WO2014126373A1 - 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물 - Google Patents

낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물 Download PDF

Info

Publication number
WO2014126373A1
WO2014126373A1 PCT/KR2014/001107 KR2014001107W WO2014126373A1 WO 2014126373 A1 WO2014126373 A1 WO 2014126373A1 KR 2014001107 W KR2014001107 W KR 2014001107W WO 2014126373 A1 WO2014126373 A1 WO 2014126373A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
lithium
precursor
metal oxide
metal precursor
Prior art date
Application number
PCT/KR2014/001107
Other languages
English (en)
French (fr)
Inventor
임진형
장성균
장원석
박신영
신호석
오현진
한정민
엄인성
정왕모
이동훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14751920.1A priority Critical patent/EP2902364B1/en
Priority to CN201480003552.6A priority patent/CN104884390B/zh
Priority to BR112015013932A priority patent/BR112015013932B8/pt
Priority to IN3943DEN2015 priority patent/IN2015DN03943A/en
Priority to JP2015545387A priority patent/JP6224125B2/ja
Priority to US14/441,580 priority patent/US11577969B2/en
Publication of WO2014126373A1 publication Critical patent/WO2014126373A1/ko
Priority to US17/578,881 priority patent/US20220135428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery capable of repeated charging and discharging, and more particularly, to a transition metal precursor for the production of a precursor of a lithium transition metal oxide and a lithium transition metal oxide used as a positive electrode active material of a lithium secondary battery. will be.
  • Lithium secondary batteries occupy an important position on the basis of development into such a ubiquitous society.
  • Lithium secondary batteries have higher operating voltages and energy densities than other secondary batteries, and can be used for a long time, thereby satisfying the complex requirements of device diversification and complexity.
  • lithium secondary batteries As the area of use of lithium secondary batteries has been expanded to medium and large devices, demand for lithium secondary batteries having both high capacity characteristics, high output characteristics, and high safety characteristics has been increased.
  • the capacity per unit weight or volume of the active material must be large.
  • the tap density of the active material should be high.
  • the higher the tap density the higher the packing density of the electrode.
  • the active material is mixed with a binder or a conductive agent and then coated on the current collector in a thin film state, and then the pressure is applied to make the electrode hard. At this time, if the filling is not good, the electrode cannot be made thin and occupies a lot of volume, and thus it is impossible to realize a high capacity in a given battery volume condition.
  • the specific surface area of the active material should be small.
  • the liquid phase is present on the surface of the active material.
  • the active material is applied to the current collector, the liquid phase occupies a high ratio, and many surfaces are present between the particles even after the electrode is formed, thereby preventing electrical flow.
  • a large amount of binder is required for the castle. Therefore, in order to reduce the resistance of the electrode and to improve the adhesion, more conductive agent and binder must be added, resulting in a smaller amount of the active material, so that a high capacity cannot be obtained in a limited volume.
  • the tap density of the precursor As the tap density of the precursor is higher, the tap density of the active material tends to be higher. Therefore, in the art, technology development is generally performed in the direction of increasing the tap density of the precursor.
  • the tap density of the precursor is proportional to the average particle diameter of the particles constituting the precursor.
  • the cracked or crushed particles form a film having a high resistance because the surface that is not stabilized through heat treatment causes side reaction with the electrolyte, and the by-products formed by continuously reacting with the electrolyte are precipitated on the cathode to degrade the performance of the cathode. In addition, swelling due to gas generation is caused by continuously exhausting the electrolyte solution.
  • the inventors of the present application seek to solve the above-mentioned problems of the prior art through the transition metal precursor in which the ratio of the average particle diameter (D50) and the tap density of the precursor satisfies the condition of the following Equation 1.
  • the present invention as a precursor for the production of lithium transition metal oxide,
  • the tap density is the apparent density of the powder obtained by vibrating the container under constant conditions when filling the powder
  • the average particle diameter (D50) (50% diameter of soil particle) is the grain size accumulation.
  • curve) means a particle size with a passage mass percentage of 50%.
  • the ratio of the average particle diameter (D50) and the tap density of the transition metal precursor may be 500 to 3500, 1000 to 3500, 1500 to 3500, 2000 to 3500.
  • the transition metal precursor is powder which is an aggregate of particles (hereinafter, precursor particles) constituting the transition metal precursor.
  • the following lithium composite transition metal oxide is powder which is an aggregate of the particles (hereinafter, oxide particles) constituting the lithium composite transition metal oxide.
  • the transition metal precursor may be composed of one kind of transition metal, or may include two or more kinds of transition metals.
  • the two or more transition metals include nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), copper (Cu), iron (Fe), magnesium (Mg), boron (B), and chromium (Cr). ) And two cycle transition metals.
  • the transition metal precursor particles may be transition metal oxide particles, transition metal sulfide particles, transition metal nitride particles, transition metal phosphide particles or transition metal hydroxide particles.
  • the transition metal precursor particles may be transition metal hydroxide particles, more specifically, may be a compound represented by the following formula (2).
