WO2014128820A1 - ブレーキ制御装置およびブレーキ制御方法 - Google Patents

ブレーキ制御装置およびブレーキ制御方法 Download PDF

Info

Publication number
WO2014128820A1
WO2014128820A1 PCT/JP2013/053913 JP2013053913W WO2014128820A1 WO 2014128820 A1 WO2014128820 A1 WO 2014128820A1 JP 2013053913 W JP2013053913 W JP 2013053913W WO 2014128820 A1 WO2014128820 A1 WO 2014128820A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
brake force
brake
carriage
main motor
Prior art date
Application number
PCT/JP2013/053913
Other languages
English (en)
French (fr)
Inventor
和紀 小西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015501102A priority Critical patent/JP5881888B2/ja
Priority to US14/766,009 priority patent/US9592810B2/en
Priority to EP13875662.2A priority patent/EP2960122B1/en
Priority to PCT/JP2013/053913 priority patent/WO2014128820A1/ja
Publication of WO2014128820A1 publication Critical patent/WO2014128820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1893Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution especially adapted for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a brake control device and a brake control method for a moving body including a main motor that rotates wheels.
  • an electric brake that operates as an electric generator to obtain a braking force, and a brake shoe is pressed against a wheel tread with air pressure or hydraulic pressure, or a brake disc is pressed with a pad.
  • a mechanical brake that obtains a braking force by friction generated by the above. Electric vehicle control devices that use both electric brakes and mechanical brakes have been put into practical use.
  • the required braking force of the vehicle is calculated based on the vehicle load and a brake command given from the driver's cab, and the range determined by, for example, the limit value of the overhead line voltage Actuate the electric brake inside. If the braking force of the electric brake is smaller than the required braking force, it is compensated by mechanical braking. This is called air supplementation.
  • the electric vehicle control device disclosed in Patent Document 1 reduces variations in air supplementation due to changes in overhead wire voltage limits, and minimizes variations in the amount of wear on brake shoes.
  • the air supplementary supplement amount in a vehicle with a large load Increases compared to the air supplementary amount in a vehicle with a small load, and the amount of wear of the brake shoes differs among vehicles, resulting in variations in the brake shoe replacement period.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce variations in the amount of wear of a mechanical brake in an electric vehicle using both an electric brake and a mechanical brake.
  • a brake control device of the present invention includes a power converter, a variable load detector, a command acquisition unit, a speed detection unit, a necessary brake force calculation unit, a target brake force calculation unit, a control pattern generation unit, An electric brake force calculation unit and a supplement unit are provided.
  • the power converter controls the main motor that rotates the wheels.
  • the variable load detector detects a load on the vehicle or a carriage provided in the vehicle.
  • the command acquisition unit acquires a brake command including vehicle deceleration.
  • the speed detection unit detects the speed of the vehicle.
  • the required brake force calculation unit calculates the required brake force for each vehicle or carriage based on the load on the vehicle or carriage and the brake command.
  • the target brake force calculation unit calculates a target brake force common to each of the vehicle or carriage driven by the main motor and the vehicle or carriage not driven by the main motor, based on the necessary brake force calculated for each vehicle or carriage.
  • the control pattern generation unit generates a common control pattern used for controlling the main motor based on the target brake force and the vehicle speed.
  • the electric brake force calculation unit calculates the electric brake force generated by the operation of the main motor controlled according to the control pattern.
  • the supplementary unit calculates a brake force command value based on the electric brake force and the target brake force, and sends the brake force command value to the mechanical brake that suppresses the rotation of the wheels.
  • FIG. 1 is a block diagram showing a configuration example of a brake control device according to an embodiment of the present invention.
  • the brake control device 1 includes a command acquisition unit 2, a variable load detector 3, a required brake force calculation unit 4, a target brake force calculation unit 5, a control pattern generation unit 6, a speed detection unit 7, power converters 8a and 8b, a current Detectors 9a and 9b, an electric brake force calculating unit 10 and a supplementing unit 11 are provided.
  • a portion surrounded by a dotted line in FIG. 1, which includes the control pattern generation unit 6, power converters 8 a and 8 b, current detection units 9 a and 9 b, and an electric brake force calculation unit 10, is a propulsion control device.
  • the power converters 8a and 8b control the main motors 20a and 20b, and the supplementary unit 11 sends a brake force command value to the mechanical brakes 21a and 21b, so that the brake control device 1 is an electric railway vehicle (hereinafter referred to as an electric vehicle). ) Control the brake.
  • the number of main motors controlled by the power converters 8a and 8b is arbitrary, and two or more main motors may be controlled. Further, the number of power converters is not limited to two, and may be any two or more values. In order to facilitate understanding, in the example of FIG. 1, the power converter 8a is configured to control the main motor 20a, and the power converter 8b is configured to control the main motor 20b.
  • the command acquisition unit 2 acquires a brake command and sends it to the required brake force calculation unit 4.
  • the command acquisition unit 2 receives, for example, an input of a brake operation performed by an operator at the cab, and sends a brake command including a vehicle deceleration corresponding to the brake operation to the necessary brake force calculation unit 4.
  • the variable load detector 3 detects the load on the vehicle constituting the electric vehicle or the bogie equipped with the vehicle, and sends it to the necessary brake force calculation unit 4.
  • the variable load detector 3 detects the load on the vehicle or the carriage based on the variable load signal emitted from the air spring that supports the carriage of the vehicle.
  • the response load signal indicates a pressure change according to the sprung load, and the load includes the weight of the passenger and the cargo in addition to the weight of the vehicle itself.
  • Necessary brake force calculation unit 4 is a force necessary to cause vehicle deceleration included in the brake command to the vehicle mass for each vehicle or vehicle based on the load on the vehicle or vehicle and the brake command.
  • the brake force is calculated and sent to the target brake force calculation unit 5.
  • the target brake force calculation unit 5 is common to each of the vehicle or carriage driven by the main motor and the vehicle or carriage not driven by the main motor based on the necessary brake force calculated for each vehicle or carriage.
  • the target brake force is calculated, and the target brake force of the vehicle or carriage driven by the main motor is sent to the control pattern generator 6.
  • the speed detector 7 detects the speed of the vehicle and sends it to the control pattern generator 6.
  • the speed detector 7 detects the vehicle speed based on an angular speed detected by an angular speed sensor attached to an axle that connects the left and right wheels, for example.
  • the speed detection unit 7 may detect the vehicle speed using an angular speed detected based on a pulse output from a pulse generator attached to the axle, or may be an ATC (Automatic Train Control). Speed information transmitted from the in-vehicle device may be used.
  • the control pattern generation unit 6 generates a common control pattern used for control of each of the power converters 8a and 8b based on the target brake force and the vehicle speed, and sends it to the power converters 8a and 8b.
  • the control pattern is, for example, a torque command for the power converters 8a and 8b.
  • the power converter 8a is based on the common control pattern, and the output torque of the main motor 20a matches the torque command included in the common control pattern. Thus, the main motor 20a is controlled.
  • the power converter 8b controls the main motor 20b so that the output torque of 20b matches the torque command included in the common control pattern.
  • the main motors 20a and 20b are controlled by the control pattern output by the control pattern generator 6, and rotate the wheel during power running and operate as a generator during braking to apply electric braking force to the wheel to rotate the wheel. Suppress.
