WO2014119362A1 - フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器 - Google Patents

フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器 Download PDF

Info

Publication number
WO2014119362A1
WO2014119362A1 PCT/JP2014/050494 JP2014050494W WO2014119362A1 WO 2014119362 A1 WO2014119362 A1 WO 2014119362A1 JP 2014050494 W JP2014050494 W JP 2014050494W WO 2014119362 A1 WO2014119362 A1 WO 2014119362A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor pattern
high frequency
flat cable
type high
cable type
Prior art date
Application number
PCT/JP2014/050494
Other languages
English (en)
French (fr)
Inventor
馬場貴博
吉永保子
石野聡
佐々木純
加藤登
用水邦明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490000402.5U priority Critical patent/CN205039787U/zh
Priority to JP2014535435A priority patent/JP5800094B2/ja
Publication of WO2014119362A1 publication Critical patent/WO2014119362A1/ja
Priority to US14/802,059 priority patent/US9570784B2/en
Priority to US15/393,301 priority patent/US9947979B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2013Coplanar line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details

Definitions

  • the present invention relates to a flat cable type high frequency filter, a flat cable type high frequency diplexer, and a flat cable type high frequency diplexer having a frequency selection function and made of a thin flat film, and an electronic device including the flat cable type high frequency filter or flat cable type high frequency diplexer.
  • an electronic device using a high frequency signal such as a portable terminal is provided with a high frequency filter in order to select a high frequency signal in a required frequency band from unnecessary high frequency signals and harmonic signals.
  • a conventional high-frequency filter has a structure as shown in Patent Document 1.
  • the high-frequency filter described in Patent Document 1 includes a mounting-type laminate in which a plurality of dielectric layers are laminated and sintered.
  • the inductor and the capacitor constituting the high frequency filter are realized by a conductor pattern formed in the multilayer body.
  • the high-frequency filter composed of such a mount-type laminate tends to limit the mounting area as electronic devices become smaller, and accordingly, the high-frequency filter is required to be downsized.
  • the conductor pattern to be the inductor and capacitor formed in the multilayer body is also downsized and thinned.
  • the conventional mounting type high frequency filter described above has a high frequency filter mounted on one mounting board and connected to the other mounting board with a flat cable.
  • another intermediate mounting board is disposed between the two mounting boards, and a high frequency filter is mounted on the intermediate mounting board, thereby connecting to each mounting board with a flat cable.
  • the mounting type laminate that realizes the high-frequency filter requires a certain height, a space corresponding to the height of the laminate is required on the mounting surface of the mounting substrate.
  • an object of the present invention is to realize a space-saving high-frequency filter having low-loss transmission characteristics.
  • the flat cable type high frequency filter of the present invention includes a dielectric base material, a plurality of conductor patterns, and a capacitive coupling conductor pattern.
  • the dielectric substrate has a flat film shape that extends in the transmission direction of the high-frequency signal.
  • the plurality of conductor patterns are formed on the dielectric substrate, and are configured by dividing the conductor pattern at an intermediate position in the extending direction of the dielectric substrate.
  • the capacitive coupling conductor pattern capacitively couples between the plurality of conductor patterns.
  • an inductor is formed by a plurality of conductor patterns
  • a capacitor is formed by a capacitive coupling conductor pattern.
  • a series resonance circuit of an inductor and a capacitor is configured by a conductor pattern formed on a flat film-like dielectric substrate, and a high frequency filter is realized by this LC series resonance circuit.
  • the dielectric base material preferably has a dielectric loss tangent of 0.005 or less.
  • the Q value of the LC resonance circuit that is, the high frequency filter is improved.
  • a flat cable type high frequency filter having further excellent transmission characteristics can be realized.
  • the dielectric base material is preferably made of a liquid crystal polymer.
  • the dielectric base material of the present invention is not formed with a conductor pattern connected to the ground potential.
  • the flat cable type high frequency filter of the present invention it is preferable to provide a flat film-like shield conductor pattern facing a flat film surface of a plurality of conductor patterns not forming a capacitor at a predetermined distance.
  • the shield conductor pattern is preferably disposed on both sides of the conductor pattern so as to sandwich the conductor pattern.
  • the bent portion is a position different from the formation region of the capacitive coupling conductor pattern along the transmission direction of the dielectric substrate.
  • the capacitive coupling conductor pattern is a flat plate disposed so as to face one of the plurality of conductor patterns with a dielectric layer constituting the dielectric substrate interposed therebetween. You may form with a conductor pattern and the flat plate area
  • the capacitive coupling conductor pattern is a flat conductor pattern disposed so as to be opposed to a plurality of conductor patterns with a dielectric layer constituting a dielectric substrate interposed therebetween. And a flat plate region of a plurality of conductor patterns opposed to the flat plate conductor pattern.
  • the plurality of conductor patterns are formed on different surfaces sandwiching the dielectric layer constituting the dielectric substrate, and the capacitive coupling conductor pattern is formed of the plurality of conductors.
  • the pattern may be constituted by regions facing each other with the dielectric layer interposed therebetween.
  • the width in the direction orthogonal to the transmission direction of the conductor pattern facing the capacitive coupling conductor pattern and the width of the conductor pattern not facing the capacitive coupling conductor pattern are approximately Preferably they are the same.
  • the ESR of the inductor can be made as small as possible.
  • the width of the conductor pattern is preferably substantially the same as the width of the dielectric substrate.
  • the ESR is reduced as much as possible while ensuring the environmental resistance of the conductor pattern.
  • the capacitive coupling conductor pattern is formed integrally with the opposing ends of the plurality of conductor patterns, and is a comb-like conductor opposing at a predetermined distance along the transmission direction. There may be.
  • the flat cable type high frequency filter of the present invention may have the following configuration.
  • the conductor pattern is composed of a first partial conductor pattern and a second partial conductor pattern in which one end is connected.
  • the first partial conductor pattern is wider than the second partial conductor pattern and is linear along the transmission direction.
  • the second partial conductor pattern has a loop shape.
  • a capacitor is constituted by the first partial conductor pattern, and an inductor is constituted by the second partial conductor pattern.
  • a high-frequency filter having desired characteristics can be realized by a flat cable.
  • the first partial conductor pattern and the second partial conductor pattern are formed in a plurality of layers constituting the dielectric base material.
  • the ESR of the inductor can be reduced, and the capacitance of the capacitor can be further increased.
  • the flat cable type high frequency diplexer of the present invention includes a band pass filter having the configuration of the above flat cable type high frequency filter, and a band rejection filter configured by another conductor pattern formed on the dielectric substrate. It is characterized by providing.
  • An electronic apparatus includes any one of the above-described flat cable type high frequency filter or flat cable type high frequency diplexer and a plurality of mounting circuit boards, and the plurality of mounting circuit boards include the flat cable type high frequency filter or It is characterized by being connected by a flat cable type high frequency diplexer.
  • the flat cable type high frequency filter or the flat cable type high frequency diplexer is arranged with a predetermined gap with respect to each of the plurality of mounting circuit boards.
  • 1 is an external perspective view of a flat cable type high frequency filter according to a first embodiment of the present invention. It is an exploded perspective view of the flat cable type high frequency filter concerning a 1st embodiment of the present invention. 1 is an exploded plan view of a flat cable type high frequency filter according to a first embodiment of the present invention. It is an exploded side view of the flat cable type high frequency filter concerning a 1st embodiment of the present invention. It is the equivalent circuit and filter characteristic figure of the flat cable type
  • FIG. 1 is an external perspective view of a flat cable type high frequency filter according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the flat cable type high frequency filter according to the first embodiment of the present invention.
  • FIG. 3 is an exploded plan view of the flat cable type high frequency filter according to the first embodiment of the present invention.
  • FIG. 4 is an exploded side view of the flat cable type high frequency filter according to the first embodiment of the present invention.
  • a flat cable type high frequency filter 10 (hereinafter simply referred to as “high frequency filter 10” unless otherwise required) includes a dielectric substrate 20, a protective layer 30, external connection conductors 511 and 512. Is provided. External connection conductors 511 and 512 are disposed on one main surface of the dielectric substrate 20. Further, a protective layer 30 having an insulating property is disposed on one main surface of the dielectric substrate 20. The protective layer 30 is disposed so that the external connection conductors 511 and 512 are exposed and a capacitive coupling conductor pattern 410 described later is covered.
  • the dielectric substrate 20 is made of a long flat film extending along the transmission direction of the high frequency signal and has a predetermined thickness.
  • the extending direction is a longitudinal direction
  • the direction orthogonal to the longitudinal direction and the thickness direction is a width direction.
  • the dielectric substrate 20 has a structure in which dielectric layers 201 and 202 having a flat film shape (for example, a thickness of 25 ⁇ m to 50 ⁇ m) are stacked in the thickness direction. Become.
  • the dielectric substrate 20 (dielectric layers 201 and 202) is made of a dielectric material having a low dielectric loss tangent (tan ⁇ ). More preferably, the dielectric substrate 20 (dielectric layers 201 and 202) is made of a material having a dielectric loss tangent of less than 0.005.
  • a liquid crystal polymer may be used as a material.
  • Conductive patterns 401 and 402 are formed on the flat surface of the dielectric layer 201 on the dielectric layer 202 side.
  • the conductor patterns 401 and 402 are made of a highly conductive material, for example, copper (Cu).
  • Cu copper
  • a copper foil having a thickness of 10 ⁇ m to 20 ⁇ m is used.
  • the conductor patterns 401 and 402 are long.
  • the longitudinal directions of the conductor patterns 401 and 402 coincide with the longitudinal direction of the dielectric substrate 20.
  • the conductor pattern 401 has a shape that extends from the vicinity of one end of the dielectric layer 201 to the middle in the longitudinal direction.
  • the conductor pattern 402 has a shape extending from the vicinity of the other end of the dielectric layer 201 to the middle in the longitudinal direction.
  • the conductor patterns 401 and 402 are not connected to each other, and a gap 400 is formed between the end portions on the opposite sides.
  • the lengths of the conductor patterns 401 and 402 (the length along the longitudinal direction) are determined so as to realize a desired inductance as the inductor of the high frequency filter 10.
  • the widths of the conductor patterns 401 and 402 are preferably as close as possible to the width of the dielectric substrate 20, in other words, the conductor patterns 401 and 402 are as wide as possible within a range that can be formed with respect to the dielectric substrate 20. However, it may be set as appropriate so as to realize a desired inductance as the inductor of the high-frequency filter 10.
  • the width of the conductor patterns 401 and 402 is preferably 80% or more of the width of the dielectric substrate 20, and particularly preferably about 90%. That is, the widths of the conductor patterns 401 and 402 are preferably substantially the same as the width 20 of the dielectric substrate. In this configuration, the ESR is reduced as much as possible while ensuring the environmental resistance of the conductor pattern.
  • a capacitive coupling conductor pattern 410 is formed on the flat surface of the dielectric layer 202 opposite to the dielectric layer 201.
  • the capacitive coupling conductor pattern 410 is also made of a highly conductive material, for example, copper (Cu). In this embodiment, a copper foil having a thickness of 10 ⁇ m to 20 ⁇ m is used.
  • the capacitive coupling conductor pattern 410 has a rectangular shape.
  • the capacitive coupling conductor pattern 410 is opposed to a region in the vicinity of the ends of the conductive patterns 401 and 402 facing each other with the gap 400 interposed therebetween via the dielectric layer 202. At this time, the facing area between the capacitive coupling conductor pattern 410 and the conductor pattern 402 is determined so as to realize a desired capacitance as a capacitor of the high-frequency filter 10.
  • the capacitive coupling conductor pattern 410 and the conductor pattern 401 are opposed to each other in an area where the connection conductor 60 made of a conductive via penetrating the dielectric layer 202 can be formed.
  • the capacitive coupling conductor pattern 410 is connected to the conductor pattern 401 via the connection conductor 60.
  • An external connection conductor 511 is formed on one end of the flat surface of the dielectric layer 202 opposite to the dielectric layer 201.
  • the external connection conductor 511 has a substantially rectangular shape.
  • the external connection conductor 511 is made of a highly conductive material, for example, copper (Cu). In this embodiment, a copper foil having a thickness of 10 ⁇ m to 20 ⁇ m is used.
  • the external connection conductor 511 is connected to the vicinity of the end portion of the conductor pattern 401 opposite to the conductor pattern 402 via the connection conductor 60 penetrating the dielectric layer 202.
  • An external connection conductor 512 is formed on the other end of the flat surface of the dielectric layer 202 opposite to the dielectric layer 201.
  • the external connection conductor 512 has a substantially rectangular shape.
  • the external connection conductor 512 is made of a highly conductive material, for example, copper (Cu).
  • the external connection conductor 512 is connected to the vicinity of the end portion of the conductor pattern 402 opposite to the conductor pattern 401 via the connection conductor 60 penetrating the dielectric layer 202.
  • the high frequency signal input from the external connection conductor 511 is transmitted to the capacitive coupling conductor pattern 410 via the conductor pattern 401.
  • the transmitted high-frequency signal is transmitted to the conductor pattern 402 by capacitive coupling between the capacitive coupling conductor pattern 410 and the conductor pattern 402, and is output from the external connection conductor 512.
  • FIG. 5A is an equivalent circuit diagram of the flat cable type high frequency filter according to the first embodiment of the present invention. As shown in FIG. 5A, the above-described configuration realizes an LC series resonance circuit in which an inductor, a capacitor, and an inductor are connected in series between the external connection conductors 511 and 512 in this order.
  • the inductance of each inductor and the capacitance of the capacitor can be determined to desired values. Thereby, it is possible to realize a filter having a predetermined frequency band as a pass band and an attenuation band outside the frequency band.
  • the conductor patterns 401 and 402 functioning as inductors can be formed wider than the conductor pattern of the inductor formed in the conventional mounting-type multilayer body.
  • the series resistance ESR can be reduced. Thereby, the Q value of the high frequency filter can be improved and transmission loss can be suppressed.
  • the opposing area of the capacitive coupling conductor pattern 410 and the conductor pattern 402 can be widened, and a large capacitance can be realized within the range of the outer shape of the flat cable type high frequency filter 10.
  • the realization range of the capacitance required as a high frequency filter can be widened. This makes it easy to achieve desired high frequency filter characteristics.
  • a lead conductor for connecting the inductor and the capacitor as in the conventional mounting type laminated body is not required. Therefore, an unnecessary inductance component connected to the capacitor does not occur, the Q value of the high frequency filter can be further improved, and transmission loss can be further suppressed.
  • the Q value of the high frequency filter can be obtained. Can be further improved, and transmission loss can be further suppressed.
  • a high-frequency filter having high flexibility can be realized while obtaining the above-described characteristics.
  • the configuration of this embodiment does not use a ground conductor. With this configuration, it is possible to prevent the conductor patterns 401 and 402 and the capacitive coupling conductor pattern 410 from being coupled to the ground. Thereby, a stray capacitance does not occur, a desired Q value can be realized, and a high-frequency filter with higher accuracy and excellent filter characteristics can be realized.
  • FIG. 5B is a filter characteristic diagram of the flat cable type high frequency filter according to the first embodiment of the present invention.
  • FIG. 5 (B) shows the simulation results of S11 and S21. Assuming that this is used for Wi-Fi, the frequency band from the vicinity of 2.4 GHz to the vicinity of 5.0 GHz is used as the passband. The case where the conductor patterns 401 and 402 and the capacitive coupling conductor pattern 410 are configured so that the low frequency band (for example, 700 MHz band) is within the stop band is shown.
  • the low frequency band for example, 700 MHz band
  • a desired high-frequency signal in the frequency band from about 2.4 GHz to about 5.0 GHz is passed with low loss, and outside the pass band.
  • High frequency signals can be attenuated.
  • a high frequency signal in a frequency band lower than the pass band can be significantly attenuated.
  • a high-frequency filter with low transmission loss and excellent filter characteristics can be realized thinly and in a space-saving manner.
  • the width WC of the capacitive coupling conductor pattern 410 and the width WL of the conductor patterns 401 and 402 are the same. However, it may be substantially the same. In such a configuration, the widths of the conductor patterns 401 and 402 functioning as inductors can be set wide, the ESR of the inductor can be lowered, and the Q value of the high-frequency filter can be increased.
  • the ratio between the width WC of the capacitive coupling conductor pattern 410 and the width WL of the conductor patterns 401 and 402 is preferably 1.0 ⁇ WL / WC ⁇ 0.8, for example.
  • FIG. 6A is a side cross-sectional view illustrating a component configuration of the portable electronic device according to the first embodiment of the present invention
  • FIG. 6B is a plan cross-sectional view illustrating the component configuration of the portable electronic device. is there.
  • the electronic device 1 includes a thin device casing 2.
  • Mounted circuit boards 3 ⁇ / b> A and 3 ⁇ / b> B (corresponding to “mounted circuit members” of the present invention), which are circuit elements, are arranged in the device housing 2.
  • a plurality of IC chips 5 and mounting components 6 are mounted on the surfaces of the mounting circuit boards 3A and 3B.
  • the mounted circuit boards 3A and 3B are installed in the device housing 2 so as to be adjacent to each other when the device housing 2 is viewed in plan view.
  • the mounting circuit board 3B is formed thicker than the mounting circuit board 3A.
  • the mounting circuit board 3B has a multi-function internal circuit, and the mounting circuit board 3A has such a thickness relationship when the internal circuit is relatively simple.
  • the distance between the mounting circuit board 3B and the device housing 2 is extremely narrow in the thickness direction of the device housing 2. Therefore, a coaxial cable cannot be arranged to connect the mounting circuit boards 3A and 3B.
  • the mounting circuit board 3A. , 3B and the device casing 2 can be passed through the flat cable type high frequency filter 10.
  • the flat cable as a transmission line can be obtained by using the flat cable type high frequency filter 10 of the present embodiment. Space can be saved as compared with the case where a high frequency filter is separately prepared.
  • the high-frequency filter can be formed thinner than that realized by a laminated component.
  • the flat cable type high frequency filter 10 of the present embodiment has flexibility, so that the flat cable type high frequency filter 10 is bent or bent. By arranging, the flat cable type high frequency filter can be efficiently arranged in the device casing 2. Thereby, the space for arranging the flat cable type high frequency filter can be saved.
  • the bending position is a position excluding the capacitor formation region, that is, the formation region of the capacitive coupling conductor pattern 410.
  • the thicknesses of the dielectric layers 201 and 202 of the flexible dielectric base material 20 and the thicknesses of the conductor patterns 401 and 402 and the capacitive coupling conductor pattern 420 having a predetermined rigidity are appropriately set.
  • a curved shape can be maintained.
  • the thickness of the dielectric layer is preferably 25 ⁇ m to 50 ⁇ m, and the thickness of the conductor pattern and the capacitive coupling conductor pattern is preferably about half that of the dielectric layer.
  • the flat cable type high frequency filter 10 can be arranged apart from (not in contact with) the mounting circuit boards 3A and 3B. Thereby, electromagnetic interference between the flat cable type high frequency filter 10 and the mounting circuit boards 3A and 3B can be suppressed, and the transmission characteristics and the high frequency filter characteristics between the mounting circuit boards 3A and 3B can be improved. In particular, if the distance is 100 ⁇ m or more, a sufficient electromagnetic interference suppressing effect can be obtained.
  • FIG. 7 is a partial side view showing a method of forming a curved portion of the flat cable type high frequency filter.
  • FIG. 7A is a diagram showing a flat cable type high frequency filter and a curve forming jig
  • FIG. 7B is a diagram showing the flat cable type high frequency filter after the curve formation.
  • the flat cable type high frequency filter 10 includes a first jig 901 having a step 911 along the thickness direction and a second jig 902 having a step 912 along the thickness direction. It is caught. At this time, the first jig 901 and the second jig 902 sandwich the flat cable type high frequency filter 10 so that the steps 911 and 912 are sandwiched and meshed with the flat cable type high frequency filter 10 in contact with both sides. Apply heat according to. Thereby, the flat cable type high frequency filter 10 can be curved at a predetermined position in the longitudinal direction.
  • the edge portions of the steps 911 and 912 are chamfered, and are rounded in a cross-sectional view.
  • the curved portion Be10 can be formed without damaging the flat cable type high frequency filter 10.
  • FIG. 8 is an exploded plan view of a flat cable type high frequency filter according to the second embodiment of the present invention.
  • the flat cable type high frequency filter 10A of the present embodiment differs from the flat cable type high frequency filter 10 according to the first embodiment only in the shape of the capacitive coupling conductor pattern 410W. Therefore, only different parts will be specifically described.
  • the width WCA of the capacitive coupling conductor pattern 410W of the flat cable type high frequency filter 10A is wider than the width WL of the conductor patterns 401 and 402. Even with such a configuration, an LC series resonance circuit can be realized, and the same effects as those of the first embodiment can be obtained.
  • the ratio between the width WC of the capacitive coupling conductor pattern 410W and the width WL of the conductor patterns 401 and 402 is preferably 1.0 ⁇ WL / WC ⁇ 0.8, for example.