  • M is two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and bicycle transition metals; 0 ⁇ x ⁇ 0.5.
  • M may include two kinds of transition metals selected from the group consisting of Ni, Co, and Mn, or both.
  • the average particle diameter (D50) of the transition metal precursor may be 1 to 30 ⁇ m.
  • the present invention provides a lithium transition metal oxide prepared by mixing and sintering the transition metal precursor and the lithium precursor.
  • the transition metal may be defined as a lithium composite transition metal oxide.
  • the ratio of the average particle diameter (D50) of the lithium transition metal oxide and the average particle diameter (D50) of the transition metal precursor for producing the lithium transition metal oxide may satisfy the following Equation 3.
  • the oxide particles constituting the lithium composite transition metal oxide may be a compound represented by Formula 4 below.
  • M is at least one metal cation selected from the group consisting of Al, Cu, Fe, Mg, B, Cr and bicycle transition metals;
  • A is -1 or -divalent one or more anions.
  • the lithium composite transition metal oxide particles may be a compound satisfying the conditions of x> y and x> z in Equation 4.
  • the lithium transition metal oxide may be composed of one kind of transition metal, or may include two or more kinds of transition metals.
  • the two or more transition metals include nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), copper (Cu), iron (Fe), magnesium (Mg), boron (B), and chromium (Cr). ) And two cycle transition metals.
  • the present invention also provides a lithium secondary battery in which a positive electrode and a negative electrode including the lithium transition metal oxide and a unit cell in which a polymer film is interposed between the positive electrode and the negative electrode are incorporated in a battery case.
  • the lithium secondary battery may be a lithium ion battery, a lithium ion polymer battery or a lithium polymer battery.
  • the positive electrode active material according to the present invention may further include other lithium-containing transition metal oxides in addition to the lithium transition metal oxides described above.
  • the positive electrode may be prepared by applying a slurry prepared by mixing the positive electrode mixture including the positive electrode active material in a solvent such as NMP onto a positive electrode current collector, followed by drying and rolling.
  • the positive electrode mixture may optionally include a conductive material, a binder, a filler, etc. in addition to the positive electrode active material.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • the positive electrode current collector may form fine concavities and convexities on the surface to strengthen the bonding strength of the positive electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • isopropyl alcohol N-methylpyrrolidone (NMP), acetone, and the like may be typically used.
  • the method of evenly applying the paste of the electrode material to the metal material can be selected from known methods or performed by a new suitable method in consideration of the properties of the material.
  • the paste may be distributed over the current collector, and then uniformly dispersed using a doctor blade or the like.
  • a method of distributing and dispersing in one process may be used.
  • a method such as die casting, comma coating, screen printing, or the like may be used, or the current collector may be formed on a separate substrate and then pressed or laminated. It can also be bonded with.
  • Drying of the paste applied on the metal plate is preferably dried within one day in a vacuum oven at 50 to 200 °C.
  • the negative electrode may be manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally further include components such as a conductive agent, a binder, and a filler as described above.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Metal oxides such as Bi 2 O 5 ;
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheet or nonwoven fabric made of glass fiber or polyethylene; Kraft paper or the like is used.
  • Typical examples currently on the market include Celgard series (Celgard R 2400, 2300 (manufactured by Hoechest Celanese Corp.), polypropylene separator (manufactured by Ube Industries Ltd. or Pall RAI), and polyethylene series (Tonen or Entek).
  • a gel polymer electrolyte may be coated on the separator to increase battery stability.
  • Representative examples of such gel polymers include polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, and the like.
  • the solid electrolyte may also serve as a separator.
  • the said lithium salt containing non-aqueous electrolyte consists of a nonaqueous electrolyte and lithium.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • non-aqueous electrolyte N-methyl- 2-pyrrolidinone, a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, for example , Gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolon Aprotic organic solvents such as derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazo
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4 phenyl lithium borate, imide and the like can be used.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and in order to improve high temperature storage characteristics, a carbon dioxide gas may be further included, and fluoro-ethylene carbonate), propene sultone (PRS), and fluoro-propylene carbonate (FPC).
  • 1 is a graph showing a relationship between a tap density and an average particle diameter (D50) in transition metal precursors according to one embodiment of the present invention and a comparative example;
  • FIG. 2 is a graph showing the relationship between the particle size change before and after the powder of lithium transition metal oxides and the degree of grain growth after firing according to an embodiment of the present invention and a comparative example;
  • FIG. 3 is a graph comparing life characteristics of lithium secondary batteries manufactured using lithium transition metal oxides according to an embodiment of the present invention and a comparative example.
