WO2014129081A1 - 積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法 - Google Patents

積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法 Download PDF

Info

Publication number
WO2014129081A1
WO2014129081A1 PCT/JP2013/084462 JP2013084462W WO2014129081A1 WO 2014129081 A1 WO2014129081 A1 WO 2014129081A1 JP 2013084462 W JP2013084462 W JP 2013084462W WO 2014129081 A1 WO2014129081 A1 WO 2014129081A1
Authority
WO
WIPO (PCT)
Prior art keywords
tile
vinyl chloride
coating
layer
inorganic protective
Prior art date
Application number
PCT/JP2013/084462
Other languages
English (en)
French (fr)
Inventor
堀之内治夫
Original Assignee
株式会社九州ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51390892&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014129081(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社九州ハイテック filed Critical 株式会社九州ハイテック
Priority to CN201380068853.2A priority Critical patent/CN104903522B/zh
Priority to JP2015501300A priority patent/JP6065247B2/ja
Publication of WO2014129081A1 publication Critical patent/WO2014129081A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/105Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of organic plastics with or without reinforcements or filling materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to an improvement of Japanese Patent No. 4957926 proposed by the applicant of the present invention, and is a laminate that can be provided as a maintenance-free mold that does not require maintenance such as recoating by applying a high-hardness inorganic coating to the surface of a vinyl chloride tile.
  • the present invention relates to a type inorganic protective coating vinyl chloride tile and a coating method thereof.
  • this ceramic tile has advantages that are not found in conventional flooring materials, it is difficult to install on high floors because it is heavy like stone, or the nest generated during high-temperature firing is clogged with dirt, The aesthetics are significantly impaired. Also, because it is a very hard material, if it slips and falls, it leads to a serious accident, and it has many problems such as feeling by walking for a long time. Therefore, in recent years, the use of vinyl chloride tiles and vinyl sheets is being reviewed again. This vinyl chloride tile is inexpensive and has a soft flooring, so it is easy to walk and you can freely choose various types and shapes, not only in new stores, but also in refurbished and existing stores. Can be used for general purposes.
  • Patent No. 4957926 was a proposal of a floor maintenance method using an inorganic coating layer. This proposal has much higher glossiness, gloss maintenance, and solvent resistance than the conventional wax method, and the maintenance can be done several times a year. There are many merits such as environmental friendliness because processing is unnecessary. However, compared to the ceramic tiles used as maintenance-free molds, some periodic maintenance costs were necessary, even though they were not as expensive as the wax method.
  • the pencil hardness is as low as about 9H, and the wear resistance, long-term gloss maintenance, etc. are insufficient compared to ceramic tiles. That is, when the coating agent is used for flooring, it is considered that the main cause of gloss deterioration is due to bringing in sand or earth and sand. Since the hardness of these sands and earth and sand is 9H-12H, the surface of the coating layer will be worn unless it is equal to or higher than this hardness, making it difficult to maintain the gloss and maintenance-free. It is difficult to provide as a mold tile.
  • vinyl floor tiles include composition tiles and homogeneous styles, which are distinguished by the content of binders made of polyvinyl chloride or plasticizer. In the case of a composition tile, this binder is less than 30%, and in the case of a homogeneous style, it is 30% or more.
  • composition tiles are used as hard flooring in places such as heavy walks, and in the case of homogenous style, they are used in medium and light walks where the amount of walking is relatively small. In addition, gloss and aesthetics are important. There are many cases where it is used in the facility to watch. The tiles have different strengths, hardnesses, structures, etc. depending on the application, so they must be able to be coated on these tiles. At the same time, to make maintenance-free tiles like ceramic tiles, the top It is necessary to form an ultra-hard coating layer on the coat.
  • Patent Document 1 “at least 10 to 45 wt% of a mixture of tetrafunctional and trifunctional alkoxysilanes and 10 to 50 wt% of ultrafine colloidal silica having an average diameter of 5 to 20 nm with respect to the composition of the entire coating agent. Furthermore, 2 to 20 wt% of a silicone alkoxy oligomer and / or a bifunctional alkoxysilane for imparting flexibility for a chemical bed, and a functional agent as a binder of the ultrafine colloidal silica and the alkoxysilane.
  • Phosphoric acid catalyst as a catalyst for accelerating the condensation reaction of 0.5 to 2.0 wt% of silane coupling agent using vinyl group, epoxy group or amino group and silanol produced by hydrolysis of the alkoxysilane Flexibility-added room-temperature-curing inorganic coating agent for chemical floor protection by blending 0.5 to 5 wt% of titanium and titanium catalyst " Disclosed.
  • Patent Document 1 is based on the premise that periodic recoating is performed in the same manner as the wax method, it is a coating agent that imparts flexibility while suppressing hardness to some extent by bifunctional silane or the like. there were. Therefore, although the long-term gloss maintenance characteristics are superior to general waxes, the film is inferior in hardness, wear resistance, gloss maintenance and the like compared to ceramic tiles. On the other hand, in order to obtain a maintenance-free coating layer that is close to ceramic tiles, it is necessary to use a coating type that is much harder than conventional coating layers. The specifications must have wear and long-term gloss maintenance. Further, the film must be formed by room temperature curing or heat treatment of the vinyl chloride tile at a heat resistance temperature of 130 ° C. or lower.
  • the coating layer in order to increase the hardness of the coating layer, it is necessary to improve the crosslinking density more than ever. At the same time, a structure capable of absorbing internal strain due to shrinkage that occurs during curing of the coating agent is required. That is, it is necessary to form a coating layer that can absorb warpage, cracks, and the like of the vinyl chloride tile.
  • Multi-layered inorganic protective coating treatment with features such as versatility (introduction to all new stores, renovated stores, existing stores, etc.), introduction to higher floors, improved walking, avoiding falls, and maintaining long-term aesthetics Proposal of a coated vinyl chloride tile and a coating method thereof is desired.
  • the invention according to claim 1 is a laminated type in which an inorganic protective coating layer is formed on the surface of a vinyl chloride tile, the pencil hardness of the topcoat layer is 10H or more, and the warp of the tile end after coating is 1 mm or less.
  • An inorganic protective coating vinyl chloride tile is provided.
  • the inorganic protective top coating layer formed on the vinyl chloride tile must have a high hardness specification of 10H or more, that there is no crack in the coating, It is assumed that the warpage is suppressed to 1 mm or less. If tiles do not warp, cracks are unlikely to occur. Empirically, if the amount of deformation is 1 mm or less, the amount of cracks generated can be kept within 1%. As a result, an ultra-hard film can be formed on the vinyl chloride tile without sacrificing the flexibility of the vinyl chloride tile, and the high hardness of the ceramic tile while being a vinyl floor tile.
  • the invention of claim 2 provides the laminated inorganic protective coating vinyl chloride tile according to claim 1, wherein the polyvinyl chloride content of the vinyl chloride tile is 10% to 40%.
  • the internal strain accompanying shrinkage that occurs during the crosslinking reaction (condensation reaction) of the inorganic protective top coating layer formed on the vinyl chloride tile is absorbed, and the warp of the tile is limited to 1 mm or less.
  • the invention of claim 3 provides the laminated inorganic protective coating vinyl chloride tile according to any one of claims 1 and 2, wherein the vinyl chloride tile has a thickness of 2.0 mm to 6.0 mm. .
  • the tile thickness is 2.0 mm or less, the tile becomes too thin, so it is difficult to form a coating film that does not generate warpage or cracks. If the thickness is 6.0 mm or more, there is no problem with warpage or cracks. There is a possibility that the flexibility of the vinyl chloride floor tile may be impaired due to an increase in the rigidity of itself and a decrease in flexibility.
  • the laminated inorganic protective coating vinyl chloride tile according to any one of the first to third aspects, wherein the surface gloss on the top coat layer side is 70 or more.
  • the invention according to claim 5 is that the surface of the vinyl chloride tile is subjected to a laminated inorganic protective coating treatment of at least an undercoat layer, an intermediate coat layer, and a topcoat layer, and the undercoat layer has a hardness of 3H to Multi-layer type in which multiple layers of 6H, thickness 20 ⁇ m to 50 ⁇ m, intermediate coat layer hardness 6H-9H, thickness 10 ⁇ m-40 ⁇ m, topcoat layer hardness 10 H or more, and thickness 3 ⁇ m-20 ⁇ m are stacked.
  • Inorganic protective coating A method for coating a vinyl chloride tile is provided.
  • the internal distortion of the coating agent that occurs during the crosslinking reaction (condensation reaction), and the warpage and cracks associated with the tile are sufficiently suppressed. I can do it.
  • the topcoat layer is a thin film, in order to form an ultra-hard coating layer, internal strain generated during this crosslinking reaction is absorbed by the intermediate coating layer and generated during the crosslinking reaction of the intermediate coating layer.
  • the undercoat layer can absorb the internal strain, and the PVC tile itself can absorb the internal strain generated during the crosslinking reaction of the undercoat layer.
