応用が可能である。
<測定及び評価方法>
先ずは、実施例・比較例で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
先ずは、実施例・比較例で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
(1)熱可塑性樹脂(A)と熱可塑性樹脂(B)の平均屈折率差
アタゴ製アッベ屈折率計を用い、ナトリウムD線(589nm)を光源とし、JIS K7124により、実施例、及び、比較例に用いたそれぞれの原料の平均屈折率を測定した後、平均屈折率差を算出した。
アタゴ製アッベ屈折率計を用い、ナトリウムD線(589nm)を光源とし、JIS K7124により、実施例、及び、比較例に用いたそれぞれの原料の平均屈折率を測定した後、平均屈折率差を算出した。
(2)厚み
得られた反射フィルムを1/1000mmのダイヤルゲージにて、面内を不特定に5箇所測定しその平均を厚みとした。
得られた反射フィルムを1/1000mmのダイヤルゲージにて、面内を不特定に5箇所測定しその平均を厚みとした。
(3)透過率、反射率の評価方法
透過率は、分光光度計((株)日立製作所製:U-4000)に積分球を取り付け、標準白色板として、アルミナ白板(日立計測器サービス社製、210-0740)を用いて、測定を行った。測定波長範囲は、300nmから800nmにて行い、測定波長400nmから700nmにおける透過率の平均値を算出した。また、反射率に関しても上記装置により、アルミナ白板(日立計測器サービス社製、210-0740)の反射率が100%となるよう、ベースライン補正を行った後、測定を行い、測定波長400nmから700nmにおける反射率の平均値を算出した。
透過率は、分光光度計((株)日立製作所製:U-4000)に積分球を取り付け、標準白色板として、アルミナ白板(日立計測器サービス社製、210-0740)を用いて、測定を行った。測定波長範囲は、300nmから800nmにて行い、測定波長400nmから700nmにおける透過率の平均値を算出した。また、反射率に関しても上記装置により、アルミナ白板(日立計測器サービス社製、210-0740)の反射率が100%となるよう、ベースライン補正を行った後、測定を行い、測定波長400nmから700nmにおける反射率の平均値を算出した。
(4)分散相(II)の流れ方向の平均寸法(L1)
走査型電子顕微鏡(SEM)にて得られたフィルムのMD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L1)が、0.45μm以上、100μm以下である。
×:平均寸法(L1)が、0.45μm未満、または、100μmより大きい。
走査型電子顕微鏡(SEM)にて得られたフィルムのMD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L1)が、0.45μm以上、100μm以下である。
×:平均寸法(L1)が、0.45μm未満、または、100μmより大きい。
(5)分散相(II)の幅方向の平均寸法(L2)
走査型電子顕微鏡(SEM)にて得られたフィルムのTD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L2)が、0.45μm以上、100μm以下である。
×:平均寸法(L2)が、0.45μm未満、または、100μmより大きい。
走査型電子顕微鏡(SEM)にて得られたフィルムのTD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L2)が、0.45μm以上、100μm以下である。
×:平均寸法(L2)が、0.45μm未満、または、100μmより大きい。
(6)分散相(II)の厚み方向の平均寸法(L3)
走査型電子顕微鏡(SEM)にて得られたフィルムのMD断面、TD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L3)が、0.01μm以上、0.45μm以下である。
×:平均寸法(L3)が、0.01μm未満、または、0.45μmより大きい。
走査型電子顕微鏡(SEM)にて得られたフィルムのMD断面、TD断面を観察し、得られた写真より分散相(II)の分散径の平均値を算出し、下記基準にて判断した。
○:平均寸法(L3)が、0.01μm以上、0.45μm以下である。
×:平均寸法(L3)が、0.01μm未満、または、0.45μmより大きい。
(7)変角光度測定
ゴニオフォトメーターGR200(村上色彩研究所製、自動変角光度測定機)を用い、フィルムの面に対して法線方向0°とし、入射角を-45°として、サンプルに光を入射し、-60°から90°の範囲でフィルムに反射された光を受光した。このとき、得られるピークの最大強度を100%と規格化し、横軸受光角、縦軸受光相対ピーク強度のグラフを作成した。得られたグラフより、受光相対ピーク強度が1%、10%となる受光角幅を算出した。この受光角幅が狭い方がより正反射性が強いことを示す。得られた結果より、下記基準にて判断した。
=受光相対ピーク強度10%=
○;受光相対ピーク強度10%の受光角幅が5°以下である。
×;受光相対ピーク強度10%の受光角幅が5°より大きい。
=受光相対ピーク強度1%=