  • Nickel sulphate, cobalt sulphate and manganese sulphate were mixed at a molar ratio of 0.45: 0.15: 0.40 to prepare a 1.5 M aqueous transition metal solution and a 3 M aqueous sodium hydroxide solution.
  • the aqueous transition metal solution was placed in a wet reactor containing distilled water maintained at 45 to 50 ° C., and the sodium hydroxide solution was added to maintain distilled water at a pH of 10.5 to 11.5, and ammonia at 30% concentration was added as an additive.
  • the solution was continuously fed a flow rate of 1/20 to 1/10 of the aqueous transition metal solution to the wet reactor.
  • the flow rates of the transition metal aqueous solution, the sodium hydroxide aqueous solution and the ammonia solution were adjusted so that the average residence time of the solution in the wet reactor was about 6 hours.
  • the nickel-cobalt-manganese composite transition metal precursor prepared by continuously reacting for 20 hours was washed several times with distilled water and dried in a 120 ° C. constant temperature dryer for 24 hours, whereby the nickel-cobalt-manganese composite transition metal precursor was obtained.
  • a transition metal precursor was prepared in the same manner as in Example 1 except that a 30% concentration of ammonia solution as an additive during the reaction was continuously supplied at a flow rate of 1/10 to 1/5 to the wet reactor.
  • a transition metal precursor was prepared in the same manner as in Example 1 except that the rotational speed of the stirrer was maintained at 600 to 800 rpm during the reaction.
  • Nickel sulphate, cobalt sulphate, and manganese sulphate were mixed in a molar ratio of 0.45: 0.15: 0.40 to prepare 1.5 M aqueous solution of transition metal, and 3 M aqueous sodium hydroxide solution was prepared.
  • the aqueous transition metal solution was placed in a wet reactor containing distilled water maintained at 45 to 50 ° C., and the sodium hydroxide solution was added to maintain pH 9.5 to 10.5 in the distilled water inside the wet reactor, and 30% of ammonia was added as an additive.
  • the solution was continuously fed a flow rate of 1/20 to 1/10 of the aqueous transition metal solution to the wet reactor.
  • the flow rates of the transition metal aqueous solution, the sodium hydroxide aqueous solution and the ammonia solution were adjusted so that the average residence time of the solution in the wet reactor was about 6 hours.
  • the nickel-cobalt-manganese composite transition metal precursor prepared by continuously reacting for 20 hours was washed several times with distilled water and dried in a 120 ° C. constant temperature dryer for 24 hours, whereby the nickel-cobalt-manganese composite transition metal precursor was obtained.
  • a transition metal precursor was prepared in the same manner as in Comparative Example 1 except that the ammonia solution was not continuously supplied as an additive during the reaction.
  • transition metal precursors prepared in Examples 1 to 3 and Comparative Examples 1 and 2, respectively, were added 50 g of the precursor to a 100 cc tapping cylinder using a SEISHIN (KYT-4000) measuring instrument, and 3000 times were added thereto.
  • SEISHIN KYT-4000
  • D50 value was measured, Tap density compared to D50 was calculated.
  • Table 1 The results are shown in Table 1 below.
  • the transition metal precursors (Examples 1 to 3) according to the present invention have a low tap density of 3500 or less compared to D50, and the transition metal precursors of Comparative Examples 1 to 2 tap to D50. It can be seen that the density has a high value of 3500 or more.
  • the D50 value corresponding to the volume-based powder distribution was measured using the microtrack (S-3500), and the D50 value corresponding to the volume-based powder distribution was measured again after 60 seconds of ultrasonic dispersion. .
  • the particle size change rate was calculated before and after grinding, and the results are shown in Table 2 below.
  • the lithium transition metal oxide prepared from the transition metal precursors (Examples 1 to 3) according to the present invention has a small value of 1.2 or less particle size change before and after firing, It can be seen that the lithium transition metal oxide prepared from the transition metal precursors of Comparative Examples 1 and 2 has a high value of 1.2 or more in particle size change rate before and after firing.
  • the lithium transition metal oxide prepared from the transition metal precursors (Examples 1 to 3) according to the present invention has a small particle size change during the grinding process, thus showing a high cathode active material It can be seen that the strength is shown. Relatively, lithium transition metal oxides prepared from the transition metal precursors of Comparative Examples 1 to 2 exhibit low strength.
  • the transition metal precursor according to the present invention has a lower tap density than the transition metal precursor made of the transition metal precursor particles under substantially the same condition as the conventional transition metal precursor and the average particle diameter (D50).
  • the average particle diameter D50 being substantially the same means the average particle diameter D50 of the range within a measurement error range of 0.2 micrometer.
  • the lithium transition metal oxide prepared using the transition metal precursor according to the present invention does not increase the average particle diameter (D50) during the sintering process as compared with the conventional lithium transition metal oxide, and uses a conventional transition metal precursor. It has a higher strength than the lithium transition metal oxide prepared by.
  • the lithium secondary battery using the lithium transition metal oxide of the present invention as a positive electrode active material can minimize the phenomenon that the lithium transition metal oxide particles are broken or chipped during the rolling process, thereby improving the high temperature characteristics, lifetime characteristics, and safety. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 리튬 전이금속 산화물의 제조를 위한 전구체로서, 전구체의 평균 입경(D50)과 전구체의 탭 밀도(tap density)의 비가 명세서 내의 식 1의 조건을 만족하는 것을 특징으로 하는 전이금속 전구체 및 이를 사용하여 제조한 리튬 전이금속 산화물을 제공한다.

