WO2014117740A1 - 一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法 - Google Patents

一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法 Download PDF

Info

Publication number
WO2014117740A1
WO2014117740A1 PCT/CN2014/071747 CN2014071747W WO2014117740A1 WO 2014117740 A1 WO2014117740 A1 WO 2014117740A1 CN 2014071747 W CN2014071747 W CN 2014071747W WO 2014117740 A1 WO2014117740 A1 WO 2014117740A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
methanol
water
olefin
Prior art date
Application number
PCT/CN2014/071747
Other languages
English (en)
French (fr)
Inventor
王义君
芮果
张帆
甘永胜
张小莽
Original Assignee
上海碧科清洁能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海碧科清洁能源技术有限公司 filed Critical 上海碧科清洁能源技术有限公司
Priority to US14/764,923 priority Critical patent/US9856183B2/en
Priority to CA2899759A priority patent/CA2899759A1/en
Publication of WO2014117740A1 publication Critical patent/WO2014117740A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • This invention relates generally to the field of catalysis and, more particularly, to a process for the preparation of a catalyst for the preparation of olefins from methanol for use in a fluidized bed reactor which produces a catalyst having a high C4 olefin selectivity.
  • Ethylene, propylene, butadiene are important chemical raw materials, generally obtained from naphtha cracking and steam cracking.
  • the main source of propylene is ethylene co-produced propylene and refinery by-product propylene, while the main source of butadiene is obtained by further processing of C4 by-products from ethylene cracking process, but these production methods are difficult to meet the growing domestic Demand for propylene and butadiene. It is highly desirable to develop a process for producing propylene and C4 olefins with high selectivity.
  • the methanol-to-olefin fixed bed technology developed by Luqi Company of Germany (WO2004/018089), using the ZSM-5 molecular sieve of Southern Chemical Company as a catalyst, using a fixed-bed reactor for methanol-to-olefin reaction, the propylene selectivity is 35 ⁇ 40. %.
  • CN102531823A, CN101 172918B, CN101279280B, CN101402049A, CN10221 1971A respectively disclose a process for preparing methanol to propylene and a catalyst preparation method in a fixed bed reaction system. Specifically, these processes mainly use ZSM-5 molecular sieve as an active component. It is modified to increase the propylene single pass selectivity.
  • the methanol to olefin reaction has a higher selectivity to the C4 olefin, then the butene is separated from the C4 olefin product, and subjected to dehydrogenation treatment to produce butadiene. Will receive a very high additional economic benefit.
  • the present invention has developed a novel catalyst which
  • ZSM-5 molecular sieve is an active component, which is prepared by mixing with a matrix material, a binder, a pore former and a phosphorus source, and is prepared by a spray drying molding method.
  • the catalyst of the present invention is C4.
  • the selectivity is up to 32% while still maintaining a high propylene selectivity.
  • the catalyst of the present invention also has high mechanical strength and wear resistance, and is highly suitable for use in a fluidized bed system.
  • a first aspect of the invention provides a process for preparing a catalyst which is a catalyst for the production of olefins from methanol in a fluidized bed, the process comprising the steps of:
  • the particulate intermediate obtained in the step (2) is calcined to obtain a catalyst for producing an olefin from methanol in a fluidized bed.
  • the ZSM-5 molecular sieve has a silica-alumina ratio of 20-400, preferably 200-400, based on the total weight of components other than water in the aqueous slurry, the ZSM The content of the -5 molecular sieve is 20 to 55% by weight.
  • the matrix material is one or more selected from the group consisting of kaolin, calcined kaolin, diatomaceous earth, pseudoboehmite, and montmorillonite, and has a particle diameter of less than 2 ⁇ .
  • the content of the matrix material in the aqueous slurry is from 20 to 59% by weight based on the total weight of the components other than water.
  • the binder is selected from the group consisting of an alkaline silica sol, an acidic silica sol, an aluminum sol, an aluminum phosphate, an aluminum nitrate, and an alumina, in the aqueous slurry.
  • the binder is contained in an amount of 20 to 50% by weight based on the total weight of the components other than water.
  • the phosphorus source is selected from the group consisting of phosphoric acid, phosphorous acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphate, and the group other than water in the aqueous slurry.
  • the phosphorus source is present in an amount of from 0.1 to 5.0% by weight based on the total weight of the fraction.
  • the slurry further comprises a pore forming agent, and the pore forming agent is selected from one or more of the group consisting of phthalocyanine powder, polyvinyl alcohol, and methyl cellulose,
  • the pore former is contained in an amount of from 0.01 to 1% by weight based on the total weight of the components other than water in the aqueous slurry.
  • the spray drying is performed using a centrifugal spray dryer or a pressure spray dryer, and the inlet temperature of the spray dryer is 150-300 ° C, and the outlet temperature is 120.
  • the slurry is fed into the spray dryer at a feed rate of 100-500 ml/min.
  • the particulate intermediate product in the step (3), is calcined at a temperature of 550 to 650 ° C, preferably 600 V, for 3 to 6 hours, preferably 4 hours.
  • a second aspect of the invention relates to a catalyst for the preparation of an olefin from methanol in a fluidized bed, the catalyst being prepared by the process of the invention, the catalyst comprising 25-based on the total weight of the catalyst 60% by weight, preferably 25-40% by weight of ZSM-5 molecular sieve, 0.05-3% by weight of the component derived from the phosphorus source, 20-50% by weight, preferably 30-45% by weight, derived from the substrate
