WO2014129135A1 - 排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム - Google Patents

排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム Download PDF

Info

Publication number
WO2014129135A1
WO2014129135A1 PCT/JP2014/000615 JP2014000615W WO2014129135A1 WO 2014129135 A1 WO2014129135 A1 WO 2014129135A1 JP 2014000615 W JP2014000615 W JP 2014000615W WO 2014129135 A1 WO2014129135 A1 WO 2014129135A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat pump
pump circuit
absorption
Prior art date
Application number
PCT/JP2014/000615
Other languages
English (en)
French (fr)
Inventor
坂本 直樹
石井 武
向山 洋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013031440A external-priority patent/JP2014159926A/ja
Priority claimed from JP2013031441A external-priority patent/JP2014159927A/ja
Priority claimed from JP2013031443A external-priority patent/JP6074798B2/ja
Priority claimed from JP2013031444A external-priority patent/JP6016027B2/ja
Priority claimed from JP2013031442A external-priority patent/JP2014159928A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201480009532.XA priority Critical patent/CN105008822B/zh
Priority to DE112014000915.6T priority patent/DE112014000915T5/de
Priority to US14/769,066 priority patent/US9631845B2/en
Publication of WO2014129135A1 publication Critical patent/WO2014129135A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Definitions

  • the present invention relates to an exhaust heat utilization heat pump system including a compression type heat pump circuit and an absorption type heat pump circuit, and a heat engine drive type vapor compression type heat pump system.
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide an exhaust heat utilization heat pump system and a heat engine drive type vapor compression type heat pump system which are structured to achieve energy saving.
  • the exhaust heat utilization heat pump system of the present invention absorbs the exhaust heat of the prime mover, the compression type heat pump circuit which utilizes the axial output of the prime mover as a power source of the compressor for compressing the refrigerant. And an absorption heat pump circuit to be used as a heat source of a regenerator for heating the liquid, the refrigerant evaporated in the compression heat pump circuit is circulated to the absorber of the absorption heat pump circuit, and the refrigerant is regenerated after being regenerated by the regenerator.
  • the refrigerant is separated, and the refrigerant is circulated in the compression heat pump circuit, and the absorption heat pump circuit includes a reverse pump in a return pipe of the absorption liquid from the regenerator to the absorber, and the rotation by the reverse pump is performed. It is characterized in that the energy can be recovered by a circulating pump of the absorbing liquid.
  • the circulation pump and the reverse pump may have a common rotation shaft.
  • the displacement volume V r of the reverse pump may satisfy the following expression with respect to the displacement volume V p of the circulation pump.
  • V p x n x p p x p V r x n x r x r + m comp
  • the rotational speed of the rotating shaft is n
  • the density of the absorbing fluid passing through the circulating pump is p p
  • the mass concentration of the refrigerant in the absorbing fluid passing through the circulating pump is x p
  • the density of the absorbing fluid passing through the reverse pump Let r r be the mass concentration of the refrigerant in the absorbing liquid passing through the reverse pump be x r
  • the refrigerant circulation amount of the compression heat pump circuit be m comp .
  • the circulation pump and / or the reverse pump may include a variable mechanism that changes its own displacement volume, and the variable mechanism may change the displacement volume of the target pump so as to satisfy the following equation.
  • V p x n x p p x p V r x n x r x r + m comp
  • the displacement volume of the circulation pump is V p
  • the number of rotations of the rotating shaft is n
  • the density of the absorbing fluid passing through the circulating pump is p p
  • the mass concentration of the refrigerant in the absorbing fluid passing through the circulating pump is x p
  • reverse The displacement volume of the pump is V r
  • the density of the absorbing fluid passing through the reverse pump is ⁇ r
  • the mass concentration of the refrigerant in the absorbing fluid passing through the reverse pump is x r
  • the refrigerant circulation amount of the compression heat pump circuit is m comp Do.
  • the reverse pump is configured to transmit the circulation pump to the circulation pump via a transmission that varies the rotational speed ratio (n p / n r ) of the circulation pump and the reverse pump such that the following equation (2) holds. It may be connected.
  • V p ⁇ n p ⁇ ⁇ p ⁇ x p V r ⁇ n r ⁇ r r ⁇ x r + m comp
  • the displacement volume of the circulation pump is V p
  • the number of revolutions of the circulation pump is n p
  • the density of the absorption liquid passing through the circulation pump ⁇ p the mass concentration of the refrigerant in the absorption liquid passing through the circulation pump x p
  • the displacement volume of the reverse pump is V r
  • the rotation speed of the reverse pump is n r
  • the density of the absorbent passing through the reverse pump is r r
  • the mass concentration of refrigerant in the absorbent passing through the reverse pump is x r
  • compression type The refrigerant circulation amount of the heat pump circuit is m comp .
  • the refrigerant regenerated by the regenerator of the absorption heat pump circuit may be supplied to the suction port of the compressor of the compression heat pump circuit.
  • a compression type heat pump circuit which utilizes an axial output of a prime mover as a power source of a compressor for compressing a refrigerant, and a regenerator which heats absorption liquid with exhaust heat of the prime mover. And the refrigerant evaporated in the compression type heat pump circuit to the absorber of the absorption type heat pump circuit, the refrigerant is separated after the regeneration by the regenerator, and the refrigerant is separated.
  • a suction side refrigerant heat recovery unit configured to circulate in the compression type heat pump circuit, and performing heat exchange between the refrigerant supplied to the compressor and the absorbing liquid supplied to the regenerator; It is characterized by
  • the said structure WHEREIN The branch pipe branched from the feed pipe of the absorption liquid from the said absorber to the said regenerator may be provided, and the said suction side refrigerant
  • a discharge side refrigerant heat recovery unit may be provided to perform heat exchange between the refrigerant discharged from the compressor and the absorbing liquid supplied to the regenerator.
  • the refrigerant regenerated by the regenerator of the absorption heat pump circuit may be supplied to the suction port of the compressor of the compression heat pump circuit.
  • a compression type heat pump circuit which utilizes an axial output of a prime mover as a power source of a compressor for compressing a refrigerant, and a regenerator which heats absorption liquid with exhaust heat of the prime mover.
  • the refrigerant evaporated in the compression type heat pump circuit to the absorber of the absorption type heat pump circuit the refrigerant is separated after the regeneration by the regenerator, and the refrigerant is separated.
  • the present invention is characterized in that it is configured to circulate in the compression type heat pump circuit, and the lubricating oil of the compressor of the compression type heat pump circuit and the absorption liquid of the absorption type heat pump circuit are the same liquid.
  • absorption liquid supply means which supplies absorption liquid of the absorption type heat pump circuit to the compressor as lubricating oil of the compressor may be provided.
  • the refrigerant regenerated by the regenerator of the absorption heat pump circuit may be supplied to the suction port of the compressor of the compression heat pump circuit.
  • a compression type heat pump circuit which utilizes an axial output of a prime mover as a power source of a compressor for compressing a refrigerant, and a regenerator which heats absorption liquid with exhaust heat of the prime mover. And the refrigerant evaporated in the compression type heat pump circuit is circulated to the absorber of the absorption type heat pump circuit, and at the outlet of the regenerator, the refrigerant of the absorption type heat pump circuit is provided.
  • the lubricating oil and the refrigerant of the compressor separated by the separator may be supplied to the suction port of the compressor of the compression heat pump circuit.
  • the separator includes a main body into which a mixed liquid of lubricating oil, refrigerant vapor and absorbing liquid flows from the regenerator, and a separating means for separating the absorbing liquid and the lubricating oil is provided in the main body.
  • the mixed solution may be separated into three layers of refrigerant vapor, lubricating oil and absorbing solution.
  • a mixed liquid pipe to which the mixed liquid is supplied from the regenerator is connected to the main body in the vertical middle portion, and the separation means is located above the connecting portion between the main body and the mixed liquid pipe. It may be located at
  • a refrigerant pipe for supplying the refrigerant to the compression heat pump circuit is connected to the upper portion of the main body, the refrigerant pipe is extended into the main body, and the tip end is directed upward. It may have a U-shaped curved curve.
  • a compression type heat pump circuit which utilizes an axial output of a prime mover as a power source of a compressor for compressing a refrigerant, waste heat of the prime mover And an absorption heat pump circuit used as a heat source of the regenerator to be heated, wherein the refrigerant evaporated in the compression heat pump circuit is circulated to the absorber of the absorption heat pump circuit, and the refrigerant is separated after regeneration by the regenerator.
  • the refrigerant is configured to circulate in the compression heat pump circuit, and the refrigerant regenerated by the regenerator of the absorption heat pump circuit is configured to be supplied to the suction port of the compressor of the compression heat pump circuit.
  • a temperature sensor for detecting a temperature of exhaust heat supplied to the regenerator, and a temperature of the exhaust heat detected by the temperature sensor is maintained at a predetermined temperature
  • An exhaust heat temperature control means for controlling the circulation pump of the sea urchin absorbing solution characterized in that comprises a.
  • a bypass pipe for supplying the refrigerant evaporated in the compression heat pump circuit to the suction port of the compressor by bypassing the absorption heat pump circuit is provided, and the bypass pipe controls the amount of refrigerant in the bypass valve.
  • the exhaust heat temperature control means may control the bypass valve based on the temperature of exhaust heat detected by the temperature sensor.
  • the heat capacity control means for controlling the heat capacity of cold heat or heat supplied to the heat load from the use side heat exchanger of the compression type heat pump circuit is provided, and the heat capacity control means is the heat engine drive type vapor compression type heat pump
  • the power change of the power source of the prime mover may be reduced by the capacity contribution ratio of the absorption heat pump circuit to the total capacity of the system.
  • the absorption heat pump circuit includes the reverse pump in the return pipe of the absorption liquid from the regenerator to the absorber, and is configured to be able to recover the rotational energy of the reverse pump by the circulation pump of the absorption liquid.
  • the suction side refrigerant heat recovery unit is provided to perform heat exchange between the refrigerant supplied to the compressor and the absorbing liquid supplied to the regenerator, the refrigerant vapor supplied to the compressor Since the heat of (4) can be used as a heat source for regenerating the absorbing liquid, the heat necessary for regenerating the absorbing liquid can be reduced, and energy saving of the exhaust heat utilization heat pump system can be achieved. In addition, since the temperature of the refrigerant supplied to the compressor can be reduced, there is no need to separately provide a cooler for reducing the suction temperature of the compressor.
  • the lubricating oil of the compressor of the compression type heat pump circuit and the absorbing liquid of the absorbing type heat pump circuit are the same liquid, the inhibition of the heat exchange due to the mixing of the lubricating oil of the compressor and the absorbing liquid is prevented. As a result, energy saving of the exhaust heat utilization heat pump system can be achieved.
  • the outlet of the regenerator is provided with a separator for separating the lubricating oil of the compressor and the refrigerant from the absorption liquid of the absorption heat pump circuit, and the lubricating oil and the refrigerant of the compressor separated by this separator Since the compressor heat pump circuit is configured to circulate, the lubricant oil separated from the absorbing liquid can be supplied to the compression heat pump circuit even if the lubricant oil of the compressor flows out into the circuit. Thus, the energy saving of the exhaust heat utilization heat pump system can be achieved.
  • the exhaust heat temperature control means for controlling the circulation pump of the absorbing liquid is provided so that the temperature of exhaust heat detected by the temperature sensor for detecting the temperature of exhaust heat is maintained at a predetermined temperature, the absorption type The reduction in efficiency of the heat pump circuit can be suppressed, and energy saving of the exhaust heat utilization heat pump system can be achieved.
  • FIG. 1 is a circuit diagram showing an exhaust heat utilization heat pump system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing a regenerator and a gas-liquid separator.
  • FIG. 3 is a graph showing the operating condition of the exhaust heat utilization heat pump system, where (A) is the flow ratio, (B) is the engine coolant temperature (° C.), and (C) is the operating condition of the engine (ON / OFF) (D) is a figure which shows the rotation speed of a circulation pump, (E) shows the opening degree (%) of a bypass valve.
  • FIG. 4 is a schematic view showing an absorbing liquid supply device.
  • FIG. 5 is a circuit diagram showing a waste heat utilization heat pump system.
  • FIG. 5 is a circuit diagram showing a waste heat utilization heat pump system.
  • FIG. 6 is a schematic view showing a circulation pump and a reverse pump.
  • FIG. 7 is a schematic view showing a regenerator and a separator according to a second embodiment, wherein (A) is a view showing the entire regenerator and separator, and (B) is an enlarged view of a portion A of the separator of (A).
  • FIG. 8 is a schematic view showing a regenerator according to a modification of the present invention.
  • FIG. 9 is a schematic view showing a circulation pump and a reverse pump according to a modification of the present invention.
  • FIG. 10 is a schematic view showing a circulation pump and a reverse pump according to another modification of the present invention.
  • FIG. 11 is a schematic view showing a gas-liquid separator, a circulation pump and a reverse pump according to another modification of the present invention.
  • FIG. 12 is a schematic view showing a bypass valve according to a modification of the present invention.
  • FIG. 13 is a schematic view showing a separator according to a modification of the present invention, in which (A) shows the entire regenerator and separator, and (B) shows an enlarged view of a part B of the separator in (A). It is.
  • FIG. 1 is a circuit diagram showing an exhaust heat utilization heat pump system according to the first main embodiment.
  • FIG. 2 is a schematic view showing a regenerator and a gas-liquid separator.
  • An exhaust heat utilization heat pump system (heat engine drive type steam compression type heat pump system) 1 uses a compression (type) heat pump circuit 10 which utilizes an axial output of an engine (motor, heat engine) 2 as a power source of a compressor 11 for compressing a refrigerant.
  • an absorption type heat pump circuit 20 that utilizes the exhaust heat of the engine 2 as a heat source of the regenerator 21 that heats the absorbing liquid.
  • the compression heat pump circuit 10 includes a compressor 11, a use side heat exchanger 12, a radiator 13, an expansion valve 14, and a four-way valve 15.
  • the compressor 11 and the use side heat exchanger 12 are connected by a suction side refrigerant pipe 31 on the suction port 11A side of the compressor 11 and a discharge side refrigerant pipe 32 on the discharge port 11B side of the compressor 11.
  • a four-way valve 15 is provided in the suction side refrigerant pipe 31, and a four-way valve 15, a radiator 13, and an expansion valve 14 are provided in the discharge side refrigerant pipe 32.
  • the compressor 11 compresses the refrigerant flowing through the suction side refrigerant pipe 31.
  • the compressor 11 is connected to the shaft 2 A of the engine 2, and the shaft output of the engine 2 is transmitted to the compressor 11. That is, the compressor 11 is configured to compress the refrigerant by using the axial output of the engine 2 as a power source.
  • the engine 2 of this embodiment is comprised with the gas engine which made the city gas the fuel, it is not limited to this.
  • the usage-side heat exchanger 12 is a heat exchanger that supplies cold energy or heat of the refrigerant to a heat load (not shown) by evaporating or condensing the refrigerant, and dissipates the cold energy or heat of the refrigerant 12A (for example, Have a fan).
  • the heat dissipation device 12A is provided with a temperature sensor 61 that detects the temperature of heat supplied to the heat load.
  • the radiator 13 radiates the heat of the refrigerant, and includes a heat radiating device 13A (for example, a fan) that radiates the heat of the radiator 13.
  • the four-way valve 15 is switched so as to communicate the suction side and the discharge side of the compressor 11 to the radiator 13 or the utilization side heat exchanger 12, respectively, whereby a cold operation and a heat load for supplying cold to the heat load
  • the heating operation to supply the heating is switched. More specifically, in the cold operation, the discharge side of the compressor 11 to the radiator 13 and in the use side heat exchanger 12 to the suction side of the compressor 11, and in the thermal operation, the discharge side of the compressor 11 In the side heat exchanger 12, the refrigerant flows from the radiator 13 to the suction side of the compressor 11.
  • the discharge side of the compressor 11 is shown as a point a1
  • the radiator 13 side is shown as a point a2
  • the utilization side heat exchanger 12 side is shown as a point b1
  • the suction side of the compressor 11 is shown as a point b2.
  • the compression heat pump circuit 10 is provided with a refrigerant heat exchanger 17 that exchanges heat between the relatively high temperature refrigerant flowing through the compression type heat pump circuit 10 and the relatively low temperature refrigerant vapor.
  • the refrigerant heat exchanger 17 the refrigerant supplied from the radiator 13 to the expansion valve 14 is cooled and the refrigerant vapor supplied from the use side heat exchanger 12 to the compressor 11 is heated in the cold operation.
  • the refrigerant supplied from the expansion valve 14 to the radiator 13 is cooled, and the refrigerant vapor supplied from the radiator 13 to the compressor 11 is heated.
  • the refrigerant heat exchanger 17 improves COP (coefficient of performance) in the compression type heat pump circuit 10.
  • the absorption heat pump circuit 20 is provided in the suction side refrigerant pipe 31 between the refrigerant heat exchanger 17 and the compressor 11 and is connected in series to the compression heat pump circuit 10.
  • the absorption type heat pump circuit 20 includes a regenerator 21, an absorber 22, and a gas-liquid separator 23 (see FIG. 2), and the refrigerant heat exchanger 17 and the absorber 22 are regenerator 21 by a refrigerant pipe 33.
  • the compressor 11 are connected by the refrigerant pipe 34.
  • the regenerator 21 and the absorber 22 are connected by a concentrated absorption liquid pipe (feed pipe) 41 and a rare absorption liquid pipe (return pipe) 42.
  • the absorber 22 absorbs the refrigerant vapor supplied from the refrigerant pipe 33 into the absorbing liquid.
  • the absorber 22 includes a cooling device 22A (for example, a cooling water circulation device or a fan) that cools the heat generated when the absorbing liquid absorbs the refrigerant vapor.
  • a concentrated absorption liquid pipe 41 extending to the regenerator 21.
  • the concentrated absorption liquid pipe 41 is provided with a circulation pump P for circulating the absorption liquid, and driving the circulation pump P causes the absorbent 22 to absorb the refrigerant into the regenerator 21 (concentration absorption (concentration absorption). Liquid) is supplied.