○;受光相対ピーク強度1%の受光角幅が40°以下である。
×;受光相対ピーク強度1%の受光角幅が40°より大きい。
ゴニオフォトメーターGR200(村上色彩研究所製、自動変角光度測定機)を用い、フィルムの面に対して法線方向0°とし、入射角を-45°として、サンプルに光を入射し、-60°から90°の範囲でフィルムに反射された光を受光した。このとき、得られるピークの最大強度を100%と規格化し、横軸受光角、縦軸受光相対ピーク強度のグラフを作成した。得られたグラフより、受光相対ピーク強度が1%、10%となる受光角幅を算出した。この受光角幅が狭い方がより正反射性が強いことを示す。得られた結果より、下記基準にて判断した。
=受光相対ピーク強度10%=
○;受光相対ピーク強度10%の受光角幅が5°以下である。
×;受光相対ピーク強度10%の受光角幅が5°より大きい。
=受光相対ピーク強度1%=
○;受光相対ピーク強度1%の受光角幅が40°以下である。
×;受光相対ピーク強度1%の受光角幅が40°より大きい。
(8)算術平均粗さRa
JIS B0601-2001に準拠する。
まず、反射フィルムを9mm幅×6mm長さで切り出す。切り出した反射フィルムを、観察用ホルダーにカーボン両面テープ(日新EM株式会社製)に貼り付ける。その後、観察時の試料表面での帯電(チャージアップ)を防止するため、試料の周囲6箇所に導電ペーストを乗せ、表面にPt-Pdを10mAで100秒蒸着する。前記サンプルをESA-2000(エリオニクス社製、非接触式三次元粗さ計)にて、測定倍率250倍(測定範囲:480μmx360μm)にて観察し、算術平均粗さRaを算出した。
JIS B0601-2001に準拠する。
まず、反射フィルムを9mm幅×6mm長さで切り出す。切り出した反射フィルムを、観察用ホルダーにカーボン両面テープ(日新EM株式会社製)に貼り付ける。その後、観察時の試料表面での帯電(チャージアップ)を防止するため、試料の周囲6箇所に導電ペーストを乗せ、表面にPt-Pdを10mAで100秒蒸着する。前記サンプルをESA-2000(エリオニクス社製、非接触式三次元粗さ計)にて、測定倍率250倍(測定範囲:480μmx360μm)にて観察し、算術平均粗さRaを算出した。
(9)引張破断強伸度
得られた反射フィルムについて、JIS K7161(1994年)に準拠してサンプルを作製し、引張破断強度(MPa)及び、引張破断伸度(%)をMD、TD両方向にて測定した。
=引張破断強度=
○;引張破断強度が150MPa以上
×;引張破断強度が150MPa未満
=引張破断伸度=
○;引張破断伸度が30%以上
×;引張破断伸度が30%未満
得られた反射フィルムについて、JIS K7161(1994年)に準拠してサンプルを作製し、引張破断強度(MPa)及び、引張破断伸度(%)をMD、TD両方向にて測定した。
=引張破断強度=
○;引張破断強度が150MPa以上
×;引張破断強度が150MPa未満
=引張破断伸度=
○;引張破断伸度が30%以上
×;引張破断伸度が30%未満
(10)熱収縮率
得られた反射フィルムについて、測定方向に沿って100mmの間隔の標線を引き、予め130℃に予熱したオーブンの中に吊るした。30分後サンプルを取り出し、室温まで放冷した後、サンプルの標線間の長さを金属スケールで測定し、加熱前後の変化を収縮率とした。測定方向はMD、TD両方向にて測定した。
○;熱収縮率が5%以下
×;熱収縮率が5%を超える。
得られた反射フィルムについて、測定方向に沿って100mmの間隔の標線を引き、予め130℃に予熱したオーブンの中に吊るした。30分後サンプルを取り出し、室温まで放冷した後、サンプルの標線間の長さを金属スケールで測定し、加熱前後の変化を収縮率とした。測定方向はMD、TD両方向にて測定した。
○;熱収縮率が5%以下
×;熱収縮率が5%を超える。
<実施例1、2、3>
ポリエチレンナフタレート樹脂(平均屈折率:1.646、Tg:118℃、Tm:261℃、固有粘度0.71dl/g、重量平均分子量5万、固有複屈折率:正、以下、A-1と表記)と、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-720AP;平均屈折率:1.3795、Tg:67℃、Tm:227℃、固有複屈折率:正、以下、B-1と表記)とを、表1及び表2に示す質量混合比で配合し、十分混合した後、定質量フィーダーにて供給しながら、φ25mm二軸押出機にて290℃で押出混練し、ロール温度110℃のキャストロールにて冷却固化して厚さ950μmのキャストシートを作製した。
得られたキャストシートを、予熱ロール、延伸ロール、冷却ロールからなる縦延伸機にて、予熱温度120℃、延伸温度130℃、冷却温度70℃にて、延伸ロール間でのロール速度差によりMDに3倍延伸した。
その後、得られた縦延伸フィルムを、予熱ゾーン、延伸ゾーン、熱処理ゾーンからなるテンターにて、予熱130℃、延伸130℃、熱処理180℃にてTDに4倍延伸した。予熱ゾーン、延伸ゾーン、熱処理ゾーンの通過時間はそれぞれ32秒であった。得られたフィルムの評価結果を表1及び表2に示す。