  • the electric brake system may be either a power generation brake or a regenerative brake.
  • the electric brake force calculation unit 10 calculates the electric brake force generated by the operation of the main motors 20a and 20b controlled by the power converters 8a and 8b, respectively. For example, the electric brake force calculation unit 10 calculates the electric brake force generated by the operation of the main motors 20a and 20b based on the currents output from the power converters 8a and 8b detected by the current detection units 9a and 9b, respectively. Send to part 11.
  • the supplement unit 11 calculates a brake force command value for the mechanical brakes 21a and 21b that suppresses the rotation of the wheel based on the electric brake force and the target brake force, and sends the brake force command value to the mechanical brakes 21a and 21b.
  • the mechanical brakes 21a and 21b suppress the rotation of the wheel by pressing the brake shoe against the wheel tread with air pressure or hydraulic pressure or pressing the brake disc with a pad according to the brake force command value.
  • FIG. 2 is a diagram illustrating a knitting example of a vehicle including the brake control device according to the embodiment.
  • Car 2 and Car 3 are M cars (motor cars) driven by the main motor
  • Car 1 and Car 4 are T cars (trailer cars) not driven by the main motor.
  • the load of the first car is W2
  • the load of the second car is W2
  • the load of the third car is W3
  • the load of the fourth car is W4
  • the deceleration included in the brake command value is a
  • the required brake force of each vehicle is
  • the first car is a ⁇ W1
  • the second car is a ⁇ W2
  • the third car is a ⁇ W3
  • the fourth car is a ⁇ W4.
  • the load is the product of mass and gravitational acceleration.
  • the necessary brake force can be defined by the product of the deceleration and the load as described above.
  • the target brake force calculation unit 5 distributes the total required brake force to the M car and the T car based on a predetermined ratio.
  • the total braking force borne by the M car is D1
  • the total braking force borne by the T car is D2.
  • D1 + D2 a.W1 + a.W2 + a.W3 + a.W4.
  • the distribution ratio of D1 and D2 is a design matter.
  • D1 can be set to be larger than D2 so that the electric braking force can be utilized to the maximum according to the vehicle speed.
  • FIG. 3 is a block diagram illustrating an arrangement example of the brake control device according to the embodiment. The operation of each part of the brake control device 1 arranged in the M car in FIG. 2 will be described. The range indicated by the alternate long and short dash line represents each vehicle, and each part of the brake control device 1, the main motors 20a and 20b, and the mechanical brakes 21a and 21b are arranged in the second and third electric cars, respectively.
  • the command acquisition unit 2 acquires a brake command including deceleration and sends it to the required brake force calculation units 4a and 4b.
  • the variable load detector 3a calculates the load of the second car and sends it to the necessary brake force calculation unit 4a.
  • the necessary brake force calculation unit 4 a calculates the necessary brake force of the second car based on the load of the second car and the brake command and sends it to the target brake force calculation unit 5.
  • the variable load detector 3b detects the load of the third car and sends it to the necessary brake force calculation unit 4b.
  • the required brake force calculation unit 4 b calculates the required brake force of the third car based on the load of the third car and the brake command and sends it to the target brake force calculation unit 5.
  • the required brake force calculation unit 4a calculates the required brake force of the second car as a ⁇ W2, and the required brake force calculation unit 4b sets the required brake force of the third car as a ⁇ W3. calculate.
  • the target brake force calculation unit 5 calculates the target brake force based on the required brake force of each vehicle, and sends it to the control pattern generation unit 6 and the supplement units 11a and 11b. As in the example of FIG. 2, the target brake force calculation unit 5 sets D1 as the brake force borne by the M car out of the total required brake force of each vehicle, and sets the target brake force common to the second and third cars. Calculate as D1 / 2.
  • the speed detector 7 detects the vehicle speed using the angular velocity detected based on the pulse output from the pulse generator attached to the axle of the second car, for example, and sends it to the control pattern generator 6.
  • the control pattern generation unit 6 generates a common control pattern used for controlling the main motor based on the target braking force and the vehicle speed of the second car and the third car, and sends them to the power converters 8a and 8b.
  • the common control pattern is a torque command value for controlling the electric brake force generated by the operations of the main motors 20a and 20b controlled by the common control pattern to be equal to or less than the target brake force.
  • the upper limit value of the electric braking force generated by the operation of each main motor changes depending on the speed of the vehicle.
  • the power converter 8a controls the main motor 20a of the second car based on a common control pattern.
  • the power converter 8b controls the main motor 20b of the third car based on a common control pattern.
  • the main motor 20a rotates the wheels of the second car during power running and suppresses the rotation of the wheels of the second car during braking.
  • the main motor 20b rotates the wheels of the third car during power running and suppresses the rotation of the wheels of the third car during braking.
  • the electric brake force calculation unit 10a calculates the electric brake force generated by the operation of the main motor 20a of the second car controlled by the power converter 8a based on the current output from the power converter 8a detected by the current detection unit 9a. Calculate and send to the supplement part 11a.
  • the electric brake force calculation unit 10b calculates the electric brake force generated by the operation of the main motor 20b of the third car controlled by the power converter 8b based on the current output from the power converter 8b detected by the current detection unit 9b. It calculates and sends to the supplement part 11b. For example, when the power converter 8a controls a plurality of electric motors, the electric brake force calculation unit 10a calculates the sum of the electric brake forces generated by the operations of the plurality of electric motors controlled by the power converter 8a.
  • the supplementary unit 11a When the electric brake force is less than the target brake force based on the electric brake force calculated based on the current output from the power converter 8a and the target brake force of the second car, the supplementary unit 11a performs the electric brake force and the target brake force. Is calculated as a braking force command value.
  • the supplement part 11a sends a brake force command value to the mechanical brake 21a.
  • the mechanical brake 21a suppresses the rotation of the wheels of the second car according to the brake force command value.
  • the supplementary unit 11b Is calculated as a braking force command value.
  • the supplement part 11b sends a brake force command value to the mechanical brake 21b.
  • the mechanical brake 21b suppresses the rotation of the wheels of the third car according to the brake force command value.
  • the supplementary unit 11a when the power converter 8a controls a plurality of electric motors, the supplementary unit 11a includes a target brake force of a vehicle or a carriage including wheels whose rotation is suppressed by the plurality of electric motors and a plurality of power converters 8a controlled by the power converter 8a. Based on the total electric brake force generated by the operation of the motor, the air supplement is calculated. If the electric brake force is equal to or greater than the target brake force, the supplementary units 11a and 11b do not calculate the brake force command value.
  • FIG. 4 and 5 are diagrams showing the electric brake force and the air supplementary amount.
  • the horizontal axis is the vehicle speed, and the vertical axis is the braking force.
  • FIG. 4 is a diagram showing the electric brake force and the air supplementary supplement amount in the second car
  • FIG. 5 is a diagram showing the electric brake force and the air supplementary quantity in the third car.
  • a graph represented by a solid line represents the upper limit of the electric brake force that can be output from the main motors 20a and 20b.