  • the regenerator 21 heats and regenerates the concentrated absorption liquid supplied from the concentrated absorption liquid pipe 41 using the exhaust heat of the engine 2 as a heat source. More specifically, as shown in FIG. 2, an engine cooling water pipe 51 through which engine cooling water from which exhaust heat of the engine 2 has been recovered flows is connected to the cooling water heat transfer pipe 21A of the regenerator 21. Although illustration is omitted, the engine cooling water of the engine cooling water pipe 51 flows, for example, through the water jacket of the engine 2, recovers the exhaust heat of the engine 2 and raises the temperature, and is further provided in the exhaust gas flow path of the engine 2 After flowing through the exhaust gas heat exchanger to recover the exhaust heat of the exhaust gas and raising the temperature, it is supplied to the heat transfer pipe 21A for cooling water of the regenerator 21.
  • the regenerator 21 uses the high temperature engine cooling water as a heat source of the regenerator 21. Heat and regenerate the absorbing solution.
  • the gas-liquid separator 23 Connected to the outlet of the regenerator 21 is a gas-liquid separator 23 for separating the generated refrigerant vapor from the remaining absorbed liquid (dilutely absorbed liquid).
  • the gas-liquid separator 23 includes a main body 23A for storing a rare absorbing liquid, and a mixed liquid pipe 43 extending from the regenerator 21 is connected to an intermediate portion in the vertical direction of the main body 23A.
  • the rare absorption liquid pipe 42 extending to the absorber 22 is connected to the lower part of the main body 23A, and the refrigerant pipe 34 is connected to the upper part of the main body 23A.
  • Refrigerant vapor is separated from the absorbing liquid by the gas-liquid separator 23, only the refrigerant vapor is supplied to the compressor 11, and the rare absorbing liquid from which the refrigerant vapor is separated is supplied to the absorber 22.
  • the concentrated absorbent supplied from the absorber 22 to the regenerator 21 is heated by the relatively high temperature rare absorbent returned from the regenerator 21 to the absorber 22.
  • An absorbent heat exchanger 24 is provided.
  • the temperature of the concentrated absorbent supplied to the regenerator 21 can be raised by the absorbent heat exchanger 24, and the temperature of the rare absorbent supplied to the absorber 22 can be lowered.
  • the utilization side heat exchanger 12 including the heat dissipation device 12A and the expansion valve 14 constitute the indoor unit 1A of the heat exhaust system 1 and the other components are outside the heat pump system 1.
  • the machine 1B is configured.
  • the exhaust heat utilization heat pump system 1 is switched between the cold operation and the thermal operation by switching the four-way valve 15 under the control of the control device 60.
  • the control device 60 controls the exhaust heat utilization heat pump system 1 such that the heat supplied to the heat load (not shown) reaches a predetermined set temperature.
  • the four-way valve 15 is switched so that the suction side of the compressor 11 is in communication with the utilization side heat exchanger 12 and the discharge side of the compressor 11 is in communication with the radiator 13.
  • the refrigerant vapor evaporated in the use side heat exchanger 12 is supplied to the absorber 22 via the refrigerant heat exchanger 17 and absorbed in the absorbing liquid in the absorber 22.
  • the concentrated absorption liquid which has absorbed the refrigerant is supplied to the regenerator 21 via the absorption liquid heat exchanger 24 by the circulation pump P. As shown in FIG. 2, this concentrated absorbing liquid absorbs heat from the engine cooling water flowing in the cooling water heat transfer pipe 21A of the regenerator 21 and is heated to the regeneration temperature.
  • the heated concentrated absorbent is supplied to the gas-liquid separator 23, and the refrigerant vapor is separated in the gas-liquid separator 23.
  • the rare absorbing liquid from which the refrigerant vapor has been separated is supplied to the absorbing liquid heat exchanger 24 as shown in FIG. 1, and in the absorbing liquid heat exchanger 24, the concentrated absorbing liquid flowing through the concentrated absorbing liquid pipe 41 is heated, It is returned to the absorber 22.
  • the refrigerant vapor separated in the gas-liquid separator 23 (FIG. 2) is compressed in the compressor 11 to be in a high temperature and high pressure state, and the refrigerant in the high temperature and high pressure state is cooled in the radiator 13.
  • the cooled refrigerant is cooled by the refrigerant vapor on the downstream side of the use side heat exchanger 12 in the refrigerant heat exchanger 17, and is expanded in the expansion valve 14 to be in a low temperature and low pressure state.
  • the refrigerant in the low temperature and low pressure state evaporates by taking heat of the heat load in the use side heat exchanger 12. Then, the refrigerant vapor evaporated in the use side heat exchanger 12 repeats the circulation of being again supplied to the absorber 22 via the refrigerant heat exchanger 17.
  • the four-way valve 15 is switched so that the suction side of the compressor 11 communicates with the radiator 13 and the discharge side of the compressor 11 communicates with the use side heat exchanger 12.
  • the refrigerant vapor evaporated in the radiator 13 is supplied to the absorber 22 via the refrigerant heat exchanger 17.
  • the regeneration of the refrigerant in the absorption type heat pump circuit 20 is the same as in the cold operation, so the description is omitted here.
  • the refrigerant vapor regenerated in the absorption heat pump circuit 20 is compressed in the compressor 11 to be in a high temperature / high pressure state, and the refrigerant in the high temperature / high pressure state is dissipated to the thermal load in the use side heat exchanger 12 to be cooled.
  • the cooled refrigerant is expanded in the expansion valve 14 to be in a low temperature and low pressure state, cooled by the refrigerant vapor on the downstream side of the radiator 13 in the refrigerant heat exchanger 17, and evaporated in the radiator 13. Then, the refrigerant vapor evaporated in the radiator 13 repeats the circulation of being supplied to the absorber 22 via the refrigerant heat exchanger 17 again.
  • the compression heat pump is supplied such that the refrigerant regenerated by the regenerator 21 of the absorption heat pump circuit 20 is supplied to the suction port 11A of the compressor 11 of the compression heat pump circuit 10.
  • the circuit 10 and the absorption type heat pump circuit 20 are arranged in series.
  • the compression heat pump circuit and the absorption heat pump circuit are arranged in parallel so that the refrigerant regenerated by the regenerator of the absorption heat pump circuit is supplied to the discharge port of the compressor of the compression heat pump circuit. In this case, it is necessary to match the high pressures of the compression heat pump circuit and the absorption heat pump circuit.
  • the engine cooling water temperature reaches the regeneration temperature (for example, 65 ° C. or more) necessary for the regenerator 21 when the exhaust heat utilization heat pump system 1 starts.
  • the regeneration temperature for example, 65 ° C. or more
  • the refrigerant can not be regenerated.
  • the refrigerant vapor which can not be absorbed into the absorber 22 will be full.
  • the suction-side refrigerant pipe 31 is provided with the bypass pipe 35 for bypassing the absorption heat pump circuit 20, and when the engine coolant temperature is low, such as when the engine 2 starts up, the refrigerant that can not be absorbed is the bypass pipe 35 Directly to the compressor 11. More specifically, the bypass pipe 35 is provided with a bypass valve 16 that opens and closes the bypass pipe 35.
  • the bypass valve 16 is a control valve that controls the flow rate of the refrigerant flowing through the bypass pipe 35, and the bypass valve 16 controls the flow rate of the refrigerant flowing through the bypass pipe 35 and the flow rate of the refrigerant flowing into the absorber 22 flowing through the refrigerant pipe 33. The flow rate will be controlled.
  • the refrigerant flow rate of the refrigerant pipe 33 is Fa
  • the refrigerant flow rate of the bypass pipe 35 is Fb
  • the flow rate ratio of the refrigerant is Fa / (Fa + Fb).
  • a temperature sensor 62 for detecting the temperature of the engine cooling water is provided on the inlet side of the engine cooling water pipe 51 at the regenerator 21. The bypass valve 16 is controlled based on the detected temperature.
  • FIG. 3 is a graph showing the operating state of the exhaust heat utilization heat pump system 1
  • FIG. 3 (A) is a flow ratio
  • FIG. 3 (B) is an engine coolant temperature (.degree. C.)
  • FIG. 3 (D) shows the rotational speed of the circulating pump P
  • FIG. 3 (E) shows the opening degree (%) of the bypass valve 16.
  • the horizontal axis indicates the operating time of the exhaust heat utilization heat pump system 1.
  • the control device 60 when starting the exhaust heat utilization heat pump system 1, the control device 60 fully opens the bypass valve 16 to start the engine 2, and the engine coolant water has a predetermined temperature (for example, 45.degree.
  • the circulation pump P After reaching C), the circulation pump P is operated, and then the bypass valve 16 is gradually controlled in the closing direction to completely close in the rated operation state.
  • the bypass valve 16 As a result, it is possible to prevent the refrigerant from being excessively sent to the side of the absorption heat pump circuit 20 when the engine 2 is started up, etc., so it is possible to send an appropriate amount of refrigerant to the absorber 22.
  • the control device 60 keeps the engine coolant temperature at a predetermined temperature (for example, the inlet temperature of the regenerator 21 is around 85 ° C.) in order to effectively utilize the limited exhaust heat of the engine 2 To control the absorption heat pump circuit 20.
  • a predetermined temperature for example, the inlet temperature of the regenerator 21 is around 85 ° C.
  • the control device 60 changes the fuel input by the contribution (about 25%) of the exhaust heat utilization to the absorption heat pump circuit 20 with respect to the load fluctuation of the heat load, as compared with the compression heat pump circuit alone. Control to reduce the
  • the control device 60 maintains the engine coolant temperature at a predetermined temperature (for example, the inlet temperature of the regenerator 21 is around 85 ° C.) in order to effectively utilize the limited exhaust heat of the engine 2
  • a predetermined temperature for example, the inlet temperature of the regenerator 21 is around 85 ° C.
  • the circulation pump P is controlled to control the amount of circulation of the absorbent.
  • the regeneration temperature is maintained substantially constant regardless of the temperature of cold or warm supplied to the heat load, so that the efficiency reduction of the absorption heat pump circuit 20 can be suppressed.
  • the control device 60 functions as an exhaust heat temperature control unit that controls the exhaust heat temperature (engine coolant temperature) of the engine 2.
  • the control device 60 contributes to the contribution ratio of the exhaust heat utilization to the absorption heat pump circuit 20 to the full capacity of the exhaust heat utilization heat pump system 1 with respect to the load fluctuation of the heat load than the compression heat pump circuit alone. Control is performed so as to make the input change of the power source (fuel in the present embodiment) of the engine 2 small (in the present embodiment, about 25%).
  • the control device 60 functions as heat capacity control means for controlling the heat capacity of cold heat or heat supplied from the use side heat exchanger 12 of the compression type heat pump circuit 10 to the heat load.
  • the exhaust heat utilization heat pump system 1 can operate the absorption heat pump circuit 20 only by utilizing the exhaust heat of the engine 2 and can be said to be exhaust heat utilization self-contained type. Therefore, in the exhaust heat utilization heat pump system 1, the connection to the outside (heat load) can be made to be the same structure as a normal gas heat pump (GHP).
  • the refrigerant of the compression type heat pump circuit 10 is circulated to the absorption type heat pump circuit 20 and this refrigerant is circulated to the compression type heat pump circuit 10. Therefore, since not a pure refrigerant but a mixture of a refrigerant and an absorption liquid circulates compression type heat pump circuit 10, there is a possibility that absorption liquid may be mixed with lubricating oil of compressor 11, and absorption liquid is lubricated. In the case of using no liquid, the lubrication of the compressor 11 is inhibited.
  • the lubricating oil of the compressor 11 flows out of the compressor 11 into the circuit in the form of droplets, and circulates through the circuit integrally with the refrigerant.
  • the lubricating oil leaving the compressor 11 travels with the refrigerant to reach the absorber 22, and circulates in the absorption heat pump circuit 20 as one body with the absorbing liquid. If this is left as it is, the lubricating oil held by the compressor 11 will eventually decrease, which may make it impossible to maintain the lubricity of the compressor.
  • the lubricating oil is mixed with the refrigerant and the absorbing liquid, there is a possibility that the heat exchange of the refrigerant and the absorbing liquid may be inhibited by the lubricating oil.
  • the lubricating oil of the compressor 11 and the absorption liquid of the absorption type heat pump circuit 20 are made into the same liquid. That is, the ionic liquid which can double as the lubricating oil of the compressor 11 is used as the absorbing liquid.
  • CO 2 carbon dioxide
  • 1-alkyl-3-methylimidazolium hexafluorophosphate [C nmim] [PF 6]
  • 1-alkyl-3-methylimidazolium tetrafluoroborate [C nmim]
  • [BF4] is used.
  • the radiator 13 uses a condensable refrigerant such as HFC or HFO as a refrigerant during cold heat operation when a noncondensable refrigerant that is in a supercritical state on the high pressure side such as CO 2 is used as the refrigerant. In case of cold operation it functions as a condenser.
  • the use-side heat exchanger 12 functions as a gas cooler at the time of thermal operation when a noncondensable refrigerant is used as the refrigerant, and functions as a condenser at the time of thermal operation when a condensable refrigerant is used as the refrigerant.
  • an absorbing liquid supply device (absorbing liquid supplying means) 70 for supplying the absorbing liquid (ionic liquid) as the lubricating oil to the compressor 11 is provided.
  • FIG. 4 is a schematic view showing the absorbing liquid supply device 70.
  • the absorbing liquid supply device 70 includes an absorbing liquid branch pipe 71 branched from the concentrated absorbing liquid pipe 41 on the downstream side of the circulation pump P, and an open / close valve 72 provided in the absorbing liquid branch pipe 71 to open and close the absorbing liquid branch pipe 71.
  • a lubricating oil amount sensor (oil level sensor) 73 provided in the compressor 11 for detecting the amount of lubricating oil (ionic liquid) of the compressor 11.
  • the control device 60 detects that the lubricating oil amount sensor 73 detects that the lubricating oil held in the compressor 11 falls below the predetermined amount necessary for the compressor 11. To supply the absorbing solution as a lubricating oil to the compressor 11. On the other hand, when it is detected by the lubricating oil amount sensor 73 that the amount of the lubricating oil held in the compressor 11 has become equal to or more than a predetermined amount, the on-off valve 72 of the absorbent branch pipe 71 is closed. Thus, by providing the absorbing liquid supply device 70, the absorbing liquid of the absorption type heat pump circuit 20 can be supplied to the compressor 11 as lubricating oil for the compressor 11, so that the lubricating oil held by the compressor 11 decreases. Can be prevented. Note that the absorbent supply device 70 may be omitted.
  • the absorption liquid circulation amount is increased to increase the input of the regenerator 21.
  • the absorption liquid circulation amount is increased to increase the input of the regenerator 21.
  • the circulation pump since the circulation pump is controlled according to the temperature of the heat supplied to the heat load, the absorption of the regenerator due to the heat load load is absorbed.
  • the amount of fluid circulation will be increased.
  • the regeneration temperature also decreases, and the efficiency of the absorption heat pump circuit 20 decreases.
  • the exhaust heat utilization heat pump system 1 includes the suction side refrigerant heat recovery unit 18 and the discharge side refrigerant heat recovery unit 19 that heat the absorption liquid by the exhaust heat of the refrigerant of the compression type heat pump circuit 10.
  • FIG. 5 is a circuit diagram showing the exhaust heat utilization heat pump system 1.
  • the four-way valve 15 and the drive device M are omitted.
  • the suction side refrigerant heat recovery unit 18 is a heat exchanger that performs heat exchange between the refrigerant supplied to the compressor 11 and the absorbing liquid supplied to the regenerator 21 as shown in FIGS. 1 and 5. More specifically, the suction side refrigerant pipe 31 of the compression type heat pump circuit 10 is connected to the compressor 11 via the suction side refrigerant heat recovery unit 18.
  • the concentrated absorption liquid pipe 41 of the absorption type heat pump circuit 20 includes a concentrated absorption liquid bypass pipe 44 branched on the downstream side of the absorption liquid heat exchanger 24, and the concentrated absorption liquid bypass pipe 44 is a suction side refrigerant heat recovery unit 18. Are connected to the regenerator 21 via.
  • a part of the concentrated absorption liquid flowing through the concentrated absorption liquid pipe 41 is branched at the downstream side of the absorption liquid heat exchanger 24 and supplied to the suction side refrigerant heat recovery unit 18 through the concentrated absorption liquid bypass pipe 44.
  • Ru The concentrated absorption liquid supplied to the suction side refrigerant heat recovery unit 18 is heated and raised in temperature by the refrigerant vapor flowing through the suction side refrigerant pipe 31 in the suction side refrigerant heat recovery unit 18. That is, the relatively high temperature refrigerant vapor supplied to the compressor 11 is cooled by the concentrated absorption liquid flowing through the concentrated absorption liquid bypass pipe 44 in the suction side refrigerant heat recovery unit 18.
  • the heat of the refrigerant vapor supplied to the compressor 11 can be used as a heat source for regenerating the absorbing liquid, it is possible to reduce the heat necessary for regenerating the absorbing liquid. Further, since the temperature of the refrigerant supplied to the compressor 11 can be reduced, it is not necessary to separately provide a cooler for reducing the suction temperature of the compressor 11.
  • the concentrated absorption liquid bypass pipe 44 is further provided with a discharge side refrigerant heat recovery unit 19.
  • the discharge side refrigerant heat recovery unit 19 is a heat exchanger that exchanges heat between the refrigerant discharged from the compressor 11 and the absorbing liquid supplied to the regenerator 21. More specifically, the discharge side refrigerant pipe 32 of the compression type heat pump circuit 10 is connected to the four-way valve 15 via the discharge side refrigerant heat recovery unit 19.
  • the concentrated absorption liquid bypass pipe 44 of the absorption type heat pump circuit 20 is connected to the regenerator 21 through the discharge side refrigerant heat recovery unit 19 after passing through the suction side refrigerant heat recovery unit 18.
  • the concentrated absorption liquid heated in the suction side refrigerant heat recovery unit 18 is supplied to the discharge side refrigerant heat recovery unit 19 and further heated by the refrigerant flowing in the discharge side refrigerant pipe 32 in the discharge side refrigerant heat recovery unit 19. It is supplied to the regenerator 21.
  • the heat of the refrigerant compressed to a high temperature in the compressor 11 can be used as a heat source for regenerating the absorbing liquid, the heat necessary for regenerating the absorbing liquid can be further reduced.
  • the suction side refrigerant heat recovery unit 18 and the discharge side refrigerant heat recovery unit 19 have a temperature relatively lower than that of the regenerator 21, the suction side refrigerant heat recovery unit 18 and the discharge side refrigerant heat recovery unit 19 By providing the pipe 44, the heat exchange efficiency of the absorbing liquid can be improved as compared to the case where all the absorbing liquid from the absorber 22 to the regenerator 21 is heated.
  • FIG. 6 is a schematic view showing the circulation pump P and the reverse pump R.
  • the axis of the circulation pump P is connected to the axis MA of the drive device (drive source) M, and is rotated by the rotational drive force of the drive device M to transport the concentrated absorption liquid flowing through the concentrated absorption liquid pipe 41.