  • a third aspect of the invention relates to a process for the preparation of an olefin from methanol, which comprises, in a fluidized bed reactor, an aqueous solution of methanol or methanol in a fluidized bed reactor under reaction conditions sufficient to convert methanol to olefins
  • the catalyst prepared by the method of the invention is contacted, and the reaction conditions are: methanol mass space velocity 0.5-5 h - reaction temperature 430-550 ° C, reaction pressure 0-1.0 MPa; selectivity of propylene in the obtained product is higher than 40 %, preferably above 45%, the selectivity of the olefin comprising four carbon atoms is above 25%, preferably above 28%, more preferably above 30%, most preferably up to 32%.
  • the C4 product selectivity of the catalyst is significantly improved.
  • the wear resistance was not lowered. detailed description
  • the "scope” disclosed in this document is in the form of a lower limit and an upper limit. It can be one or more lower limits, and one or more upper limits.
  • the given range is defined by selecting a lower limit and an upper limit.
  • the selected lower and upper limits define the boundaries of the particular range. All ranges that can be defined in this manner are inclusive and combinable, that is, any lower limit can be combined with any upper limit to form a range. For example, ranges of 60-120 and 80-1 10 are listed for specific parameters, and ranges of 60-1 10 and 80-120 are also expected. In addition, if the minimum range values listed are 1 and 2, and if the maximum range values 3, 4 and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3. 2-4 and 2-5.
  • the numerical range "a-b” denotes an abbreviated representation of any real combination between a and b, unless otherwise stated, where a and b are both real numbers.
  • the value range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of the combination of these values.
  • the method includes steps (a) and (b), indicating that the method may include steps (a) and (b) performed sequentially, and may also include steps (b) and (a) performed sequentially.
  • the method may also include the step (c), indicating that the step (c) may be added to the method in any order, for example, the method may include steps (a), (b), and (c) Steps (a), (c), and (b) may also be included, and steps (c), (a), and (b) may also be included.
  • the C4 component or the C4 product means that all components of the reaction product containing four carbon atoms, most of which are C4 olefins, hence the terms "C4 component”, “C4 product” and “C4 olefin” They can be used interchangeably to denote the same components in the product.
  • the C4 olefin of the present invention may include 1-butene, 2-butene, 1,3-butadiene, 2-methyl-1-propene or the like. Isomers such as 1-butene, 2-butene and 2-methyl-1-propene may be subjected to subsequent operations such as dehydrogenation or isomerization to prepare a 1,3-butadiene product. Therefore, the catalyst of the present invention can be used to simultaneously obtain two products of high economic value by a single reaction with high selectivity.
  • the active component of the catalyst of the present invention is a ZSM-5 molecular sieve, which is a molecular sieve catalyst material well known in the art and which is commercially available or can be synthesized by literature.
  • the ZSM-5 molecular sieve used in the following examples of the invention has a silica to alumina ratio of from 20 to 400, preferably from 200 to 400.
  • Phosphorus is introduced into the catalyst by using a phosphorus source selected from one or more selected from the group consisting of phosphoric acid, phosphorous acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphate, which are subsequently spray dried.
  • P 2 O 5 may be formed on the ZSM-5 molecular sieve during the calcination process, or P may enter the molecular sieve skeleton by substituting Si or A1.
  • the matrix material used to prepare the catalyst of the present invention is one or more of kaolin, calcined kaolin, diatomaceous earth, pseudoboehmite, montmorillonite, having a particle size of less than 2 microns.
  • the matrix material may undergo some degree of water loss and/or decomposition during the calcination process.
  • the pseudo-boehmite may lose water during the roasting process and eventually form alumina, and some of the matrix material may not lose water. And / or decomposition.
  • all of the components contained in the product catalyst are collectively referred to as "components derived from the matrix material".
  • the catalyst of the present invention comprises from 10 to 45% by weight of the component derived from the binder, which is the component remaining after the spray drying and baking by the binder.
  • the binder is capable of improving the uniformity and fluid properties of the entire slurry system in the slurry stage, and is also advantageous for improving the overall mechanical strength of the finally produced catalyst and significantly improving its wear resistance.
  • the composition of the binder can be controlled by adjusting the type and content of the binder according to specific needs.
  • the precursor used in the present invention is selected from one or more of the following materials: an alkaline silica sol, an acidic silica sol, an aluminum sol, aluminum phosphate, aluminum nitrate, aluminum oxide, and the like.
  • the alumina may be amorphous alumina.
  • Alkaline silica sol means a gel formed by silica particles in water
  • the silica particles have an average particle diameter of 8-20 microns and a pH range of 9-10, wherein the molecular formula of the silica contained therein can be referred to as SiO 2 —nH 2 O, based on the total weight of the silica sol. Calculated as an oxide, it comprises 15-40% by weight of silica, 0.2-0.4% by weight of Na 2 O, and the balance of water.
  • the alkaline silica sol has a viscosity (25 ° C) of from 2 to 2.5 MPaS and a density (25 ° C) of from 1.1 to 1.3 g/cm 3 .
  • Acidic silica sol also known as silicic acid hydrosol, is an acidic colloid formed by dispersing polymeric silica particles in water, having a pH of 2-4, based on the total weight of the acidic silica sol, based on oxides. Formal calculation, which comprises 30-31% by weight of silica, less than 0.006% by weight of Na 2 O, and the balance of water.