  • the upper limit of the electric brake force changes according to the vehicle speed, and the upper limit of the electric brake force decreases as the vehicle speed increases.
  • the hatched portion is an electric brake force generated by the operation of the main motors 20a and 20b.
  • the required braking force for Car 2 is BL1
  • the required braking force for Car 3 is BL2.
  • the loads of the second car and the third car are different, as shown in FIGS. 4 and 5, there is a difference between the required brake force BL1 of the second car and the required brake force BL2 of the third car.
  • the electric brake force generated by the operation of the main motor 20a of the second car is BT1
  • the electric brake force generated by the operation of the main motor 20b of the third car is BT2.
  • the electric brake force when the vehicle speed is V1 is less than the required brake force in both the second car and the third car.
  • BL1-BT1 is supplemented by an air brake
  • BL2-BT2 is supplemented by an air brake
  • the target brake force BLavg is used.
  • the target brake force BLavg is D1 / 2 in the example of FIG.
  • the air-conditioning supplement amount in the second car is BLavg-BT1.
  • the air-conditioning supplementary amount in the third car is BLavg-BT2. That is, when the vehicle speed is V1, the braking force command value AB1 output by the supplementing unit 11a is BLavg-BT1, and the braking force command value AB2 output by the supplementing unit 11b is BLavg-BT2.
  • the electric brake forces BT1 and BT2 generated by the operations of the main motors 20a and 20b controlled by a common control pattern are almost the same. Since the brake force applied by the mechanical brake 21a in the second car and the brake force applied by the mechanical brake 21b in the third car are substantially the same, it can be considered that the degree of wear of the mechanical brakes 21a and 21b is the same. Even when there is a difference in the load between the second car and the third car, the difference between the common target brake force and the electric brake force calculated from the necessary brake force of each vehicle is compensated by the mechanical brakes 21a and 21b, so that the degree of wear can be reduced. This makes it possible to improve the maintainability of the vehicle.
  • control pattern generation units 6 When the control pattern is different for each power converter, it is necessary to provide the same number of control pattern generation units 6 for the power converters 8a and 8b. However, in this embodiment, a common control pattern is used. Therefore, only one control pattern generation unit 6 is required. Compared to the case where information about the load for each vehicle or carriage is sent from each vehicle or each carriage to the propulsion control device via the respective signal line, in the present embodiment, the target brake force calculation unit 5 Send the target braking force to the propulsion controller. Therefore, the structure of the propulsion control device can be simplified, and the manufacturing cost can be reduced.
  • FIG. 6 is a block diagram illustrating different arrangement examples of the brake control device according to the embodiment.
  • a part of the brake control device 1 is incorporated as a function of a train control system indicated by a two-dot chain line in FIG.
  • the train control system can be installed at any location of the electric vehicle.
  • the function incorporated in the train control system is not limited to the example of FIG.
  • the necessary brake force calculation units 4a and 4b transmit and receive the necessary brake force calculated by each other, and each of the necessary brake force calculation units 4a and 4b calculates the target brake force and performs control. You may comprise so that it may send to the pattern production
  • the power converters 8a and 8b can control an arbitrary number of main motors.
  • the power converter 8a controls, for example, two main motors arranged on different carts.
  • the target brake force calculation unit 5 calculates a target brake force common to the carriage driven by the main motor.
  • the electric brake force calculation unit 10 calculates the electric brake force of each of the two main motors based on the current supplied to each of the two main motors or the torque of each main motor.
  • the air supplementary amount may be calculated based on the electric brake force of each of the main motors and the target brake force common to each carriage.
  • the brake control is performed by the electric brake force and the brake force of the mechanical brake applied as necessary as described above.
  • the electric brake force that is insufficient due to the failure of the main motor or power converter is further supplemented by the mechanical brake of the cart.
  • the degree of wear of the mechanical brakes of each truck is matched in normal times, and in the event of an abnormality such as a failure of a main motor or power converter, It is possible to prevent the main motor from being affected by an abnormality.
  • FIG. 7 is a flowchart showing an example of a brake control operation performed by the brake control device according to the embodiment.
  • the brake control operation performed by the brake control device 1 shown in FIG. 1 will be described.
  • the command acquisition unit 2 receives an input of a brake command including deceleration (step S110). If no brake command is input (step S120; N), the process returns to step S110.
  • the variable load detector 3 detects the load on the vehicle constituting the electric vehicle or the carriage provided in the vehicle (step S130).
  • the required brake force calculation unit 4 calculates the required brake force for each vehicle or carriage based on the load on the vehicle or carriage and the brake command (step S140).
  • the target brake force calculation unit 5 calculates a common target brake force for each of the vehicle or carriage driven by the main motor and the vehicle or carriage not driven by the main motor, based on the necessary brake force calculated for each vehicle or carriage. (Step S150).
  • the speed detection unit 7 detects the speed of the vehicle. When the vehicle is stopped (step S160; Y), the process is terminated.
  • control pattern generation unit 6 When the vehicle is not stopped (step S160; N), the control pattern generation unit 6 generates a common control pattern based on the target braking force and the vehicle speed of the vehicle or carriage driven by the main motor, The power converters 8a and 8b control the main motors 20a and 20b, respectively, so that the output torques of the main motors 20a and 20b coincide with a torque command that is a common control pattern (step S170).
  • the electric brake force calculation unit 10 calculates the electric brake force generated by the operation of the main motors 20a and 20b controlled by the power converters 8a and 8b, respectively (step S180).
  • the supplementary unit 11 does not need air supplement (step S190; N), returns to step S160, and repeats the above processing.
  • the supplementing unit 11 needs air supplementing (step S190; Y), and therefore, the supplemental amount 11 is a difference between the electric braking force and the target braking force.
  • the brake force command value is calculated (step S200).
  • step S210 the supplement unit 11 outputs a control signal to the mechanical brakes 21a and 21b based on the brake force command value for the mechanical brakes 21a and 21b that suppress the rotation of the wheels.
  • step S210 the process returns to step S160 and the above-described process is repeated.
  • the brake control device 1 As described above, according to the brake control device 1 according to the present embodiment, it is possible to reduce the variation in the amount of wear of the mechanical brake in the electric vehicle using both the electric brake and the mechanical brake.
  • the target brake force is the average value of the required brake force of each vehicle, and the main motors are driven by a common control pattern.
  • the electric brake force of each vehicle becomes equal, and it becomes possible to reduce the variation in the amount of wear of the mechanical brake of each vehicle.
  • variations in the amount of mechanical brake wear between the M cars and the amount of mechanical brake wear between the T cars are independent of the distribution ratio of the braking force between the M car and the T car. Variations can be reduced.
  • the ratio of the braking force to the M and T cars is distributed so that the remainder after subtracting the electric braking force that can be generated by the M cars from the total required braking force is evenly distributed to the mechanical brakes of each vehicle.
  • the present invention can be suitably employed in a brake control device for an electric vehicle that uses both an electric brake and a mechanical brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