  • the reverse pump R is a pump that is rotationally driven by the rare absorbent flowing through the rare absorbent liquid pipe 42.
  • the shaft (not shown) of the reverse pump R is connected to the shaft (not shown) of the circulation pump P, so that the rotational energy of the reverse pump R can be recovered by the circulation pump P and the driving force of the drive device M can be suppressed. It has become. Thereby, energy saving of the circulation pump P can be achieved.
  • the mass flow rate of the absorbent flowing into the circulation pump P and the mass flow rate of the absorbent flowing into the reverse pump R are the mass of the refrigerant returned from the absorption heat pump circuit 20 to the compression heat pump circuit 10 (FIG. 1).
  • a difference occurs due to the flow rate. Therefore, if the circulation pump P and the reverse pump R are designed to have the same displacement volume, the absorbent corresponding to the difference will flow into the reverse pump R.
  • the balance of the mass flow is broken between the absorption liquid passing through the circulation pump P and the absorption liquid passing through the reverse pump R, and the absorption liquid on the gas-liquid separator 23 and regenerator 21 side becomes excessive. As a result, there is a risk that the gaseous refrigerant vapor which should not flow in may flow into the reverse pump R.
  • the axis of the circulation pump P and the axis of the reverse pump R are connected so that the mass flow rate of the absorption liquid passing through the circulation pump P and the mass flow rate of the absorption liquid passing through the reverse pump R become equal.
  • the circulation pump P and the reverse pump R are coaxially connected via the common rotation axis C, and the reverse pump R is configured such that the displacement volume Vr of the reverse pump R with respect to the displacement volume Vp of the circulation pump P is It is designed to satisfy the following equation (1).
  • V is the displacement volume (m 3 )
  • is the density (kg / m 3 )
  • x is the mass concentration of the refrigerant in the absorbing liquid (kg refrigerant / kg absorbing liquid)
  • n is the rotation Number (times / sec)
  • m refrigerant circulation amount (kg / sec) of compression heat pump circuit 10
  • subscript p circulation pump P
  • subscript r reverse pump R
  • subscript comp compressor 11
  • the absorption heat pump circuit 20 includes the reverse pump R in the rare absorption liquid pipe 42 from the regenerator 21 to the absorber 22, and the rotational energy of the reverse pump R is It comprised so that it could collect
  • the driving force of the drive device M which is a driving source of the circulation pump P, can be suppressed, so energy saving of the circulation pump P can be achieved.
  • the circulation pump P and the reverse pump R are provided with the common rotation axis C, the assembling work of the circulation pump P and the reverse pump R can be simplified.
  • displacement volume V r of the reverse pump was configured to satisfy the equation (1) relative to the displacement volume V p of the circulation pump.
  • the suction side refrigerant heat recovery unit 18 is provided to cause heat exchange between the refrigerant supplied to the compressor 11 and the absorption liquid supplied to the regenerator 21.
  • the heat of the refrigerant vapor supplied to the compressor 11 can be used as a heat source for regenerating the absorbing liquid, so the heat necessary for regenerating the absorbing liquid can be reduced to save energy of the exhaust heat utilization heat pump system 1 Can be Further, since the temperature of the refrigerant supplied to the compressor 11 can be reduced, it is not necessary to separately provide a cooler for reducing the suction temperature of the compressor 11.
  • the concentrated absorption liquid bypass pipe 44 branched from the concentrated absorption liquid pipe 41 from the absorber 22 to the regenerator 21 is provided, and the suction side refrigerant heat recovery unit 18 is connected to the concentrated absorption liquid bypass pipe 44. It was set as the structure provided. Since the temperature of the suction side refrigerant heat recovery unit 18 is relatively lower than that of the regenerator 21, the heat exchange efficiency of the absorption liquid is improved as compared with the case where all the absorption liquid from the absorber 22 to the regenerator 21 is heated. Can.
  • the discharge side refrigerant heat recovery unit 19 is provided to cause heat exchange between the refrigerant discharged from the compressor 11 and the absorption liquid supplied to the regenerator 21.
  • the heat of the refrigerant vapor compressed to a high temperature in the compressor 11 can be used as a heat source for regenerating the absorbing liquid, so the heat necessary for regenerating the absorbing liquid can be further reduced.
  • energy saving of the exhaust heat utilization heat pump system 1 can be achieved more effectively.
  • the lubricating oil of the compressor 11 of the compression type heat pump circuit 10 and the absorbing liquid of the absorbing type heat pump circuit 20 are the same liquid, the lubricating oil of the compressor 11 and the absorbing liquid are mixed. Can prevent harmful effects.
  • the absorbing liquid supply device 70 for supplying the absorbing liquid of the absorbing heat pump circuit 20 to the compressor 11 as lubricating oil for the compressor 11 is provided, the lubricating oil held by the compressor 11 decreases. Can be prevented.
  • the refrigerant regenerated by the regenerator 21 of the absorption heat pump circuit 20 is supplied to the suction port 11A of the compressor 11 of the compression heat pump circuit 10.
  • the refrigerant regenerated by the regenerator 21 of the absorption heat pump circuit 20 is supplied to the suction port 11A of the compressor 11 of the compression heat pump circuit 10, and is supplied to the regenerator 21.
  • a control device 60 as exhaust heat temperature control means for controlling.
  • the bypass pipe 35 for supplying the refrigerant evaporated in the compression heat pump circuit 10 to the suction port 11A of the compressor 11 by bypassing the absorption heat pump circuit 20 is provided.
  • the control device 60 is configured to control the bypass valve 16 based on the temperature of exhaust heat detected by the temperature sensor 62.
  • control device 60 functions as a heat capacity control means for controlling the heat capacity of cold heat or heat supplied from the use side heat exchanger 12 of the compression type heat pump circuit 10 to the heat load.
  • the input change of the power source of the engine 2 is reduced by the capacity contribution ratio of the absorption heat pump circuit 20 with respect to the total capacity of the heat pump system 1.
  • the lubricating oil of the compressor 11 and the absorption liquid of the absorption heat pump circuit 20 are the same liquid, it is not necessary to necessarily be the same liquid.
  • the refrigerant a non-condensable refrigerant in a supercritical state on the high pressure side such as CO 2 , or a condensable refrigerant such as HFC, HFO, water, ammonia, chlorofluorocarbon, etc. is used and absorbed.
  • an absorbent such as an ionic liquid or water capable of absorbing the used refrigerant is used.
  • the lubricating oil a lubricating oil suitable for lubricating the compressor 11 is used. Further, the absorbent supply device 70 is not provided.
  • FIG. 7 is a schematic view showing the regenerator 21 and the separator 123 according to the second embodiment
  • FIG. 7 (A) is a view showing the entire regenerator and the separator
  • FIG. 7 (B) is a diagram showing FIG. It is a figure which expands and shows the part A of a separator.
  • the lubricating oil of the compressor 11 flows out into the compression heat pump circuit 10, and circulates through the compression heat pump circuit 10 and the absorption heat pump circuit 20 integrally with the refrigerant. If this is left as it is, the lubricating oil held by the compressor 11 will eventually decrease, and the lubricity of the compressor 11 may not be maintained.
  • the lubricating oil L1 and the refrigerant vapor G are separated from the mixed liquid L0 composed of the lubricating oil, the refrigerant vapor generated by heat regeneration and the absorbing liquid at the outlet of the regenerator 21.
  • the separator 123 for regenerating the absorbing liquid (the rare absorbing liquid) L2 is connected.
  • the separator 123 is provided with a main body 123A for storing the mixed liquid L0, and a mixed liquid pipe 43 extending from the regenerator 21 is connected to a vertically middle portion 123A1 of the main body 123A.
  • the dilute absorbing liquid pipe 42 extending to the absorber 22 is connected to the lower portion 123A2 of the main body 123A, and the refrigerant pipe 34 is connected to the upper portion 123A3 of the main body 123A.
  • a straightening member (separation means) 25 for separating the lubricating oil L1 and the absorbing liquid L2 is provided in the main body 123A.
  • the rectifying member 25 is a rectifying layer having a layer capable of separating lubricating oil L1 (for example, 1 kg / l or less) different in density and absorbing liquid L2 (for example, 1 kg / l or more), for example, porous or mesh laminate.
  • the mixed liquid L0 is separated into three layers of the refrigerant vapor G, the lubricating oil L1, and the absorbing liquid L2 in the main body 123A by the flow straightening member 25.
  • the rectifying member 25 is disposed above the connecting portion 123B between the main body 123A and the mixed liquid pipe 43, so that the mixed liquid L0 from the mixed liquid pipe 43 is not mixed with the separated lubricating oil L1.
  • the main body 123A is configured as a pressure vessel having a sufficient inner diameter such that the mixed liquid L0 can be separated into three layers of the refrigerant vapor G, the lubricating oil L1, and the absorbing liquid L2, for example, 1 inch (about 2.5 cm) ing.
  • the refrigerant pipe 34 penetrates the upper portion of the main body 123A and extends into the main body 123A, and has a curved portion 34B curved in a substantially U shape such that the tip 34A is directed upward.
  • the refrigerant pipe 34 is provided such that the height of the tip 34A is the predetermined height H in the main body 123A. This height H is separated within the main body 123A when the lubricating oil flows out of the compressor 11 in excess of the amount of lubricating oil required to maintain the lubricity of the compressor 11 (FIG. 1).
  • the height of the liquid surface L1A of the lubricating oil L1 to be held is set.
  • tip 34A of refrigerant pipe 34 is positioned above liquid surface L1A of lubricating oil L1, so that only separated refrigerant vapor G passes through refrigerant pipe 34. Is supplied to the compression type heat pump circuit 10 (FIG. 1).
  • the tip 34A of the refrigerant pipe 34 is located in the lubricating oil 11, so the separated refrigerant vapor G and the lubricating oil L1 via the refrigerant pipe 34 It is supplied to the compression type heat pump circuit 10.
  • the lubricating oil L1 and the refrigerant vapor G can be supplied to the compression type heat pump circuit 10 only by providing the curved portion 34B at the tip of the refrigerant pipe 34.
  • the lubricating oil L1 is compressed separately from the refrigerant vapor G Since it is not necessary to provide a mechanism for supplying the heat pump circuit 10, the configuration can be simplified.
  • the refrigerant vapor G, or the lubricating oil L1 and the refrigerant vapor G can be selectively added to the compression heat pump circuit 10 Since it can supply, compared with the case where lubricating oil 11 is always supplied to compression type heat pump circuit 10, the loss at the time of conveying refrigerant vapor G can be controlled. Then, the absorbent L2 from which the lubricating oil L1 and the refrigerant vapor G are separated is supplied to the absorber 22 through the rare absorbent liquid pipe.
  • the height H of the tip 34A is defined as the height from the upper surface 25A with reference to the upper surface 25A of the flow control member 25, but the reference is not limited to this.
  • the outlet of the regenerator 21 is provided with the separator 123 for separating the lubricating oil of the compressor 11 and the refrigerant from the absorption liquid of the absorption heat pump circuit 20, and this separator
  • the lubricating oil and the refrigerant of the compressor 11 separated by 123 are configured to circulate in the compression type heat pump circuit 10.
  • the lubricating oil and the refrigerant of the compressor 11 separated by the separator 123 are configured to be supplied to the suction port 11 A of the compressor 11 of the compression heat pump circuit 10.
  • the separator 123 includes the main body 123A into which the mixed liquid of the lubricating oil, the refrigerant vapor and the absorbing liquid flows from the regenerator 21 and separates the absorbing liquid and the lubricating oil in the main body 123A.
  • a rectifying member 25 is provided to separate the mixed liquid into three layers of refrigerant vapor, lubricating oil and absorbing liquid. Therefore, the mixed liquid can be separated into the three layers of the absorbing liquid, the lubricating oil and the refrigerant vapor by a simple configuration, so that the separated lubricating oil and the refrigerant can be reliably supplied to the compression type heat pump circuit 10.
  • the mixed liquid pipe 43 to which the mixed liquid is supplied from the regenerator 21 is connected to the vertical intermediate portion 123A1, and the flow straightening member 25 includes the main body 123A and the mixed liquid pipe 43 is arranged above the connecting portion 123B. According to this configuration, mixing of the mixed liquid from the mixed liquid pipe 43 with the separated lubricating oil can be suppressed.
  • the refrigerant pipe 34 for supplying the refrigerant to the compression heat pump circuit 10 is connected to the upper portion 123A3 of the main body 123A, and the refrigerant pipe 34 is extended into the main body 123A so that the tip 34A is directed upward. And a curved portion 34B curved in a substantially U-shape.
  • the lubricating oil and the refrigerant vapor can be supplied to the compression heat pump circuit 10 by the simple configuration in which the curved portion 34B is provided in the refrigerant pipe 34.
  • the above-mentioned embodiment is one mode of the present invention, and it is needless to say that it can change suitably in the range which does not deviate from the meaning of the present invention.
  • the refrigerant regenerated by the regenerator 21 is supplied to the suction port 11A of the compressor 11 and the compression heat pump circuit 10 and the absorption heat pump circuit 20 are arranged in series
  • the refrigerant regenerated by the regenerator 21 is It may be supplied to the suction side of the compressor 11, and the compression type heat pump circuit 10 and the absorption type heat pump circuit 20 may be arranged in parallel.
  • the suction side refrigerant heat recovery unit 18 is configured as a heat exchanger that exchanges heat between the refrigerant of the compression type heat pump circuit 10 and the absorption liquid of the absorption type heat pump circuit 20. It is not limited.
  • the suction side refrigerant heat recovery unit 18 may be configured as a heat exchanger that exchanges heat between the refrigerant of the compression heat pump circuit 10 and the outside air.
  • the concentrated absorption liquid bypass pipe 44 is branched on the downstream side of the absorption liquid heat exchanger 24.
  • the circulation pump P and the absorption liquid heat exchange It may be branched between the two.
  • discharge side refrigerant heat recovery unit 19 is provided in the above embodiment, the discharge side refrigerant heat recovery unit 19 may be omitted.
  • the discharge side refrigerant heat recovery unit 19 is provided in the concentrated absorption liquid bypass pipe 44 provided with the suction side refrigerant heat recovery unit 18, but may be provided in another concentration absorption liquid bypass pipe branched from the concentration absorption liquid pipe 41 .
  • the exhaust heat of the engine 2 is used as the heat source of the regenerator 21.
  • the heat of the other heat source 3 that is lower than the exhaust heat of the engine 2 may be used as the heat source of the regenerator 121.
  • the circulation pump P and the reverse pump R are coaxially connected, and the reverse pump R such that the displacement volume Vr of the reverse pump R satisfies the following expression (1) with respect to the displacement volume Vp of the circulation pump P
  • R was designed, it is not limited to this, and the circulation pump P and / or the reverse pump so that the displacement volume Vp of the circulation pump P and the displacement volume Vr of the reverse pump R satisfy the following equation (1) R may be designed.
  • the circulation pump P and the reverse pump R are coaxially connected, and the reverse pump R is provided with a variable mechanism 4 that changes the displacement volume V r so as to satisfy the equation (1).
  • the mass flow rate of the absorbing fluid passing through the circulation pump P and the mass flow rate of the absorbing fluid passing through the reverse pump R become equal, so that the refrigerant vapor is prevented from flowing into the reverse pump R it can.
  • the circulation pump P and the reverse pump R can be coaxially connected, the assembling work of the circulation pump P and the reverse pump R is simplified.
  • the variable mechanism 4 is provided in the reverse pump R in the example of FIG. 9, the variable mechanism 4 may be provided in the circulation pump P, or may be provided in both the circulation pump P and the reverse pump R. .
  • the circulation pump P and the reverse pump satisfy the following equation (2) for the shaft (not shown) of the circulation pump P and the shaft (not shown) of the reverse pump R.
  • V p ⁇ n p ⁇ ⁇ p ⁇ x p V r ⁇ n r ⁇ r r ⁇ x r + m comp (2)
  • the mass flow rate of the absorbing fluid passing through the circulation pump P and the mass flow rate of the absorbing fluid passing through the reverse pump R become equal, so that the refrigerant vapor is prevented from flowing into the reverse pump R it can.
  • the circulation pump P and / or the reverse pump R may be designed in accordance with the equation (1), or as in the example of FIG. The configuration of the circulation pump P and the reverse pump R can be simplified because it is not necessary to provide them.
  • the gas-liquid separator 23 (or the separator 123) is provided with a liquid level sensor S for detecting the liquid of the absorbing liquid, and the liquid level sensor S
  • the mass flow ratio of the circulation pump P to the reverse pump R may be controlled so as to keep the detected liquid level of the absorbing liquid at a predetermined position. More specifically, if the liquid level of the gas-liquid separator 23 (or separator 123) is lowered, control is made to increase the mass flow ratio, and if the liquid level of the gas-liquid separator 23 (or separator 123) is raised, Control to reduce the mass flow ratio.
  • the displacement volume of the circulation pump P is increased, or the displacement volume of the reverse pump R is decreased, or both of them are performed.
  • the displacement volume of the circulation pump P is decreased, or the displacement volume of the reverse pump R is increased, or both are performed.
  • the rotational speed ratio (n p / n r ) of the circulation pump P and the reverse pump R is increased to increase the mass flow ratio, while the rotational speed ratio is increased to decrease the mass flow ratio. Make it smaller.
  • the reverse pump R may be omitted.
  • the bypass valve 16 in the bypass pipe 35, the amount of refrigerant supplied to the absorption heat pump circuit 20 at the time of starting the engine 2 is controlled, but the invention is not limited thereto.
  • the refrigerant pipe 34 extending to the absorption heat pump circuit 20 may be provided with a bypass valve.
  • the bypass valve 16 may be an on-off valve instead of the flow control valve.
  • a three-way valve 216 may be provided at the branch point of the refrigerant pipes 33 and 34 and the bypass pipe 35.
  • the refrigerant heat exchanger 17, the suction side refrigerant heat recovery unit 18, and the discharge side refrigerant heat recovery unit 19 are omitted.
  • tube 34 was extended in the main body 123A and it had the curved part 34B curved in the substantially U shape so that the front-end
  • the refrigerant pipe 334 is simply connected to the upper portion 123A3 of the main body 123A, and the tip 334A is disposed at the upper portion in the main body 123A, and the separated lubricating oil L1 is a compression type heat pump circuit 10, for example, a lubricant oil supply mechanism 301 may be provided to supply the suction port 11A (FIG. 1) of the compressor 11.
  • the lubricating oil supply mechanism 301 is configured, for example, by connecting the lubricating oil pipe 302 to the position of height H and providing a pump 303 for conveying the lubricating oil L1 to the lubricating oil pipe 302. Also in the example of FIG. 13, when the lubricating oil of the compressor 11 flows out into the circuit, the lubricating oil separated from the absorbing liquid L2 can be supplied to the compression type heat pump circuit 10, so the lubricity of the compressor 11 is maintained. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