ポリエチレンナフタレート樹脂(平均屈折率:1.646、Tg:118℃、Tm:261℃、固有粘度0.71dl/g、重量平均分子量5万、固有複屈折率:正、以下、A-1と表記)と、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-720AP;平均屈折率:1.3795、Tg:67℃、Tm:227℃、固有複屈折率:正、以下、B-1と表記)とを、表1及び表2に示す質量混合比で配合し、十分混合した後、定質量フィーダーにて供給しながら、φ25mm二軸押出機にて290℃で押出混練し、ロール温度110℃のキャストロールにて冷却固化して厚さ950μmのキャストシートを作製した。
得られたキャストシートを、予熱ロール、延伸ロール、冷却ロールからなる縦延伸機にて、予熱温度120℃、延伸温度130℃、冷却温度70℃にて、延伸ロール間でのロール速度差によりMDに3倍延伸した。
その後、得られた縦延伸フィルムを、予熱ゾーン、延伸ゾーン、熱処理ゾーンからなるテンターにて、予熱130℃、延伸130℃、熱処理180℃にてTDに4倍延伸した。予熱ゾーン、延伸ゾーン、熱処理ゾーンの通過時間はそれぞれ32秒であった。得られたフィルムの評価結果を表1及び表2に示す。
<実施例4>
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-730AP;平均屈折率:1.3812、Tg:59℃、Tm:228℃、固有複屈折率:正、以下、B-2と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-730AP;平均屈折率:1.3812、Tg:59℃、Tm:228℃、固有複屈折率:正、以下、B-2と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
<実施例5>
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-740AP;平均屈折率:1.3819、Tg:62℃、Tm:228℃、固有複屈折率:正、以下、B-3と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon LM-740AP;平均屈折率:1.3819、Tg:62℃、Tm:228℃、固有複屈折率:正、以下、B-3と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
<比較例1>
実施例2で用いたB-1を、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド系樹脂(3M社製、THV221GZ;平均屈折率:1.363、Tm:113℃、固有複屈折率:正、以下、B-4と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
実施例2で用いたB-1を、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド系樹脂(3M社製、THV221GZ;平均屈折率:1.363、Tm:113℃、固有複屈折率:正、以下、B-4と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表1及び表2に示す。
上記結果より明らかであるように、実施例の反射フィルムは、高い反射特性と、高い正反射特性を有し、優れた表面平滑性を有し、金属のような光沢を有する好適な反射フィルムであることがわかる。
これに対し、比較例のシートは、厚み方向の平均寸法(L3)が規定値以上であることにより、反射特性、正反射特性、表面平滑性が共に不十分であった。
これに対し、比較例のシートは、厚み方向の平均寸法(L3)が規定値以上であることにより、反射特性、正反射特性、表面平滑性が共に不十分であった。
上記実施例・比較例の結果、並びにこれまで発明者が行ってきた試験結果などから、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムにおいて、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が0.45μm~100μmであり、前記分散相(II)の厚み方向の平均寸法(L3)が0.01μm~0.45μmであり、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であり、該フィルムの測定波長400nm~700nmにおける平均反射率が80%以上であれば、擬似的な多層効果を発現させることができ、高い反射特性と正反射特性を有し、金属のような光沢を付与することができるものと考えることができる。
<比較例2>
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon ETFE C88AXP;平均屈折率:1.3894、Tg:81℃、Tm:256℃、固有複屈折率:正、以下、B-5と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表2に示す。
実施例2で用いたB-1を、エチレン-テトラフルオロエチレン系樹脂(旭硝子社製、Fluon ETFE C88AXP;平均屈折率:1.3894、Tg:81℃、Tm:256℃、固有複屈折率:正、以下、B-5と表記)に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表2に示す。