 必要ブレーキ力算出部(4)は、応荷重検出器(3)が検出した車両または台車に対する荷重および指令取得部(2)が取得したブレーキ指令に基づき、車両または台車ごとに必要ブレーキ力を算出する。目標ブレーキ力算出部(5)は、必要ブレーキ力に基づき主電動機によって駆動される車両または台車、および主電動機によって駆動されない車両または台車のそれぞれに共通の目標ブレーキ力を算出する。制御パターン生成部(6)は、目標ブレーキ力と速度検出部(7)が検出した車両速度に基づき、電力変換器(8a)、(8b)に共通の制御パターンを生成する。電気ブレーキ力算出部(10)は、主電動機(20a)、(20b)の動作により生じた電気ブレーキ力を算出する。補足部(11)は、電気ブレーキ力および目標ブレーキ力に基づくブレーキ力指令値を機械ブレーキ(21a)、(21b)に送る。

Description

ブレーキ制御装置およびブレーキ制御方法
 この発明は、車輪を回転させる主電動機を備える移動体のブレーキ制御装置およびブレーキ制御方法に関する。
 電気鉄道車両(以下、電気車という)のブレーキには、電動機を発電機として動作させてブレーキ力を得る電気ブレーキと、空気圧や油圧でブレーキシューを車輪踏面に押し付ける、またはブレーキディスクをパッドで押さえつけることで生じる摩擦によりブレーキ力を得る機械ブレーキとがある。電気ブレーキと機械ブレーキを併用する電気車の制御装置が実用化されている。
 電気ブレーキと機械ブレーキとを併用する電気車の制御装置では、車両の荷重と運転台などから与えられるブレーキ指令に基づき車両の必要ブレーキ力を演算し、例えば架線電圧の制限値によって決定される範囲内で電気ブレーキを作用させる。電気ブレーキのブレーキ力が必要ブレーキ力より小さい場合には、機械ブレーキによって補う。これを空制補足という。
 架線電圧が高くなるにつれ、架線電圧制限の変化が頻繁に生じる。そのため、特許文献1に開示される電気車制御装置は、架線電圧制限の変化による空制補足のばらつきを低減し、ブレーキシューの摩耗量のばらつきを最小限に抑える。
特開平8-331703号公報
 架線電圧が高い場合に限らず、例えば各車両荷重が異なり、かつ主電動機を備える車両である電動車のそれぞれの電気ブレーキの出力が同じである場合には、荷重が大きい車両における空制補足量は、荷重が小さい車両における空制補足量に比べて多くなり、ブレーキシューの摩耗量が車両間で異なり、ブレーキシューの交換周期にばらつきが生じる。
 本発明は、上述の事情に鑑みてなされたものであり、電気ブレーキと機械ブレーキとを併用する電気車において、機械ブレーキの摩耗量のばらつきを低減することを目的とする。
 上記目的を達成するために、本発明のブレーキ制御装置は、電力変換器、応荷重検出器、指令取得部、速度検出部、必要ブレーキ力算出部、目標ブレーキ力算出部、制御パターン生成部、電気ブレーキ力算出部および補足部を備える。電力変換器は、車輪を回転させる主電動機を制御する。応荷重検出器は、車両または車両が備える台車に対する荷重を検出する。指令取得部は、車両の減速度を含むブレーキ指令を取得する。速度検出部は、車両の速度を検出する。必要ブレーキ力算出部は、車両または台車に対する荷重およびブレーキ指令に基づき、車両または台車ごとに必要ブレーキ力を算出する。目標ブレーキ力算出部は、車両または台車ごとに算出した必要ブレーキ力に基づき、主電動機によって駆動される車両または台車、および主電動機によって駆動されない車両または台車のそれぞれに共通の目標ブレーキ力を算出する。制御パターン生成部は、目標ブレーキ力、および車両の速度に基づき、主電動機の制御に用いる、共通の制御パターンを生成する。電気ブレーキ力算出部は、制御パターンに応じて制御される主電動機の動作によって生じた電気ブレーキ力を算出する。補足部は、電気ブレーキ力および目標ブレーキ力に基づきブレーキ力指令値を算出し、車輪の回転を抑制する機械ブレーキにブレーキ力指令値を送る。
 本発明によれば、電気ブレーキと機械ブレーキとを併用する電気車において、機械ブレーキの摩耗量のばらつきを低減することが可能となる。
本発明の実施の形態に係るブレーキ制御装置の構成例を示すブロック図である。 実施の形態に係るブレーキ制御装置を備える車両の編成例を示す図である。 実施の形態に係るブレーキ制御装置の配置例を示すブロック図である。 電気ブレーキ力と空制補足量を示す図である。 電気ブレーキ力と空制補足量を示す図である。 実施の形態に係るブレーキ制御装置の異なる配置例を示すブロック図である。 実施の形態に係るブレーキ制御装置が行うブレーキ制御の動作の一例を示すフローチャートである。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 図1は、本発明の実施の形態に係るブレーキ制御装置の構成例を示すブロック図である。ブレーキ制御装置1は、指令取得部2、応荷重検出器3、必要ブレーキ力算出部4、目標ブレーキ力算出部5、制御パターン生成部6、速度検出部7、電力変換器8a、8b、電流検出部9a、9b、電気ブレーキ力算出部10、および補足部11を備える。制御パターン生成部6、電力変換器8a、8b、電流検出部9a、9b、および電気ブレーキ力算出部10から成る、図1において点線で囲まれた部分は推進制御装置である。
 電力変換器8a、8bが主電動機20a、20bを制御し、補足部11が機械ブレーキ21a、21bにブレーキ力指令値を送ることにより、ブレーキ制御装置1は、電気鉄道車両(以下、電気車という)のブレーキを制御する。電力変換器8a、8bが制御する主電動機の数は任意であり、2以上の主電動機を制御してもよい。また電力変換器の数は2つに限られず、任意の2以上の値であればよい。理解を容易にするために、図1の例においては、電力変換器8aは主電動機20aを制御し、電力変換器8bは主電動機20bを制御するように構成した。
 指令取得部2は、ブレーキ指令を取得し、必要ブレーキ力算出部4に送る。指令取得部2は、例えば運転台において運転員が行うブレーキ操作の入力を受け付け、該ブレーキ操作に対応する車両の減速度を含むブレーキ指令を必要ブレーキ力算出部4に送る。応荷重検出器3は、電気車を構成する車両または車両が備える台車に対する荷重を検出し、必要ブレーキ力算出部4に送る。応荷重検出器3は、車両の台車を支持する空気ばねから発せられる応荷重信号に基づいて、車両または台車に対する荷重を検出する。応荷重信号は、ばね上荷重に応じた圧力変化を示し、荷重には、車両自体の重量に加え、乗客や貨物の重量を含む。
 必要ブレーキ力算出部4は、車両または台車に対する荷重およびブレーキ指令に基づき、車両または台車ごとに、車両の質量にブレーキ指令に含まれる車両の減速度を生じさせるために必要な力である、必要ブレーキ力を算出し、目標ブレーキ力算出部5に送る。目標ブレーキ力算出部5は、後述するように、車両または台車ごとに算出した必要ブレーキ力に基づき、主電動機によって駆動される車両または台車、および主電動機によって駆動されない車両または台車のそれぞれに共通の目標ブレーキ力を算出し、主電動機によって駆動される車両または台車の目標ブレーキ力を制御パターン生成部6に送る。
 速度検出部7は、車両の速度を検出し、制御パターン生成部6に送る。速度検出部7は、例えば左右の車輪を互いに接続する車軸に取り付けた角速度センサが検出した角速度に基づき車両速度を検出する。また速度検出部7は、車軸に取り付けたパルス発生装置が出力するパルスに基づき検出した角速度を用いて車両速度を検出してもよいし、ATC(Automatic Train Control:自動列車制御装置)などの他の車載機器から伝送された速度情報を用いてもよい。
 制御パターン生成部6は、目標ブレーキ力および車両の速度に基づき、電力変換器8a、8bのそれぞれの制御に用いる、共通の制御パターンを生成し、電力変換器8a、8bに送る。制御パターンとは、例えば電力変換器8a、8bに対するトルク指令であり、電力変換器8aは、共通の制御パターンに基づき、主電動機20aの出力トルクが共通の制御パターンに含まれるトルク指令に一致するように主電動機20aを制御する。電力変換器8bは、共通の制御パターンに基づき、20bの出力トルクが共通の制御パターンに含まれるトルク指令に一致するように、主電動機20bを制御する。
 主電動機20a、20bは、制御パターン生成部6が出力する制御パターンによって制御され、力行時には車輪を回転させ、ブレーキ時には、発電機として動作することで電気ブレーキ力を車輪に作用させ、車輪の回転を抑制する。電気ブレーキの方式は、発電ブレーキおよび回生ブレーキのいずれでもよい。