Description

낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물
본 발명은 반복적인 충방전이 가능한 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 리튬 이차전지의 양극 활물질로 사용되는 리튬 전이금속 산화물 및 리튬 전이금속 산화물의 전구체의 제조를 위한 전이금속 전구체에 관한 것이다.
IT(Information Technology) 기술이 눈부시게 발달함에 따라 다양한 휴대형 정보통신 기기의 확산이 이뤄짐으로써, 21세기는 시간과 장소에 구애 받지 않고 고품질의 정보서비스가 가능한 '유비쿼터스 사회'로 발전되고 있다.
이러한 유비쿼터스 사회로의 발전 기반에는, 리튬 이차전지가 중요한 위치를 차지하고 있다.
리튬 이차전지는 다른 이차전지에 비해 작동 전압 및 에너지 밀도가 높을 뿐 아니라 오래 사용할 수 있어 기기의 다양화와 복합화에 따른 복잡한 요구조건을 충족시킬 수 있는 특성이 있다.
최근 기존의 리튬 이차전지 기술을 더욱 발전시켜 전기자동차 등 친환경 수송 시스템뿐만 아니라, 전력저장 등으로 응용분야를 확대하기 위한 노력이 전세계적으로 활발히 진행되고 있다.
리튬 이차전지의 사용영역이 중대형 디바이스로 확대되면서, 종래에 비해 고용량 특성, 고출력 특성 및 고안전성 특성을 모두 겸비한 리튬 이차전지에 대한 수요가 증가하고 있다.
첫째, 높은 용량을 얻기 위해서는 활물질의 단위 무게당 또는 부피당 용량이커야 한다.
둘째, 활물질의 탭 밀도(tap density)가 높아야 한다. 탭 밀도(tap density)가 높을수록 전극의 충진밀도(packing density)를 높일 수 있다. 구체적으로, 전극 제조를 위해 활물질을 바인더나 도전제와 혼합한 후 얇은 막 상태로 집전체 위에 코팅한 후에 압력을 가하여 전극을 단단하게 만든다. 이때, 충진이 잘되지 않으면 전극을 얇게 만들 수 없고, 부피를 많이 차지하게 때문에 주어진 전지의 부피조건에서 고용량을 구현할 수 없게 된다.
셋째, 활물질의 비표면적이 작아야 한다. 비표면적이 크면 활물질의 표면에 액상이 존재하게 되어 집전체에 활물질을 도포할 경우 액상이 차지하는 비율이 높을 뿐만 아니라 전극을 구성한 후에도 입자 사이에 많은 표면들이 존재하게 되어 전기적인 흐름을 방해하고, 접착성을 위해 많은 양의 바인더가 요구된다. 따라서, 전극의 저항을 줄이고, 접착성을 좋게 하기 위해서는 도전제와 바인더를 더 많이 첨가해야 하기 때문에 결과적으로 활물질의 양이 적어져서 제한된 부피에서는 높은 용량을 얻을 수 없게 된다.
전구체의 탭 밀도가 높을수록 활물질의 탭 밀도가 높게 나타나는 경향이 있기 때문에, 일반적으로 당업계에서는 전구체의 탭 밀도를 높이는 방향으로 기술개발이 이루어지고 있다. 전구체의 탭 밀도는 전구체를 구성하는 입자의 평균 입경에 비례한다.
그러나, 활물질의 탭 밀도를 높이는 기술과는 별개로, 전극 제작 시에는, 슬러리 제조 공정 및 압연 공정에서 활물질을 구성하는 입자들이 부스러지거나 깨지는 현상이 발생한다.
이렇게 깨지거나 부스러진 입자들은 열처리를 통해 안정화하지 않은 표면이 전해액과 부반응을 일으켜 높은 저항을 가지는 피막을 형성하고, 지속적으로 전해액과 반응하여 형성된 부산물은 음극에 석출되어 음극의 성능을 저하시킨다. 또한, 지속적으로 전해액을 소진시킴으로써 가스 발생에 의한 스웰링을 일으킨다.
본 출원의 발명자들은, 전구체의 평균 입경(D50)과 탭 밀도(tap density)의 비가 하기 식 1의 조건을 만족하는 전이금속 전구체를 통해서 상기한 종래기술의 문제를 해결하고자 한다.
따라서, 본 발명은, 리튬 전이금속 산화물의 제조를 위한 전구체로서,
전구체의 평균 입경(D50)과 전구체의 탭 밀도(tap density)의 비가 하기 식 1의 조건을 만족하는 것을 특징으로 하는 전이금속 전구체를 제공한다.
Figure PCTKR2014001107-appb-I000001
상기 식에서, 탭 밀도(tap density)는 분말을 충전할 때 일정한 조건으로 용기를 진동시켜 얻어지는 분말의 겉보기 밀도이고, 평균 입경(D50)(50% diameter of soil particle)은 입경가적곡선(grain size accumulation curve)에서 통과 질량 백분율이 50%에 상당하는 입경을 의미한다.
전이금속 전구체의 평균 입경(D50)와 탭 밀도의 비는 500 내지 3500, 1000 내지 3500, 1500 내지 3500, 2000 내지 3500 일 수 있다.
상기한 전이금속 전구체는, 전이금속 전구체를 구성하는 입자(이하, 전구체 입자)들의 집합체인 분체이다. 마찬가지로, 하기의 리튬 복합 전이금속 산화물은, 리튬 복합 전이금속 산화물을 구성하는 입자(이하, 산화물 입자)들의 집합체인 분체이다.
상기한 전이금속 전구체는, 1종의 전이금속으로 이루어질 수도 있고, 2종 이상의 전이금속들을 포함하고 있을 수도 있다. 상기 2종 이상의 전이금속들은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 구리(Cu), 철(Fe), 마그네슘(Mg), 붕소(B), 크롬(Cr) 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상일 수 있다.
상기 전이금속 전구체 입자는 전이금속 산화물 입자, 전이금속 황화물 입자, 전이금속 질화물 입자, 전이금속 인화물 입자 또는 전이금속 수산화물 입자 등일 수 있다.
구체적으로, 상기 전이금속 전구체 입자는 전이금속 수산화물 입자일 수 있고, 더욱 구체적으로, 하기 식 2로 표현되는 화합물일 수 있다.
M(OH1-x)2 (2)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 또는 그 이상이고; 0≤x≤0.5 이다. 이 때, 상기 M은 Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함할 수 있다.
상기 전이금속 전구체의 평균 입경(D50)은 1 내지 30 ㎛ 일 수 있다.
본 발명은, 상기한 전이금속 전구체와 리튬 전구체를 혼합하고 소결하여 제조한 리튬 전이금속 산화물을 제공한다. 전이금속이 2종 이상인 경우에는 리튬 복합 전이금속 산화물로 정의할 수 있다.
이 때, 상기 리튬 전이금속 산화물의 평균 입경(D50)과, 상기 리튬 전이금속 산화물의 제조를 위한 전이금속 전구체의 평균 입경(D50)의 비는, 하기 식 3을 만족할 수 있다.
Figure PCTKR2014001107-appb-I000002
상기 리튬 복합 전이금속 산화물을 구성하는 산화물 입자는 하기 화학식 4로 표현되는 화합물일 수 있다.
LiaNixMnyCozMwO2-tAt (4)
상기 식에서,
0<a≤1.2, 0≤x≤0.9, 0≤y≤0.9, 0≤z≤0.9, 0≤w≤0.3, 2≤a+x+y+z+w≤2.3, 0≤t<0.2;
M은 Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상의 금속 양이온이고;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
또한, 상기 리튬 복합 전이금속 산화물 입자는 상기 식 4에서, x>y 및 x>z의 조건을 만족하는 화합물일 수 있다.
상기한 리튬 전이금속 산화물은, 1종의 전이금속으로 이루어질 수도 있고, 2종 이상의 전이금속들을 포함하고 있을 수도 있다. 상기 2종 이상의 전이금속들은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 구리(Cu), 철(Fe), 마그네슘(Mg), 붕소(B), 크롬(Cr) 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상일 수 있다.
본 발명은, 또한, 상기한 리튬 전이금속 산화물을 포함하는 양극과 음극 및 상기 양극과 음극 사이에 고분자 막이 개재되어 있는 단위셀이 전지 케이스에 내장되어 있는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는, 리튬 이온전지, 리튬 이온 폴리머 전지 또는 리튬 폴리머 전지일 수 있다.
본 발명에 따른 양극 활물질에는, 상기한 리튬 전이금속 산화물 이외에 기타 리튬 함유 전이금속 산화물이 추가로 포함될 수도 있다.
상기 기타 리튬 함유 전이금속 산화물의 예로는, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-yMyO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극은, 상기한 양극 활물질을 포함하는 양극 합제를 NMP 등의 용매에 혼합하여 만들어진 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 합제는 상기 양극 활물질 이외에 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 분산액으로는 대표적으로 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등이 사용될 수 있다.
전극 재료의 페이스트를 금속 재료에 고르게 도포하는 방법은 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 페이스트를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시킬 수 있다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 택할 수도 있으며, 또는 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 집전체와 접합시킬 수도 있다.
금속판 위에 도포된 페이스트의 건조는 50 내지 200℃의 진공오븐에서 1 일이내로 건조시키는 것이 바람직하다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전제, 바인더 및 충진제 등의 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 더 포함할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포; 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300(Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.
경우에 따라서, 상기 분리막 위에는 전지의 안정성을 높이기 위하여 겔 폴리머 전해질이 코팅될 수 있다. 이러한 겔 폴리머의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로나이트릴 등을 들 수 있다.
전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해질은, 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(fluoro-ethylene carbonate), PRS(propene sultone), FPC(fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
도 1은 본 발명의 일 실시예와 비교예에 따른 전이금속 전구체들에 있어서, 탭 밀도와 평균 입경(D50) 사이의 관계를 도시한 그래프이다;
도 2는 본 발명의 일 실시예와 비교예에 따른 리튬 전이금속 산화물들의 분체 전후의 입도 변화와 소성 후 입자 성장의 정도 사이의 관계를 도시한 그래프이다;
도 3은 본 발명의 일 실시예와 비교예에 따른 리튬 전이금속 산화물을 이용하여 제조한 리튬 이차전지들의 수명 특성을 비교한 그래프이다.
이하, 본 발명에 따른 일 실시예를 기반으로 더욱 자세히 설명할 것이지만, 하기의 실시예들에 본 발명이 제한되는 것은 아님은 본 발명이 속한 분야에서 통상의 지식을 가지는 자에게 자명하다. 또한, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이고, 이러한 변형예들 또한 본 발명의 범주 내에 포함될 것이다.
<실시예 1>
니켈 황산염, 코발트 황산염 및 망간 황산염을 몰비로 0.45:0.15:0.40의 비율로 혼합하여 1.5 M 농도의 전이금속 수용액을 준비하고, 3M 수산화나트륨 수용액을 준비하였다.
상기 전이금속 수용액을 45 내지 50 ℃로 유지되는 증류수가 포함되어 있는 습식 반응기에 넣고, 습식 반응기 내부의 증류수가 pH 10.5 내지 11.5가 유지되도록 상기 수산화나트륨 사용액을 가하였고, 첨가물로서 30% 농도의 암모니아 용액을 습식 반응기에 전이금속 수용액의 1/20 내지 1/10의 유량을 연속적으로 공급하였다.
전이금속 수용액, 수산화나트륨 수용액, 암모니아 용액의 유량을 조절하여 용액의 습식 반응기 내의 평균 체류 시간이 약 6 시간 정도가 되도록 하였다.
반응 중 교반기의 분당 회전수를 800 내지 1000 rpm으로 유지하였다.
정상 상태 도달 후, 20 시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24 시간 건조시켜, 니켈-코발트-망간 복합 전이금속 전구체를 얻었다.
<실시예 2>
반응 중 첨가물로서 30% 농도의 암모니아 용액을 습식 반응기에 1/10 내지 1/5의 유량을 연속적으로 공급하는 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<실시예 3>
반응 중 교반기의 분당 회전수를 600 내지 800 rpm으로 유지하는 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<비교예 1>
니켈 황산염, 코발트 황산염, 및 망간 황산염을 몰비로 0.45:0.15:0.40의 비율로 혼합하여 1.5 M 농도의 전이금속 수용액을 준비하고, 3M 수산화나트륨 수용액을 준비하였다.
상기 전이금속 수용액을 45 내지 50 ℃로 유지되는 증류수가 포함되어 있는 습식 반응기에 넣고, 습식 반응기 내부의 증류수가 pH 9.5 내지 10.5가 유지되도록 상기 수산화나트륨 사용액을 가하였고, 첨가물로서 30% 농도의 암모니아 용액을 습식 반응기에 전이금속 수용액의 1/20 내지 1/10의 유량을 연속적으로 공급하였다.
전이금속 수용액, 수산화나트륨 수용액, 암모니아 용액의 유량을 조절하여 용액의 습식 반응기 내의 평균 체류 시간이 약 6 시간 정도가 되도록 하였다.
반응 중 교반기의 분당 회전수를 1200 내지 1400 rpm으로 유지하였다.
정상 상태 도달 후, 20 시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24 시간 건조시켜, 니켈-코발트-망간 복합 전이금속 전구체를 얻었다.
<비교예 2>
반응 중 첨가물로서 암모니아 용액을 연속적으로 공급하지 않은 것을 제외하고는 비교예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<실험예 1>
상기 실시예 1 내지 3 및 비교예 1 내지 2에서 각각 제조된 전이금속 전구체를 SEISHIN(KYT-4000) 측정기기를 이용하여 100cc 태핑용 실린더에 전구체를 50g을 넣은 후 3000회 태핑을 가하였다. 또한 Microtrac(S-3500)을 이용하여 부피기준 부체 분포도를 얻고, D50값을 측정하였고, D50 대비 Tap 밀도를 계산하였다. 그 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2014001107-appb-T000001
상기 표 1에서 보는 바와 같이, 본 발명에 따른 전이금속 전구체들(실시예 1 내지 3)은 D50 대비 탭 밀도가 3500 이하의 낮은 값을 가지며, 비교예 1 내지 2의 전이금속 전구체들은 D50 대비 탭 밀도가 3500 이상의 높은 값을 가지고 있는 것을 알 수 있다.
<실험예 2>
실시예 1 내지 3 및 비교예 1 내지 2에서 각각 제조된 전이금속 전구체들을 Li/(Ni+Co+Mn)의 비율이 1.10 몰비가 되도록 Li2CO3를 혼합한 후에 5℃/분의 승온 속도로 가열하여 950 ℃에서 10시간 동안 소성시켜 리튬 전이금속 산화물 분말(양극 활물질)을 제조하였다.
이렇게 제조된 양극 활물질 분말을 Microtrack (S-3500)을 이용하여 부피기준 분체 분포에 해당하는 D50 값을 측정하였고, 60초의 초음파 분산과정을 거친 후 다시 부피기준 분체 분포도에 해당하는 D50 값을 측정하였다. 위 두 과정을 거쳐 분쇄 전후 입도 변화율을 계산하였고, 그 결과를 아래 표 2에 나타내었다.
표 2
Figure PCTKR2014001107-appb-T000002
상기 표 2에서 보는 바와 같이, 동일한 전이금속 조성에서, 본 발명에 따른 전이금속 전구체들(실시예 1 내지 3)로부터 제조된 리튬 전이금속 산화물은 소성 전후 입도 변화율이 1.2 이하의 작은 값을 가지며, 비교예 1 내지 2의 전이금속 전구체들로부터 제조된 리튬 전이금속 산화물은 소성 전후 입도 변화율이 1.2 이상의 높은 값을 가진다는 것을 알 수 있다.
<실험예 3>
상기에서 실시예 1 내지 3 및 비교예 1 내지 2에서 각각 제조된 전이금속 전구체들을 이용한 양극 활물질 분말을 PDM-300 paste mixer에 각각 10g을 넣고, 5mm 알루미나 비드를 넣은 후 공전×자전 회전수(rpm) 기준 600×600 조건에서 활물질을 볼 밀 분쇄과정을 거쳤다. 이렇게 제조된 활물질 분쇄품을 Microtrac (S-3500)을 이용하여 60 초의 초음파 분산과정을 거친 후 다시 부피기준 분체 분포에 해당하는 D50 값을 측정하였다.
위 두 과정을 거쳐 분쇄 전후 입도 변화율을 계산하였고, 그 결과를 아래 표 3에 나타내었다.
표 3
Figure PCTKR2014001107-appb-T000003
상기 표 3에서 보는 바와 같이, 동일한 전이금속 조성에서, 본 발명에 따른 전이금속 전구체들(실시예 1 내지 3)로부터 제조된 리튬 전이금속 산화물은 분쇄 과정에서 입도 변화가 적은 것을 보아 높은 양극재 활물질 강도를 나타내는 것을 알 수 있다. 상대적으로 비교예 1 내지 2의 전이금속 전구체들로부터 제조된 리튬 전이금속 산화물은 낮은 강도를 보인다.
본 발명에 따른 전이금속 전구체는, 종래의 전이금속 전구체와 평균 입경(D50)이 실질적으로 동일한 조건 하에서, 종래의 전이금속 전구체 입자들로 이루어진 전이금속 전구체에 비해 낮은 탭 밀도를 가진다.
이 때, 평균 입경(D50)이 실질적으로 동일하다는 것은, 측정 오차범위 0.2 ㎛ 이내의 범위의 평균 입경(D50)을 의미한다.
그 결과, 본 발명에 따른 전이금속 전구체를 사용하여 제조된 리튬 전이금속 산화물은, 종래의 리튬 전이금속 산화물에 비해 소결 과정 동안 평균 입경(D50)의 증가가 크지 않고, 종래의 전이금속 전구체를 사용하여 제조된 리튬 전이금속 산화물에 비해 높은 강도를 가진다.
따라서, 본 발명의 리튬 전이금속 산화물을 양극 활물질로 사용한 리튬 이차전지는 압연 공정 중에 리튬 전이금속 산화물 입자가 깨지거나 부스러지는 현상을 최소화할 수 있으므로, 고온 특성, 수명 특성 및 안전성이 향상되는 효과가 있다.
또한, 용량의 저하를 최소화하고 출력 특성을 향상시킬 수 있다.

Claims (17)

  1. 리튬 전이금속 산화물의 제조를 위한 전구체로서, 전구체의 평균 입경(D50)과 전구체의 탭 밀도(tap density)의 비가 하기 식 1의 조건을 만족하는 것을 특징으로 하는 전이금속 전구체:
    Figure PCTKR2014001107-appb-I000003
  2. 제 1 항에 있어서, 상기 전이금속 전구체는 2종 이상의 전이금속들을 포함하고 있는 것을 특징으로 하는 전이금속 전구체.
  3. 제 2 항에 있어서, 상기 2종 이상의 전이금속들은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 구리(Cu), 철(Fe), 마그네슘(Mg), 붕소(B), 크롬(Cr) 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상인 것을 특징으로 하는 전이금속 전구체.
  4. 제 3 항에 있어서, 상기 2종 이상의 전이금속들은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하는 것을 특징으로 하는 전이금속 전구체.
  5. 제 1 항에 있어서, 상기 전이금속 전구체를 구성하는 전구체 입자는 전이금속 수산화물 입자인 것을 특징으로 하는 전이금속 전구체.
  6. 제 5 항에 있어서, 상기 전이금속 수산화물 입자는 하기 식 2로 표현되는 화합물인 것을 특징으로 하는 전이금속 전구체.
    M(OH1-x)2 (2)
    상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 또는 그 이상이고; 0≤x≤0.5 이다.
  7. 제 6 항에 있어서, 상기 M은 Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하는 것을 특징으로 하는 전이금속 전구체.
  8. 제 1 항에 있어서, 상기 전이금속 전구체의 평균 입경(D50)은 1 내지 30 ㎛인 것을 특징으로 하는 전이금속 전구체.
  9. 리튬 전이금속 산화물의 평균 입경(D50)과, 상기 리튬 전이금속 산화물의 제조를 위한 전이금속 전구체의 평균 입경(D50)의 비가, 하기 식 3을 만족하는 것을 특징으로 하는 리튬 전이금속 산화물:
    Figure PCTKR2014001107-appb-I000004
  10. 제 9 항에 있어서, 상기 리튬 전이금속 산화물은 2종 이상의 전이금속들을 포함하고 있는 것을 특징으로 하는 리튬 전이금속 산화물.
  11. 제 10 항에 있어서, 상기 리튬 전이금속 산화물은 하기 화학식 4로 표현되는 화합물인 것을 특징으로 하는 리튬 전이금속 산화물:
    LiaNixMnyCozMwO2-tAt (4)
    상기 식에서,
    0<a≤1.2, 0≤x≤0.9, 0≤y≤0.9, 0≤z≤0.9, 0≤w≤0.3, 2≤a+x+y+z+w≤2.3, 0≤t<0.2;
    M은 Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상의 금속 양이온이고;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  12. 제 11 항에 있어서, 상기 식 4에서, x>y 및 x>z의 조건을 만족하는 것을 특징으로 하는 리튬 전이금속 산화물.
  13. 제 11 항에 있어서, 상기 리튬 전이금속 산화물은 2종 이상의 전이금속들을 포함하고 있는 것을 특징으로 하는 리튬 전이금속 산화물.
  14. 제 9 항 내지 제 13 항 중 어느 하나에 따른 리튬 전이금속 산화물을 포함하는 양극과 음극 및 상기 양극과 음극 사이에 고분자 막이 개재되어 있는 단위셀이 전지 케이스에 내장되어 있는 리튬 이차전지.
  15. 제 14 항에 있어서, 상기 리튬 이차전지는, 리튬 이온전지인 것을 특징으로 하는 리튬 이차전지.
  16. 제 14 항에 있어서, 상기 리튬 이차전지는, 리튬 이온 폴리머 전지인 것을 특징으로 하는 리튬 이차전지.
  17. 제 14 항에 있어서, 상기 리튬 이차전지는, 리튬 폴리머 전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/001107 2013-02-13 2014-02-11 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물 WO2014126373A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14751920.1A EP2902364B1 (en) 2013-02-13 2014-02-11 Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
CN201480003552.6A CN104884390B (zh) 2013-02-13 2014-02-11 具有低振实密度的过渡金属前体和具有高粒子强度的锂过渡金属氧化物
BR112015013932A BR112015013932B8 (pt) 2013-02-13 2014-02-11 Precursor de metal de transição tendo baixa densidade de derivação, óxido de metal de transição de lítio tendo alta resistência de partícula e bateria secundára de lítio
IN3943DEN2015 IN2015DN03943A (ko) 2013-02-13 2014-02-11
JP2015545387A JP6224125B2 (ja) 2013-02-13 2014-02-11 低いタップ密度を有する遷移金属前駆体及び高い粒子強度を有するリチウム遷移金属酸化物
US14/441,580 US11577969B2 (en) 2013-02-13 2014-02-11 Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
US17/578,881 US20220135428A1 (en) 2013-02-13 2022-01-19 Transition Metal Precursor Having Low Tap Density And Lithium Transition Metal Oxide Having High Particle Strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130015206A KR101575024B1 (ko) 2013-02-13 2013-02-13 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물
KR10-2013-0015206 2013-02-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/441,580 A-371-Of-International US11577969B2 (en) 2013-02-13 2014-02-11 Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
US17/578,881 Division US20220135428A1 (en) 2013-02-13 2022-01-19 Transition Metal Precursor Having Low Tap Density And Lithium Transition Metal Oxide Having High Particle Strength

Publications (1)

Publication Number Publication Date
WO2014126373A1 true WO2014126373A1 (ko) 2014-08-21

Family

ID=51354333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001107 WO2014126373A1 (ko) 2013-02-13 2014-02-11 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물

Country Status (9)