  • the acidic silica sol has a viscosity (25 ° C) of less than 6 MPaS, a density (25 ° C) of 1.19-1.21 g/cm 3 , and an average particle diameter of the silica particles of 5-20 nm, which is stable under normal temperature conditions. Hold for three months without forming any precipitate.
  • the aluminum sol is a colloid formed of alumina particles in water, wherein the solid concentration is 10-40% by weight, the pH is 1-3, and the average particle diameter of the alumina particles is 10-50 nm, wherein the chemical formula of the alumina particles can be written. ⁇ 1 2 ⁇ 3 ⁇ 2 ⁇ .
  • the process for preparing the catalyst of the present invention comprises mixing a ZSM-5 molecular sieve, a phosphorus source, a matrix material, a binder, an optional pore former, and water to form an aqueous slurry, which is then spray dried and calcined. .
  • the total content of the components other than water is from 20 to 50% by weight based on the total weight of the aqueous slurry.
  • the pore former is a material which is capable of being burned out during the calcination to leave pores of a desired size in the catalyst.
  • the pore former is mainly used for pore formation of the catalyst, and the contact area between the catalyst and the material is increased.
  • a pore former material known in the art such as starch, graphite, etc., may be used, but it is more preferable to use phthalocyanine powder, polyvinyl alcohol, methyl group. Cellulose.
  • the amount of the pore former is small.
  • the pore former is present in an amount of from about 0.01% to about 1% by weight based on the total weight of the components of the slurry other than water.
  • the above aqueous slurry is spray dried by a spray dryer.
  • the slurry is first atomized in a drying chamber and then brought into contact with hot air to rapidly vaporize the moisture in the slurry droplets, thereby obtaining a dried product having a substantially uniform particle size and shape.
  • the invention preferably employs a centrifugal spray dryer or a pressure spray dryer for spray drying. The difference between the two spray dryers is the way in which the slurry is atomized.
  • a centrifugal spray dryer the slurry is transferred to a high-speed rotating centrifugal turntable in the atomizer, and the slurry is quickly taken out to atomize it.
  • the pressure spray dryer uses a high pressure pump to spray the slurry into the drying chamber to form a mist.
  • the ZSM-5 catalyst has a silica-alumina ratio of 20-400, preferably 250-400;
  • the basic silica sol is a silica sol having a solid concentration of 30% by weight, a pH of 9, and an average particle diameter of the solid particles of 14 nm;
  • the acidic silica sol is a silica sol having a solid concentration of 30% by weight, a pH of 2, an average particle diameter of the solid particles of 14 nm;
  • an aluminum sol being an aluminum sol having a solid concentration of 30% by weight, a pH of 2, and an average particle diameter of the solid particles of 20 nm;
  • Vinyl alcohol is commercially available and has a molecular weight of 16,000 to 20,000; kaolin, pseudoboehmite, phthalocyanine powder, 3 ⁇ 4PO 4 , calcined kaolin, diatomaceous earth, ammonium phosphate, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, Mongolia Both decalcification and methanol were purchased
  • Tian Jing powder 50g H3PO4, 4000g deionized water, fully stirred to obtain an aqueous slurry, spray-drying the aqueous slurry using a centrifugal spray dryer, the inlet temperature of the centrifugal spray dryer is 300 ° C, the outlet temperature At 180 ° C, the feed rate of the aqueous slurry was 100 ml/min, and the particles obtained by the spraying were calcined in a muffle furnace in an air atmosphere at a temperature of 650 ° C for 2 hours to obtain a catalyst 2 #.
  • the aqueous slurry was spray-dried by a centrifugal spray dryer having an inlet temperature of 300 ° C, an outlet temperature of 180 ° C, and a feed rate of the aqueous slurry of 250 ml/min.
  • the pellets were calcined in a muffle furnace in an air atmosphere at a temperature of 600 ° C for 4 hours to obtain a catalyst 3 #.
  • Example 1 Add 12000 g of water to a 5 L stainless steel autoclave, add 900 g of ZSM-5 catalyst powder (silicon to aluminum ratio of 250), stir well, then add 1600 g of acidic silica sol, 800 g of montmorillonite, 5 g of phthalocyanine powder, 40 g of phosphoric acid.
  • the aqueous slurry is prepared by thorough stirring, and the aqueous slurry is spray-dried using a centrifugal spray dryer having an inlet temperature of 300 ° C and an outlet temperature of 180 ° C.
  • the aqueous slurry is The feed rate was 250 ml/min, and the obtained catalyst muffle furnace was fired in an air atmosphere at a temperature of 600 ° C for 4 hours. Catalyst 6# was obtained.
  • the above Example 1 was prepared without a phosphorus-doped catalyst for comparative experiments, and Examples 2-6 were the catalysts of the present invention. The catalytic performance of these catalysts was characterized in Example
  • the catalyst of the present invention has a significant improvement in the selectivity of both propylene and C4 olefins as compared with the catalyst 1# which is not miscible.
  • the wear index test was carried out on the 1# catalyst and 2# catalyst using a vertical wear index tester.
  • the standard was ASTM-D5757-00, and the Changling FCC balance agent was used as the control sample.
  • the Changling FCC balance agent wear index was 2.5%.
  • the 1# catalyst wear index was 2.1%, and the 2# catalyst wear index was 1.9%. From this, it can be seen that the catalyst of the present invention can also exhibit significantly improved wear resistance by passing the phosphorus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种用来制备催化剂的方法,所述方法包括以下步骤:(1)将ZSM-5分子筛、磷源、基质材料、粘结剂和水混合起来,配制成含水浆液,以该含水浆液的总重量为基准计,其中除了水以外的组分的总含量为20-50重量%;(2)对步骤(1)制得的浆液进行喷雾干燥,制得颗粒状中间产物;(3)对步骤(2)制得的颗粒状中间产物进行焙烧,制得用于在流化床中由甲醇制备烯烃的催化剂。本发明还提供了由所述方法制得的催化剂和使用该催化剂由甲醇制备烯烃的方法,在所述甲醇制备烯烃的方法中,甲醇转化率>99%,丙烯选择性高,C4选择性最高可达到32%。