  • the opposing area is within the range of the width difference. Does not change. Therefore, the flat cable type high frequency filter 10A that achieves a desired capacitance can be more easily manufactured. In addition, variation in characteristics between products can be reduced.
  • FIG. 9 is an exploded side view of a flat cable type high frequency filter according to the third embodiment of the present invention.
  • the shape of the capacitive coupling conductor pattern 410B and the relationship between the capacitive coupling conductor pattern 410B and the conductor pattern 401 are the same as those of the flat cable type high frequency filter 10 according to the first embodiment. And different. Therefore, only different parts will be specifically described.
  • the capacitive coupling conductor pattern 410B is formed to face the conductor pattern 401 with a predetermined area.
  • the conductor pattern 401 and the capacitive coupling conductor pattern 410B are not connected by the connection conductor 60. In other words, the conductor pattern 401 and the capacitive coupling conductor pattern 410B simply face each other with the dielectric layer 202 in between.
  • an LC series resonance circuit in which an inductor, a capacitor, a capacitor, and an inductor are connected in series in this order can be realized. Therefore, a desired capacitance can be realized by appropriately setting the facing area between the capacitive coupling conductor pattern 410B and the conductor patterns 401 and 402. Thereby, the effect similar to 1st Embodiment can be acquired.
  • the capacitance is increased if the facing area between the capacitive coupling conductor pattern 410B and the conductor pattern 401 increases. If the facing area between the coupling conductor pattern 410B and the conductor pattern 402 decreases and the facing area between the capacitive coupling conductor pattern 410B and the conductor pattern 401 decreases, the facing area between the capacitive coupling conductor pattern 410B and the conductor pattern 402 becomes smaller. To increase. Thereby, the change of the capacitance due to the stacking position shift can be suppressed. Thereby, the flat cable type high frequency filter 10B that achieves a desired capacitance can be more reliably manufactured. In addition, variation in characteristics between products can be reduced.
  • FIG. 10 is an exploded side view of a flat cable type high frequency filter according to the fourth embodiment of the present invention.
  • the flat cable type high frequency filter 10C of the present embodiment is different from the flat cable type high frequency filter 10 according to the first embodiment in the shape of the conductor pattern 401C. Therefore, only different parts will be specifically described.
  • the conductor pattern 401C is formed on the surface of the dielectric layer 202 opposite to the dielectric layer 201. One end of the conductor pattern 401C in the longitudinal direction is connected to the external connection conductor 511. The predetermined area near the other end of the conductor pattern 401C faces the conductor pattern 402 with a predetermined area.
  • the same operational effects as those of the first embodiment described above can be obtained. Furthermore, in the configuration of the present embodiment, since the conductor pattern 401C is connected to the external connection conductor 511 on the same plane, the number of connection conductors formed can be reduced. Thereby, the structure of the flat cable type high frequency filter 10C can be further simplified, and the reliability can be improved.
  • FIG. 11 is an exploded side view of a flat cable type high frequency filter according to the fifth embodiment of the present invention.
  • the flat cable type high frequency filter 10D of the present embodiment is made of the same material as the flat cable type high frequency filter 10 according to the first embodiment, but is different in the configuration of the dielectric substrate and the conductor pattern. Therefore, only different parts will be specifically described.
  • the dielectric base 20D is made of a single layer dielectric. Conductor patterns 401D and 402D are formed on one flat surface of the dielectric base 20D. The conductor patterns 401D and 402D are formed side by side in the longitudinal direction of the dielectric substrate 20D.
  • An external connection conductor 511 is formed at one end in the longitudinal direction of the dielectric base material 20D, and an external connection conductor 512 is formed at the other end in the longitudinal direction of the dielectric base material 20D.
  • the conductor pattern 401D is connected to the external connection conductor 511, and the conductor pattern 402D is connected to the external connection conductor 512.
  • a comb-shaped capacitive coupling conductor pattern 411D is formed in the vicinity of the end portion of the conductor pattern 401D that is close to the conductor pattern 402D (the end portion on the side opposite to the external connection conductor 511).
  • a comb-like capacitive coupling conductor pattern 412D is formed in the vicinity of an end portion of the conductor pattern 402D that is close to the conductor pattern 401D (an end portion on the side opposite to the external connection conductor 512).
  • the capacitive coupling conductor patterns 411D and 412D are arranged so that the conductor fingers extending along the longitudinal direction face each other over a predetermined length along the longitudinal direction with a predetermined interval in the width direction. Yes. With such a configuration, a capacitor can be formed on the flat plate surface of the single-layer dielectric substrate 20D.
  • the same operational effects as those of the first embodiment described above can be obtained. Furthermore, in the configuration of the present embodiment, since the single-layer dielectric substrate 20D is used, the structure of the flat cable type high frequency filter 10D can be further simplified and thinned, and the reliability can be improved.
  • FIG. 12 is an exploded side view of a flat cable type high frequency filter according to the sixth embodiment of the present invention.
  • the flat cable type high frequency filter 10E of the present embodiment has a configuration in which shield conductors 711, 712, 721, and 722 are further added to the flat cable type high frequency filter 10C according to the third embodiment. Therefore, only different portions from the flat cable type high frequency filter 10C according to the third embodiment will be specifically described.
  • the dielectric base material 20E is formed by laminating dielectric layers 201, 202, 211, and 212. Dielectric layers 211 and 212 are arranged with the dielectric layers 201 and 202 interposed therebetween. The dielectric layer 211 is in contact with the dielectric layer 201, and the dielectric layer 212 is in contact with the dielectric layer 202.
  • a conductor pattern 402E and a capacitive coupling conductor pattern 412E are formed on the flat surface of the dielectric layer 201 on the dielectric layer 202 side.
  • a conductor pattern 401E and a capacitive coupling conductor pattern 411E are formed on the flat surface of the dielectric layer 202 on the dielectric layer 212 side.
  • the capacitive coupling conductor patterns 411E and 412E are opposed to each other with the dielectric layer 202 interposed therebetween.
  • Shield conductors 711 and 712 and external connection conductors 511 and 512 are formed on the flat surface of the dielectric layer 212 opposite to the dielectric layer 202.
  • the external connection conductor 511 is connected to the conductor pattern 401 ⁇ / b> E by the connection conductor 60.
  • the external connection conductor 512 is connected to the conductor pattern 402 ⁇ / b> E by the connection conductor 60.
  • Shield conductors 721 and 722 are formed on the flat plate surface of the dielectric layer 211 opposite to the dielectric layer 201.
  • the shield conductors 711 and 721 are arranged so as to overlap the conductor pattern 401E and not to overlap the capacitive coupling conductor patterns 411E and 412E when viewed in the thickness direction.
  • the shield conductors 712 and 722 are arranged so as to overlap the conductor pattern 402E and not to overlap the capacitive coupling conductor patterns 411E and 412E when viewed in the thickness direction.
  • the shield conductor is formed in at least one of the above-described four places, at least the action and effect peculiar to the present embodiment can be obtained.
  • the shield conductor may be a solid conductor as shown in FIG. 12, or a mesh conductor.
  • FIG. 13 is an exploded side view of a flat cable type high frequency filter according to a seventh embodiment of the present invention.
  • the flat cable type high frequency filter 10F of the present embodiment is different from the flat cable type high frequency filter 10 according to the first embodiment in the configuration of the conductor pattern. Therefore, only different parts will be specifically described.
  • Capacitive coupling conductor patterns 410F and 411F are formed on the flat surface of the dielectric layer 201 on the dielectric layer 202 side.
  • Conductive patterns 401F, 402F, and 403F are formed on the flat plate surface of the dielectric layer 202 opposite to the dielectric layer 201 side.
  • the conductor patterns 401F, 402F, and 403F are formed side by side in the longitudinal direction of the dielectric layer 202.
  • One end of the conductor pattern 401F is connected to the external connection conductor 511.
  • the other end of the conductor pattern 401F is connected to the capacitive coupling conductor pattern 410F by the connecting conductor 60.
  • One end of the conductor pattern 403F is connected to the external connection conductor 512.
  • the other end of the conductor pattern 403F is connected to the capacitive coupling conductor pattern 411F by a connecting conductor 60.
  • the predetermined area near one end of the conductor pattern 402F faces the capacitive coupling conductor pattern 410F with a predetermined area.
  • the predetermined region near the other end of the conductor pattern 402F faces the capacitive coupling conductor pattern 411F with a predetermined area.
  • FIG. 14 is an equivalent circuit diagram of a flat cable type high frequency filter according to a seventh embodiment of the present invention. As shown in FIG. 14, with the above-described configuration, an LC series resonance circuit in which a capacitor, an inductor, and a capacitor are connected in series between the external connection conductors 511 and 512 is realized.
  • the inductance of the inductor and the capacitance of each capacitor can be determined to desired values. Thereby, it is possible to realize a band-pass filter having a predetermined frequency band as a pass band and an attenuation band outside the frequency band.
  • the flat cable type high frequency filter 10F has flexibility, the flat cable type high frequency filter 10F can be arranged by being bent or bent.
  • the bending position is a position excluding the capacitor formation region, that is, the formation region of the capacitive coupling conductor patterns 410F and 411F. Thereby, a change in capacitance due to bending can be prevented, and a desired filter characteristic can be realized.
  • FIG. 15 is an external perspective view of a flat cable type high frequency filter according to an eighth embodiment of the present invention.
  • FIG. 16 is an exploded perspective view of a flat cable type high frequency filter according to an eighth embodiment of the present invention.
  • FIG. 17 is an exploded side view of a flat cable type high frequency filter according to an eighth embodiment of the present invention.
  • the flat cable type high frequency filter 10G of the present embodiment is different from the flat cable type high frequency filter 10C according to the third embodiment in the position of the external connection conductor 512G. Therefore, only different portions from the flat cable type high frequency filter 10C according to the third embodiment will be specifically described.
  • the dielectric substrate 20 is formed by laminating dielectric layers 201, 202, and 211. Dielectric layers 202 and 211 are disposed with the dielectric layer 201 interposed therebetween. The dielectric layer 211 is in contact with the dielectric layer 201.
  • An external connection conductor 512G is formed on the flat plate surface of the dielectric layer 211 opposite to the dielectric layer 201 side.
  • the external connection conductor 512 ⁇ / b> G is connected to the conductor pattern 402 by the connection conductor 60.
  • Protective layers 301 and 302 are disposed with the dielectric substrate 20 in between.
  • the protective layer 301 is disposed so that the external connection conductor 512G is exposed.
  • the protective layer 302 is disposed so that the external connection conductor 511 is exposed and the conductor pattern 401C is covered.
  • the connector 611 is formed on one main surface of the flat cable type high frequency filter 10G and connected to the external connection conductor 511.
  • the connector 612 is formed on the other main surface of the flat cable type high frequency filter 10G and connected to the external connection conductor 512G.
  • the region where the conductor pattern 401C and the conductor pattern 402 face each other is formed in the vicinity of the connector 612.
  • FIG. 18 is a block diagram showing a configuration of an antenna connection unit according to the eighth embodiment of the present invention.
  • FIG. 19 is a side view showing the configuration of the antenna connection section according to the eighth embodiment of the present invention.
  • a flat cable type high frequency filter 10G is connected between the antenna 52 and the power feeding circuit 51.
  • the connection point between the antenna 52 and the flat cable type high frequency filter 10G is connected to the ground.
  • the antenna connection portion may have a configuration illustrated in FIG. In FIG. 18B, a flat cable type high frequency filter 10G is connected between the antenna 52 and the ground.
  • the power feeding circuit 51 is connected to the connection point between the antenna 52 and the flat cable type high frequency filter 10G.
  • the power feeding circuit 51 includes a mounting substrate 3, an IC chip 5, and a mounting component 6.
  • a plurality of IC chips 5 and mounting components 6 are mounted on the surface of the mounting substrate 3.
  • the antenna 52 is disposed at a position away from the mounting substrate 3.
  • the connector 611 of the flat cable type high frequency filter 10G is connected to the antenna 52, and the connector 612 is connected to the power feeding circuit 51. That is, the capacitor formation region related to the flat cable type high frequency filter 10 ⁇ / b> G is disposed at a position away from the antenna 52.
  • the Q value may be deteriorated.
  • the capacitor formation region is separated from the antenna 52 by a certain distance, so that deterioration of antenna characteristics is suppressed. be able to.
  • the portion closer to the antenna 52 than the capacitor formation region is a linear conductor, so that this portion can function as a part of the antenna.
  • the curved position of the flat cable type high frequency filter 10G is set to a position excluding the capacitor formation region. Thereby, a change in capacitance due to bending can be prevented, and a desired filter characteristic can be realized. Further, if this curved position is as close as possible to the capacitor formation region, the portion that also serves as the antenna can be lengthened. Moreover, the impedance of the antenna can be adjusted by adjusting the bending position.
  • the connector 611 is formed on one main surface of the flat cable type high frequency filter 10G.
  • the connector 612 is formed on the main surface opposite to the main surface on which the connector 611 is formed.
  • the flat cable type high frequency filter 10 ⁇ / b> G is bent or bent so that the antenna 52 is mounted between the mounting substrate 3 and the antenna 52.
  • a flat cable type high frequency filter 10G can be disposed.
  • FIG. 20 is an exploded perspective view of a flat cable type high frequency filter according to the ninth embodiment of the present invention.
  • illustration of the protective layer and the connector is omitted.
  • the flat cable type high frequency filter 10H of the present embodiment has a configuration in which one main surface side of the dielectric base material 20H is connected to an external circuit, similarly to the flat cable type high frequency filter 10 according to the first embodiment.
  • Each component of the flat cable type high frequency filter 10H of the present embodiment is the same as each component of the flat cable type high frequency filter shown in each of the above embodiments. Therefore, only the features characteristic of this embodiment will be specifically described.
  • the flat cable type high frequency filter 10H includes a flat dielectric substrate 20H.
  • the dielectric base 20H is formed by sequentially laminating dielectric layers 201H, 202H, 203H, and 204H.
  • Conductor patterns 401H1 and 403H1 are formed on the main surface of the dielectric layer 201H opposite to the dielectric layer 202H (one main surface of the dielectric substrate 20H).
  • the conductor pattern 401H1 includes a first partial conductor pattern 401H11 and a second partial conductor pattern 401H12.
  • the first partial conductor pattern 401H11 and the conductor pattern 403H1 are arranged at intervals along the longitudinal direction of the dielectric layer 201H.
  • the first partial conductor pattern 401H11 and the conductor pattern 403H1 have substantially the same width, and are formed wider than the second partial conductor pattern 401H12. If it shows functionally, it will be formed with a width necessary for forming a capacitor to be described later.
  • the second partial conductor pattern 401H12 is disposed adjacent to the first partial conductor pattern 401H11 along the width direction of the dielectric layer 201H.
  • the second partial conductor pattern 401H12 is a loop-shaped conductor pattern.
  • the loop-shaped conductor pattern is a shape obtained by cutting a part of an annular shape.
  • the one end side end of the dielectric layer 201H in the first partial conductor pattern 401H11 and the one end (outer end side end) of the second partial conductor pattern 401H12 are connected in the vicinity of one end of the dielectric layer 201H.
  • the first partial conductor pattern 401H11 and the second partial conductor pattern 401H12 are connected to a lead conductor pattern 441 formed near one end of the dielectric layer 201H.
  • the other end side end portion of the dielectric layer 201H in the conductor pattern 403H1 is connected to a lead conductor pattern 442 formed near the other end of the dielectric layer 201H.
  • a conductor pattern 401H2 and a capacitive coupling conductor pattern 410H1 are formed on the main surface of the dielectric layer 202H on the dielectric layer 201H side.
  • the conductor pattern 401H2 includes a first partial conductor pattern 401H21 and a second partial conductor pattern 401H22.
  • the first partial conductor pattern 401H21 is rectangular and faces a part of the first partial conductor pattern 401H11 with the dielectric layer 201H interposed therebetween.
  • the first partial conductor pattern 401H21 is connected to the first partial conductor pattern 401H11 by a connection conductor 60 that penetrates the dielectric layer 201H in the thickness direction.
  • the second partial conductor pattern 401H22 is disposed adjacent to the first partial conductor pattern 401H21 along the width direction of the dielectric layer 202H.
  • the second partial conductor pattern 401H22 is a loop-shaped conductor pattern.
  • the second partial conductor pattern 401H22 is formed so as to overlap the second partial conductor pattern 401H12 when viewed in the direction orthogonal to the main surface.
  • One end (outer peripheral end) of the second partial conductor pattern 401H22 is connected to the first partial conductor pattern 401H21.
  • the other end (inner peripheral side end) of the second partial conductor pattern 401H22 is connected to the other end (inner peripheral side end) of the second partial conductor pattern 401H12 by the connecting conductor 60 penetrating the dielectric layer 201H in the thickness direction. It is connected.
  • the capacitive coupling conductor pattern 410H1 has a rectangular shape and faces both the first partial conductor pattern 401H11 and the conductor pattern 403H1 with the dielectric layer 201H interposed therebetween.
  • a facing portion between the capacitive coupling conductor pattern 410H1 and the first partial conductor pattern 401H11 is a capacitor C21H.
  • a facing portion between the capacitive coupling conductor pattern 410H1 and the conductor pattern 403H1 is a capacitor C10H.
  • the conductor pattern 402H1 includes a first partial conductor pattern 402H11 and a second partial conductor pattern 402H12.
  • the capacitive coupling conductor pattern 410H2 and the first partial conductor pattern 402H11 are arranged at intervals along the longitudinal direction of the dielectric layer 203H.
  • the capacitive coupling conductor pattern 410H2 and the first partial conductor pattern 402H11 have substantially the same width.
  • the capacitive coupling conductor pattern 410H2 is connected to the first partial conductor pattern 401H21 by a connection conductor 60 that penetrates the dielectric layer 202H in the thickness direction.
  • the first partial conductor pattern 402H11 has a rectangular shape and faces a part of the capacitive coupling conductor pattern 410H1 with the dielectric layer 202H interposed therebetween.
  • the first partial conductor pattern 402H11 is connected to the capacitive coupling conductor pattern 410H1 by a connection conductor 60 that penetrates the dielectric layer 202H in the thickness direction.
  • the second partial conductor pattern 402H12 is disposed adjacent to the capacitive coupling conductor pattern 410H2 along the width direction of the dielectric layer 203H.
  • the second partial conductor pattern 402H12 is a loop-shaped conductor pattern.
  • One end (outer peripheral end) of the second partial conductor pattern 402H12 is connected to the first partial conductor pattern 402H11.
  • the other end (inner peripheral side end) of the second partial conductor pattern 402H12 overlaps the other end (inner peripheral side end) of the second partial conductor patterns 401H22 and 401H12 when viewed in the direction orthogonal to the main surface. .
  • the other end (inner peripheral side end) of the second partial conductor pattern 402H12 is connected to the other end (inner peripheral side end) of the second partial conductor pattern 401H22 by the connecting conductor 60 penetrating the dielectric layer 202H in the thickness direction. It is connected.
  • the capacitive coupling conductor pattern 410H2 has a rectangular shape, and faces the first partial conductor pattern 401H21 and the capacitive coupling conductor pattern 410H1 with the dielectric layer 202H interposed therebetween.
  • the capacitive coupling conductor pattern 410H2 is connected to the first partial conductor pattern 401H21 by a connection conductor 60 that penetrates the dielectric layer 202H in the thickness direction.
  • a portion where the capacitive coupling conductor patterns 410H1 and 410H2 face each other is a capacitor C22H.
  • a conductor pattern 402H2 is formed on the main surface of the dielectric layer 204H on the dielectric layer 203H side.
  • the conductor pattern 402H2 includes a first partial conductor pattern 402H21 and a second partial conductor pattern 402H22.
  • the first partial conductor pattern 402H21 is rectangular and faces part of the capacitive coupling conductor pattern 410H2 via the dielectric layer 203H and the first partial conductor pattern 402H11.
  • the first partial conductor pattern 402H21 is connected to the first partial conductor pattern 402H11 by a connection conductor 60 that penetrates the dielectric layer 203H in the thickness direction.
  • a portion where the first partial conductor pattern 402H21 and the capacitive coupling conductor pattern 410H2 face each other is a capacitor C23H.
  • the second partial conductor pattern 402H22 is a loop-shaped conductor pattern.
  • the second partial conductor pattern 402H22 overlaps the second partial conductor pattern 402H12 when viewed in the direction orthogonal to the main surface.
  • One end (outer peripheral end) of the second partial conductor pattern 402H22 is connected to the first partial conductor pattern 402H21.
  • the other end (inner peripheral side end) of the second partial conductor pattern 402H22 is connected to the other end (inner peripheral side end) of the second partial conductor pattern 402H12 by the connecting conductor 60 penetrating the dielectric layer 203H in the thickness direction. It is connected.
  • the 2nd partial conductor pattern 401H12, 401H22, 402H12, 402H22 is arrange
  • FIG. 21 is an equivalent circuit diagram of a flat cable type high frequency filter according to the ninth embodiment of the present invention.
  • a series circuit of an inductor L10H and a capacitor C10H is connected between the lead conductor patterns 441 and 442.
  • Capacitors C21H, C22H, and C23H are connected in parallel to the inductor L10H. That is, a filter circuit having both LC series resonance and LC parallel resonance can be configured.
  • FIG. 22 is a graph showing the transmission characteristics of the flat cable type high frequency filter according to the ninth embodiment of the present invention.
  • FIG. 22A shows transmission characteristics
  • FIG. 22B shows reflection characteristics.
  • the element values of the inductor L10H and the capacitors C10H, C21H, C22H, and C23H are determined so as to obtain a characteristic that allows the high-frequency signal having the frequency f0 to pass and attenuates the high-frequency signal having the frequency f1. That is, the shapes of the dielectric base material 10H and each conductor pattern are determined so as to obtain this element value.
  • a high-frequency signal having a frequency f0 to be transmitted is transmitted with low loss, and as shown in FIG. 22 (B), a frequency f1 to be attenuated is transmitted.
  • the high frequency signal can be greatly attenuated.
  • the frequency f0 is approximately 1.575 GHz as a GPS signal frequency
  • the frequency f1 is a 1.7 GHz communication band.
  • a high-frequency signal having a frequency f0 (1.575 GHz) to be transmitted is transmitted with low loss, and a high-frequency signal having a frequency f1 (1.7 GHz band) to be attenuated is greatly increased.
  • the same portion of the conductor pattern constituting the inductor L10H is formed by a plurality of layers of conductor patterns.
  • the ESR of the inductor L10H can be reduced, and further, a low loss and steep passage and attenuation characteristic can be realized.
  • FIG. 23 is an exploded perspective view of a flat cable type high frequency filter according to the tenth embodiment of the present invention.
  • the protective layer and the connector are not shown.
  • the flat cable type high frequency filter 10I of the present embodiment is different from the flat cable type high frequency filter 10H shown in the ninth embodiment in the configuration of a part of the conductor pattern, and other basic configurations are as follows. The same.
  • the flat cable type high frequency filter 10I includes a dielectric substrate 20I in which dielectric layers 201I, 202I, 203I, and 204I are laminated.
  • the configuration of each conductor pattern of the dielectric layers 201I, 202I, and 203I is the same as that of the dielectric layers 201H, 202H, and 203H shown in the ninth embodiment.
  • a conductor pattern 402I2 and a lead conductor 443 are formed on the main surface of the dielectric layer 204I opposite to the dielectric layer 203I.
  • the conductor pattern 402I2 has a shape that is symmetrical with respect to the conductor pattern 402H2 shown in the ninth embodiment, with the main surface of the dielectric layer as a reference plane.
  • the lead conductor 443 is formed in a shape overlapping the lead conductor 441 when viewed in a direction orthogonal to the main surface of the dielectric base material 20I.
  • the lead conductor 443 is connected to the lead conductor 441 by a connection conductor 60 that penetrates the dielectric layers 201I, 202I, 203I, and 204I, that is, penetrates the dielectric base material 20I.
  • the lead conductor 443 is connected to an external connection conductor or a connector, and the lead conductor 441 is not exposed to the outside.
  • one external connection portion of the flat cable type high frequency filter 10I is on one main surface side, and the other external connection portion is on the other main surface side. It becomes. Thereby, even if the external circuit board which should be connected is arrange
  • FIG. 24 is an exploded perspective view of a flat cable type high frequency filter according to an eleventh embodiment of the present invention.
  • the protective layer and the connector are not shown.
  • the flat cable type high frequency filter 10J of this embodiment is obtained by removing two dielectric layers from the flat cable type high frequency filter 10J shown in the tenth embodiment, and the other basic configurations are the same. It is.
  • the flat cable type high frequency filter 10J includes a dielectric base material 20J in which dielectric layers 201J and 204J are laminated.
  • the configuration of each conductor pattern of the dielectric layers 201J and 204J is the same as that of the dielectric layers 201I and 204I shown in the tenth embodiment.
  • the first partial conductor pattern 402J21 also serves as a capacitive coupling conductor pattern.
  • the flat cable type high frequency filter 10J according to the present embodiment has one capacitor connected in parallel to the inductor, this configuration may be used if desired transmission characteristics can be obtained. By using this configuration, the number of dielectric layers can be reduced, and the flat cable type high frequency filter 10J can be formed thinner.
  • FIG. 25 is a block diagram of a communication device module according to the embodiment of the present invention.
  • FIG. 26 is a side view showing a schematic configuration of the communication device module according to the embodiment of the present invention. 25 and 26 show a mode in which the flat cable type high frequency filter 10I shown in the tenth embodiment is used.
  • the communication device module 900 includes an antenna 930, a WiFi transmission / reception unit 931, a cellular transmission / reception unit 932, a GPS reception unit 933, a band rejection filter (BEF) 921, and a band pass filter (BPF). 922.
  • the antenna 930 is connected to the WiFi transmission / reception unit 931 and the cellular transmission / reception unit 932 via the band rejection filter 921. In addition, the antenna 930 is connected to the GPS receiving unit 933 via the band pass filter 922.
  • the WiFi transmission / reception unit 931 transmits / receives a WiFi communication signal using a frequency band such as a 2.4 GHz band.
  • the cellular transmission / reception unit 932 transmits / receives a cellular communication signal using a frequency band such as a 900 MHz band or a frequency band such as a 1.7 GHz band or a 2.0 GHz band.
  • the GPS receiving unit 933 receives a GPS signal near 1.5 GHz.
  • the band rejection filter 921 attenuates the frequency band of the GPS signal and passes the frequency band of the WiFi communication signal and the cellular communication signal.
  • the band pass filter 922 passes the frequency band of the GPS signal and attenuates a frequency band other than the frequency band of the GPS signal.
  • the flat cable type high frequency filter 10I shown in the tenth embodiment is used for the band pass filter 922.
  • a band rejection filter having a narrow attenuation band with a steep attenuation characteristic can be realized. Therefore, if an attenuation pole is set in the frequency band of the GPS signal, the GPS signal is attenuated, and another communication signal (for example, a 1.7 GHz band of the cellular communication signal) that is close to the frequency band of the GPS signal is used. Transmission can be performed without attenuation.
  • the communication device module 900 having such a circuit configuration includes a front end substrate 990, an antenna substrate 991, and a flat cable type high frequency filter 10I.
  • a front end substrate 990 On the mounting surface of the front-end substrate 990, circuit components for realizing the above-described WiFi transmission / reception unit 931, cellular transmission / reception unit 932, GPS reception unit 933, and the like are mounted.
  • An antenna 930 is formed on the antenna substrate 991.
  • the antenna substrate 911 is disposed on the mounting surface side of the front end substrate 990 and spaced from the front end substrate 990.
  • the connector 611 attached to the flat cable type high frequency filter 10I is connected to the surface of the antenna substrate 991 on the front end substrate 990 side.
  • the connector 612 attached to the flat cable type high frequency filter 10I is connected to the surface (mounting surface) of the front end substrate 990 on the antenna substrate 991 side. Since the flat cable type high frequency filter 10I has flexibility, a bent portion can be formed in the middle of the extending direction. In this way, by forming the bent portion, the flat cable type high frequency filter 10I can connect the front end substrate 990 and the antenna substrate 991 in a state where the flat cable type high frequency filter 10I is shaped so as not to contact the circuit components. .
  • the flat cable type high frequency filter 10I includes the band pass filter, it is not necessary to form the band pass filter on the front end substrate 990 or the antenna substrate 991. Therefore, the front end substrate 990 and the antenna substrate 991 can be formed in a small size. Further, by providing the band pass filter in the flat cable type high frequency filter 10I, the filter characteristics (pass characteristics and attenuation characteristics) of the band pass filter are excellent. Therefore, the communication characteristics of the communication device module 900 can be improved.
  • FIG. 27 is an exploded perspective view of a flat cable type high frequency diplexer according to a twelfth embodiment of the present invention.
  • illustration of the protective layer and the connector is omitted.
  • the flat cable type high frequency diplexer 90 of this embodiment includes a dielectric base material 20K formed by laminating dielectric layers 201K, 202K, 203K, and 204K.
  • the dielectric layer 201K includes partial regions 201K1, 201K2, and 201K3.
  • the partial areas 201K1 and 201K2 have a long shape extending along the longitudinal direction, and are arranged at intervals in the width direction.
  • the partial area 201K3 is disposed at one end in the longitudinal direction of the partial areas 201K1 and 201K2, and connects the partial areas 201K1 and 201K2. With this configuration, the dielectric layer 201K has a shape that is divided into two regions in the width direction in the middle of the longitudinal direction.
  • the dielectric layer 202K includes partial regions 202K1, 202K2, and 202K3.
  • the partial areas 202K1 and 202K2 have a long shape extending along the longitudinal direction, and are arranged at intervals in the width direction.
  • the partial area 202K3 is disposed at one end in the longitudinal direction of the partial areas 202K1 and 202K2, and connects the partial areas 202K1 and 202K2.
  • the dielectric layer 202K has a shape that is divided into two regions in the width direction in the middle of the longitudinal direction.
  • the dielectric layer 203K includes partial regions 203K1, 203K2, and 203K3.
  • the partial regions 203K1 and 203K2 have a long shape extending along the longitudinal direction, and are arranged at intervals in the width direction.
  • the partial area 203K3 is arranged at one end in the longitudinal direction of the partial areas 203K1 and 203K2, and connects the partial areas 203K1 and 203K2.
  • the dielectric layer 203K has a shape that is divided into two regions in the width direction in the middle of the longitudinal direction.
  • the dielectric layer 204K includes partial regions 204K1, 204K2, and 204K3.
  • the partial regions 204K1 and 204K2 have a long shape extending along the longitudinal direction, and are arranged at intervals in the width direction.
  • the partial area 204K3 is disposed at one end in the longitudinal direction of the partial areas 204K1 and 204K2, and connects the partial areas 204K1 and 204K2.
  • the dielectric layer 204K has a shape that is divided into two regions in the width direction in the middle of the longitudinal direction.
  • the same conductive pattern as the conductive pattern shown in the ninth embodiment is formed on the first base portion composed of the partial areas 201K1, 202K1, 203K1, and 204K1 in the dielectric base material 20K.
  • a band pass filter connected between the lead conductors 441K and 442K is realized in the portion formed of the partial regions 201K1, 202K1, 203K1, and 204K1 in the dielectric base material 20K.
  • a loop-shaped conductor pattern 601 is formed in the partial region 201K2 of the dielectric layer 201K.
  • the loop-shaped conductor pattern 601 includes a linear first conductor pattern 6011, a second conductor pattern 6012, a third conductor pattern 6013, a fourth conductor pattern 6014, and a fifth conductor pattern 6015, respectively.
  • the first conductor pattern 6011 has a shape extending in the width direction of the partial region 201K2, and is formed near the end of the partial region 201K3 on the side of the partial region 201K3.
  • the first conductor pattern 6011 is connected to the lead conductor 441K.
  • the second conductor pattern 6012 has a shape extending in the width direction of the partial region 201K2, and is formed in the vicinity of the end opposite to the end on the partial region 201K3 side in the longitudinal direction of the partial region 201K2.
  • the second conductor pattern 6012 is connected to a lead conductor 443K formed in the vicinity of the end on the side opposite to the end on the partial region 201K3 side in the longitudinal direction of the partial region 201K2.
  • the lead conductor 443K is connected to a connector or the like (not shown) in the same manner as the lead conductor 442K.
  • the third conductor pattern 6013 has a shape extending in the longitudinal direction of the partial region 201K2, and is formed in the partial region 201K2 near the end on the partial region 201K1 side.
  • the third conductor pattern 6013 is connected to the first conductor pattern 6011 and the second conductor pattern 6012.
  • the fourth and fifth conductor patterns 6014 and 6015 have a shape extending in the longitudinal direction of the partial area 201K2, and are formed in the partial area 201K2 near the end opposite to the partial area 201K1 side.
  • the fourth and fifth conductor patterns 6014 and 6015 are arranged at intervals along the longitudinal direction of the partial region 201K2.
  • the fourth conductor pattern 6014 is connected to the first conductor pattern 6011, and the fifth conductor pattern 6015 is connected to the second conductor pattern 6012.
  • a loop-shaped conductor pattern 602 is formed in the partial region 202K2 of the dielectric layer 202K.
  • the loop-shaped conductor pattern 602 includes a linear first conductor pattern 6021, a second conductor pattern 6022, a third conductor pattern 6023, a fourth conductor pattern 6024, and a fifth conductor pattern 6025, respectively.
  • the first conductor pattern 6021 has a shape extending in the width direction of the partial region 202K2, and is formed in the vicinity of the end portion on the partial region 202K3 side in the longitudinal direction of the partial region 202K2.
  • the first conductor pattern 6021 is formed so as to overlap with the first conductor pattern 6011 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the second conductor pattern 6022 has a shape extending in the width direction of the partial region 202K2, and is formed in the vicinity of the end opposite to the end on the partial region 202K3 side in the longitudinal direction of the partial region 202K2.
  • the second conductor pattern 6022 is formed so as to overlap the second conductor pattern 6012 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the third conductor pattern 6023 has a shape extending in the longitudinal direction of the partial region 202K2, and is formed in the partial region 202K2 near the end on the partial region 202K1 side.
  • the third conductor pattern 6023 is connected to the first conductor pattern 6021 and the second conductor pattern 6022.
  • the third conductor pattern 6023 is formed so as to overlap the third conductor pattern 6013 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fourth and fifth conductor patterns 6024 and 6025 have a shape extending in the longitudinal direction of the partial region 202K2, and are formed in the partial region 202K2 near the end opposite to the partial region 202K1 side.
  • the fourth and fifth conductor patterns 6024 and 6025 are arranged at intervals along the longitudinal direction of the partial region 202K2.
  • the fourth conductor pattern 6024 is connected to the first conductor pattern 6021, and the fifth conductor pattern 6025 is connected to the second conductor pattern 6022.
  • the fourth conductor pattern 6024 is formed so as to overlap the fourth conductor pattern 6014 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fifth conductor pattern 6025 is formed so as to overlap the fourth conductor pattern 6014 and the fifth conductor pattern 6015 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • a loop-shaped conductor pattern 603 is formed in the partial region 203K2 of the dielectric layer 203K.
  • the loop-shaped conductor pattern 603 includes a linear first conductor pattern 6031, a second conductor pattern 6032, a third conductor pattern 6033, a fourth conductor pattern 6034, and a fifth conductor pattern 6035, respectively.
  • the first conductor pattern 6031 has a shape extending in the width direction of the partial region 203K2, and is formed in the vicinity of the end portion on the partial region 203K3 side in the longitudinal direction of the partial region 203K2.
  • the first conductor pattern 6031 is formed so as to overlap with the first conductor patterns 6011 and 6021 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the second conductor pattern 6032 has a shape extending in the width direction of the partial region 203K2, and is formed in the vicinity of the end on the side opposite to the end on the partial region 203K3 side in the longitudinal direction of the partial region 203K2.
  • the second conductor pattern 6032 is formed so as to overlap with the second conductor patterns 6012 and 6022 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the third conductor pattern 6033 has a shape extending in the longitudinal direction of the partial region 203K2, and is formed in the partial region 203K2 near the end on the partial region 203K1 side.
  • the third conductor pattern 6033 is connected to the first conductor pattern 6031 and the second conductor pattern 6032.
  • the third conductor pattern 6033 is formed so as to overlap with the third conductor patterns 6013 and 6023 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fourth and fifth conductor patterns 6034 and 6035 have a shape extending in the longitudinal direction of the partial region 203K2, and are formed in the partial region 203K2 near the end opposite to the partial region 203K1 side.
  • the fourth and fifth conductor patterns 6034 and 6035 are arranged at intervals along the longitudinal direction of the partial region 203K2.
  • the fourth conductor pattern 6034 is connected to the first conductor pattern 6031, and the fifth conductor pattern 6035 is connected to the second conductor pattern 6032.
  • the fourth conductor pattern 6034 is formed so as to overlap the fourth conductor pattern 6024 and the fifth conductor pattern 6025 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fifth conductor pattern 6035 is formed so as to overlap the fifth conductor pattern 6025 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • a loop-shaped conductor pattern 604 is formed in the partial region 204K2 of the dielectric layer 204K.
  • the loop-shaped conductor pattern 604 includes a linear first conductor pattern 6041, a second conductor pattern 6042, a third conductor pattern 6043, a fourth conductor pattern 6044, and a fifth conductor pattern 6045, respectively.
  • the first conductor pattern 6041 has a shape extending in the width direction of the partial region 204K2, and is formed in the vicinity of the end portion on the partial region 204K3 side in the longitudinal direction of the partial region 204K2.
  • the first conductor pattern 6041 is formed so as to overlap the first conductor patterns 6011, 6021, and 6031 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20 ⁇ / b> K.
  • the second conductor pattern 6042 has a shape extending in the width direction of the partial region 204K2, and is formed in the vicinity of the end opposite to the end on the partial region 204K3 side in the longitudinal direction of the partial region 202K2.
  • the second conductor pattern 6042 is formed so as to overlap the second conductor patterns 6012, 6022, and 6032 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20 ⁇ / b> K.
  • the third conductor pattern 6043 has a shape extending in the longitudinal direction of the partial region 204K2, and is formed in the partial region 204K2 near the end on the partial region 204K1 side.
  • the third conductor pattern 6043 is connected to the first conductor pattern 6041 and the second conductor pattern 6042.
  • the third conductor pattern 6043 is formed so as to overlap with the third conductor patterns 6013, 6023, and 6033 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fourth and fifth conductor patterns 6044 and 6045 have a shape extending in the longitudinal direction of the partial region 204K2, and are formed in the partial region 204K2 near the end opposite to the partial region 204K1 side.
  • the fourth and fifth conductor patterns 6044 and 6045 are arranged at intervals along the longitudinal direction of the partial region 204K2.
  • the fourth conductor pattern 6044 is connected to the first conductor pattern 6041, and the fifth conductor pattern 6045 is connected to the second conductor pattern 6042.
  • the fourth conductor pattern 6044 is formed so as to overlap the fourth conductor pattern 6034 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the fifth conductor pattern 6045 is formed so as to overlap the fourth conductor pattern 6034 and the fifth conductor pattern 6035 when viewed in the direction orthogonal to the main surface of the dielectric substrate 20K.
  • the first conductor patterns 6011, 6021, 6031, and 6041 of each layer are connected by a connection conductor 60 that extends in the thickness direction of the dielectric substrate 20K.
  • the second conductor patterns 6012, 6022, 6032, and 6042 of each layer are connected by a connection conductor 60 that extends in the thickness direction of the dielectric substrate 20K.
  • the third conductor patterns 6013, 6023, 6033, and 6043 of each layer are connected by a connection conductor 60 that extends in the thickness direction of the dielectric substrate 20K.
  • the fourth conductor patterns 6014, 6024, 6034, and 6044 of each layer are connected by a connection conductor 60 that extends in the thickness direction of the dielectric substrate 20K.
  • the fifth conductor patterns 6015, 6025, 6035, and 6045 of each layer are connected by a connection conductor 60 that extends in the thickness direction of the dielectric substrate 20K.
  • a portion mainly composed of the third conductor patterns 6013, 6023, 6033, and 6043 becomes an inductor.
  • the region from the point connected to the lead conductor 441K in the first conductor patterns 6011, 6021, 6031, and 6041 to the end connected to the third conductor pattern, and the lead conductors in the second conductor patterns 6012, 6022, 6032, and 6043 The region from the point connected to 443K to the end connected to the third conductor pattern also functions as an inductor continuous with the inductor composed of the third conductor patterns 6013, 6023, 6033, and 6043.
  • the opposing portion of the fourth conductor pattern 6014 and the fifth conductor pattern 6025, the opposing portion of the fifth conductor pattern 6025 and the fourth conductor pattern 6034, and the opposing portion of the fourth conductor pattern 6034 and the fifth conductor pattern 6045 serve as a capacitor.
  • an LC parallel resonance type band-stop filter in which an inductor and a capacitor are connected in parallel is realized in the second base material portion composed of the partial regions 201K2, 202K2, 203K2, and 204K2 in the dielectric base material 20K. That is, a band rejection filter connected between the lead conductors 441K and 443K is realized in a portion of the dielectric base material 20K including the partial regions 201K1, 202K1, 203K1, and 204K1.
  • This band rejection filter is excellent in the band rejection characteristic (attenuation characteristic) because the flat cable itself is a band rejection filter as in the above-described band pass filter.
  • a high-frequency diplexer can be realized by the dielectric base material 20K on which each conductor pattern is formed. Thereby, a high-frequency diplexer that is thin and excellent in transmission characteristics can be realized.
  • the flat cable type high-frequency diplexer 90 of the present embodiment connects, for example, a band rejection filter (BEF) 921 and a band pass filter (BPF) 922 shown in the circuit diagram of FIG. It can be used for a portion composed of a transmission line portion.
  • BEF band rejection filter
  • BPF band pass filter
  • the flat cable type high frequency diplexer 90 of the present embodiment can connect the antenna substrate 991 and the front end substrate 990 in the mounting manner as shown in FIG. 26, for example.
  • variable capacitance element may be attached to the above-described flat cable type high frequency filter or flat cable type high frequency diplexer, and may be connected in series to an inductor and a capacitor constituting the above high frequency filter.
  • a land conductor on which the mountable variable capacitance element can be mounted is formed in the vicinity of the arrangement position of the external connection conductor, and the mountable variable capacitance element is mounted on the land conductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 フラットケーブル型高周波フィルタ(10)は、高周波信号の伝送方向に伸長する誘電体基材(20)を備える。誘電体基材(20)は、誘電体層(201,202)を重ねた構造からなる。長尺状の導体パターン(401,402)は、誘電体層(201)の誘電体層(202)側の平板面に形成されている。導体パターン(401,402)は、誘電体基材(20)に対して、所望とするインダクタンスに応じて可能な限り幅広に形成されている。容量結合用導体パターン(410)は、誘電体層(202)を挟んで、導体パターン(402)と所定面積で対向するように形成されている。容量結合用導体パターン(410)は、接続導体(60)により導体パターン(401)に接続されている。

Description

フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器
 本発明は、周波数選択機能を有し薄い平膜状からなるフラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および当該フラットケーブル型高周波フィルタまたはフラットケーブル型高周波ダイプレクサを備える電子機器に関する。
 従来、携帯端末等の高周波信号を利用する電子機器では、不要な高周波信号や高調波信号から必要とする周波数帯域の高周波信号を選択するために、高周波フィルタを備えている。
 従来の高周波フィルタは、特許文献1に示すような構造からなる。特許文献1に記載の高周波フィルタは、誘電体層を複数層積層して焼結した実装型の積層体からなる。高周波フィルタを構成するインダクタおよびキャパシタは、当該積層体内に形成された導体パターンによって実現される。
 このような実装型の積層体からなる高周波フィルタは、電子機器の小型化に伴って実装領域が制限される傾向にあり、これに伴い、高周波フィルタの小型化が要求されている。この場合、積層体内に形成されるインダクタおよびキャパシタとなる導体パターンも小型化、細線化する。
特開2002-57543号公報
 しかしながら、上述のように小型化された実装型の高周波フィルタでは、この小型化により、インダクタやキャパシタの素子特性が悪化する。例えば、インダクタでは、細線化によりESR(等価直列抵抗)が大きくなったり、キャパシタでは、高周波フィルタを構成するための複雑な配線パターンによりESL(等価直列インダクタンス)が大きくなる。これにより、高周波フィルタのQ値が劣化してしまい、損失が大きくなってしまう。
 また、複数の実装基板の回路間に高周波フィルタを接続する場合、上述の従来の実装型の高周波フィルタでは、一方の実装基板上に高周波フィルタを実装して、他方の実装基板にフラットケーブルで接続するか、二つの実装基板間に別の中間実装基板を配置し、当該中間実装基板に高周波フィルタを実装する等して、それぞれの実装基板にフラットケーブルで接続する構造となる。
 このような場合、各フラットケーブルでの伝送損失が発生してしまい、上述の高周波フィルタでの損失とともに、更なる伝送損失の増加を招いてしまう。
 また、高周波フィルタを実現する実装型の積層体は、或程度以上の高さを必要とするため、実装基板の実装面上に、この積層体の高さに応じたスペースを必要とする。
 したがって、本発明の目的は、低損失な伝送特性を有する省スペースな高周波フィルタを実現することにある。
 この発明のフラットケーブル型高周波フィルタは、誘電体基材、複数の導体パターン、および容量結合用導体パターンを備える。誘電体基材は、高周波信号の伝送方向に伸長する平膜状からなる。複数の導体パターンは、誘電体基材に形成されており、該誘電体基材の伸長する方向の途中位置で導体パターンが分断されることにより構成される。容量結合用導体パターンは、複数の導体パターン間を容量結合する。そして、このフラットケーブル型高周波フィルタでは、複数の導体パターンによりインダクタを形成し、容量結合用導体パターンによりキャパシタを形成している。
 この構成では、平膜状の誘電体基材に形成された導体パターンによってインダクタとキャパシタの直列共振回路が構成され、このLC直列共振回路により高周波フィルタが実現される。
 また、この発明のフラットケーブル型高周波フィルタでは、誘電体基材は、誘電正接が0.005以下であることが好ましい。
 この構成では、LC共振回路すなわち高周波フィルタのQ値が向上する。これにより、さらに伝送特性に優れるフラットケーブル型高周波フィルタを実現できる。
 また、この発明のフラットケーブル型高周波フィルタでは、誘電体基材は、液晶ポリマからなることが好ましい。
 この構成では、上述のような優れた誘電正接を有しながら、可撓性に優れた薄型の誘電体基材を実現できる。
 また、この発明の誘電体基材には、グランド電位に接続する導体パターンが形成されていないことが好ましい。
 この構成では、導体パターンとグランドとの間の浮遊容量が発生しないので、フィルタ特性および伝送特性がさらに優れる。
 また、この発明のフラットケーブル型高周波フィルタでは、キャパシタを形成していない複数の導体パターンの平膜面に対して所定距離をおいて対向する平膜状のシールド導体パターンを備えることが好ましい。
 この構成では、インダクタの領域では、導体パターンの外部との電磁干渉を抑制でき、キャパシタの領域では、所望とするキャパシタンスを高精度に実現することができる。
 また、この発明のフラットケーブル型高周波フィルタでは、シールド導体パターンは、導体パターンを挟み込むように導体パターンの両側に配置されていることが好ましい。
 この構成では、外部干渉をさらに抑圧することができる。
 また、この発明のフラットケーブル型高周波フィルタでは、誘電体基材の伝送方向に沿った容量結合用導体パターンの形成領域と異なる位置が折り曲げ部であることが好ましい。
 この構成では、フラットケーブル型高周波フィルタを折り曲げて配置する場合であっても、キャパシタの形成部が折り曲げられないので、キャパシタンスが変化せず、高周波フィルタの特性が変化しない。
 また、この発明のフラットケーブル型高周波フィルタでは、容量結合用導体パターンは、複数の導体パターンの一方に対して誘電体基材を構成する誘電体層を挟んで対向するように配設される平板導体パターンと、該平板導体パターンに対向する前記一方の導体パターンの平板領域と、によって形成されてもよい。
 また、この発明のフラットケーブル型高周波フィルタでは、容量結合用導体パターンは、複数の導体パターンに対して誘電体基材を構成する誘電体層を挟んで対向するように配設される平板導体パターンと、該平板導体パターンに対向する複数の導体パターンの平板領域と、によって形成されていてもよい。
 また、この発明のフラットケーブル型高周波フィルタでは、複数の導体パターンは、誘電体基材を構成する誘電体層を挟むそれぞれ別の面に形成されており、容量結合用導体パターンは、複数の導体パターンが誘電体層を挟んで対向する領域によって構成されていてもよい。
 これらの構成では、キャパシタの形成部の具体的な形状を示している。この構成では、誘電体層の平膜面に平行な対向面の面積と誘電体層の厚みによってキャパシタンスが設定される。これにより、比較的大きなキャパシタンスを実現できる。
 また、この発明のフラットケーブル型高周波フィルタでは、容量結合用導体パターンに対向する導体パターンの伝送方向に直交する方向の幅と、容量結合用導体パターンに対向しない導体パターンの前記幅とは、略同じであることが好ましい。
 この構成では、インダクタのESRをできる限り小さくすることができる。これにより、高周波フィルタの特性を通過特性および伝送特性を更に向上させることできる。
 また、この発明のフラットケーブル型高周波フィルタでは、導体パターンの幅は、誘電体基材の幅と略同じであることが好ましい。
 この構成では、導体パターンの耐環境性を確保しながら、できる限りESRを低下させる。
 また、この発明のフラットケーブル型高周波フィルタでは、容量結合用導体パターンは、複数の導体パターンの対向する端部に一体形成されており、伝送方向に沿った所定距離で対向する櫛歯状導体であってもよい。
 この構成では、導体パターンが形成される層が一層でインダクタとキャパシタを備えるLC直列共振回路からなる高周波フィルタを実現することができる。これにより、フラットケーブル型高周波フィルタを、さらに薄型に形成することができる。
 また、この発明のフラットケーブル型高周波フィルタでは、次の構成であってもよい。導体パターンは、互いの一方端が接続された第1部分導体パターンと第2部分導体パターンとから構成されている。第1部分導体パターンは、第2部分導体パターンよりも幅広で、伝送方向に沿って直線状である。第2部分導体パターンはループ状である。第1部分導体パターンによってキャパシタが構成され、第2部分導体パターンによってインダクタが構成される。
 このような構成では、フラットケーブルによって所望の特性を有する高周波フィルタを実現することができる。
 また、この発明のフラットケーブル型高周波フィルタでは、第1部分導体パターンおよび第2部分導体パターンは、誘電体基材を構成する複数層に形成されている。
 この構成では、インダクタのESRを低下することでき、キャパシタのキャパシタンスをより大きくすることができる。
 また、この発明のフラットケーブル型高周波ダイプレクサは、上述のフラットケーブル型高周波フィルタの構成を有する帯域通過フィルタと、誘電体基材に形成された別の導体パターンによって構成された帯域阻止フィルタと、を備えることを特徴としている。
 この構成では、優れた伝送特性のダイプレクサを薄型に形成することができる。
 この発明の電子機器は、上述のいずれかに記載のフラットケーブル型高周波フィルタまたはフラットケーブル型高周波ダイプレクサと、複数の実装回路基板と、を備え、複数の実装回路基板は、フラットケーブル型高周波フィルタまたはフラットケーブル型高周波ダイプレクサによって接続されていることを特徴としている。
 この構成では、複数の実装回路部材間に高周波フィルタまたは高周波ダイプレクサを接続する態様であっても、全体を小型化でき、高周波フィルタまたは高周波ダイプレクサとしての伝送特性を得ながら、複数の実装回路部材間での伝送損失を抑圧できる。
 また、この発明の電子機器では、フラットケーブル型高周波フィルタまたはフラットケーブル型高周波ダイプレクサは、複数の実装回路基板のそれぞれに対して所定の空隙を置いて配置されている。
 この構成では、各実装回路基板とフラットケーブル型高周波フィルタまたはフラットケーブル型高周波ダイプレクサとの間での電磁干渉を抑制することができる。
 この発明によれば、省スペースな形状でありながら低損失な伝送特性を有する高周波フィルタを実現することができる。
本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの外観斜視図である。 本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。 本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解平面図である。 本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの等価回路およびフィルタ特性図である。 本発明の第1の実施形態に係る携帯電子機器の部品構成を示す側面断面図および平面断面図である。 フラットケーブル型高周波フィルタの湾曲部の形成方法を示す部分側面図である。 本発明の第2の実施形態に係るフラットケーブル型高周波フィルタの分解平面図である。 本発明の第3の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第4の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第5の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第6の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第7の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第7の実施形態に係るフラットケーブル型高周波フィルタの等価回路図である。 本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの外観斜視図である。 本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。 本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。 本発明の第8の実施形態に係るアンテナ接続部の構成を示すブロック図である。 本発明の第8の実施形態に係るアンテナ接続部の構成を示す側面図である。 本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。 本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの等価回路図である。 本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの伝送特性を示すグラフである。 本発明の第10の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。 本発明の第11の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。 本発明の実施形態に係る通信機器モジュールのブロック図である。 本発明の実施形態に係る通信機器モジュールの概略構成を示す側面図である。 本発明の第12の実施形態に係るフラットケーブル型高周波ダイプレクサの分解斜視図である。
 本発明の第1の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図1は、本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの外観斜視図である。図2は、本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。図3は、本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解平面図である。図4は、本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。
 図1に示すように、フラットケーブル型高周波フィルタ10(以下、特に必要でない限り、単に「高周波フィルタ10」と称する。)は、誘電体基材20、保護層30、外部接続用導体511,512を備える。誘電体基材20の一方主面には、外部接続用導体511,512が配設されている。また、この誘電体基材20の一方主面には、絶縁性を有する保護層30が配設されている。保護層30は、外部接続用導体511,512が露出し、後述する容量結合用導体パターン410を覆うように配設されている。
 誘電体基材20は、高周波信号の伝送方向に沿って伸長する長尺状の平膜からなり、所定の厚みを有する。この伸長する方向を長手方向とし、当該長手方向および厚み方向に直交する方向を幅方向とする。
 図2、図3、図4に示すように、誘電体基材20は、平膜状(例えば、厚みが25μm~50μm)の誘電体層201,202が厚み方向に沿って重ねられた構造からなる。誘電体基材20(誘電体層201,202)は、誘電正接(tanδ)が低い誘電体を材料としている。より好ましくは、誘電体基材20(誘電体層201,202)は、誘電正接が0.005未満の材料から形成されている。具体的には、液晶ポリマを材料とするとよい。
 誘電体層201の誘電体層202側の平板面には、導体パターン401,402が形成されている。導体パターン401,402は、導電性の高い材料からなり、例えば、銅(Cu)を材料としている。本実施形態では、厚みが10μm~20μmの銅箔を用いた。
 導体パターン401,402は長尺状からなる。導体パターン401,402の長手方向は、誘電体基材20の長手方向を一致する。導体パターン401は、誘電体層201の一方端付近から長手方向の途中まで伸長する形状である。導体パターン402は、誘電体層201の他方端付近から長手方向の途中まで伸長する形状である。導体パターン401,402は、互いに接続されておらず、互いの対向する側の端部間にはギャップ400が形成されている。導体パターン401,402の長さ(長手方向に沿った長さ)は、高周波フィルタ10のインダクタとして所望するインダクタンスを実現するように決定されている。
 導体パターン401,402の幅は、誘電体基材20の幅にできる限り近い方が好ましい、言い換えれば、導体パターン401,402は誘電体基材20に対して形成可能な範囲においてできる限り広い方が好ましいが、高周波フィルタ10のインダクタとして所望するインダクタンスを実現するように、適宜設定すればよい。例えば、導体パターン401,402の幅は、誘電体基材20の幅の80%以上が好ましく、特に、90%程度であるとよい。すなわち、導体パターン401,402の幅は、誘電体基材の幅20と略同じであるとよい。この構成では、導体パターンの耐環境性を確保しながら、できる限りESRを低下させる。
 誘電体層202における誘電体層201と反対側の平板面には、容量結合用導体パターン410が形成されている。容量結合用導体パターン410も、導電性の高い材料からなり、例えば、銅(Cu)を材料としている。本実施形態では、厚みが10μm~20μmの銅箔を用いた。容量結合用導体パターン410は、長方形状からなる。容量結合用導体パターン410は、ギャップ400を挟んで対向する導体パターン401,402の端部付近の領域と、誘電体層202を介して対向している。この際、容量結合用導体パターン410と導体パターン402との対向面積は、高周波フィルタ10のキャパシタとして所望するキャパシタンスを実現するように決定されている。
 容量結合用導体パターン410と導体パターン401は、誘電体層202を貫通する導電性ビアからなる接続導体60が形成可能な面積で対向している。そして、容量結合用導体パターン410は、導体パターン401と、接続導体60を介して接続されている。
 誘電体層202における誘電体層201と反対側の平板面の一方端には、外部接続用導体511が形成されている。外部接続用導体511は略方形状である。外部接続用導体511は、導電性の高い材料からなり、例えば、銅(Cu)を材料としている。本実施形態では、厚みが10μm~20μmの銅箔を用いた。外部接続用導体511は、誘電体層202を貫通する接続導体60を介して、導体パターン401における導体パターン402と反対側の端部付近に接続している。
 誘電体層202における誘電体層201と反対側の平板面の他方端には、外部接続用導体512が形成されている。外部接続用導体512は略方形状である。外部接続用導体512は、導電性の高い材料からなり、例えば、銅(Cu)を材料としている。外部接続用導体512は、誘電体層202を貫通する接続導体60を介して、導体パターン402における導体パターン401と反対側の端部付近に接続している。
 このような構成とすることで、外部接続用導体511から入力された高周波信号は、導体パターン401を介して容量結合用導体パターン410に伝送される。伝送された高周波信号は、容量結合用導体パターン410と導体パターン402の容量結合により、導体パターン402に伝送され、外部接続用導体512から出力される。
 さらに、このような構成では、導体パターン401および導体パターン402がインダクタとして機能し、容量結合用導体パターン410と導体パターン402とが誘電体層202を介して対向する部分がキャパシタとして機能する。図5(A)は本発明の第1の実施形態に係るフラットケーブル型高周波フィルタの等価回路図である。図5(A)に示すように、上述の構成とすることで、外部接続用導体511,512間に、インダクタ、キャパシタ、インダクタの順で直列接続されたLC直列共振回路が実現される。この際、上述のように、導体パターン401,402の形状および、容量結合用導体パターン410の形状を適宜設定することで、各インダクタのインダクタンスおよびキャパシタのキャパシタンスを所望値に決定できる。これにより、所定の周波数帯域を通過帯域とし、当該周波数帯域外を減衰帯域とするフィルタを実現することができる。
 さらに、本実施形態の構成を用いることで、インダクタとして機能する導体パターン401,402を、従来の実装型積層体に形成するインダクタの導体パターンよりも幅広に形成することができるので、インダクタの等価直列抵抗ESRを低減することができる。これにより、高周波フィルタのQ値を向上させ、伝送損失を抑圧することができる。
 また、同時に、容量結合用導体パターン410と導体パターン402の対向面積を広くすることができ、フラットケーブル型高周波フィルタ10の外形形状の範囲内で、大きなキャパシタンスを実現できる。これにより、高周波フィルタとして必要なキャパシタンスの実現範囲を広くすることができる。これにより、所望とする高周波フィルタの特性を実現しやすくなる。
 さらに、本実施形態の構成を用いることで、従来の実装型積層体のようなインダクタとキャパシタとを接続する引き回し導体を必要としない。したがって、キャパシタに接続する不要なインダクタンス成分が生じず、高周波フィルタのQ値をさらに向上させ、伝送損失をさらに抑圧することができる。
 さらに、本実施形態に示すように、誘電正接(tanδ)の極小さい材質(具体的には、例えばtanδ≦0.005の材質)を誘電体基材に利用することで、高周波フィルタのQ値をさらに向上させ、伝送損失をさらに抑圧することができる。特に、誘電体基材を液晶ポリマとすることで、上述の特性を得ながら、高い可撓性を有する高周波フィルタを実現することができる。
 さらに、本実施形態の構成では、グランド導体を用いていない。このような構成とすることで、導体パターン401,402、容量結合用導体パターン410がグランドと結合することを防止できる。これにより、浮遊容量が発生せず、所望とするQ値を実現でき、より高精度で優れたフィルタ特性の高周波フィルタを実現することができる。
 図5(B)は、本発明の第1の実施形態に係るフラットケーブル型高周波フィルタのフィルタ特性図である。なお、図5(B)はS11、S21のシミュレーション結果であり、Wi-Fiに利用されることを想定して、2.4GHz付近から5.0GHz付近の周波数帯域を通過帯域とし、それよりも低い周波数帯(例えば700MHz帯)は阻止帯域内とするように、導体パターン401,402、容量結合用導体パターン410を構成した場合を示す。
 図5(B)に示すように、本実施形態の構成とすることで、所望とする2.4GHz付近から5.0GHz付近の周波数帯域の高周波信号を低損失で通過させ、当該通過帯域外の高周波信号を減衰させることができる。特に、通過帯域よりも低周波数帯域の高周波信号を大幅に減衰させることができる。
 以上のように、本実施形態の構成を用いることで、伝送損失が低く、優れたフィルタ特性を有する高周波フィルタを、薄型で且つ省スペースに実現することができる。
 なお、本実施形態では、容量結合用導体パターン410の幅WCと導体パターン401,402の幅WLは同じである。しかしながら、略同じであればよい。このような構成では、インダクタとして機能する導体パターン401,402の幅を広く設定でき、インダクタのESRを低くすることができ、高周波フィルタのQ値を高くすることができる。容量結合用導体パターン410の幅WCと導体パターン401,402の幅WLの比は、例えば、1.0≧WL/WC≧0.8であることが好ましい。
 上述の構造からなるフラットケーブル型高周波フィルタ10は、次に示す携帯型の電子機器に用いることができる。図6(A)は本発明の第1の実施形態に係る携帯電子機器の部品構成を示す側面断面図であり、図6(B)は当該携帯電子機器の部品構成を説明する平面断面図である。
 電子機器1は、薄型の機器筐体2を備える。機器筐体2内には、回路要素である実装回路基板3A,3B(本発明の「実装回路部材」に相当する。)が配置されている。実装回路基板3A,3Bの表面には、複数のICチップ5および実装部品6が実装されている。実装回路基板3A,3Bは、機器筐体2を平面視して隣り合うように、機器筐体2に設置されている。実装回路基板3Bは、実装回路基板3Aよりも厚く形成されている。例えば、実装回路基板3Bは、内装回路が多機能に形成されており、実装回路基板3Aは内装回路が比較的簡素な場合等に、このような厚みの関係となる。
 機器筐体2はできる限り薄型に形成されているので、機器筐体2の厚み方向においては、実装回路基板3Bと機器筐体2との間隔が極狭い。したがって、実装回路基板3A,3Bを接続するために、同軸ケーブルを配置することができない。
 しかしながら、本実施形態に示したフラットケーブル型高周波フィルタ10を、当該フラットケーブル型高周波フィルタ10の厚み方向と、機器筐体2の厚み方向とが一致するように配置することで、実装回路基板3A,3Bと機器筐体2との間に、フラットケーブル型高周波フィルタ10を通すことができる。
 さらに、実装回路基板3Aと実装回路基板3Bとを接続する伝送経路に高周波フィルタを挿入する必要がある場合、本実施形態のフラットケーブル型高周波フィルタ10を用いることで、伝送線路であるフラットケーブルと高周波フィルタとを別途用意する場合よりも、省スペース化することができる。また、高周波フィルタを積層体の実装部品で実現するよりも、薄型に形成することができる。
 また、実装回路基板3A,3Bの厚みが異なるような場合であっても、本実施形態のフラットケーブル型高周波フィルタ10は可撓性を有するので、フラットケーブル型高周波フィルタ10を湾曲もしくは屈曲させて配置することで、フラットケーブル型高周波フィルタを機器筐体2内に効率的に配置することができる。これにより、フラットケーブル型高周波フィルタの配置スペースを省スペース化できる。
 この際、湾曲位置は、キャパシタの形成領域、すなわち容量結合用導体パターン410の形成領域を除く位置とする。これにより、湾曲によるキャパシタンスの変化を防止でき、所望のフィルタ特性を実現することができる。
 さらに、この際、可撓性を有する誘電体基材20の誘電体層201,202の厚みと、所定の剛性を有する導体パターン401,402および容量結合用導体パターン420の厚みを適宜設定することで、湾曲した形状を保持することができる。具体的には、例えば、誘電体層の厚みを25μm~50μmとし、導体パターンおよび容量結合用導体パターンの厚みを誘電体層の半分程度とするとよい。
 このような構成とすることで、図6に示すように、フラットケーブル型高周波フィルタ10を実装回路基板3A,3Bから離間して(接触させることなく)、配置することができる。これにより、フラットケーブル型高周波フィルタ10と実装回路基板3A,3Bとの電磁干渉を抑制することができ、実装回路基板3A,3B間の伝送特性および高周波フィルタ特性を向上させることができる。特に、100μm以上離間すれば、十分な電磁干渉の抑制効果を得ることができる。
 このような湾曲した形状は、図7に示すような製法で形成することができる。図7は、フラットケーブル型高周波フィルタの湾曲部の形成方法を示す部分側面図である。図7(A)はフラットケーブル型高周波フィルタと湾曲形成治具とを示す図であり、図7(B)は湾曲形成後のフラットケーブル型高周波フィルタを示す図である。
 図7(A)に示すように、フラットケーブル型高周波フィルタ10は、厚み方向に沿った段差911を有する第1治具901と、厚み方向に沿った段差912を有する第2治具902とによって挟み込まれる。この際、段差911,912がフラットケーブル型高周波フィルタ10を両面から当接した状態で挟み込んで噛み合うように、第1治具901および第2治具902がフラットケーブル型高周波フィルタ10を挟み込み、必要に応じて熱を加える。これにより、フラットケーブル型高周波フィルタ10を、長手方向の所定位置で湾曲させることができる。
 この際、段差911,912のエッジ部には面取り処理がされており、断面視してR面取りされた形状となっている。このような構成とすることで、フラットケーブル型高周波フィルタ10を傷つけることなく、湾曲部Be10を形成することができる。
 次に、第2の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図8は、本発明の第2の実施形態に係るフラットケーブル型高周波フィルタの分解平面図である。本実施形態のフラットケーブル型高周波フィルタ10Aは、容量結合用導体パターン410Wの形状のみが、第1の実施形態に係るフラットケーブル型高周波フィルタ10と異なる。したがって、異なる箇所のみを具体的に説明する。
 フラットケーブル型高周波フィルタ10Aの容量結合用導体パターン410Wの幅WCAは、導体パターン401,402の幅WLよりも広い。このような構成であっても、LC直列共振回路を実現でき、第1の実施形態と同様の作用効果を得ることができる。なお、容量結合用導体パターン410Wの幅WCと導体パターン401,402の幅WLの比は、例えば、1.0≧WL/WC≧0.8とすることが好ましい。
 さらに、本実施形態の構成を用いることで、誘電体層201,202を積層する際に、幅方向に誘電体層201,202の位置関係がずれても、幅の差分の範囲で、対向面積が変化しない。したがって、所望とするキャパシタンスを実現するフラットケーブル型高周波フィルタ10Aを、より容易に製造することができる。また、製品間での特性ばらつきを小さくすることができる。
 次に、第3の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図9は、本発明の第3の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。本実施形態のフラットケーブル型高周波フィルタ10Bは、容量結合用導体パターン410Bの形状、および、容量結合用導体パターン410Bと導体パターン401の関係が、第1の実施形態に係るフラットケーブル型高周波フィルタ10と異なる。したがって、異なる箇所のみを具体的に説明する。
 容量結合用導体パターン410Bは、導体パターン401と所定面積で対向するように形成されている。そして、導体パターン401と容量結合用導体パターン410Bとは、接続導体60によって接続されていない。言い換えれば、導体パターン401と容量結合用導体パターン410Bとは、誘電体層202を挟んで単に対向している。
 このような構成とすることで、インダクタ、キャパシタ、キャパシタ、インダクタの順で直列接続されたLC直列共振回路を実現できる。したがって、容量結合用導体パターン410Bと、導体パターン401,402との対向面積を適宜設定することで、所望とするキャパシタンスを実現できる。これにより、第1の実施形態と同様の作用効果を得ることができる。
 さらに、本実施形態の構成を用いることで、長手方向に沿った誘電体層201,202の積層位置がずれても、容量結合用導体パターン410Bと導体パターン401との対向面積が増加すれば容量結合用導体パターン410Bと導体パターン402との対向面積が減少し、容量結合用導体パターン410Bと導体パターン401との対向面積が減少すれば容量結合用導体パターン410Bと導体パターン402との対向面積が増加する。これにより、積層位置ずれによるキャパシタンスの変化を抑制することができる。これにより、所望とするキャパシタンスを実現するフラットケーブル型高周波フィルタ10Bを、より確実に製造することができる。また、製品間での特性ばらつきを小さくすることができる。
 次に、第4の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図10は、本発明の第4の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。本実施形態のフラットケーブル型高周波フィルタ10Cは、導体パターン401Cの形状が、第1の実施形態に係るフラットケーブル型高周波フィルタ10と異なる。したがって、異なる箇所のみを具体的に説明する。
 導体パターン401Cは、誘電体層202の誘電体層201と反対側の面に形成されている。導体パターン401Cの長手方向の一方端は、外部接続用導体511に接続されている。導体パターン401Cの他方端付近の所定領域は、導体パターン402と所定面積で対向している。
 このような構成であっても、上述の第1の実施形態と同様の作用効果を得ることができる。さらに、本実施形態の構成では、導体パターン401Cが同一平面で外部接続用導体511に接続されているので、接続導体の形成数を減らすことができる。これにより、フラットケーブル型高周波フィルタ10Cの構造を、より単純化でき、信頼性を高めることができる。
 次に、第5の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図11は、本発明の第5の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。
 本実施形態のフラットケーブル型高周波フィルタ10Dは、第1の実施形態に係るフラットケーブル型高周波フィルタ10と同じ材質からなるが、誘電体基材および導体パターンの構成が異なる。したがって、異なる箇所のみを具体的に説明する。
 誘電体基材20Dは、単層の誘電体からなる。誘電体基材20Dの一方の平板面には、導体パターン401D,402Dが形成されている。導体パターン401D,402Dは、誘電体基材20Dの長手方向に並んで形成されている。
 誘電体基材20Dの長手方向の一方端には外部接続用導体511が形成されており、誘電体基材20Dの長手方向の他方端には外部接続用導体512が形成されている。導体パターン401Dは、外部接続用導体511に接続されており、導体パターン402Dは、外部接続用導体512に接続されている。
 導体パターン401Dの導体パターン402Dと近接する端部(外部接続用導体511と反対側の端部)付近には、櫛歯状の容量結合用導体パターン411Dが形成されている。導体パターン402Dの導体パターン401Dと近接する端部(外部接続用導体512と反対側の端部)付近には、櫛歯状の容量結合用導体パターン412Dが形成されている。
 容量結合用導体パターン411D,412Dは、長手方向に沿って伸長する互いの導体指が幅方向に所定間隔を空けた状態で長手方向に沿って所定長に亘って対向するように、配置されている。このような構成により、単層の誘電体基材20Dの平板面上において、キャパシタを構成することができる。
 このような構成であっても、上述の第1の実施形態と同様の作用効果を得ることができる。さらに、本実施形態の構成では、単層の誘電体基材20Dを用いるので、フラットケーブル型高周波フィルタ10Dの構造を、より単純化、薄型化でき、信頼性を高めることができる。
 次に、第6の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図12は、本発明の第6の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。
 本実施形態のフラットケーブル型高周波フィルタ10Eは、第3の実施形態に係るフラットケーブル型高周波フィルタ10Cに対して、さらにシールド導体711,712,721,722を追加した構成からなる。したがって、第3の実施形態に係るフラットケーブル型高周波フィルタ10Cと異なる箇所のみを具体的に説明する。
 誘電体基材20Eは、誘電体層201,202,211,212を積層してなる。誘電体層201,202を挟んで誘電体層211,212が配置されている。誘電体層211は、誘電体層201に当接し、誘電体層212は、誘電体層202に当接している。
 誘電体層201の誘電体層202側の平板面には、導体パターン402E、容量結合用導体パターン412Eが形成されている。誘電体層202の誘電体層212側の平板面には、導体パターン401E、容量結合用導体パターン411Eが形成されている。
 容量結合用導体パターン411E,412Eは、誘電体層202を挟んで対向している。
 誘電体層212の誘電体層202と反対側の平板面には、シールド導体711,712、外部接続用導体511,512が形成されている。外部接続用導体511は、接続導体60により導体パターン401Eに接続されている。外部接続用導体512は、接続導体60により導体パターン402Eに接続されている。
 誘電体層211の誘電体層201と反対側の平板面には、シールド導体721,722が形成されている。
 シールド導体711,721は、厚み方向に見て、導体パターン401Eと重なり、容量結合用導体パターン411E,412Eと重ならないように、配置されている。シールド導体712,722は、厚み方向に見て、導体パターン402Eと重なり、容量結合用導体パターン411E,412Eと重ならないように、配置されている。
 このような構成とすることで、導体パターン401E,402Eが外部回路と電磁干渉することを防止できる。さらに、容量結合用導体パターン411E,412Eによるキャパシタのキャパシタンスがシールド導体711,712,721,722によって変化することを抑制できる。これにより、さらに、伝送特性、フィルタ特性に優れたフラットケーブル型高周波フィルタを実現できる。
 なお、シールド導体は、上述の四カ所の少なくとも一カ所に形成されていれば、少なくとも、本実施形態に特有の作用効果を得ることができる。
 また、シールド導体は、図12に示すようにベタ導体であってもよく、メッシュ状導体であってもよい。
 次に、第7の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図13は、本発明の第7の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。
 本実施形態のフラットケーブル型高周波フィルタ10Fは、導体パターンの構成が、第1の実施形態に係るフラットケーブル型高周波フィルタ10と異なる。したがって、異なる箇所のみを具体的に説明する。
 誘電体層201の誘電体層202側の平板面には、容量結合用導体パターン410F,411Fが形成されている。誘電体層202の誘電体層201側とは反対側の平板面には、導体パターン401F,402F,403Fが形成されている。導体パターン401F,402F,403Fは、誘電体層202の長手方向に並んで形成されている。
 導体パターン401Fの一方端は、外部接続用導体511に接続されている。導体パターン401Fの他方端は、接続導体60により容量結合用導体パターン410Fに接続されている。
 導体パターン403Fの一方端は外部接続用導体512に接続されている。導体パターン403Fの他方端は、接続導体60により容量結合用導体パターン411Fに接続されている。
 導体パターン402Fの一方端付近の所定領域は、容量結合用導体パターン410Fと所定面積で対向している。導体パターン402Fの他方端付近の所定領域は、容量結合用導体パターン411Fと所定面積で対向している。
 このような構成では、導体パターン402Fがインダクタとして機能する。容量結合用導体パターン410F,411Fと導体パターン402Fとが誘電体層202を介して対向する部分がキャパシタとして機能する。図14は本発明の第7の実施形態に係るフラットケーブル型高周波フィルタの等価回路図である。図14に示すように、上述の構成とすることで、外部接続用導体511,512間に、キャパシタ、インダクタ、キャパシタの順で直列接続されたLC直列共振回路が実現される。この際、上述のように、導体パターン402Fの形状および、容量結合用導体パターン410F,411Fの形状を適宜設定することで、インダクタのインダクタンスおよび各キャパシタのキャパシタンスを所望値に決定できる。これにより、所定の周波数帯域を通過帯域とし、当該周波数帯域外を減衰帯域とするバンドパスフィルタを実現することができる。
 また、フラットケーブル型高周波フィルタ10Fは可撓性を有するので、フラットケーブル型高周波フィルタ10Fを湾曲もしくは屈曲させて配置することができる。この際、湾曲位置は、キャパシタの形成領域、すなわち容量結合用導体パターン410F,411Fの形成領域を除く位置とする。これにより、湾曲によるキャパシタンスの変化を防止でき、所望のフィルタ特性を実現することができる。
 次に、第8の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図15は、本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの外観斜視図である。図16は、本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。図17は、本発明の第8の実施形態に係るフラットケーブル型高周波フィルタの分解側面図である。
 本実施形態のフラットケーブル型高周波フィルタ10Gは、外部接続用導体512Gの位置が、第3の実施形態に係るフラットケーブル型高周波フィルタ10Cと異なる。したがって、第3の実施形態に係るフラットケーブル型高周波フィルタ10Cと異なる箇所のみを具体的に説明する。
 誘電体基材20は、誘電体層201,202,211を積層してなる。誘電体層201を挟んで誘電体層202,211が配置されている。誘電体層211は誘電体層201に当接している。
 誘電体層211の誘電体層201側とは反対側の平板面には、外部接続用導体512Gが形成されている。外部接続用導体512Gは、接続導体60により導体パターン402に接続されている。
 誘電体基材20を挟んで保護層301,302が配設されている。保護層301は、外部接続用導体512Gが露出するように配設されている。保護層302は、外部接続用導体511が露出し、導体パターン401Cを覆うように配設されている。
 コネクタ611は、フラットケーブル型高周波フィルタ10Gの一方の主面に形成され、外部接続用導体511に接続されている。コネクタ612は、フラットケーブル型高周波フィルタ10Gの他方の主面に形成され、外部接続用導体512Gに接続されている。
 導体パターン401Cと導体パターン402とが対向している領域、すなわち、キャパシタの形成領域は、コネクタ612の近傍に形成されている。
 上述の構造からなるフラットケーブル型高周波フィルタ10Gは、例えば、次に示すアンテナ接続部に用いることができる。図18は、本発明の第8の実施形態に係るアンテナ接続部の構成を示すブロック図である。図19は、本発明の第8の実施形態に係るアンテナ接続部の構成を示す側面図である。
 図18(A)に示すように、アンテナ52と給電回路51との間に、フラットケーブル型高周波フィルタ10Gが接続されている。アンテナ52とフラットケーブル型高周波フィルタ10Gとの接続点は、グランドに接続されている。
 なお、アンテナ接続部は図18(B)に示す構成でもよい。図18(B)では、アンテナ52とグランドとの間に、フラットケーブル型高周波フィルタ10Gが接続されている。給電回路51は、アンテナ52とフラットケーブル型高周波フィルタ10Gと接続点に接続されている。
 図19に示すように、給電回路51は、実装基板3、ICチップ5および実装部品6を備える。実装基板3の表面には、複数のICチップ5および実装部品6が実装されている。アンテナ52は、実装基板3から離れた位置に配置されている。
 フラットケーブル型高周波フィルタ10Gのコネクタ611はアンテナ52に接続され、コネクタ612は給電回路51に接続されている。すなわち、フラットケーブル型高周波フィルタ10Gに係るキャパシタの形成領域は、アンテナ52から離れた位置に配置されている。
 アンテナ52の配置位置がキャパシタの形成領域の近傍である場合、Q値が悪くなるおそれがあるところ、この構成では、キャパシタの形成領域がアンテナ52から一定距離離れるため、アンテナ特性の劣化を抑制することができる。また、フラットケーブル型高周波フィルタ10Gのうち、キャパシタの形成領域よりアンテナ52側の部分は、線状導体であるので、この部分をアンテナの一部として機能させることができる。
 さらに、上述のように、フラットケーブル型高周波フィルタ10Gの湾曲位置は、キャパシタの形成領域を除く位置とする。これにより、湾曲によるキャパシタンスの変化を防止でき、所望のフィルタ特性を実現することができる。また、この湾曲位置をキャパシタの形成領域にできる限り近づければ、アンテナと兼用する部分を長くできる。また、この湾曲位置を調整することで、アンテナのインピーダンスを調整できる。
 さらに、コネクタ611はフラットケーブル型高周波フィルタ10Gの一方の主面に形成されている。コネクタ612は、コネクタ611が形成された主面と反対側の主面に形成されている。これにより、コネクタを接続するだけのためにフラットケーブル型高周波フィルタ10Gを折り返す必要がない。このため、アンテナ52と実装基板3との間隔が極狭くても、アンテナ52と実装基板3との間に、フラットケーブル型高周波フィルタ10Gを通すことができる。
 さらに、ICチップ5または実装部品6の上にアンテナ52が配置されるような場合であっても、フラットケーブル型高周波フィルタ10Gを湾曲もしくは屈曲させることで、アンテナ52と実装基板3との間にフラットケーブル型高周波フィルタ10Gを配置することができる。
 次に、本発明の第9の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図20は、本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。なお、図20では、保護層およびコネクタの図示を省略している。
 本実施形態のフラットケーブル型高周波フィルタ10Hは、第1の実施形態に係るフラットケーブル型高周波フィルタ10と同様に、誘電体基材20Hの一方の主面側で外部回路に接続する構成を備える。また、本実施形態のフラットケーブル型高周波フィルタ10Hの各構成要素は、上述の各実施形態に示したフラットケーブル型高周波フィルタの各構成要素と同じである。したがって、本実施形態に特徴な箇所のみを具体的に説明する。
 フラットケーブル型高周波フィルタ10Hは、平板状の誘電体基材20Hを備える。誘電体基材20Hは、誘電体層201H,202H,203H,204Hが順に積層されてなる。
 誘電体層201Hにおける誘電体層202H側と反対側の主面(誘電体基材20Hの一方主面)には、導体パターン401H1,403H1が形成されている。導体パターン401H1は、第1部分導体パターン401H11と第2部分導体パターン401H12とを備える。
 第1部分導体パターン401H11と導体パターン403H1は、誘電体層201Hの長手方向に沿って間隔を空けて配置されている。第1部分導体パターン401H11と導体パターン403H1は、略同じ幅であり、第2部分導体パターン401H12よりも幅広に形成されている。機能的に示せば、後述するキャパシタの形成に必要な幅で形成されている。
 第2部分導体パターン401H12は、誘電体層201Hの幅方向に沿って、第1部分導体パターン401H11に隣接して配置されている。第2部分導体パターン401H12は、ループ状の導体パターンである。ループ状の導体パターンとは、環状の一部を切断した形状である。
 第1部分導体パターン401H11における誘電体層201Hの一方端側端部と、第2部分導体パターン401H12の一方端(外周側端部)は、誘電体層201Hの一方端付近で接続されている。これら第1部分導体パターン401H11と第2部分導体パターン401H12は、誘電体層201Hの一方端付近に形成された引き出し導体パターン441に接続されている。
 導体パターン403H1における誘電体層201Hの他方端側端部は、誘電体層201Hの他方端付近に形成された引き出し導体パターン442に接続されている。
 誘電体層202Hの誘電体層201H側の主面には、導体パターン401H2と容量結合用導体パターン410H1が形成されている。導体パターン401H2は、第1部分導体パターン401H21と第2部分導体パターン401H22を備える。
 第1部分導体パターン401H21は、矩形であり、誘電体層201Hを介して第1部分導体パターン401H11の一部に対向している。第1部分導体パターン401H21は、誘電体層201Hを厚み方向に貫通する接続導体60によって、第1部分導体パターン401H11に接続されている。
 第2部分導体パターン401H22は、誘電体層202Hの幅方向に沿って、第1部分導体パターン401H21に隣接して配置されている。第2部分導体パターン401H22は、ループ状の導体パターンである。第2部分導体パターン401H22は、主面に直交する方向に見て、第2部分導体パターン401H12と重なるように形成されている。第2部分導体パターン401H22の一方端(外周側端部)は、第1部分導体パターン401H21に接続されている。第2部分導体パターン401H22の他方端(内周側端部)は、誘電体層201Hを厚み方向に貫通する接続導体60によって、第2部分導体パターン401H12の他方端(内周側端部)に接続されている。
 容量結合用導体パターン410H1は、矩形あり、誘電体層201Hを介して、第1部分導体パターン401H11と導体パターン403H1の両方に対向している。容量結合用導体パターン410H1と第1部分導体パターン401H11との対向部が、キャパシタC21Hとなる。容量結合用導体パターン410H1と導体パターン403H1との対向部が、キャパシタC10Hとなる。
 誘電体層203Hの誘電体層202H側の主面には、容量結合用導体パターン410H2と導体パターン402H1とが形成されている。導体パターン402H1は、第1部分導体パターン402H11と第2部分導体パターン402H12とを備える。
 容量結合用導体パターン410H2と第1部分導体パターン402H11は、誘電体層203Hの長手方向に沿って間隔を空けて配置されている。容量結合用導体パターン410H2と第1部分導体パターン402H11は、略同じ幅である。容量結合用導体パターン410H2は、誘電体層202Hを厚み方向に貫通する接続導体60によって、第1部分導体パターン401H21に接続されている。
 第1部分導体パターン402H11は、矩形であり、誘電体層202Hを介して容量結合用導体パターン410H1の一部に対向している。第1部分導体パターン402H11は、誘電体層202Hを厚み方向に貫通する接続導体60によって、容量結合用導体パターン410H1に接続されている。
 第2部分導体パターン402H12は、誘電体層203Hの幅方向に沿って、容量結合用導体パターン410H2に隣接して配置されている。第2部分導体パターン402H12は、ループ状の導体パターンである。第2部分導体パターン402H12の一方端(外周側端部)は、第1部分導体パターン402H11に接続されている。第2部分導体パターン402H12の他方端(内周側端部)は、主面に直交する方向に見て、第2部分導体パターン401H22,401H12の他方端(内周側端部)に重なっている。第2部分導体パターン402H12の他方端(内周側端部)は、誘電体層202Hを厚み方向に貫通する接続導体60によって、第2部分導体パターン401H22の他方端(内周側端部)に接続されている。
 容量結合用導体パターン410H2は、矩形あり、誘電体層202Hを介して、第1部分導体パターン401H21と容量結合用導体パターン410H1と対向している。容量結合用導体パターン410H2は、誘電体層202Hを厚み方向に貫通する接続導体60によって、第1部分導体パターン401H21に接続されている。容量結合用導体パターン410H1,410H2が対向する部分がキャパシタC22Hとなる。
 誘電体層204Hの誘電体層203H側の主面には、導体パターン402H2が形成されている。導体パターン402H2は、第1部分導体パターン402H21と第2部分導体パターン402H22とを備える。
 第1部分導体パターン402H21は、矩形であり、誘電体層203Hを介して容量結合用導体パターン410H2の一部と、第1部分導体パターン402H11に対向している。第1部分導体パターン402H21は、誘電体層203Hを厚み方向に貫通する接続導体60によって、第1部分導体パターン402H11に接続されている。第1部分導体パターン402H21と容量結合用導体パターン410H2が対向する部分がキャパシタC23Hとなる。
 第2部分導体パターン402H22は、ループ状の導体パターンである。第2部分導体パターン402H22は、主面に直交する方向に見て、第2部分導体パターン402H12に重なっている。第2部分導体パターン402H22の一方端(外周側端部)は、第1部分導体パターン402H21に接続されている。第2部分導体パターン402H22の他方端(内周側端部)は、誘電体層203Hを厚み方向に貫通する接続導体60によって、第2部分導体パターン402H12の他方端(内周側端部)に接続されている。
 そして、上述のように、第2部分導体パターン401H12,401H22,402H12,402H22が配置され、これらの導体パターンの内周側端部が接続導体60で接続されることで、誘電体基材20Hの厚み方向を軸方向とするスパイラル形状のインダクタL10Hが形成される。
 このような構成とすることで、本実施形態のフラットケーブル型高周波フィルタ10Hは、図21に示す回路を構成できる。図21は、本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの等価回路図である。
 引き出し導体パターン441,442間に、インダクタL10HとキャパシタC10Hの直列回路が接続される。インダクタL10Hには、キャパシタC21H,C22H,C23Hが並列接続される。すなわち、LC直列共振とLC並列共振をともに有するフィルタ回路を構成できる。
 このような回路構成を備えることで、図22に示すような伝送特性を得ることができる。図22は、本発明の第9の実施形態に係るフラットケーブル型高周波フィルタの伝送特性を示すグラフである。図22(A)は通過特性を示し、図22(B)は反射特性を示す。本実施形態では、周波数f0の高周波信号を通過させ、周波数f1の高周波信号を減衰させる特性を得るように、インダクタL10HおよびキャパシタC10H,C21H,C22H,C23Hの素子値が決定されている。すなわち、この素子値となるように、誘電体基材10Hおよび各導体パターンの形状が決定されている。
 本実施形態の構成を用いることで、図22(A)に示すように、通過させたい周波数f0の高周波信号は低損失で伝送し、図22(B)に示すように、減衰させたい周波数f1の高周波信号は、大きく減衰させることができる。
 この際、図22に示すように、通過させたい周波数f0と減衰させたい周波数f1とが近接していても、周波数f0の高周波信号を低損失で伝送し、周波数f1の高周波信号を大幅に減衰させることができる。具体的には、周波数f0はGPS信号の周波数で略1.575GHzであり、周波数f1は通信バンドの1.7GHz帯である。このように、周波数差が略200MHzであっても、通過させたい周波数f0(1.575GHz)の高周波信号を低損失で伝送し、減衰させたい周波数f1(1.7GHz帯)の高周波信号を大幅に減衰させることができる。
 このように、本実施形態の構成を用いることで、通過帯域の高周波数側に急峻な減衰を得られるフィルタを構成することができる。
 また、本実施形態の構成では、インダクタL10Hを構成する導体パターンの同じ部分を複数層の導体パターンで形成している。これにより、インダクタL10HのESRを低減でき、さらに低損失で且つ急峻な通過、減衰特性を実現することができる。
 次に、本発明の第10の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図23は、本発明の第10の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。なお、図23でも、保護層およびコネクタの図示を省略している。
 本実施形態のフラットケーブル型高周波フィルタ10Iは、第9の実施形態に示したフラットケーブル型高周波フィルタ10Hに対して、導体パターンの一部の構成が異なるものであり、基本的な他の構成は同じである。
 フラットケーブル型高周波フィルタ10Iは、誘電体層201I,202I,203I,204Iを積層した誘電体基材20Iを備える。誘電体層201I,202I,203Iの各導体パターンの構成は、第9の実施形態に示した誘電体層201H,202H,203Hと同じである。
 誘電体層204Iの誘電体層203I側と反対側の主面には、導体パターン402I2と引き出し導体443が形成されている。導体パターン402I2は、第9の実施形態に示した導体パターン402H2を誘電体層の主面を基準面として、面対称となる形状である。引き出し導体443は、誘電体基材20Iの主面に直交する方向に見て、引き出し導体441に重なる形状で形成されている。引き出し導体443は、誘電体層201I,202I,203I,204Iを貫通する、すなわち誘電体基材20Iを貫通する接続導体60によって、引き出し導体441と接続されている。引き出し導体443は、外部接続導体やコネクタに接続されており、引き出し導体441は外部に露出していない。
 このような構成であっても、第9の実施形態と同様の作用効果を得ることができる。また、本実施形態の構成を用いることで、第8の実施形態と同様に、フラットケーブル型高周波フィルタ10Iの一方の外部接続部が一方主面側となり、他方の外部接続部が他方主面側となる。これにより、フラットケーブル型高周波フィルタ10Iを厚み方向に挟んで、接続すべき外部回路基板が配置されていても、これらの外部回路基板を容易に接続することができる。
 次に、本発明の第11の実施形態に係るフラットケーブル型高周波フィルタについて、図を参照して説明する。図24は、本発明の第11の実施形態に係るフラットケーブル型高周波フィルタの分解斜視図である。なお、図24でも、保護層およびコネクタの図示を省略している。
 本実施形態のフラットケーブル型高周波フィルタ10Jは、第10の実施形態に示したフラットケーブル型高周波フィルタ10Jに対して、誘電体層を2層削除したものであり、基本的な他の構成は同じである。
 フラットケーブル型高周波フィルタ10Jは、誘電体層201J,204Jを積層した誘電体基材20Jを備える。誘電体層201J,204Jの各導体パターンの構成は、第10の実施形態に示した誘電体層201I,204Iと同じである。なお、第1部分導体パターン402J21は、容量結合用導体パターンを兼ねている。
 このような構成であっても、第10の実施形態に示したフラットケーブル型高周波フィルタ10Iと同様の作用効果を得ることができる。但し、本実施形態に係るフラットケーブル型高周波フィルタ10Jは、インダクタに並列接続されるキャパシタが1つとなるので、所望とする伝送特性が得られるのであれば、この構成を用いればよい。そして、この構成を用いることで、誘電体層の層数を少なくでき、フラットケーブル型高周波フィルタ10Jをより薄く形成することができる。
 帯域通過フィルタを実現する上述の各実施形態に示した各フラットケーブル型高周波フィルタは、次に示す通信機器モジュールに適用することができる。図25は、本発明の実施形態に係る通信機器モジュールのブロック図である。図26は、本発明の実施形態に係る通信機器モジュールの概略構成を示す側面図である。なお、図25、図26では、第10の実施形態に示したフラットケーブル型高周波フィルタ10Iを用いる態様を示す。
 図25に示すように、本実施形態に通信機器モジュール900は、アンテナ930、WiFi送受信部931、セルラー送受信部932、GPS受信部933、帯域阻止フィルタ(BEF)921、および帯域通過フィルタ(BPF)922を備える。
 アンテナ930は、帯域阻止フィルタ921を介して、WiFi送受信部931およびセルラー送受信部932に接続されている。また、アンテナ930は、帯域通過フィルタ922を介してGPS受信部933に接続されている。
 WiFi送受信部931は、例えば2.4GHz帯等の周波数帯域を利用したWiFi通信信号を送受信する。セルラー送受信部932は、900MHz帯等の周波数帯域や1.7GHz帯、2.0GHz帯等の周波数帯域を利用したセルラー通信信号を送受信する。GPS受信部933は、1.5GHz付近のGPS信号を受信する。
 帯域阻止フィルタ921は、GPS信号の周波数帯域を減衰させ、WiFi通信信号およびセルラー通信信号の周波数帯域を通過する。帯域通過フィルタ922は、GPS信号の周波数帯域を通過し、GPS信号の周波数帯域以外の周波数帯域を減衰させる。
 この帯域通過フィルタ922に、上述の第10の実施形態に示したフラットケーブル型高周波フィルタ10Iを用いる。このフラットケーブル型高周波フィルタ10Iを用いることで、急峻な減衰特性で、減衰帯域が狭い帯域阻止フィルタを実現できる。したがって、GPS信号の周波数帯域に減衰極を設定すれば、GPS信号を減衰させ、且つ、当該GPS信号の周波数帯域に近い、他の通信信号(例えば、セルラー通信信号の1.7GHz帯)等を減衰させることなく伝送することができる。
 このような回路構成の通信機器モジュール900は、フロントエンド基板990、アンテナ基板991、およびフラットケーブル型高周波フィルタ10Iによって構成される。フロントエンド基板990の実装面には、上述のWiFi送受信部931、セルラー送受信部932、GPS受信部933等を実現する回路部品が実装されている。アンテナ基板991には、アンテナ930が形成されている。アンテナ基板911は、フロントエンド基板990の実装面側に、当該フロントエンド基板990から離間して配置されている。
 図26に示すように、フラットケーブル型高周波フィルタ10Iに装着されたコネクタ611は、アンテナ基板991におけるフロントエンド基板990側の面に接続されている。フラットケーブル型高周波フィルタ10Iに装着されたコネクタ612は、フロントエンド基板990におけるアンテナ基板991側の面(実装面)に接続されている。フラットケーブル型高周波フィルタ10Iは、可撓性を有するので、伸長方向の途中に屈曲部を形成することができる。このように、屈曲部を形成することで、フラットケーブル型高周波フィルタ10Iは、回路部品に接触しないような形状に成形された状態で、フロントエンド基板990とアンテナ基板991とを接続することができる。
 そして、上述のように、帯域通過フィルタをフラットケーブル型高周波フィルタ10Iに備えていることで、フロントエンド基板990やアンテナ基板991に帯域通過フィルタを形成する必要が無い。したがって、フロントエンド基板990やアンテナ基板991を小型に形成することができる。また、帯域通過フィルタをフラットケーブル型高周波フィルタ10Iに設けることで、帯域通過フィルタのフィルタ特性(通過特性および減衰特性)が優れる。したがって、通信機器モジュール900の通信特性を向上させることができる。
 次に、本発明の第12の実施形態に係るフラットケーブル型高周波ダイプレクサについて、図を参照して説明する。図27は、本発明の第12の実施形態に係るフラットケーブル型高周波ダイプレクサの分解斜視図である。なお、図27では、保護層およびコネクタの図示を省略している。
 本実施形態のフラットケーブル型高周波ダイプレクサ90は、誘電体層201K,202K,203K,204Kを積層してなる誘電体基材20Kを備える。
 誘電体層201Kは、部分領域201K1,201K2,201K3からなる。部分領域201K1,201K2は、長手方向に沿って伸延する長尺状であり、幅方向に間隔を空けて配置されている。部分領域201K3は、部分領域201K1,201K2の長手方向の一方端に配置され、部分領域201K1,201K2を接続している。この構成により、誘電体層201Kは、長手方向の途中で、幅方向に2つの領域に分割される形状である。
 誘電体層202Kは、部分領域202K1,202K2,202K3からなる。部分領域202K1,202K2は、長手方向に沿って伸延する長尺状であり、幅方向に間隔を空けて配置されている。部分領域202K3は、部分領域202K1,202K2の長手方向の一方端に配置され、部分領域202K1,202K2を接続している。誘電体層202Kは、長手方向の途中で、幅方向に2つの領域に分割される形状である。
 誘電体層203Kは、部分領域203K1,203K2,203K3からなる。部分領域203K1,203K2は、長手方向に沿って伸延する長尺状であり、幅方向に間隔を空けて配置されている。部分領域203K3は、部分領域203K1,203K2の長手方向の一方端に配置され、部分領域203K1,203K2を接続している。誘電体層203Kは、長手方向の途中で、幅方向に2つの領域に分割される形状である。
 誘電体層204Kは、部分領域204K1,204K2,204K3からなる。部分領域204K1,204K2は、長手方向に沿って伸延する長尺状であり、幅方向に間隔を空けて配置されている。部分領域204K3は、部分領域204K1,204K2の長手方向の一方端に配置され、部分領域204K1,204K2を接続している。誘電体層204Kは、長手方向の途中で、幅方向に2つの領域に分割される形状である。
 誘電体基材20Kにおける部分領域201K1,202K1,203K1,204K1からなる第1基材部には、上述の第9の実施形態に示した導体パターンと同じ導体パターンが形成されている。これにより、誘電体基材20Kにおける部分領域201K1,202K1,203K1,204K1からなる部分には、引き出し導体441K,442K間に接続された帯域通過フィルタが実現される。
 誘電体層201Kの部分領域201K2には、ループ状導体パターン601が形成されている。ループ状導体パターン601は、それぞれ直線状の第1導体パターン6011、第2導体パターン6012、第3導体パターン6013、第4導体パターン6014、および第5導体パターン6015からなる。
 第1導体パターン6011は、部分領域201K2の幅方向に伸延する形状であり、部分領域201K2の長手方向における部分領域201K3側の端部付近に形成されている。第1導体パターン6011は、引き出し導体441Kに接続されている。第2導体パターン6012は、部分領域201K2の幅方向に伸延する形状であり、部分領域201K2の長手方向における部分領域201K3側の端部と反対側の端部付近に形成されている。第2導体パターン6012は、部分領域201K2の長手方向における部分領域201K3側の端部と反対側の端部付近に形成された引き出し導体443Kに接続されている。この引き出し導体443Kは、引き出し導体442Kと同様に、図示しないコネクタ等に接続される。
 第3導体パターン6013は、部分領域201K2の長手方向に伸延する形状であり、部分領域201K2に部分領域201K1側の端部付近に形成されている。第3導体パターン6013は、第1導体パターン6011と第2導体パターン6012に接続している。
 第4、第5導体パターン6014,6015は、部分領域201K2の長手方向に伸延する形状であり、部分領域201K2に部分領域201K1側と反対側の端部付近に形成されている。第4、第5導体パターン6014,6015は、部分領域201K2の長手方向に沿って間隔を空けて配置されている。第4導体パターン6014は、第1導体パターン6011に接続し、第5導体パターン6015は、第2導体パターン6012に接続している。
 誘電体層202Kの部分領域202K2には、ループ状導体パターン602が形成されている。ループ状導体パターン602は、それぞれ直線状の第1導体パターン6021、第2導体パターン6022、第3導体パターン6023、第4導体パターン6024、および第5導体パターン6025からなる。
 第1導体パターン6021は、部分領域202K2の幅方向に伸延する形状であり、部分領域202K2の長手方向における部分領域202K3側の端部付近に形成されている。第1導体パターン6021は、誘電体基材20Kの主面に直交する方向に見て、第1導体パターン6011と重なるように形成されている。第2導体パターン6022は、部分領域202K2の幅方向に伸延する形状であり、部分領域202K2の長手方向における部分領域202K3側の端部と反対側の端部付近に形成されている。第2導体パターン6022は、誘電体基材20Kの主面に直交する方向に見て、第2導体パターン6012と重なるように形成されている。第3導体パターン6023は、部分領域202K2の長手方向に伸延する形状であり、部分領域202K2に部分領域202K1側の端部付近に形成されている。第3導体パターン6023は、第1導体パターン6021と第2導体パターン6022に接続している。第3導体パターン6023は、誘電体基材20Kの主面に直交する方向に見て、第3導体パターン6013と重なるように形成されている。
 第4、第5導体パターン6024,6025は、部分領域202K2の長手方向に伸延する形状であり、部分領域202K2に部分領域202K1側と反対側の端部付近に形成されている。第4、第5導体パターン6024,6025は、部分領域202K2の長手方向に沿って間隔を空けて配置されている。第4導体パターン6024は、第1導体パターン6021に接続し、第5導体パターン6025は、第2導体パターン6022に接続している。第4導体パターン6024は、誘電体基材20Kの主面に直交する方向に見て、第4導体パターン6014と重なるように形成されている。第5導体パターン6025は、誘電体基材20Kの主面に直交する方向に見て、第4導体パターン6014および第5導体パターン6015と重なるように形成されている。
 誘電体層203Kの部分領域203K2には、ループ状導体パターン603が形成されている。ループ状導体パターン603は、それぞれ直線状の第1導体パターン6031、第2導体パターン6032、第3導体パターン6033、第4導体パターン6034、および第5導体パターン6035からなる。
 第1導体パターン6031は、部分領域203K2の幅方向に伸延する形状であり、部分領域203K2の長手方向における部分領域203K3側の端部付近に形成されている。第1導体パターン6031は、誘電体基材20Kの主面に直交する方向に見て、第1導体パターン6011,6021と重なるように形成されている。第2導体パターン6032は、部分領域203K2の幅方向に伸延する形状であり、部分領域203K2の長手方向における部分領域203K3側の端部と反対側の端部付近に形成されている。第2導体パターン6032は、誘電体基材20Kの主面に直交する方向に見て、第2導体パターン6012,6022と重なるように形成されている。第3導体パターン6033は、部分領域203K2の長手方向に伸延する形状であり、部分領域203K2に部分領域203K1側の端部付近に形成されている。第3導体パターン6033は、第1導体パターン6031と第2導体パターン6032に接続している。第3導体パターン6033は、誘電体基材20Kの主面に直交する方向に見て、第3導体パターン6013,6023と重なるように形成されている。
 第4、第5導体パターン6034,6035は、部分領域203K2の長手方向に伸延する形状であり、部分領域203K2に部分領域203K1側と反対側の端部付近に形成されている。第4、第5導体パターン6034,6035は、部分領域203K2の長手方向に沿って間隔を空けて配置されている。第4導体パターン6034は、第1導体パターン6031に接続し、第5導体パターン6035は、第2導体パターン6032に接続している。第4導体パターン6034は、誘電体基材20Kの主面に直交する方向に見て、第4導体パターン6024および第5導体パターン6025と重なるように形成されている。第5導体パターン6035は、誘電体基材20Kの主面に直交する方向に見て、第5導体パターン6025と重なるように形成されている。
 誘電体層204Kの部分領域204K2には、ループ状導体パターン604が形成されている。ループ状導体パターン604は、それぞれ直線状の第1導体パターン6041、第2導体パターン6042、第3導体パターン6043、第4導体パターン6044、および第5導体パターン6045からなる。
 第1導体パターン6041は、部分領域204K2の幅方向に伸延する形状であり、部分領域204K2の長手方向における部分領域204K3側の端部付近に形成されている。第1導体パターン6041は、誘電体基材20Kの主面に直交する方向に見て、第1導体パターン6011,6021,6031と重なるように形成されている。第2導体パターン6042は、部分領域204K2の幅方向に伸延する形状であり、部分領域202K2の長手方向における部分領域204K3側の端部と反対側の端部付近に形成されている。第2導体パターン6042は、誘電体基材20Kの主面に直交する方向に見て、第2導体パターン6012,6022,6032と重なるように形成されている。第3導体パターン6043は、部分領域204K2の長手方向に伸延する形状であり、部分領域204K2に部分領域204K1側の端部付近に形成されている。第3導体パターン6043は、第1導体パターン6041と第2導体パターン6042に接続している。第3導体パターン6043は、誘電体基材20Kの主面に直交する方向に見て、第3導体パターン6013,6023,6033と重なるように形成されている。
 第4、第5導体パターン6044,6045は、部分領域204K2の長手方向に伸延する形状であり、部分領域204K2に部分領域204K1側と反対側の端部付近に形成されている。第4、第5導体パターン6044,6045は、部分領域204K2の長手方向に沿って間隔を空けて配置されている。第4導体パターン6044は、第1導体パターン6041に接続し、第5導体パターン6045は、第2導体パターン6042に接続している。第4導体パターン6044は、誘電体基材20Kの主面に直交する方向に見て、第4導体パターン6034と重なるように形成されている。第5導体パターン6045は、誘電体基材20Kの主面に直交する方向に見て、第4導体パターン6034および第5導体パターン6035と重なるように形成されている。
 各層の第1導体パターン6011,6021,6031,6041は、誘電体基材20Kの厚み方向に伸延する接続導体60によって接続されている。各層の第2導体パターン6012,6022,6032,6042は、誘電体基材20Kの厚み方向に伸延する接続導体60によって接続されている。各層の第3導体パターン6013,6023,6033,6043は、誘電体基材20Kの厚み方向に伸延する接続導体60によって接続されている。各層の第4導体パターン6014,6024,6034,6044は、誘電体基材20Kの厚み方向に伸延する接続導体60によって接続されている。各層の第5導体パターン6015,6025,6035,6045は、誘電体基材20Kの厚み方向に伸延する接続導体60によって接続されている。
 このような構成では、主として第3導体パターン6013,6023,6033,6043からなる部分がインダクタとなる。また、第1導体パターン6011,6021,6031,6041における引き出し導体441Kに接続する点から第3導体パターンに接続する端部までの領域、および第2導体パターン6012,6022,6032,6043における引き出し導体443Kに接続する点から第3導体パターンに接続する端部までの領域も、第3導体パターン6013,6023,6033,6043からなるインダクタに連続するインダクタとして機能する。
 第4導体パターン6014と第5導体パターン6025の対向部、第5導体パターン6025と第4導体パターン6034の対向部、第4導体パターン6034と第5導体パターン6045の対向部がキャパシタとなる。
 これにより、誘電体基材20Kにおける部分領域201K2,202K2,203K2,204K2からなる第2基材部には、インダクタとキャパシタが並列接続されたLC並列共振型の帯域阻止フィルタが実現される。すなわち、誘電体基材20Kにおける部分領域201K1,202K1,203K1,204K1からなる部分に、引き出し導体441K,443K間に接続された帯域阻止フィルタが実現される。この帯域阻止フィルタは、上述の帯域通過フィルタと同様に、フラットケーブル自体が帯域阻止フィルタであるので、帯域阻止特性(減衰特性)に優れる。
 そして、帯域阻止フィルタの阻止帯域(減衰帯域)を、帯域通過フィルタの通過帯域に合わせることにより、各導体パターンが形成された誘電体基材20Kによって、高周波ダイプレクサを実現することできる。これにより、薄型で伝送特性に優れる高周波ダイプレクサを実現することができる。
 なお、本実施形態のフラットケーブル型高周波ダイプレクサ90は、例えば、上述の図25の回路図に示す、帯域阻止フィルタ(BEF)921および帯域通過フィルタ(BPF)922と、これらをアンテナ930に接続する伝送線路部とからなる部分に利用することができる。
 また、本実施形態のフラットケーブル型高周波ダイプレクサ90は、例えば、上述の図26のような実装態様でアンテナ基板991とフロントエンド基板990とを接続することができる。
 なお、上述のフラットケーブル型高周波フィルタやフラットケーブル型高周波ダイプレクサに対して、可変容量素子を装着して、上述の高周波フィルタを構成するインダクタおよびキャパシタに直列接続してもよい。この場合、例えば、外部接続用導体の配置位置付近に、実装型可変容量素子を実装可能なランド導体を形成して、当該ランド導体に実装型可変容量素子を実装すればよい。
1:携帯電子機器、
2:機器筐体、
3,3A,3B:実装回路基板、
4:バッテリーパック、
5:ICチップ、
6:実装部品、
10,10A,10B,10C,10D,10E,10F,10G,10H,10I,10J:フラットケーブル型高周波フィルタ、
20,20D,20H,20I,20J,20K:誘電体基材、
30,301,302:保護層、
51:給電回路、
52:アンテナ、
90:ダイプレクサ、
201,202,211,212,201H,202H,203H,204H,201I,202I,203I,204I,201J,204J,201K,202K,203K,204K:誘電体層、
201K1,201K2,201K3,202K1,202K2,202K3,203K1,203K2,203K3,204K1,204K2,204K3:部分領域、
401,402,401C,401D,402D,401E,401F,402F,403F,401H1,401H2,402H1,402H2,403H1,401I1,401I2,402I1,402I2,403I1,401J1,402J2,403J1:導体パターン、
401H11,401H21,402H11,402H21,401I11,401I21,402I11,402I21,401J11,402J21:第1部分導体パターン
401H12,401H22,402H12,402H22,401I12,401I22,402I12,402I22,401J12,402J22:第2部分導体パターン
410,410B,410W,411D,412D,411E,412E,410F,411F,410H1,410H2,410I1,410I2:容量結合用導体パターン、
441,442,443:引き出し導体パターン
511,512,512G:外部接続用導体、
601,602,603,604:ループ状導体パターン、
6011,6021,6031,6041:第1導体パターン、
6012,6022,6032,6042:第2導体パターン、
6013,6023,6033,6043:第3導体パターン、
6014,6024,6034,6044:第4導体パターン、
6015,6025,6035,6045:第5導体パターン、
611,612:コネクタ、
711,712,721,722:シールド導体、
900:通信機器モジュール、
921:帯域阻止フィルタ(BEF)、
922:帯域通過フィルタ(BPF)、
930:アンテナ、
931:WiFi送受信部、
932:セルラー送受信部、
933:GPS受信部、
990:フロントエンド基板、
991:アンテナ基板、
901:第1治具、
902:第2治具、
911,912:段差

Claims (20)

  1.  高周波信号の伝送方向に伸長する形状からなる平膜状の誘電体基材と、
     該誘電体基材に形成され、該誘電体基材の伸長する方向の途中位置で分断された複数の導体パターンと、
     前記複数の導体パターン間を容量結合する容量結合用導体パターンと、を備え、
     前記複数の導体パターンによりインダクタを形成し、前記容量結合用導体パターンによりキャパシタを形成してなるフラットケーブル型高周波フィルタ。
  2.  前記誘電体基材は、誘電正接が0.005以下である、請求項1に記載のフラットケーブル型高周波フィルタ。
  3.  前記誘電体基材は、液晶ポリマからなる、請求項2に記載のフラットケーブル型高周波フィルタ。
  4.  前記誘電体基材には、グランド電位に接続する導体パターンが形成されていない、請求項1乃至請求項3のいずれかに記載のフラットケーブル型高周波フィルタ。
  5.  前記キャパシタを形成していない前記複数の導体パターンの平膜面に対して所定距離をおいて対向する平膜状のシールド導体パターンを備える、請求項1乃至請求項4のいずれかに記載のフラットケーブル型高周波フィルタ。
  6.  前記シールド導体パターンは、前記導体パターンを挟み込むように前記導体パターンの両側に配置されている、請求項5に記載のフラットケーブル型高周波フィルタ。
  7.  前記誘電体基材の前記伝送方向に沿った前記容量結合用導体パターンの形成領域と異なる位置が折り曲げ部である、請求項1乃至請求項6のいずれかに記載のフラットケーブル型高周波フィルタ。
  8.  前記容量結合用導体パターンは、前記複数の導体パターンの一方に対して前記誘電体基材を構成する誘電体層を挟んで対向するように配設される平板導体パターンと、該平板導体パターンに対向する前記一方の導体パターンの平板領域と、によって形成されている、請求項1乃至請求項7のいずれかに記載のフラットケーブル型高周波フィルタ。
  9.  前記容量結合用導体パターンは、前記複数の導体パターンに対して前記誘電体基材を構成する誘電体層を挟んで対向するように配設される平板導体パターンと、該平板導体パターンに対向する前記複数の導体パターンの平板領域と、によって形成されている、請求項1乃至請求項7のいずれかに記載のフラットケーブル型高周波フィルタ。
  10.  前記複数の導体パターンは、前記誘電体基材を構成する誘電体層を挟むそれぞれ別の面に形成されており、
     前記容量結合用導体パターンは、前記複数の導体パターンが前記誘電体層を挟んで対向する領域によって構成されている、請求項1乃至請求項7のいずれかに記載のフラットケーブル型高周波フィルタ。
  11.  前記容量結合用導体パターンに対向する導体パターンの前記伝送方向に直交する方向の幅と、前記容量結合用導体パターンに対向しない導体パターンの前記幅とは、略同じである、請求項8乃至請求項10のいずれかに記載のフラットケーブル型高周波フィルタ。
  12.  前記導体パターンの幅は、前記誘電体基材の幅と略同じである、請求項11に記載のフラットケーブル型高周波フィルタ。
  13.  前記容量結合用導体パターンは、前記複数の導体パターンの対向する端部に一体形成されており、前記伝送方向に沿った所定距離で対向する櫛歯状導体である、請求項1乃至請求項7のいずれかに記載のフラットケーブル型高周波フィルタ。
  14.  前記導体パターンは、互いの一方端が接続された第1部分導体パターンと第2部分導体パターンとから構成され、
     前記第1部分導体パターンは、前記第2部分導体パターンよりも幅広で、前記伝送方向に沿って直線状であり、
     前記第2部分導体パターンはループ状であり、
     前記第1部分導体パターンによって、前記キャパシタが構成され、
     前記第2部分導体パターンによって、前記インダクタが構成される、
     請求項1乃至請求項7のいずれかに記載のフラットケーブル型高周波フィルタ。
  15.  前記第1部分導体パターンおよび前記第2部分導体パターンは、前記誘電体基材を構成する複数層に形成されている、請求項14に記載のフラットケーブル型高周波フィルタ。
  16.  請求項14または請求項15に記載のフラットケーブル型高周波フィルタの構成を有する帯域通過フィルタと、
     前記誘電体基材に形成された別の導体パターンによって構成された帯域阻止フィルタと、を備えたフラットケーブル型高周波ダイプレクサ。
  17.  請求項1乃至請求項15のいずれかに記載のフラットケーブル型高周波フィルタと、
     複数の実装回路部材と、を備え、
     前記複数の実装回路部材は、前記フラットケーブル型高周波フィルタによって接続されている、電子機器。
  18.  前記フラットケーブル型高周波フィルタは、前記複数の実装回路基板のそれぞれに対して所定の空隙を置いて配置されている、請求項17に記載の電子機器。
  19.  請求項16に記載のフラットケーブル型高周波ダイプレクサと、
     複数の実装回路部材と、を備え、
     前記複数の実装回路部材は、前記フラットケーブル型高周波ダイプレクサによって接続されている、電子機器。
  20.  前記フラットケーブル型高周波ダイプレクサは、前記複数の実装回路基板のそれぞれに対して所定の空隙を置いて配置されている、請求項19に記載の電子機器。
PCT/JP2014/050494 2013-02-01 2014-01-15 フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器 WO2014119362A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201490000402.5U CN205039787U (zh) 2013-02-01 2014-01-15 扁平电缆型高频滤波器、扁平电缆型高频双工器以及电子设备
JP2014535435A JP5800094B2 (ja) 2013-02-01 2014-01-15 フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器
US14/802,059 US9570784B2 (en) 2013-02-01 2015-07-17 Flat cable high-frequency filter, flat cable high-frequency diplexer, and electronic device
US15/393,301 US9947979B2 (en) 2013-02-01 2016-12-29 High-frequency filter and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-018772 2013-02-01
JP2013018772 2013-02-01
JP2013080953 2013-04-09
JP2013-080953 2013-04-09
JP2013-128826 2013-06-19
JP2013128826 2013-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/802,059 Continuation US9570784B2 (en) 2013-02-01 2015-07-17 Flat cable high-frequency filter, flat cable high-frequency diplexer, and electronic device

Publications (1)

Publication Number Publication Date
WO2014119362A1 true WO2014119362A1 (ja) 2014-08-07

Family

ID=51262076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050494 WO2014119362A1 (ja) 2013-02-01 2014-01-15 フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器

Country Status (4)

Country Link
US (2) US9570784B2 (ja)
JP (2) JP5800094B2 (ja)
CN (2) CN205039787U (ja)
WO (1) WO2014119362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710606A (zh) * 2015-07-22 2018-02-16 株式会社村田制作所 Lc滤波器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119362A1 (ja) * 2013-02-01 2014-08-07 株式会社村田製作所 フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器
WO2017094574A1 (ja) 2015-12-02 2017-06-08 株式会社村田製作所 フィルタ回路付き配線基板および電子機器
WO2018101104A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 アンテナ装置
CN210641132U (zh) * 2017-01-05 2020-05-29 株式会社村田制作所 电子设备
CN107995770B (zh) 2017-11-10 2021-04-02 惠科股份有限公司 一种柔性扁平排线和显示面板
CN110100290A (zh) * 2017-11-28 2019-08-06 野田士克林股份有限公司 Lc谐振元件和谐振元件阵列
US10505245B2 (en) 2018-02-12 2019-12-10 International Business Machines Corporation Microwave attenuators on high-thermal conductivity substrates for quantum applications
US10601096B2 (en) 2018-02-12 2020-03-24 International Business Machines Corporation Reduced thermal resistance attenuator on high-thermal conductivity substrates for quantum applications
TWI661437B (zh) * 2018-08-24 2019-06-01 中原大學 傳輸線結構
CN109921758B (zh) * 2019-03-25 2022-03-25 合肥联宝信息技术有限公司 电路板及滤波电路
CN112290179B (zh) * 2020-09-23 2021-12-28 中国航空工业集团公司雷华电子技术研究所 一种用于板级超薄挠性连接的互联结构
EP4411980A1 (en) * 2020-09-23 2024-08-07 Huawei Digital Power Technologies Co., Ltd. Electrical isolation apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230404A (ja) * 1985-08-01 1987-02-09 Murata Mfg Co Ltd ストリツプラインフイルタ
JPH05226908A (ja) * 1991-10-15 1993-09-03 Watkins Johnson Co 広帯域マイクロ波フィルタネットワーク
JPH0637510A (ja) * 1992-07-20 1994-02-10 Murata Mfg Co Ltd デュプレクサ
JPH06139831A (ja) * 1992-10-23 1994-05-20 Hitachi Zosen Corp フレキシブル・フラット・ケーブル
JPH06309950A (ja) * 1993-04-28 1994-11-04 Murata Mfg Co Ltd 平行ストリップラインケーブル
JPH10247861A (ja) * 1997-03-03 1998-09-14 Kokusai Electric Co Ltd 周波数帯域切替共用器
JPH11317607A (ja) * 1998-05-06 1999-11-16 Matsushita Electric Ind Co Ltd セラミック積層デバイスおよびその製造方法
JP2005192150A (ja) * 2003-12-26 2005-07-14 Daido Steel Co Ltd GHz帯用バンドパスフィルタ
JP2008271187A (ja) * 2007-04-20 2008-11-06 Kyocera Corp 分波回路

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166259A (en) * 1975-08-08 1979-08-28 Messerschmitt-Bolkow-Blohm Gmbh Flat high frequency cable
US5525953A (en) 1993-04-28 1996-06-11 Murata Manufacturing Co., Ltd. Multi-plate type high frequency parallel strip-line cable comprising circuit device part integratedly formed in dielectric body of the cable
JP2880073B2 (ja) 1994-04-15 1999-04-05 東光株式会社 積層lcローパスフィルタとその特性調整方法
US5631446A (en) * 1995-06-07 1997-05-20 Hughes Electronics Microstrip flexible printed wiring board interconnect line
JP3740240B2 (ja) 1997-02-20 2006-02-01 キヤノン株式会社 プリント基板
JPH10242706A (ja) * 1997-02-28 1998-09-11 Taiyo Yuden Co Ltd 誘電体共振器装置
JP2000244202A (ja) 1999-02-23 2000-09-08 Ngk Insulators Ltd 積層型共用器及びその製造方法
JP2002057543A (ja) 2000-08-09 2002-02-22 Murata Mfg Co Ltd 積層型lc部品
JP2002290186A (ja) * 2001-03-26 2002-10-04 Tama Electric Co Ltd 低域通過フィルタ
US6995632B2 (en) 2003-01-16 2006-02-07 Daido Steel Co., Ltd. Band pass filter for GHz-band
JP2004303696A (ja) * 2003-04-01 2004-10-28 Fujikura Ltd フラットケーブルの接地方法
JP2005269590A (ja) * 2003-06-04 2005-09-29 Murata Mfg Co Ltd 共振器装置、フィルタ、デュプレクサおよび通信装置
JP2005117176A (ja) 2003-10-03 2005-04-28 Sony Corp 帯域阻止フィルタ
US7468645B2 (en) * 2004-01-29 2008-12-23 Sanyo Electric Co., Ltd. Signal line circuit device
EP1731006B1 (en) 2004-02-23 2007-09-19 Georgia Tech Research Corporation Liquid crystalline polymer- and multilayer polymer-based passive signal processing components for rf/wireless multi-band applications
US7102470B2 (en) * 2004-11-02 2006-09-05 Integrated System Solution Corp. Dual-band bandpass filter with stepped-impedance resonators
CN101084450B (zh) * 2004-12-20 2010-10-06 皇家飞利浦电子股份有限公司 用在rf场中的传输路径、电附属设备以及磁共振成像系统
JP2009176901A (ja) * 2008-01-23 2009-08-06 Casio Hitachi Mobile Communications Co Ltd フレキシブル基板、および、電子機器
WO2012074101A1 (ja) 2010-12-03 2012-06-07 株式会社村田製作所 高周波信号線路及び電子機器
CN103733425A (zh) * 2011-12-22 2014-04-16 株式会社村田制作所 高频信号线路及电子设备
JP5488774B2 (ja) * 2012-02-03 2014-05-14 株式会社村田製作所 高周波信号伝送線路及び電子機器
CN204333194U (zh) * 2012-06-29 2015-05-13 株式会社村田制作所 高频信号线路
WO2014119362A1 (ja) * 2013-02-01 2014-08-07 株式会社村田製作所 フラットケーブル型高周波フィルタ、フラットケーブル型高周波ダイプレクサ、および電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230404A (ja) * 1985-08-01 1987-02-09 Murata Mfg Co Ltd ストリツプラインフイルタ
JPH05226908A (ja) * 1991-10-15 1993-09-03 Watkins Johnson Co 広帯域マイクロ波フィルタネットワーク
JPH0637510A (ja) * 1992-07-20 1994-02-10 Murata Mfg Co Ltd デュプレクサ
JPH06139831A (ja) * 1992-10-23 1994-05-20 Hitachi Zosen Corp フレキシブル・フラット・ケーブル
JPH06309950A (ja) * 1993-04-28 1994-11-04 Murata Mfg Co Ltd 平行ストリップラインケーブル
JPH10247861A (ja) * 1997-03-03 1998-09-14 Kokusai Electric Co Ltd 周波数帯域切替共用器
JPH11317607A (ja) * 1998-05-06 1999-11-16 Matsushita Electric Ind Co Ltd セラミック積層デバイスおよびその製造方法
JP2005192150A (ja) * 2003-12-26 2005-07-14 Daido Steel Co Ltd GHz帯用バンドパスフィルタ
JP2008271187A (ja) * 2007-04-20 2008-11-06 Kyocera Corp 分波回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710606A (zh) * 2015-07-22 2018-02-16 株式会社村田制作所 Lc滤波器
EP3327933A4 (en) * 2015-07-22 2019-03-20 Murata Manufacturing Co., Ltd. LC FILTER
CN107710606B (zh) * 2015-07-22 2021-04-27 株式会社村田制作所 Lc滤波器

Also Published As

Publication number Publication date
US20170110777A1 (en) 2017-04-20
JP6137246B2 (ja) 2017-05-31
CN205882136U (zh) 2017-01-11
JP2016007045A (ja) 2016-01-14
JP5800094B2 (ja) 2015-10-28
CN205039787U (zh) 2016-02-17
US9947979B2 (en) 2018-04-17
JPWO2014119362A1 (ja) 2017-01-26
US9570784B2 (en) 2017-02-14
US20150325900A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6137246B2 (ja) 高周波フィルタ、高周波ダイプレクサ、および電子機器
JP6330926B2 (ja) 電子機器
US10056667B2 (en) High-frequency filter and communication device module
US10079417B2 (en) High-frequency transmission line and electronic device
EP2830154A1 (en) Antenna device and wireless terminal device using same
US20160211563A1 (en) Structure and electronic circuit
WO2015022839A1 (ja) 電力分配器
WO2015141016A1 (ja) アンテナ装置、無線通信端末
US9935601B2 (en) LC parallel resonant element
JP6604432B2 (ja) 高周波モジュール
US8400236B2 (en) Electronic component
JP2010074249A (ja) パワーデバイダ回路とその素子並びにその回路を備えた回路基板及び回路モジュール
JP4086154B2 (ja) 高周波複合部品
US9350061B2 (en) Resonance device and filter including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000402.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014535435

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745666

Country of ref document: EP

Kind code of ref document: A1