 電気ブレーキ力算出部10は、電力変換器8a、8bがそれぞれ制御する主電動機20a、20bの動作によって生じた電気ブレーキ力を算出する。例えば電気ブレーキ力算出部10は、電流検出部9a、9bがそれぞれ検出した電力変換器8a、8bが出力する電流に基づき、主電動機20a、20bの動作によって生じた電気ブレーキ力を算出し、補足部11に送る。
 補足部11は、電気ブレーキ力および目標ブレーキ力に基づき、車輪の回転を抑制する機械ブレーキ21a、21bに対するブレーキ力指令値を算出し、該ブレーキ力指令値を機械ブレーキ21a、21bに送る。機械ブレーキ21a、21bは、ブレーキ力指令値に従って、空気圧や油圧でブレーキシューを車輪踏面に押し付ける、またはブレーキディスクをパッドで押さえつけることで、車輪の回転を抑制する。
 図2は、実施の形態に係るブレーキ制御装置を備える車両の編成例を示す図である。図2の例においては、2号車および3号車が主電動機によって駆動されるM車(モータ車)であり、1号車および4号車が主電動機によって駆動されないT車(トレーラ車)である。1号車の荷重をW1、2号車の荷重をW2、3号車の荷重をW3、4号車の荷重をW4とし、ブレーキ指令値に含まれる減速度をaとすると、各車両の必要ブレーキ力は、1号車がa・W1、2号車がa・W2、3号車がa・W3、4号車がa・W4となる。荷重は質量と重力加速度の積である。荷重の計測値が質量に一致するような単位で荷重を計測する場合には、上記のように減速度と荷重の積によって必要ブレーキ力を定義することができる。
 目標ブレーキ力算出部5は、必要ブレーキ力の合計を予め定めた比率に基づき、M車とT車に分配する。ここで一例として、M車が負担するブレーキ力の合計をD1とし、T車が負担するブレーキ力の合計をD2とする。目標ブレーキ力算出部5は、M車が負担するブレーキ力の合計D1をそれぞれのM車に均等に負担させ、T車が負担するブレーキ力の合計D2をそれぞれのT車に均等に負担させ、M車およびT車のそれぞれに共通の目標ブレーキ力を算出する。M車の車両数は2であるため、目標ブレーキ力算出部5は、M車に共通の目標ブレーキ力をD1/M車の車両数=D1/2とする。またT車の車両数も2であるため、目標ブレーキ力算出部5は、T車に共通の目標ブレーキ力をD2/T車の車両数=D2/2として算出する。
 M車においては、各車両の電気ブレーキ力がD1/2より小さい場合には、D1/2から各車両の電気ブレーキ力を差し引いた値を機械ブレーキで負担する。またT車においては目標ブレーキ力D2/2を各車両の機械ブレーキで負担する。なおD1+D2=a・W1+a・W2+a・W3+a・W4である。D1とD2の分配比率は設計事項である。例えば車両速度に応じて、電気ブレーキ力を最大限に活用できるようにD1がD2より大きくなるように設定することができる。
 図3は、実施の形態に係るブレーキ制御装置の配置例を示すブロック図である。図2のM車に配置されたブレーキ制御装置1の各部の動作について説明する。一点鎖線が示す範囲が各車両を表し、ブレーキ制御装置1の各部、主電動機20a、20bおよび機械ブレーキ21a、21bが電気車の2号車と3号車にそれぞれ配置されている。
 指令取得部2は、減速度を含むブレーキ指令を取得し、必要ブレーキ力算出部4a、4bに送る。応荷重検出器3aは、2号車の荷重を算出し、必要ブレーキ力算出部4aに送る。必要ブレーキ力算出部4aは、2号車の荷重およびブレーキ指令に基づき、2号車の必要ブレーキ力を算出し、目標ブレーキ力算出部5に送る。応荷重検出器3bは、3号車の荷重を検出し、必要ブレーキ力算出部4bに送る。必要ブレーキ力算出部4bは、3号車の荷重およびブレーキ指令に基づき、3号車の必要ブレーキ力を算出し、目標ブレーキ力算出部5に送る。
 図2の例と同様に、例えば必要ブレーキ力算出部4aは、2号車の必要ブレーキ力をa・W2として算出し、必要ブレーキ力算出部4bは、3号車の必要ブレーキ力をa・W3として算出する。
 目標ブレーキ力算出部5は、各車両の必要ブレーキ力に基づき、目標ブレーキ力を算出し、制御パターン生成部6、および補足部11a、11bに送る。目標ブレーキ力算出部5は、図2の例と同様に、各車両の必要ブレーキ力の合計の内、M車が負担するブレーキ力をD1とし、2号車および3号車に共通の目標ブレーキ力をD1/2と算出する。速度検出部7は、例えば2号車の車軸に取り付けたパルス発生装置が出力するパルスに基づき検出した角速度を用いて車両速度を検出し、制御パターン生成部6に送る。
 制御パターン生成部6は、2号車および3号車の目標ブレーキ力および車両の速度に基づき、主電動機の制御に用いる共通の制御パターンを生成し、電力変換器8a、8bに送る。共通の制御パターンは、共通の制御パターンによって制御される主電動機20a、20bのそれぞれの動作によって生じる電気ブレーキ力が目標ブレーキ力以下になるように制御するための、トルク指令値である。車両の速度によって、各主電動機の動作によって生じる電気ブレーキ力の上限値は変化する。電力変換器8aは、共通の制御パターンに基づき、2号車の主電動機20aを制御する。電力変換器8bは、共通の制御パターンに基づき、3号車の主電動機20bを制御する。主電動機20aは、力行時には2号車の車輪を回転させ、ブレーキ時には2号車の車輪の回転を抑制する。また主電動機20bは、力行時には3号車の車輪を回転させ、ブレーキ時には3号車の車輪の回転を抑制する。
 電気ブレーキ力算出部10aは、電流検出部9aが検出した電力変換器8aから出力される電流に基づき、電力変換器8aが制御する、2号車の主電動機20aの動作によって生じた電気ブレーキ力を算出し、補足部11aに送る。電気ブレーキ力算出部10bは、電流検出部9bが検出した電力変換器8bから出力される電流に基づき、電力変換器8bが制御する、3号車の主電動機20bの動作によって生じた電気ブレーキ力を算出し、補足部11bに送る。なお例えば電力変換器8aが複数の電動機を制御する場合には、電気ブレーキ力算出部10aは、電力変換器8aが制御する複数の電動機の動作によって生じる電気ブレーキ力の合計を算出する。
 補足部11aは、電力変換器8aが出力する電流に基づき算出した電気ブレーキ力および2号車の目標ブレーキ力に基づき、電気ブレーキ力が目標ブレーキ力を下回る場合には、電気ブレーキ力と目標ブレーキ力との差分である空制補足量をブレーキ力指令値として算出する。補足部11aは、ブレーキ力指令値を機械ブレーキ21aに送る。機械ブレーキ21aは、ブレーキ力指令値に従って、2号車の車輪の回転を抑制する。
 補足部11bは、電力変換器8bが出力する電流に基づき算出した電気ブレーキ力および3号車の目標ブレーキ力に基づき、電気ブレーキ力が目標ブレーキ力を下回る場合には、電気ブレーキ力と目標ブレーキ力との差分である空制補足量をブレーキ力指令値として算出する。補足部11bは、ブレーキ力指令値を機械ブレーキ21bに送る。機械ブレーキ21bは、ブレーキ力指令値に従って、3号車の車輪の回転を抑制する。
 なお例えば電力変換器8aが複数の電動機を制御する場合には、補足部11aは、複数の電動機によって回転が抑制される車輪を備える車両または台車の目標ブレーキ力および電力変換器8aが制御する複数の電動機の動作によって生じる電気ブレーキ力の合計に基づき、空制補足量を算出する。また電気ブレーキ力が目標ブレーキ力以上であれば、補足部11a、11bは、ブレーキ力指令値の算出は行わない。
 図4および図5は、電気ブレーキ力と空制補足量を示す図である。横軸が車両速度であり、縦軸がブレーキ力である。図4は、2号車における電気ブレーキ力と空制補足量を示す図であり、図5は、3号車における電気ブレーキ力と空制補足量を示す図である。実線で表したグラフが主電動機20a、20bがそれぞれ出力可能な電気ブレーキ力の上限を表す。電気ブレーキ力の上限は、車両速度に応じて変化し、車両速度が速くなるにつれて、電気ブレーキ力の上限は低くなる。斜線部は、主電動機20a、20bの動作によって生じる電気ブレーキ力である。
 2号車の必要ブレーキ力をBL1とし、3号車の必要ブレーキ力をBL2とする。2号車と3号車の荷重が異なる場合には、図4および図5に示すように、2号車の必要ブレーキ力BL1と3号車の必要ブレーキ力BL2に差が生じる。車両速度がV1の場合において、2号車の主電動機20aの動作によって生じる電気ブレーキ力をBT1とし、3号車の主電動機20bの動作によって生じる電気ブレーキ力をBT2とする。車両速度がV1の場合の電気ブレーキ力は、2号車および3号車のいずれにおいても必要ブレーキ力に満たない。2号車ではBL1-BT1を空気ブレーキによって補い、3号車ではBL2-BT2を空気ブレーキによって補う場合には、摩耗の程度が車両間で異なり、メンテナンスの周期が車両間で異なるという問題が生じる。