Description

说明书 一种高 C4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法 技术领域
本发明一般涉及催化领域, 更具体来说, 本发明涉及一种用于流化床反应 器的由甲醇制备烯烃的催化剂的制备方法, 该方法制得的催化剂具有很高的 C4烯烃选择性。 背景技术
乙烯、 丙烯、 丁二烯是重要的化工原料, 一般是从石脑油裂解和蒸汽 裂解中得到。 目前丙烯的主要来源是乙烯联产丙烯及炼厂副产丙烯, 而丁 二烯主要来源是对乙烯裂解工艺产生的 C4副产物进行进一步加工而获得, 但这些生产方式很难满足我国日益增长的对丙烯和丁二烯需求。 人们非常 希望能够开发一种可以以高选择性制备丙烯和 C4烯烃的工艺。
为此, 大连化学物理研究所开发了 DMTO技术, 该技术使用 SAPO-34 分子筛作为催化剂, 使用甲醇水溶液为原料进行反应, 生成产物主要是乙 烯和丙烯, C4烯烃的选择性很低, 只有不到 10 %。
德国鲁奇公司开发的甲醇制烯烃固定床技术 (WO2004/018089 ) , 以 南方化学公司的 ZSM-5分子筛为催化剂, 使用固定床反应器进行甲醇制烯 烃反应, 获得的丙烯选择性为 35〜40 %。 CN102531823A, CN101 172918B , CN101279280B , CN101402049A, CN10221 1971A 分别公布了在固定床反 应体系中进行的甲醇制丙烯的工艺和催化剂制备方法, 具体来说, 这些工 艺主要是以 ZSM-5分子筛为活性组分, 对它进行改性, 提高丙烯单程选择 性。 但是, 这些专利大都致力于如何提高丙烯的单程选择性, 而对 C4烯烃 的选择性并不关注。 已经在工业上实际应用的鲁奇工艺中, C4和 C5烯烃 都循环回到 MTP反应器继续反应以生成丙烯。
有研究报道了一种用来在流化床中由甲醇制烯烃催化剂的制备技术,该技 术使用 ZSM-5 分子筛为活性组分, 添加稀土改性剂、 碱性改性剂等组分以提 高分子筛的活性, 使用甲醇的水溶液作为原料, 使用该催化剂进行反应, 获得 的丙烯选择性最高达到 55 %, 但其 C4选择性不高, 只有 25 %。
由此可见, 目前甲醇制烯烃工艺研究主要将注意力集中于如何提高丙 烯的单程选择性, 提高产物中的丙烯 /乙烯比, 对 C4产物的选择性并不重 视。 MTP工艺中将 C4产物循环回反应器继续反应生成丙烯的作法会导致 工艺复杂化, 而且很难保证丙烯的选择性。 另一方面, 国内市场对于丁二 烯的需求非常高, 丁二烯的市场价格长时间处于高位。 如果能够在保证丙 烯产物具有高选择性的同时,使得甲醇制烯烃反应对 C4烯烃具有较高的选 择性, 然后从该 C4烯烃产物中分离丁烯, 并进行脱氢处理来生产丁二烯, 将会获得很高的额外的经济利益。 发明内容
针对以上技术问题, 本发明开发了一种新颖的催化剂, 该催化剂以
ZSM-5 分子筛为活性组分, 与基质材料、 粘结剂、 造孔剂、 磷源混合, 通 过喷雾干燥的成型方法制备得到, 其和传统的甲醇制烯烃催化剂相比, 本 发明催化剂的 C4选择性可达到 32 %, 同时依然保持很高的丙烯选择性。 另外, 本发明的催化剂还具有较高的机械强度和耐磨性, 非常适于流化床 体系的应用。
本发明的第一个方面提供了一种用来制备催化剂的方法,所述催化剂是用 于在流化床中由甲醇制备烯烃的催化剂, 所述方法包括以下步骤:
(1) 将 ZSM-5分子筛、 磷源、 基质材料、 粘结剂和水混合起来, 配制成含 水浆液, 以该含水浆液的总重量为基准计, 其中除了水以外的组分的总含量为 20-50重量%;
(2) 对步骤 (1)制得的浆液进行喷雾干燥, 制得颗粒状中间产物;
(3) 对步骤 (2)制得的颗粒状中间产物进行焙烧,制得用于在流化床中由甲 醇制备烯烃的催化剂。
在本发明的一个实施方式中, 所述 ZSM-5分子筛的硅铝比为 20-400, 优 选为 200-400, 以所述含水浆液中除了水以外的组分的总重量计, 所述 ZSM-5 分子筛的含量为 20-55重量%。 在本发明的一个实施方式中, 所述基质材料选自高岭土、煅烧高岭土、硅 藻土、 拟薄水铝石、 蒙脱石中的一种或多种, 其粒径小于 2μη, 以所述含水浆 液中除了水以外的组分的总重量计, 所述基质材料的含量为 20-59重量%。
在本发明的一个实施方式中, 所述粘结剂选自碱性硅溶胶、 酸性硅溶胶、 铝溶胶、 磷酸铝、 硝酸铝、 氧化铝中的一种或多种, 以所述含水浆液中除了水 以外的组分的总重量计, 所述粘结剂的含量为 20-50重量%。
在本发明的一个实施方式中, 所述磷源选自磷酸、 亚磷酸、 磷酸氢铵、 磷 酸二氢铵、 磷酸铵中的一种或多种, 以所述含水浆液中除了水以外的组分的总 重量计, 所述磷源的含量为 0.1-5.0重量%。
在本发明的一个实施方式中, 所述浆液中还包含造孔剂, 所述的造孔剂选 自田菁粉、 聚乙烯醇、 甲基纤维素中的一种或多种, 以所述含水浆液中除了水 以外的组分的总重量计, 所述造孔剂的含量为 0.01-1重量%。
在本发明的一个实施方式中, 所述步骤 (2)中, 使用离心式喷雾干燥器或 压力式喷雾干燥器进行喷雾干燥, 喷雾干燥器的进口温度为 150-300°C, 出口 温度为 120-250°C, 浆液输入所述喷雾干燥器的进料速率为 100-500ml/min。
在本发明的一个实施方式中, 在所述步骤 (3)中, 在 550-650°C、 优选 600 V的温度下对所述颗粒状中间产物进行 3-6小时、 优选 4小时的焙烧。
本发明的第二个方面涉及一种用于在流化床中由甲醇制备烯烃的催化剂, 该催化剂通过本发明的方法制备, 以所述催化剂的总重量为基准计, 所述催化 剂包含 25-60重量%、 优选 25-40重量%的 ZSM-5分子筛、 0.05-3重量%的源 自所述磷源的组分、 20-50重量%、优选 30-45重量%的源自所述基质材料的组 分以及 10-45重量%、 优选 25-40重量%的源自所述粘结剂的组分, 该催化剂 的粒径为 50-110微米。
本发明的第三个方面涉及一种由甲醇制备烯烃的方法, 该方法包括, 在足 以使得甲醇转化为烯烃的反应条件下, 在流化床反应器中, 使得甲醇或甲醇的 水溶液与通过本发明的方法制备的催化剂接触, 所述反应条件为: 甲醇质量空 速 0.5-5h— 反应温度 430-550°C, 反应压力 0-l.OMPa; 制得的产物中丙烯的选 择性高于 40%, 优选高于 45 %, 包含四个碳原子的烯烃的选择性高于 25 %, 优选高于 28%, 更优选高于 30%, 最优选最高达 32%。 通过进行磷改性,所述催化剂的 C4产物选择性有了显著的提高。另外, 作为流化床催化剂, 其耐磨性也没有降低。 具体实施方式