  • the crack generation rate can be suppressed to within 1% by setting the warpage of the tile itself to 1 mm or less for the internal strain at the time of crosslinking, which is a problem peculiar to the room temperature curable coating agent.
  • internal strain generated when the coating agent is cured and contracted can be absorbed by the multilayer coating layers having different hardnesses and thicknesses.
  • the method uses the hardness and thickness of the top coat, intermediate layer, and undercoat layer as parameters, so that each internal strain from the top coat to the undercoat can be absorbed. (Tile warpage) is less likely to occur. Moreover, it can be set as the buffer structure which was able to be absorbed to some extent by making a coating layer into a laminated type also with respect to the deformation
  • top coat itself is an ultra-hard coating layer
  • cracks are likely to occur if the layer thickness is too large.
  • the layer thickness is reduced, it is difficult to obtain gloss with the top coat itself.
  • by forming an undercoat or intermediate coat to compensate for the thickness even a thin topcoat layer produced by applying a coating agent with a low solid content concentration can form a highly glossy film. It becomes possible.
  • the invention of claim 6 provides a coating method for a laminated inorganic protective coating vinyl chloride tile according to claim 5, wherein the polyvinyl chloride content of the vinyl chloride tile is 10% to 40%. is there.
  • the crack generation rate is also 1 % Of vinyl chloride tiles that can be suppressed to within% and can be widely used for both hard flooring composition tiles and soft flooring homogenous styles.
  • cracking of the inorganic coat layer due to warping of the tile can be prevented, and an appropriate vinyl chloride tile having the inherent flexibility of the vinyl tile can be obtained.
  • the vinyl chloride tile itself can absorb the internal strain that accompanies the shrinkage that occurs during the crosslinking reaction of the undercoat layer, and it also absorbs deformation and load caused by walking when used as a flooring material together with the coating layer. it can.
  • a seventh aspect of the present invention provides a coating method for a laminated inorganic protective coating vinyl chloride tile according to any one of the fifth and sixth aspects, wherein the thickness of the vinyl chloride tile is 2 mm to 6 mm.
  • the tile itself can absorb the internal strain accompanying the shrinkage that occurs during the crosslinking reaction of the undercoat layer, and can also absorb the deformation and load due to walking that occur during use as a flooring material together with the coating layer.
  • the surface of the vinyl chloride tile in which the undercoat layer, the intermediate coat layer, and the topcoat layer are laminated is heat-treated at 30 ° C. to 100 ° C. for 1 hour or longer.
  • a method for coating a laminated inorganic protective coating vinyl chloride tile according to any one of the above is provided.
  • the warp of the tile that occurs during the crosslinking reaction (condensation reaction) of the inorganic protective top coating layer by performing a straightening treatment aimed at preventing deformation of the vinyl chloride tile during heat treatment.
  • Etc. contributes to staying below 1 mm.
  • it is 30 ° C to 50 ° C.
  • the vinyl chloride tile used in this example has a polyvinyl chloride content of 10% to 40% and a thickness of 2 mm to 6 mm. Then, a laminated inorganic protective coating treatment is applied to the surface of the vinyl chloride tile.
  • the coating agent for the undercoat layer (undercoat layer and intermediate coat layer) and topcoat layer is disclosed in Japanese Patent Application Laid-Open No. 2010-163854 (Patent No. 4957926) proposed by the present applicant. That is, with respect to the composition of the whole coating agent, at least one tetrafunctional alkoxysilane selected from tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane 10 to 45 wt.
  • At least one trifunctional alkoxysilane selected from hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecatrifluorodecyltrimethoxysilane %,
  • An ultrafine colloidal silica having an average diameter of 5 to 20 nm, 10 to 50 wt%, and 2 to 20 w of a silicone alkoxy oligomer and / or a bifunctional alkoxysilane for imparting flexibility for a chemical bed.
  • silane coupling agent 0.5 to 2.0 wt% using any one of vinyl group, epoxy group, and amino group as a binder between t% and the ultrafine colloidal silica and alkoxysilane;
  • Flexibility-added cold-curing inorganic material for chemical floor protection comprising 0.5 to 5 wt% of a phosphoric acid catalyst or a titanium catalyst as a catalyst for promoting the condensation reaction of silanol produced by silane hydrolysis
  • a coating agent is used.
  • the tetrafunctional alkoxysilane used in the present invention is tetramethoxysilane, tetraethoxysilane, and the trifunctional alkoxysilane is methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, hexyltri. Methoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecatrifluorodecyltrimethoxysilane and the like are used.
  • the bifunctional alkoxysilane used for imparting flexibility dimethyldimethoxysilane, diphenyldimethoxylane, dimethyldiethoxysilane, diphenyldiethoxysilane and the like are used.
  • the silicone alkoxy oligomer it is desirable to use a methyl oligomer into which a high molecular weight body or a flexibility-imparting unit is introduced. High molecular weight methyl oligomers must be added in small amounts because increasing the amount added may increase the viscosity.
  • silane coupling agents those having functional groups such as vinyl, epoxy, amino, etc. are mainly used.
  • Colloidal silica used to retain high hardness is a type dispersed in an organic solvent, such as methanol, isopropanol, ethylene glycol, dimethylacetamide, methyl ethyl ketone, methyl ethyl, xylene n-butanol, as a dispersion medium, The methyl isobutyl system is used. Water-dispersed colloidal silica is also used. In any case, the particle diameter is 5 nm to 20 nm.
  • phosphoric acid-based, titanium-based catalyst organic titanate
  • aluminum-based catalyst or the like
  • the phosphoric acid type is diluted with alcohol (such as isopropyl alcohol) and has a phosphoric acid concentration of 20 to 30%.
  • organic titanate is used as the titanium-based catalyst, mainly tetra-i-propoxy titanium, tetra-n-ptoxy titanium, tetrakis (2-ethylhexyloxy) titanium, tetrastearyloxy titanium, zi-propoxy bis (acetyl).
  • the addition amount was 0.1 wt% to 5.0 wt% in weight ratio with respect to the alkoxysilane.
  • aluminum catalyst aluminum alcoholate, aluminum chelate, cyclic aluminum oligomer, etc. are used, and those diluted with alcohol (isopropyl alcohol) and the like having a concentration of 20% to 50% are used.
  • the undercoat of this example is composed of an undercoat layer and an intermediate coat layer.
  • the undercoat layer has a hardness of 3H to 6H and a thickness of 20 ⁇ m to 50 ⁇ m
  • the intermediate coat layer has a hardness of 6H to 9H and a thickness of 10 ⁇ m to 40 ⁇ m.
  • a top coat layer having a hardness of 10H or more and a thickness of 3 ⁇ m to 20 ⁇ m is formed on the upper surface.
  • the only way to improve wear resistance is to increase the hardness of the coating layer or to give the coating itself a function to absorb impact and to prevent the invasion of scratches. .
  • flexibility cannot be imparted like ordinary acrylic resins and urethane resins, and there is no choice but to improve the wear resistance by increasing the hardness of the coating layer itself.
  • Table 1 shows the results of film wear resistance and gloss degradation when the surface hardness of the coating layer is used as a parameter. Of course, when the coating agent hardness is low, the coating agent has a high level of wear and the gloss of the coating agent is high. It gradually deteriorates. From the results of this test, unless the hardness of the coating layer is at least 10H or more, maintenance-free with excellent wear resistance cannot be expected.
  • Hardness is measured by applying to a steel sheet with a film thickness of 10 ⁇ m according to the JIS pencil hardness test.
  • Pencil hardness test is measured according to JISK5600-5-4.
  • Abrasion resistance test was measured with an abrasive drop test for 1 hour according to JISH8503-1989.
  • Abrasive material is GC # 100.
  • the standard of JIS pencil hardness test is up to 6H, but actually there is a pencil up to 10H, so a hardness measurement test is conducted with that pencil. For 11H and higher, 11H and 12H were estimated (corresponding) based on the correlation data (FIG. 1) between the pencil hardness test and the abrasion resistance test in Table 1. * One hour of wear resistance test is equivalent to about one year at the actual site.
  • Table 2 shows the relationship between the hardness of the coating layer and the warp of the tile.
  • the above-mentioned super-hard coating agent is applied. It shows the result of applying only one layer and checking the presence or absence of tile warpage and cracks.
  • vinyl chloride tiles are divided into general composition tiles (hard tiles) and homogeneous styles (soft tiles).
  • the tile thickness is ⁇ 30Cm ⁇ 2mm and ⁇ 45Cm ⁇ 3mm. There is something. What was used in this evaluation test was the presence of warpage of the tile and occurrence of cracks in the ⁇ 30 Cm ⁇ 2 mm composition tile and homogeneous style, which are most prone to warping and cracking of the tile.
  • the intermediate layer was further formed to test whether the warp of the tiles could be absorbed and whether cracks could be prevented. As shown below, the presence or absence of warping (strain) or cracking of the tile was confirmed using the hardness and thickness of the intermediate layer as parameters.
  • a surface treatment was performed on the above-mentioned ⁇ 30 Cm ⁇ 2 mm PVC tile, an intermediate layer was formed thereon, and then a 10 H coat layer, which is a hard coating agent, was applied by 10 ⁇ m.
  • Table 3 shows the results of testing with the hardness and thickness of the intermediate layer as parameters. In the test, evaluation was performed with a soft floor material homogenia style thickness of 2.0 mm, in which tile warpage and cracks are particularly likely to occur.