Country Link
US (2) US11577969B2 (ko)
EP (1) EP2902364B1 (ko)
JP (1) JP6224125B2 (ko)
KR (1) KR101575024B1 (ko)
CN (1) CN104884390B (ko)
BR (1) BR112015013932B8 (ko)
IN (1) IN2015DN03943A (ko)
TW (1) TWI606632B (ko)
WO (1) WO2014126373A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233772B1 (ko) 2016-09-13 2021-03-30 삼성에스디아이 주식회사 리튬이차전지용 산화코발트, 그 제조방법, 이로부터 형성된 리튬이차전지용 리튬코발트산화물 및 이를 포함한 양극을 구비한 리튬이차전지
JP7262230B2 (ja) * 2019-01-22 2023-04-21 株式会社田中化学研究所 非水電解質二次電池用複合水酸化物小粒子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066455A (ko) * 2007-08-21 2010-06-17 하.체. 스타르크 게엠베하 분말 NiaM1bM2c(O)x(OH)y 화합물, 그 화합물의 제조 방법, 및 그 화합물의 배터리에서의 용도
KR20100067086A (ko) * 2007-10-12 2010-06-18 하.체. 스타르크 게엠베하 분말 NiaMbOx(OH)y 화합물, 이 화합물의 제조 과정, 및 배터리에서의 이 화합물의 용도
KR20100131430A (ko) * 2008-03-28 2010-12-15 도다 고교 가부시끼가이샤 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
KR20110132287A (ko) * 2010-06-01 2011-12-07 주식회사 엘앤에프신소재 전이금속 화합물 전구체, 이를 이용한 리튬 전이금속 화합물, 상기 리튬 전이금속 화합물을 포함하는 양극 활물질 및 상기 양극 활물질을 포함하는 리튬 이온 이차전지
WO2012037975A1 (en) * 2010-09-22 2012-03-29 Omg Kokkola Chemicals Oy Mixed metal oxidized hydroxide and method for production

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106534A (ja) * 1999-10-06 2001-04-17 Tanaka Chemical Corp 非水電解液電池活物質用原料複合金属水酸化物及び活物質リチウム複合金属酸化物
JP4359092B2 (ja) 2003-08-21 2009-11-04 Agcセイミケミカル株式会社 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4683527B2 (ja) * 2004-07-22 2011-05-18 日本化学工業株式会社 改質リチウムマンガンニッケル系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
US8337727B2 (en) 2007-06-29 2012-12-25 Umicore High density lithium cobalt oxide for rechargeable batteries
CN101809788B (zh) 2007-11-06 2014-03-19 松下电器产业株式会社 非水电解质二次电池用正极活性物质以及使用其的非水电解质二次电池
PL2261176T3 (pl) 2008-04-03 2022-11-14 Lg Energy Solution, Ltd. Nowy prekursor do wytwarzania złożonego tlenku litu-metalu przejściowego
JP5651937B2 (ja) * 2008-09-10 2015-01-14 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
US8673170B2 (en) 2009-02-20 2014-03-18 Umicore Non-homogenous positive electrode materials combining high safety and high power in a Li rechargeable battery
EP2492243B1 (en) 2009-10-22 2019-04-24 Toda Kogyo Corp. Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
EP2544280B1 (en) 2010-03-05 2018-06-06 JX Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
JP2012038562A (ja) * 2010-08-06 2012-02-23 Tdk Corp 前駆体、活物質の製造方法及びリチウムイオン二次電池
EP2663527B1 (de) 2011-01-10 2014-11-19 Basf Se Verfahren zur herstellung von übergangsmetallhydroxiden
KR101689214B1 (ko) 2011-10-28 2016-12-26 삼성에스디아이 주식회사 리튬 이차 전지용 니켈 복합 수산화물, 이로부터 형성된 리튬 이차 전지용 리튬 복합 산화물, 그 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지
JP2013144625A (ja) * 2012-01-16 2013-07-25 Tanaka Chemical Corp ニッケルコバルトマンガン複合水酸化物及びその製造方法、非水電解質二次電池用の正極活物質、並びに非水電解質二次電池
KR101954119B1 (ko) 2013-10-31 2019-03-06 주식회사 엘지화학 리튬 이차전지용 양극 활물질 조성물 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066455A (ko) * 2007-08-21 2010-06-17 하.체. 스타르크 게엠베하 분말 NiaM1bM2c(O)x(OH)y 화합물, 그 화합물의 제조 방법, 및 그 화합물의 배터리에서의 용도
KR20100067086A (ko) * 2007-10-12 2010-06-18 하.체. 스타르크 게엠베하 분말 NiaMbOx(OH)y 화합물, 이 화합물의 제조 과정, 및 배터리에서의 이 화합물의 용도
KR20100131430A (ko) * 2008-03-28 2010-12-15 도다 고교 가부시끼가이샤 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
KR20110132287A (ko) * 2010-06-01 2011-12-07 주식회사 엘앤에프신소재 전이금속 화합물 전구체, 이를 이용한 리튬 전이금속 화합물, 상기 리튬 전이금속 화합물을 포함하는 양극 활물질 및 상기 양극 활물질을 포함하는 리튬 이온 이차전지
WO2012037975A1 (en) * 2010-09-22 2012-03-29 Omg Kokkola Chemicals Oy Mixed metal oxidized hydroxide and method for production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902364A4 *

Also Published As

Publication number Publication date
US20220135428A1 (en) 2022-05-05
KR101575024B1 (ko) 2015-12-07
EP2902364B1 (en) 2018-06-06
EP2902364A1 (en) 2015-08-05
BR112015013932A2 (pt) 2017-07-11
EP2902364A4 (en) 2016-06-29
BR112015013932B1 (pt) 2021-11-23
TWI606632B (zh) 2017-11-21
JP2016500048A (ja) 2016-01-07
CN104884390A (zh) 2015-09-02
IN2015DN03943A (ko) 2015-10-02
KR20140102367A (ko) 2014-08-22
CN104884390B (zh) 2018-01-23
JP6224125B2 (ja) 2017-11-01
BR112015013932B8 (pt) 2023-01-17
US20160002063A1 (en) 2016-01-07
TW201448332A (zh) 2014-12-16
US11577969B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2012161476A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2013009078A2 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2013085241A1 (ko) 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2012161479A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2015016548A1 (ko) 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
WO2013165150A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2011084003A2 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
WO2012161480A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2012161474A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2012161482A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014751920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441580

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015545387

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013932

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015013932

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150612