本文所公开的 "范围 "以下限和上限的形式。可以分别为一个或多个下限, 和一个或多个上限。 给定范围是通过选定一个下限和一个上限进行限定的。 选 定的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是 包含和可组合的, 即任何下限可以与任何上限组合形成一个范围。 例如, 针对 特定参数列出了 60-120和 80-1 10的范围, 理解为 60-1 10和 80-120的范围也 是预料到的。 此外, 如果列出的最小范围值 1和 2, 和如果列出了最大范围值 3, 4和 5, 则下面的范围可全部预料到: 1-3、 1-4、 1-5、 2-3、 2-4和 2-5。
在本发明中, 除非有其他说明, 数值范围 "a-b"表示 a到 b之间的任意 实数组合的缩略表示, 其中 a和 b都是实数。 例如数值范围 "0-5 "表示本文中 已经全部列出了 "0-5 "之间的全部实数, "0-5 "只是这些数值组合的缩略表 示。
如果没有特别指出, 本说明书所用的术语 "两种"指 "至少两种" 。 在本发明中, 如果没有特别的说明, 本文所提到的所有实施方式以及优选 实施方式可以相互组合形成新的技术方案。
在本发明中, 如果没有特别的说明, 本文所提到的所有技术特征以及优选 特征可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有步骤可以顺序进行, 也可以随机进行, 但是优选是顺序进行的。 例如, 所述方法包括步骤 (a)和 (b), 表示所述方法可包括顺序进行的步骤 (a)和 (b), 也可以包括顺序进行的步骤 (b) 和 (a)。 例如, 所述提到所述方法还可包括步骤 (c), 表示步骤 (c)可以任意顺序 加入到所述方法,例如,所述方法可以包括步骤 (a)、(b)和 (c),也可包括步骤 (a)、 (c)和 (b), 也可以包括步骤 (c)、 (a)和 (b)等。
在本发明中, 如果没有特别的说明, 本文所提到的 "包括"表示开放式, 也可以是封闭式。 例如, 所述 "包括"可以表示还可以包含没有列出的其他元 件, 也可以仅包括列出的元件。 通过使用本发明的催化剂进行甲醇制备烯烃的反应, 可以获得很高的 C4 选择性。在本发明中, C4组分或 C4产物表示该反应产物中包含四个碳原子的 所有组分, 绝大部分是 C4烯烃, 因此术语 " C4组分" 、 " C4产物"和 " C4 烯烃"可以互换使用, 表示产物中相同的组分。 本发明所述的 C4烯烃可以包 括 1-丁烯、 2-丁烯、 1,3-丁二烯、 2-甲基 -1-丙烯等。 1-丁烯、 2-丁烯和 2-甲基 -1- 丙烯等异构体可以通过脱氢或异构化等后续操作而制备 1,3-丁二烯产品。因此, 本发明的催化剂可以用来通过单个反应以高选择性同时获得两种高经济价值 的产物。
本发明的催化剂中的活性组分为 ZSM-5分子筛, 这是一种本领域公知的 分子筛催化剂材料, 可以直接在市场上购得, 也可以按照文献法合成。 本发明 以下实施例中使用的 ZSM-5分子筛的硅铝比为 20-400, 优选为 200-400。
通过使用少量的磷对本发明的催化剂进行惨杂,可以在保持很高的丙烯选 择性的同时获得所需的高 C4烯烃选择性。 通过使用磷源在催化剂中引入磷, 所述磷源选自选自磷酸、 亚磷酸、 磷酸氢铵、 磷酸二氢铵、 磷酸铵中的一种或 多种,这些磷源在随后的喷雾干燥和焙烧过程中可能会形成 P2O5负载在 ZSM-5 分子筛上, 也可能 P通过取代 Si或 A1而进入分子筛骨架之内。
用于制备本发明催化剂的基质材料为高岭土、煅烧高岭土、硅藻土、拟薄 水铝石、 蒙脱石中的一种或多种, 具有小于 2微米的粒径。 通过使用所述基质 材料, 可以起到提高催化剂强度、 耐磨性的作用。 所述基质材料在焙烧过程中 可能会发生一定程度的失水和 /或分解,例如拟薄水铝石在焙烧过程中会失水而 最终形成氧化铝,也可能有一部分基质材料不发生失水和 /或分解。在本发明中, 将产物催化剂中包含的所有这些组分统称为 "源自所述基质材料的组分" 。
本发明的催化剂包含 10-45重量%的源自所述粘结剂的组分,该组分是由 粘结剂在进行喷雾干燥和焙烧之后剩余的组分。所述粘结剂能够在浆液阶段改 善整个浆液体系的均匀性和流体性能, 同时也有利于提高最终制得的催化剂的 整体机械强度, 显著改进其耐磨性。 根据具体的需要, 可以通过调节粘结剂的 种类和含量来控制粘结剂的组成。用于本发明的前体选自以下材料中的一种或 多种: 碱性硅溶胶、 酸性硅溶胶、 铝溶胶、 磷酸铝、 硝酸铝、 氧化铝等等。 所 述氧化铝可以是无定形氧化铝。碱性硅溶胶表示二氧化硅颗粒在水中形成的胶 体, 所述二氧化硅颗粒的平均粒径为 8-20微米, 其 pH范围为 9-10, 其中所含 二氧化硅的分子式可以记作 SiO2_nH2O, 以该硅溶胶的总重量为基准计, 以氧 化物形式计算, 其中包含 15-40重量%的二氧化硅, 0.2-0.4重量%的 Na2O, 以及余量的水。 所述碱性硅溶胶的粘度 (25°C ) 为 2-2.5MPaS, 密度 (25°C ) 为 1.1-1.3克 /厘米 3。酸性硅溶胶又称为硅酸水溶胶, 是高分子二氧化硅微粒分 散于水中形成的酸性胶体, 其 pH值为 2-4, 以所述酸性硅溶胶的总重量为基 准计, 以氧化物形式计算, 其中包含 30-31重量%的二氧化硅, 小于 0.006重 量%的Na2O, 以及余量的水。 所述酸性硅溶胶的粘度 (25°C ) 小于 6MPaS, 密度 (25°C ) 为 1.19-1.21克 /厘米 3, 二氧化硅颗粒的平均粒径为 5-20纳米, 在常温条件下可以稳定保持三个月而不形成任何沉淀。铝溶胶是氧化铝颗粒在 水中形成的胶体, 其中固体浓度为 10-40重量%, pH值为 1-3, 氧化铝颗粒的 平均粒径为 10-50纳米, 其中氧化铝颗粒的化学式可以写作 Α12Ο3·ηΗ2Ο。
用来制备本发明催化剂的方法包括将 ZSM-5分子筛、 磷源、 基质材料、 粘结剂、 任选的造孔剂和水混合起来, 制成含水浆液, 然后对该浆液进行喷雾 干燥和焙烧。 以所述含水浆液的总重量为基准计, 其中除了水以外的组分的总 含量为 20-50重量%。 其中所述造孔剂是能够在焙烧的过程中被烧尽, 从而在 催化剂中留下所需尺寸的孔的材料。 造孔剂主要用于给催化剂造孔, 增加催化 剂与物料的接触面积,可以使用本领域公知的造孔剂材料,例如淀粉、石墨等, 但是更优选使用田菁粉、 聚乙烯醇、 甲基纤维素。 为了避免影响催化剂的催化 性能, 以及为了防止造孔剂无法在焙烧过程中被烧尽, 该造孔剂的用量较少。 以所述浆液中除了水以外的组分的总重量为基准计, 所述造孔剂的含量约为 0.01-1重量%。
在本发明中通过喷雾干燥器对上述含水浆液进行喷雾干燥。在喷雾干燥过 程中, 首先在干燥室内将浆液雾化, 然后使其与热空气接触, 使得浆液雾滴中 的水分迅速气化, 从而得到具有大体均匀粒度和形状的干燥产品。 本发明优选 使用离心式喷雾干燥器或压力式喷雾干燥器进行喷雾干燥。这两种喷雾干燥器 的区别在于对浆液进行雾化的方式不同。 在离心式喷雾干燥器中, 将浆液输送 到雾化器内高速旋转的离心转盘中, 将浆液快速甩出而使其雾化。 压力式喷雾 干燥器使用高压泵将浆液喷射入干燥室内, 使其形成雾状。 实施例
下面结合实施例对本发明进行进一步的描述。 在以下实施例中, 使用的
ZSM-5催化剂的硅铝比为 20-400, 优选 250-400; 碱性硅溶胶是固体浓度为 30 重量%的硅溶胶, pH值为 9, 固体颗粒平均粒径为 14nm; 酸性硅溶胶是固体 浓度为 30重量%的硅溶胶, pH值为 2, 固体颗粒平均粒径为 14nm; 铝溶胶是 固体浓度为 30重量%的铝溶胶, pH值为 2, 固体颗粒平均粒径为 20nm; 聚乙 烯醇从市场上购得, 其分子量为 16000-20000; 高岭土、 拟薄水铝石、 田菁粉、 ¾PO4、 煅烧高岭土、 硅藻土、 磷酸铵、 磷酸氢铵、 磷酸二氢铵、 蒙脱石、 和 甲醇均从商业来源购得, 未经进一步纯化处理而直接使用。 实施例 1
在 5L的不锈钢反应釜中添加 4000g水, 再添加 600g ZSM-5催化剂粉 末 (硅铝比为 250)并充分搅拌 30min, 再依次加入 1200g碱性硅溶胶、 600g 高岭土、 400g拟薄水铝石、 2g田菁粉, 4000g去离子水, 充分搅拌均匀制 得含水浆液, 使用离心式喷雾干燥器对该含水浆液进行喷雾干燥, 所述离 心式喷雾干燥器的进口温度为 300°C, 出口温度为 180°C, 所述含水浆料的 进料速度为 100ml/min, 喷雾所得的颗粒在马弗炉中, 在空气气氛、 650°C 的温度下焙烧 2h, 得到催化剂 1 #。
实施例 2
在 5L的不锈钢反应釜中添加 4000g水, 再添加 600g ZSM-5催化剂粉 末 (硅铝比为 300)充分搅拌 30min, 再依次加入 1200g碱性硅溶胶、 600g高 岭土、 400g拟薄水铝石、 2g田菁粉、 50gH3PO4, 4000g去离子水, 充分搅 拌均匀制得含水浆液, 使用离心式喷雾干燥器对该含水浆液进行喷雾干燥, 所述离心式喷雾干燥器的进口温度为 300°C, 出口温度为 180°C, 所述含水 浆料的进料速度为 lOOml/min, 喷雾所得的颗粒在马弗炉中, 在空气气氛、 650°C的温度下焙烧 2h, 得到催化剂 2 #。
实施例 3
在 5L的不锈钢反应釜中添加 4000g水, 再加入 lOOOg ZSM-5催化剂 粉末 (硅铝比为 350)充分搅拌均匀, 然后添加 750g酸性硅溶胶、 1200g煅烧 高岭土、 900g拟薄水铝石, 10g田菁粉、 5g磷酸二氢胺, 充分搅拌均匀制 得含水浆液, 使用离心式喷雾干燥器对该含水浆液进行喷雾干燥, 所述离 心式喷雾干燥器的进口温度为 300°C, 出口温度为 180°C, 所述含水浆液的 进料速度为 250ml/min, 喷雾所得的颗粒在马弗炉中, 在空气气氛、 600°C 的温度下焙烧 4h, 得到催化剂 3 #。
实施例 4
在 5L的不锈钢反应釜中添加 5000g水, 再加入 700g ZSM-5催化剂粉 末 (硅铝比为 400)充分搅拌均匀,然后添加 900g铝溶胶、 100g、酸性硅溶胶、 1400g硅藻土、 30g田菁粉、 180g磷酸氢胺, 充分搅拌均匀制得含水浆液, 使用离心式喷雾干燥器对该含水浆液进行喷雾干燥, 所述离心式喷雾干燥 器的进口温度为 300°C, 出口温度为 180°C, 所述含水浆液的进料速度为 250ml/min, 喷雾所得的颗粒在马弗炉中, 在空气气氛、 温度为 600°C的条 件下焙烧 4h, 得到催化剂 4 #。
实施例 5
在 5L的不锈钢反应釜中添加 5000g水, 再加入 3000g ZSM-5催化剂 粉末 (硅铝比为 300)充分搅拌均匀, 然后添加 600g碱性硅溶胶、 1400g高岭 土、 600g拟薄水铝石、 10g聚乙烯醇、 10g磷酸铵, 充分搅拌均匀制得含水 浆液, 使用离心式喷雾干燥器对该含水浆液进行喷雾干燥, 所述离心式喷 雾干燥器的进口温度为 300°C, 出口温度为 180°C, 所述含水浆液的进料速 度为 250ml/min, 喷雾所得的颗粒马弗炉中, 在空气气氛、 温度为 600°C的 条件下焙烧 4h, 得到催化剂 5 #。
实施例 6
在 5L的不锈钢反应釜中添加 12000g水, 再加入 900g ZSM-5催化剂 粉末 (硅铝比为 250)充分搅拌均匀, 然后添加 1600g酸性硅溶胶、 800g蒙脱 石、 5g 田菁粉、 40g磷酸, 充分搅拌均匀制得含水浆液, 使用离心式喷雾 干燥器对所述含水浆液进行喷雾干燥, 所述离心式喷雾干燥器的进口温度 为 300°C, 出口温度为 180°C, 所述含水浆液的进料速度为 250ml/min, 喷 雾所得的催化剂马弗炉中, 在空气气氛、 温度为 600°C的条件下焙烧 4h, 得到催化剂 6#。 以上实施例 1 制备的是未进行磷惨杂的催化剂, 用于作为对比实验, 而实施例 2-6则为本发明的催化剂。 在以下实施例 7 中对这些催化剂的催 化性能进行了表征。
实施例 7
分别称取 150g上述催化剂 1#-6#, 装入直径 50mm、 高 110厘米的流化床 中, 使用体积浓度为 50%的甲醇水溶液进料, 反应器温度 460-500°C, 甲醇质 量空速 21^, 反应压力 O.lMPa, 使用气相色谱检测使用这些催化剂进行反应制 得的产物的组成。 测得甲醇转化率 100%, 开始反应之后 8小时时的具体产物 分布见表 1。
表 1 催化剂在甲醇制烯烃反应中的产物分布 (质量百分比)
Figure imgf000010_0001
从上表可以看到, 与未惨杂磷的催化剂 1#相比, 本发明的催化剂在丙 烯和 C4烯烃的选择性方面都获得显著的提高。 实施例 8
使用立式磨损指数测试仪对 1#催化剂和 2 #催化剂进行磨损指数测试, 采用标准为 ASTM-D5757-00,使用长岭 FCC平衡剂为对比样, 长岭 FCC平衡 剂磨损指数为 2.5%, 1#催化剂磨损指数为 2.1%, 2#催化剂磨损指数为 1.9%。 由此可见, 本发明的催化剂通过惨杂磷, 还可以同时表现出显著提高的 耐磨损性。

Claims

权利要求书
1.一种用来制备催化剂的方法, 所述催化剂是用于在流化床中由甲醇制 备烯烃的催化剂, 所述方法包括以下步骤:
(1) 将 ZSM-5分子筛、 磷源、 基质材料、 粘结剂和水混合起来, 配制成含 水浆液, 以该含水浆液的总重量为基准计, 其中除了水以外的组分的总含量为 20-50重量%;
(2) 对步骤 (1)制得的浆液进行喷雾干燥, 制得颗粒状中间产物;
(3) 对步骤 (2)制得的颗粒状中间产物进行焙烧,制得用于在流化床中由甲 醇制备烯烃的催化剂。
2. 如权利要求 1所述的方法, 其特征在于, 所述 ZSM-5分子筛的硅铝比 为 20-400, 优选为 200-400, 以所述含水浆液中除了水以外的组分的总重量计, 所述 ZSM-5分子筛的含量为 20-55重量%。
3. 如权利要求 1 所述的方法, 其特征在于, 所述基质材料选自高岭土、 煅烧高岭土、硅藻土、拟薄水铝石、蒙脱石中的一种或多种, 其粒径小于 2μη, 以所述含水浆液中除了水以外的组分的总重量计, 所述基质材料的含量为 20-59重量%。
4. 如权利要求 1所述的方法, 其特征在于, 所述粘结剂选自碱性硅溶胶、 酸性硅溶胶、 铝溶胶、 磷酸铝、 硝酸铝、 氧化铝中的一种或多种, 以所述含水 浆液中除了水以外的组分的总重量计, 所述粘结剂的含量为 20-50重量%。
5. 如权利要求 1所述的方法, 其特征在于, 所述磷源选自磷酸、 亚磷酸、 磷酸氢铵、 磷酸二氢铵、 磷酸铵中的一种或多种, 以所述含水浆液中除了水以 外的组分的总重量计, 所述磷源的含量为 0.1-5.0重量%。
6. 如权利要求 1 所述的方法, 其特征在于, 所述浆液中还包含造孔剂, 所述的造孔剂选自田菁粉、 聚乙烯醇、 甲基纤维素中的一种或多种, 以所述含 水浆液中除了水以外的组分的总重量计, 所述造孔剂的含量为 0.01-1重量%。
7. 如权利要求 1-6 中任一项所述的方法, 其特征在于, 所述步骤 (2)中, 使用离心式喷雾干燥器或压力式喷雾干燥器进行喷雾干燥, 喷雾干燥器的进口 温度为 150-300°C, 出口温度为 120-250°C, 浆液输入所述喷雾干燥器的进料速 率为 100-500ml/min。
8. 如权利要求 1-6中任一项所述的方法, 其特征在于, 在所述步骤 (3)中, 在 550-650°C、优选 600 °C的温度下对所述颗粒状中间产物进行 3-6小时、优选 4小时的焙烧。
9. 一种用于在流化床中由甲醇制备烯烃的催化剂, 该催化剂通过权利要 求 1-8中任一项所述的方法制备, 以所述催化剂的总重量为基准计, 所述催化 剂包含 25-60重量%、 优选 25-40重量%的 ZSM-5分子筛、 0.05-3重量%的源 自所述磷源的组分、 20-50重量%、优选 30-45重量%的源自所述基质材料的组 分以及 10-45重量%、 优选 25-40重量%的源自所述粘结剂的组分, 该催化剂 的粒径为 50-110微米。
10.一种由甲醇制备烯烃的方法, 该方法包括, 在足以使得甲醇转化为烯 烃的反应条件下, 在流化床反应器中, 使得甲醇或甲醇的水溶液与权利要求 9 所述的催化剂接触,所述反应条件为:甲醇质量空速 O -Sh—1 ,反应温度 430-550 V, 反应压力 Ο-l.OMPa; 制得的产物中丙烯的选择性高于 40%, 优选高于 45 % , 包含四个碳原子的烯烃的选择性高于 25 %, 优选高于 28%, 更优选高于 30% , 最优选最高达 32%。
PCT/CN2014/071747 2013-01-31 2014-01-29 一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法 WO2014117740A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/764,923 US9856183B2 (en) 2013-01-31 2014-01-29 Catalyst with high C4 olefin selectivity for preparing olefin from methanol and preparation method thereof
CA2899759A CA2899759A1 (en) 2013-01-31 2014-01-29 Catalyst with high c4 olefin selectivity for preparing olefin from methanol and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310040941.3 2013-01-31
CN201310040941.3A CN103962170A (zh) 2013-01-31 2013-01-31 一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2014117740A1 true WO2014117740A1 (zh) 2014-08-07

Family

ID=51232456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071747 WO2014117740A1 (zh) 2013-01-31 2014-01-29 一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法

Country Status (4)

Country Link
US (1) US9856183B2 (zh)
CN (1) CN103962170A (zh)
CA (1) CA2899759A1 (zh)
WO (1) WO2014117740A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550333B2 (en) * 2015-12-22 2020-02-04 Sabic Global Technologies B.V. Methods for producing ethylene and propylene from naphtha
CN112473725B (zh) * 2020-11-12 2022-09-20 万华化学集团股份有限公司 一种改性分子筛催化剂的制备方法及连续合成3-甲氧基-3-甲基丁醇的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032836A1 (en) * 2000-10-13 2002-04-25 Exxonmobil Chemical Patents, Inc. Process for producing light olefins
CN101318143A (zh) * 2008-06-12 2008-12-10 中国石油化工股份有限公司 制备分子筛流化床催化剂的方法
CN102372534A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 含氧化合物转化制低碳烯烃的方法
CN103623859A (zh) * 2013-12-06 2014-03-12 陕西煤化工技术工程中心有限公司 高空速下获得高丙乙比的甲醇制丙烯催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ191302A (en) * 1978-09-05 1981-10-19 Mobil Oil Corp Producing hydrocarbon mixture from alcohol feed using crystalline aluminosilicate zeolite catalyst
DE10233975A1 (de) 2002-07-25 2004-02-12 Lurgi Ag Vorrichtung zur Herstellung von Propylen aus Methanol
CN101172918B (zh) 2006-11-02 2010-09-01 中国石油化工股份有限公司 由甲醇转化制丙烯的方法
CN101279280B (zh) 2007-04-04 2010-07-28 中国石油化工股份有限公司 由甲醇转化制丙烯的催化剂
CN101274283B (zh) * 2008-04-11 2011-05-18 中国石油化工股份有限公司 含氧化合物制烯烃催化剂的制备方法
CN101402049A (zh) 2008-11-11 2009-04-08 上海福瑞得化工科技有限公司 一种甲醇制丙烯催化剂的制备方法
CN102211971B (zh) 2010-04-09 2015-08-05 上海华谊(集团)公司 甲醇制丙烯工艺
CN102371168B (zh) * 2010-08-23 2013-12-04 中国石油化工股份有限公司 流化床催化剂的制备方法
CN102531823B (zh) 2010-12-23 2014-10-22 中国科学院金属研究所 一种高丙烯产率甲醇制丙烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032836A1 (en) * 2000-10-13 2002-04-25 Exxonmobil Chemical Patents, Inc. Process for producing light olefins
CN101318143A (zh) * 2008-06-12 2008-12-10 中国石油化工股份有限公司 制备分子筛流化床催化剂的方法
CN102372534A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 含氧化合物转化制低碳烯烃的方法
CN103623859A (zh) * 2013-12-06 2014-03-12 陕西煤化工技术工程中心有限公司 高空速下获得高丙乙比的甲醇制丙烯催化剂及其制备方法

Also Published As

Publication number Publication date
US9856183B2 (en) 2018-01-02
CN103962170A (zh) 2014-08-06
US20150367333A1 (en) 2015-12-24
CA2899759A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2014166372A1 (zh) 混合分子筛催化剂及其制备方法和应用
KR101271945B1 (ko) 제올라이트 함유 촉매 및 그 제조 방법과 프로필렌의 제조 방법
CN103561867B (zh) 制造用于将甲醇转化成烯烃的沸石基催化剂的改进方法
CN101176849B (zh) 由甲醇或二甲醚高选择性制备丙烯的催化剂及制备方法
KR20100039415A (ko) 프로필렌의 제조 방법
US10010870B2 (en) Synthesis of catalytic materials for metathesis and isomerization reactions and other catalytic applications via well controlled aerosol processing
CN103553073B (zh) 一种具有多级孔径的富含Si(4Al)的SAPO-44分子筛和其分子筛催化剂以及它们的制备方法
JP5355910B2 (ja) シリカ成形体
CN107282099B (zh) 多产异构低碳烯烃的催化裂化助剂及其制备方法和应用
WO2014117735A1 (zh) 一种用于在流化床中由甲醇制备烯烃的催化剂及其制备方法
CN102372571B (zh) 含氧化合物转化制丙烯的方法
WO2014154181A1 (zh) 一种制备硅改性的zsm-5分子筛催化剂的方法,由该方法制得的催化剂及其应用
RU2749420C2 (ru) Способ пептизации оксида алюминия для псевдоожижаемых катализаторов
CN102372288A (zh) Sapo-34分子筛的制备方法
CN107185586B (zh) 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
WO2014117740A1 (zh) 一种高c4烯烃选择性的用来由甲醇制烯烃的催化剂及其制备方法
CN111822033A (zh) 富含环烷环烃的烃油催化裂解催化剂、其制备方法和应用方法
CN105582999B (zh) 石脑油催化裂解产丙烯的催化剂及其制备方法和石脑油催化裂解产丙烯的方法
WO2021219064A1 (zh) 一种改性β沸石、催化裂化催化剂及其制备方法和应用
CN106732700B (zh) 一种丙烯低聚制备壬烯和十二烯的催化剂及制备方法和用途
CN111822043B (zh) 多产乙烯的含硼催化裂解催化剂、其制备方法和应用方法
CN110479362B (zh) 一种多产柴油和多产低碳烯烃的催化剂及其制备方法与应用
CN104923294B (zh) 用于甲醇制烯烃的复合分子筛及制备方法和应用
CN114192184B (zh) 一种裂解催化剂及其制备方法和应用
CN108187736B (zh) 具有核壳结构的三水铝石@sapo分子筛复合物及制备方法和在催化甲醇制烯烃中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2899759

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14764923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746239

Country of ref document: EP

Kind code of ref document: A1