<実施例6>
実施例2のTDの延伸倍率を4倍から5倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
実施例2のTDの延伸倍率を4倍から5倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<実施例7>
実施例2のTDの延伸倍率を4倍から6倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
実施例2のTDの延伸倍率を4倍から6倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<実施例8>
実施例2のTDの延伸倍率を4倍から7倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
実施例2のTDの延伸倍率を4倍から7倍に変更した以外は、実施例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例3>
比較例1のTDの延伸倍率を4倍から5倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例1のTDの延伸倍率を4倍から5倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例4>
比較例1のTDの延伸倍率を4倍から6倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例1のTDの延伸倍率を4倍から6倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例5>
比較例1のTDの延伸倍率を4倍から7倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例1のTDの延伸倍率を4倍から7倍に変更した以外は、比較例1と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例6>
比較例2のTDの延伸倍率を4倍から5倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例2のTDの延伸倍率を4倍から5倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例7>
比較例2のTDの延伸倍率を4倍から6倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例2のTDの延伸倍率を4倍から6倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
<比較例8>
比較例2のTDの延伸倍率を4倍から7倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
比較例2のTDの延伸倍率を4倍から7倍に変更した以外は、比較例2と同様の手法により、反射フィルムを得た。得られたフィルムの評価結果を表3に示す。
上記結果より明らかであるように、本発明の反射フィルムは、フッ素系樹脂の融解吸熱ピーク温度が所望の範囲にあるため、分散相が非常に薄い板状構造が何層にも重なった状態となるため、高い反射特性と、高い正反射特性を有し、優れた表面平滑性を有し、金属のような光沢を有する好適な反射フィルムであることがわかる。
これに対し、比較例1、比較例3~5のシートは、フッ素系樹脂の融解吸熱ピーク温度が所望の範囲より低いため、ポリエステル系樹脂との混練・押出の際に表面荒れが生じ、結果として、反射特性、正反射特性が共に不十分であった。
また、比較例2、比較例6~8のシートは、フッ素系樹脂の融解吸熱ピーク温度が所望より高く、分散相が大きな楕円体により形成され、入射した光が散乱するため、反射特性は良好な値を示すものの、正反射特性、表面平滑性が共に不十分であった。
これに対し、比較例1、比較例3~5のシートは、フッ素系樹脂の融解吸熱ピーク温度が所望の範囲より低いため、ポリエステル系樹脂との混練・押出の際に表面荒れが生じ、結果として、反射特性、正反射特性が共に不十分であった。
また、比較例2、比較例6~8のシートは、フッ素系樹脂の融解吸熱ピーク温度が所望より高く、分散相が大きな楕円体により形成され、入射した光が散乱するため、反射特性は良好な値を示すものの、正反射特性、表面平滑性が共に不十分であった。
上記実施例・比較例の結果、並びにこれまで発明者が行ってきた試験結果などから、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムにおいて、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなり、該フッ素系樹脂の融解吸熱ピーク温度が130~250℃であれば、擬似的な多層効果を発現させることができ、高い反射特性と正反射特性を有し、金属のような光沢を付与することができるものと考えることができる。
Claims (13)