 一方、本実施の形態に係るブレーキ制御装置1においては、目標ブレーキ力BLavgを用いる。目標ブレーキ力BLavgは、図2の例においてはD1/2である。車両速度がV1の場合に、BT1はBLavgを下回るため、2号車における空制補足量はBLavg-BT1である。同様に、車両速度がV1の場合に、BT2はBLavgを下回るため、3号車における空制補足量はBLavg-BT2である。すなわち、車両速度がV1の場合には、補足部11aが出力するブレーキ力指令値AB1は、BLavg-BT1であり、補足部11bが出力するブレーキ力指令値AB2は、BLavg-BT2である。
 各車両で用いる主電動機20a、20bは、ほぼ同じ特性を持つものを用いるため、共通の制御パターンによって制御される主電動機20a、20bの動作によって生じる電気ブレーキ力BT1、BT2は、ほぼ一致する。2号車における機械ブレーキ21aが作用させるブレーキ力と3号車における機械ブレーキ21bが作用させるブレーキ力はほぼ一致するため、機械ブレーキ21a、21bの摩耗の程度が一致するとみなすことができる。2号車および3号車の荷重に差がある場合でも、各車両の必要ブレーキ力から算出した共通の目標ブレーキ力と電気ブレーキ力との差分を機械ブレーキ21a、21bで補うことで、摩耗の程度が一致し、車両の保守性を向上させることが可能になる。
 電力変換器ごとに制御パターンが異なる場合には、電力変換器8a、8bに対し、同数の制御パターン生成部6を設ける必要があったが、本実施の形態においては、共通の制御パターンを用いるので、制御パターン生成部6は1つあればよい。また車両または台車ごとの荷重についての情報が各車両または各台車からそれぞれの信号線を介して推進制御装置に送られている場合と比べ、本実施の形態においては、目標ブレーキ力算出部5から推進制御装置に目標ブレーキ力を送る。そのため、推進制御装置の構造を簡易化することが可能となり、製造コストを低減することが可能となる。
 図6は、実施の形態に係るブレーキ制御装置の異なる配置例を示すブロック図である。ブレーキ制御装置1の一部を、図6中において二点鎖線で示す列車制御システムの機能として組み込んだ。列車制御システムは、電気車の任意の場所に設置することができる。列車制御システムに組み込む機能は図6の例に限られない。
 目標ブレーキ力算出部5を設けずに、必要ブレーキ力算出部4a、4bが互いに算出した必要ブレーキ力の送受信を行い、必要ブレーキ力算出部4a、4bのそれぞれが目標ブレーキ力を算出し、制御パターン生成部6および補足部11a、11bに送るように構成してもよい。また電流検出部9a、9bの代わりに、トルクセンサを設けて主電動機20a、20bのトルクを検出し、電気ブレーキ力算出部10a、10bは、主電動機20a、20bのトルクに基づき、電気ブレーキ力を算出するように構成してもよい。
 電力変換器8a、8bは、任意数の主電動機を制御することができる。図1の例において、電力変換器8aが例えば、それぞれ異なる台車に配置された2つの主電動機を制御するとする。この場合に、目標ブレーキ力算出部5は、主電動機によって駆動される台車に共通の目標ブレーキ力を算出する。また電気ブレーキ力算出部10は上記2つの主電動機にそれぞれ供給される電流または各主電動機のトルクに基づき、上記2つの主電動機のそれぞれの電気ブレーキ力を算出し、補足部11は、上記2つの主電動機のそれぞれの電気ブレーキ力と各台車に共通の目標ブレーキ力に基づき空制補足量を算出するように構成してもよい。各台車ごとに共通の目標ブレーキ力を用いることで、各台車の機械ブレーキの摩耗の程度を一致させることが可能になる。
 また一方の主電動機または電力変換器が故障したとする。その場合、正常な主電動機および電力変換器が配置される台車においては、上述のように電気ブレーキ力と必要に応じて加えられる機械ブレーキのブレーキ力によりブレーキ制御が行われる。一方、故障した主電動機または電力変換器が配置される台車においては、主電動機または電力変換器の故障により不足する電気ブレーキ力をさらに該台車の機械ブレーキによって補足する。主電動機ごとの電気ブレーキ力に基づき空制補足量を決定することで、通常時には各台車の機械ブレーキの摩耗の程度を一致させ、ある主電動機または電力変換器の故障などの異常時には、他の主電動機に異常の影響が生じないようにすることが可能となる。
 図7は、実施の形態に係るブレーキ制御装置が行うブレーキ制御の動作の一例を示すフローチャートである。図1に示すブレーキ制御装置1が行うブレーキ制御の動作について説明する。指令取得部2は、減速度を含むブレーキ指令の入力を受け付ける(ステップS110)。ブレーキ指令が入力されていない場合には(ステップS120;N)、ステップS110に戻る。ブレーキ指令が入力された場合には(ステップS120;Y)、応荷重検出器3は電気車を構成する車両または車両が備える台車に対する荷重を検出する(ステップS130)。
 必要ブレーキ力算出部4は、車両または台車に対する荷重およびブレーキ指令に基づき、車両または台車ごとに必要ブレーキ力を算出する(ステップS140)。目標ブレーキ力算出部5は、車両または台車ごとに算出した必要ブレーキ力に基づき、主電動機によって駆動される車両または台車、および主電動機によって駆動されない車両または台車のそれぞれに共通の目標ブレーキ力を算出する(ステップS150)。速度検出部7は、車両の速度を検出し、車両が停止している場合には(ステップS160;Y)、処理を終了する。車両が停止していない場合には(ステップS160;N)、制御パターン生成部6は、主電動機によって駆動される車両または台車の目標ブレーキ力および車両の速度に基づき共通の制御パターンを生成し、電力変換器8a、8bは、主電動機20a、20bの出力トルクが共通の制御パターンであるトルク指令に一致するように、主電動機20a、20bをそれぞれ制御する(ステップS170)。
 電気ブレーキ力算出部10は、電力変換器8a、8bがそれぞれ制御する主電動機20a、20bの動作によって生じた電気ブレーキ力を算出する(ステップS180)。補足部11は、電気ブレーキ力が目標ブレーキ力以上である場合には、空制補足は不要であるから(ステップS190;N)、ステップS160に戻り、上述の処理を繰り返す。補足部11は、電気ブレーキ力が目標ブレーキ力未満である場合には、空制補足が必要であるから(ステップS190;Y)、電気ブレーキ力および目標ブレーキ力の差分である空制補足量をブレーキ力指令値として算出する(ステップS200)。空制補足量が生じた場合には、補足部11は、車輪の回転を抑制する機械ブレーキ21a、21bに対するブレーキ力指令値に基づき機械ブレーキ21a、21bに対して制御信号を出力する(ステップS210)。ステップS210の処理が完了すると、ステップS160に戻り、上述の処理を繰り返す。
 以上説明したとおり、本実施の形態に係るブレーキ制御装置1によれば、電気ブレーキと機械ブレーキとを併用する電気車において、機械ブレーキの摩耗量のばらつきを低減することが可能となる。
 特に複数の主電動機を備え、全ての車両が主電動機によって駆動されるM車である場合には、目標ブレーキ力は各車両の必要ブレーキ力の平均値となり、共通の制御パターンによって主電動機を駆動することで、各車両の電気ブレーキ力が等しくなり、各車両の機械ブレーキの摩耗量のばらつきを低減することが可能となる。またM車とT車の混合編成車両についても、M車とT車のブレーキ力の分配比によらず、M車間での機械ブレーキの摩耗量のばらつきと、T車間の機械ブレーキの摩耗量のばらつきを低減することが可能となる。また必要ブレーキ力の合計から、M車により生じさせることができる電気ブレーキ力を差し引いた残りを、各車両の機械ブレーキに均等に配分するように、M車とT車へのブレーキ力の分担比を決定してD1とD2を定めることで、各車両の機械ブレーキの摩耗量のばらつきを低減することが可能となる。
 上記実施の形態は、いずれも本発明の趣旨の範囲内で各種の変形が可能である。上記実施の形態は本発明を説明するためのものであり、本発明の範囲を限定することを意図したものではない。本発明の範囲は実施形態よりも添付した請求項によって示される。請求項の範囲内、および発明の請求項と均等の範囲でなされた各種変形は本発明の範囲に含まれる。
 本発明は、電気ブレーキと機械ブレーキとを併用する電気車のブレーキ制御装置に好適に採用され得る。
 1 ブレーキ制御装置、2 指令取得部、3、3a、3b 応荷重検出器、4、4a、4b 必要ブレーキ力算出部、5 目標ブレーキ力算出部、6 制御パターン生成部、7 速度検出部、8a、8b 電力変換器、9a、9b 電流検出部、10、10a、10b 電気ブレーキ力算出部、11、11a、11b 補足部、20a、20b 主電動機、21a、21b 機械ブレーキ。