  • mm is the warp value at the edge of the tile, and% is the rate of occurrence of cracks visually. * NG indicates that a crack has occurred, and OK indicates that the crack is within 1%. * After forming the coating film, heat treatment is performed at 40 ° C. for 10 hours. * An intermediate layer is formed, and a 10 H coat layer is processed on top of the 10 H coat layer. *-Is not measured.
  • an undercoat layer was further formed as the underlayer, and a multilayer coating layer was prepared to prevent tile warpage and cracks.
  • a 6H coat layer is processed as an intermediate layer to a thickness of about 30 ⁇ m, and a top coat with a hardness of 10H is formed to a thickness of 10 ⁇ m, and the occurrence of warpage and cracks in the tile is examined. It was.
  • mm is the warp value at the edge of the tile, and% is the rate of occurrence of cracks visually.
  • * NG indicates that a crack is generated, and OK indicates that a crack is generated within 1%.
  • a 6H coat layer is treated as about 30 ⁇ m as an intermediate layer, and then a top coat having a hardness of 10H is applied only around 10 ⁇ m. *-Is not measured.
  • the hardness of the undercoat layer is desirably 3H to 6H, and the thickness is desirably 20 ⁇ m to 50 ⁇ m. In this range of specifications, even if it is a ⁇ 30C, m ⁇ 2mm homogenous style, which is a soft flooring material, the top coat layer has an extremely high 10H or higher without the need to worry about tile warpage and cracks.
  • a hard film can be formed and a maintenance-free type coating layer can be formed.
  • the total coating thickness became about 60 ⁇ m, and even if the surface of the tile, such as a composition tile, was uneven, a gloss value of 70 or more was obtained.
  • the total coating thickness is 50 ⁇ m or more, a gloss value of 70 or more is obtained, and when the thickness is increased to 60 ⁇ m or more, a gloss value of 75 or more is easily obtained.
  • the undercoat layer is 2H and has a thickness of 20 to 40 ⁇ m, the undercoat layer becomes too soft and promotes the generation of cracks due to shrinkage that occurs during crosslinking.
  • Table 5 shows the relationship between the warpage of the tile and the occurrence of cracks when the thickness of the tile is changed.
  • the topcoat layer had a hardness of 10H and the thickness was around 10 ⁇ m
  • the undercoat layer was 3H and the thickness was fixed to 30 ⁇ m
  • the intermediate layer was 7H and the thickness was fixed to 30 ⁇ m
  • the hardness was changed as follows.
  • the rigidity of the tile naturally increases, and the deformation and cracks of the tile are less likely to occur. If the tile thickness is 2.0 mm or less, the tile becomes too thin, so it is difficult to form a coating film that does not generate warpage or cracks. The rigidity of the tile itself may increase and the function as a flooring may be lost. Therefore, the appropriate thickness of the tile is about 2.0 mm to 6.0 mm.
  • the undercoat layer, intermediate coat layer, and top coat layer of the coating agent were adjusted to the hardness and film thickness shown in Table 6 so that the polyvinyl chloride content was 30% to 40%, and ⁇ 30 Cm ⁇ 2 mm. It apply
  • the hardness of the undercoat layer is 3H to 6H
  • the thickness is 20 ⁇ m to 50 ⁇ m
  • the hardness of the intermediate coat layer is 6H to 9H
  • the thickness is 10 ⁇ m to 40 ⁇ m
  • the hardness of the top coat layer is 10H or more.
  • the surface of the topcoat layer was visually observed, and the occurrence of cracks was within 1%.
  • the surface of the top coat layer of Samples 2, 7, 9, 10, 13, 15-17, 20, and 21 outside the above range was visually observed, generation of cracks of about 1% or more was observed.
  • the hardness of the topcoat layer after the heat treatment was also a sample corresponding to 12H. This is presumably because heat treatment was performed at 40 ° C. for 10 hours. For sample 1, the hardness of the topcoat layer is too low and loses the hardness of the earth and sand, so it is not subject to the maintenance-free coating targeted by the present invention, so measurement is not performed.
  • the coating method of the sample 8 within the scope of the present invention was applied to polyvinyl chloride substrates having different polyvinyl chloride contents and thicknesses.
  • the following shows the occurrence of warping of vinyl chloride tiles and cracks in the coating agent.
  • the * mark is outside the scope of the present invention.
  • the coating method of Sample 8 within the scope of the present invention shown in Table 6 above is a chloride having a polyvinyl chloride content of 10% to 40% and a thickness of 2 mm to 6 mm. Applied to vinyl tiles. The generation of cracks was hardly observed on the surface of the top coat layer of Samples 23, 25, and 27 within the scope of the present invention. On the other hand, when the topcoat layers of Samples 22 and 24 applied to the vinyl chloride tiles outside the scope of the present invention were observed with the naked eye, generation of cracks of 1% or more was observed. Sample No. 26 was excluded from the scope of the invention because no warping or cracking of the tile occurred, but the thickness was too thick and it was difficult to impart flexibility. Sample No. 28 was also excluded from the scope of the present invention because it contained too much polyvinyl chloride and lacked flexibility. *
  • the inorganic protective top coating layer formed on the vinyl chloride base material absorbs the internal strain accompanying the shrinkage that occurs during the crosslinking reaction (condensation reaction) of the coating agent, thereby warping the tile. And the like, and the occurrence rate of cracks can be suppressed to within 1%.
  • an ultra-hard film is formed on the vinyl chloride tile without sacrificing the flexibility of the PVC tile.
  • the characteristics of ceramic tiles such as high hardness, long-term gloss maintenance due to wear resistance, maintenance-free, environmental compatibility (no waste liquid treatment required), and the low cost and versatility of vinyl chloride tiles (new stores, renovations) Introduced to all stores, existing stores, etc.), introduced to higher floors, improved walking, avoiding falls accidents, etc., and was able to obtain long-term maintainability of aesthetics.
  • vinyl chloride tile capable of providing a function capable of following the deformation and impact of tiles generated by walking, carts, carts, etc. without generating cracks. Can do.
  • the internal strain accompanying the shrinkage of the coating agent that occurs during the crosslinking reaction (during the condensation reaction) of the inorganic protective top coating layer formed on the vinyl chloride tile is absorbed by the laminated coating, and the warp of the tile is 1 mm or less. It has the flexibility of vinyl chloride tiles that are suitable for suppressing the occurrence rate of cracks to within 1%, and is widely used for both hard floor composition tiles and flexible floor material homogeneous styles. Can be used.
  • the internal strain accompanying the shrinkage of the coating agent that occurs during the crosslinking reaction (condensation reaction), and the warping and cracking of the tiles associated therewith are sufficiently suppressed. I can do it.
  • the topcoat layer has a thin film specification
  • the intermediate coat layer absorbs internal strain accompanying shrinkage that occurs during this crosslinking reaction, and the intermediate coat layer is crosslinked.
  • the structure is such that the undercoat layer can absorb internal strain accompanying shrinkage that occurs during the reaction, and further, the PVC tile itself can absorb internal strain that occurs during the crosslinking reaction of the undercoat layer.
  • the warpage of the tile itself can be limited to 1 mm or less, and the rate of occurrence of cracks can be suppressed within 1%.
  • internal strain generated when the coating agent is cured and contracted can be absorbed.
  • the method uses the hardness and thickness of the topcoat, intermediate layer, and undercoat layer as parameters, so that each internal strain from the topcoat to the undercoat can be absorbed. (Tile warpage) is less likely to occur.
  • a shock-absorbing coating structure that can absorb a certain degree of deformation can be obtained by forming the coating layer in a layered manner against deformation and load caused by walking that occur during use as a flooring material. This coating method can be applied to newly installed tiles, and can also be applied to existing floor tiles after the wax has been removed.
  • top coat itself is an ultra-hard coating layer
  • cracks are likely to occur if the layer thickness is too large.
  • the layer thickness is reduced, it is difficult to obtain gloss with the top coat itself.
  • by forming an undercoat or intermediate coat to compensate for the thickness even a thin topcoat layer produced by applying a coating agent with a low solid content concentration can form a highly glossy film. It becomes possible.
  • the laminated coating layer absorbs the warp of the tile to 1 mm or less. Further, the crack generation rate can be suppressed to within 1%, and it can be widely used for both hard floor material composition tiles and soft floor material homogeneous styles.
  • the PVC tile itself can absorb internal strain generated during the crosslinking reaction of the undercoat layer, and can also absorb the deformation and load caused by walking generated during use as a flooring material together with the coating layer.
  • the surface of the tile such as a composition tile, is uneven.
  • a gloss value of 70 or more can be obtained.
  • the hardness of the topcoat layer is increased by heat treatment, and the warpage of the tile generated during the crosslinking reaction (during the condensation reaction) of the inorganic protective top coating layer is corrected, so that the warp is 1 mm or less. I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Floor Finish (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 塩化ビニル系タイルの表面に無機系保護コーティング層を形成し、表面層の鉛筆硬度が10H相当以上、かつコーティング処理後においてタイルの反りが1mm以内である積層型無機系保護コーティング処理付き塩化ビニル系タイルとすることにより、セラミックタイルが持つ高硬度、耐摩耗性による長期光沢維持性や環境適合性(廃液処理が不要)と、塩化ビニル系タイルが持つ安価さ、汎用性(新店、改装店、既存店など全てへの導入)、高層階への導入、歩行性の向上、転倒事故の回避、美観の長期維持などを有するメンテナンスフリー型タイルとして提供できる積層型無機系保護コーティング処理付き塩化ビニル系タイル及びそのコーティング方法を提供する。

Description

積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法
 本発明は、本出願人が提案した特許第4957926号の改良に関し、塩化ビニル系タイルの表面に高硬度の無機質コーティングを施して、後にリコートなどのメンテナンスを必要としないメンテナンスフリー型として提供できる積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法に関するものである。 
従来、床用タイルとしては大理石や御影石、人工石などの各種石材や、ビニル系床タイル、ビニル系シートなどの化学床用塩化ビニル系タイルなどがいろいろなところで使用されてきたが、近年ではこれに代わるべく、人工的に作られたセラミックタイルなどが使用されるようになってきた。このセラミックタイルは高温で焼結させて製作され、高硬度の特性を有する人工的な石材であり、御影石などと同等の硬さを有するため、歩行による光沢の落ちが殆どなく、施工後のメンテナンスが不要となるメンテナンスフリー型の床材として注目を浴びている。また、従来の大理石や御影石など、天然石材に比べると安価であり、最近では天然石材の代用品として使用されるだけでなく、ビニル系床タイルやビニル系シートなど、化学床用塩化ビニル系タイルに取って代わる床材としても、いろいろな商用施設などで多く使用されるまでに至った。
しかしながら、このセラミックタイルは従来の床材にない長所を有する反面、石材同様に重量物であるために高層階での施工が困難であったり、高温焼成時に発生する巣に汚れが詰ってしまい、美観を著しく損ねたりする。また、非常に硬い素材であるが故に滑って転倒すると重大事故につながったり、長時間の歩行によって感じたりするといった多くの難題を抱えていた。よって近年では、再度、塩化ビニル系タイルやビニル系シートの使用が改めて見直されつつある。この塩化ビニル系タイルは安価であり、柔らかい床材であるために歩行性に優れ、いろいろな種類や形状を自由に選ぶことができ、新店のみだけでなく、改装店、既存店など、あらゆるところで汎用的に使用することができる。更には軽量床材であるため、高層階での使用も容易にできるなど、セラミックタイルにない特長を有している。しかしながら、施工後はワックスなどで美観の維持管理に努めなければならず、定期的にワックス掛けやバフ掛けなどの処理が必要となるため、それに相当する維持管理費が必要であった。また、このワックス工法は定期的に剥離作業が必要であり、この剥離作業に伴う廃液処理などが環境問題の観点から問題となる工法でもあった。
一方、本願発明の様な塩化ビニル系タイルの表面にセラミックタイルに近いガラス系コーティング層を形成させるのは一般的に技術的に困難とされている。理由はセラミックタイルなどと異なり、塩化ビニル系タイルは130℃前後の耐熱性しか有さないため、高温焼結による高硬度化は望めず、さらには塩化ビニル系タイル自身が非常に軟らかい床材でもあるために、この表面上に超硬質ガラス系皮膜を形成して、セラミックタイルと同様の高硬度や耐摩耗性、長期光沢維持性などを有するメンテナンスフリー型コーティング層を形成するは技術的に困難とされている。
本課題を改善すべく、前回、提案した特開2010-163584号(特許4957926号)に開示した発明は、無機系コーティング層による床メンテナンス工法の提案であった。この提案だと従来のワックス工法よりは遥かに高光沢性や光沢維持性、耐溶剤性に優れ、メンテナンスの回数も年数回で済むために大幅な年間維持管理費の削減が図れることや、廃棄処理などが不要となるために環境にも優しいなどの多くのメリットがあった。しかしながら、メンテナンスフリー型として使用されている上記セラミックタイルに比べると、ワックス工法ほどはコストが掛らないまでも、幾らかの定期的メンテナンスの費用は必要であった。
また、上記提案においては鉛筆硬度が9H程度と低く、セラミックタイルに比べると耐摩耗性、長期光沢維持性などが不充分であった。即ち、コーティング剤を床用として使用した場合に光沢劣化の主たる原因となるのは、砂や土砂などの持ち込みによるものが非常に多いとされる。これらの砂や土砂の硬度は9H~12Hとされているため、この硬さと同等かそれ以上の硬度を有するコーティング材でなければコーティング層の表面が摩耗し、光沢の維持は困難となり、メンテナンスフリー型タイルとして提供するのは困難である。
 尚、一般的にビニル床タイルにはコンポジションタイルとホモジニアスタイルなどがあり、各々、ポリ塩化ビニルや可塑剤などからなるバインダーの含有率により区別される。コンポジションタイルの場合は、このバインダーが30%未満であり、ホモジニアスタイルの場合は30%以上とされている。一般的にコンポジションタイルは硬質系床材として重歩行部などの箇所に使用され、ホモジニアスタイルの場合は比較的歩行量の少ない中・軽歩行部で使用され、尚且つ、光沢や美観を重要視する施設において使用されているケースが多い。各々の用途の違いにより、タイルの強度や硬度、構造なども異なるため、これらのタイルにコーティングできる仕様としなければならないのと同時に、セラミックタイルと同様にメンテナンスフリー型タイルとするためには、トップコートに超硬質系コーティング層を形成させる必要がある。
例えば、特許文献1では、「コーティング剤全体の組成に対し、少なくとも、4官能及び3官能のアルコキシシランの混合物を10~45wt%と、平均径5~20nmの超微粒コロイダルシリカ10~50wt%とを混合し、さらに、化学床用として可撓性を付与させるためにシリコーンアルコキシオリゴマー及び/又は2官能のアルコキシシランを2~20wt%と、前記超微粒コロイダルシリカとアルコキシシランとの結合剤として官能基がビニル基、エポキシ基、アミノ基を使用したシランカップリング剤0.5~2.0wt%と、前記アルコキシシランの加水分解によって生成されるシラノールの縮合反応を促進させる触媒としてリン酸系触媒やチタン系触媒などを0.5~5wt%とを配合してなる化学床保護用可撓性付与常温硬化型無機質コーティング剤」を開示した。
しかしながら、特許文献1においては、ワックス工法と同様に定期的にリコートを行うことを前提としていたために、2官能のシランなどにより、ある程度は硬度を抑えて可撓性を付与させたコーティング剤であった。従って、一般的なワックスなどに比べると長期光沢維持特性は優れているものの、セラミックタイルに比べると、硬度や耐摩耗性、光沢維持性などが劣る皮膜であった。これに対し、セラミックタイルに近いメンテナンスフリー型コーティング層を得るには、従来のコーティング層よりは遥かに高硬度タイプのコーティング仕様とする必要があり、そのためには今まで以上の高硬度化や耐摩耗性、長期光沢維持性を有する仕様にしなければならない。また、その皮膜を常温硬化、又は、塩化ビニル系タイルの耐熱性温度130℃以下の熱処理にて形成しなければならない。そのためにはトップコート層に4官能シランやシリカによる膜を形成し、その皮膜が焼結体に近い(架橋密度が極めて高い)構造にしなければ超高硬度皮膜を形成することは困難である。そうなると必然的に、その縮合反応時(架橋反応)に発生する収縮による内部歪を吸収できるような構造にしなければ、タイルの反りやクラックなどの発生が問題となり、製品としては不完全となる。加えて、使用時に発生するタイルの変形などについても、ある程度は追従できるような柔軟性を付与させる必要がある。
 本発明においては、コーティング層の超高硬度化を図るために、今まで以上に架橋密度の向上を図らなければならない。同時にコーティング剤の硬化時に発生する収縮による内部歪を吸収できる構造が必要となる。つまり、塩化ビニル系タイルの反りやクラックなどを吸収できるコーティング層を形成させる必要がある。それが可能となればセラミックタイルが持つ高硬度、耐摩耗性、これによる長期光沢維持性やメンテナンスフリー化、環境適合性(廃液処理が不要)などの特徴と、塩化ビニル系タイルが持つ安価さ、汎用性(新店、改装店、既存店など全てへの導入)、高層階への導入、歩行性の向上、転倒事故の回避、美観の長期維持などの特徴を併せ持つ積層型無機系保護コーティング処理付き塩化ビニル系タイル及びそのコーティング方法の提案が望まれる。
 請求項1の発明は、塩化ビニル系タイルの表面に無機系保護コーティング層を形成し、トップコート層の鉛筆硬度が10H以上、かつコーティング処理後においてタイル端部の反りが1mm以下である積層型無機系保護コーティング塩化ビニル系タイルを提供するものである。
この発明において、塩化ビニル系タイル上に形成する無機系保護トップコーティン層については、10H以上の高硬度仕様にしなければならないのと、その皮膜にクラックがないこと、コーティング剤の硬化収縮時にタイルの反りが1mm以下になるように抑制されることが前提である。タイルの反りが発生しなければクラックの発生も起き難い。経験的に1mm以下の変形量であれば1%以内のクラックの発生量に留めることが出来る。それにより、塩化ビニル系タイルが持っている柔軟性を犠牲にすることなく、超高硬質の皮膜を塩化ビニル系タイルの上に形成出来、ビニル系床タイルでありながら、セラミックタイルが持つ高硬度、耐摩耗性、長期光沢維持性やメンテナンスフリー、環境適合性(廃液処理が不要)と、ビニル系床タイルが持つ安価さ、汎用性(新店、改装店、既存店など全てへの導入)、高層階への導入、歩行性の向上、転倒事故の回避、美観の長期維持などの特徴を併せ持つことが出来、歩行やカート及び台車などによる使用時のタイル自体の変形や衝撃に対しても追従できる柔軟性を付与させた積層型無機系保護コーティング塩化ビニル系タイルを提供することができる。
請求項2の発明は、前記塩化ビニル系タイルのポリ塩化ビニルの含有量が10%~40%である請求項1記載の積層型無機系保護コーティング塩化ビニル系タイルを提供するものである。
この発明においては、塩化ビニル系タイル上に形成する無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生する収縮に伴う内部歪を吸収し、タイルの反りを1mm以下にとどめ、クラックの発生率を1%以内に抑制するに適した柔軟性を有する塩化ビニル系タイルであり、硬質系床材コンポジションタイル、柔軟系床材ホモジニアスタイルの両方に幅広く利用することができる。
請求項3の発明は、前記塩化ビニル系タイルの厚みが2.0mm~6.0mmである請求項1及び2いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルを提供するものである。
この発明においては、タイルの反りによる無機系コート層のクラックを防止できると共に、塩化ビニル系タイルの適切な柔軟性を持たせることができる。タイル厚み2.0mm以下ではタイルが薄くなりすぎるため、反りやクラックの発生しない塗膜を形成するのは困難となり、6.0mm以上になると反りやクラックの発生については問題ないが、反面、タイル自体の剛性が増し可撓生が乏しくなって、塩化ビニル系床タイルとしての柔軟性機能が損なわれる可能性がある。 
請求項4の発明は、前記トップコート層側の表面光沢が70以上である請求項1乃至3いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルを提供するものである。
この発明においては、セラミックタイルが持つ高光沢性、高硬度、耐摩耗性、それによる長期光沢維持性、美観の長期維持などを有するメンテナンスフリー型の塩ビ系タイルを得ることができる。
請求項5の発明は、塩化ビニル系タイルの表面に少なくともアンダーコート層、中間コート層、トップコート層の積層型無機系保護コーティング処理を施すものであって、前記アンダーコート層の硬度が3H~6H、厚みを20μm~50μm、中間コート層の硬度が6H~9H、厚みを10μm~40μm、トップコート層の硬度が10H以上、厚みが3μm~20μmとなる複数層を積層するようにした積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法を提供するものである。
 この発明においては、塩化ビニル系タイル上に形成する無機系保護トップコーティング層について、架橋反応(縮合反応)時に発生するコーティング剤の内部歪や、それに伴うタイルの反りやクラックの発生を充分に抑制することが出来る。具体的にはトップコート層が薄膜ではあるが、超硬質系コーティング層を形成するために、この架橋反応時に発生する内部歪を中間コート層で吸収するようにし、中間コート層の架橋反応時に発生する内部歪をアンダーコート層が吸収できるようにし、更にはアンダーコート層の架橋反応時に発生する内部歪を塩ビタイル自体が吸収できるようにした構造とした。よって、常温硬化型コーティング剤特有の問題となる架橋時の内部歪について、タイル自体の反りを1mm以下にすることにより、クラックの発生率をも1%以内に抑制することができる。つまり、積層型コーティング層にすることにより、コーティング剤の硬化収縮時に発生する内部歪を各硬度と厚みの異なった積層型コーティング層で吸収できるようにしたものである。
その方法はトップコートから中間層、アンダーコート層の硬度と厚みをパラメーターにして、トップコートからアンダーコートまでの各々の内部歪を吸収できるようにしたものであり、それにより、タイル自体の歪(タイルの反り)が起き難いようにしたものである。また、床材として使用時に発生する歩行による変形や集中荷重に対しても、コーティング層を積層型にすることにより、ある程度は吸収できるようにもした緩衝構造とすることができる。このコーティング方法は新設タイルに処理することは当然ながら、既に設置されている化ビニル系タイルにおいてもワックスの剥離を行った後に処理することができる。
また、トップコート自体は超硬質系コーティング層となるため、層厚みをあまり厚くするとクラックが入り易くなる。一方、層厚みが薄くなるとトップコート自体では光沢を得ることは困難となる。この点について、アンダーコートや中間コートを形成して厚みを補うことで、固形分濃度の低いコーティング剤を塗布して作製した薄いトップコート層であっても光沢性の高い皮膜を形成することが可能となる。
請求項6の発明は、前記塩化ビニル系タイルのポリ塩化ビニルの含有量が10%~40%である請求項5記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法を提供するものである。
この発明においては、塩化ビニル系タイル上に形成する無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生するタイルの反り等を1mm以下にとどめることにより、クラックの発生率をも1%以内に抑制することが出来る塩化ビニル系タイルの柔軟性を有しており、硬質系床材コンポジションタイル、軟質系床材ホモジニアスタイルの両方に幅広く利用することができる。また、タイルの反りによる無機系コート層のクラックを防止できると共に、ビニル系タイル本来の柔軟性を有する適切な塩化ビニル系タイルを得ることができる。また、アンダーコート層の架橋反応時に発生する収縮に伴う内部歪を塩化ビニル系タイル自体が吸収できるようにでき、床材として使用時に発生する歩行による変形や荷重に対しても、コーティング層とともに吸収できる。
請求項7の発明は、前記塩化ビニル系タイルの厚みが2mm~6mmである請求項5及び6いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法を提供するものである。
この発明においては、タイルの反りによる無機系コート層のクラックの発生を防止できると共に、塩ビタイル本来の柔軟性を有する適切な塩化ビニル系タイルとすることができる。また、アンダーコート層の架橋反応時に発生する収縮に伴う内部歪をタイル自体が吸収でき、床材として使用時に発生する歩行による変形や荷重に対しても、コーティング層とともに吸収できる。
請求項8の発明は、前記アンダーコート層と中間コート層とトップコート層との積層総厚みが33~110μである請求項5乃至7いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法を提供するものである。
この発明においては、前記アンダーコート層と中間コート層とトップコート層との積層総厚みを33μm以上とすることにより、トップコート層が固形分濃度の低いコーティング剤を塗布して得られた薄い膜であっても、光沢性の高い皮膜を形成することが可能となる。また、コンポジションタイルなど、タイルの表面に凹凸があるものであっても70以上の光沢値が得られる。積層総厚みが110μmを超えるとタイルの反りやクラックなどが起き易くなる。
請求項9の発明は、前記アンダーコート層と中間コート層とトップコート層との積層した塩ビ系タイルの表面を30℃~100℃にて1時間以上熱処理を施すようにした請求項5乃至8いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法を提供するものである。
この発明において、熱処理の際に塩化ビニル系タイルの変形を予防することを目的とした矯正処理を行うことにより、無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生するタイルの反り等を1mm以下に留めることに寄与する。好ましくは30℃~50℃である。
特開2010―163584号(特許第4957926号)
 本実施例において使用される塩化ビニル系タイルは,ポリ塩化ビニルの含有量が10%~40%で、厚みが2mm~6mmである。そして、この塩化ビニル系タイル表面に積層型無機系保護コーティング処理を施す。
前記下地層(アンダーコート層及び中間コート層)とトップコート層のコーティング剤については本出願人が提案した特開2010-163584号公報(特許第4957926号)に示される。すなわち、コーティング剤全体の組成に対し、テトラメトキシシラン、テトラエトキシシランから選ばれる少なくとも1種以上の4官能アルコキシシランと、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシランから選ばれる少なくとも1種以上の3官能アルコキシシランとの混合物を10~45wt%と、平均径5~20nmの超微粒コロイダルシリカ10~50wt%と、化学床用として可撓性を付与させるためにシリコーンアルコキシオリゴマー及び/又は2官能のアルコキシシランを2~20wt%と、前記超微粒コロイダルシリカとアルコキシシランとの結合剤として官能基がビニル基、エポキシ基、アミノ基の何れかを使用したシランカップリング剤0.5~2.0wt%と、前記アルコキシシランの加水分解によって生成されるシラノールの縮合反応を促進させる触媒としてリン酸系触媒又はチタン系触媒を0.5~5wt%とを配合してなる化学床保護用可撓性付与常温硬化型無機質コーティング剤が使用される。そして、これら4官能シランや3官能シラン、メチル・エチルシリケート、シリカゾル、その他の組み合わせや配合割合を変えることにより、高硬度、高光沢の塗膜の開発が可能となる。
本発明に用いられる4官能のアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン、3官能のアルコキシシランとしては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシランなどを使用する。
また、可撓性を付与させるために使用する2官能アルコキシシランとしては、ジメチルジメトキシシラン、ジフェニルジメトキシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシランなどを使用する。また、シリコーンアルコキシオリゴマーとしては高分子量体や可撓性付与単位を導入したメチル系オリゴマーを使用した方が望ましい。高分子量体のメチル系オリゴマーは添加量を増やすと粘度の上昇を招く恐れがあるために、少量の添加でなければならない。
 シランカップリング剤としては、官能基がビニル基、エポキシ基、アミノ基などのものを使用して主にビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3.4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトシキシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランなどを使用する。
 高硬度を保有させるために使用するコロイダルシリカは有機溶剤に分散したタイプ、例えば分散媒としてメタノール系、イソプロパノール系、エチレングリコール系、ジメチルアセトアミド系、メチルエチルケトン系、メチルエチル系、キシレンn-ブタノール系、メチルイソブチル系を使用する。また水分散型コロイダルシリカも使用する。いずれも粒子径が5nm~20nmである。
 触媒としてはリン酸系やチタン系触媒(有機チタネート)、アルミ系触媒などを使用する。リン酸系はアルコール(イソプロピルアルコールなど)で希釈されたものでリン酸濃度が20~30%のものを使用する。また、チタン系触媒としては有機チタネートなどを使用し、主にテトラ-i-プロポキシチタン、テトラーn-プトキシチタン、テトラキス(2-エチルヘキシルオキシ)チタン、テトラステアリルオキシチタン、ジーi-プロポキシ・ビス(アセチルアセトナト)チタン、ジーn-プトキシ・ビス(トリエタノールアミナト)チタン、チタニウムーi-プロポキシオクチレングリコート、チタニウムステアレートなどをアルコールなどで50%位に希釈したものを使用し、これら触媒の添加量は、アルコキシシランに対し上記希釈液で重量比で0.1wt%~5.0wt%とした。更にアルミ系触媒としてはアルミニウムアルコレート、アルミニウムキレート、環状アルミニウムオリゴマーなどが使用され、アルコール(イソプロピルアルコール)などで希釈されたもので濃度20%~50%のものを使用する。
 本実施例の前記下地は、アンダーコート層及び中間コート層からなり、前記アンダーコート層は硬度を3H~6H、厚みを20μm~50μm、中間コート層は硬度を6H~9H、厚みを10μm~40μmとなるように形成して、その上面に硬度が10H以上、厚みが3μm~20μmのトップコート層を形成する。
一般的に耐摩耗性を向上させるのであればコーティング層の硬度を上げるか、コーティング自体に柔軟性を付与させて衝撃を吸収させるような機能を持たせて、傷の侵入を防ぐしか方法はない。但し、無機系コーティング剤の場合は、一般的なアクリル樹脂やウレタン樹脂などのように柔軟性を付与させることはできず、コーティング層自体の硬度を上げて耐摩耗性を向上させるしか手立てはない。(表1)にコーティング層の表面硬度をパラメーターにしたときの皮膜の耐摩耗性と光沢劣化性の結果を示すが、コーティング剤の硬度が低いと、当然ながら摩耗が激しく、コーティング剤の光沢が徐々に劣化していく。このテストの結果より、コーティング層の硬度は少なくとも10H以上を有する仕様でなければ耐摩耗性に優れたメンテナンスフリー化は望めない。
Figure JPOXMLDOC01-appb-I000001
*硬度はJIS鉛筆硬度試験により膜厚みは10μmで金属鋼板に塗布して測定。
*鉛筆硬度試験はJISK5600-5-4により測定。
*耐摩耗試験はJISH8503-1989により1時間の研磨材落下試験にて測定。
*研磨材はGC#100を使用。
*JIS鉛筆硬度試験の規格は6Hまでであるが、実際は10Hまでの鉛筆が存在するため、その鉛筆で硬度測定試験を実施。11H以上については表1の鉛筆硬度試験と耐摩耗試験の相関データー(図1)に基づき、11H,12Hを推定(相当と)した。
*耐摩耗試験の1時間は実際の現場の1年位に相当する。 
(表2)はコーティング層の硬度とタイルの反りの関係を示すが、これは通常仕様において、下地処理(密着性を高めるためのプライマー処理)を行った後に、上記、超硬質系コーティング剤を1層だけ塗布し、タイルの反りとクラック発生の有無を確認した結果を示したものである。前述した通り、塩化ビニル系タイルは一般的なコンポジションタイル(硬質系タイル)とホモジニアスタイル(軟質系タイル)があり、タイルの厚みも□30Cm×2mm厚みのものと、□45Cm×3mm厚みのものがある。今回の評価試験で用いたものは、最もタイルの反りやクラックの入り易い□30Cm×2mmのコンポジョンタイル及びホモジニアスタイルについて、タイルの反りとクラック発生の有無を確認した。
Figure JPOXMLDOC01-appb-I000002
*タイルは□30×2mmのホモジタイルとコンポジタイルを使用した。
*処理は上記、鉛筆硬度を有するコート層を1層塗布。厚みは約10μm前後とした。
*乾燥は塗布後にて乾燥(40℃×10H)。
*タイルの反りはタイルの端部の反りを計測。
*クラックの発生は全体に占めるクラックの割合を目視により判断。
上記の結果から理解されるように、鉛筆硬度10Hの皮膜を□30Cm×2mmの塩化ビニル系タイルの上に形成させようとすると、硬質系床材であるコンポジタイルで4~6mm位の反りが発生し、20%位の割合でクラックが発生する。また、軟質系床材であるホモジニアスタイルに至っては6~9mmの反りが発生し、45%位の割合でクラックが発生することが分かった。
上記の通り、メンテナンスフリー化のためにコーティング層の硬度を上げれば、タイルの反りやクラックの発生が問題となる。この問題を解決するためには、現状のタイルにおいてはコーティング剤の架橋反応の際に発生する内部歪を吸収する中間層を設けるか、タイル自体の剛性を高めるために厚みを増すか、ポリ塩化ビニルの含有量などを増やして剛性を増すなどの方法を取るしか方法はない。 
既存の塩化ビニル系タイルを使用する場合、さらにこの中間層を形成してタイルの反りを吸収できるかどうか、クラック対策が可能かどうかについてテストした。下記の通り、中間層の硬度や厚みをパラメーターにしてタイルの反り(歪)やクラック発生の有無の確認を行った。試験の方法は上記、□30Cm×2mmの塩ビ系タイルの上に下地処理を施し、その上に中間層を形成し、その後に硬質系コーティング剤である10Hのコート層を10μm塗布した。中間層の硬度と厚みをパラメーターにしてテストした結果を表3に示す。テストにおいては、特にタイルの反りやクラックが発生しやすい軟質系床材ホモジニアスタイル厚み2.0mmで評価した。
Figure JPOXMLDOC01-appb-I000003
*単位mmはタイル端部の反り値であり、%は目視によるクラックの発生割合。
*NGはクラックが発生しているもの、OKはクラック発生1%以内のものである。
*塗膜形成後、40℃×10hの熱処理を行う。
*中間層を形成し、その上に10Hのコート層を10μmのトップコート層を処理。
*-は測定せず。
上記の通り、中間層の硬度と厚みをパラメーターにしてテストを行った結果、9H位では当然ながら緩衝材としての効果はあまり期待できず、緩衝材として塗膜を形成しても反りやクラックの対策とはなり得ない。しかしながら、中間層の硬度の下げていくと徐々にタイルの反りやクラックの発生は少なくなる傾向にあるが、5H以下となると逆にクラックの発生が増す傾向にある。この原因については中間層が余りにも柔らかくなり過ぎると、架橋の際に発生するトップコートの収縮が起き易くなり、逆にクラックの発生を助長するものと推測される。よって中間層の硬度は6H位までに留めておく必要がある。但し、6H位の中間コート層で塗膜の厚みが30μm位の場合であったとしてもタイルの変形は2~3mm位あり、クラック発生量も5%位であるため、この状態でも完全ではいことが分かる。
上記、中間層だけでは十分な緩衝材としての効果が得られなかったため、更にその下地としてアンダーコート層を作成し、タイルの反りやクラック対策とする積層型コーティング層の作製を行った。このアンダーコートの上に中間層として6Hのコート層を30μm位処理し、その上にトップコートの10Hの硬度のものを10μmの厚みに成膜して、タイルの反りやクラックの発生状態を調べた。
Figure JPOXMLDOC01-appb-I000004
*単位mmはタイル端部の反り値であり、%は目視によるクラックの発生割合。
*NGはクラックの発生しているものであり、OKは1%以内のクラック発生のものである。
*中間層として6Hのコート層を30μm位処理し、その後にトップコートの10Hの硬度のものを10μm前後だけ塗布する。
*-は測定せず。
表4に示す通り、トップコート層や中間層の下部にアンダーコート層を塗布することにより、OKで示した硬度と膜厚の条件でタイルの反りやクラックの発生を抑制できることが分かった。上記の一連の実験より、アンダーコート層の硬度は3H~6Hが望ましく、その厚みは20μm~50μmが望ましい。この範囲の仕様であれば軟質系床材である□30C,m×2mmのホモジニアスタイルであったとしても、タイルの反りやクラックの発生を懸念する必要なく、トップコート層に10H以上の非常に硬い皮膜を形成し、メンテナンスフリータイプのコーティング層を形成することが可能となる。また、このアンダーコートを処理することにより、総塗膜の厚み60μm位となり、コンポジションタイルなど、タイルの表面に凹凸があったとしても70以上の光沢値が得られるようになった。この総塗膜の厚みは50μm以上で光沢値70以上が得られ、厚み60μ以上に厚くすると光沢値75以上が得られ易い。尚、アンダーコート層が2Hで厚み20~40μmのものは、アンダーコート層が軟らかくなり過ぎて架橋時発生する収縮によりクラックの発生を助長する。
下記(表5)にタイルの厚みを変えた場合のタイルの反りとクラック発生の関係を示す。トップコート層は硬度10Hとして厚みは10μm前後、アンダーコート層は3Hとして厚みは30μmに固定し、中間層は7Hとして厚みは30μmに固定し、硬度を下記のように変えて評価を行った。
 
Figure JPOXMLDOC01-appb-I000005
 *―は測定せず。
 上記の通り、タイルの厚みを増していくと当然ながらタイルの剛性は増して、タイルの変形やクラックは発生しにくくなる。タイル厚み2.0mm以下ではタイルが薄くなりすぎるため、反りやクラックの発生しない塗膜を形成するのは困難であり、6.0mm以上になると反りやクラックの発生については問題ないが塩化ビニル系タイル自体の剛性が増して床材としての機能を失う可能性がある。そのため、タイルの厚みとは2.0mm~6.0mm位が適切である。
このようにコーティング剤のアンダーコート層、中間コート層、トップコート層を表6に示す硬度及び膜厚に調整して、ポリ塩化ビニルの含有量が30%~40%で、□30Cm×2mmの塩ビ系タイルであるホモジニアスタイルに塗布し、40℃にて10時間熱処理を施した。これらの各試料についてタイルの反り及びコート層表面のクラックの発生率を調べた。第6表中クラックの発生が1%以下のものには○、1%以上のものには×を付して示してある。尚、表中*印は本発明の範囲外のものである。
Figure JPOXMLDOC01-appb-I000006
*印は本発明の範囲外のものである。
 第6表から理解されるように、アンダーコート層の硬度が3H~6H、厚みが20μm~50μm、中間コート層の硬度が6H~9H、厚みが10μm~40μm、トップコート層の硬度が10H以上、厚みが3μm~20μmの試料3~6、8、11,12、14、18、19はトップコート層表面を目視により観察したところクラックの発生が1%以内であった。これに対し、上記範囲外の試料2、7、9、10、13,15~17、20,21のトップコート層表面を目視により観察したところ約1%以上のクラック発生が見られた。また、試料2についてはタイルの反りやクラックの発生はないものの、皮膜が薄すぎるために規定の光沢値が得られないことが分かった。更に熱処理後のトップコート層の硬度は12H相当の試料のものもあった。これは、40℃にて10時間熱処理を施したためと考えられる。尚、試料1についてはトップコート層の硬度が低くすぎて土砂の硬度に負けてしまうため、本発明が目的とするメンテナンスフリーの被膜の対象外であるため測定せず。
また、本発明の範囲内である前記試料8のコーティング方法を表7に示すように、ポリ塩化ビニル含有量及び厚みを異なえた塩化ビニル基材に適用した。塩化ビニル系タイルの反りとコーティング剤のクラックの発生状態を示したものを下記に示す。尚、*印は本発明の範囲外のものである。
Figure JPOXMLDOC01-appb-I000007
*印は本発明の範囲外のものである。
*-は測定せず。
 表7から理解されるように、上記表6に示した本発明の範囲内である試料8のコーティング方法をポリ塩化ビニルの含有量が10%~40%で、厚みが2mm~6mmである塩化ビニル系タイルに適用した。本発明の範囲内である試料23,25、27のトップコート層表面にはクラックの発生がほとんど見られなかった。これに対し、本発明の範囲外である塩化ビニル系タイルに適用した試料22、24のトップコート層を目視により観察したところ1%以上のクラックの発生が見られた。尚、試料番号26についてはタイルの反りやクラックは発生しなかったものの、厚みが厚すぎて柔軟性が付与され難いため発明の対象外とした。また、試料番号28についてもポリ塩化ビニルの含有量が多すぎて柔軟性に欠けるために本発明の対象外とした。 
尚、別途試験において、タイルの反りやクラックの発生が最も懸念される厚み2.0mmの軟質系ホモジニアスタイルに於いて評価試験を行ったが、ポリ塩化ビニルや可塑剤などからなるバインダーの含有率が40%までは良好であった。実際には剛性の高い硬質系コンポジョンタイルや3.0mm厚×□45cmサイズの塩化ビニル系タイルを使用することにより、更に変形やクラックの発生しない超硬質系トップコート層の塗膜を形成させることが出来る。本特許で請求しているバインダーの含有率が10~40%までの塩化ビニル系タイルにおいては、上記実験の通り、トップコート層表面において11Hや12H相当の鉛筆硬度を得ることができ、それにより、セラミックタイルに近い耐久性や光沢維持性が期待できる。
また、表6に示す本発明の範囲内試料についてトップコート層の滑り抵抗値を測定したところ、JIS A1454の滑り性試験に準拠したC.S.R測定結果、乾式で0.9~1.0、湿式で0.7~0.8と安全歩行の目安とされる数値領域内であった。したがって、滑り抵抗値の問題により転倒して重大事故につながることはなく、また、セラミックタイルと異なり長時間の歩行により疲労感を感じることもない。
さらに、表6に示す本発明の範囲内試料についてトップコート層の表面抵抗値を測定したところ1×1010Ω~1×1011Ωであり、カート走行や歩行時に静電気が問題となることはなく、埃や汚れの付着も抑制できる。
 この発明においては、塩化ビニル系基材上に形成する無機系保護トップコーティン層について、コーティング剤の架橋反応時(縮合反応時)時に発生する収縮に伴う内部歪を吸収することにより、タイルの反り等を1mm以下にとどめ、クラックの発生率も1%以内に抑制することが可能となった。また、塩ビタイルが持っている柔軟性を犠牲にすることなく、超硬質の皮膜を塩化ビニル系タイルの上に形成する。即ち、セラミックタイルが持つ高硬度、耐摩耗性による長期光沢維持性やメンテナンスフリー、環境適合性(廃液処理が不要)などの特性と、塩化ビニル系タイルが持つ安価さ、汎用性(新店、改装店、既存店など全てへの導入)、高層階への導入、歩行性の向上、転倒事故の回避などの特性を併せ持ち、美観の長期維持性を得ることができた。また、歩行やカート及び台車などにより発生するタイルの変形や衝撃に対しても、クラックが発生することなく追従できる機能を付与することができる積層型無機系保護コーティング塩化ビニル系タイルを提供することができる。
また、塩化ビニル系タイル上に形成する無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生するコーティング剤の収縮に伴う内部歪を積層コーティングにより吸収し、タイルの反り等を1mm以下にとどめることが出来、クラックの発生率をも1%以内に抑制するに適した塩化ビニル系タイルの柔軟性を有すると共に、硬質系床材コンポジションタイル、柔軟系床材ホモジニアスタイルの両方に幅広く利用することができる。
また、タイルの反りによる無機系コート層のクラックを防止できると共に、塩化ビニル系タイル本来の柔軟性を有する適切な塩化ビニル系タイルとすることができる。タイル厚み2.0mm以下ではタイルが薄くなりすぎるため、反りやクラックの発生しない塗膜を形成するのは困難であり、6.0mm以上になると反りやクラックの発生については問題ないが、塩化ビニル系タイル自体の剛性が増して塩化ビニル系タイル本来の柔軟性に乏しくなっていき、床材として歩行性に優れた機能を失う可能性がある。 
また、塩化ビニル系タイル上に形成する無機系保護トップコーティング層について、架橋反応(縮合反応)時に発生するコーティング剤の収縮に伴う内部歪や、それに伴うタイルの反りやクラックの発生を充分に抑制することが出来る。具体的にはトップコート層が薄膜仕様ではあるが、超硬質系コーティング層を形成するために、この架橋反応時に発生する収縮伴う内部歪を中間コート層で吸収するようにし、中間コート層の架橋反応時に発生する収縮に伴う内部歪をアンダーコート層が吸収できるようにし、更にはアンダーコート層の架橋反応時に発生する内部歪を塩ビタイル自体が吸収できるようにした構造とした。よって、常温硬化型コーティング剤特有の問題となる架橋時の内部歪について、タイル自体の反りは1mm以下にとどめ、それによるクラックの発生率をも1%以内に抑制することができる。つまり積層型コーティング層にすることにより、コーティング剤の硬化収縮時に発生する内部歪を吸収できるようにしたものである。
その方法はトップコートから中間層、アンダーコート層の硬度と厚みをパラメーターにして、トップコートからアンダーコートまでの各々の内部歪を吸収できるようにしたものであり、それにより、タイル自体の変形(タイルの反り)が起き難いようにしたものである。また、床材として使用時に発生する歩行による変形や荷重に対しても、コーティング層を積層型にすることにより、ある程度の変形は吸収できるようにした緩衝材型コーティングの構造とすることができる。このコーティング方法は新設タイルに処理することは当然ながら、既存に設置されている床タイルにおいてもワックスの剥離を行ったあとに処理することができる。
また、トップコート自体は超硬質系コーティング層となるため、層厚みをあまり厚くするとクラックが入り易くなる。一方、層厚みが薄くなるとトップコート自体では光沢を得ることは困難となる。この点について、アンダーコートや中間コートを形成して厚みを補うことで、固形分濃度の低いコーティング剤を塗布して作製した薄いトップコート層であっても光沢性の高い皮膜を形成することが可能となる。
また、塩化ビニル系タイル上に形成する無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生する内部歪を積層型コーティング層で吸収し、タイルの反り等を1mm以下にとどめることにより、クラックの発生率をも1%以内に抑制できると共に、硬質系床材コンポジションタイル、軟質系床材ホモジニアスタイルの両方に幅広く利用することができる。また、アンダーコート層の架橋反応時に発生する内部歪を塩ビタイル自体が吸収できるようにでき、床材として使用時に発生する歩行による変形や荷重に対しても、コーティング層とともに吸収できる。
また、前記アンダーコート層と中間コート層とトップコート層との積層総厚みが33μm以上とすることにより(望ましくは60μm~105μm)、コンポジションタイルなど、タイルの表面に凹凸があるものであっても70以上の光沢値が得られる。
さらに、熱処理によりトップコート層の硬度をより硬くして、無機系保護トップコーティン層の架橋反応時(縮合反応時)に発生するタイルの反り等を矯正することにより、1mm以下の反りに留めることが出来る。
(表1)の鉛筆硬度試験と耐摩耗試験の相関データー

Claims (9)

  1. 塩化ビニル系タイルの表面に無機系保護コーティング層を形成し、トップコート層の鉛筆硬度が10H以上、かつコーティング処理後においてタイル端部の反りが1mm以下である積層型無機系保護コーティング塩化ビニル系タイル。 
  2. 前記塩化ビニル系タイルのポリ塩化ビニルの含有量が10%~40%である請求項1記載の積層型無機系保護コーティング塩化ビニル系タイル。
  3. 前記塩化ビニル系タイルの厚みが2mm~6mmである請求項1及び2いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイル。
  4. 前記トップコート層の表面光沢が70以上である請求項1乃至3いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイル。
  5. 塩化ビニル系タイルの表面に少なくともアンダーコート層、中間コート層、トップコート層の積層型無機系保護コーティング処理を施すものであって、前記アンダーコート層の硬度が3H~6H、厚みを20μm~50μm、中間コート層の硬度が6H~9H、厚みを10μm~40μm、トップコート層の硬度が10H以上、厚みが3μm~20μmの複数層を積層するようにした積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法。
  6. 前記塩化ビニル系タイルのポリ塩化ビニルの含有量が10%~40%である請求項5記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法。
  7. 前記塩化ビニル系タイルの厚みが2mm~6mmである請求項5及び6いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法。
  8. 前記アンダーコート層と中間コート層とトップコート層との積層総厚みが33~110μmとする請求項5乃至7いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法。
  9. 前記アンダーコート層と中間コート層とトップコート層とを積層した塩ビ系タイルの表面を30℃~100℃にて1時間以上熱処理を施すようにした請求項5乃至8いずれかに記載の積層型無機系保護コーティング塩化ビニル系タイルのコーティング方法。
     
PCT/JP2013/084462 2013-02-20 2013-12-24 積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法 WO2014129081A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380068853.2A CN104903522B (zh) 2013-02-20 2013-12-24 具有层叠型无机类保护涂层的氯乙烯类面砖及其涂覆方法
JP2015501300A JP6065247B2 (ja) 2013-02-20 2013-12-24 積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047217 2013-02-20
JP2013-047217 2013-02-20

Publications (1)

Publication Number Publication Date
WO2014129081A1 true WO2014129081A1 (ja) 2014-08-28

Family

ID=51390892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084462 WO2014129081A1 (ja) 2013-02-20 2013-12-24 積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法

Country Status (3)

Country Link
JP (1) JP6065247B2 (ja)
CN (1) CN104903522B (ja)
WO (1) WO2014129081A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093279A1 (en) 2015-05-11 2016-11-16 Kyushu Hightec Corporation Maintenance-free stone tile, coating agent therefor, and method for producing the tile
JP2016196797A (ja) * 2015-04-03 2016-11-24 和光産業株式会社 床材被膜構造体、床材被膜構造体の製造方法、及び床材被膜の再生方法
WO2017061391A1 (ja) * 2015-10-05 2017-04-13 株式会社九州ハイテック 難燃性化学床材及びその水性保護コーティング剤
WO2017170778A1 (ja) * 2016-03-29 2017-10-05 大日本印刷株式会社 化粧材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206272A1 (en) 2021-12-28 2023-07-05 Kyushu High Tech. Co., Ltd Inorganic glass coating agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491282A (ja) * 1990-07-27 1992-03-24 Nitto Boseki Co Ltd 床材
JPH0740027Y2 (ja) * 1989-07-25 1995-09-13 イビデン株式会社 建築用化粧板
JP2005068687A (ja) * 2003-08-20 2005-03-17 Taisei Shokai:Kk 床用uv硬化型保護シート並びに該保護シートによるフロアの補修方法
JP2007046302A (ja) * 2005-08-09 2007-02-22 Achilles Corp 合成樹脂製床タイル
JP2008180077A (ja) * 2006-12-28 2008-08-07 S Well Japan:Kk 床用保護シート、床材、及び、その製造方法
JP4957926B2 (ja) * 2009-01-16 2012-06-20 株式会社九州ハイテック 化学床保護用可撓性付与常温硬化型無機質コーティング剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522399Y2 (ja) * 1991-02-23 1997-01-16 東リ株式会社 床タイル
CA2086311A1 (en) * 1992-01-10 1993-07-11 Walter C. Timm Inlaid granite plastic floor tile
JP2597753Y2 (ja) * 1992-10-12 1999-07-12 東リ株式会社 床タイル
JP2003041757A (ja) * 2001-07-30 2003-02-13 Shinko Kasei Kk 易リサイクル性置敷きタイル
EP1366828A1 (en) * 2002-05-31 2003-12-03 Rohm And Haas Company Multi-layer coating composition and method of preparation
JP3732183B2 (ja) * 2003-01-16 2006-01-05 伸興化成株式会社 化粧板及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740027Y2 (ja) * 1989-07-25 1995-09-13 イビデン株式会社 建築用化粧板
JPH0491282A (ja) * 1990-07-27 1992-03-24 Nitto Boseki Co Ltd 床材
JP2005068687A (ja) * 2003-08-20 2005-03-17 Taisei Shokai:Kk 床用uv硬化型保護シート並びに該保護シートによるフロアの補修方法
JP2007046302A (ja) * 2005-08-09 2007-02-22 Achilles Corp 合成樹脂製床タイル
JP2008180077A (ja) * 2006-12-28 2008-08-07 S Well Japan:Kk 床用保護シート、床材、及び、その製造方法
JP4957926B2 (ja) * 2009-01-16 2012-06-20 株式会社九州ハイテック 化学床保護用可撓性付与常温硬化型無機質コーティング剤

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196797A (ja) * 2015-04-03 2016-11-24 和光産業株式会社 床材被膜構造体、床材被膜構造体の製造方法、及び床材被膜の再生方法
US10351479B2 (en) 2015-05-11 2019-07-16 Kyushu Hightec Corporation Maintenance-free stone tile, coating agent therefor, and method for producing the tile
CN106147595A (zh) * 2015-05-11 2016-11-23 九州高科技株式会社 一种涂料、涂覆有涂料的免维护型石砖及石砖的制造方法
JP2016210670A (ja) * 2015-05-11 2016-12-15 株式会社九州ハイテック メンテナンスフリー型石材タイル及びそのコーティング剤並びにそのタイルの製造方法
EP3093279A1 (en) 2015-05-11 2016-11-16 Kyushu Hightec Corporation Maintenance-free stone tile, coating agent therefor, and method for producing the tile
CN106147595B (zh) * 2015-05-11 2020-04-28 九州高科技株式会社 一种涂料、涂覆有涂料的免维护型石砖及石砖的制造方法
WO2017061391A1 (ja) * 2015-10-05 2017-04-13 株式会社九州ハイテック 難燃性化学床材及びその水性保護コーティング剤
JPWO2017061391A1 (ja) * 2015-10-05 2018-09-27 株式会社九州ハイテック 難燃性化学床材及びその水性保護コーティング剤
CN108138502A (zh) * 2015-10-05 2018-06-08 株式会社九州公司 阻燃性化学地板材料及其水性保护涂层剂
US10858538B2 (en) 2015-10-05 2020-12-08 Kyushu Hightec Corporation Flame-retardant chemical floor material and aqueous protective coating agent therefor
CN108884680A (zh) * 2016-03-29 2018-11-23 大日本印刷株式会社 装饰材料
KR20180129823A (ko) * 2016-03-29 2018-12-05 다이니폰 인사츠 가부시키가이샤 화장재
JPWO2017170778A1 (ja) * 2016-03-29 2019-02-07 大日本印刷株式会社 化粧材
WO2017170778A1 (ja) * 2016-03-29 2017-10-05 大日本印刷株式会社 化粧材
KR102274309B1 (ko) * 2016-03-29 2021-07-09 다이니폰 인사츠 가부시키가이샤 화장재
CN108884680B (zh) * 2016-03-29 2021-10-15 大日本印刷株式会社 装饰材料

Also Published As

Publication number Publication date
JP6065247B2 (ja) 2017-01-25
CN104903522B (zh) 2017-08-25
JPWO2014129081A1 (ja) 2017-02-02
CN104903522A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
JP6065247B2 (ja) 積層型無機系保護コーティング塩化ビニル系タイル及びそのコーティング方法
KR101742066B1 (ko) 난연성 및 내구성이 우수한 강재 코팅제 조성물 및 이를 이용한 강 구조물의 보호코팅방법
CN106147595B (zh) 一种涂料、涂覆有涂料的免维护型石砖及石砖的制造方法
JP4957926B2 (ja) 化学床保護用可撓性付与常温硬化型無機質コーティング剤
KR101512965B1 (ko) 친환경 표면 보호제 및 이를 이용한 친환경 표면 보호공법
KR101816590B1 (ko) 초내후성 친환경 강재 코팅제 조성물 및 피에스볼 블라스트를 이용하여 바탕 처리하는 강 구조물의 표면보호 도장방법
WO2008116616A8 (de) Verfahren zur erzeugung einer antireflexionsoberfläche auf einem optischen element sowie optische elemente mit einer antireflexionsoberfläche
KR101799507B1 (ko) 강구조물 표면 보호·강화용 친환경 강재 코팅제 조성물 및 이를 이용한 강 구조물의 표면 보호·강화 방법
KR101623154B1 (ko) 친환경 보호 코팅제 조성물 및 이를 이용한 시공방법
KR100942027B1 (ko) 수성 도료 조성물 및 이를 이용한 부식·중성화방지 방수용 도장방법
KR101892898B1 (ko) 내약품성이 우수한 침투성 세라믹코팅제 및 방수도장공법
US11298921B2 (en) Glass article having coating with interpenetrating polymer network
JP5207911B2 (ja) 壁面化粧構造体
JP2008168615A (ja) 防火断熱体
CN205591478U (zh) 建筑装饰地板砖
JP6427722B1 (ja) 床用コーティング剤、床のコーティング方法、および床構造体の製造方法
JP7144169B2 (ja) 面材
JP4140705B2 (ja) 塗膜形成方法
CN103233571A (zh) 一种弹性漆面木地板制造方法及木地板
JP5663443B2 (ja) 被覆体
JP6775171B2 (ja) 難燃性化学床用水性保護コーティング剤
JP6227256B2 (ja) 化粧壁面
KR102486538B1 (ko) 수용성 나노 무기질 코팅제를 이용한 콘크리트 바닥 마감 시공방법
CN208881303U (zh) 地板材料
JP7421885B2 (ja) 面材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875775

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015501300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875775

Country of ref document: EP

Kind code of ref document: A1