- 少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムであって、前記分散相(II)の流れ方向の平均寸法(L1)、及び、幅方向の平均寸法(L2)が、0.45μm以上、100μm以下であり、前記分散相(II)の厚み方向の平均寸法(L3)が、0.01μm以上、0.45μm以下であり、該連続相(I)を形成する熱可塑性樹脂(A)と、該分散相(II)を形成する熱可塑性樹脂(B)の平均屈折率差が0.05以上であり、該フィルムの測定波長400nm~700nmにおける平均反射率が80%以上であることを特徴とする反射フィルム。
- 前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)の少なくともどちらか一方が、ポリエステル系樹脂を主成分としてなることを特徴とする請求項1に記載の反射フィルム。
- 前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなることを特徴とする請求項1に記載の反射フィルム。
- 少なくとも2種の熱可塑性樹脂を含有し、連続相(I)と分散相(II)による海島構造を有する層を少なくとも1層有する反射フィルムであって、前記連続相(I)を形成する熱可塑性樹脂(A)と、前記分散相(II)を形成する熱可塑性樹脂(B)のどちらか一方が、ポリエステル系樹脂を主成分としてなり、もう一方が、フッ素系樹脂を主成分としてなり、該フッ素系樹脂の融解吸熱ピーク温度が130℃以上250℃以下であることを特徴とする反射フィルム。
- 前記ポリエステル系樹脂が、ポリエチレンナフタレート系樹脂であることを特徴とする請求項2~4の何れかに記載の反射フィルム。
- 前記フッ素系樹脂が、エチレン-テトラフルオロエチレン系樹脂であることを特徴とする請求項3~5の何れかに記載の反射フィルム。
- 測定波長400nm~700nmにおける平均反射率が80%以上であることを特徴とする請求項4~6の何れかに記載の反射フィルム。
- 少なくとも一軸方向に延伸されてなることを特徴とする請求項1~7の何れかに記載の反射フィルム。
- フィルムの流れ方向、及び/又は、フィルムの幅方向に2~9倍延伸されてなることを特徴とする請求項1~8の何れかに記載の反射フィルム。
- 少なくとも片方の表面の算術平均粗さRaが0.1μm以下であることを特徴とする請求項1~9の何れかに記載の反射フィルム。
- 請求項1~10の何れかに記載の反射フィルムを備えてなる液晶表示装置。
- 請求項1~10の何れかに記載の反射フィルムを備えてなる照明装置。
- 請求項1~10の何れかに記載の反射フィルムを備えてなる装飾用物品。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157025668A KR101718276B1 (ko) | 2013-02-19 | 2014-02-13 | 반사 필름, 및 이것을 구비하여 이루어지는 액정 표시 장치, 조명 장치, 장식용 물품 |
CN201480008635.4A CN105008968B (zh) | 2013-02-19 | 2014-02-13 | 反射膜、以及具备该反射膜的液晶表示装置、照明装置、装饰用物品 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-029709 | 2013-02-19 | ||
JP2013-029707 | 2013-02-19 | ||
JP2013029709 | 2013-02-19 | ||
JP2013029707 | 2013-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129372A1 true WO2014129372A1 (ja) | 2014-08-28 |
Family
ID=51391167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053285 WO2014129372A1 (ja) | 2013-02-19 | 2014-02-13 | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101718276B1 (ja) |
CN (1) | CN105008968B (ja) |
TW (1) | TWI622812B (ja) |
WO (1) | WO2014129372A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025663A1 (ja) * | 2016-08-02 | 2018-02-08 | 東レ株式会社 | 成形用白色ポリエステルフィルム及びそれを用いた白色樹脂成形体 |
CN107850702A (zh) * | 2015-07-24 | 2018-03-27 | 帝人薄膜解决方案有限公司 | 白色反射膜 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017013976A1 (ja) * | 2015-07-21 | 2017-01-26 | 東レ株式会社 | 白色反射フィルム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506990A (ja) * | 1996-02-29 | 2000-06-06 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 光学フィルム |
JP2007261260A (ja) * | 2006-03-02 | 2007-10-11 | Toray Ind Inc | 反射板用白色積層ポリエステルフィルム |
WO2009119749A1 (ja) * | 2008-03-26 | 2009-10-01 | 旭化成イーマテリアルズ株式会社 | 反射シート |
JP2011069989A (ja) * | 2009-09-25 | 2011-04-07 | Asahi Kasei Corp | 反射シート |
JP2011237572A (ja) * | 2010-05-10 | 2011-11-24 | Mitsubishi Plastics Inc | シクロオレフィン系樹脂反射フィルム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5122905A (en) | 1989-06-20 | 1992-06-16 | The Dow Chemical Company | Relective polymeric body |
US5278694A (en) | 1990-01-11 | 1994-01-11 | The Dow Chemical Company | Optically dissimilar composition for polymeric reflective bodies |
US5126880A (en) | 1990-12-18 | 1992-06-30 | The Dow Chemical Company | Polymeric reflective bodies with multiple layer types |
CN1121622C (zh) * | 1996-02-29 | 2003-09-17 | 美国3M公司 | 使用漫反射偏振器的显示器 |
JP4607553B2 (ja) | 2004-11-15 | 2011-01-05 | 三菱樹脂株式会社 | 脂肪族ポリエステル系樹脂反射フィルム及び反射板 |
US9709700B2 (en) | 2005-04-06 | 2017-07-18 | 3M Innovative Properties Company | Optical bodies including rough strippable boundary layers |
US20090135345A1 (en) * | 2005-12-12 | 2009-05-28 | Takatoshi Yajima | Polarizing Plate Protective Film, Film Producing Method, Polarizing Plate, and Liquid Crystal Display |
EP2315058A4 (en) * | 2008-08-07 | 2014-07-02 | Toyo Boseki | ANISOTROPIC LIGHT DIFFUSING FOIL, ANISOTROPIC LIGHT DIFFUSING LAMINATE, ANISOTROPIC LIGHT REFLECTING LAMINATE AND USES THEREOF |
KR101610990B1 (ko) * | 2009-06-05 | 2016-04-08 | 도레이 카부시키가이샤 | 폴리에스테르 필름, 적층 필름 및 그것을 이용한 태양 전지 백 시트, 태양 전지 |
JP5883236B2 (ja) * | 2011-06-10 | 2016-03-09 | 日東電工株式会社 | 薄層基材用キャリア材 |
-
2014
- 2014-02-13 WO PCT/JP2014/053285 patent/WO2014129372A1/ja active Application Filing
- 2014-02-13 KR KR1020157025668A patent/KR101718276B1/ko active IP Right Grant
- 2014-02-13 CN CN201480008635.4A patent/CN105008968B/zh active Active
- 2014-02-19 TW TW103105518A patent/TWI622812B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506990A (ja) * | 1996-02-29 | 2000-06-06 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 光学フィルム |
JP2007261260A (ja) * | 2006-03-02 | 2007-10-11 | Toray Ind Inc | 反射板用白色積層ポリエステルフィルム |
WO2009119749A1 (ja) * | 2008-03-26 | 2009-10-01 | 旭化成イーマテリアルズ株式会社 | 反射シート |