Claims (6)

  1.  車輪を回転させる主電動機を制御する電力変換器と、
     車両または前記車両が備える台車に対する荷重を検出する応荷重検出器と、
     前記車両の減速度を含むブレーキ指令を取得する指令取得部と、
     前記車両の速度を検出する速度検出部と、
     前記車両または前記台車に対する荷重および前記ブレーキ指令に基づき、前記車両または前記台車ごとに必要ブレーキ力を算出する必要ブレーキ力算出部と、
     前記車両または前記台車ごとに算出した前記必要ブレーキ力に基づき、前記主電動機によって駆動される前記車両または前記台車、および前記主電動機によって駆動されない前記車両または前記台車のそれぞれに共通の目標ブレーキ力を算出する目標ブレーキ力算出部と、
     前記目標ブレーキ力、および前記車両の速度に基づき、前記主電動機の制御に用いる、共通の制御パターンを生成する制御パターン生成部と、
     前記制御パターンに応じて制御される前記主電動機の動作によって生じた電気ブレーキ力を算出する電気ブレーキ力算出部と、
     前記電気ブレーキ力および前記目標ブレーキ力に基づきブレーキ力指令値を算出し、車輪の回転を抑制する機械ブレーキに前記ブレーキ力指令値を送る補足部と、
     を備えるブレーキ制御装置。
  2.  前記補足部は、前記主電動機によって駆動される前記車両または前記台車については、前記電力変換器ごとの前記電気ブレーキ力および該電力変換器が制御する前記主電動機によって駆動される前記車両または前記台車の前記目標ブレーキ力に基づき、該電気ブレーキ力が該目標ブレーキ力を下回る場合には、該電気ブレーキ力と該目標ブレーキ力との差分を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う前記機械ブレーキに送り、前記主電動機によって駆動されない前記車両または前記台車については、該車両または該台車の前記目標ブレーキ力を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う機械ブレーキに送る請求項1に記載のブレーキ制御装置。
  3.  前記補足部は、前記主電動機によって駆動される前記車両または前記台車については、前記主電動機ごとの前記電気ブレーキ力および該主電動機によって駆動される前記車両または前記台車の前記目標ブレーキ力に基づき、該電気ブレーキ力が該目標ブレーキ力を下回る場合には、該電気ブレーキ力と該目標ブレーキ力との差分を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う前記機械ブレーキに送り、前記主電動機によって駆動されない前記車両または前記台車については、該車両または該台車の前記目標ブレーキ力を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う機械ブレーキに送る請求項1に記載のブレーキ制御装置。
  4.  車輪を回転させる主電動機を制御する電力変換器を備えるブレーキ制御装置が行うブレーキ制御方法であって、
     車両または前記車両が備える台車に対する荷重を検出する応荷重検出ステップと、
     前記車両の減速度を含むブレーキ指令を取得する指令取得ステップと、
     前記車両の速度を検出する速度検出ステップと、
     前記車両または前記台車に対する荷重および前記ブレーキ指令に基づき、前記車両または前記台車ごとに必要ブレーキ力を算出する必要ブレーキ力算出ステップと、
     前記車両または前記台車ごとに算出した前記必要ブレーキ力に基づき、前記主電動機によって駆動される前記車両または前記台車、および前記主電動機によって駆動されない前記車両または前記台車のそれぞれに共通の目標ブレーキ力を算出する目標ブレーキ力算出ステップと、
     前記目標ブレーキ力、および前記車両の速度に基づき、前記主電動機の制御に用いる、共通の制御パターンを生成する制御パターン生成ステップと、
     前記制御パターンに応じて制御される前記主電動機の動作によって生じた電気ブレーキ力を算出する電気ブレーキ力算出ステップと、
     前記電気ブレーキ力および前記目標ブレーキ力に基づきブレーキ力指令値を算出し、車輪の回転を抑制する機械ブレーキに前記ブレーキ力指令値を送る補足ステップと、
     を備えるブレーキ制御方法。
  5.  前記補足ステップにおいて、前記主電動機によって駆動される前記車両または前記台車については、前記電力変換器ごとの前記電気ブレーキ力および該電力変換器が制御する前記主電動機によって駆動される前記車両または前記台車の前記目標ブレーキ力に基づき、該電気ブレーキ力が該目標ブレーキ力を下回る場合には、該電気ブレーキ力と該目標ブレーキ力との差分を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う前記機械ブレーキに送り、前記主電動機によって駆動されない前記車両または前記台車については、該車両または該台車の前記目標ブレーキ力を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う機械ブレーキに送る請求項4に記載のブレーキ制御方法。
  6.  前記補足ステップにおいて、前記主電動機によって駆動される前記車両または前記台車については、前記主電動機ごとの前記電気ブレーキ力および該主電動機によって駆動される前記車両または前記台車の前記目標ブレーキ力に基づき、該電気ブレーキ力が該目標ブレーキ力を下回る場合には、該電気ブレーキ力と該目標ブレーキ力との差分を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う前記機械ブレーキに送り、前記主電動機によって駆動されない前記車両または前記台車については、該車両または該台車の前記目標ブレーキ力を前記ブレーキ力指令値として、該車両または該台車が備える車輪の回転の抑制を行う機械ブレーキに送る請求項4に記載のブレーキ制御方法。
PCT/JP2013/053913 2013-02-19 2013-02-19 ブレーキ制御装置およびブレーキ制御方法 WO2014128820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015501102A JP5881888B2 (ja) 2013-02-19 2013-02-19 ブレーキ制御装置およびブレーキ制御方法
US14/766,009 US9592810B2 (en) 2013-02-19 2013-02-19 Brake control device, and brake control method
EP13875662.2A EP2960122B1 (en) 2013-02-19 2013-02-19 Brake control device
PCT/JP2013/053913 WO2014128820A1 (ja) 2013-02-19 2013-02-19 ブレーキ制御装置およびブレーキ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053913 WO2014128820A1 (ja) 2013-02-19 2013-02-19 ブレーキ制御装置およびブレーキ制御方法

Publications (1)

Publication Number Publication Date
WO2014128820A1 true WO2014128820A1 (ja) 2014-08-28

Family

ID=51390658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053913 WO2014128820A1 (ja) 2013-02-19 2013-02-19 ブレーキ制御装置およびブレーキ制御方法

Country Status (4)

Country Link
US (1) US9592810B2 (ja)
EP (1) EP2960122B1 (ja)
JP (1) JP5881888B2 (ja)
WO (1) WO2014128820A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056876A (ja) * 2015-09-18 2017-03-23 三菱電機株式会社 ブレーキ制御システム
JPWO2017134734A1 (ja) * 2016-02-02 2018-07-05 三菱電機株式会社 電気車のブレーキ制御装置
JP2018182812A (ja) * 2017-04-05 2018-11-15 富士電機株式会社 車両制御装置及び車両
CN109664869A (zh) * 2017-10-16 2019-04-23 株洲中车时代电气股份有限公司 一种车辆混合制动控制方法、装置、控制器及系统
CN114845910A (zh) * 2019-12-25 2022-08-02 纳博特斯克有限公司 带电动制动机构的车辆、车轮单元以及车轮单元的控制用程序