 省エネルギー化が図れる構造とした排熱利用ヒートポンプシステムを提供する。 排熱利用ヒートポンプシステム1は、原動機2の軸出力を、冷媒を圧縮する圧縮機11の動力源として利用する圧縮式ヒートポンプ回路10と、原動機2の排熱を、吸収液を加熱する再生器21の熱源として利用する吸収式ヒートポンプ回路20とを備え、圧縮式ヒートポンプ回路10において蒸発した冷媒を、吸収式ヒートポンプ回路20の吸収器22に循環し、再生器21による再生後に冷媒を分離し、この冷媒を、圧縮式ヒートポンプ回路10内を循環するよう構成し、吸収式ヒートポンプ回路20は、再生器21から吸収器22への吸収液の戻り配管42にリバースポンプRを備え、このリバースポンプRによる回転エネルギーを、吸収液の循環ポンプPにより回収できるように構成した。

Description

排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム
 本発明は、圧縮式ヒートポンプ回路と、吸収式ヒートポンプ回路とを備えた排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステムに関する。
 従来、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備えた排熱利用ヒートポンプシステムが知られている(例えば、特許文献1参照)。この排熱利用ヒートポンプシステムでは、圧縮式ヒートポンプ回路の利用側熱交換器を経た冷媒を、吸収式ヒートポンプ回路の吸収器に循環し、再生器による再生後に冷媒を分離し、この冷媒を、圧縮式ヒートポンプ回路の圧縮機の吐出側に供給している。
特開2010-96429号公報
 上記従来の排熱利用ヒートポンプシステムに対しては省エネルギー化が望まれている。
 本発明は、上述した事情に鑑みてなされたものであり、省エネルギー化が図れる構造とした排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステムを提供することを目的とする。
 上記目的を達成するために、本発明の排熱利用ヒートポンプシステムは、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、前記吸収式ヒートポンプ回路は、再生器から吸収器への吸収液の戻り配管にリバースポンプを備え、このリバースポンプによる回転エネルギーを、吸収液の循環ポンプにより回収できるように構成した、ことを特徴とする。
 上記構成において、前記循環ポンプと前記リバースポンプとが共通の回転軸を備えてもよい。
 上記構成において、前記リバースポンプの排除容積Vrが、循環ポンプの排除容積Vpに対して次式を満たしてもよい。
 Vp×n×ρp×xp=Vr×n×ρr×xr+mcomp
 ただし、回転軸の回転数をn、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
 上記構成において、前記循環ポンプ及び/又は前記リバースポンプは、自己の排除容積を可変する可変機構を備え、前記可変機構は、次式を満たすように対象とするポンプの排除容積を可変してもよい。
 Vp×n×ρp×xp=Vr×n×ρr×xr+mcomp
 ただし、循環ポンプの排除容積をVp、回転軸の回転数をn、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプの排除容積をVr、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
 上記構成において、前記リバースポンプは、次式(2)が成立するような、前記循環ポンプと前記リバースポンプの回転数比(np/nr)を可変する変速機を介して前記循環ポンプに接続してもよい。
 Vp×np×ρp×xp=Vr×nr×ρr×xr+mcomp
 ただし、循環ポンプの排除容積をVp、循環ポンプの回転数をnp、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプの排除容積をVr、リバースポンプの回転数をnr、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
 上記構成において、前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成してもよい。
 また、本発明の排熱利用ヒートポンプシステムは、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、前記圧縮機に供給される冷媒と、前記再生器に供給される吸収液との間で熱交換させる吸込側冷媒熱回収器を設けたことを特徴とする。
 上記構成において、前記吸収器から前記再生器への吸収液の送り配管から分岐する分岐管を備え、前記吸込側冷媒熱回収器は前記分岐管に設けられてもよい。
 上記構成において、前記圧縮機から吐出される冷媒と、前記再生器に供給される吸収液との間で熱交換させる吐出側冷媒熱回収器を設けてもよい。
 上記構成において、前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成してもよい。
 また、本発明の排熱利用ヒートポンプシステムは、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、前記圧縮式ヒートポンプ回路の圧縮機の潤滑油と、前記吸収式ヒートポンプ回路の吸収液とが同一液であることを特徴とする。
 上記構成において、前記圧縮機の潤滑油として前記圧縮機へ前記吸収式ヒートポンプ回路の吸収液を供給する吸収液供給手段を設けてもよい。
 上記構成において、前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成してもよい。
 また、本発明の排熱利用ヒートポンプシステムは、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環すると共に、前記再生器の出口に、前記吸収式ヒートポンプ回路の吸収液から、前記圧縮機の潤滑油と、前記冷媒とを分離するセパレータを備え、このセパレータにより分離した圧縮機の潤滑油および冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成した、ことを特徴とする。
 上記構成において、前記セパレータにより分離した圧縮機の潤滑油および冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成してもよい。
 上記構成において、前記セパレータは、前記再生器から潤滑油、冷媒蒸気及び吸収液からなる混合液が流入する本体を備え、前記本体内に前記吸収液と前記潤滑油とを分離する分離手段を設けて、前記混合液を冷媒蒸気、潤滑油、吸収液の三層に分離してもよい。
 上記構成において、前記本体には、上下方向中間部に、前記再生器から混合液が供給される混合液管が接続され、前記分離手段は、前記本体と前記混合液管との接続部分より上方に配置されてもよい。
 上記構成において、前記本体には、上部に、前記冷媒を前記圧縮式ヒートポンプ回路に供給する冷媒管が接続され、前記冷媒管は、前記本体内に延出され、先端が上向きとなるように略U字型に湾曲した湾曲部を有してもよい。
 また、本発明の熱機関駆動式蒸気圧縮式ヒートポンプシステムは、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成し、前記再生器に供給する排熱の温度を検出する温度センサと、前記温度センサが検出した排熱の温度が所定温度に保たれるように吸収液の循環ポンプを制御する排熱温度制御手段と、を備えるたことを特徴とする。
 上記構成において、前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路をバイパスして、前記圧縮機の吸込口に供給するバイパス管を設け、このバイパス管に冷媒量を制御するバイパス弁を設け、前記排熱温度制御手段は、前記温度センサが検出した排熱の温度に基づいて前記バイパス弁を制御してもよい。
 上記構成において、前記圧縮式ヒートポンプ回路の利用側熱交換器から熱負荷に供給する冷熱又は温熱の熱容量を制御する熱容量制御手段を備え、前記熱容量制御手段は、前記熱機関駆動式蒸気圧縮式ヒートポンプシステムの全能力に対する前記吸収式ヒートポンプ回路の能力寄与比率分だけ、前記原動機の動力源の入力変化を小さくしてもよい。
 なお、この明細書には、2013年2月20日に出願された日本国特許出願・特願2013-031440号、2013-031441号、2013-031442号、2013-031443号及び2013-031444号の全ての内容が含まれるものとする。
 本発明によれば、吸収式ヒートポンプ回路は、再生器から吸収器への吸収液の戻り配管にリバースポンプを備え、このリバースポンプによる回転エネルギーを、吸収液の循環ポンプにより回収できるように構成したため、循環ポンプの省エネルギー化を図れ、ひいては、排熱利用ヒートポンプシステムの省エネルギー化を図れる。
 また、本発明によれば、圧縮機に供給される冷媒と、再生器に供給される吸収液との間で熱交換させる吸込側冷媒熱回収器を設けたため、圧縮機に供給される冷媒蒸気の熱を、吸収液を再生する熱源として利用できるので、吸収液の再生に必要な熱を削減して、排熱利用ヒートポンプシステムの省エネルギー化を図れる。また、圧縮機に供給される冷媒の温度を低下できるので、圧縮機の吸い込み温度を低下させる冷却器を別途設ける必要がない。
 本発明によれば、圧縮式ヒートポンプ回路の圧縮機の潤滑油と、吸収式ヒートポンプ回路の吸収液とを同一液としたため、圧縮機の潤滑油と吸収液との混合による熱交換の阻害を防止でき、ひいては、排熱利用ヒートポンプシステムの省エネルギー化を図れる。
 本発明によれば、再生器の出口に、吸収式ヒートポンプ回路の吸収液から、圧縮機の潤滑油と、冷媒とを分離するセパレータを備え、このセパレータにより分離した圧縮機の潤滑油および冷媒を、圧縮式ヒートポンプ回路内を循環するよう構成したため、圧縮機の潤滑油が回路中に流出しても、吸収液から分離した潤滑油を圧縮式ヒートポンプ回路に供給できるので、圧縮機の潤滑性を維持でき、ひいては、排熱利用ヒートポンプシステムの省エネルギー化を図れる。
 本発明によれば、排熱の温度を検出する温度センサが検出した排熱の温度が所定温度に保たれるように吸収液の循環ポンプを制御する排熱温度制御手段を備えたため、吸収式ヒートポンプ回路の効率低下を抑制でき、ひいては、排熱利用ヒートポンプシステムの省エネルギー化を図れる。
図1は、本発明の第1実施形態に係る排熱利用ヒートポンプシステムを示す回路図である。 図2は、再生器及び気液分離器を示す模式図である。 図3は、排熱利用ヒートポンプシステムの運転状態を示すグラフであり、(A)は流量比、(B)はエンジン冷却水温度(℃)、(C)はエンジンの運転状態(ON/OFF)、(D)は循環ポンプの回転数、(E)はバイパス弁の開度(%)を示す図である。 図4は、吸収液供給装置を示す模式図である。 図5は、排熱利用ヒートポンプシステムを示す回路図である。 図6は、循環ポンプ及びリバースポンプを示す模式図である。 図7は、第2実施形態に係る再生器及びセパレータを示す模式図であり、(A)は再生器及びセパレータ全体を示す図、(B)は(A)のセパレータの部分Aを拡大して示す図である。 図8は、本発明の変形例に係る再生器を示す模式図である。 図9は、本発明の変形例に係る循環ポンプ及びリバースポンプを示す模式図である。 図10は、本発明の他の変形例に係る循環ポンプ及びリバースポンプを示す模式図である。 図11は、本発明の別の変形例に係る気液分離器、循環ポンプ及びリバースポンプを示す模式図である。 図12は、本発明の変形例に係るバイパス弁を示す模式図である。 図13は、本発明の変形例に係るセパレータを示す模式図であり、(A)は再生器及びセパレータ全体を示す図、(B)は(A)のセパレータの部分Bを拡大して示す図である。
 以下、図面を参照して本発明の実施形態について説明する。
 <第1実施形態>
 図1は、第1本実施形態に係る排熱利用ヒートポンプシステムを示す回路図である。図2は、再生器及び気液分離器を示す模式図である。
 排熱利用ヒートポンプシステム(熱機関駆動式蒸気圧縮式ヒートポンプシステム)1は、エンジン(原動機、熱機関)2の軸出力を、冷媒を圧縮する圧縮機11の動力源として利用する圧縮式ヒートポンプ回路10と、エンジン2の排熱を、吸収液を加熱する再生器21の熱源として利用する吸収式ヒートポンプ回路20とを備えた、いわゆるハイブリッドシステムである。
 圧縮式ヒートポンプ回路10は、圧縮機11と、利用側熱交換器12と、放熱器13と、膨張弁14、及び四方弁15とを備えている。圧縮機11と利用側熱交換器12とは、圧縮機11の吸込口11A側の吸込側冷媒管31、及び、圧縮機11の吐出口11B側の吐出側冷媒管32によって接続されている。吸込側冷媒管31には四方弁15が、吐出側冷媒管32には、四方弁15、放熱器13、及び膨張弁14が設けられている。
 圧縮機11は、吸込側冷媒管31を流れる冷媒を圧縮するものである。この圧縮機11は、エンジン2の軸2Aに接続されており、圧縮機11にはエンジン2の軸出力が伝達される。つまり、圧縮機11は、動力源としてエンジン2の軸出力を利用して、冷媒を圧縮するように構成されている。なお、本実施形態のエンジン2は、都市ガスを燃料としたガスエンジンで構成しているが、これに限定されるものではない。
 利用側熱交換器12は、冷媒を蒸発又は凝縮させることで、冷媒の冷熱又は温熱を図示しない熱負荷に供給する熱交換器であり、冷媒の冷熱又は温熱を放熱する放熱装置12A(例えば、ファン)を有している。放熱装置12Aには、熱負荷に供給する熱の温度を検出する温度センサ61が設けられている。
 放熱器13は、冷媒の熱を放熱するものであり、当該放熱器13の熱を放熱する放熱装置13A(例えば、ファン)を有している。
 四方弁15は、圧縮機11の吸込側及び吐出側を放熱器13又は利用側熱交換器12にそれぞれ連通するように切り替えられ、これにより、熱負荷に冷熱を供給する冷熱運転及び熱負荷に温熱を供給する温熱運転が切り替えられる。より詳細には、冷熱運転時には、圧縮機11の吐出側から放熱器13に、また、利用側熱交換器12から圧縮機11の吸込側に、温熱運転時には、圧縮機11の吐出側から利用側熱交換器12に、放熱器13から圧縮機11の吸込側に冷媒が流れる。なお、図1では、圧縮機11の吐出側を点a1、放熱器13側を点a2、利用側熱交換器12側を点b1、圧縮機11の吸込側を点b2として示している。
 圧縮式ヒートポンプ回路10には、圧縮式ヒートポンプ回路10を流れる比較的高温の冷媒と比較的低温の冷媒蒸気との間で熱交換させる冷媒熱交換器17が設けられている。冷媒熱交換器17では、冷熱運転時には、放熱器13から膨張弁14に供給される冷媒が冷却されるとともに、利用側熱交換器12から圧縮機11に供給される冷媒蒸気が加熱される。一方、温熱運転時には、膨張弁14から放熱器13に供給される冷媒が冷却されるとともに、放熱器13から圧縮機11に供給される冷媒蒸気が加熱される。この冷媒熱交換器17により、圧縮式ヒートポンプ回路10におけるCOP(成績係数)の向上を図るようにしている。
 吸収式ヒートポンプ回路20は、冷媒熱交換器17と圧縮機11との間の吸込側冷媒管31に設けられ、圧縮式ヒートポンプ回路10にシリーズに接続されている。吸収式ヒートポンプ回路20は、再生器21と、吸収器22と、気液分離器23(図2参照)とを備え、冷媒熱交換器17と吸収器22とが冷媒管33によって、再生器21と圧縮機11とが冷媒管34によって接続されている。再生器21と吸収器22とは、濃吸収液管(送り配管)41及び稀吸収液管(戻り配管)42によって接続されている。
 吸収器22は、冷媒管33から供給される冷媒蒸気を吸収液に吸収させる。吸収器22は、吸収液が冷媒蒸気を吸収する際に発生する熱を冷却する冷却装置22A(例えば、冷却水循環装置、又は、ファン)を備えている。吸収器22には、再生器21に延びる濃吸収液管41が接続されている。濃吸収液管41には、吸収液を循環させるための循環ポンプPが設けられており、循環ポンプPを駆動することで、吸収器22から再生器21に冷媒を吸収した吸収液(濃吸収液)が供給される。
 再生器21は、濃吸収液管41から供給される濃吸収液を、エンジン2の排熱を熱源として加熱再生する。より詳細には、図2に示すように、再生器21の冷却水用伝熱管21Aには、エンジン2の排熱を回収したエンジン冷却水が流れるエンジン冷却水管51が接続されている。図示は省略するが、エンジン冷却水管51のエンジン冷却水は、例えば、エンジン2のウォータジャケットを流通してエンジン2の排熱を回収して昇温し、さらに、エンジン2の排ガス流路に設けられた排ガス熱交換器を流通して排ガスの排熱を回収して昇温した後に、再生器21の冷却水用伝熱管21Aに供給される。このようにして、エンジン2の排熱を回収したエンジン冷却水を再生器21の冷却水用伝熱管21Aに供給することにより、再生器21は、高温のエンジン冷却水を再生器21の熱源として吸収液を加熱再生する。
 再生器21の出口には、加熱再生して発生した冷媒蒸気を残った吸収液(稀吸収液)から分離する気液分離器23が接続されている。気液分離器23は、稀吸収液を貯留する本体23Aを備え、本体23Aの上下方向中間部には再生器21から延びる混合液管43が接続されている。本体23Aの下部には吸収器22に延びる稀吸収液管42が接続され、本体23Aの上部には冷媒管34が接続されている。この気液分離器23により、吸収液から冷媒蒸気が分離され、冷媒蒸気のみが圧縮機11に供給され、冷媒蒸気を分離した稀吸収液が吸収器22に供給される。
 吸収式ヒートポンプ回路20には、図1に示すように、再生器21から吸収器22に戻される比較的高温の稀吸収液により、吸収器22から再生器21に供給される濃吸収液を加熱する吸収液熱交換器24が設けられている。この吸収液熱交換器24により、再生器21に供給される濃吸収液の温度を上昇させると共に、吸収器22に供給される稀吸収液の温度を低下させることができる。
 なお、図1中、放熱装置12Aを含めた利用側熱交換器12及び膨張弁14は排熱利用ヒートポンプシステム1の室内機1Aを構成し、その他の構成部品は排熱利用ヒートポンプシステム1の室外機1Bを構成している。
 排熱利用ヒートポンプシステム1は、制御装置60の制御によって四方弁15を切り替えることで、冷熱運転と、温熱運転とに切り替え運転される。制御装置60は、図示しない熱負荷に供給する熱が所定の設定温度になるように排熱利用ヒートポンプシステム1を制御する。
 冷熱運転時には、四方弁15が、圧縮機11の吸込側を利用側熱交換器12に、圧縮機11の吐出側を放熱器13にそれぞれ連通するように切り替えられる。
 利用側熱交換器12において蒸発した冷媒蒸気は、冷媒熱交換器17を経由して吸収器22に供給され、吸収器22において吸収液に吸収される。冷媒を吸収した濃吸収液は、循環ポンプPによって吸収液熱交換器24を経由して再生器21に供給される。この濃吸収液は、図2に示すように、再生器21の冷却水用伝熱管21A内を流通するエンジン冷却水から吸熱して再生温度まで加熱される。加熱された濃吸収液は、気液分離器23に供給され、気液分離器23において冷媒蒸気が分離される。冷媒蒸気が分離された稀吸収液は、図1に示すように、吸収液熱交換器24に供給され、吸収液熱交換器24において濃吸収液管41を流通する濃吸収液を加熱し、吸収器22に戻される。
 気液分離器23(図2)において分離された冷媒蒸気は、圧縮機11において圧縮されて高温高圧状態となり、高温高圧状態の冷媒は放熱器13において冷却される。冷却された冷媒は、冷媒熱交換器17において利用側熱交換器12の下流側の冷媒蒸気によって冷却され、膨張弁14において膨張して低温低圧状態となる。低温低圧状態の冷媒は、利用側熱交換器12において熱負荷の熱を奪って蒸発する。そして、利用側熱交換器12において蒸発した冷媒蒸気は、再度、冷媒熱交換器17を経由して吸収器22に供給されるという循環を繰り返す。
 一方、温熱運転時には、四方弁15が、圧縮機11の吸込側を放熱器13に、圧縮機11の吐出側を利用側熱交換器12にそれぞれ連通するように切り替えられる。
 放熱器13において蒸発した冷媒蒸気は、冷媒熱交換器17を経由して吸収器22に供給される。吸収式ヒートポンプ回路20における冷媒の再生は冷熱運転時と同様であるため、ここでは説明を省略する。
 吸収式ヒートポンプ回路20において再生された冷媒蒸気は、圧縮機11において圧縮されて高温高圧状態となり、高温高圧状態の冷媒は利用側熱交換器12において熱負荷に放熱して冷却される。冷却された冷媒は、膨張弁14において膨張して低温低圧状態となり、冷媒熱交換器17において放熱器13の下流側の冷媒蒸気によって冷却され、放熱器13において蒸発する。そして、放熱器13において蒸発した冷媒蒸気は、再度、冷媒熱交換器17を経由して吸収器22に供給されるという循環を繰り返す。
 このように、排熱利用ヒートポンプシステム1では、吸収式ヒートポンプ回路20の再生器21により再生した冷媒が、圧縮式ヒートポンプ回路10の圧縮機11の吸込口11Aに供給されるように、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをシリーズに配置している。
 これに対し、例えば、吸収式ヒートポンプ回路の再生器により再生した冷媒が、圧縮式ヒートポンプ回路の圧縮機の吐出口に供給されるように、圧縮式ヒートポンプ回路と吸収式ヒートポンプ回路とをパラレルに配置する場合には、圧縮式ヒートポンプ回路と吸収式ヒートポンプ回路の高圧を合わせる必要がある。
 本実施形態では、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをシリーズに配置しているため、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20の高圧を合わせる機構を設ける必要がなく、構成を簡素化することができる。
 ところで、エンジン2の排熱を利用した吸収式ヒートポンプ回路20では、排熱利用ヒートポンプシステム1の始動時には、エンジン冷却水温度が再生器21に必要な再生温度(例えば、65℃以上)に到達していない。圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをシリーズに配置した排熱利用ヒートポンプシステム1では、この状態で吸収式ヒートポンプ回路20に吸収液を循環させても、冷媒を再生することができず、吸収器22に吸収できない冷媒蒸気が充満してしまう。
 そこで、本実施形態では、吸込側冷媒管31に吸収式ヒートポンプ回路20をバイパスするバイパス管35を設け、エンジン2の立ち上がり時などエンジン冷却水温度が低い場合は、吸収できない冷媒を、バイパス管35を経て圧縮機11に直接戻すようにしている。
 より詳細には、バイパス管35には、当該バイパス管35を開閉するバイパス弁16が設けられている。バイパス弁16は、バイパス管35を流れる冷媒の流量を制御する制御弁であり、このバイパス弁16により、バイパス管35を流れる冷媒の流量、及び、冷媒管33を流れる吸収器22に流れる冷媒の流量が制御されることとなる。なお、以下の説明では、冷媒管33の冷媒流量をFa、バイパス管35の冷媒流量をFbとし、冷媒の流量比をFa/(Fa+Fb)とする。また、エンジン冷却水管51の再生器21入口側にはエンジン冷却水温度(再生器21に供給する排熱の温度)を検出する温度センサ62が設けられており、制御装置60は温度センサ62が検出した温度に基づいてバイパス弁16を制御する。
 図3は、排熱利用ヒートポンプシステム1の運転状態を示すグラフであり、図3(A)は流量比、図3(B)はエンジン冷却水温度(℃)、図3(C)はエンジン2の運転状態(ON/OFF)、図3(D)は循環ポンプPの回転数、図3(E)はバイパス弁16の開度(%)を示す図である。なお、図3中、横軸は排熱利用ヒートポンプシステム1の運転時間を示す。
 図1及び図3に示すように、制御装置60は、排熱利用ヒートポンプシステム1の始動時には、バイパス弁16を全開にしてエンジン2を始動し、エンジン冷却水が所定の温度(例えば、45℃)に到達した後に、循環ポンプPを作動させ、その後、バイパス弁16を除々に閉止方向に制御し、定格運転状態で完全に閉止させる。これにより、エンジン2を立ち上がり時等に、吸収式ヒートポンプ回路20側に冷媒が過剰に送られることが防げるので、適切な量の冷媒を吸収器22に送ることが可能になる。
 定格運転状態になると、制御装置60は、限られたエンジン2の排熱を有効活用するために、エンジン冷却水温度が所定の温度(例えば、再生器21入口温度が85℃前後)に保たれるように、吸収式ヒートポンプ回路20を制御している。
 排熱利用ヒートポンプシステム1では、エンジン2での燃料消費量を増減すると排熱量も比例して増減するため、圧縮式ヒートポンプ回路のみの場合よりもエンジン冷却水の排熱活用分だけ能力変動は大きくなる。したがって、制御装置60は、熱負荷の負荷変動に対して、圧縮式ヒートポンプ回路のみの場合よりも、吸収式ヒートポンプ回路20への排熱利用の寄与分(25%程度)だけ、燃料入力の変化を小さくするように制御している。
 定格運転状態になると、制御装置60は、限られたエンジン2の排熱を有効活用するために、エンジン冷却水温度が所定温度(例えば、再生器21入口温度が85℃前後)に保たれるように、循環ポンプPを制御して吸収液循環量を制御している。これにより、熱負荷に供給する冷熱又は温熱の温度にかかわらず、再生温度がほぼ一定に保たれるので、吸収式ヒートポンプ回路20の効率低下を抑制できる。なお、制御装置60は、エンジン2の排熱温度(エンジン冷却水温度)を制御する排熱温度制御手段として機能している。
 排熱利用ヒートポンプシステム1では、エンジン2での燃料消費量を増減すると排熱量も比例して増減するため、圧縮式ヒートポンプ回路のみの場合よりもエンジン冷却水の排熱活用分だけ能力変動は大きくなる。したがって、制御装置60は、熱負荷の負荷変動に対して、圧縮式ヒートポンプ回路のみの場合よりも、排熱利用ヒートポンプシステム1の全能力に対する吸収式ヒートポンプ回路20への排熱利用の寄与比率分(本実施形態では、25%程度)だけ、エンジン2の動力源(本実施形態では、燃料)の入力変化を小さくするように制御している。これにより、エンジン2の動力源の入力を変化させた場合に、熱負荷に供給する冷熱又は温熱が急激に変化することを防止できる。なお、制御装置60は、圧縮式ヒートポンプ回路10の利用側熱交換器12から熱負荷に供給する冷熱又は温熱の熱容量を制御する熱容量制御手段として機能している。
 このように、排熱利用ヒートポンプシステム1は、エンジン2の排熱利用のみで吸収式ヒートポンプ回路20を作動可能であり、排熱利用自己完結型であると言える。したがって、排熱利用ヒートポンプシステム1では、外部(熱負荷)への接続を、通常のガスヒートポンプ(GHP)と変わらない構成とすることができる。
 上述のように、図1に示す排熱利用ヒートポンプシステム1では、圧縮式ヒートポンプ回路10の冷媒を、吸収式ヒートポンプ回路20に循環し、この冷媒を圧縮式ヒートポンプ回路10に循環させている。したがって、圧縮式ヒートポンプ回路10を、純粋な冷媒ではなく、冷媒と吸収液の混合物が循環することになるので、圧縮機11の潤滑油に吸収液が混じるおそれがあり、吸収液に潤滑性のない液体を用いた場合には、圧縮機11の潤滑を阻害してしまう。
 また、圧縮式ヒートポンプ回路10では、圧縮機11の潤滑油が、圧縮機11から当該回路中に飛沫状に流出し、冷媒と一体となって回路中を循環する。圧縮機11を出た潤滑油は、冷媒とともに移動して吸収器22へ至り、吸収液と渾然一体となって、吸収式ヒートポンプ回路20内を循環する。これを放置すると、いずれは圧縮機11に保持されていた潤滑油が減少し、圧縮機の潤滑性を維持できなくなるおそれがある。また、冷媒や吸収液に潤滑油が混じることになるので、潤滑油によって冷媒や吸収液の熱交換が阻害されるおそれがある。
 そこで、本実施形態の排熱利用ヒートポンプシステム1では、圧縮機11の潤滑油と、吸収式ヒートポンプ回路20の吸収液とを同一液としている。すなわち、圧縮機11の潤滑油を兼ねることが可能なイオン液体を吸収液として用いている。冷媒にCO2(二酸化炭素)を用いる場合、同一液には、例えば、1-alkyl-3-methylimidazolium hexafluorophosphate ([Cnmim][PF6])、又は、1-alkyl-3-methylimidazolium tetrafluoroborate ([Cnmim][BF4])が用いられる。また、冷媒にHFC又はHFOを用いる場合には、同一液には、例えば、[bmim][PF6]: 1-Butyl-3-methylimidazolium hexafluorophosphateが用いられる。このように、圧縮機11の潤滑油と吸収液とを同一液とすることで、圧縮機11の潤滑油と吸収液とが混ざっても、圧縮機11の潤滑を阻害することも、吸収液の熱交換効率を低下させることもない。また、圧縮機11の潤滑油を分離するセパレータを設ける必要がないので、部品点数を削減し、製造工程を簡素化できる。
 なお、放熱器13は、冷媒にCO2等の高圧側で超臨界状態となる非凝縮性冷媒を用いた場合には冷熱運転時にガスクーラとして、冷媒にHFCやHFO等の凝縮性冷媒を用いた場合には冷熱運転時に凝縮器として機能する。同様に、利用側熱交換器12は、冷媒に非凝縮性冷媒を用いた場合には温熱運転時にガスクーラとして、冷媒に凝縮性冷媒を用いた場合には温熱運転時に凝縮器として機能する。
 また、本実施形態では、潤滑油としての吸収液(イオン液体)を圧縮機11に供給する吸収液供給装置(吸収液供給手段)70(図4参照)を備えている。
 図4は、吸収液供給装置70を示す模式図である。
 吸収液供給装置70は、循環ポンプPの下流側において濃吸収液管41から分岐する吸収液分岐管71と、吸収液分岐管71に設けられ、吸収液分岐管71を開閉する開閉弁72と、圧縮機11に設けられ、圧縮機11の潤滑油(イオン液体)の量を検出する潤滑油量センサ(オイルレベルセンサ)73と、を備えて構成されている。
 制御装置60は、潤滑油量センサ73によって、圧縮機11に保持されている潤滑油が圧縮機11に必要な所定量を下回ったことが検出されると、吸収液分岐管71の開閉弁72を開けて、圧縮機11に潤滑油としての吸収液を供給する。一方、潤滑油量センサ73によって圧縮機11に保持されている潤滑油が所定量以上となったことが検出されると、吸収液分岐管71の開閉弁72を閉じる。このように、吸収液供給装置70を設けることにより、圧縮機11の潤滑油として吸収式ヒートポンプ回路20の吸収液を圧縮機11に供給できるので、圧縮機11が保持する潤滑油が減少することを防止できる。なお、この吸収液供給装置70は省略してもよい。
 ハイブリッド型の排熱利用ヒートポンプシステム1では、熱負荷の負荷に対して再生器21における入力(冷媒の再生性能)が不足する場合には、再生器21の入力を増やすために、吸収液循環量を増加することとなる。例えば、従来の排熱利用ヒートポンプシステムでは、熱負荷に供給する温熱の温度に応じて循環ポンプを制御しているため、熱負荷の負荷に対して再生器の入力が不足する場合には、吸収液循環量を増加させることとなる。しかしながら、吸収液循環量が増加すると、再生温度も低下し、吸収式ヒートポンプ回路20では効率が低下してしまう。また、従来のハイブリッド型の排熱利用ヒートポンプシステムでは、エンジンによって圧縮機を駆動することで、電気消費量を抑えているものの、エンジンの軸端効率は低く(30%程度)、熱の多く(70%)が使用されておらず、排熱利用ヒートポンプシステムの省エネルギー化が望まれている。
 そこで、排熱利用ヒートポンプシステム1には、圧縮式ヒートポンプ回路10の冷媒の排熱によって吸収液を加熱する吸込側冷媒熱回収器18及び吐出側冷媒熱回収器19を備えている。
 図5は、排熱利用ヒートポンプシステム1を示す回路図である。なお、図5では、四方弁15及び駆動装置M(図6参照)を省略している。
 吸込側冷媒熱回収器18は、図1及び図5に示すように、圧縮機11に供給される冷媒と、再生器21に供給する吸収液との間で熱交換させる熱交換器である。より詳細には、圧縮式ヒートポンプ回路10の吸込側冷媒管31は、吸込側冷媒熱回収器18を経由して圧縮機11に接続されている。吸収式ヒートポンプ回路20の濃吸収液管41は、吸収液熱交換器24の下流側で分岐する濃吸収液バイパス管44を備えており、濃吸収液バイパス管44は吸込側冷媒熱回収器18を経由して再生器21に接続されている。
 したがって、濃吸収液管41を流通する濃吸収液の一部は、吸収液熱交換器24の下流側において分流され、濃吸収液バイパス管44を介して吸込側冷媒熱回収器18に供給される。吸込側冷媒熱回収器18に供給された濃吸収液は、吸込側冷媒熱回収器18において吸込側冷媒管31を流れる冷媒蒸気によって加熱されて昇温する。すなわち、圧縮機11に供給される比較的高温の冷媒蒸気は、吸込側冷媒熱回収器18において濃吸収液バイパス管44を流れる濃吸収液によって冷却される。このように、圧縮機11に供給される冷媒蒸気の熱を、吸収液を再生する熱源として利用できるので、吸収液の再生に必要な熱を削減できる。また、圧縮機11に供給される冷媒の温度を低下できるので、圧縮機11の吸い込み温度を低下させる冷却器を別途設ける必要がない。
 濃吸収液バイパス管44には、さらに吐出側冷媒熱回収器19が設けられている。吐出側冷媒熱回収器19は、圧縮機11から吐出される冷媒と、再生器21に供給する吸収液との間で熱交換させる熱交換器である。より詳細には、圧縮式ヒートポンプ回路10の吐出側冷媒管32は、吐出側冷媒熱回収器19を経由して四方弁15に接続されている。吸収式ヒートポンプ回路20の濃吸収液バイパス管44は吸込側冷媒熱回収器18を経由した後にさらに吐出側冷媒熱回収器19を経由して再生器21に接続されている。
 したがって、吸込側冷媒熱回収器18において加熱された濃吸収液は、吐出側冷媒熱回収器19に供給され、吐出側冷媒熱回収器19において吐出側冷媒管32を流れる冷媒によってさらに加熱されて再生器21に供給される。このように、圧縮機11において圧縮されて高温となった冷媒の熱を、吸収液を再生する熱源として利用できるので、吸収液の再生に必要な熱をさらに削減できる。
 これらの吸込側冷媒熱回収器18及び吐出側冷媒熱回収器19は再生器21に比べ比較的温度が低いので、吸込側冷媒熱回収器18及び吐出側冷媒熱回収器19を濃吸収液バイパス管44に設けることで、吸収器22から再生器21に向かう吸収液の全てを加熱する場合に比べ、吸収液の熱交換効率を向上させることができる。
 排熱利用ヒートポンプシステム1では、エンジン2によって圧縮機11を駆動することで、電気消費量を抑えているが、循環ポンプPは圧縮機11を駆動するエンジン2とは別に駆動源を必要とするため、循環ポンプPの省エネルギー化が望まれている。
 そこで、本実施形態では、再生器21から吸収器22への稀吸収液管42にリバースポンプ(動力回収機)Rを設けている。
 図6は、循環ポンプP及びリバースポンプRを示す模式図である。
 循環ポンプPは、その軸が駆動装置(駆動源)Mの軸MAに接続されており、駆動装置Mの回転駆動力によって回転されて、濃吸収液管41を流れる濃吸収液を搬送する。駆動装置Mには、例えば、モーター等の原動機が用いられる。
 リバースポンプRは、稀吸収液管42を流れる稀吸収液によって回転駆動されるポンプである。リバースポンプRの軸(不図示)は、循環ポンプPの軸(不図示)に接続されており、リバースポンプRによる回転エネルギーを循環ポンプPにより回収し、駆動装置Mの駆動力を抑制できるようになっている。これにより、循環ポンプPの省エネルギー化を図ることができる。
 ここで、循環ポンプPに流入する吸収液の質量流量と、リバースポンプRに流入する吸収液の質量流量は、吸収式ヒートポンプ回路20から圧縮式ヒートポンプ回路10(図1)に戻される冷媒の質量流量分だけ差異が発生する。そのため、循環ポンプP及びリバースポンプRを同一の排除容積で設計してしまうと、差異に相当する吸収液がリバースポンプRに流入することとなる。その結果、循環ポンプPを通過する吸収液とリバースポンプRを通過する吸収液との間で質量流量のバランスが崩れて、気液分離器23及び再生器21側の吸収液が過少となってしまい、本来流入すべきではないガス状の冷媒蒸気をリバースポンプRに流入させてしまうおそれがある。
 そこで、本実施形態では、循環ポンプPを通過する吸収液の質量流量とリバースポンプRを通過する吸収液の質量流量が等しくなるように、循環ポンプPの軸とリバースポンプRの軸とを連結している。より詳細には、循環ポンプPとリバースポンプRとを共通の回転軸Cを介して同軸に接続し、リバースポンプRを、循環ポンプPの排除容積Vpに対してリバースポンプRの排除容積Vrが次式(1)を満たすように設計している。
   Vp×n×ρp×xp=Vr×n×ρr×xr+mcomp・・・(1)
 ここで、式(1)において、Vは排除容積(m3)、ρは密度(kg/m3)、xは吸収液中の冷媒の質量濃度(kg冷媒/kg吸収液)、nは回転数(回/秒)、mは圧縮式ヒートポンプ回路10の冷媒循環量(kg/秒)、添え字のpは循環ポンプP、添え字のrはリバースポンプR、添え字のcompは圧縮機11のものであること、を示す。
 このように、本実施形態では、循環ポンプPを通過する吸収液の質量流量とリバースポンプRを通過する吸収液の質量流量が等しくしているため、リバースポンプRに冷媒蒸気が流入することを防止できる。また、循環ポンプPとリバースポンプRとを同軸に接続できるので、循環ポンプP及びリバースポンプRの組み付け作業を簡素化できる。
 以上説明したように、本実施形態によれば、吸収式ヒートポンプ回路20は、再生器21から吸収器22への稀吸収液管42にリバースポンプRを備え、このリバースポンプRによる回転エネルギーを、吸収液の循環ポンプPにより回収できるように構成した。この構成により、循環ポンプPの駆動源である駆動装置Mの駆動力を抑制できるので、循環ポンプPの省エネルギー化を図ることができる。
 また、本実施形態によれば、循環ポンプPとリバースポンプRとが共通の回転軸Cを備えたため、循環ポンプP及びリバースポンプRの組み付け作業を簡素化できる。
 また、本実施形態によれば、リバースポンプの排除容積Vrが、循環ポンプの排除容積Vpに対して式(1)を満たす構成とした。この構成により、循環ポンプPを通過する吸収液の質量流量とリバースポンプRを通過する吸収液の質量流量が等しくなるので、リバースポンプRに冷媒蒸気が流入することを防止できる。
 また、本実施形態によれば、圧縮機11に供給される冷媒と、再生器21に供給される吸収液との間で熱交換させる吸込側冷媒熱回収器18を設ける構成とした。この構成により、圧縮機11に供給される冷媒蒸気の熱を、吸収液を再生する熱源として利用できるので、吸収液の再生に必要な熱を削減して、排熱利用ヒートポンプシステム1の省エネルギー化を図れる。また、圧縮機11に供給される冷媒の温度を低下できるので、圧縮機11の吸い込み温度を低下させる冷却器を別途設ける必要がない。
 また、本実施形態によれば、吸収器22から再生器21への濃吸収液管41から分岐する濃吸収液バイパス管44を備え、吸込側冷媒熱回収器18は濃吸収液バイパス管44に設けられる構成とした。吸込側冷媒熱回収器18は再生器21に比べ比較的温度が低いので、吸収器22から再生器21に向かう吸収液の全てを加熱する場合に比べ、吸収液の熱交換効率を向上させることができる。
 また、本実施形態によれば、圧縮機11から吐出される冷媒と、再生器21に供給される吸収液との間で熱交換させる吐出側冷媒熱回収器19を設ける構成とした。この構成により、圧縮機11において圧縮されて高温となった冷媒蒸気の熱を、吸収液を再生する熱源として利用できるので、吸収液の再生に必要な熱をさらに削減できる。その結果、排熱利用ヒートポンプシステム1の省エネルギー化をより効果的に図れる。
 また、本実施形態によれば、圧縮式ヒートポンプ回路10の圧縮機11の潤滑油と、吸収式ヒートポンプ回路20の吸収液とを同一液としたため、圧縮機11の潤滑油と吸収液との混合による弊害を防止できる。
 また、本実施形態によれば、圧縮機11の潤滑油として圧縮機11へ吸収式ヒートポンプ回路20の吸収液を供給する吸収液供給装置70を設けたため、圧縮機11が保持する潤滑油が減少することを防止できる。
 また、本実施形態によれば、吸収式ヒートポンプ回路20の再生器21により再生した冷媒を、圧縮式ヒートポンプ回路10の圧縮機11の吸込口11Aに供給するように構成した。この構成により、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをシリーズに配置することができるので、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20の高圧を合わせる必要がない。
 また、本実施形態によれば、吸収式ヒートポンプ回路20の再生器21により再生した冷媒を、圧縮式ヒートポンプ回路10の圧縮機11の吸込口11Aに供給するように構成し、再生器21に供給する排熱の温度を検出する温度センサ62と、温度センサ62が検出した排熱の温度が所定温度(再生器21入口温度が85℃前後)に保たれるように吸収液の循環ポンプPを制御する排熱温度制御手段としての制御装置60と、を備える構成とした。この構成により、熱負荷に供給する冷熱又は温熱の温度にかかわらず、再生温度がほぼ一定に保たれるので、吸収式ヒートポンプ回路20の効率低下を抑制できる。
 また、本実施形態によれば、圧縮式ヒートポンプ回路10において蒸発した冷媒を、吸収式ヒートポンプ回路20をバイパスして、圧縮機11の吸込口11Aに供給するバイパス管35を設け、このバイパス管35に冷媒量を制御するバイパス弁16を設け、制御装置60は、温度センサ62が検出した排熱の温度に基づいてバイパス弁16を制御する構成とした。この構成により、吸収器22で吸収できない冷媒を、バイパス管35を経て圧縮機11に直接戻すことができるので、排熱の温度に応じた適切な量の冷媒を吸収器22に送ることができる。
 また、本実施形態によれば、制御装置60は、圧縮式ヒートポンプ回路10の利用側熱交換器12から熱負荷に供給する冷熱又は温熱の熱容量を制御する熱容量制御手段として機能し、排熱利用ヒートポンプシステム1の全能力に対する吸収式ヒートポンプ回路20の能力寄与比率分だけ、エンジン2の動力源の入力変化を小さくする構成とした。この構成により、エンジン2の動力源の入力を変化させた場合に、熱負荷に供給する冷熱又は温熱が急激に変化することを防止できる。
 <第2実施形態>
 第1実施形態では、圧縮機11の潤滑油と、吸収式ヒートポンプ回路20の吸収液とを同一液としていたが、必ずしも同一液とする必要はない。
 第2実施形態では、冷媒としては、CO2等の高圧側で超臨界状態となる非凝縮性冷媒、あるいは、HFCや、HFO、水、アンモニア、フロン系等の凝縮性冷媒が用いられ、吸収液は、用いられた冷媒を吸収可能なイオン液体や水等の吸収剤が使用される。
 潤滑油としては、圧縮機11の潤滑に適する潤滑油が使用される。また、吸収液供給装置70が設けられていない。
 このように、吸収液に潤滑性のない吸収液を用いる場合、潤滑油に吸収液に適さない潤滑油を用いる場合には、再生器21から圧縮機11に延びる冷媒管に潤滑油を分離するセパレータを設ければよい。第2実施形態では、気液分離器23に代えて、セパレータ123が設けられている。
 図7は、第2実施形態に係る再生器21及びセパレータ123を示す模式図であり、図7(A)は再生器及びセパレータ全体を示す図、図7(B)は図2(A)のセパレータの部分Aを拡大して示す図である。
 上述したように、圧縮機11の潤滑油は、圧縮式ヒートポンプ回路10中に流出し、冷媒と一体となって圧縮式ヒートポンプ回路10及び吸収式ヒートポンプ回路20を循環する。これを放置すると、いずれは圧縮機11に保持されていた潤滑油が減少し、圧縮機11の潤滑性を維持できなくなるおそれがある。
 そこで、本実施形態では、図7に示すように、再生器21の出口に、潤滑油、加熱再生して発生した冷媒蒸気及び吸収液からなる混合液L0から潤滑油L1、冷媒蒸気Gを分離して、吸収液(稀吸収液)L2を再生するセパレータ123が接続されている。セパレータ123は、混合液L0を貯留する本体123Aを備え、本体123Aの上下方向中間部123A1には再生器21から延びる混合液管43が接続されている。本体123Aの下部123A2には吸収器22に延びる稀吸収液管42が接続され、本体123Aの上部123A3には冷媒管34が接続されている。
 本体123A内には、潤滑油L1と吸収液L2とを分離する整流部材(分離手段)25が設けられている。整流部材25は、密度が異なる潤滑油L1(例えば、1kg/l以下)と吸収液L2(例えば、1kg/l以上)とを分離可能な部材、例えば、多孔質又はメッシュの積層を有する整流層を用いて形成されており、この整流部材25によって本体123A内において混合液L0が冷媒蒸気G、潤滑油L1、吸収液L2、の三層に分離される。整流部材25は、本体123Aと混合液管43との接続部分123Bよりも上方に配置されており、分離した潤滑油L1に混合液管43からの混合液L0が混じらないようになっている。本体123Aは、混合液L0が冷媒蒸気G、潤滑油L1、吸収液L2の三層に分離可能となるような十分な内径、例えば、1インチ(約2.5cm)を有する圧力容器として構成されている。
 冷媒管34は、本体123Aの上部を貫通して本体123A内に延出しており、先端34Aが上向きとなるように略U字型に湾曲した湾曲部34Bを有している。冷媒管34は、先端34Aの高さが本体123Aにおいて所定高さHとなるように設けられている。この高さHは、圧縮機11(図1)の潤滑性を維持するのに必要な潤滑油の量を越えて、圧縮機11から潤滑油が流出した際に、本体123A内において分離されて保持される潤滑油L1の液面L1Aの高さとなるように設定されている。したがって、潤滑油L1が高さHを下回る場合には、冷媒管34の先端34Aが潤滑油L1の液面L1Aよりも上方に位置するので、分離された冷媒蒸気Gのみが冷媒管34を介して圧縮式ヒートポンプ回路10(図1)に供給される。一方、潤滑油L1が高さH以上となった場合には、冷媒管34の先端34Aが潤滑油l1内に位置するので、分離された冷媒蒸気G及び潤滑油L1が冷媒管34を介して圧縮式ヒートポンプ回路10に供給される。
 このように、冷媒管34の先端部に湾曲部34Bを設けるだけで、潤滑油L1及び冷媒蒸気Gを圧縮式ヒートポンプ回路10に供給できるので、例えば潤滑油L1のみを冷媒蒸気Gとは別に圧縮式ヒートポンプ回路10供給する機構を設ける必要がなくなるので、構成を簡素化できる。また、本体123A内において分離されて保持される潤滑油L1の液面L1Aの高さに応じて、冷媒蒸気Gのみ、あるいは、潤滑油L1及び冷媒蒸気Gを選択的に圧縮式ヒートポンプ回路10に供給できるので、常に潤滑油l1を圧縮式ヒートポンプ回路10に供給する場合に比べ、冷媒蒸気Gを搬送する際のロスを抑制できる。
 そして、潤滑油L1及び冷媒蒸気Gが分離された吸収液L2は、稀吸収液管42を介して吸収器22に供給される。このように、セパレータ123によって潤滑油L1と吸収液L2とが分離されるので、吸収液の熱交換効率を低下させることもない。
 なお、本実施形態では、先端34Aの高さHを、整流部材25の上面25Aを基準として当該上面25Aからの高さとして規定するが、基準はこれに限定されるものではない。
 以上説明したように、本実施形態によれば、再生器21の出口に、吸収式ヒートポンプ回路20の吸収液から、圧縮機11の潤滑油と、冷媒とを分離するセパレータ123を備え、このセパレータ123により分離した圧縮機11の潤滑油および冷媒を、圧縮式ヒートポンプ回路10内を循環するよう構成した。この構成により、圧縮機11の潤滑油が回路中に流出しても、吸収液から分離した潤滑油を圧縮式ヒートポンプ回路10に供給できるので、圧縮機11の潤滑性を維持できる。
 また、本実施形態によれば、セパレータ123により分離した圧縮機11の潤滑油および冷媒を、圧縮式ヒートポンプ回路10の圧縮機11の吸込口11Aに供給するように構成した。この構成により、圧縮機11の潤滑油が回路中に流出しても、吸収液から分離した潤滑油を圧縮機11に確実に供給できるので、圧縮機11の潤滑性を確実に維持できる。
 また、本実施形態によれば、セパレータ123は、再生器21から潤滑油、冷媒蒸気及び吸収液からなる混合液が流入する本体123Aを備え、本体123A内に吸収液と潤滑油とを分離する整流部材25を設けて、混合液を冷媒蒸気、潤滑油、吸収液の三層に分離する構成とした。このため、簡単な構成によって混合液を吸収液、潤滑油及び冷媒蒸気の三層に分離できるので、分離した潤滑油及び冷媒を圧縮式ヒートポンプ回路10に確実に供給できる。
 また、本実施形態によれば、本体123Aには、上下方向中間部123A1に、再生器21から混合液が供給される混合液管43が接続され、整流部材25は、本体123Aと混合液管43との接続部分123Bより上方に配置される構成とした。この構成により、分離した潤滑油に混合液管43からの混合液が混じることを抑制できる。
 上記構成において、本体123Aには、上部123A3に、冷媒を圧縮式ヒートポンプ回路10に供給する冷媒管34が接続され、冷媒管34は、本体123A内に延出され、先端34Aが上向きとなるように略U字型に湾曲した湾曲部34Bを有する構成とした。この構成により、冷媒管34に湾曲部34Bを設けるという簡単な構成により、潤滑油及び冷媒蒸気を圧縮式ヒートポンプ回路10に供給できる。
 但し、上記実施形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
 例えば、再生器21により再生した冷媒を圧縮機11の吸込口11Aに供給し、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをシリーズに配置していたが、再生器21により再生した冷媒を圧縮機11の吸込側に供給し、圧縮式ヒートポンプ回路10と吸収式ヒートポンプ回路20とをパラレルに配置してもよい。
 上記実施形態では、吸込側冷媒熱回収器18を、圧縮式ヒートポンプ回路10の冷媒と、吸収式ヒートポンプ回路20の吸収液との間で熱交換する熱交換器として構成しているが、これに限定されるものではない。例えば、吸込側冷媒熱回収器18を、圧縮式ヒートポンプ回路10の冷媒と外気との間で熱交換する熱交換器として構成してもよい。また、本実施形態では、濃吸収液バイパス管44を、吸収液熱交換器24の下流側で分岐させているが、これに限定されるものではなく、例えば、循環ポンプPと吸収液熱交換器24との間で分岐させてもよい。
 また、上記実施形態では、吐出側冷媒熱回収器19を設けたが、吐出側冷媒熱回収器19を省略してもよい。吐出側冷媒熱回収器19は、吸込側冷媒熱回収器18を設けた濃吸収液バイパス管44に設けたが、濃吸収液管41から分岐する別の濃吸収液バイパス管に設けてもよい。
 また、上記実施形態では、エンジン2の排熱のみを再生器21の熱源としたが、エンジン2の排熱が十分でない場合には、図8に示すように、エンジン2の排熱に加えて、例えば、エンジン2の排熱よりも低温の他熱源3の熱を再生器121の熱源としてもよい。
 また、上記実施形態では、循環ポンプPとリバースポンプRとを同軸に接続し、循環ポンプPの排除容積Vpに対してリバースポンプRの排除容積Vrが次式(1)を満たすようにリバースポンプRを設計したが、これに限定されるものではなく、循環ポンプPの排除容積VpとリバースポンプRの排除容積Vrとが次式(1)を満たすように、循環ポンプP及び/又はリバースポンプRを設計してもよい。
 また、例えば、図9に示すように、循環ポンプPとリバースポンプRとを同軸に接続し、リバースポンプRに、式(1)を満たすように排除容積Vrを可変する可変機構4を設けてもよい。これにより、図9の例においても、循環ポンプPを通過する吸収液の質量流量とリバースポンプRを通過する吸収液の質量流量が等しくなるので、リバースポンプRに冷媒蒸気が流入することを防止できる。また、循環ポンプPとリバースポンプRとを同軸に接続できるので、循環ポンプP及びリバースポンプRの組み付け作業が簡素化する。
 なお、図9の例では、可変機構4をリバースポンプRに設けているが、可変機構4は、循環ポンプPに設けてもよいし、循環ポンプP及びリバースポンプRの両方に設けてもよい。
 さらに、例えば、図10に示すように、循環ポンプPの軸(不図示)とリバースポンプRの軸(不図示)とを、次式(2)が成立するような、循環ポンプPとリバースポンプRの回転数比(np/nr)を可変する変速機5を介して接続してもよい。より詳細には、循環ポンプPの軸と変速機5を循環ポンプ側軸C1によって、リバースポンプRの軸と変速機5をリバースポンプ側軸C2によって接続される。
   Vp×np×ρp×xp=Vr×nr×ρr×xr+mcomp・・・(2)
 これにより、図10の例においても、循環ポンプPを通過する吸収液の質量流量とリバースポンプRを通過する吸収液の質量流量が等しくなるので、リバースポンプRに冷媒蒸気が流入することを防止できる。また、図6の例のように循環ポンプP及び/又はリバースポンプRを式(1)に合わせて設計したり、図9の例のように可変機構4を循環ポンプP及び/又はリバースポンプRに設けたりする必要がなくなるので、循環ポンプP及びリバースポンプRの構成を簡素化できる。
 また、図9及び図10の例において、例えば、図11に示すように、気液分離器23(又はセパレータ123)に吸収液の液を検出する液位センサSを設け、液位センサSが検出した吸収液の液位を所定の位置に保つように、循環ポンプPとリバースポンプRの質量流量比(循環ポンプPの質量流量/リバースポンプRの質量流量)を制御してもよい。より詳細には、気液分離器23(又はセパレータ123)の液位が下がれば、質量流量比を大きくするように制御し、気液分離器23(又はセパレータ123)の液位が上がれば、質量流量比を小さくするように制御する。これにより、リバースポンプRに冷媒蒸気が流入することを防止できる。
 なお、図9の例において、質量流量比を大きくするには、循環ポンプPの排除容積を大きくする、又は、リバースポンプRの排除容積を小さくする、あるいは、その両方を行う。一方、質量流量比を小さくするには、循環ポンプPの排除容積を小さくする、又は、リバースポンプRの排除容積を大きくする、あるいは、その両方を行う。
 図10の例において、質量流量比を大きくするには循環ポンプPとリバースポンプRの回転数比(np/nr)を大きくし、一方、質量流量比を小さくするには回転数比を小さくする。
 また、リバースポンプRは省略してもよい。
 また、上記実施形態では、バイパス管35にバイパス弁16を設けることで、エンジン2の始動時における吸収式ヒートポンプ回路20への冷媒供給量を制御していたが、これに限定されるものではない。例えば、吸収式ヒートポンプ回路20に延びる冷媒管34にバイパス弁を設けてもよい。また、バイパス弁16は、流量制御弁でなく開閉弁であってもよい。さらに、例えば、図12に示すように、冷媒管33,34及びバイパス管35の分岐点に三方弁216を設けてもよい。なお、図12に示す排熱利用ヒートポンプシステム200では、冷媒熱交換器17、吸込側冷媒熱回収器18及び吐出側冷媒熱回収器19を省略している。
 また、上記第2実施形態では、冷媒管34は、本体123A内に延出され、先端34Aが上向きとなるように略U字型に湾曲した湾曲部34Bを有していたが、これに限定されるものはない。例えば、図13に示すように、冷媒管334を、単に、本体123Aの上部123A3に接続して、先端334Aを本体123A内の上部に配置する構成とし、分離した潤滑油L1を圧縮式ヒートポンプ回路10、例えば、圧縮機11の吸込口11A(図1)に供給する潤滑油供給機構301を設けてもよい。この潤滑油供給機構301は、例えば、潤滑油管302を高さHの位置に接続し、潤滑油管302に潤滑油L1を搬送するポンプ303を設けて構成される。図13の例においても、圧縮機11の潤滑油が回路中に流出した場合には、吸収液L2から分離した潤滑油を圧縮式ヒートポンプ回路10に供給できるので、圧縮機11の潤滑性を維持できる。
 1,200 排熱利用ヒートポンプシステム(熱機関駆動式蒸気圧縮式ヒートポンプシステム)
 2 エンジン(原動機、熱機関)
 4 可変機構
 5 変速機
 10 圧縮式ヒートポンプ回路
 11 圧縮機
 11A 吸込口
 16 バイパス弁
 18 吸込側冷媒熱回収器
 19 吐出側冷媒熱回収器
 20 吸収式ヒートポンプ回路
 21 再生器
 22 吸収器
 25 整流部材(分離手段)
 34 冷媒管
 34A 先端
 34B 湾曲部
 35 バイパス管
 41 濃吸収液管(送り配管)
 42 稀吸収液管(戻り配管)
 44 濃吸収液バイパス管(分岐管)
 60 制御装置(排熱温度制御手段、熱容量制御手段)
 62 温度センサ
 70 吸収液供給装置(吸収液供給手段)
 123 セパレータ
 123A 本体
 123B 接続部分
 C 回転軸
 P 循環ポンプ
 R リバースポンプ

Claims (19)

  1.  原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、
     前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、
     前記吸収式ヒートポンプ回路は、再生器から吸収器への吸収液の戻り配管にリバースポンプを備え、このリバースポンプによる回転エネルギーを、吸収液の循環ポンプにより回収できるように構成した、
     ことを特徴とする排熱利用ヒートポンプシステム。
  2.  前記循環ポンプと前記リバースポンプとが共通の回転軸を備えたことを特徴とする請求項1に記載の排熱利用ヒートポンプシステム。
  3.  前記リバースポンプの排除容積Vrが、循環ポンプの排除容積Vpに対して次式を満たすことを特徴とする請求項2に記載の排熱利用ヒートポンプシステム。
     Vp×n×ρp×xp=Vr×n×ρr×xr+mcomp
     ただし、回転軸の回転数をn、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
  4.  前記循環ポンプ及び/又は前記リバースポンプは、自己の排除容積を可変する可変機構を備え、前記可変機構は、次式を満たすように対象とするポンプの排除容積を可変することを特徴とする請求項2に記載の排熱利用ヒートポンプシステム。
     Vp×n×ρp×xp=Vr×n×ρr×xr+mcomp
     ただし、循環ポンプの排除容積をVp、回転軸の回転数をn、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプの排除容積をVr、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
  5.  前記リバースポンプは、次式(2)が成立するような、前記循環ポンプと前記リバースポンプの回転数比(np/nr)を可変する変速機を介して前記循環ポンプに接続したことを特徴とする請求項1に記載の排熱利用ヒートポンプシステム。
     Vp×np×ρp×xp=Vr×nr×ρr×xr+mcomp
     ただし、循環ポンプの排除容積をVp、循環ポンプの回転数をnp、循環ポンプを通過する吸収液の密度をρp、循環ポンプを通過する吸収液中の冷媒の質量濃度をxp、リバースポンプの排除容積をVr、リバースポンプの回転数をnr、リバースポンプを通過する吸収液の密度をρr、リバースポンプを通過する吸収液中の冷媒の質量濃度をxr、圧縮式ヒートポンプ回路の冷媒循環量をmcompとする。
  6.  原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、
     前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、
     前記圧縮機に供給される冷媒と、前記再生器に供給される吸収液との間で熱交換させる吸込側冷媒熱回収器を設けたことを特徴とする排熱利用ヒートポンプシステム。
  7.  前記吸収器から前記再生器への吸収液の送り配管から分岐する分岐管を備え、前記吸込側冷媒熱回収器は前記分岐管に設けられることを特徴とする請求項6に記載の排熱利用ヒートポンプシステム。
  8.  前記圧縮機から吐出される冷媒と、前記再生器に供給される吸収液との間で熱交換させる吐出側冷媒熱回収器を設けたことを特徴とする請求項6又は7に記載の排熱利用ヒートポンプシステム。
  9.  原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、
     前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、
     前記圧縮式ヒートポンプ回路の圧縮機の潤滑油と、前記吸収式ヒートポンプ回路の吸収液とが同一液であることを特徴とする排熱利用ヒートポンプシステム。
  10.  前記圧縮機の潤滑油として前記圧縮機へ前記吸収式ヒートポンプ回路の吸収液を供給する吸収液供給手段を設けたことを特徴とする請求項9に記載の排熱利用ヒートポンプシステム。
  11.  前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成したことを特徴とする請求項1乃至10のいずれかに記載の排熱利用ヒートポンプシステム。
  12.  原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、
     前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環すると共に、
     前記再生器の出口に、前記吸収式ヒートポンプ回路の吸収液から、前記圧縮機の潤滑油と、前記冷媒とを分離するセパレータを備え、
     このセパレータにより分離した圧縮機の潤滑油および冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成した、
     ことを特徴とする排熱利用ヒートポンプシステム。
  13.  前記セパレータにより分離した圧縮機の潤滑油および冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成したことを特徴とする請求項12に記載の排熱利用ヒートポンプシステム。
  14.  前記セパレータは、前記再生器から潤滑油、冷媒蒸気及び吸収液からなる混合液が流入する本体を備え、
     前記本体内に前記吸収液と前記潤滑油とを分離する分離手段を設けて、前記混合液を冷媒蒸気、潤滑油、吸収液の三層に分離したことを特徴とする請求項12又は13に記載の排熱利用ヒートポンプシステム。
  15.  前記本体には、上下方向中間部に、前記再生器から混合液が供給される混合液管が接続され、
     前記分離手段は、前記本体と前記混合液管との接続部分より上方に配置されたことを特徴とする請求項14に記載の排熱利用ヒートポンプシステム。
  16.  前記本体には、上部に、前記冷媒を前記圧縮式ヒートポンプ回路に供給する冷媒管が接続され、
     前記冷媒管は、前記本体内に延出され、先端が上向きとなるように略U字型に湾曲した湾曲部を有することを特徴とする請求項14又は15に記載の排熱利用ヒートポンプシステム。
  17.  原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプ回路と、前記原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプ回路とを備え、
     前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路の吸収器に循環し、前記再生器による再生後に冷媒を分離し、この冷媒を、前記圧縮式ヒートポンプ回路内を循環するよう構成し、
     前記吸収式ヒートポンプ回路の再生器により再生した冷媒を、前記圧縮式ヒートポンプ回路の圧縮機の吸込口に供給するように構成し、
     前記再生器に供給する排熱の温度を検出する温度センサと、
     前記温度センサが検出した排熱の温度が所定温度に保たれるように吸収液の循環ポンプを制御する排熱温度制御手段と、
     を備えたことを特徴とする請求項1に記載の熱機関駆動式蒸気圧縮式ヒートポンプシステム。
  18.  前記圧縮式ヒートポンプ回路において蒸発した冷媒を、前記吸収式ヒートポンプ回路をバイパスして、前記圧縮機の吸込口に供給するバイパス管を設け、このバイパス管に冷媒量を制御するバイパス弁を設け、
     前記排熱温度制御手段は、前記温度センサが検出した排熱の温度に基づいて前記バイパス弁を制御することを特徴とする請求項1に記載の熱機関駆動式蒸気圧縮式ヒートポンプシステム。
  19.  前記圧縮式ヒートポンプ回路の利用側熱交換器から熱負荷に供給する冷熱又は温熱の熱容量を制御する熱容量制御手段を備え、
     前記熱容量制御手段は、前記熱機関駆動式蒸気圧縮式ヒートポンプシステムの全能力に対する前記吸収式ヒートポンプ回路の能力寄与比率分だけ、前記原動機の動力源の入力変化を小さくすることを特徴とする請求項1又は2に記載の熱機関駆動式蒸気圧縮式ヒートポンプシステム。
PCT/JP2014/000615 2013-02-20 2014-02-05 排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム WO2014129135A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480009532.XA CN105008822B (zh) 2013-02-20 2014-02-05 废热利用热泵系统和热机驱动式蒸气压缩式热泵系统
DE112014000915.6T DE112014000915T5 (de) 2013-02-20 2014-02-05 Abwärme verwendendes Wärmepumpensystem, und Wärmekraftmaschinen angetriebenes Dampfkompressionswärmepumpensystem
US14/769,066 US9631845B2 (en) 2013-02-20 2014-02-05 Heat pump system using waste heat and heat engine-driven vapor compression heat pump system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013-031443 2013-02-20
JP2013031440A JP2014159926A (ja) 2013-02-20 2013-02-20 熱機関駆動式蒸気圧縮式ヒートポンプシステム
JP2013031441A JP2014159927A (ja) 2013-02-20 2013-02-20 排熱利用ヒートポンプシステム
JP2013031443A JP6074798B2 (ja) 2013-02-20 2013-02-20 排熱利用ヒートポンプシステム
JP2013-031441 2013-02-20
JP2013-031440 2013-02-20
JP2013031444A JP6016027B2 (ja) 2013-02-20 2013-02-20 排熱利用ヒートポンプシステム
JP2013031442A JP2014159928A (ja) 2013-02-20 2013-02-20 排熱利用ヒートポンプシステム
JP2013-031442 2013-02-20
JP2013-031444 2013-02-20

Publications (1)

Publication Number Publication Date
WO2014129135A1 true WO2014129135A1 (ja) 2014-08-28

Family

ID=51390938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000615 WO2014129135A1 (ja) 2013-02-20 2014-02-05 排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム

Country Status (4)

Country Link
US (1) US9631845B2 (ja)
CN (1) CN105008822B (ja)
DE (1) DE112014000915T5 (ja)
WO (1) WO2014129135A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120639A1 (en) * 2015-01-30 2016-08-04 Carillion Energy Services Limited Service supply systems
WO2018067818A1 (en) * 2016-10-05 2018-04-12 Johnson Controls Technology Company Heat pump for a hvac&r system
RU2772445C1 (ru) * 2021-06-15 2022-05-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Теплогенератор

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458685B2 (en) * 2016-11-08 2019-10-29 Heatcraft Refrigeration Products Llc Absorption subcooler for a refrigeration system
US11320181B2 (en) 2019-08-30 2022-05-03 HyperBorean, Inc. Heat-driven vapor-compression system for air conditioning and refrigeration
EP3954950A1 (de) * 2020-08-10 2022-02-16 AGO GmbH Energie + Anlagen Sorptionswärmepumpe und sorptionskreisprozess
US11814963B2 (en) 2022-03-14 2023-11-14 Argyle Earth, Inc Systems and methods for a heat engine system
CN115949486B (zh) * 2023-02-03 2024-03-08 广东海洋大学 一种内燃机余热回收系统和运输工具

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620968A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Absorption refrigerating machine
JPS5773370A (en) * 1980-10-22 1982-05-08 Hitachi Ltd Room air conditioner with solar heat collection unit
JPS59122784A (ja) * 1982-12-29 1984-07-16 Daikin Ind Ltd 動力回収システム
JPH062981A (ja) * 1992-06-18 1994-01-11 Nippon Telegr & Teleph Corp <Ntt> 燃料電池冷凍機一体システム装置
JPH07280398A (ja) * 1994-04-04 1995-10-27 Hitachi Bill Shisetsu Eng Kk 冷凍機の空気漏入判定方法、および同空気漏入判定装置
JPH0821671A (ja) * 1994-07-06 1996-01-23 Nippondenso Co Ltd 吸収式冷凍機
JPH11337216A (ja) * 1998-05-29 1999-12-10 Yanmar Diesel Engine Co Ltd ヒートポンプ装置
JP2000035251A (ja) * 1998-07-17 2000-02-02 Zexel Corp 冷却サイクルの三層分離器
JP2004286240A (ja) * 2003-03-19 2004-10-14 Yanmar Co Ltd エンジン駆動ヒートポンプ
JP2006250462A (ja) * 2005-03-11 2006-09-21 Matsushita Electric Ind Co Ltd オイルセパレータおよびそれを用いた冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02981A (ja) * 1988-02-25 1990-01-05 Hoya Corp 感光性樹脂用剥離液及びこれを用いる感光性樹脂の剥離方法
DE4415199A1 (de) * 1994-04-30 1995-11-02 Inst Luft Und Kaeltetechnik Gm Kälteanlage
US5586442A (en) * 1994-10-17 1996-12-24 Helios Research Corp. Thermal absorption compression cycle
JP3482741B2 (ja) * 1995-06-19 2004-01-06 日立工機株式会社 遠心機
KR20030028831A (ko) * 2001-07-02 2003-04-10 산요 덴키 가부시키가이샤 히트 펌프 장치
JP2003075017A (ja) 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 排熱利用冷凍システム
US7765823B2 (en) 2005-05-18 2010-08-03 E.I. Du Pont De Nemours And Company Hybrid vapor compression-absorption cycle
CN100443828C (zh) * 2005-09-20 2008-12-17 冯全琛 一种综合制冷装置
JP5148448B2 (ja) 2008-10-16 2013-02-20 大阪瓦斯株式会社 排熱利用ヒートポンプシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620968A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Absorption refrigerating machine
JPS5773370A (en) * 1980-10-22 1982-05-08 Hitachi Ltd Room air conditioner with solar heat collection unit
JPS59122784A (ja) * 1982-12-29 1984-07-16 Daikin Ind Ltd 動力回収システム
JPH062981A (ja) * 1992-06-18 1994-01-11 Nippon Telegr & Teleph Corp <Ntt> 燃料電池冷凍機一体システム装置
JPH07280398A (ja) * 1994-04-04 1995-10-27 Hitachi Bill Shisetsu Eng Kk 冷凍機の空気漏入判定方法、および同空気漏入判定装置
JPH0821671A (ja) * 1994-07-06 1996-01-23 Nippondenso Co Ltd 吸収式冷凍機
JPH11337216A (ja) * 1998-05-29 1999-12-10 Yanmar Diesel Engine Co Ltd ヒートポンプ装置
JP2000035251A (ja) * 1998-07-17 2000-02-02 Zexel Corp 冷却サイクルの三層分離器
JP2004286240A (ja) * 2003-03-19 2004-10-14 Yanmar Co Ltd エンジン駆動ヒートポンプ
JP2006250462A (ja) * 2005-03-11 2006-09-21 Matsushita Electric Ind Co Ltd オイルセパレータおよびそれを用いた冷凍サイクル装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120639A1 (en) * 2015-01-30 2016-08-04 Carillion Energy Services Limited Service supply systems
WO2018067818A1 (en) * 2016-10-05 2018-04-12 Johnson Controls Technology Company Heat pump for a hvac&r system
US11486612B2 (en) 2016-10-05 2022-11-01 Johnson Controls Tyco IP Holdings LLP Heat pump for a HVACandR system
RU2772445C1 (ru) * 2021-06-15 2022-05-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Теплогенератор
RU2772445C9 (ru) * 2021-06-15 2022-07-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Теплогенератор

Also Published As

Publication number Publication date
DE112014000915T5 (de) 2015-11-05
US20160003504A1 (en) 2016-01-07
CN105008822B (zh) 2017-05-17
CN105008822A (zh) 2015-10-28
US9631845B2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
WO2014129135A1 (ja) 排熱利用ヒートポンプシステム及び熱機関駆動式蒸気圧縮式ヒートポンプシステム
JP5333659B2 (ja) 廃熱回生システム
WO2013002017A1 (ja) ランキンサイクル
JP2009270745A (ja) 冷凍システム
JP2008082622A (ja) 圧縮式冷凍装置
JP2007127316A (ja) 車載用冷暖房システム。
CN105143788B (zh) 组合蒸气吸收和机械压缩循环设计
JP4265228B2 (ja) エジェクタポンプを用いた冷凍機
JP4570292B2 (ja) 空気調和装置
JP2010271030A (ja) 冷凍システム
JP4815232B2 (ja) 複合ヒートポンプシステム
JP2011127888A (ja) 加熱冷却システム
JP6327544B2 (ja) 排熱利用ヒートポンプシステム
JP2014159926A (ja) 熱機関駆動式蒸気圧縮式ヒートポンプシステム
JP2021021509A (ja) 空気調和装置
JP6074798B2 (ja) 排熱利用ヒートポンプシステム
JP2009250139A (ja) エンジン廃熱回収システム
JP6016027B2 (ja) 排熱利用ヒートポンプシステム
JP2014159927A (ja) 排熱利用ヒートポンプシステム
JP2008014598A (ja) 圧縮式冷凍機の抽気装置
WO2012029516A1 (ja) ランキンサイクル装置
JP2012063111A (ja) 冷凍サイクル装置
JP2014159928A (ja) 排熱利用ヒートポンプシステム
WO2015104822A1 (ja) 冷凍サイクル装置
JP2021021508A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14769066

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140009156

Country of ref document: DE

Ref document number: 112014000915

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754413

Country of ref document: EP

Kind code of ref document: A1