JP2011069989A (ja) * | 2009-09-25 | 2011-04-07 | Asahi Kasei Corp | 反射シート |
JP2011237572A (ja) * | 2010-05-10 | 2011-11-24 | Mitsubishi Plastics Inc | シクロオレフィン系樹脂反射フィルム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107850702A (zh) * | 2015-07-24 | 2018-03-27 | 帝人薄膜解决方案有限公司 | 白色反射膜 |
CN107850702B (zh) * | 2015-07-24 | 2020-05-12 | 帝人薄膜解决方案有限公司 | 白色反射膜 |
WO2018025663A1 (ja) * | 2016-08-02 | 2018-02-08 | 東レ株式会社 | 成形用白色ポリエステルフィルム及びそれを用いた白色樹脂成形体 |
JPWO2018025663A1 (ja) * | 2016-08-02 | 2019-05-30 | 東レ株式会社 | 成形用白色ポリエステルフィルム及びそれを用いた白色樹脂成形体 |
Also Published As
Publication number | Publication date |
---|---|
TWI622812B (zh) | 2018-05-01 |
CN105008968B (zh) | 2018-06-19 |
KR101718276B1 (ko) | 2017-03-20 |
CN105008968A (zh) | 2015-10-28 |
KR20150120467A (ko) | 2015-10-27 |
TW201439602A (zh) | 2014-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6424474B2 (ja) | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 | |
JP5643452B2 (ja) | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 | |
KR101718276B1 (ko) | 반사 필름, 및 이것을 구비하여 이루어지는 액정 표시 장치, 조명 장치, 장식용 물품 | |
WO2016167149A1 (ja) | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 | |
BR112017011381B1 (pt) | Filme multicamada, laminado e método para fabricar um filme multicamada | |
JP5643451B2 (ja) | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 | |
JP6459951B2 (ja) | 反射フィルム、及びこれを備えてなる液晶表示装置、照明装置、装飾用物品 | |
JP4173074B2 (ja) | 二軸延伸多層積層フィルム、装飾用糸および装飾用粉末 | |
KR102644128B1 (ko) | 다층 적층 필름 | |
WO2013157512A1 (ja) | 散乱型偏光子、及びこれを備えてなる液晶表示装置 | |
CN107111014B (zh) | 直下型面光源用白色反射膜及使用该膜的直下型面光源 | |
WO2010095623A1 (ja) | 反射シート | |
JP6014415B2 (ja) | 散乱型偏光子、及びこれを備えてなる液晶表示装置 | |
TWI787362B (zh) | 積層薄膜 | |
JP5114661B2 (ja) | 光拡散性フィルムおよびその製造方法 | |
JP2018176679A (ja) | 延伸フィルム | |
JP2018192737A (ja) | 延伸フィルム | |
JP5875451B2 (ja) | 散乱型偏光子、及びこれを備えてなる液晶表示装置 | |
JP2019014085A (ja) | 延伸フィルム | |
KR102001118B1 (ko) | 액정 디스플레이 반사판용 적층형 백색 폴리에스테르 필름 | |
KR20160103413A (ko) | 저광택 백색 폴리에스테르 필름 및 이의 제조방법과 이를 이용한 반사 시트 | |
JP5215198B2 (ja) | 光学用積層フィルム | |
JP2014151510A (ja) | 押出方法、及び熱可塑性樹脂フィルムの製造方法 | |
JP2013067731A (ja) | 白色ポリエステルフィルムおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754012 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157025668 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14754012 Country of ref document: EP Kind code of ref document: A1 |