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384546B2 (en) * 2014-01-13 2019-08-20 Ge Global Sourcing Llc System and method for controlling a vehicle
US20160336813A1 (en) 2015-05-15 2016-11-17 NeuSpera Medical Inc. Midfield coupler
CN107128293B (zh) * 2017-04-06 2020-02-07 广州电力机车有限公司 一种自卸车电液联合制动方法
JP7050439B2 (ja) * 2017-08-30 2022-04-08 東海旅客鉄道株式会社 ブレーキ制御システム
EP3774436B1 (de) * 2018-05-04 2022-05-25 Siemens Mobility GmbH Verfahren zum bremsen eines zugverbands
KR102123345B1 (ko) * 2018-08-31 2020-06-18 한국철도기술연구원 철도차량용 전기 기계식 제동 시스템
CN112849104B (zh) * 2019-11-27 2021-11-12 比亚迪股份有限公司 列车制动控制方法、存储介质和电子设备
CN111891098B (zh) * 2020-07-15 2021-05-28 中车青岛四方车辆研究所有限公司 等黏着方式制动力分配方法
FR3139767A1 (fr) * 2022-09-19 2024-03-22 Alstom Holdings Véhicule ferroviaire et procédé de commande associé

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110404A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Electric commanding type fluid braking device
JPS6335103A (ja) * 1986-07-29 1988-02-15 Toshiba Corp 電気列車の制御装置
JPH04133603A (ja) * 1990-09-20 1992-05-07 Kawasaki Heavy Ind Ltd 編成車両のブレーキ装置
JPH08301099A (ja) * 1995-05-12 1996-11-19 Nabco Ltd 鉄道車両用ブレーキ制御装置
JPH08331703A (ja) 1995-05-31 1996-12-13 Toyo Electric Mfg Co Ltd 電気車制御方法および装置
JP2003102103A (ja) * 2001-09-25 2003-04-04 Hitachi Ltd 鉄道編成車両

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8403721D0 (en) 1984-02-13 1984-03-14 Westinghouse Brake & Signal Brake control system
US4659149A (en) 1985-11-08 1987-04-21 American Standard Inc. Cross blending electro-dynamic/friction brake system for multi-car train consist having mixed power and non-power cars
JPH0556507A (ja) 1991-08-27 1993-03-05 Toshiba Toransupooto Eng Kk 電気車制御装置
US5547264A (en) * 1992-11-04 1996-08-20 Aisin Seiki Kabushiki Kaisha Braking force distribution control system
DE4412430C1 (de) * 1994-04-11 1995-08-10 Knorr Bremse Systeme Verfahren und Vorrichtung zum Einstellen der Bremskraftaufteilung zwischen einem Zugfahrzeug und dem Anhänger
JP3473659B2 (ja) * 1996-09-09 2003-12-08 トヨタ自動車株式会社 制動力配分制御装置
JP3811372B2 (ja) * 2001-05-30 2006-08-16 トヨタ自動車株式会社 車輌の制動力制御装置
GB0229097D0 (en) * 2002-12-13 2003-01-15 Bombardier Transp Gmbh Braking system and braking control method
JP2006335171A (ja) * 2005-06-01 2006-12-14 Toyota Motor Corp 車輌の制駆動力制御装置
DE102006011963B3 (de) 2006-02-23 2007-08-30 Siemens Ag Verfahren zum Bremsen eines Schienenfahrzeuges
JP4375376B2 (ja) * 2006-09-14 2009-12-02 トヨタ自動車株式会社 制動力制御装置
US8332113B2 (en) * 2007-04-16 2012-12-11 Advics Co., Ltd Brake control apparatus for vehicle
DE112009005349B4 (de) * 2009-11-09 2021-06-17 Toyota Jidosha Kabushiki Kaisha Bremsvorrichtung für ein Fahrzeug
CN102791544B (zh) * 2010-08-30 2015-07-01 丰田自动车株式会社 车辆的制动力控制装置
JP5691453B2 (ja) * 2010-12-03 2015-04-01 日産自動車株式会社 電動車両のブレーキ制御装置
CN103917402B (zh) * 2011-11-08 2016-05-11 丰田自动车株式会社 车辆的制动/驱动力控制装置
JP5882091B2 (ja) * 2012-03-14 2016-03-09 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5962906B2 (ja) * 2012-06-22 2016-08-03 株式会社アドヴィックス 車両の制動力制御装置
US20150175140A1 (en) * 2012-07-26 2015-06-25 Toyota Jidosha Kabushiki Kaisha Braking/driving force control device
DE112012006733T5 (de) * 2012-07-26 2015-05-07 Toyota Jidosha Kabushiki Kaisha Brems-/ Antriebs-Kraftsteuerungsvorrichtung
GB2506599A (en) * 2012-10-02 2014-04-09 Bentley Motors Ltd An adaptive brake assistance system that adapts the braking assistance in response to environmental and vehicle inputs
JP6314800B2 (ja) * 2014-11-14 2018-04-25 トヨタ自動車株式会社 制動力制御システムおよび車両、並びに制動力制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110404A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Electric commanding type fluid braking device
JPS6335103A (ja) * 1986-07-29 1988-02-15 Toshiba Corp 電気列車の制御装置
JPH04133603A (ja) * 1990-09-20 1992-05-07 Kawasaki Heavy Ind Ltd 編成車両のブレーキ装置
JPH08301099A (ja) * 1995-05-12 1996-11-19 Nabco Ltd 鉄道車両用ブレーキ制御装置
JPH08331703A (ja) 1995-05-31 1996-12-13 Toyo Electric Mfg Co Ltd 電気車制御方法および装置
JP2003102103A (ja) * 2001-09-25 2003-04-04 Hitachi Ltd 鉄道編成車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056876A (ja) * 2015-09-18 2017-03-23 三菱電機株式会社 ブレーキ制御システム
JPWO2017134734A1 (ja) * 2016-02-02 2018-07-05 三菱電機株式会社 電気車のブレーキ制御装置
US11091180B2 (en) 2016-02-02 2021-08-17 Mitsubishi Electric Corporation Brake control device for electric vehicle
JP2018182812A (ja) * 2017-04-05 2018-11-15 富士電機株式会社 車両制御装置及び車両
CN109664869A (zh) * 2017-10-16 2019-04-23 株洲中车时代电气股份有限公司 一种车辆混合制动控制方法、装置、控制器及系统
CN114845910A (zh) * 2019-12-25 2022-08-02 纳博特斯克有限公司 带电动制动机构的车辆、车轮单元以及车轮单元的控制用程序

Also Published As

Publication number Publication date
EP2960122A1 (en) 2015-12-30
EP2960122A4 (en) 2016-11-30
US9592810B2 (en) 2017-03-14
EP2960122B1 (en) 2018-02-14
US20160001756A1 (en) 2016-01-07
JPWO2014128820A1 (ja) 2017-02-02
JP5881888B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5881888B2 (ja) ブレーキ制御装置およびブレーキ制御方法
JP4638959B1 (ja) ブレーキ制御装置およびブレーキ制御方法
JP5994359B2 (ja) 鉄道車両用ブレーキ制御システム
CN108473114B (zh) 具有制动装置的车辆
US20140229058A1 (en) Brake force detection for dynamic brakes of a rail vehicle
CN102143868A (zh) 电气动制动装置及其运行方法
GB2172355A (en) Brake control system for a railway vehicle
CN102556024A (zh) 动态再生制动扭矩控制
JP6602891B2 (ja) 鉄道車両のための選択的な制動力配分
CN104812612A (zh) 车辆控制装置
CN108473129B (zh) 用于开环或闭环控制制动系统的方法以及制动系统
CN109153380B (zh) 用于控制或调节制动装备的方法和设备
JP4271605B2 (ja) 鉄道車両制御方法
US20230127072A1 (en) Apparatus and method for controlling change in speed of vehicle
CN104842983A (zh) 基于多智能体的高铁制动方法和系统
JP6272166B2 (ja) ブレーキ制御装置およびブレーキ制御方法
JP6715680B2 (ja) 鉄道車両用ブレーキ制御装置および鉄道車両用ブレーキ制御システム
JP5787795B2 (ja) ブレーキ制御装置及びブレーキ制御方法
US20240157918A1 (en) Braking system, computer-implemented method of decelerating a rail vehicle, computer program and non-volatile data carrier
JP2004116621A (ja) 車両用制動力制御装置
JPS6123723B2 (ja)
JPH01278207A (ja) 電気車制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14766009

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875662

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE